Fin field effect transistor directionality impacts printing of implantation shapes
Wang, Xiren; Granik, Yuri
2018-01-01
In modern integrated circuit (IC) fabrication processes, the photoresist receives considerable illumination energy that is reflected by underlying topography during optical lithography of implantation layers. Bottom antireflective coating (BARC) is helpful to mitigate the reflection. Often, however, BARC is not used, because its removal is technically challenging, in addition to its relatively high economic cost. Furthermore, the advanced technology nodes, such as 14/10-nm nodes, have introduced fin field effect transistor (FinFET), which makes reflection from nonuniform silicon substrates exceptionally complicated. Therefore, modeling reflection from topography becomes obligatory to accurately predict printing of implantation shapes. Typically, FinFET is always fixed in one direction in realistic designs. However, the same implantation rectangle may be oriented in either horizontal or vertical direction. Then, there are two types of relations between the critical dimension (CD) and FinFET, namely a parallel-to and a perpendicular-to relation. We examine the fin directionality impact on CD. We found that this impact may be considerable in some cases. We use our in-house rigorous optical topography simulator to reveal underlining physical reasons. One of the major causes of the CD differences is that in the parallel orientation, the solid sidewalls of the fins conduct considerable light reflections unlike for the perpendicular orientation. This finding can aid the compact modeling in optical proximity correction of implantation masks.
Ballistic electron transport calculation of strained germanium-tin fin field-effect transistors
International Nuclear Information System (INIS)
Lan, H.-S.; Liu, C. W.
2014-01-01
The dependence of ballistic electron current on Sn content, sidewall orientations, fin width, and uniaxial stress is theoretically studied for the GeSn fin field-effect transistors. Alloying Sn increases the direct Γ valley occupancy and enhances the injection velocity at virtual source node. (112 ¯ ) sidewall gives the highest current enhancement due to the rapidly increasing Γ valley occupancy. The non-parabolicity of the Γ valley affects the occupancy significantly. However, uniaxial tensile stress and the shrinkage of fin width reduce the Γ valley occupancy, and the currents are enhanced by increasing occupancy of specific indirect L valleys with high injection velocity
Ballistic electron transport calculation of strained germanium-tin fin field-effect transistors
Energy Technology Data Exchange (ETDEWEB)
Lan, H.-S. [Graduate Institute of Electronics Engineering and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan (China); Liu, C. W., E-mail: chee@cc.ee.ntu.edu.tw [Graduate Institute of Electronics Engineering and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan (China); Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan (China)
2014-05-12
The dependence of ballistic electron current on Sn content, sidewall orientations, fin width, and uniaxial stress is theoretically studied for the GeSn fin field-effect transistors. Alloying Sn increases the direct Γ valley occupancy and enhances the injection velocity at virtual source node. (112{sup ¯}) sidewall gives the highest current enhancement due to the rapidly increasing Γ valley occupancy. The non-parabolicity of the Γ valley affects the occupancy significantly. However, uniaxial tensile stress and the shrinkage of fin width reduce the Γ valley occupancy, and the currents are enhanced by increasing occupancy of specific indirect L valleys with high injection velocity.
Investigation of defect-induced abnormal body current in fin field-effect-transistors
International Nuclear Information System (INIS)
Liu, Kuan-Ju; Tsai, Jyun-Yu; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Yang, Ren-Ya; Cheng, Osbert; Huang, Cheng-Tung
2015-01-01
This letter investigates the mechanism of abnormal body current at the linear region in n-channel high-k/metal gate stack fin field effect transistors. Unlike body current, which is generated by impact ionization at high drain voltages, abnormal body current was found to increase with decreasing drain voltages. Notably, the unusual body leakage only occurs in three-dimensional structure devices. Based on measurements under different operation conditions, the abnormal body current can be attributed to fin surface defect-induced leakage current, and the mechanism is electron tunneling to the fin via the defects, resulting in holes left at the body terminal
High temperature study of flexible silicon-on-insulator fin field-effect transistors
Diab, Amer El Hajj
2014-09-29
We report high temperature electrical transport characteristics of a flexible version of the semiconductor industry\\'s most advanced architecture: fin field-effect transistor on silicon-on-insulator with sub-20 nm fins and high-κ/metal gate stacks. Characterization from room to high temperature (150 °C) was completed to determine temperature dependence of drain current (Ids), gate leakage current (Igs), transconductance (gm), and extracted low-field mobility (μ0). Mobility degradation with temperature is mainly caused by phonon scattering. The other device characteristics show insignificant difference at high temperature which proves the suitability of inorganic flexible electronics with advanced device architecture.
International Nuclear Information System (INIS)
Kim, Sun-Wook; Byeon, Dae-Seop; Jang, Hyunchul; Koo, Sang-Mo; Ko, Dae-Hong; Lee, Hoo-Jeong
2014-01-01
This study undertook strain analysis on fin-shaped field effect transistor structures with epitaxial Si 1−x Ge x stressors, using nano-beam electron diffraction and finite elements method. Combining the two methods disclosed dynamic strain distribution in the source/drain and channel region of the fin structure, and the effects of dimensional factors such as the stressor thickness and fin width, offering valuable information for device design.
Energy Technology Data Exchange (ETDEWEB)
Kim, Sun-Wook; Byeon, Dae-Seop; Jang, Hyunchul; Koo, Sang-Mo; Ko, Dae-Hong, E-mail: dhko@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Hoo-Jeong, E-mail: hlee@skku.edu [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)
2014-08-25
This study undertook strain analysis on fin-shaped field effect transistor structures with epitaxial Si{sub 1−x}Ge{sub x} stressors, using nano-beam electron diffraction and finite elements method. Combining the two methods disclosed dynamic strain distribution in the source/drain and channel region of the fin structure, and the effects of dimensional factors such as the stressor thickness and fin width, offering valuable information for device design.
International Nuclear Information System (INIS)
Yu Jun-Ting; Chen Shu-Ming; Chen Jian-Jun; Huang Peng-Cheng; Song Rui-Qiang
2016-01-01
Charge sharing is becoming an important topic as the feature size scales down in fin field-effect-transistor (FinFET) technology. However, the studies of charge sharing induced single-event transient (SET) pulse quenching with bulk FinFET are reported seldomly. Using three-dimensional technology computer aided design (3DTCAD) mixed-mode simulations, the effects of supply voltage and body-biasing on SET pulse quenching are investigated for the first time in bulk FinFET process. Research results indicate that due to an enhanced charge sharing effect, the propagating SET pulse width decreases with reducing supply voltage. Moreover, compared with reverse body-biasing (RBB), the circuit with forward body-biasing (FBB) is vulnerable to charge sharing and can effectively mitigate the propagating SET pulse width up to 53% at least. This can provide guidance for radiation-hardened bulk FinFET technology especially in low power and high performance applications. (paper)
Nuytten, T.; Bogdanowicz, J.; Witters, L.; Eneman, G.; Hantschel, T.; Schulze, A.; Favia, P.; Bender, H.; De Wolf, I.; Vandervorst, W.
2018-05-01
The continued importance of strain engineering in semiconductor technology demands fast and reliable stress metrology that is non-destructive and process line-compatible. Raman spectroscopy meets these requirements but the diffraction limit prevents its application in current and future technology nodes. We show that nano-focused Raman scattering overcomes these limitations and can be combined with oil-immersion to obtain quantitative anisotropic stress measurements. We demonstrate accurate stress characterization in strained Ge fin field-effect transistor channels without sample preparation or advanced microscopy. The detailed analysis of the enhanced Raman response from a periodic array of 20 nm-wide Ge fins provides direct access to the stress levels inside the nanoscale channel, and the results are validated using nano-beam diffraction measurements.
High temperature study of flexible silicon-on-insulator fin field-effect transistors
Diab, Amer El Hajj; Sevilla, Galo T.; Ghoneim, Mohamed T.; Hussain, Muhammad Mustafa
2014-01-01
. Characterization from room to high temperature (150 °C) was completed to determine temperature dependence of drain current (Ids), gate leakage current (Igs), transconductance (gm), and extracted low-field mobility (μ0). Mobility degradation with temperature
Effect of the Curved Fin Top Edge on the Electrical Characteristics of FinFETs.
Ahn, Joonsung; Kim, Tae Whan
2018-03-01
The effect of the curved fin top edge on the electrical characteristics of FinFETs was investigated. The curvature radius of the fin top edge for the FinFETs was changed from 0 to 5 nm in order to determine the optimum condition of the electrical characteristics for the devices. The on-current level of the FinFETs with a curvature radius of 5 nm of fin top edge was 24.45% larger than that of the FinFETs with a cuboid fin. The electron current density and the electron mobility of the fin top edge for the FinFETs were larger than those for the FinFETs with a cuboid fin. The electrical characteristics of the FinFETs with a curvature radius of 5 nm for the fin top edge showed the best performance due to the largest expansion of the effective channel region.
Ge/IIIV fin field-effect transistor common gate process and numerical simulations
Chen, Bo-Yuan; Chen, Jiann-Lin; Chu, Chun-Lin; Luo, Guang-Li; Lee, Shyong; Chang, Edward Yi
2017-04-01
This study investigates the manufacturing process of thermal atomic layer deposition (ALD) and analyzes its thermal and physical mechanisms. Moreover, experimental observations and computational fluid dynamics (CFD) are both used to investigate the formation and deposition rate of a film for precisely controlling the thickness and structure of the deposited material. First, the design of the TALD system model is analyzed, and then CFD is used to simulate the optimal parameters, such as gas flow and the thermal, pressure, and concentration fields, in the manufacturing process to assist the fabrication of oxide-semiconductors and devices based on them, and to improve their characteristics. In addition, the experiment applies ALD to grow films on Ge and GaAs substrates with three-dimensional (3-D) transistors having high electric performance. The electrical analysis of dielectric properties, leakage current density, and trapped charges for the transistors is conducted by high- and low-frequency measurement instruments to determine the optimal conditions for 3-D device fabrication. It is anticipated that the competitive strength of such devices in the semiconductor industry will be enhanced by the reduction of cost and improvement of device performance through these optimizations.
Rojas, Jhonathan Prieto; Sevilla, Galo T.; Alfaraj, Nasir; Ghoneim, Mohamed T.; Kutbee, Arwa T.; Sridharan, Ashvitha; Hussain, Muhammad Mustafa
2015-01-01
The ability to incorporate rigid but high-performance nano-scale non-planar complementary metal-oxide semiconductor (CMOS) electronics with curvilinear, irregular, or asymmetric shapes and surfaces is an arduous but timely challenge in enabling the production of wearable electronics with an in-situ information-processing ability in the digital world. Therefore, we are demonstrating a soft-material enabled double-transfer-based process to integrate flexible, silicon-based, nano-scale, non-planar, fin-shaped field effect transistors (FinFETs) and planar metal-oxide-semiconductor field effect transistors (MOSFETs) on various asymmetric surfaces to study their compatibility and enhanced applicability in various emerging fields. FinFET devices feature sub-20 nm dimensions and state-of-the-art, high-κ/metal gate stack, showing no performance alteration after the transfer process. A further analysis of the transferred MOSFET devices, featuring 1 μm gate length exhibits ION ~70 μA/μm (VDS = 2 V, VGS = 2 V) and a low sub-threshold swing of around 90 mV/dec, proving that a soft interfacial material can act both as a strong adhesion/interposing layer between devices and final substrate as well as a means to reduce strain, which ultimately helps maintain the device’s performance with insignificant deterioration even at a high bending state.
Rojas, Jhonathan P; Torres Sevilla, Galo A; Alfaraj, Nasir; Ghoneim, Mohamed T; Kutbee, Arwa T; Sridharan, Ashvitha; Hussain, Muhammad Mustafa
2015-05-26
The ability to incorporate rigid but high-performance nanoscale nonplanar complementary metal-oxide semiconductor (CMOS) electronics with curvilinear, irregular, or asymmetric shapes and surfaces is an arduous but timely challenge in enabling the production of wearable electronics with an in situ information-processing ability in the digital world. Therefore, we are demonstrating a soft-material enabled double-transfer-based process to integrate flexible, silicon-based, nanoscale, nonplanar, fin-shaped field effect transistors (FinFETs) and planar metal-oxide-semiconductor field effect transistors (MOSFETs) on various asymmetric surfaces to study their compatibility and enhanced applicability in various emerging fields. FinFET devices feature sub-20 nm dimensions and state-of-the-art, high-κ/metal gate stacks, showing no performance alteration after the transfer process. A further analysis of the transferred MOSFET devices, featuring 1 μm gate length, exhibits an ION value of nearly 70 μA/μm (VDS = 2 V, VGS = 2 V) and a low subthreshold swing of around 90 mV/dec, proving that a soft interfacial material can act both as a strong adhesion/interposing layer between devices and final substrate as well as a means to reduce strain, which ultimately helps maintain the device's performance with insignificant deterioration even at a high bending state.
Rojas, Jhonathan Prieto
2015-05-01
The ability to incorporate rigid but high-performance nano-scale non-planar complementary metal-oxide semiconductor (CMOS) electronics with curvilinear, irregular, or asymmetric shapes and surfaces is an arduous but timely challenge in enabling the production of wearable electronics with an in-situ information-processing ability in the digital world. Therefore, we are demonstrating a soft-material enabled double-transfer-based process to integrate flexible, silicon-based, nano-scale, non-planar, fin-shaped field effect transistors (FinFETs) and planar metal-oxide-semiconductor field effect transistors (MOSFETs) on various asymmetric surfaces to study their compatibility and enhanced applicability in various emerging fields. FinFET devices feature sub-20 nm dimensions and state-of-the-art, high-κ/metal gate stack, showing no performance alteration after the transfer process. A further analysis of the transferred MOSFET devices, featuring 1 μm gate length exhibits ION ~70 μA/μm (VDS = 2 V, VGS = 2 V) and a low sub-threshold swing of around 90 mV/dec, proving that a soft interfacial material can act both as a strong adhesion/interposing layer between devices and final substrate as well as a means to reduce strain, which ultimately helps maintain the device’s performance with insignificant deterioration even at a high bending state.
Wang, Tai-Min; Chien, Wei-Yu; Hsu, Chia-Ling; Lin, Chrong Jung; King, Ya-Chin
2018-04-01
In this paper, we present a new differential p-channel multiple-time programmable (MTP) memory cell that is fully compatible with advanced 16 nm CMOS fin field-effect transistors (FinFET) logic processes. This differential MTP cell stores complementary data in floating gates coupled by a slot contact structure, which make different read currents possible on a single cell. In nanoscale CMOS FinFET logic processes, the gate dielectric layer becomes too thin to retain charges inside floating gates for nonvolatile data storage. By using a differential architecture, the sensing window of the cell can be extended and maintained by an advanced blanket boost scheme. The charge retention problem in floating gate cells can be improved by periodic restoring lost charges when significant read window narrowing occurs. In addition to high programming efficiency, this p-channel MTP cells also exhibit good cycling endurance as well as disturbance immunity. The blanket boost scheme can remedy the charge loss problem under thin gate dielectrics.
Wang, Hongjuan; Han, Genquan; Jiang, Xiangwei; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue
2017-04-01
In this work, the boosting effect on the performance of GeSn n-channel fin tunneling FET (nFinTFET) enabled by uniaxial tensile stress is investigated theoretically. As the fin rotates within the (001) plane, the uniaxial tensile stress is always along its direction. The electrical characteristics of tensile-stressed GeSn nFinTFETs with point and line tunneling modes are computed utilizing the technology computer aided design (TCAD) simulator in which the dynamic nonlocal band-to-band tunneling (BTBT) algorithm is employed. In comparison with the relaxed devices, tensile-stressed GeSn nFinTFETs achieve a substantial enhancement in band-to-band tunneling generation rate (G BTBT) and on-state current I ON owing to the reduced bandgap E G induced by the tensile stress. Performance improvement of GeSn nFinTFETs induced by tensile stress demonstrates a strong dependence on channel direction and tunneling modes. Under the same magnitude of stress, line-nFinTFETs obtain a more pronounced I ON enhancement over the transistors with point tunneling mode.
Effects of ultra-thin Si-fin body widths upon SOI PMOS FinFETs
Liaw, Yue-Gie; Chen, Chii-Wen; Liao, Wen-Shiang; Wang, Mu-Chun; Zou, Xuecheng
2018-05-01
Nano-node tri-gate FinFET devices have been developed after integrating a 14 Å nitrided gate oxide upon the silicon-on-insulator (SOI) wafers established on an advanced CMOS logic platform. These vertical double gate (FinFET) devices with ultra-thin silicon fin (Si-fin) widths ranging from 27 nm to 17 nm and gate length down to 30 nm have been successfully developed with a 193 nm scanner lithography tool. Combining the cobalt fully silicidation and the CESL strain technology beneficial for PMOS FinFETs was incorporated into this work. Detailed analyses of Id-Vg characteristics, threshold voltage (Vt), and drain-induced barrier lowering (DIBL) illustrate that the thinnest 17 nm Si-fin width FinFET exhibits the best gate controllability due to its better suppression of short channel effect (SCE). However, higher source/drain resistance (RSD), channel mobility degradation due to dry etch steps, or “current crowding effect” will slightly limit its transconductance (Gm) and drive current.
Effects of the partially movable control fin with end plate of underwater vehicle
Directory of Open Access Journals (Sweden)
Chul-Min Jung
2017-01-01
Full Text Available Underwater torpedo has control fin with very low aspect ratio due to launching from limited size of cylindrical torpedo tube. If the aspect ratio of control fin of underwater vehicle is very low three-dimensional flow around control fin largely reduces control forces. In this study, the end plate was applied to reduce the three-dimensional flow effects of partially movable control fin of underwater vehicle. Through numerical simulations the flow field around control fin was examined with and without end plate for different flap angles. The pressure, vorticity, lift and torque on the control fin were analyzed and compared to experiments. The comparison have shown a reasonable agreement between numerical and experimental results and the effect of end plate on a low aspect ratio control fin. When the end plate was attached to the movable control fin, the lift increased and the actuator shaft torque did not significantly change. As this means less consumption of the actuator shaft torque compared to the control fin that has the same control force, the inner actuator capacity can be reduced and energy consumption can be saved. Considering this, it is expected to be effectively applied to the control fin design of underwater vehicles such as torpedoes.
Enhanced heat transfer in partially open square cavities with thin fin by using electric field
International Nuclear Information System (INIS)
Kasayapanand, N.; Kiatsiriroat, T.
2009-01-01
Numerical modeling of the electric field effect on the natural convection in the partially open square cavities with thin fin attached is investigated. The interactions among electric, flow, and temperature fields are analyzed by using a computational fluid dynamics technique. It is found that the flow and heat transfer enhancements are a decreasing function of the Rayleigh number. Moreover, the volume flow rate and heat transfer coefficient are substantially improved by electrohydrodynamic especially at low aperture size, high aperture position, and high inclined angle. Surprisingly, the maximum convective heat transfer is obtained at the minimum electrical energy consumption by placing electrodes at a suitable position. The optimum electrode arrangements for both single fin and multiple fins are also achieved
FinTech in Norway : the effect of FinTech on the traditional Norwegian banking sector
Omreng, Stian; Gjendem, Ida
2017-01-01
The purpose of this thesis is to investigate the effect of FinTech on the Norwegian banking industry. We investigate the drivers of FinTech, the current and potential Norwegian FinTech market, and the international competitiveness of the Norwegian FinTech movement. We identify nine segments of FinTech within the traditional banking functions Financing, Asset management, Payments and Authentication, and we find the key drivers behind the rapid growth of the FinTech market as cha...
Weber, Daniel; Schrod, Jann; Curtius, Joachim; Haunold, Werner; Thomson, Erik; Bingemer, Heinz
2016-04-01
The measurement of atmospheric ice nucleating particles (INP) is still challenging. In the absence of easily applicable INP standards the intercomparison of different methods during collaborative laboratory and field workshops is a valuable tool that can shine light on the performance of individual methods for the measurement of INP [1]. FIN-2 was conducted in March 2015 at the AIDA facility in Karlsruhe as an intercomparison of mobile instruments for measuring INP [2]. FIN-3 was a field campaign at the Desert Research Institutes Storm Peak Laboratory in Colorado in September 2015 [3]. The FRankfurt Ice nucleation Deposition freezinG Experiment (FRIDGE) participated in both experiments. FRIDGE measures ice nucleating particles by electrostatic precipitation of aerosol particles onto Si-wafers in a collection unit, followed by activation, growth, and optical detection of ice crystals on the substrate in an isostatic diffusion chamber [4,5]. We will present and discuss results of our measurements of deposition/condensation INP and of immersion INP with FRIDGE during FIN-2 and FIN-3. Acknowledgements: The valuable contributions of the FIN organizers and their institutions, and of the FIN Workshop Science team are gratefully acknowledged. Our work was supported by Deutsche Forschungsgemeinschaft (DFG) under the Research Unit FOR 1525 (INUIT) and the EU FP7-ENV- 2013 BACCHUS project under Grant Agreement 603445.
International Nuclear Information System (INIS)
Hajabdollahi, Hassan
2015-01-01
Thermoeconomic optimization of plate fin heat exchanger with similar (SF) and different (DF) or non-similar fin in each side is presented in this work. For this purpose, both heat exchanger effectiveness and total annual cost (TAC) are optimized simultaneously using multi-objective particle swarm optimization algorithm. The above procedure is performed for various mass flow rates in each side. The optimum results reveal that no thermoeconomic improvement is observed in the case of same mass flow rate in each side while both effectiveness and TAC are improved in the case of different mass flow rate. For example, effectiveness and TAC are improved 0.95% and 10.17% respectively, for the DF compared with SF. In fact, the fin configuration should be selected more compact in a side with lower mass flow rate compared with the other side in the thermoeconomic viewpoint. Furthermore, for the thermodynamic optimization viewpoint both SF and DF have the same optimum result while for the economic (or thermoeconomic) optimization viewpoint, the significant decrease in TAC is accessible in the case of DF compared with SF. - Highlights: • Thermoeconomic modeling of compact heat exchanger. • Selection of fin and heat exchanger geometries as nine decision variables. • Applying MOPSO algorithm for multi objective optimization. • Considering the similar and different fin specification in each side. • Investigation of optimum design parameters for various mass flow rates
Directory of Open Access Journals (Sweden)
Kadhum Audaa Jehhef
2018-04-01
Full Text Available In the present study, the effect of new cross-section fin geometries on overall thermal/fluid performance had been investigated. The cross-section included the base original geometry of (triangular, square, circular, and elliptical pin fins by adding exterior extra fins along the sides of the origin fins. The present extra fins include rectangular extra fin of 2 mm (height and 4 mm (width and triangular extra fin of 2 mm (base 4 mm (height. The use of entropy generation minimization method (EGM allows the combined effect of thermal resistance and pressure drop to be assessed through the simultaneous interaction with the heat sink. A general dimensionless expression for the entropy generation rate is obtained by considering a control volume around the pin fin including a base plate and applying the conservations equations of mass and energy with the entropy balance. The dimensionless numbers used includes the aspect ratio (ε, Reynolds number (Re, Nusselt number (Nu, and the drag coefficients (CD. Fourteen different cross-section fin geometries are examined for the heat transfer, fluid friction, and the minimum entropy generation rate. The results showed that the Nusselt number increases with increasing the Reynolds number for all employed models. The ellipse models (ET and ER-models give the highest value in the Nusselt number as compared with the classical pin fins. The fin of the square geometry with four rectangular extra fins (SR-models gives an agreement in Nusselt number as compared with the previous study.
Energy Technology Data Exchange (ETDEWEB)
Hikavyy, A., E-mail: Andriy.Hikavyy@imec.be; Rosseel, E.; Kubicek, S.; Mannaert, G.; Favia, P.; Bender, H.; Loo, R.; Horiguchi, N.
2016-03-01
Integration of Si{sub 0.30}Ge{sub 0.70} in the Source/Drain (S/D) areas of metal oxide semiconductor transistors built according to 14 nm technological node rules has been shown. SiGe properties and growth peculiarities are presented and elaborated. In order to preserve the fin structures during a pre-epitaxy surface preparation, the H{sub 2} bake pressure had to be increased to 19,998 Pa at 800 °C. Influence of this bake on the Si recess in the S/D areas is presented. Excellent quality of both the raised and the embedded Si{sub 0.30}Ge{sub 0.70} was demonstrated by transmission electron microscopy inspections. Energy-dispersive X-ray spectroscopy measurement showed two stages of SiGe growth for the embedded case: first with a lower Ge content at the beginning of the deposition until the (111) facets are formed, and second with a higher Ge content which is governed by the growth on (111) planes. Nano-beam diffraction analysis showed that SiGe grown in the S/D areas of p-type metal-oxide-semiconductor field-effect transistor is fully elastically relaxed in the direction across the fin and partially strained along the fin. Finally, a strain accumulation effect in the chain of transistors has been observed. - Highlights: • Si{sub 0.30}Ge{sub 0.70} stressor has been implemented in the 14 nm technology node CMOS flow. • Embedded and raised variants have been investigated. • High Si{sub 0.30}Ge{sub 0.70} quality was confirmed. • Si{sub 0.30}Ge{sub 0.70} layer is elastically relaxed across the fin direction. • Partial stress presence and stress accumulation effect were observed.
Hydrodynamical analysis of the effect of fish fins morphology
Azwadi Che Sidik, Nor; Yen, Tey Wah
2013-12-01
The previous works on the biomechanics of fishes focuses on the locomotion effect of the fish bodies. However, there is quite a insufficiency in unveiling the respective function of fins when the fishes pose statics and exposed to fluid flow. Accordingly, this paper's focus is to investigate the hydrodynamic effect of the fins configuration to the fluid flow of shark-shaped-inspired structure. The drag and lift coefficient is computed for different cases of fish fins addition and configuration. The k-epsilon turbulence model is deployed using finite volume method with the aid of commercial software ANSYS CFX. The finding will demystify some of the functions of the fish's fins in term of their contribution to the hydrodynamic flow around the fishes.
Effects of fin shape on condensation in herringbone microfin tubes
Energy Technology Data Exchange (ETDEWEB)
Miyara, Akio [Saga University (Japan). Dept. of Mechanical Engineering; Otsubo, Yusuke; Ohtsuka, Satoshi; Mizuta, Yoshihiko [Saga University (Japan). Graduate School of Science and Engineering
2003-06-01
Effects of fin height and helix angle on condensation inside a herringbone microfin tube have been experimentally investigated with five types of herringbone microfin tubes. Heat transfer coefficients are about 2-4 times higher than that of the helical microfin tube under high mass velocity conditions. In the low mass velocity, they are equal to that of the helical microfin tube. The heat transfer enhancement increases with fin height up to 0.18 mm; higher fin heights show enhancement values similar to the 0.18 mm results. Pressure drop increases with the fin height. Larger helix angle yields higher heat transfer and higher pressure drop. For the lowest fin and/or smallest helix angle, the pressure drop is comparable with that of the helical microfin tube, while the heat transfer enhancement is higher. The enhancement mechanism is discussed from flow pattern observations. Effect of mass transfer resistance for R410A is estimated and negligible effects have been proved. (author)
International Nuclear Information System (INIS)
Wongwises, Somchai; Chokeman, Yutasak
2005-01-01
An experimental study is conducted to investigate the effects of a fin pitch and number of tube rows on the air side performance of fin and tube heat exchangers having herringbone wavy fin configuration at various fin thicknesses. A total of 10 samples of fin and tube heat exchanger with a tube outside diameter of 9.53mm, transverse tube pitch of 25.4mm and longitudinal tube pitch of 19.05mm, having various fin pitches, number of tube rows and fin thicknesses, are tested in a well insulated open wind tunnel. The heat exchangers are made from aluminium plate finned, copper tube. Ambient air is used as a working fluid in the air side while hot water is used for the tube side. The results are presented as the variation of the Colburn factor and the friction factor with the Reynolds number based on the fin collar outside diameter (Re D c ). The experimental results reveal that the fin pitch has an insignificant effect on the heat transfer characteristic. The friction factor increases with increasing fin pitch when Re D c >2500, approximately. The Colburn factor and the friction factor decrease with increasing number of tube rows when Re D c <4000, approximately. These results remain the same when the fin thickness is changed
Effect of Collector Aspect Ratio on the Thermal Performance of Wavy Finned Absorber Solar Air Heater
Abhishek Priyam; Prabha Chand
2016-01-01
A theoretical investigation on the effect of collector aspect ratio on the thermal performance of wavy finned absorber solar air heaters has been performed. For the constant collector area, the various performance parameters have been calculated for plane and wavy finned solar air heaters. It has been found that the performance of wavy finned solar air heater improved with the increase in the collector aspect ratio. The performance of wavy finned solar air heater has been found 30 percent hig...
Effect of storage media and time on fin explants culture in the ...
African Journals Online (AJOL)
The effect of storage media and time was investigated on fin explants culture in the goldfish (Carassius auratus). Fin explants under sterile conditions were able to produce cells at different storage media and time. On the outgrowth of cells, fin explants stored for seven days before culturing showed significantly higher growth ...
Study of Swept Angle Effects on Grid Fins Aerodynamics Performance
Faza, G. A.; Fadillah, H.; Silitonga, F. Y.; Agoes Moelyadi, Mochamad
2018-04-01
Grid fin is an aerodynamic control surface that usually used on missiles and rockets. In the recent several years many researches have conducted to develop a more efficient grid fins. There are many possibilities of geometric combination could be done to improve aerodynamics characteristic of a grid fin. This paper will only discuss about the aerodynamics characteristics of grid fins compared by another grid fins with different swept angle. The methodology that used to compare the aerodynamics is Computational Fluid Dynamics (CFD). The result of this paper might be used for future studies to answer our former question or as a reference for related studies.
Moorthy, P.; Oumer, A. N.; Ishak, M.
2018-03-01
The aim of this paper is to investigate the effect of fin shapes on the performance of compact finned flat tube heat exchangers. Three types of fin shapes namely plain, wavy, and rectangular grooved fins attached to three by three arrays of flat tube banks were considered. Moreover, the tubes were deployed in in-line and staggered arrangements. In addition to the fin shapes, the air velocity and the tube inclination angles were varied and the thermal-hydraulic performance was analysed. On the other hand, the temperatures at the tube surfaces were kept constant to produce constant heat flux throughout the study. The results showed that as flowrate increases, the heat transfer increases, however, the friction factor decreases. Staggered arrangement produces higher heat transfer and friction factor than inline fin. Moreover, the rectangular fin is the best in terms of high heat transfer however the drawback of high friction factor leads the fin to have the least efficiency of all. On the other hand, plain fin had the least heat transfer performance however the highest efficiency was achieved. Therefore, plain fin should be used when efficiency is prioritized and rectangular fin when high heat transfer is desired.
International Nuclear Information System (INIS)
Cuce, Erdem; Cuce, Pinar Mert
2015-01-01
Highlights: • Homotopy perturbation method has been applied to porous fins. • Dimensionless efficiency and effectiveness expressions have been firstly developed. • Effects of porous and convection parameters on thermal analysis have been clarified. • Ratio of porous fin to solid fin heat transfer rate has been given for various cases. • Reliability and practicality of homotopy perturbation method has been illustrated. - Abstract: In our previous works, thermal performance of straight fins with both constant and temperature-dependent thermal conductivity has been investigated in detail and dimensionless analytical expressions of fin efficiency and fin effectiveness have been developed for the first time in literature via homotopy perturbation method. In this study, previous works have been extended to porous fins. Governing equations have been formulated by performing Darcy’s model. Dimensionless temperature distribution along the length of porous fin has been determined as a function of porosity and convection parameters. The ratio of porous fin to solid fin heat transfer rate has also been evaluated as a function of thermo-geometric fin parameter. The results have been compared with those of finite difference method for a specific case and an excellent agreement has been observed. The expressions developed are beneficial for thermal engineers for preliminary assessment of thermophysical systems instead of consuming time in heat conduction problems governed by strongly nonlinear differential equations
Investigation of thermal effects on FinFETs in the quasi-ballistic regime
Yin, Longxiang; Shen, Lei; Di, Shaoyan; Du, Gang; Liu, Xiaoyan
2018-04-01
In this work, the thermal effects of FinFETs in the quasi-ballistic regime are investigated using the Monte Carlo method. Bulk Si nFinFETs with the same fin structure and two different gate lengths L g = 20 and 80 nm are investigated and compared to evaluate the thermal effects on the performance of FinFETs in the quasi-ballistic regime. The on current of the 20 nm FinFET with V gs = 0.7 V does not decrease with increasing lattice temperature (T L) at a high V ds. The electrostatic properties in the 20 nm FinFET are more affected by T L than those in the 80 nm FinFET. However, the electron transport in the 20 nm FinFET is less affected by T L than that in the 80 nm FinFET. The electrostatic properties being more sensitive and the electron transport being less sensitive to thermal effects in the quasi-ballistic regime than in the diffusive regime should be considered for effective device modeling and design.
DEFF Research Database (Denmark)
Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph
2017-01-01
Design management of a thermal energy system is a critical part of identifying basic designs that meet large scale user demand under certain operating characteristics. Fin and tube heat exchangers are among the most commonly used thermal energy systems which are generating considerable interest...... and tube heat exchanger. Computational fluid dynamic models of fin and tube heat exchanger with different fin patterns are developed to investigate the fin pattern behavior on heat transfer and pressure loss performance data. In addition, the numerical results are utilized to analyze the engineering design...... scale-up heat exchanger configurations with each fin pattern focusing on the application of chosen fin and tube heat exchanger in marine exhaust gas boiler. The analysis highlights the impact of material efficient fin patterns investigated and predicts that the polynomial and sinusoidal fin patterns...
International Nuclear Information System (INIS)
He, Y.L.; Tao, W.Q.; Song, F.Q.; Zhang, W.
2005-01-01
In this paper, 3-D numerical simulations were performed for laminar heat transfer and fluid flow characteristics of plate fin-and-tube heat exchanger. The effects of five factors were examined: Re number, fin pitch, tube row number, spanwise and longitudinal tube pitch. The Reynolds number based on the tube diameter varied from 288 to 5000, the non-dimensional fin pitch based on the tube diameter varied from 0.04 to 0.5, the tube row number from 1 to 4, the spanwise tube pitch S 1 /d varies from 1.2 to 3, and the longitudinal tube pitch S 2 /d from 1.0 to 2.4. The numerical results were analyzed from the view point of field synergy principle, which says that the reduction of the intersection angle between velocity and fluid temperature gradient is the basic mechanism to enhance convective heat transfer. It is found that the effects of the five parameters on the heat transfer performance of the finned tube banks can be well described by the field synergy principle, i.e., the enhancement or deterioration of the convective heat transfer across the finned tube banks is inherently related to the variation of the intersection angle between the velocity and the fluid temperature gradient. It is also recommended that to further enhance the convective heat transfer, the enhancement techniques, such as slotting the fin, should be adopted mainly in the rear part of the fin where the synergy between local velocity and temperature gradient become worse
Tighchi, Hashem Ahmadi; Sobhani, Masoud; Esfahani, Javad Abolfazli
2018-01-01
The lattice Boltzmann method (LBM) is presented for the effects of volumetric radiation on laminar natural convection in a square cavity with a horizontal fin on the hot wall containing an absorbing, emitting and scattering medium. Accordingly, the flow, energy and radiative equations are solved by separate distribution functions in the LBM. A parametric study is performed: the effects of Rayleigh number and radiative parameters, such as extinction coefficient and scattering albedo on the flow and temperature fields are investigated. It is found that the isotherms become dense near the cold wall, due to highly participating properties and Rayleigh number. Also, the Nusselt number ratio (NNR) on the clod wall is examined for values of fin length and height. The maximum NNR is found at the longest fin length and near top wall for a given Rayleigh number.
Stress analysis of fuel claddings with axial fins including creep effects
International Nuclear Information System (INIS)
Krieg, R.
1977-01-01
For LMFBR fuel claddings with axial fins the stress and strain fields are calculated which may be caused by internal pressure, differential thermal expansion and irradiation induced differential swelling. To provide an appropriate description of the cladding material it is assumed that the total strain is the sum of a linear elastic and a creep term, where the latter one includes the thermal as well as the irradiation induced creep. First the linear elastic problem is treated by a semi-analytical method leading to a bipotential equation for Airys' stress function. Solving this equation analytically means that the field equations valid within the cladding are satisfied exactly. By applying a combined point matching- least square-method the boundary conditions could be satisfied approximately such that in most cases the remaining error is within the uncertainty range of the loading conditions. Then the nonlinear problem which includes creep is approximated by a sequence of linear elastic solutions with time as parameter. The accumulated creep strain is treated here as an imposed strain field. To study the influence of different effects such as fin shape, temperature region, irradiation induced creep and swelling or internal pressure, a total of eleven cases with various parameter variations are investigated. The results are presented graphically in the following forms: stress and strain distributions over the cladding cross section for end of life conditions and boundary stresses and strains versus time. (Auth.)
International Nuclear Information System (INIS)
Ma, Ting; Xin, Fei; Li, Lei; Xu, Xiang-yang; Chen, Yi-tung; Wang, Qiu-wang
2015-01-01
Printed circuit heat exchanger (PCHE) is recommended to be used for intermediate heat exchanger in Very High Temperature Reactor (VHTR). One of the key features is that it is manufactured by the photochemical etching in order to maintain the internal structure and metal properties. In this paper, a photochemical etching experiment is conducted to manufacture the airfoil PCHE plate. The result indicates that the airfoil fin is not an ideal airfoil profile, but has a fin-endwall fillet. For the purpose of simplifying the numerical model and saving computational time, a validated model with a single fluid is used to further study the effect of fin-endwall fillet on the thermal hydraulic performance of airfoil PCHE. It is found that the fin-endwall fillet can increase the heat transfer and pressure drop in the cases with the non-dimensional longitudinal pitch being 1.63. The effect of fin-endwall fillet on thermal hydraulic performance decreases with the increase of transverse pitch, but the longitudinal pitch has little effect when the non-dimensional longitudinal pitch is greater than 1.88. In the studied cases, the maximum difference of Nusselt number and friction factor between the two models with and without fin-endwall fillet is up to 6.7% and 6.4%. - Highlights: • Fillets are formed in the endwall of airfoil fins during the photochemical etching. • Two-fluid model can be replaced by single-fluid model to perform simulation. • Fin-endwall fillet can increase heat transfer and pressure drop at ζ_l = 1.63. • Effect of fin-endwall fillet decreases as transverse pitch increases at ζ_l = 1.63. • Longitudinal pitch has little effect at ζ_l ≥ 1.88.
Numerical studies of static aeroelastic effects on grid fin aerodynamic performances
Directory of Open Access Journals (Sweden)
Chengde HUANG
2017-08-01
Full Text Available The grid fin is an unconventional control surface used on missiles and rockets. Although aerodynamics of grid fin has been studied by many researchers, few considers the aeroelastic effects. In this paper, the static aeroelastic simulations are performed by the coupled viscous computational fluid dynamics with structural flexibility method in transonic and supersonic regimes. The developed coupling strategy including fluid–structure interpolation and volume mesh motion schemes is based on radial basis functions. Results are presented for a vertical and a horizontal grid fin mounted on a body. Horizontal fin results show that the deformed fin is swept backward and the axial force is increased. The deformations also induce the movement of center of pressure, causing the reduction and reversal in hinge moment for the transonic flow and the supersonic flow, respectively. For the vertical fin, the local effective incidences are increased due to the deformations so that the deformed normal force is greater than the original one. At high angles of attack, both the deformed and original normal forces experience a sudden reduction due to the interference of leeward separated vortices on the fin. Additionally, the increment in axial force is shown to correlate strongly with the increment in the square of normal force.
Out-of-plane strain effect on silicon-based flexible FinFETs
Ghoneim, Mohamed T.
2015-06-21
Summary form only given. We report out-of-plane strain effect on silicon based flexible FinFET, with sub 20 nm wide fins and hafnium silicate based high-κ gate dielectric. Since ultra-thin inorganic solid state substrates become flexible with reduced thickness, flexing induced strain does not enhance performance. However, detrimental effects arise as the devices are subject to various out-of-plane stresses (compressive and tensile) along the channel length.
Out-of-plane strain effect on silicon-based flexible FinFETs
Ghoneim, Mohamed T.; Alfaraj, Nasir; Sevilla, Galo T.; Fahad, Hossain M.; Hussain, Muhammad Mustafa
2015-01-01
Summary form only given. We report out-of-plane strain effect on silicon based flexible FinFET, with sub 20 nm wide fins and hafnium silicate based high-κ gate dielectric. Since ultra-thin inorganic solid state substrates become flexible with reduced thickness, flexing induced strain does not enhance performance. However, detrimental effects arise as the devices are subject to various out-of-plane stresses (compressive and tensile) along the channel length.
Deslauriers, David; Johnston, Ryan; Chipps, Steven R.
2016-01-01
We assessed the effect of fin-curl on the swimming and station-holding ability of juvenile shovelnose sturgeon Scaphirhynchus platorynchus (mean fork length = 17 cm; mean weight = 16 g; n = 21) using a critical swimming speed test performed in a small swim chamber (90 L) at 20°C. We quantified fin-curl severity using the pectoral fin index. Results showed a positive relationship between pectoral fin index and critical swimming speed indicative of reduced swimming performance displayed by fish afflicted with a pectoral fin index < 8%. Fin-curl severity, however, did not affect the station-holding ability of individual fish. Rather, fish affected with severe fin-curl were likely unable to use their pectoral fins to position their body adequately in the water column, which led to the early onset of fatigue. Results generated from this study should serve as an important consideration for future stocking practices.
Effects of fin pitch and array of the frost layer growth on extended surface of a heat exchanger
International Nuclear Information System (INIS)
Yang, Dong Keun; Lee, Kwan Soo
2003-01-01
This paper presents the effects of the fin array and pitch on the frost layer growth of a heat exchanger. The numerical results are compared with experimental data of a cold plate to validate the present model, and agree well with experimental data within a maximum error of 8%. The characteristics of the frost formation on staggered fin array are somewhat different from those of in-line array. For fin pitch below 10 mm, the frost layer growth of second fin in the staggered array is affected by that of first fin. The heat transfer of single fin deteriorate with decreasing fin pitch regardless of fin array, however, the thermal performance of a heat exchanger, considering increase of heat surface area, becomes better
Boiling on fins with wire screen of variable effective conductivity
Directory of Open Access Journals (Sweden)
Orzechowski Tadeusz
2017-01-01
Full Text Available The high scale of integration of modern equipment used for medical, military and other purposes puts heavy demands as regards the removal of great heat fluxes. This can be achieved only in exchangers that apply the phase change phenomena. Among many methods to improve boiling heat transfer, the wire mesh covering demonstrates some advantages due to the possibilities of designing the desired microstructure parameters, availability on the market, and low cost. The wire mesh microstucture with specified geometrical parameters produces anisotropy in conductivity. The different arrangement of the mesh layers relative to the direction of the heat flux is a cause of the change of temperature distribution within the layer. The consequence is a respective change in the discharge conditions of the gas phase and liquid feed. The experiments were conducted on fins covered with a single layer of copper mesh with lumen of 38 % and boiling FC-72 at ambient pressure. Compared with the smooth surface, the wire mesh structures yield an increase in the heat transfer rate at boiling. It is also shown that nucleate boiling is initiated at lower wall superheat. Formulas for longitudinal and perpendicular thermal conductivity are given for different mesh structure arrangements.
International Nuclear Information System (INIS)
Mohammadian, Shahabeddin K.; Zhang, Yuwen
2017-01-01
Highlights: • 3D transient thermal analysis of a pouch Li-ion cell has been carried out. • Using pin fin heat sink improves the temperature reduction at low pumping powers. • Using pin fin heat sink enhances the temperature uniformity at low air flow rates. • Porous aluminum foam insertion with pin fins improves temperature reduction. • Porous aluminum foam insertion with pin fins enhances temperature uniformity. - Abstract: Three-dimensional transient thermal analysis of an air-cooled module was carried out to investigate cumulative effects of using pin fin heat sink and porous metal foam on thermal management of a Li-ion (lithium-ion) battery pack. Five different cases were designed as Case 1: flow channel without any pin fin or porous metal foam insertion, Case 2: flow channel with aluminum pin fins, Case 3: flow channel with porous aluminum foam pin fins, Case 4: fully inserted flow channel with porous aluminum foam, and Case 5: fully inserted flow channel with porous aluminum foam and aluminum pin fins. The effects of porous aluminum insertions, pin fin types, air flow inlet temperature, and air flow inlet velocity on the temperature uniformity and maximum temperature inside the battery pack were systematically investigated. The results showed that using pin fin heat sink (Case 2) is appropriate only for low air flow velocities. In addition, the use of porous aluminum pin fins or embedding porous aluminum foam inside the air flow channel (Cases 3 and 4) are not beneficial for thermal management improvement. The combination of aluminum pin fins and porous aluminum foam insertion inside the air flow channel (Case 5) is a proper option that improves both temperature reduction and temperature uniformity inside the battery cell.
An analysis of the effect of endplates upon the fin keel of a sailing yacht
International Nuclear Information System (INIS)
Andrews, G.T.; Raiskums, C.L.; Keffer, J.F.
1985-01-01
A long-term investigation is presently underway to assess the overall performance of the modern design of fin keels for sailing yachts. An ultimate goal is to determine the specific advantages for such designs with respect to a centre-board configuration with outside ballast. The present preliminary studies were carried out to determine the basic performance of a typical fin keel shape for various values of leeway angle. A second aspect was to determine the effect upon this baseline performance of a number of endplates of varying sizes and shapes. (author)
Wang, H. S.; Honda, Hiroshi
A theoretical study has been made on the effects of tube diameter and tubeside fin geometry on the heat transfer performance of air-cooled condensers. Extensive numerical calculations of overall heat transfer from refrigerant R410A flowing inside a horizontal microfin tube to ambient air were conducted for a typical operating condition of the air-cooled condenser. The tubeside heat transfer coefficient was calculated by applying a modified stratified flow model developed by Wang et al.8). The numerical results show that the effects of tube diameter, fin height, fin number and helix angle of groove are significant, whereas those of the width of flat portion at the fin tip, the radius of round corner at the fin tip and the fin half tip angle are small.
Study on Fins' Effect of Boiling Flow in Millimeter Channel Heat Exchanger
Watanabe, Satoshi
2005-11-01
Recently, a lot of researches about compact heat exchangers with mini-channels have been carried out with the hope of obtaining a high-efficiency heat transfer, due to the higher ratio of surface area than existing heat exchangers. However, there are many uncertain phenomena in fields such as boiling flow in mini-channels. Thus, in order to understand the boiling flow in mini-channels to design high-efficiency heat exchangers, this work focused on the visualization measurement of boiling flow in a millimeter channel. A transparent acrylic channel (heat exchanger form), high-speed camera (2000 fps at 1024 x 1024 pixels), and halogen lamp (backup light) were used as the visualization system. The channel's depth is 2 mm, width is 30 mm, and length is 400 mm. In preparation for commercial use, two types of channels were experimented on: a fins type and a normal slit type (without fins). The fins are circular cylindrical obstacles (diameter is 5 mm) to promote heat transfer, set in a triangular array (distance between each center point is 10 mm). Especially in this work, boiling flow and heat transfer promotion in the millimeter channel heat exchanger with fins was evaluated using a high-speed camera.
Novel 14-nm Scallop-Shaped FinFETs (S-FinFETs) on Bulk-Si Substrate
Xu, Weijia; Yin, Huaxiang; Ma, Xiaolong; Hong, Peizhen; Xu, Miao; Meng, Lingkuan
2015-01-01
In this study, novel p-type scallop-shaped fin field-effect transistors (S-FinFETs) are fabricated using an all-last high-k/metal gate (HKMG) process on bulk-silicon (Si) substrates for the first time. In combination with the structure advantage of conventional Si nanowires, the proposed S-FinFETs provide better electrostatic integrity in the channels than normal bulk-Si FinFETs or tri-gate devices with rectangular or trapezoidal fins. It is due to formation of quasi-surrounding gate electrod...
Simulation of thermo-mechanical effect in bulk-silicon FinFETs
Burenkov, Alex; Lorenz, Jürgen
2016-01-01
The thermo-mechanical effect in bulk-silicon FinFETs of the 14 nm CMOS technology node is studied by means of numerical simulation. The electrical performance of such devices is significantly enhanced by the intentional introduction of mechanical stress during the device processing. The thermo-mechanical effect modifies the mechanical stress distribution in active regions of the transistors when they are heated. This can lead to a modification of the electrical performance. Numerical simulati...
Jang, Sang-Hoon; Hwang, Se-Joon; Park, Sang-Ki; Choi, Kap-Seung; Kim, Hyung-Man
2012-06-01
Developing an effective method of reducing nitrogen oxide emissions is an important goal in diesel engine research. The use of cooled exhaust gas recirculation has been considered one of the most effective techniques of reducing nitrogen oxide. However, since the combustion characteristics in a diesel engine involves high temperature and load, the amount of particulate matter emission tends to increase, and there is a trade-off between the amount of nitrogen oxide and particulate matter emissions. In the present study, engine dynamometer experiments are performed to investigate the effects of particulate matter fouling on the heat exchange characteristics of wave fin type exhaust gas recirculation coolers that have four cases of two wave pitch and three fin pitch lengths. To optimize the fin and wave pitches of the EGR cooler, the exhaust gas temperature, pressure drop and heat exchange effectiveness are compared. The experimental results show that the exhaust gas recirculation cooler with a fin pitch of 3.6 mm and a wave pitch of 8.8 mm exhibits better heat exchange characteristics and smaller particulate matter fouling effect than the other coolers.
Energy Technology Data Exchange (ETDEWEB)
Jang, Sang-Hoon; Hwang, Se-Joon; Choi, Kap-Seung; Kim, Hyung-Man [INJE University, Department of Mechanical Engineering, High Safety Vehicle Core Technology Research Center, Gimhae-si, Gyeongnam-do (Korea, Republic of); Park, Sang-Ki [Hanyang University, Graduate School of Mechanical Engineering, Ansan, Gyeonggido (Korea, Republic of)
2012-06-15
Developing an effective method of reducing nitrogen oxide emissions is an important goal in diesel engine research. The use of cooled exhaust gas recirculation has been considered one of the most effective techniques of reducing nitrogen oxide. However, since the combustion characteristics in a diesel engine involves high temperature and load, the amount of particulate matter emission tends to increase, and there is a trade-off between the amount of nitrogen oxide and particulate matter emissions. In the present study, engine dynamometer experiments are performed to investigate the effects of particulate matter fouling on the heat exchange characteristics of wave fin type exhaust gas recirculation coolers that have four cases of two wave pitch and three fin pitch lengths. To optimize the fin and wave pitches of the EGR cooler, the exhaust gas temperature, pressure drop and heat exchange effectiveness are compared. The experimental results show that the exhaust gas recirculation cooler with a fin pitch of 3.6 mm and a wave pitch of 8.8 mm exhibits better heat exchange characteristics and smaller particulate matter fouling effect than the other coolers. (orig.)
The Effect of Fin Pitch on Fluid Elastic Instability of Tube Arrays Subjected to Cross Flow of Water
Desai, Sandeep Rangrao; Pavitran, Sampat
2018-02-01
Failure of tubes in shell and tube exchangers is attributed to flow induced vibrations of such tubes. There are different excitations mechanisms due to which flow induced vibration occurs and among such mechanisms, fluid elastic instability is the most prominent one as it causes the most violent vibrations and may lead to rapid tube failures within short time. Fluid elastic instability is the fluid-structure interaction phenomenon which occurs when energy input by the fluid force exceeds energy expended in damping. This point is referred as instability threshold and corresponding velocity is referred as critical velocity. Once flow velocity exceeds critical flow velocity, the vibration amplitude increases very rapidly with flow velocity. An experimental program is carried out to determine the critical velocity at instability for plain and finned tube arrays subjected to cross flow of water. The tube array geometry is parallel triangular with cantilever end condition and pitch ratios considered are 2.6 and 2.1. The objective of research is to determine the effect of increase in pitch ratio on instability threshold for plain tube arrays and to assess the effect of addition of fins as well as increase in fin density on instability threshold for finned tube arrays. Plain tube array with two different pitch ratios; 2.1 and 2.6 and finned tube arrays with same pitch ratio; 2.6 but with two different fin pitches; such as fine (10 fpi) and coarse (4 fpi) are considered for the experimentation. Connors' equation that relates critical velocity at instability to different parameters, on which instability depends, has been used as the basis for analysis and the concept of effective diameter is used for the present investigation. The modal parameters are first suitably modified using natural frequency reduction setup that is already designed and developed to reduce natural frequency and hence to achieve experimental simulation of fluid elastic instability within the limited
International Nuclear Information System (INIS)
Wang, Wei-Wei; Wang, Liang-Bi; He, Ya-Ling
2016-01-01
Highlights: • The parameter effect on the performance of PCTES unit using fins is reported. • The configurations of PCTES unit using fins in optimum performance are suggested. • Two parameters to indicate the effects of PCM and tube material properties are found. • The working conditions of PCTES unit using fins in optimum performance are analyzed. - Abstract: The performance of a phase change thermal energy storage (PCTES) unit using circular finned tube is affected by many parameters. Thorough studies of the parameter effect on the performance of PCTES unit are strongly required in its optimum design process. Based on a reported energy efficiency ratio and a newly defined parameter named the heat storage rate, the parameter effect on the performance of PCTES unit using circular finned tube is numerically investigated. When the fin pitch is greater than 4 times of the inner radius of the tube, the fin height and the fin thickness have little effect on the energy efficiency ratio and the heat storage rate. When the fin pitch is small, the performance of PCTES unit becomes better using large fin height and width. The energy efficiency ratio and the heat storage rate are more sensitive to the outer tube diameter. The performance of PCTES unit using circular finned tube is best when water is used as the heat transfer fluid (HTF). When the fluid flow of HTF is in a laminar state, the energy efficiency ratio and the heat storage rate are larger than that in a turbulent state.
International Nuclear Information System (INIS)
Tsuruta, Takaharu; Fujishiro, Toshio
1984-01-01
Thermocouple fin effect on surface temperature measurement of a fuel rod has been studied at elevated wall temperatures under film boiling condition in a reactivity initiated accident (RIA) situation. This paper presents an analytical equation to evaluate temperature drops caused by the thermocouple wires attached to cladding surface. The equation yielded the local temperature drop at measuring point depending on thermocouple diameter, cladding temperature, coolant flow condition and vapor film thickness. The temperature drops by the evaluating equation were shown in cases of free and forced convection conditions. The analytical results were compared with the measured data for various thermocouple sizes, and also with the estimated maximum cladding temperature based on the oxidation layer thickness in the cladding outer surface. It was concluded that the temperature drops at above 1,000 0 C in cladding temperature were around 120 and 150 0 C for 0.2 and 0.3 mm diameter Pt-Pt.Rh thermocouples, respectively, under a stagnant coolant condition. The fin effect increases with the decrease of vapor film thickness such as under forced flow cooling or at near the quenching point. (author)
Tsai, Yi-Pei; Hsieh, Ting-Huan; Lin, Chrong Jung; King, Ya-Chin
2017-09-01
A novel device for monitoring plasma-induced damage in the back-end-of-line (BEOL) process with charge splitting capability is first-time proposed and demonstrated. This novel charge splitting in situ recorder (CSIR) can independently trace the amount and polarity of plasma charging effects during the manufacturing process of advanced fin field-effect transistor (FinFET) circuits. Not only does it reveal the real-time and in situ plasma charging levels on the antennas, but it also separates positive and negative charging effect and provides two independent readings. As CMOS technologies push for finer metal lines in the future, the new charge separation scheme provides a powerful tool for BEOL process optimization and further device reliability improvements.
Room to high temperature measurements of flexible SOI FinFETs with sub-20-nm fins
Diab, Amer El Hajj
2014-12-01
We report the temperature dependence of the core electrical parameters and transport characteristics of a flexible version of fin field-effect transistor (FinFET) on silicon-on-insulator (SOI) with sub-20-nm wide fins and high-k/metal gate-stacks. For the first time, we characterize them from room to high temperature (150 °C) to show the impact of temperature variation on drain current, gate leakage current, and transconductance. Variation of extracted parameters, such as low-field mobility, subthreshold swing, threshold voltage, and ON-OFF current characteristics, is reported too. Direct comparison is made to a rigid version of the SOI FinFETs. The mobility degradation with temperature is mainly caused by phonon scattering mechanism. The overall excellent devices performance at high temperature after release is outlined proving the suitability of truly high-performance flexible inorganic electronics with such advanced architecture.
3D modeling of dual-gate FinFET.
Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John
2012-11-13
The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at Vg1 >Vg2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device.
Peng, Y.; Zhang, S. J.; Shen, F.; Wang, X. B.; Yang, X. R.; Yang, L. J.
2017-11-01
The air-cooled heat exchanger plays an important role in the field of industry like for example in thermal power plants. On the other hand, it can be used to remove core decay heat out of containment passively in case of a severe accident circumstance. Thus, research on the performance of fins in air-cooled heat exchangers can benefit the optimal design and operation of cooling systems in nuclear power plants. In this study, a CFD (Computational Fluid Dynamic) method is implemented to investigate the effects of inlet velocity, fin spacing and tube pitch on the flow and the heat transfer characteristics of flat fins constructed of various materials (316L stainless steel, copper-nickel alloy and aluminium). A three dimensional geometric model of flat finned tube bundles with fixed longitudinal tube pitch and transverse tube pitch is established. Results for the variation of the average convective heat transfer coefficient with respect to cooling air inlet velocity, fin spacing, tube pitch and fin material are obtained, as well as for the pressure drop of the cooling air passing through finned tube. It is shown that the increase of cooling air inlet velocity results in enhanced average convective heat transfer coefficient and decreasing pressure drop. Both fin spacing and tube pitch engender positive effects on pressure drop and have negative effects on heat transfer characteristics. Concerning the fin material, the heat transfer performance of copper-nickel alloy is superior to 316L stainless steel and inferior to aluminium.
The effect of substrate conduction on boiling data on pin-fin heat sinks
International Nuclear Information System (INIS)
McNeil, D.A.; Raeisi, A.H.; Kew, P.A.; Hamed, R.S.
2015-01-01
Heat-transfer experiments for a copper heat sink containing pin-fins with a cross section of 1 mm by 1 mm and a height of 1 mm have been reported previously. The pin-fins were manufactured on a 5 mm thick, 50 mm square base plate in a square, in-line arrangement with a pitch of 2 mm. Data were produced while boiling R113 and water at atmospheric pressure. The heat sink was heated from below through a 5 mm thick aluminium wall by an electrical heating method that is normally associated with the uniform heat flux boundary condition. However, variations in the heat-transfer coefficient and the liquid subcooling interacted with the high thermal conductivity of the aluminium and copper materials to produce a near isothermal wall boundary condition. Thus, heat conduction effects had to be taken into account when determining the heat-flux distribution required in the analysis of the data. Many experiments like these have used the uniform heat-flux assumption to analyse the data. The discrepancies produced from this approach are explored. Single-phase flows across a pin-fin surface produce a reasonably uniform distribution of heat-transfer coefficient. However, the liquid temperature increases as it moves across the heat sink. This produces a non-uniform heat flux distribution at the solid–fluid interface. The uniform heat-flux assumption is shown to lead to errors of ±17% in the estimation of the heat-transfer coefficient. The original boiling flow experiments found that the water data were confined and that the majority of the R113 data were not. The confined and unconfined data are processed with the thermal conduction in the walls taken into account and by assuming a uniform heat flux at the solid–fluid interface. The uniform heat-flux distribution analysis for unconfined flows shows errors in the heat-transfer coefficient to be typically ±17%. Confined flows produce smaller errors, typically ±12%, close to the onset of nucleation. However, these damp out
Energy Technology Data Exchange (ETDEWEB)
Jiang Wenchun [School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China)], E-mail: jiangwenchun@126.com; Gong Jianming; Chen Hu; Tu, S.T. [School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China)
2008-08-15
Stainless-steel plate-fin heat exchanger (PFHE) has been used as a high-temperature recuperator in microturbine for its excellent qualities in compact structure, high-temperature and pressure resistance. Plate-fin structure, as the core of PFHE, is fabricated by vacuum brazing. The main component fins and the parting sheets are joined by fusion of a brazing alloy cladded to the surface of parting sheets. Owing to the material mismatching between the filler metal and the base metal, residual stresses can arise and decrease the structure strength greatly. The recuperator serves at high temperature and the creep would happen. The thickness of the filler metal plays an important role in the joint strength. Hence this paper presented a finite element (FE) analysis of the brazed residual stresses and creep for a counterflow stainless-steel plate-fin structure. The effect of the filler metal thickness on residual stress and creep was investigated, which provides a reference for strength design.
Institute of Scientific and Technical Information of China (English)
Ali; Akbar; Partoaa; Morteza; Abdolzadeh; Masoud; Rezaeizadeh
2017-01-01
The effect of fin attachment on the thermal stress reduction of exhaust manifold of an off road diesel engine(Komatsu HD325-6) was investigated.For doing this,coupled thermo-fluid-solid analysis of exhaust manifold of the off road diesel engine was carried out.The thermal analysis,including thermal flow,thermal stress,and the thermal deformation of the manifold was investigated.The flow inside the manifold was simulated and then its properties including velocity,pressure,and temperature were obtained.The flow properties were transferred to the solid model and then the thermal stresses and the thermal deformations of the manifold under different operating conditions were calculated.Finally,based on the predicted thermal stresses and thermal deformations of the manifold body shell,two fin types as well as body shell thickness increase were applied in the critical induced thermal stress area of the manifold to reduce the thermal stress and thermal deformation.The results of the above modifications show that the combined modifications,i.e.the thickness increase and the fin attachment,decrease the thermal stresses by up to 28% and the contribution of the fin attachment in this reduction is much higher compared to the shell thickness increase.
Li, R.; Li, W. B.; Wang, X. M.; Li, W. B.
2018-03-01
The effects of the initiation diameter and synchronicity error on the formation of fins and stable-flight velocity of an explosively formed projectile (EFP) with three-point initiation are investigated. The pressure and area of the Mach wave acting on the metal liner at different initiation diameters are calculated employing the Whitham method. LS-DYNA software is used to investigate the asymmetric collision of detonation waves resulting from three-point initiation synchronicity error, the distortion characteristics of the liner resulting from the composite detonation waves, and the performance parameters of the EFP with fins. Results indicate that deviations of the Y-shaped high-pressure zone and central ultrahigh-pressure zone from the liner center can be attributed to the error of three-point initiation, which leads to the irregular formation of EFP fins. It is noted that the area of the Mach wave decreases, but the pressure of the Mach wave and the final speed and length-to-diameter ( L/ D) ratio of the EFP increase, benefiting the formation of the EFP fins, as the initiation diameter increases.
Di Santo, Valentina; Blevins, Erin L; Lauder, George V
2017-02-15
Most batoids have a unique swimming mode in which thrust is generated by either oscillating or undulating expanded pectoral fins that form a disc. Only one previous study of the freshwater stingray has quantified three-dimensional motions of the wing, and no comparable data are available for marine batoid species that may differ considerably in their mode of locomotion. Here, we investigate three-dimensional kinematics of the pectoral wing of the little skate, Leucoraja erinacea , swimming steadily at two speeds [1 and 2 body lengths (BL) s -1 ]. We measured the motion of nine points in three dimensions during wing oscillation and determined that there are significant differences in movement amplitude among wing locations, as well as significant differences as speed increases in body angle, wing beat frequency and speed of the traveling wave on the wing. In addition, we analyzed differences in wing curvature with swimming speed. At 1 BL s -1 , the pectoral wing is convex in shape during the downstroke along the medio-lateral fin midline, but at 2 BL s -1 the pectoral fin at this location cups into the flow, indicating active curvature control and fin stiffening. Wing kinematics of the little skate differed considerably from previous work on the freshwater stingray, which does not show active cupping of the whole fin on the downstroke. © 2017. Published by The Company of Biologists Ltd.
Energy Technology Data Exchange (ETDEWEB)
Ranganayakulu, C. [Aeronautical Development Agency, Bangalore (India); Seetharamu, K.N. [School of Mechanical Engineering, Univ. of Southern Malaysia (KCP), Tronoh (Malaysia)
2000-05-01
An analysis of a crossflow plate-fin compact heat exchanger, accounting for the combined effect of two-dimensional longitudinal heat conduction through the exchanger wall and nonuniform inlet fluid flow distribution on both hot and cold fluid sides is carried out using a finite element method. Using the fluid flow maldistribution models, the exchanger effectiveness and its deterioration due to the combined effects of longitudinal heat conduction and flow nonuniformity are calculated for various design and operating conditions of the exchanger. It was found that the performance deteriorations are quite significant in some typical applications due to the combined effects of wall longitudinal heat conduction and inlet fluid flow nonuniformity on crossflow plate-fin heat exchanger. (orig.)
Wang, Zhiming
2013-01-01
This book reviews a range of quantum phenomena in novel nanoscale transistors called FinFETs, including quantized conductance of 1D transport, single electron effect, tunneling transport, etc. The goal is to create a fundamental bridge between quantum FinFET and nanotechnology to stimulate readers' interest in developing new types of semiconductor technology. Although the rapid development of micro-nano fabrication is driving the MOSFET downscaling trend that is evolving from planar channel to nonplanar FinFET, silicon-based CMOS technology is expected to face fundamental limits in the near future. Therefore, new types of nanoscale devices are being investigated aggressively to take advantage of the quantum effect in carrier transport. The quantum confinement effect of FinFET at room temperatures was reported following the breakthrough to sub-10nm scale technology in silicon nanowires. With chapters written by leading scientists throughout the world, Toward Quantum FinFET provides a comprehensive introductio...
Ternary logic implemented on a single dopant atom field effect silicon transistor
Klein, M.; Mol, J.A.; Verduijn, J.; Lansbergen, G.P.; Rogge, S.; Levine, R.D.; Remacle, F.
2010-01-01
We provide an experimental proof of principle for a ternary multiplier realized in terms of the charge state of a single dopant atom embedded in a fin field effect transistor (Fin-FET). Robust reading of the logic output is made possible by using two channels to measure the current flowing through
Effect of refrigerant mal-distribution in fin-and-tube evaporators on system performance
DEFF Research Database (Denmark)
Kærn, Martin Ryhl; Elmegaard, Brian; Larsen, Lars Finn Sloth
2009-01-01
the condenser is a dynamic moving boundary model. The evaporator model is a dynamic distributed one-dimensional homogeneous equilibrium model, in order to capture the distribution phenomena. Fin-and-tube heat exchangers usually have a complex circuitry, however the evaporator will be simplified to be two...
Directory of Open Access Journals (Sweden)
M. Fulde
2007-06-01
Full Text Available Multi-gate FET, e.g. FinFET devices are the most promising contenders to replace bulk FETs in sub-45 nm CMOS technologies due to their improved sub threshold and short channel behavior, associated with low leakage currents. The introduction of novel gate stack materials (e.g. metal gate, high-k dielectric and modified device architectures (e.g. fully depleted, undoped fins affect the analog device properties significantly. First measurements indicate enhanced intrinsic gain (g_{m}/g_{DS} and promising matching behavior of FinFETs. The resulting benefits regarding the speed-accuracy-power trade-off in analog circuit design will be shown in this work. Additionally novel device specific effects will be discussed. The hysteresis effect caused by charge trapping in high-k dielectrics or self-heating due to the high thermal resistor of the BOX isolation are possible challenges for analog design in these emerging technologies. To gain an early assessment of the impact of such parasitic effects SPICE based models are derived and applied in analog building blocks.
International Nuclear Information System (INIS)
Sertkaya, Ahmet Ali; Bilir, Sefik; Kargici, Suna
2011-01-01
Natural convection heat transfer in air from a pin-finned surface is investigated experimentally by considering the effect of radiation heat transfer. The plate was oriented as the pin arrays facing either downwards or upwards from vertical axis with different angles and the experiments were performed for different values of heater power input. From the results of the experiments it is observed that the pin fins increase the heat transfer considerably when compared to the unpinned surface. The upfacing pins are more enhancing heat transfer than the downfacing pins and the enhancement is decreasing with increasing orientation angle from the vertical axis. -- Research highlights: → Effect of orientation in free convection heat transfer from a pin-finned surface. → The upfacing pins are more enhancing heat transfer than the downfacing pins. → Radiation view factor is calculated by a modular analysis. → The radiation is comparable to free convection as not to be neglected. → The radiative part is 25-40% and increases for low heat transfer rates.
Application of homotopy analysis method and inverse solution of a rectangular wet fin
International Nuclear Information System (INIS)
Panda, Srikumar; Bhowmik, Arka; Das, Ranjan; Repaka, Ramjee; Martha, Subash C.
2014-01-01
Highlights: • Solution of a wet fin with is obtained by homotopy analysis method (HAM). • Present HAM results have been well-validated with literature results. • Inverse analysis is done using genetic algorithm. • Measurement error of ±10–12% (approx.) is found to yield satisfactory reconstructions. - Abstract: This paper presents the analytical solution of a rectangular fin under the simultaneous heat and mass transfer across the fin surface and the fin tip, and estimates the unknown thermal and geometrical configurations of the fin using inverse heat transfer analysis. The local temperature field is obtained by using homotopy analysis method for insulated and convective fin tip boundary conditions. Using genetic algorithm, the thermal and geometrical parameters, viz., thermal conductivity of the material, surface heat transfer coefficient and dimensions of the fin have been simultaneously estimated for the prescribed temperature field. Earlier inverse studies on wet fin have been restricted to the analysis of nonlinear governing equation with either insulated tip condition or finite tip temperature only. The present study developed a closed-form solution with the consideration of nonlinearity effects in both governing equation and boundary condition. The study on inverse optimization leads to many feasible combination of fin materials, thermal conditions and fin dimensions. Thus allows the flexibility for designing a fin under wet conditions, based on multiple combinations of fin materials, fin dimensions and thermal configurations to achieve the required heat transfer duty. It is further determined that the allowable measurement error should be limited to ±10–12% in order to achieve satisfactory reconstruction
Out-of-Plane Strain Effects on Physically Flexible FinFET CMOS
Ghoneim, Mohamed T.
2016-05-18
We present a comprehensive electrical performance assessment of hafnium silicate (HfSiOₓ) high-κ dielectric and titanium-nitride (TiN) metal-gate-integrated FinFET-based complementary-metal-oxide-semiconductor (CMOS) on flexible silicon on insulator. The devices were fabricated using the state-of-the-art CMOS technology and then transformed into flexible form by using a CMOS-compatible maskless deep reactive-ion etching technique. Mechanical out-of-plane stresses (compressive and tensile) were applied along and across the transistor channel lengths through a bending range of 0.5-5 cm radii for n-type and p-type FinFETs. Electrical measurements were carried out before and after bending, and all the bending measurements were taken in the actual flexed (bent) state to avoid relaxation and stress recovery. Global stress from substrate bending affects the devices in different ways compared with the well-studied uniaxial/biaxial localized strain. The global stress is dependent on the type of channel charge carriers, the orientation of the bending axis, and the physical gate length of the device. We, therefore, outline useful insights on the design strategies of flexible FinFETs in future free-form electronic applications.
Macroeconomics and FinTech: Uncovering Latent Macroeconomic Effects on Peer-to-Peer Lending
Foo, Jessica; Lim, Lek-Heng; Wong, Ken Sze-Wai
2017-01-01
Peer-to-peer (P2P) lending is a fast growing financial technology (FinTech) trend that is displacing traditional retail banking. Studies on P2P lending have focused on predicting individual interest rates or default probabilities. However, the relationship between aggregated P2P interest rates and the general economy will be of interest to investors and borrowers as the P2P credit market matures. We show that the variation in P2P interest rates across grade types are determined by three macro...
Hategan, Ramona Anamaria; Mockus, Gytis; Trinkunaite, Sarune
2017-01-01
ABSTRACTThe purpose of this paper has been to seek understanding and knowledge of FinTech phenomenon, with a particular focus on the effect of its emergence on the Danish financial sector. We have attempted to answer our initial research question with the help of a theoretical and methodological framework conceived of concepts belonging to Actor-Network Theory, Diffusion of Innovation Theory and alluding to Foucault’s concepts of power, knowledge and discourses. We have followed FinTech as an...
International Nuclear Information System (INIS)
Lee, Kwan Soo; Kim, Woo Seung
1999-01-01
An experimental study of the effects of various factors(fin pitch, fin arrangement, air temperature, air humidity, and air velocity) on the frost growth and thermal performance of a fin-tube heat exchanger has been conducted under the frosting condition. It is found that the thermal performance of a heat exchanger is closely related to the blockage ratio of the air flow passages due to the frost growth. The maximum allowable blockage ratio is used to determine the criteria for the optimal operating conditions of a fin-tube heat exchanger. It is also shown that heat transfer rate of heat exchanger with staggered fin arrangement increases about 17% and the time required for heat transfer rate to reach a maximum value becomes longer, compared with those of an inline fin-tube heat exchanger under the frosting condition. The energy transfer resistance between the air and coolant decreases with the increase of inlet air temperature and velocity and with decreasing inlet air humidity
Wei, Xingfei; Zhang, Teng; Luo, Tengfei
2017-10-04
Thermal transport across hard-soft interfaces is critical to many modern applications, such as composite materials, thermal management in microelectronics, solar-thermal phase transition, and nanoparticle-assisted hyperthermia therapeutics. In this study, we use equilibrium molecular dynamics (EMD) simulations combined with the Green-Kubo method to study how molecularly heterogeneous structures of the self-assembled monolayer (SAM) affect the thermal transport across the interfaces between the SAM-functionalized gold and organic liquids (hexylamine, propylamine and hexane). We focus on a practically synthesizable heterogeneous SAM featuring alternating short and long molecular chains. Such a structure is found to improve the thermal conductance across the hard-soft interface by 46-68% compared to a homogeneous nonpolar SAM. Through a series of further simulations and analyses, it is found that the root reason for this enhancement is the penetration of the liquid molecules into the spaces between the long SAM molecule chains, which increase the effective contact area. Such an effect is similar to the fins used in macroscopic heat exchanger. This "molecular fin" structure from the heterogeneous SAM studied in this work provides a new general route for enhancing thermal transport across hard-soft material interfaces.
International Nuclear Information System (INIS)
Bang, Kyoung-Sik; Yu, Seung-Hwan; Lee, Ju-Chan; Seo, Ki-Seog; Choi, Woo-Seok
2016-01-01
Highlights: • An open pool fire test was performed to estimate not only the combustion effect of the neutron shielding but also the effect of the heat transfer fin of the dual purpose cask. • The heat transfer to the inside of the dual purpose cask was reduced, when the neutron shielding burns. • The surface temperatures are lower in the present of the heat transfer fins. • If inflammable material is used as the components of the cask, evaluating thermal integrity using the thermal test would be desirable. - Abstract: Dual purpose casks are used for storage and transport of spent nuclear fuel assemblies. They must therefore satisfy the requirements prescribed in the Korea Nuclear Safety Security Commission Act 2014-50, the IAEA Safety Standard Series No. SSR-6, and US 10 CFR Part 71. These regulatory guidelines classify the dual purpose cask as a Type B package and state that a Type B package must be able to withstand a temperature of 800 °C for a period of 30 min. NS-4-FR is used as neutron shielding of the dual purpose cask. Heat transfer fins are embedded to enhance heat transfer from the cask body to the outer-shell because the thermal conductivity of NS-4-FR is not good. However, accurately simulating not only the combustion effect of the neutron shielding but also the effect of the heat transfer fin in the thermal analysis is not easy. Therefore, an open pool fire test was conducted using a one-sixth slice of a real cask to estimate these effects at a temperature of 800 °C for a period of 30 min. The temperature at the central portion of the neutron shielding was lower when the neutron shielding in contact with the outer cask burned because the neutron shielding absorbed the surrounding latent heat as the neutron shielding burned. Therefore, the heat transfer to the inside of the dual purpose cask was reduced. The surface temperature was lower when a heat transfer fin was installed because the high heat generated by the flame was transferred to the
Energy Technology Data Exchange (ETDEWEB)
Bang, Kyoung-Sik, E-mail: nksbang@kaeri.re.kr; Yu, Seung-Hwan; Lee, Ju-Chan; Seo, Ki-Seog; Choi, Woo-Seok
2016-08-01
Highlights: • An open pool fire test was performed to estimate not only the combustion effect of the neutron shielding but also the effect of the heat transfer fin of the dual purpose cask. • The heat transfer to the inside of the dual purpose cask was reduced, when the neutron shielding burns. • The surface temperatures are lower in the present of the heat transfer fins. • If inflammable material is used as the components of the cask, evaluating thermal integrity using the thermal test would be desirable. - Abstract: Dual purpose casks are used for storage and transport of spent nuclear fuel assemblies. They must therefore satisfy the requirements prescribed in the Korea Nuclear Safety Security Commission Act 2014-50, the IAEA Safety Standard Series No. SSR-6, and US 10 CFR Part 71. These regulatory guidelines classify the dual purpose cask as a Type B package and state that a Type B package must be able to withstand a temperature of 800 °C for a period of 30 min. NS-4-FR is used as neutron shielding of the dual purpose cask. Heat transfer fins are embedded to enhance heat transfer from the cask body to the outer-shell because the thermal conductivity of NS-4-FR is not good. However, accurately simulating not only the combustion effect of the neutron shielding but also the effect of the heat transfer fin in the thermal analysis is not easy. Therefore, an open pool fire test was conducted using a one-sixth slice of a real cask to estimate these effects at a temperature of 800 °C for a period of 30 min. The temperature at the central portion of the neutron shielding was lower when the neutron shielding in contact with the outer cask burned because the neutron shielding absorbed the surrounding latent heat as the neutron shielding burned. Therefore, the heat transfer to the inside of the dual purpose cask was reduced. The surface temperature was lower when a heat transfer fin was installed because the high heat generated by the flame was transferred to the
International Nuclear Information System (INIS)
Rantavaara, A.; Klemola, S.; Saxen, R.; Ikaeheimonen, T.K.; Moring, M.
1994-12-01
Radionuclide determinations on seventeen field trial test samples were carried out for the International Atomic Energy Agency by the Finnish Centre for Radiation and Nuclear Safety (STUK). All the samples, i.e., samples of sea water, grass and biota were analysed for gamma emitting nuclides. 3 H was determined in water, 90 Sr in grass and 238 Pu, 239 Pu, 240 Pu and 241 Am in biota samples. To avoid losses of radionuclides before gamma activity measurements, the sequence of treatments was adjusted considering the unknown radionuclide composition. The radionuclide contents found in the samples were roughly the same or lower than contents in same types of environmental samples in the Northern hemisphere. The ratios of Pu and Am nuclides in two of the biota samples referred to an origin other than the global atmospheric fallout. The work was carried out under Task FIN A 847 of the Finnish Support Programme to IAEA Safeguards. (orig.) (21 refs., 3 figs., 7 tabs.)
International Nuclear Information System (INIS)
Kim, Sung Jool; Choi, Ho Jin; Ha, Man Yeong; Kim, Seok Ro; Bang, Seon Wook
2010-01-01
The present study numerically solves the flow and thermal fields in the full geometry of heat exchanger modeling with frost layer presence on the heat exchanger surface. The effects of air inlet velocity, air inlet temperature, frost layer thickness, fin pitch, fin thickness, and heat exchanger shape on the thermo-hydraulic performance of a fin-tube heat exchanger are investigated. Heat transfer rate rises with increasing air inlet velocity and temperature, and decreasing frost layer thickness and fin pitch. Pressure drop rises with increasing air inlet velocity and frost layer thickness, and decreasing fin pitch. The effect of fin thickness on heat transfer and pressure drop is negligible. Based on the present results, we derived the correlations, which express pressure drop and temperature difference between air inlet and outlet as a function of air inlet velocity and temperature, as well as frost layer thickness
Effects of Novel Fin Shape of High Temperature Heat Exchanger on 1 kW Class Stirling Engine
Energy Technology Data Exchange (ETDEWEB)
Ahn, Joon; Kim, Seok Yeon [Kookmin Univ., Seoul (Korea, Republic of)
2017-08-15
In this research, numerical analysis was carried out on novel and existing fins, adjusted in terms of factors such as length, spacing, and angle, of a high-temperature heat exchanger for a 1 kW class Stirling engine, designed as a prime mover for a domestic cogeneration system. The performance improvement as a result of shape optimization was confirmed with numerical analysis by including the air preheater, which was not considered during optimization. However, a negative heat flux was observed in the cylinder head portion. This phenomenon was clarified by analyzing the exhaust gas and wall surface temperature of the combustion chamber. Furthermore, assuming an ideal cycle, the effects of heat transfer enhancement on the thermodynamic cycle and system performance were predicted.
An experimental study on the effect of low fin tube geometry on pool boiling of a LiBr solution
International Nuclear Information System (INIS)
Kim, Nae Hyun
2015-01-01
Pool boiling heat transfer coefficients of a LiBr solution were obtained for seven low fin tubes having different fin pitch and fin height. The test range covered saturation pressure from 7.38kPa to 101.3kPa, heat flux from 20 kW/m 2 to 40 kW/m 2 and LiBr concentration from 0% to 50%. The optimum fin geometry for the present experimental range turned out to be 26 fpi with 0.18 mm fin height.The advantage of added heat transfer area and the disadvantage of slower bubble growth and departure appear to have yielded an optimum fin pitch. The heat transfer coefficient decreased as saturation pressure decreased and Libr concentration increased. The reason may be attributed to the low saturation pressure, which increased the bubble departure diameter and decreased the bubble departure frequency. As the LiBr concen reation increased, the saturation temperature increased and the mass diffusion rate decreased, which resulted in a reduced heat transfer coefficient. The heat transfer coefficients of the low fin tube were greater than those of the smooth tube. Correlations were developed based on the present data
Role of Pectoral Fin Flexibility in Robotic Fish Performance
Bazaz Behbahani, Sanaz; Tan, Xiaobo
2017-08-01
Pectoral fins play a vital role in the maneuvering and locomotion of fish, and they have become an important actuation mechanism for robotic fish. In this paper, we explore the effect of flexibility of robotic fish pectoral fins on the robot locomotion performance and mechanical efficiency. A dynamic model for the robotic fish is presented, where the flexible fin is modeled as multiple rigid elements connected via torsional springs and dampers. Blade element theory is used to capture the hydrodynamic force on the fin. The model is validated with experimental results obtained on a robotic fish prototype, equipped with 3D-printed fins of different flexibility. The model is then used to analyze the impacts of fin flexibility and power/recovery stroke speed ratio on the robot swimming speed and mechanical efficiency. It is found that, in general, flexible fins demonstrate advantages over rigid fins in speed and efficiency at relatively low fin-beat frequencies, while rigid fins outperform flexible fins at higher frequencies. For a given fin flexibility, the optimal frequency for speed performance differs from the optimal frequency for mechanical efficiency. In addition, for any given fin, there is an optimal power/recovery stroke speed ratio, typically in the range of 2-3, that maximizes the speed performance. Overall, the presented model offers a promising tool for fin flexibility and gait design, to achieve speed and efficiency objectives for robotic fish actuated with pectoral fins.
Fin Ray Stiffness and Fin Morphology Control Ribbon-Fin-Based Propulsion.
Liu, Hanlin; Taylor, Bevan; Curet, Oscar M
2017-06-01
Ribbon-fin-based propulsion has rich locomotor capabilities that can enhance the mobility and performance of underwater vehicles navigating in complex environments. Bony fishes using this type of propulsion send one or multiple traveling waves along an elongated fin with the actuation of highly flexible rays that are interconnected by an elastic membrane. In this work, we study how the use of flexible rays and different morphology can affect the performance of ribbon-fin propulsion. We developed a physical model composed of 15 rays that are interconnected with an elastic membrane. We tested four different ray flexural stiffness and four aspect ratios. The robotic model was tested in a low-turbulence flume under two flow conditions ([Formula: see text] wavelength/s). In two experimental sets, we measured fin kinematics, net surge forces, and power consumption. Using these data, we perform a thrust and power analysis of the undulating fin. We present the thrust coefficient, power coefficient, and propulsive efficiency. We find that the thrust generation was linear with the enclosed area swept by the fin, and square of the relative velocity between the incoming flow and traveling wave. The thrust coefficient levels off around 0.5. In addition, for our parameter range, we find that the power consumption scales by the cube of the effective tangential velocity of the rays [Formula: see text] (A is the amplitude of the ray oscillating motion, and [Formula: see text] is the angular velocity). We show that a decay in stiffness decreases both thrust production and power consumption. However, for rays with high flexural stiffness, the difference in thrust compared with rigid rays is minimal. Moreover, our results show that flexible rays can improve the propulsive efficiency compared with a rigid counterpart. Finally, we find that the morphology of ribbon fin affects its propulsive efficiency. For the aspect ratio considered in our experiments, [Formula: see text] was the most
Ren, Ziyu; Yang, Xingbang; Wang, Tianmiao; Wen, Li
2016-02-08
Recent advances in understanding fish locomotion with robotic devices have included the use of biomimetic flapping based and fin undulatory locomotion based robots, treating two locomotions separately from each other. However, in most fish species, patterns of active movements of fins occur in concert with the body undulatory deformation during swimming. In this paper, we describe a biomimetic robotic caudal fin programmed with individually actuated fin rays to mimic the fin motion of the Bluegill Sunfish (Lepomis macrochirus) and coupled with heave and pitch oscillatory motions adding to the robot to mimic the peduncle motion which is derived from the undulatory fish body. Multiple-axis force and digital particle image velocimetry (DPIV) experiments from both the vertical and horizontal planes behind the robotic model were conducted under different motion programs and flow speeds. We found that both mean thrust and lift could be altered by changing the phase difference (φ) from 0° to 360° between the robotic caudal peduncle and the fin ray motion (spanning from 3 mN to 124 mN). Notably, DPIV results demonstrated that the caudal fin generated multiple wake flow patterns in both the vertical and horizontal planes by varying φ. Vortex jet angle and thrust impulse also varied significantly both in these two planes. In addition, the vortex shedding position along the spanwise tail direction could be shifted around the mid-sagittal position between the upper and lower lobes by changing the phase difference. We hypothesize that the fish caudal fin may serve as a flexible vectoring propeller during swimming and may be critical for the high maneuverability of fish.
Strain characterization of FinFETs using Raman spectroscopy
International Nuclear Information System (INIS)
Kaleli, B.; Hemert, T. van; Hueting, R.J.E.; Wolters, R.A.M.
2013-01-01
Metal induced strain in the channel region of silicon (Si) fin-field effect transistor (FinFET) devices has been characterized using Raman spectroscopy. The strain originates from the difference in thermal expansion coefficient of Si and titanium-nitride. The Raman map of the device region is used to determine strain in the channel after preparing the device with the focused ion beam milling. Using the Raman peak shift relative to that of relaxed Si, compressive strain values up to – 0.88% have been obtained for a 5 nm wide silicon fin. The strain is found to increase with reducing fin width though it scales less than previously reported results from holographic interferometry. In addition, finite-element method (FEM) simulations have been utilized to analyze the amount of strain generated after thermal processing. It is shown that obtained FEM simulated strain values are in good agreement with the calculated strain values obtained from Raman spectroscopy. - Highlights: ► Strain is characterized in nanoscale devices with Raman spectroscopy. ► There is a fin width dependence of the originated strain. ► Strain levels obtained from this technique is in correlation with device simulations
On the thermal analysis of a plate-fin heat sink considering the thermal-entry length effect
International Nuclear Information System (INIS)
Bassiouny, Ramadan; Maher, Hisham; Hegazy, Adel A.
2016-01-01
Highlights: • Dissipated convective heat strongly depends on convection coefficient. Two correlations were developed for so and validated. • A clear error in air temperature distribution along the heat sink was seen if coefficient were not properly selected. • The error decreases when thermal-entry length effect is considered, as for thermal flow through short conduits as Pr <1. - Abstract: Cooling electric and electronic components is very imperative to keep these components functioning properly. The heat sink is a device used to dissipate generated heat and accordingly cool these components. Airflow through heat sinks experiences velocity and thermal boundary layer variation that significantly affects the heat transfer process and heat sink performance as a result. The present study aims at developing an analytical model that compares the effect of adopting fully-developed or thermally-developing flow on convective heat transfer coefficient and accordingly longitudinal predicted air temperature distribution. Experiments on plate-fin heat sinks were carried out to validate the developed model. The results quantitatively showed a noticeable overprediction in the air temperature distribution when the heat transfer coefficient was estimated based on a fully-developed assumption. On the other hand, a close agreement between predicted and measured values was noticed when the thermal-entry length effect was considered.
International Nuclear Information System (INIS)
Mack, G.; Kalkreuter, T.; Palma, G.; Speh, M.
1992-05-01
Effective field theories encode the predictions of a quantum field theory at low energy. The effective theory has a fairly low utraviolet cutoff. As a result, loop corrections are small, at least if the effective action contains a term which is quadratic in the fields, and physical predictions can be read straight from the effective Lagrangean. Methods will be discussed how to compute an effective low energy action from a given fundamental action, either analytically or numerically, or by a combination of both methods. Basically, the idea is to integrate out the high frequency components of fields. This requires the choice of a 'blockspin', i.e. the specification af a low frequency field as a function of the fundamental fields. These blockspins will be fields of the effective field theory. The blockspin need not be a field of the same type as one of the fundamental fields, and it may be composite. Special features of blockspin in nonabelian gauge theories will be discussed in some detail. In analytical work and in multigrid updating schemes one needs interpolation kernels A from coarse to fine grid in addition to the averaging kernels C which determines the blockspin. A neural net strategy for finding optimal kernels is presented. Numerical methods are applicable to obtain actions of effective theories on lattices of finite volume. The special case of a 'lattice' with a single site (the constraint effective potential) is of particular interest. In a higgs model, the effective action reduces in this case to the free energy, considered as a function of a gauge covariant magnetization. Its shape determines the phase structure of the theory. Its loop expansion with and without gauge fields can be used to determine finite size corrections to numerical data. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Huang, Jeng-Min; Hsieh, Wen-Chien; Ke, Xin-Ji [Department of Refrigeration, Air Conditioning National Chin-Yi University of Technology, Taichung County, Taiping City 411 (China); Wang, Chi-Chuan [Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 310 (China)
2008-05-15
This study conducts a numerical study concerning the effect of frost thickness on the heat transfer performance of a four rows plate finned tube heat exchanger. Calculations are made under constant air volume and variable air volume conditions. It is found that the initial surge of heat transfer rate in the frosted finned tube heat exchanger is mainly associated with the critical radius effect rather than the surface roughness. The frost thermal conductivity plays an important role in the surge phenomenon. There is hardly any initial surge when frost thermal conductivity is below 0.1 W m{sup -1} K{sup -1}. It is also recommended that a refrigerator should defrost when half of a single flow channel area is blocked by frost. The calculations also reveal that a centrifugal fan is recommended with a small fin-pitch heat exchanger. However, if a long term operation at a thick frost situation is unavoidable, an axial fan should be selected. There is no great difference between selection of an axial fan or centrifugal fan for a larger fin pitch heat exchanger. (author)
Effective quantum field theories
International Nuclear Information System (INIS)
Georgi, H.M.
1993-01-01
The most appropriate description of particle interactions in the language of quantum field theory depends on the energy at which the interactions are studied; the description is in terms of an ''effective field theory'' that contains explicit reference only to those particles that are actually important at the energy being studied. The various themes of the article are: local quantum field theory, quantum electrodynamics, new physics, dimensional parameters and renormalizability, socio-dynamics of particle theory, spontaneously broken gauge theories, scale dependence, grand unified and effective field theories. 2 figs
Improved Fin Designs to Reduce D Effective ln Internal-Tin Nb3Sn
International Nuclear Information System (INIS)
Gregory, Eric
2010-01-01
As interest has moved to higher field properties, we are now aiming to make 2000 A/mm2 at 15 T. With a view to approaching this we inserted Ti into the Sn core in the EG 36 sub-element. The data after testing is shown in Figs 39-42. The 12 T values are lower than when no Ti is present but the 15 T data is higher giving 1800 A/mm2. In summary, while we failed to show that the split sub-element method could yield sufficiently high properties to compete with the other approaches, we did achieve properties at least as high as those obtained by Oxford using the standard internal tin approach.
Advanced microchannel heat exchanger with S-shaped fins
International Nuclear Information System (INIS)
Tsuzuki, Nobuyoshi; Ishizuka, Takao; Kato, Yasuyoshi; Nikitin, Konstantin
2009-01-01
Fin shape effects on thermal-hydraulic characteristics were studied for a Microchannel Heat Exchanger (MCHE) with S-shaped fins using 3D-CFD and changing the fin parameters: fin angle, overlapping length, fin width, fin length, and edge roundness. The fin angle effect on the pressure drop is consistent with the equation obtained experimentally by Weisbach for a circular bent tube: the pressure drop in the S-shaped fin configuration results from bent flow. The overlap of fins with those located immediately downstream at the offset position provides a guide wing effect that reduces the pressure drop remarkably. The overlap was changed by changing the fin radial position and arc length. The pressure drop was minimized when the downstream fins are placed in the middle of the bent flow channels formed by the fins upstream, which differs from Ito's configuration obtained from experiments with a single bent duct. Regarding arc length, the pressure drop is minimized at the standard overlapping length, which was formed to have the longest arc without a change in channel width. Shorter arc lengths from the optimum value by 30 and 50%, respectively, give 2.4 and 4.6% decreases in the heat transfer rate and 17 and 13% increases in the pressure drop. Thinner fins show better thermal-hydraulic performance for fin widths of 0.2-0.8 mm. However, the pressure drop reduced by the longer fin and heat transfer rate was also reduced. Rounded fins with 0.1 mm radius increased the pressure drop by about 30% compared with that of the fin designed with no roundness. (author)
Investigation of internally finned LED heat sinks
Li, Bin; Xiong, Lun; Lai, Chuan; Tang, Yumei
2018-03-01
A novel heat sink is proposed, which is composed of a perforated cylinder and internally arranged fins. Numerical studies are performed on the natural convection heat transfer from internally finned heat sinks; experimental studies are carried out to validate the numerical results. To compare the thermal performances of internally finned heat sinks and externally finned heat sinks, the effects of the overall diameter, overall height, and installation direction on maximum temperature, air flow and heat transfer coefficient are investigated. The results demonstrate that internally finned heat sinks show better thermal performance than externally finned heat sinks; the maximum temperature of internally finned heat sinks decreases by up to 20% compared with the externally finned heat sinks. The existence of a perforated cylinder and the installation direction of the heat sink affect the thermal performance significantly; it is shown that the heat transfer coefficient of the heat sink with the perforated cylinder is improved greater than that with the imperforated cylinder by up to 34%, while reducing the mass of the heat sink by up to 13%. Project supported by the Scientific Research Fund of Sichuan Provincial Education Department (No. 18ZB0516) and the Sichuan University of Arts and Science (No. 2016KZ009Y).
Performance study of a fin and tube heat exchanger with different fin geometry
DEFF Research Database (Denmark)
Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph
2016-01-01
This study analyses the effect of different fin geometries on the heat transfer and pressure loss characteristics of a fin and tube heat exchanger. A numerical investigation is carried out on liquid–gas type double-finned tube heat exchanger under cross-flow condition. Three different cross......-sections namely: a) Rectangular, b) Trapezoidal, c) Triangular are adopted to define the fin geometry. The CFD simulations are performed to incorporate coupled steady state conjugate heat transfer with the turbulent flow phenomenon for the Reynolds number in the range of 5000-13000. Dimensionless heat transfer...... models show that triangular fin geometry can provide higher heat transfer performance in comparison to the fins with rectangular and trapezoidal geometry with lower pressure loss and a bonus of 7.27% reduction in weight under similar operating conditions....
Directory of Open Access Journals (Sweden)
K.I. Atta
2012-08-01
In the tail fins of the specimens treated with Pb at 0.005 and 0.025 mg/l and Cd at 0.005 and 0.025 mg/l, at the seventh day postamputation, the lepidotrichia forming cells have dense patches of irregular lysosomes, swollen and degranulated rough endoplasmic reticulum, pyknotic mitochondria and vacuolated cytoplasm. In the tail fins of the specimens treated with Hg at 0.0006 mg/l, showed deformation of the lepidotrichia forming cells, there was an invasion of leucocytes and lysosomes. A progressive damage in the cytoplasmic organelles and in the fiber bundles of bones was also found. Also, the presence of collagen fibers as pathological condition.
International Nuclear Information System (INIS)
Listinsky, J.L.; Griffiths, H.J.
1989-01-01
Initial plain film studies of seven patients with facet fracture-dislocations of the cervical spine were examined retrospectively. Rotation of the cross-table lateral film from a standard vetical viewing orientation to a simulated brow-down position allowed easier appreciation of the dislocated pillar in six of the seven patients. The displaced pillar had an appearance similar to that of the dorsal fin of a shark. We conclude that the finding of a shark's fin appearance of an articular pillar in a traumatized patient warrants further radiographic studies. (author). 8 refs.; 3 figs
Guo, Yonghong; Du, Xiaoze; Yang, Lijun
2018-02-01
Air-cooled condenser is the main equipment of the direct dry cooling system in a power plant, which rejects heat of the exhaust steam with the finned tube bundles. Therefore, the thermo-flow performances of the finned tubes have an important effect on the optimal operation of the direct dry cooling system. In this paper, the flow and heat transfer characteristics of the single row finned tubes with the conventional flat fins and novel jagged fins are investigated by numerical method. The flow and temperature fields of cooling air for the finned tubes are obtained. Moreover, the variations of the flow resistance and average convection heat transfer coefficient under different frontal velocity of air and jag number are presented. Finally, the correlating equations of the friction factor and Nusselt number versus the Reynolds number are fitted. The results show that with increasing the frontal velocity of air, the heat transfer performances of the finned tubes are enhanced but the pressure drop will increase accordingly, resulting in the average convection heat transfer coefficient and friction factor increasing. Meanwhile, with increasing the number of fin jag, the heat transfer performance is intensified. The present studies provide a reference in optimal designing for the air-cooled condenser of direct air cooling system.
International Nuclear Information System (INIS)
Kim, Nae Hyun; Kim, Tae Hun
2015-01-01
In this study, the heat transfer and friction characteristics of the 5.3 mm O.D. slit-finned heat exchangers under wet condition have been experimentally investigated. Plain-finned heat exchangers having the same 5.3 mm O.D. tubes are also tested for comparison purpose. The effect of fin pitch on j and f factor is negligible. Slit fin samples yield higher j and f factors than plain fin samples. For one row configuration, the average f factor ratio between slit fin sample and plain fin sample is 2.18. The ratio increases to 2.41 for two row configuration, and to 2.65 for three row configuration. As for the j factor, the ratios are approximately the same (1.61, 1.70 and 1.71 for one, two and three row configuration). Both j and f factor increase as the number of tube row decreases. The same trend is observed for the plain fin samples. At high Reynolds numbers, the j/f ratios of the slit fin are approximately the same as those of the plain fin. At low Reynolds numbers, the j/f ratios of the slit fin are smaller than those of plain fin. Data are compared with existing correlations.
The optimization of longitudinal convective fins with internal heat generation
International Nuclear Information System (INIS)
Razelos, P.
1979-01-01
The solution of the optimization problem for longitudinal convective fins of constant thickness, triangular or parabolic profile, and uniform internal heat generation, is presented. The cases considered are those of a given heat generation density, total heat generation and heat generation per unit width of the fin, when either the heat dissipation or the width of the fin is prescribed. The results are set forth in a nondimensional form, which are presented graphically. The effect of the fin's thermal conductivity upon the optimum dimensions is discussed, and limiting values for the heat generation and the heat dissipation, which may be imposed on the fin for a feasible optimization, are also obtained. (Auth.)
Effective quantum field theories
International Nuclear Information System (INIS)
Georgi, H.M.
1989-01-01
Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)
DEFF Research Database (Denmark)
Baumeister, Ruth
2016-01-01
FIN DE COPENHAGUE this book by the Danish Cobra artist Asger Jorn and the French philosopher Guy Debord, is the first in a series of two and was published in 1957, shortly before the authors founded the Situationist International. According to Jorn, upon arrival to Copenhagen, they stole some...
Shen, Ming-Yi
The improvement of wafer equipment productivity has been a continuous effort of the semiconductor industry. Higher productivity implies lower product price, which economically drives more demand from the market. This is desired by the semiconductor manufacturing industry. By raising the ion beam current of the ion implanter for 300/450mm platforms, it is possible to increase the throughput of the ion implanter. The resulting dose rate can be comparable to the performance of conventional ion implanters or higher, depending on beam current and beam size. Thus, effects caused by higher dose rate must be investigated further. One of the major applications of ion implantation (I/I) is source-drain extension (SDE) I/I for the silicon FinFET device. This study investigated the dose rate effects on the material properties and device performance of the 10-nm node silicon FinFET. In order to gain better understanding of the dose rate effects, the dose rate study is based on Synopsys Technology CAD (TCAD) process and device simulations that are calibrated and validated using available structural silicon fin samples. We have successfully shown that the kinetic monte carlo (KMC) I/I simulation can precisely model both the silicon amorphization and the arsenic distribution in the fin by comparing the KMC simulation results with TEM images. The results of the KMC I/I simulation show that at high dose rate more activated arsenic dopants were in the source-drain extension (SDE) region. This finding matches with the increased silicon amorphization caused by the high dose-rate I/I, given that the arsenic atoms could be more easily activated by the solid phase epitaxial regrowth process. This increased silicon amorphization led to not only higher arsenic activation near the spacer edge, but also less arsenic atoms straggling into the channel. Hence, it is possible to improve the throughput of the ion implanter when the dopants are implanted at high dose rate if the same doping level
Thermal transport in oblique finned microminichannels
Fan, Yan; Singh, Pawan Kumar; Lee, Yong Jiun
2015-01-01
The main aim of this book is to introduce and give an overview of a novel, easy, and highly effective heat transfer augmentation technique for single-phase micro/minichannel heat sink. The specific objectives of the volume are to: Introduce a novel planar oblique fin microchannel and cylindrical oblique fin minichannel heat sink design using passive heat transfer enhancement techniques Investigate the thermal transport in both planar and cylindrical oblique fin structures through numerical simulation and systematic experimental studies. Evaluate the feasibility of employing the proposed solution in cooling non-uniform heat fluxes and hotspot suppression Conduct the similarity analysis and parametric study to obtain empirical correlations to evaluate the total heat transfer rate of the oblique fin heat sink Investigate the flow mechanism and optimize the dimensions of cylindrical oblique fin heat sink Investigate the influence of edge effect on flow and temperature uniformity in these oblique fin chan...
Directory of Open Access Journals (Sweden)
A. A. Dunaitsev
2017-01-01
Full Text Available In nuclear power engineering a need to justify an operability of products and their components is of great importance. In high-temperature gas reactors, the critical element affecting the facility reliability is the fuel rod cladding, which in turn leads to the need to gain knowledge in the field of gas dynamics and heat transfer in the reactor core and to increase the detail of the calculation results. For the time being, calculations of reactor core are performed using the proven techniques of per-channel calculations, which show good representativeness and count rate. However, these techniques require additional experimental studies to describe correctly the inter-channel exchange, which, being taken into account, largely affects the pattern of the temperature fields in the region under consideration. Increasingly more relevant and demandable are numerical simulation methods of fluid and gas dynamics, as well as of heat exchange, which consist in the direct solution of the system of differential equations of mass balance, kinetic moment, and energy. Calculation of reactor cores or rod bundles according these techniques does not require additional experimental studies and allows us to obtain the local distributions of flow characteristics in the bundle and the flow characteristics that are hard to measure in the physical experiment.The article shows the calculation results and their analysis for an infinite rod lattice of the reactor core. The results were obtained by the technique of modelling one rod of a regular lattice using the periodic boundary conditions, followed by translating the results to the neighbouring rods. In channels of complex shape, there are secondary flows caused by changes in the channel geometry along the flow and directed across the main front of the flow. These secondary flows in the reactor cores with rods spaced by the winding wire lead to a redistribution of the coolant along the channel section, which in turn
Undulating fins produce off-axis thrust and flow structures.
Neveln, Izaak D; Bale, Rahul; Bhalla, Amneet Pal Singh; Curet, Oscar M; Patankar, Neelesh A; MacIver, Malcolm A
2014-01-15
While wake structures of many forms of swimming and flying are well characterized, the wake generated by a freely swimming undulating fin has not yet been analyzed. These elongated fins allow fish to achieve enhanced agility exemplified by the forward, backward and vertical swimming capabilities of knifefish, and also have potential applications in the design of more maneuverable underwater vehicles. We present the flow structure of an undulating robotic fin model using particle image velocimetry to measure fluid velocity fields in the wake. We supplement the experimental robotic work with high-fidelity computational fluid dynamics, simulating the hydrodynamics of both a virtual fish, whose fin kinematics and fin plus body morphology are measured from a freely swimming knifefish, and a virtual rendering of our robot. Our results indicate that a series of linked vortex tubes is shed off the long edge of the fin as the undulatory wave travels lengthwise along the fin. A jet at an oblique angle to the fin is associated with the successive vortex tubes, propelling the fish forward. The vortex structure bears similarity to the linked vortex ring structure trailing the oscillating caudal fin of a carangiform swimmer, though the vortex rings are distorted because of the undulatory kinematics of the elongated fin.
Holographic effective field theories
Energy Technology Data Exchange (ETDEWEB)
Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' , Università di Padova,and INFN - Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,and INFN - Sezione di Milano-Bicocca, I-20126 Milano (Italy)
2016-06-28
We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.
Higgs Effective Field Theories
2016-01-01
The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.
Line-edge roughness induced single event transient variation in SOI FinFETs
International Nuclear Information System (INIS)
Wu Weikang; An Xia; Jiang Xiaobo; Chen Yehua; Liu Jingjing; Zhang Xing; Huang Ru
2015-01-01
The impact of process induced variation on the response of SOI FinFET to heavy ion irradiation is studied through 3-D TCAD simulation for the first time. When FinFET biased at OFF state configuration (V gs = 0, V ds = V dd ) is struck by a heavy ion, the drain collects ionizing charges under the electric field and a current pulse (single event transient, SET) is consequently formed. The results reveal that with the presence of line-edge roughness (LER), which is one of the major variation sources in nano-scale FinFETs, the device-to-device variation in terms of SET is observed. In this study, three types of LER are considered: type A has symmetric fin edges, type B has irrelevant fin edges and type C has parallel fin edges. The results show that type A devices have the largest SET variation while type C devices have the smallest variation. Further, the impact of the two main LER parameters, correlation length and root mean square amplitude, on SET variation is discussed as well. The results indicate that variation may be a concern in radiation effects with the down scaling of feature size. (paper)
Three-dimensional Finite Elements Method simulation of Total Ionizing Dose in 22 nm bulk nFinFETs
Energy Technology Data Exchange (ETDEWEB)
Chatzikyriakou, Eleni, E-mail: ec3g12@soton.ac.uk; Potter, Kenneth; Redman-White, William; De Groot, C.H.
2017-02-15
Highlights: • Simulation of Total Ionizing Dose using the Finite Elements Method. • Carrier generation, transport and trapping in the oxide. • Application in three-dimensional bulk FinFET model of 22 nm node. • Examination of trapped charge in the Shallow Trench Isolation. • Trapped charge dependency of parasitic transistor current. - Abstract: Finite Elements Method simulation of Total Ionizing Dose effects on 22 nm bulk Fin Field Effect Transistor (FinFET) devices using the commercial software Synopsys Sentaurus TCAD is presented. The simulation parameters are extracted by calibrating the charge trapping model to experimental results on 400 nm SiO{sub 2} capacitors irradiated under zero bias. The FinFET device characteristics are calibrated to the Intel 22 nm bulk technology. Irradiation simulations of the transistor performed with all terminals unbiased reveal increased hardness up to a total dose of 1 MRad(SiO{sub 2}).
Fully-Implicit Navier-Stokes (FIN-S)
Kirk, Benjamin S.
2010-01-01
FIN-S is a SUPG finite element code for flow problems under active development at NASA Lyndon B. Johnson Space Center and within PECOS: a) The code is built on top of the libMesh parallel, adaptive finite element library. b) The initial implementation of the code targeted supersonic/hypersonic laminar calorically perfect gas flows & conjugate heat transfer. c) Initial extension to thermochemical nonequilibrium about 9 months ago. d) The technologies in FIN-S have been enhanced through a strongly collaborative research effort with Sandia National Labs.
Urquiza, Eugenio
This work presents a comprehensive thermal hydraulic analysis of a compact heat exchanger using offset strip fins. The thermal hydraulics analysis in this work is followed by a finite element analysis (FEA) to predict the mechanical stresses experienced by an intermediate heat exchanger (IHX) during steady-state operation and selected flow transients. In particular, the scenario analyzed involves a gas-to-liquid IHX operating between high pressure helium and liquid or molten salt. In order to estimate the stresses in compact heat exchangers a comprehensive thermal and hydraulic analysis is needed. Compact heat exchangers require very small flow channels and fins to achieve high heat transfer rates and thermal effectiveness. However, studying such small features computationally contributes little to the understanding of component level phenomena and requires prohibitive computational effort using computational fluid dynamics (CFD). To address this issue, the analysis developed here uses an effective porous media (EPM) approach; this greatly reduces the computation time and produces results with the appropriate resolution [1]. This EPM fluid dynamics and heat transfer computational code has been named the Compact Heat Exchanger Explicit Thermal and Hydraulics (CHEETAH) code. CHEETAH solves for the two-dimensional steady-state and transient temperature and flow distributions in the IHX including the complicating effects of temperature-dependent fluid thermo-physical properties. Temperature- and pressure-dependent fluid properties are evaluated by CHEETAH and the thermal effectiveness of the IHX is also calculated. Furthermore, the temperature distribution can then be imported into a finite element analysis (FEA) code for mechanical stress analysis using the EPM methods developed earlier by the University of California, Berkeley, for global and local stress analysis [2]. These simulation tools will also allow the heat exchanger design to be improved through an
High performance flexible CMOS SOI FinFETs
Fahad, Hossain M.
2014-06-01
We demonstrate the first ever CMOS compatible soft etch back based high performance flexible CMOS SOI FinFETs. The move from planar to non-planar FinFETs has enabled continued scaling down to the 14 nm technology node. This has been possible due to the reduction in off-state leakage and reduced short channel effects on account of the superior electrostatic charge control of multiple gates. At the same time, flexible electronics is an exciting expansion opportunity for next generation electronics. However, a fully integrated low-cost system will need to maintain ultra-large-scale-integration density, high performance and reliability - same as today\\'s traditional electronics. Up until recently, this field has been mainly dominated by very weak performance organic electronics enabled by low temperature processes, conducive to low melting point plastics. Now however, we show the world\\'s highest performing flexible version of 3D FinFET CMOS using a state-of-the-art CMOS compatible fabrication technique for high performance ultra-mobile consumer applications with stylish design. © 2014 IEEE.
International Nuclear Information System (INIS)
Ikaeheimonen, T.K.; Rantavaara, A.; Moring, M.; Klemola, S.
1995-06-01
Radionuclide determinations of 35 environmental samples of eight different materials were carried out for the International Atomic Energy Agency by the Finnish Centre for Radiation and Nuclear Safety (STUK). All the samples were analysed for gamma emitting nuclides, 90 Sr, 238 Pu and 239 , 240 Pu. In most of the samples the found radionuclide contents were roughly at the same levels as in the same types of environmental samples in the northern hemisphere. However, some samples of grass, moss, lichen and sheep faeces showed exceptionally great contents of radionuclides measured. The maximum contents of 90 Sr, 137 Cs, 238 Pu and 239 , 240 Pu were found in the sam individual samples. The ratios of nuclide concentrations in these samples also deviated from ratios in other samples. This referred to an origin of these nuclides other than the global fallout. The work was a continuation to the study carried out under the Task FIN A 847 of the Finnish Support Programme to IAEA Safeguard. (orig.) (1 ref., 1 fig., 4 tabs.)
International Nuclear Information System (INIS)
Gul, R.M.; Mutasher, F.
2007-01-01
Aluminum alloys have long been used in the production of heat exchanger fins. The comparative properties of the different alloys used for this purpose has not been an issue in the past, because of the significant thickness of the finstock material. However, in order to make fins lighter in weight, there is a growing demand for thinner finstock materials, which has emphasized the need for improved mechanical properties, thermal conductivity and corrosion resistance. The objective of this project is to determine the effect of iron, silicon and manganese percentage increment on the required mechanical properties for this application by analyzing four different aluminum alloys. The four selected aluminum alloys are 1100, 8011, 8079 and 8150, which are wrought non-heat treatable alloys with different amount of the above elements. Aluminum alloy 1100 serve as a control specimen, as it is commercially pure aluminum. The study also reports the effect of different annealing cycles on the mechanical properties of the selected alloys. Metallographic examination was also preformed to study the effect of annealing on the precipitate phases and the distribution of these phases for each alloy. The microstructure analysis of the aluminum alloys studied indicates that the precipitated phase in the case of aluminum alloys 1100 and 8079 is beta-FeAI3, while in 8011 it is a-alfa AIFeSi, and the aluminum alloy 8150 contains AI6(Mn,Fe) phase. The comparison of aluminum alloys 8011 and 8079 with aluminum alloy 1100 show that the addition of iron and silicon improves the percent elongation and reduces strength. The manganese addition increases the stability of mechanical properties along the annealing range as shown by the comparison of aluminum alloy 8150 with aluminum alloy 1100. Alloy 8150 show superior properties over the other alloys due to the reaction of iron and manganese, resulting in a preferable response to thermal treatment and improved mechanical properties. (author)
A comparative analysis on the shed vortices from the wake of finned, foam-wrapped cylinders
Energy Technology Data Exchange (ETDEWEB)
Khashehchi, Morteza [Department of Agro-Technology, College of Aburaihan, University of Tehran, Tehran (Iran, Islamic Republic of); Ashtiani Abdi, Iman; Hooman, Kamel, E-mail: m.khashehchi@ut.ac.ir [School of Mechanical and mining Engineering, University of Queensland, Brisbane (Australia)
2017-08-15
The wake characteristics behind a finned and a foam-wrapped circular cylinder has been compared in a study (Khashehchi et al 2014 Exp. Therm. Fluid Sci. 52 328–38) done by the Authors. In this paper, the shed vortices from the wake of the same cylinders have been studied. Shedding in a bluff body has an important effect on increasing the pressure drop downstream of the object. Here, we have used particle image velocimetry to investigate the detached vortices from the wake behind a foam-wrapped and a finned cylinder. The standard case of cross-flow over a bare cylinder, i.e. no surface extension, has also been tested as a benchmark. The experiments have been performed for Reynolds numbers 2000 based on the mean air velocity and the cylinder’s outer diameter. To identify the features of each aforementioned case, linear stochastic estimation has been applied to the velocity fields. Results show that unlike the fin, adding foam to the cylinder surface increases the size of detached vortices and amplifies the core strength. Moreover, foam-wrapped cylinder in contrast to the finned one produces strong three-dimensionality. Interestingly, finned cylinder’s results show less three-dimensionality compared to the bare cylinder. (paper)
Optimum length of finned pipe for waste heat recovery
International Nuclear Information System (INIS)
Soeylemez, M.S.
2008-01-01
A thermoeconomic feasibility analysis is presented yielding a simple algebraic optimization formula for estimating the optimum length of a finned pipe that is used for waste heat recovery. A simple economic optimization method is used in the present study by combining it with an integrated overall heat balance method based on fin effectiveness for calculating the maximum savings from a waste heat recovery system
Batubara, Fatimah; Dina, Sari Farah; Klaudia Kathryn Y., M.; Turmuzi, M.; Siregar, Fitri; Panjaitan, Nora
2017-06-01
Research on the effect of openings solar collector and solar irradiance to thermal efficiency has been done. Solar collector by flat plate-finned type consists of 3 ply insulator namely wood, Styrofoam and Rockwool with thickness respectively are 10 mm, 25 mm and 50 mm. Absorber plate made of aluminum sheet with thickness of 0.30 mm, painted by black-doff. Installation of 19 units fins (length x height x thickness: 1000x20x10 mm) on the collector will increase surface area of absorber so it can receive much more solar energy. The solar collector cover is made of glass (thickness of 5 mm). During the research, the solar irradiance and temperature of collector are measured and recorded every five minutes. Temperature measurement performed on the surface of the absorber plate, inside of collector, surface cover and the outer side insulator (plywood). This data is used to calculate the heat loss due to conduction, convection and radiation on the collector. Openings of collectors vary as follows: 100%, 75%, 15% and 0% (total enclosed). The data collecting was conducted from 09.00 am to 17.00 pm and triplicates. The collector thermal efficiency calculated based on the ratio of the amount of heat received to the solar irradiance absorbed. The results show that each of openings solar collector has different solar irradiance (because it was done on a different day) which is in units of W/m2: 390 (100% open), 376 (75% open), 429 (15% open), and 359 (totally enclosed). The highest thermal efficiency is in openings variation of 15% opened. These results indicate that the efficiency of the collector is influenced by the solar irradiance received by the collector and the temperature on the collector plate. The highest thermal efficiency is in variation of openings 15%. These indicate that the efficiency of the collector was influenced by solar irradiance received by the collector and openings of the collector plate.
Royer del Barrio, Pablo; López Vallejo, Marisa
2014-01-01
Strained fin is one of the techniques used to improve the devices as their size keeps reducing in new nanoscale nodes. In this paper, we use a predictive technology of 14 nm where pMOS mobility is significantly improved when those devices are built on top of long, uncut fins, while nMOS devices present the opposite behavior due to the combination of strains. We explore the possibility of boosting circuit performance in repetitive structures where long uncut fins can be exploited to increase f...
Channels with Different Fin Shapes
Directory of Open Access Journals (Sweden)
R. J. Goldstein
1998-01-01
Full Text Available The mass transfer (analogous to heat transfer and pressure loss characteristics of staggered short pin-fin arrays are investigated experimentally in the range of Reynolds number 3000 to 18,000 based on fin diameter and mean approach-flow velocity. Three different shapes of fins with aspect ratio of 2 are examined: one uniform-diameter circular fin (UDCF and two stepped-diameter circular fins (SDCF1 and SDCF2. Flow visualization using oil-lampblack reveals complex flow characteristics associated with the repeated production of horseshoe vortices and fin wakes, and the interactions among these. The SDCF1 and SDCF2 arrays show flow characteristics different from the UDCF array due to downflow from the steps. For all arrays tested, the near-endwall flow varies row by row in the initial rows until it reaches a stable pattern after the third row. The row-averaged Sherwood numbers obtained from the naphthalene sublimation experiment also show a row-by-row variation pattern similar to the flow results. While the SDCF2 array has the highest mass transfer rate, the SDCF1 array has the smallest pressure loss at the same approach-flow velocity. The fin surfaces have higher array-averaged Sherwood number than the endwall and the ratio between these changes with fin shape and Reynolds number. The performance of the pin-fin arrays is analyzed under two different constraints: the mass[heat transfer rate at fixed pumping power, and the mass/heat transfer area and pressure loss to fulfill fixed heat load at a fixed mass flow rate. In both cases, the SDCF2 array shows the best performance.
Experimental Validation of Elliptical Fin-Opening Behavior
Directory of Open Access Journals (Sweden)
James M. Garner
2003-01-01
Full Text Available An effort to improve the performance of ordnance has led to the consideration of the use of folding elliptical fins for projectile stabilization. A second order differential equation was used to model elliptical fin deployment history and accounts for: deployment with respect to the geometric properties of the fin, the variation in fin aerodynamics during deployment, the initial yaw effect on fin opening, and the variation in deployment speed based on changes in projectile spin. This model supports tests conducted at the Transonic Experimental Facility, Aberdeen Proving Ground examining the opening behavior of these uniquely shaped fins. The fins use the centrifugal force from the projectile spin to deploy. During the deployment, the fin aerodynamic forces vary with angle-of-attack changes to the free stream. Model results indicate that projectile spin dominates the initial opening rates and aerodynamics dominate near the fully open state. The model results are examined to explain the observed behaviors, and suggest improvements for later designs.
On the Hydrodynamics of Anomalocaris Tail Fins.
Sheppard, K A; Rival, D E; Caron, J-B
2018-04-25
Anomalocaris canadensis, a soft-bodied stem-group arthropod from the Burgess Shale, is considered the largest predator of the Cambrian period. Thanks to a series of lateral flexible lobes along its dorso-ventrally compressed body, it is generally regarded as an efficient swimmer, well-adapted to its predatory lifestyle. Previous theoretical hydrodynamic simulations have suggested a possible optimum in swimming performance when the lateral lobes performed as a single undulatory lateral fin, comparable to the pectoral fins in skates and rays. However, the role of the unusual fan-like tail of Anomalocaris has not been previously explored. Swimming efficiency and maneuverability deduced from direct hydrodynamic analysis are here studied in a towing tank facility using a three-vane physical model designed as an abstraction of the tail fin. Through direct force measurements, it was found that the model exhibited a region of steady-state lift and drag enhancement at angles of attack greater than 25° when compared to a triangular-shaped reference model. This would suggest that the resultant normal force on the tail fin of Anomalocaris made it well-suited for turning maneuvers, giving it the ability to turn quickly and through small radii of curvature. These results are consistent with an active predatory lifestyle, although detailed kinematic studies integrating the full organism, including the lateral lobes, would be required to test the effect of the tail fin on overall swimming performance. This study also highlights a possible example of evolutionary convergence between the tails of Anomalocaris and birds, which, in both cases, are well-adapted to efficient turning maneuvers.
Organic tunnel field effect transistors
Tietze, Max Lutz; Lussem, Bjorn; Liu, Shiyi
2017-01-01
Various examples are provided for organic tunnel field effect transistors (OTFET), and methods thereof. In one example, an OTFET includes a first intrinsic layer (i-layer) of organic semiconductor material disposed over a gate insulating layer
Protective Role of Comfrey Leave Extracts on UV-induced Zebrafish Fin Damage
Cheng, Chien-Chung; Chou, Chi-Yuan; Chang, Yao-Chin; Wang, Hsuan-Wen; Wen, Chi-Chung; Chen, Yau-Hung
2014-01-01
In zebrafish, UV exposure leads to fin malformation phenotypes including fin reduction or absence. The present study evaluated UV-protective activities of comfrey leaves extracts in a zebrafish model by recording fin morphological changes. Chemopreventive effects of comfrey leave extracts were evaluated using Kaplan-Meier analysis and Cox proportional hazards regression. The results showed that (1) the mean times of return to normal fin in the UV+comfrey (50 and 100 ppm) groups were 3.43 and ...
Bazaz Behbahani, Sanaz; Tan, Xiaobo
2017-08-01
Fish actively control their stiffness in different swimming conditions. Inspired by such an adaptive behavior, in this paper we study the design, prototyping, and dynamic modeling of compact, tunable-stiffness fins for robotic fish, where electrorheological (ER) fluid serves as the enabling element. A multi-layer composite fin with an ER fluid core is prototyped and utilized to investigate the influence of electrical field on its performance. Hamilton's principle is used to derive the dynamic equations of motion of the flexible fin, and Lighthill's large-amplitude elongated-body theory is adopted to estimate the hydrodynamic force when the fin undergoes base-actuated rotation. The dynamic equations are then discretized using the finite element method, to obtain an approximate numerical solution. Experiments are conducted on the prototyped flexible ER fluid-filled beam for parameter identification and validation of the proposed model, and for examining the effectiveness of electrically controlled stiffness tuning. In particular, it is found that the natural frequency is increased by almost 40% when the applied electric field changes from 0 to 1.5× {10}6 {{V}} {{{m}}}-1.
Magnetic field effects in proteins
Jones, Alex R.
2016-06-01
Many animals can sense the geomagnetic field, which appears to aid in behaviours such as migration. The influence of man-made magnetic fields on biology, however, is potentially more sinister, with adverse health effects being claimed from exposure to fields from mobile phones or high voltage power lines. Do these phenomena have a common, biophysical origin, and is it even plausible that such weak fields can profoundly impact noisy biological systems? Radical pair intermediates are widespread in protein reaction mechanisms, and the radical pair mechanism has risen to prominence as perhaps the most plausible means by which even very weak fields might impact biology. In this New Views article, I will discuss the literature over the past 40 years that has investigated the topic of magnetic field effects in proteins. The lack of reproducible results has cast a shadow over the area. However, magnetic field and spin effects have proven to be useful mechanistic tools for radical mechanism in biology. Moreover, if a magnetic effect on a radical pair mechanism in a protein were to influence a biological system, the conditions necessary for it to do so appear increasing unlikely to have come about by chance.
Evaluation of integrally finned cladding for LMFBR fuel pins
International Nuclear Information System (INIS)
Cantley, D.A.; Sutherland, W.H.
1975-01-01
An integral fin design effectively reduces the coolant temperature gradients within an LMFBR subassembly by redistributing coolant flow so as to reduce the maximum cladding temperature and increase the duct wall temperature. The reduced cladding temperatures are offset by strain concentrations resulting from the fin geometry, so there is little net effect on predicted fuel pin performance. The increased duct wall temperatures, however, significantly reduce the duct design lifetime so that the final conclusion is that the integral fin design is inferior to the standard wire wrap design. This result, however, is dependent upon the material correlations used. Advanced alloys with improved irradiation properties could alter this conclusion
International Nuclear Information System (INIS)
Poellaenen, R.; Ilander, T.; Lehtinen, J.; Leppaenen, A.; Nikkinen, M.; Toivonen, H.; Ylaetalo, S.; Smartt, H.; Garcia, R.; Martinez, R.; Glidewell, D.; Krantz, K.
1999-01-01
An automated air sampling station has recently been developed by Radiation and Nuclear Safety Authority (STUK). The station is furnished with equipment that allows comprehensive remote monitoring of the station and the data. Under the Finnish Support Programme to IAEA Safeguards, STUK and Sandia National Laboratories (SNL) established a field trial to demonstrate the use of remote monitoring technologies. STUK provided means for real-lime radiation monitoring and sample authentication whereas SNL delivered means for authenticated surveillance of the equipment and its location. The field trial showed that remote monitoring can be carried out using simple means although advanced facilities are needed for comprehensive surveillance. Authenticated measurement data could be reliably transferred from the monitoring site to the headquarters without the presence of authorized personnel in the monitoring site. The operation of the station and the remote monitoring system were reliable. (orig.)
International Nuclear Information System (INIS)
Harvel, G.D.; Chang, J.S.
1997-01-01
A two-phase flow regime map is developed experimentally and theoretically for a vertical hexagonal flow channel with and without a 36-finned rod hexagonal bundle. This type of flow channel is of interest to MAPLE-type nuclear research reactors. The flow regime maps are determined by visual observations and observation of waveforms shown by a capacitance-type void fraction meter. The experimental results show that the inclusion of the finned hexagonal bundle shifts the flow regime transition boundaries toward higher water flow rates. Existing flow regime maps based on pipe flow require slight modifications when applied to the hexagonal flow channel with and without a MAPLE-type finned hexagonal bundle. The proposed theoretical model agrees well with experimental results
50 CFR 600.1204 - Shark finning; possession at sea and landing of shark fins.
2010-10-01
... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Shark finning; possession at sea and landing of shark fins. 600.1204 Section 600.1204 Wildlife and Fisheries FISHERY CONSERVATION AND... PROVISIONS Shark Finning § 600.1204 Shark finning; possession at sea and landing of shark fins. (a)(1) No...
Energy Technology Data Exchange (ETDEWEB)
Toivonen, H; Honkamaa, T; Kansanaho, A; Poellaenen, R [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland). Aerosol Lab.; Aarnio, P; Ala-Heikkilae, J; Nikkinen, M [Helsinki Univ. of Technology, Otaniemi (Finland). Nuclear Engineering Lab.
1994-12-01
Several in-field measuring techniques were identified for use in safeguards inspections. The radiation measurements play a major role in seeking environmetal signatures. A high-resolution gamma-ray spectrometer, either in-situ or in sample analysis, gives unequivocal evidence of nuclear activities on the site of interest. Although portable spectrometers are commercially available, hardware development and software tailoring seem to be necessary before efficient mobile measurements can be initiated. To understand trends and pattern of contamination, the results of the measurements have be displayed on digital maps. GPS-integration is an essential requirement for the equipment in environmental monitoring. (orig.) (14 refs., 5 figs., 17 tabs.).
International Nuclear Information System (INIS)
Toivonen, H.; Honkamaa, T.; Kansanaho, A.; Poellaenen, R.; Aarnio, P.; Ala-Heikkilae, J.; Nikkinen, M.
1994-12-01
Several in-field measuring techniques were identified for use in safeguards inspections. The radiation measurements play a major role in seeking environmetal signatures. A high-resolution gamma-ray spectrometer, either in-situ or in sample analysis, gives unequivocal evidence of nuclear activities on the site of interest. Although portable spectrometers are commercially available, hardware development and software tailoring seem to be necessary before efficient mobile measurements can be initiated. To understand trends and pattern of contamination, the results of the measurements have be displayed on digital maps. GPS-integration is an essential requirement for the equipment in environmental monitoring. (orig.) (14 refs., 5 figs., 17 tabs.)
A note on the heat transfer in convective fins
International Nuclear Information System (INIS)
Razelos, P.
1979-01-01
In this paper a generalized approach to the problem of heat transfer through convective fins is given. The proper dimensionless variables, which specify the general problem are identified, and upper bounds of the values of the dimensionless number Nsub(r) defined as 'the ratio of the heat transferred by the fin to that of the corresponding bare surface' are derived. It was shown that these limiting values of the Nsub(r) are 1/√B 1 and √2/B 1 for longitudinal fins and spines respectively, where B 1 is the Biot number hb/k, while for annular fins of constant thickness and hyperbolic profile, Nsub(r) 1 , where K(β) is a number determined by the profile of the fin and the ratio β = x 2 /x 1 of the outside to the inside radii. It was also shown that for longitudinal fins and spinces the possible adverse insulating effect by the use of the fin is avoided, if one selects the value of √hA/kC [de
Quantum effects in strong fields
International Nuclear Information System (INIS)
Roessler, Lars
2014-01-01
This work is devoted to quantum effects for photons in spatially inhomogeneous fields. Since the purely analytical solution of the corresponding equations is an unsolved problem even today, a main aspect of this work is to use the worldline formalism for scalar QED to develop numerical algorithms for correlation functions beyond perturbative constructions. In a first step we take a look at the 2-Point photon correlation function, in order to understand effects like vacuum polarization or quantum reflection. For a benchmark test of the numerical algorithm we reproduce analytical results in a constant magnetic background. For inhomogeneous fields we calculate for the first time local refractive indices of the quantum vacuum. In this way we find a new de-focusing effect of inhomogeneous magnetic fields. Furthermore the numerical algorithm confirms analytical results for quantum reflection obtained within the local field approximation. In a second step we take a look at higher N-Point functions, with the help of our numerical algorithm. An interesting effect at the level of the 3-Point function is photon splitting. First investigations show that the Adler theorem remains also approximately valid for inhomogeneous fields.
Skotheim, Siv; Handeland, Katina; Kjellevold, Marian; Øyen, Jannike; Frøyland, Livar; Lie, Øyvind; Eide Graff, Ingvild; Baste, Valborg; Stormark, Kjell Morten; Dahl, Lisbeth
2017-01-01
There is a growing body of evidence linking fish consumption and n-3 LCPUFAs to mental health. Still, the results from randomized trials with n-3 LCPUFAs show conflicting results, and it is possible that the combined effect of several nutrients in fish may explain the observed associations. To aim of the present study was to investigate if school meals with fatty fish three times per week for 12 weeks could alter mental health in a sample of typically developing adolescents. In the Fish Intervention Studies-TEENS (FINS-TEENS), adolescents from eight secondary schools (n=425) in Norway, were randomized to receive school meals with fatty fish, meat or n-3 LCPUFA supplements. Mental health was assessed with the Strengths and Difficulties Questionnaire (SDQ) and the differences between the groups were assessed with linear mixed effect models, unadjusted and adjusted for baseline and dietary compliance. The results showed no effects of school meals with fatty fish compared to similar meals with meat or n-3 LCPUFAs on the adolescents' self-reported symptom scores for mental health. Among adolescents scoring above the SDQ cut-offs (high-scorers), the fish- improved less than the meat group in the self-reported symptom scores for total difficulties- and emotional problems. However, the findings should be regarded as preliminary, as the analyses for the high-scorer group were underpowered. In conclusion, serving school meals with fatty fish did not alter mental health in a typically developing sample of adolescents. It is possible that serving healthy school meals with meat is more beneficial than similar meals with fatty fish in adolescents scoring high on mental health problems. However, the results should be seen as preliminary, as the dietary compliance in the fish group was low and the analyses in the high score group underpowered. Thus, further studies should investigate the associations between fish consumption and adolescents' mental health.
Tunneling field effect transistor technology
Chan, Mansun
2016-01-01
This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency. · Provides comprehensive reference to tunneling field effect transistors (TFETs); · Covers all aspects of TFETs, from device process to modeling and applications; · Enables design of power-efficient integrated circuits, with low power consumption TFETs.
Echtermeyer, T. J.; Lemme, M. C.; Bolten, J.; Baus, M.; Ramsteiner, M.; Kurz, H.
2007-09-01
In this article, graphene is investigated with respect to its electronic properties when introduced into field effect devices (FED). With the exception of manual graphene deposition, conventional top-down CMOS-compatible processes are applied. Few and monolayer graphene sheets are characterized by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The electrical properties of monolayer graphene sandwiched between two silicon dioxide films are studied. Carrier mobilities in graphene pseudo-MOS structures are compared to those obtained from double-gated Graphene-FEDs and silicon metal-oxide-semiconductor field-effect-transistors (MOSFETs).
Othman, Nurul Aida Farhana; Hatta, Sharifah Fatmadiana Wan Muhamad; Soin, Norhayati
2018-04-01
Stress-engineered fin-shaped field effect transistors (FinFET) using germanium (Ge) is a promising performance booster to replace silicon (Si) due to its high holes mobility. This paper presents a three-dimensional simulation by the Sentaurus technology computer-aided design to study the effects of stressors—channel stress, stress-relaxed buffer (SRB), and source/drain (S/D) epitaxial stress—on different bases of FinFET, specifically silicon germanium (SiGe) and Ge-based, whereby the latter is achieved by manipulating the Ge mole fraction inside the three layers; their effects on the devices' figures-of-merits were recorded. The simulation generates an advanced calibration process, by which the drift diffusion simulation was adopted for ballistic transport effects. The results show that current enhancement in p-type FinFET (p-FinFET) with 110% is almost twice that in n-type FinFET (n-FinFET) with 57%, with increasing strain inside the channel suggesting that the use of strain is more effective for holes. In SiGe-based n-FinFET, the use of a high-strained SRB layer can improve the drive current up to 112%, while the high-strain S/D epitaxial for Ge-based p-FinFET can enhance the on-state current to 262%. Further investigations show that the channel and S/D doping are affecting the performances of SiGe-based FinFET with similar importance. It is observed that doping concentrations play an important role in threshold voltage adjustment as well as in drive current and subthreshold leakage improvements.
Directory of Open Access Journals (Sweden)
m Hatice Kalkan Yıldırı
2016-01-01
Full Text Available During production of wines are used different fining agents with animal origin for preventing later presipitation and reducing harshenss of wines. Even these positive properties they may cause some allergic reactions in consumers with allergic predispositons. Due to health concern wine pomace seeds could be a new alternative as fining agent with plant origin. In this study were evaluated preliminary effects of seeds over wine qulity expecially wine colour. As the next stage will be considered thier health effects. Grapes of Vitis vinifera L. cvs. “Cabernet Sauvignon” were manually harvested at optimum maturity (25∘Brix and transported to the Experimental Winery at the Department of Food Engineering, Ege University, Izmir, Turkey. Wine production were done according to the accepted wine production procedures with exeption of SO2 (it was not added. Obtained grape seeds flour (drying and milling were used as fining agent with different values (2/4/6/8/10 gram/100 ml. In all wines basic wine chemical parameters and some spesific colour parameters were determined %D280, %D420, %D520, %D620, CD: Colour density, CI: Colour intensity, T: Tint value, dA %: Proportion of red colour produced by flavylium cations , %Y: Proportion of yellow colour, % R: Proportion of red colour and % B: Proportion of blue colour. The results demonstrated the possibility of using wine pomace grape seeds as fining agent. Concidering colour parametrs of obtianed wines the best results were deterrmined with 8 g/100 ml application. Futher studies are needed in order to evaluate other wine parameters.
Directory of Open Access Journals (Sweden)
Zhang Yong-Hua
2013-10-01
Full Text Available A two-dimensional unsteady computational fluid dynamics (CFD method using an unstructured, grid-based and unsteady Navier-Stokes solver with automatic adaptive re-meshing to compute the unsteady flow was adopted to study the hydrodynamic interaction between a periodic oscillating plate and a rigid undulating fin in tandem arrangement. The user-defined function (UDF program was compiled to define the undulating and oscillating motion. First, the influence of the distance between the anterior oscillating plate and the posterior undulating fin on the non-dimensional drag coefficient of the fin was investigated. Ten different distances, D=0.2L, 0.4L, 0.6L, 0.8L, 1.0L, 1.2L, 1.4L, 1.6L, 1.8L and 2.0L, were considered. The performance of the fin for different distances (D is different. Second, the plate oscillating angle (5.7°, 10°, 20°, 30°, 40°, 45°, 50° and frequency (0.5 Hz, 1.0 Hz, 1.5 Hz, 2.0 Hz, 2.5 Hz, 3.0 Hz, 3.5 Hz, 4.0 Hz effects on the non-dimensional drag coefficient of the fin were also implemented. The pressure distribution on the fin was computed and integrated to provide fin forces, which were decomposed into lift and thrust. Meanwhile, the flow field was demonstrated and analysed. Based on the flow structures, the reasons for different undulating performances were discussed. It shows that the results largely depend on the distance between the two objects. The plate oscillating angle and frequency also make a certain contribution to the performance of the posterior undulating fin. The results are similar to the interaction between two undulating objects in tandem arrangement and they may provide a physical insight into the understanding of fin interaction in fishes or bio-robotic underwater propulsors that are propelled by multi fins.
Biological effects of electromagnetic fields
International Nuclear Information System (INIS)
David, E.
1993-01-01
In this generally intelligible article, the author describes at first the physical fundamentals of electromagnetic fields and their basic biological significance and effects for animals and human beings before dealing with the discussion regarding limiting values and dangers. The article treats possible connections with leukaemia as well as ith melatonine production more detailed. (vhe) [de
Synaptic Effects of Electric Fields
Rahman, Asif
Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits
PHASE CHANGE AROUND A FINNED TUBE
Directory of Open Access Journals (Sweden)
Aytunç EREK
2003-01-01
Full Text Available This study presents the heat transfer enhancement in the thermal energy storage system by using radially finned tube. The solution of the system consists of the solving the equations of the heat transfer fluid (HTF, the pipe wall and fin, and the phase change material (PCM as one domain. The control volume finite difference approach and the semi implicit solver (SIS are used to solve the equations. Fully developed velocity distribution is taken in the HTF. Flow parameters (Re number and inlet temperature of coolant and fin parameters (the number of fins, fin length, fin thickness are found to influence solidification fronts and the total stored energy.
Stress analysis of plate-fin structures in recuperator
International Nuclear Information System (INIS)
Matsui, Shingo; Muto, Yasushi; Shiina, Yasuaki
2001-01-01
A high performance compact recuperator with 95% effectiveness is required to achieve a high thermal efficiency power generation of up to 50% in High Temperature Gas Cooled Reactor (HTGR) coupled with closed cycle helium gas turbine. Though a plate-fin type heat exchanger is proposed for this recuperator, much research and development works are needed to establish this high performance goal since there exists no state-of-the-art technology in such a high pressure and high temperature one. One of the important works is to establish the structural analysis and evaluation method in this plate-fin type heat exchanger. This paper describes the results of stress analysis of the plate-fin structure under the internal pressure as the first step of this work. First, the modeling of a unit plate-fin structure for the analysis was examined and a three layers model was confirmed to be most adequate. The stress distribution within the structure was clarified by using this model. Second, the three layers model was simplified to one layer model with sufficient accuracy. By using this model, both the effects of an inclined angle of fin and a thickness of separate on the strength were examined parametrically. Under the relevant design conditions, it was revealed that the optimum inclined angle of fin locates in the neighborhood of 76 degree rather than most difficult fabrication angle 90 degree and there is possibility to adopt thinner thickness than 0.5 mm in the current design. (author)
Effective potentials for twisted fields
International Nuclear Information System (INIS)
Banach, R.
1981-01-01
Minus the density of the effective action, evaluated at the lowest eigenfunction of the (space-time) derivative part of the second (functional) derivative of the classical action, is proposed as a generalised definition of the effective potential, applicable to twisted as well as untwisted sectors of a field theory. The proposal is corroborated by several specific calculations in the twisted sector, namely phi 4 theory (real and complex) and wrong-sign-Gordon theory, in an Einstein cylinder, where the exact integrability of the static solutions confirms the effective potential predictions. Both models exhibit a phase transition, which the effective potential locates, and the one-loop quantum shift in the critical radius is computed for the real phi 4 model, being a universal result. Topological mass generation at the classical level is pointed out, and the exactness of the classical effective potential approximation for complex phi 4 is discussed. (author)
Effective field theory dimensional regularization
International Nuclear Information System (INIS)
Lehmann, Dirk; Prezeau, Gary
2002-01-01
A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed
Effective field theory dimensional regularization
Lehmann, Dirk; Prézeau, Gary
2002-01-01
A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.
The effective crystal field potential
Mulak, J
2000-01-01
As it results from the very nature of things, the spherical symmetry of the surrounding of a site in a crystal lattice or an atom in a molecule can never occur. Therefore, the eigenfunctions and eigenvalues of any bound ion or atom have to differ from those of spherically symmetric respective free ions. In this way, the most simplified concept of the crystal field effect or ligand field effect in the case of individual molecules can be introduced. The conventional notion of the crystal field potential is narrowed to its non-spherical part only through ignoring the dominating spherical part which produces only a uniform energy shift of gravity centres of the free ion terms. It is well understood that the non-spherical part of the effective potential "seen" by open-shell electrons localized on a metal ion plays an essential role in most observed properties. Light adsorption, electron paramagnetic resonance, inelastic neutron scattering and basic characteristics derived from magnetic and thermal measurements, ar...
Biological effects of electromagnetic fields
International Nuclear Information System (INIS)
Gabriel, C.
1996-01-01
The effects of electromagnetic (em) fields on biological systems were first observed and exploited well over a century ago. Concern over the possible health hazards of human exposure to such fields developed much later. It is now well known that excessive exposure to em fields may have in undesirable biological consequences. Standards were introduced to determine what constitute an excessive exposure and how to avoid it. Current concern over the issue of hazards stems mainly from recent epidemiological studies of exposed populations and also from the results of laboratory experiments in which whole animals are exposed in vivo or tissue and cell cultures exposed in vitro to low levels of irradiation. The underlying fear is the possibility of a causal relationship between chronic exposure to low field levels and some forms of cancer. So far the evidence does not add up to a firm statement on the matter. At present it is not known how and at what level, if at all, can these exposure be harmful to human health. This state of affair does not provide a basis for incorporating the outcome of such research in exposure standards. This paper will give a brief overview of the research in this field and how it is evaluated for the purpose of producing scientifically based standards. The emphasis will be on the physical, biophysical and biological mechanisms implicated in the interaction between em fields and biological systems. Understanding such mechanisms leads not only to a more accurate evaluation of their health implications but also to their optimal utilization, under controlled conditions, in biomedical applications. (author)
DEFF Research Database (Denmark)
Singh, Shobhana; Sørensen, Kim; Simonsen, Anders Schou
2017-01-01
Fin and tube heat exchangers are being used in several industrial applications by means of novel design and optimized performance. Improvements in geometric design may deliver energy efficient and cost-effective heat exchanger performance with reduced weight. In this paper, a systematic study...... on a cross-flow type fin and tube heat exchanger design for a waste heat recovery application is conducted. The geometric profile of the fin is characterized by a dimensionless design variable named aspect ratio which is parametrically varied to obtain different profiles. Two cases, case-I, and case......,000 using computational fluid dynamics. The numerical results obtained for the reference fin profile are verified with the experimental correlations. Dimensionless parameters such as Nusselt number, Euler number, and efficiency index are calculated to predict the overall performance of the heat exchanger...
Heat transfer enhancement for fin-tube heat exchanger using vortex generators
International Nuclear Information System (INIS)
Yoo, Seong Yeon; Park, Dong Seong; Chung, Min Ho; Lee, Sang Yun
2002-01-01
Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin-circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of fin-flat tube heat exchanger without vortex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger. At the same time, pressure losses for four types of heat exchanger is measured and compared
Casimir effect for interacting fields
International Nuclear Information System (INIS)
Kay, B.S.
1982-01-01
The author discusses some recent work on the Casimir effect: that is the problem of renormalizing Tsub(μγ) on locally-flat space-times. That is on space-times which, while topologically non-trivial are locally Minkowskian - with vanishing local curvature. The author has developed a systematic method for calculating this Casimir effect for interacting fields to arbitrary order in perturbation theory - and for arbitrary components of Tsub(μγ) which he describes in general and then illustrates it by describing first order perturbation theory calculations for a lambdaphi 4 theory for the two models: the cylinder space-time and the parallel plates. (Auth.)
FinFET memory cell improvements for higher immunity against single event upsets
Sajit, Ahmed Sattar
The 21st century is witnessing a tremendous demand for transistors. Life amenities have incorporated the transistor in every aspect of daily life, ranging from toys to rocket science. Day by day, scaling down the transistor is becoming an imperious necessity. However, it is not a straightforward process; instead, it faces overwhelming challenges. Due to these scaling changes, new technologies, such as FinFETs for example, have emerged as alternatives to the conventional bulk-CMOS technology. FinFET has more control over the channel, therefore, leakage current is reduced. FinFET could bridge the gap between silicon devices and non-silicon devices. The semiconductor industry is now incorporating FinFETs in systems and subsystems. For example, Intel has been using them in their newest processors, delivering potential saving powers and increased speeds to memory circuits. Memory sub-systems are considered a vital component in the digital era. In memory, few rows are read or written at a time, while the most rows are static; hence, reducing leakage current increases the performance. However, as a transistor shrinks, it becomes more vulnerable to the effects from radioactive particle strikes. If a particle hits a node in a memory cell, the content might flip; consequently, leading to corrupting stored data. Critical fields, such as medical and aerospace, where there are no second chances and cannot even afford to operate at 99.99% accuracy, has induced me to find a rigid circuit in a radiated working environment. This research focuses on a wide spectrum of memories such as 6T SRAM, 8T SRAM, and DICE memory cells using FinFET technology and finding the best platform in terms of Read and Write delay, susceptibility level of SNM, RSNM, leakage current, energy consumption, and Single Event Upsets (SEUs). This research has shown that the SEU tolerance that 6T and 8T FinFET SRAMs provide may not be acceptable in medical and aerospace applications where there is a very high
Fringing-field effects in acceleration columns
International Nuclear Information System (INIS)
Yavor, M.I.; Weick, H.; Wollnik, H.
1999-01-01
Fringing-field effects in acceleration columns are investigated, based on the fringing-field integral method. Transfer matrices at the effective boundaries of the acceleration column are obtained, as well as the general transfer matrix of the region separating two homogeneous electrostatic fields with different field strengths. The accuracy of the fringing-field integral method is investigated
Ambipolar phosphorene field effect transistor.
Das, Saptarshi; Demarteau, Marcel; Roelofs, Andreas
2014-11-25
In this article, we demonstrate enhanced electron and hole transport in few-layer phosphorene field effect transistors (FETs) using titanium as the source/drain contact electrode and 20 nm SiO2 as the back gate dielectric. The field effect mobility values were extracted to be ∼38 cm(2)/Vs for electrons and ∼172 cm(2)/Vs for the holes. On the basis of our experimental data, we also comprehensively discuss how the contact resistances arising due to the Schottky barriers at the source and the drain end effect the different regime of the device characteristics and ultimately limit the ON state performance. We also propose and implement a novel technique for extracting the transport gap as well as the Schottky barrier height at the metal-phosphorene contact interface from the ambipolar transfer characteristics of the phosphorene FETs. This robust technique is applicable to any ultrathin body semiconductor which demonstrates symmetric ambipolar conduction. Finally, we demonstrate a high gain, high noise margin, chemical doping free, and fully complementary logic inverter based on ambipolar phosphorene FETs.
Comprehensive study of flow and heat transfer at the surface of circular cooling fin
Mityakov, V. Yu; Grekov, M. A.; Gusakov, A. A.; Sapozhnikov, S. Z.; Seroshtanov, V. V.; Bashkatov, A. V.; Dymkin, A. N.; Pavlov, A. V.; Milto, O. A.; Kalmykov, K. S.
2017-11-01
For the first time is proposed to combine heat flux measurements with thermal imaging and PIV (particle image velocimetry) for a comprehensive study of flow and heat transfer at the surface of the circular cooling fin. The investigated hollow fin is heated from within with saturated water steam; meanwhile the isothermal external surface simulates one of the perfect fin. Flow and heat transfer at the surface of the solid fin of the same size and shape, made of titanium alloy is investigated in the same regimes. Gradient Heat Flux Sensors (GHFS) were installed at different places of the fin surface. Velocity field around a cylinder, temperature field at the surface of the fin and heat flux for each rated time were obtained. Comprehensive method including heat flux measurement, PIV and thermal imaging allow to study flow and heat transfer at the surface of the fin in real time regime. The possibility to study flow and heat transfer for non-isothermal fins is shown; it is allow to improve traditional calculation of the cooling fins.
Propulsion of a fin whale (Balaenoptera physalus): why the fin whale is a fast swimmer.
Bose, N; Lien, J
1989-07-22
Measurements of an immature fin whale (Balaenoptera physalus), which died as a result of entrapment in fishing gear near Frenchmans Cove, Newfoundland (47 degrees 9' N, 55 degrees 25' W), were made to obtain estimates of volume and surface area of the animal. Detailed measurements of the flukes, both planform and sections, were also obtained. A strip theory was developed to calculate the hydrodynamic performance of the whale's flukes as an oscillating propeller. This method is based on linear, two-dimensional, small-amplitude, unsteady hydrofoil theory with correction factors used to account for the effects of finite span and finite amplitude motion. These correction factors were developed from theoretical results of large-amplitude heaving motion and unsteady lifting-surface theory. A model that makes an estimate of the effects of viscous flow on propeller performance was superimposed on the potential-flow results. This model estimates the drag of the hydrofoil sections by assuming that the drag is similar to that of a hydrofoil section in steady flow. The performance characteristics of the flukes of the fin whale were estimated by using this method. The effects of the different correction factors, and of the frictional drag of the fluke sections, are emphasized. Frictional effects in particular were found to reduce the hydrodynamic efficiency of the flukes significantly. The results are discussed and compared with the known characteristics of fin-whale swimming.
UOP FIN 571 Final Exam Guide New
ADMIN
2018-01-01
UOP FIN 571 Final Exam Guide New Check this A+ tutorial guideline at http://www.fin571assignment.com/fin-571-uop/fin-571-final-exam-guide -latest For more classes visit http://www.fin571assignment.com Question 1 The underlying assumption of the dividend growth model is that a stock is worth: A. An amount computed as the next annual dividend divided by the required rate of return. B. An amount computed as the next annual dividend divided by the ma...
Numerical simulation of a plate-fin heat exchanger with offset fins using porous media approach
Juan, Du; Hai-Tao, Zhao
2018-03-01
In this paper, the study was focused on a double flow plate-fin heat exchanger (PFHE) whose heat transfer element was offset staggered fin. Numerical simulations have been carried out to investigate the thermodynamic characteristics of a full-size PFHE via the porous media approach. Based on the numerical model, the effects of the dynamic viscosity and the locations of the inlet and outlet tubes on flow distribution and pressure drop of the PFHE were studied. The results showed that flow distribution of the PFHE was improved by increasing the dynamic viscosity. Therefore, the relationship between flow distribution and pressure drop was analyzed under various inlet velocity, and a correlation among flow distribution, pressure drop, and Reynolds number was derived. Finally, the middle-based strategy was proposed and numerically verified to improve flow distribution of the PFHE.
DEFF Research Database (Denmark)
Svendsen, Jon Christian; Banet, Amanda I.; Christensen, Rune Haubo Bojesen
2013-01-01
by the total body mass. Results showed that the metabolic rate increased curvilinearly with swimming speed. The slope of the relationship was used as an index of swimming cost. There was no evidence that reproductive traits correlated with swimming cost, MO2std or Ucrit. In contrast, data revealed strong...... swimming and pectoral fin movement over a wide speed range, presumably to support swimming stability and control, is an inefficient swimming behaviour. Finally, transition to burst-assisted swimming was associated with an increase in aerobic metabolic rate. Our study highlights factors other than swimming...
CFD Simulations of a Finned Projectile with Microflaps for Flow Control
Directory of Open Access Journals (Sweden)
Jubaraj Sahu
2017-01-01
Full Text Available This research describes a computational study undertaken to determine the effect of a flow control mechanism and its associated aerodynamics for a finned projectile. The flow control system consists of small microflaps located between the rear fins of the projectile. These small microflaps alter the flow field in the aft finned region of the projectile, create asymmetric pressure distributions, and thus produce aerodynamic control forces and moments. A number of different geometric parameters, microflap locations, and the number of microflaps were varied in an attempt to maximize the control authority generated by the flaps. Steady-state Navier-Stokes computations were performed to obtain the control aerodynamic forces and moments associated with the microflaps. These results were used to optimize the control authority at a supersonic speed, M=2.5. Computed results showed not only the microflaps to be effective at this speed, but also configurations with 6 and 8 microflaps were found to generate 25%–50% more control force than a baseline 4-flap configuration. These results led to a new optimized 8-flap configuration that was further investigated for a range of Mach numbers from M=0.8 to 5.0 and was found to be a viable configuration effective in providing control at all of these speeds.
Electromagnetic field effects in explosives
Tasker, Douglas
2009-06-01
Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: measurements of conductivity; enhancement of performance; and control of initiation and growth of reaction. Hayes...()^1 showed a strong correlation of peak electrical conductivity with carbon content of the detonation products. Ershov.......^2 linked detailed electrical conductivity measurements with reaction kinetics and this work was extended to enhance detonation performance electrically;...^3 for this, electrical power densities of the order of 100 TW/m^2 of explosive surface normal to the detonation front were required. However, small electrical powers are required to affect the initiation and growth of reaction.......^4,5 A continuation of this work will be reported. LA-UR 09-00873 .^1 B. Hayes, Procs. of 4th Symposium (International) on Detonation (1965), p. 595. ^2 A. Ershov, P. Zubkov, and L. Luk'yanchikov, Combustion, Explosion, and Shock Waves 10, 776-782 (1974). ^3 M. Cowperthwaite, Procs. 9th Detonation Symposium (1989), p. 388-395. ^4 M. A. Cook and T. Z. Gwyther, ``Influence of Electric Fields on Shock to Detonation Transition,'' (1965). ^5 D. Salisbury, R. Winter, and L. Biddle, Procs. of the APS Topical Conference on Shock Compression of Condensed Matter (2005) p. 1010-1013.
Collector Efficiency in Downward-Type Internal-Recycle Solar Air Heaters with Attached Fins
Directory of Open Access Journals (Sweden)
Chii-Dong Ho
2013-10-01
Full Text Available The internal-recycle operation effect on collector efficiency in downward-type rectangular solar air heaters with attached fins is theoretically investigated. It is found that considerable collector efficiency is obtainable if the collector has attached fins and the operation is carried out with internal recycling. The recycling operation increases the fluid velocity to decrease the heat transfer resistance, compensating for the undesirable effect of decreasing the heat transfer driving force (temperature difference due to remixing. The attached fins provide an enlarged heat transfer area. The order of performance in a device of same size is: double pass with recycle and fins > double pass with recycle but without fins > single pass without recycle and fins.
International Nuclear Information System (INIS)
Joybari, Mahmood Mastani; Haghighat, Fariborz; Seddegh, Saeid; Al-Abidi, Abduljalil A.
2017-01-01
Highlights: • CFD simulation of a finned triplex tube heat exchanger with PCM under simultaneous charging and discharging. • Developed fin configurations for SCD, compatible with natural convection. • More fins enhanced the heat transfer as long as natural convection was not suppressed. • Longer fins enhanced the heat transfer as long as natural convection was not suppressed. • The effect of fin thickness was negligible, similar to non-SCD conditions. - Abstract: Due to the inherent intermittency of renewable energy sources such as solar, latent heat thermal energy storage in phase change materials (PCMs) has received considerable attention. Among several techniques to enhance PCMs’ thermal conductivity, the majority of studies have focused on fin integration due to its simplicity, ease of manufacturing, and low cost. In this study, utilization of extended surfaces (by longitudinal fins) was investigated by development of a numerical model to study the performance of a triplex tube heat exchanger (TTHX) equipped with a PCM under simultaneous charging and discharging (SCD). Governing equations were developed and numerically solved using ANSYS Fluent v16.2. Three conventional fin geometries and six developed fin configurations were compared based on the temperature, liquid fraction, and natural convection behavior under both SCD and non-SCD conditions. The intensity of natural convection was investigated for different fins for the inside heating/outside cooling scenario based on the solid–liquid interface evolution over time. The results indicated that since the buoyancy forces induce upward melted PCM motion, the inner hot tube requires fins on its lower half, while the outer cold one should be extended from its upper half. It was concluded that the case with 3 hot tube fins and 1 cold tube fin is most compatible with natural convection and provides the best performance under SCD conditions.
Renormalons in effective field theories
International Nuclear Information System (INIS)
Luke, M.; Manohar, A.V.; Savage, M.J.
1995-01-01
We investigate the high-order behavior of perturbative matching conditions in effective field theories. These series are typically badly divergent, and are not Borel summable due to infrared and ultraviolet renormalons which introduce ambiguities in defining the sum of the series. We argue that, when treated consistently, there is no physical significance to these ambiguities. Although nonperturbative matrix elements and matching conditions are in general ambiguous, the ambiguity in any physical observable is always higher order in 1/M than the theory has been defined. We discuss the implications for the recently noticed infrared renormalon in the pole mass of a heavy quark. We show that a ratio of form factors in exclusive Λ b decays (which is related to the pole mass) is free from renormalon ambiguities regardless of the mass used as the expansion parameter of heavy quark effective theory. The renormalon ambiguities also cancel in inclusive heavy hadron decays. Finally, we demonstrate the cancellation of renormalons in a four-Fermi effective theory obtained by integrating out a heavy colored scalar
Numerical Analysis of Aerodynamic Characteristics of the Finned Surfaces with Cross-inclined Fins
Directory of Open Access Journals (Sweden)
Lagutin A. E.
2016-12-01
Full Text Available This paper presents results of numerical research and analyses air-side hydraulic performance of tube bundles with cross inclined fins. The numerical simulation of the fin-tube heat exchanger was performed using the Comsol Femlab software. The results of modeling show the influence of fin inclination angle and tube pitch on hydraulic characteristics of finned surfaces. A series of numerical tests were carried out for tube bundles with different inclination angles (γ =900, 850, 650, 60, the fin pitch u=4 mm. The results indicate that tube bundles with cross inclined fins can significantly enhance the average integral value of the air flow rate in channel between fins in comparison with conventional straight fins. Aerodynamic processes on both sides of modificated channel between inclined fins were analyzed. The verification procedures for received results of numerical modeling with experimental data were performed.
Gene expression profiles of fin regeneration in loach (Paramisgurnus dabryanu).
Li, Li; He, Jingya; Wang, Linlin; Chen, Weihua; Chang, Zhongjie
2017-11-01
Teleost fins can regenerate accurate position-matched structure and function after amputation. However, we still lack systematic transcriptional profiling and methodologies to understand the molecular basis of fin regeneration. After histological analysis, we established a suppression subtraction hybridization library containing 418 distinct sequences expressed differentially during the process of blastema formation and differentiation in caudal fin regeneration. Genome ontology and comparative analysis of differential distribution of our data and the reference zebrafish genome showed notable subcategories, including multi-organism processes, response to stimuli, extracellular matrix, antioxidant activity, and cell junction function. KEGG pathway analysis allowed the effective identification of relevant genes in those pathways involved in tissue morphogenesis and regeneration, including tight junction, cell adhesion molecules, mTOR and Jak-STAT signaling pathway. From relevant function subcategories and signaling pathways, 78 clones were examined for further Southern-blot hybridization. Then, 17 genes were chosen and characterized using semi-quantitative PCR. Then 4 candidate genes were identified, including F11r, Mmp9, Agr2 and one without a match to any database. After real-time quantitative PCR, the results showed obvious expression changes in different periods of caudal fin regeneration. We can assume that the 4 candidates, likely valuable genes associated with fin regeneration, deserve additional attention. Thus, our study demonstrated how to investigate the transcript profiles with an emphasis on bioinformatics intervention and how to identify potential genes related to fin regeneration processes. The results also provide a foundation or knowledge for further research into genes and molecular mechanisms of fin regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.
A biorobotic model of the sunfish pectoral fin for investigations of fin sensorimotor control
International Nuclear Information System (INIS)
Phelan, Chris; Tangorra, James; Lauder, George; Hale, Melina
2010-01-01
A comprehensive understanding of the control of flexible fins is fundamental to engineering underwater vehicles that perform like fish, since it is the fins that produce forces which control the fish's motion. However, little is known about the fin's sensory system or about how fish use sensory information to modulate the fin and to control propulsive forces. As part of a research program that involves neuromechanical and behavioral studies of the sunfish pectoral fin, a biorobotic model of the pectoral fin and of the fin's sensorimotor system was developed and used to investigate relationships between sensory information, fin ray motions and propulsive forces. This robotic fin is able to generate the motions and forces of the biological fin during steady swimming and turn maneuvers, and is instrumented with a relatively small set of sensors that represent the biological lateral line and receptors hypothesized to exist intrinsic to the pectoral fin. Results support the idea that fin ray curvature, and the pressure in the flow along the wall that represents the fish body, capture time-varying characteristics of the magnitude and direction of the force created throughout a fin beat. However, none of the sensor modalities alone are sufficient to predict the propulsive force. Knowledge of the time-varying force vector with sufficient detail for the closed-loop control of fin ray motion will result from the integration of characteristics of many sensor modalities.
A biorobotic model of the sunfish pectoral fin for investigations of fin sensorimotor control
Energy Technology Data Exchange (ETDEWEB)
Phelan, Chris; Tangorra, James [Department of Mechanical Engineering, Drexel University, Philadelphia, PA 19104 (United States); Lauder, George [Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138 (United States); Hale, Melina, E-mail: tangorra@coe.drexel.ed [Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637 (United States)
2010-09-15
A comprehensive understanding of the control of flexible fins is fundamental to engineering underwater vehicles that perform like fish, since it is the fins that produce forces which control the fish's motion. However, little is known about the fin's sensory system or about how fish use sensory information to modulate the fin and to control propulsive forces. As part of a research program that involves neuromechanical and behavioral studies of the sunfish pectoral fin, a biorobotic model of the pectoral fin and of the fin's sensorimotor system was developed and used to investigate relationships between sensory information, fin ray motions and propulsive forces. This robotic fin is able to generate the motions and forces of the biological fin during steady swimming and turn maneuvers, and is instrumented with a relatively small set of sensors that represent the biological lateral line and receptors hypothesized to exist intrinsic to the pectoral fin. Results support the idea that fin ray curvature, and the pressure in the flow along the wall that represents the fish body, capture time-varying characteristics of the magnitude and direction of the force created throughout a fin beat. However, none of the sensor modalities alone are sufficient to predict the propulsive force. Knowledge of the time-varying force vector with sufficient detail for the closed-loop control of fin ray motion will result from the integration of characteristics of many sensor modalities.
Numerical simulation of natural convection in annuli with internal fins
International Nuclear Information System (INIS)
Ha, Man Yeong; Kim, Joo Goo
2004-01-01
The solution for the natural convection in internally finned horizontal annuli is obtained by using a numerical simulation of time-dependent and two-dimensional governing equations. The fins existing in annuli influence the flow pattern, temperature distribution and heat transfer rate. The variations of the fin configuration suppress or accelerate the free convective effects compared to those of the smooth tubes. The effects of fin configuration, number of fins and ratio of annulus gap width to the inner cylinder radius on the fluid flow and heat transfer in annuli are demonstrated by the distribution of the velocity vector, isotherms and streamlines. The governing equations are solved efficiently by using a parallel implementation. The technique is adopted for reduction of the computation cost. The parallelization is performed with the domain decomposition technique and message passing between sub-domains on the basis of the MPI library. The results from parallel computation reveal in consistency with those of the sequential program. Moreover, the speed-up ratio shows linearity with the number of processor
International Nuclear Information System (INIS)
Mosayebidorcheh, S.; Hatami, M.; Mosayebidorcheh, T.; Ganji, D.D.
2015-01-01
Graphical abstract: Temperature distribution along the fins obtained for different material and section shapes. - Highlights: • The steady state thermal analysis of longitudinal fins is presented. • The properties of fins are assumed as a function of temperature. • The rectangular, convex, triangular and concave profiles are considered for fin shape. • Least Square Method (LSM) is used for solving the governing equation. • Thermal optimization of fin geometry is presented based on maximum value of heat transfer. - Abstract: The main aim of this study is to obtain an optimum design point for fin geometry, so that heat transfer rate reaches to a maximum value in a constant fin volume. Effect of fin thicknesses ratio (τ), convection coefficient power index (m), profile power parameter (n), base thickness (δ) and fin material are evaluated in the fin optimization point for heat transfer rate, effectiveness and efficiency. It’s assumed that the thickness of longitudinal fins varies with length in a special profile, so four different shapes (rectangular, convex, triangular and concave) are considered. In present study, temperature-dependent heat generation, convection and radiation are considered and an analytical technique based on the least square method is proposed for the solution methodology. Results show that by increasing the fin thicknesses ratio, maximum heat transfer rate decreases and Copper among the other materials has the most heat transfer rate in a constant volume.
Modeling quantization effects in field effect transistors
International Nuclear Information System (INIS)
Troger, C.
2001-06-01
Numerical simulation in the field of semiconductor device development advanced to a valuable, cost-effective and flexible facility. The most widely used simulators are based on classical models, as they need to satisfy time and memory constraints. To improve the performance of field effect transistors such as MOSFETs and HEMTs these devices are continuously scaled down in their dimensions. Consequently the characteristics of such devices are getting more and more determined by quantum mechanical effects arising from strong transversal fields in the channel. In this work an approach based on a two-dimensional electron gas is used to describe the confinement of the carriers. Quantization is considered in one direction only. For the derivation of a one-dimensional Schroedinger equation in the effective mass framework a non-parabolic correction for the energy dispersion due to Kane is included. For each subband a non-parabolic dispersion relation characterized by subband masses and subband non-parabolicity coefficients is introduced and the parameters are calculated via perturbation theory. The method described in this work has been implemented in a software tool that performs a self-consistent solution of Schroedinger- and Poisson-equation for a one-dimensional cut through a MOS structure or heterostructure. The calculation of the carrier densities is performed assuming Fermi-Dirac statistics. In the case of a MOS structure a metal or a polysilicon gate is considered and an arbitrary gate bulk voltage can be applied. This allows investigating quantum mechanical effects in capacity calculations, to compare the simulated data with measured CV curves and to evaluate the results obtained with a quantum mechanical correction for the classical electron density. The behavior of the defined subband parameters is compared to the value of the mass and the non-parabolicity coefficient from the model due to Kane. Finally the presented characterization of the subbands is applied
Heat transfer, erosion and acid condensation characteristics for novel H-type finned oval tube
International Nuclear Information System (INIS)
Wang, Y; Zhao, X; Tang, G
2015-01-01
Low efficiency of heat transfer, acid corrosion and erosion of economizers affect the economy and security in coal-fired power plants significantly. The H-type finned oval tube is proposed to alleviate these problems. Based on the H-type finned oval tube, we investigated three novel types of fins, including bleeding dimples, longitudinal vortex generators (LVGs), and compound dimple-LVG. We considered the three aspects together, and obtained the heat transfer, acid condensation rate and erosion loss. The results show that the tube bank with the new structured fins can improve the performance on the three aspects, and the compound dimple-LVG performs the highest comprehensive effect. (paper)
Plate-fin array cooling using a finger-like piezoelectric fan
International Nuclear Information System (INIS)
Shyu, Jin-Cherng; Syu, Jhih-Zong
2014-01-01
In this study, the heat transfer of a plate-fin array cooled by a vibrating finger-like piezoelectric fan comprising four flexible rectangular blades was investigated. The results indicated that the heat transfer enhancement of the fin array cooled by a vibrating piezoelectric fan at x/L = 0.5 and H = 5 mm ranged between 1.5 and 3.3, regardless of the fin array orientation. However, the heat transfer enhancement caused by a fan being placed at either edge of the fin array yielded a dissimilar result between both of the fin array orientations because of the superimposed effects of the boundary layer development and the air flow induced by the fan. This dissimilarity was especially noticeable when the piezoelectric fan was composed of aluminum blades to accommodate the moderate Reynolds number. In addition to the Reynolds number, the ratio of the fan blade vibration envelope to the source area determined the Nu number of the piezoelectric fan-cooled fin array. This design enhanced the fin array heat transfer and reduced cooler volume by embedding multiple vibrating beams into the fin array. -- Highlights: • Heat transfer of a piezoelectric fan-cooled plate-fin array was investigated. • Effects of fan position, fan height and fan material on heat transfer were examined. • Similar heat transfer enhancement range was shown for both fin array orientations. • Fin heat transfer with a running Al fan at x = 0 was higher than that at x = 0.25L. • Besides fan Reynolds number, the area ratio also determined Nu of the fin array
Institute of Scientific and Technical Information of China (English)
孙国峰[1,2
2017-01-01
本文分析FinTech（金融科技）监管的必要性，并介绍了FinTech监管的国际经验，在此基础上提出了我国可以探索将人工智能应用于金融监管，即以RegTech（监管科技）应对FinTech的建议。
Organic tunnel field effect transistors
Tietze, Max Lutz
2017-06-29
Various examples are provided for organic tunnel field effect transistors (OTFET), and methods thereof. In one example, an OTFET includes a first intrinsic layer (i-layer) of organic semiconductor material disposed over a gate insulating layer; source (or drain) contact stacks disposed on portions of the first i-layer; a second i-layer of organic semiconductor material disposed on the first i-layer surrounding the source (or drain) contact stacks; an n-doped organic semiconductor layer disposed on the second i-layer; and a drain (or source) contact layer disposed on the n-doped organic semiconductor layer. The source (or drain) contact stacks can include a p-doped injection layer, a source (or drain) contact layer, and a contact insulating layer. In another example, a method includes disposing a first i-layer over a gate insulating layer; forming source or drain contact stacks; and disposing a second i-layer, an n-doped organic semiconductor layer, and a drain or source contact.
Frost behavior of a fin surface with temperature variation along heat exchanger fins
International Nuclear Information System (INIS)
Kim, Jung Soo; Kim, Min Soo; Lee, Kwan Soo; Kim, Ook Joong
2007-01-01
This paper presents a mathematical model for predicting the frost behavior formed on heat exchanger fins, considering fin heat conduction under frosting condition. The model is composed of air-side, the frost layer, and fin region, and they are coupled to the frost layer. The frost behavior is more accurately predicted with fin heat conduction considered (Case A) than with a constant fin surface temperature assumed (Case B). The results indicate that the frost thickness and heat transfer rate for Case B are over-predicted in most regions of the fin, as compared to those for Case A. Also, for Case A, the maximum frost thickness varies little with the fin length variations, and the extension of the fin length over 30 mm contributes insignificantly to heat transfer
Application of decomposition method and inverse prediction of parameters in a moving fin
International Nuclear Information System (INIS)
Singla, Rohit K.; Das, Ranjan
2014-01-01
Highlights: • Adomian decomposition is used to study a moving fin. • Effects of different parameters on the temperature and efficiency are studied. • Binary-coded GA is used to solve an inverse problem. • Sensitivity analyses of important parameters are carried out. • Measurement error up to 8% is found to be tolerable. - Abstract: The application of the Adomian decomposition method (ADM) is extended to study a conductive–convective and radiating moving fin having variable thermal conductivity. Next, through an inverse approach, ADM in conjunction with a binary-coded genetic algorithm (GA) is also applied for estimation of unknown properties in order to satisfy a given temperature distribution. ADM being one of the widely-used numerical methods for solving non-linear equations, the required temperature field has been obtained using a forward method involving ADM. In the forward problem, the temperature field and efficiency are investigated for various parameters such as convection–conduction parameter, radiation–conduction parameter, Peclet number, convection sink temperature, radiation sink temperature, and dimensionless thermal conductivity. Additionally, in the inverse problem, the effect of random measurement errors, iterative variation of parameters, sensitivity coefficients of unknown parameters are investigated. The performance of GA is compared with few other optimization methods as well as with different temperature measurement points. It is found from the present study that the results obtained from ADM are in good agreement with the results of the differential transformation method available in the literature. It is also observed that for satisfactory reconstruction of the temperature field, the measurement error should be within 8% and the temperature field is strongly dependent on the speed than thermal parameters of the moving fin
Issues of effective field theories with resonances
International Nuclear Information System (INIS)
Gegelia, J.; Japaridze, G.
2014-01-01
We address some issues of renormalization and symmetries of effective field theories with unstable particles - resonances. We also calculate anomalous contributions in the divergence of the singlet axial current in an effective field theory of massive SU(N) Yang-Mills fields interacting with fermions and discuss their possible relevance to the strong CP problem. (author)
Computational Fluid Dynamic (CFD) Analysis of a Generic Missile With Grid Fins
National Research Council Canada - National Science Library
DeSpirito, James
2000-01-01
This report presents the results of a study demonstrating an approach for using viscous computational fluid dynamic simulations to calculate the flow field and aerodynamic coefficients for a missile with grid fin...
Directory of Open Access Journals (Sweden)
‘Aqilah binti Abdul Tahrim
2015-01-01
Full Text Available The scaling process of the conventional 2D-planar metal-oxide semiconductor field-effect transistor (MOSFET is now approaching its limit as technology has reached below 20 nm process technology. A new nonplanar device architecture called FinFET was invented to overcome the problem by allowing transistors to be scaled down into sub-20 nm region. In this work, the FinFET structure is implemented in 1-bit full adder transistors to investigate its performance and energy efficiency in the subthreshold region for cell designs of Complementary MOS (CMOS, Complementary Pass-Transistor Logic (CPL, Transmission Gate (TG, and Hybrid CMOS (HCMOS. The performance of 1-bit FinFET-based full adder in 16-nm technology is benchmarked against conventional MOSFET-based full adder. The Predictive Technology Model (PTM and Berkeley Shortchannel IGFET Model-Common Multi-Gate (BSIM-CMG 16 nm low power libraries are used. Propagation delay, average power dissipation, power-delay-product (PDP, and energy-delay-product (EDP are analysed based on all four types of full adder cell designs of both FETs. The 1-bit FinFET-based full adder shows a great reduction in all four metric performances. A reduction in propagation delay, PDP, and EDP is evident in the 1-bit FinFET-based full adder of CPL, giving the best overall performance due to its high-speed performance and good current driving capabilities.
Flow and Mass Transfer Performance in Short Pin-Fin Channels with Different Fin Shapes
Goldstein, R. J.; Chen, S. B.
1998-01-01
The mass transfer (analogous to heat transfer) and pressure loss characteristics of staggered short pin-fin arrays are investigated experimentally in the range of Reynolds number 3000 to 18,000 based on fin diameter and mean approach-flow velocity. Three different shapes of fins with aspect ratio of 2 are examined: one uniform-diameter circular fin (UDCF) and two stepped-diameter circular fins (SDCF1 and SDCF2). Flow visualization using oil-lampblack reveals complex flow characteristics assoc...
Relying on fin erosion to identify hatchery-reared brown trout in a Tennessee river
Meerbeek, Jonathan R.; Bettoli, Phillip William
2012-01-01
Hatchery-induced fin erosion can be used to identify recently stocked catchable-size brown trout Salmo trutta during annual surveys to qualitatively estimate contributions to a fishery. However, little is known about the longevity of this mark and its effectiveness as a short-term (≤ 1 year) mass-marking technique. We evaluated hatchery-induced pectoral fin erosion as a mass-marking technique for short-term stocking evaluations by stocking microtagged brown trout in a tailwater and repeatedly sampling those fish to observe and measure their pectoral fins. At Dale Hollow National Fish Hatchery, 99.1% (228 of 230) of microtagged brown trout in outdoor concrete raceways had eroded pectoral fins 1 d prior to stocking. Between 34 and 68 microtagged and 26-35 wild brown trout were collected during eight subsequent electrofishing samples. In a blind test based on visual examination of pectoral fins at up to 322 d poststocking, one observer correctly identified 91.7% to 100.0% (mean of 96.9%) of microtagged brown trout prior to checking for microtags. In the laboratory, pectoral fin length and width measurements were recorded to statistically compare the fin measurements of wild and microtagged hatchery brown trout. With only one exception, all pectoral fin measurements on each date averaged significantly larger for wild trout than for microtagged brown trout. Based on the number of pectoral fin measurements falling below 95% prediction intervals, 93.7% (148 of 158) of microtagged trout were correctly identified as hatchery fish based on regression models up to 160 d poststocking. Only 72.2% (70 of 97) of microtagged trout were identified correctly after 160 d based on pectoral fin measurements and the regression models. We concluded that visual examination of pectoral fin erosion was a very effective way to identify stocked brown trout for up to 322 d poststocking.
Atom-probe for FinFET dopant characterization
Energy Technology Data Exchange (ETDEWEB)
Kambham, A.K., E-mail: kambham@imec.be [K.U.Leuven, Instituut voor Kern-en Stralings fysika, Celestijnenlaan 200D, B-3001, Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Mody, J.; Gilbert, M.; Koelling, S.; Vandervorst, W. [K.U.Leuven, Instituut voor Kern-en Stralings fysika, Celestijnenlaan 200D, B-3001, Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)
2011-05-15
With the continuous shrinking of transistors and advent of new transistor architectures to keep in pace with Moore's law and ITRS goals, there is a rising interest in multigate 3D-devices like FinFETs where the channel is surrounded by gates on multiple surfaces. The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions of the device. As a result there is a need for new metrology approach/technique to characterize quantitatively the dopant distribution in these devices with nanometer precision in 3D. In recent years, atom probe tomography (APT) has shown its ability to analyze semiconductor and thin insulator materials effectively with sub-nm resolution in 3D. In this paper we will discuss the methodology used to study FinFET-based structures using APT. Whereas challenges and solutions for sample preparation linked to the limited fin dimensions already have been reported before, we report here an approach to prepare fin structures for APT, which based on their processing history (trenches filled with Si) are in principle invisible in FIB and SEM. Hence alternative solutions in locating and positioning them on the APT-tip are presented. We also report on the use of the atom probe results on FinFETs to understand the role of different dopant implantation angles (10{sup o} and 45{sup o}) when attempting conformal doping of FinFETs and provide a quantitative comparison with alternative approaches such as 1D secondary ion mass spectrometry (SIMS) and theoretical model values. -- Research highlights: {yields} This paper provides the information on how to characterize the FinFET devices using atom probe tomography (APT). {yields} Importance of this work is to assess the performance of these devices at different processing conditions by extracting the compositional profiles. {yields} The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions
Atom-probe for FinFET dopant characterization
International Nuclear Information System (INIS)
Kambham, A.K.; Mody, J.; Gilbert, M.; Koelling, S.; Vandervorst, W.
2011-01-01
With the continuous shrinking of transistors and advent of new transistor architectures to keep in pace with Moore's law and ITRS goals, there is a rising interest in multigate 3D-devices like FinFETs where the channel is surrounded by gates on multiple surfaces. The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions of the device. As a result there is a need for new metrology approach/technique to characterize quantitatively the dopant distribution in these devices with nanometer precision in 3D. In recent years, atom probe tomography (APT) has shown its ability to analyze semiconductor and thin insulator materials effectively with sub-nm resolution in 3D. In this paper we will discuss the methodology used to study FinFET-based structures using APT. Whereas challenges and solutions for sample preparation linked to the limited fin dimensions already have been reported before, we report here an approach to prepare fin structures for APT, which based on their processing history (trenches filled with Si) are in principle invisible in FIB and SEM. Hence alternative solutions in locating and positioning them on the APT-tip are presented. We also report on the use of the atom probe results on FinFETs to understand the role of different dopant implantation angles (10 o and 45 o ) when attempting conformal doping of FinFETs and provide a quantitative comparison with alternative approaches such as 1D secondary ion mass spectrometry (SIMS) and theoretical model values. -- Research highlights: → This paper provides the information on how to characterize the FinFET devices using atom probe tomography (APT). → Importance of this work is to assess the performance of these devices at different processing conditions by extracting the compositional profiles. → The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions. → In this publication we
International Nuclear Information System (INIS)
Syed, K.S.; Ishaq, Muhammad; Iqbal, Zafar; Hassan, Ahmad
2015-01-01
Highlights: • Variable fin tip angle significantly effect the velocity and temperature distribution. • Significant gain in the thermal performance with decrease in the friction factor. • Variable fin tip angle must be considered an important parameter in designing finned annulus. - Abstract: The analysis of fully developed laminar convective heat transfer in an innovate design of a finned double-pipe heat exchanger (DPHE) with longitudinal fins of variable thickness of the tip subjected to the constant heat transfer rate boundary conditions is investigated here. The tip thickness is controlled by the ratio of tip to base angles as a parameter whose values varying from 0 to 1 correspond to the fin shapes varying from the triangular to the rectangular cross-section. Upto the knowledge of the authors, this parameter is being introduced for the first time in the literature. Discontinuous Galerkin finite element method (DG-FEM) has been employed in the present work. The overall performance of the proposed DPHE has been investigated by considering the friction factor, the Nusselt number and the j-factor. Upto 178% gain in the Nusselt number and 89% gain in the j-factor have been achieved relative to the rectangular cross-section. Such gains relative to the triangular cross-section are respectively 9.5% and 19%. The results indicate that the newly introduced parameter the ratio of tip to base angles has proved to play significant role in the design of a double-pipe heat exchanger in reducing the cost, weight and frictional loss, in improving the heat transfer rate and making the exchanger energy-efficient. Therefore, it must be considered as an important design parameter for heat exchanger design
A Numerical Study of Natural Convection Heat Transfer in Fin Ribbed Radiator
Directory of Open Access Journals (Sweden)
Hua-Shu Dou
2015-01-01
Full Text Available This paper numerically investigates the thermal flow and heat transfer by natural convection in a cavity fixed with a fin array. The computational domain consists of both solid (copper and fluid (air areas. The finite volume method and the SIMPLE scheme are used to simulate the steady flow in the domain. Based on the numerical results, the energy gradient function K of the energy gradient theory is calculated. It is observed from contours of the temperature and energy gradient function that the position where thermal instability takes place correlates well with the region of large K values, which demonstrates that the energy gradient method reveals the physical mechanism of the flow instability. Furthermore, the effects of the fin height, the fin number, and the fin shape on the heat transfer rate are also investigated. It is found that the thermal performance of the fin array is determined by the combined effect of the fin space and fin height. It is also observed that the effect of fin shape on heat transfer is insignificant.
Effective theories of single field inflation when heavy fields matter
Achucarro, Ana; Hardeman, Sjoerd; Palma, Gonzalo A; Patil, Subodh P
2012-01-01
We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbat...
Waldrop, Thomas; Summerfelt, Steven T.; Mazik, Patricia M.; Good, Christopher
2018-01-01
Swimming exercise, typically measured in body-lengths per second (BL/s), and dissolved oxygen (DO), are important environmental variables in fish culture. While there is an obvious physiological association between these two parameters, their interaction has not been adequately studied in Atlantic salmon Salmo salar. Because exercise and DO are variables that can be easily manipulated in modern aquaculture systems, we sought to assess the impact of these parameters, alone and in combination, on the performance, health and welfare of juvenile Atlantic salmon. In our study, Atlantic salmon fry were stocked into 12 circular 0.5 m3 tanks in a flow-through system and exposed to either high (1.5–2 BL/s) or low (exercise and DO concentration on growth, feed conversion, survival and fin condition. By study's end, both increased swimming speed and higher DO were independently associated with a statistically significant increase in growth performance (p exercise and dissolved oxygen at saturation during Atlantic salmon early rearing can result in improved growth performance and a lower incidence of precocious parr.
Genetic effects of nonionizing electromagnetic fields
International Nuclear Information System (INIS)
Lai, Henry
2001-01-01
Due to the increased use of electricity and wireless communication devices, there is a concern on whether exposure to nonionizing electromagnetic fields (50/60 Hz fields and radiofrequency radiation) can lead to harmful health effects, particularly, genetic effects and cancer development. This presentation will review recent research on genetic effects of power line frequency and radiofrequency electromagnetic fields. Even though the mechanism of interaction is still unknown, there is increasing evidence that these electromagnetic fields at low intensities can cause genetic damage in cells. There is also evidence suggesting that the effects are caused by oxidative stress. (author)
Optimization of convective-radiative fins by using differential quadrature element method
International Nuclear Information System (INIS)
Malekzadeh, P.; Rahideh, H.; Karami, G.
2006-01-01
A first endeavor to exploit the differential quadrature element method (DQEM) as a simple, accurate and computationally efficient numerical tool for the shape optimization of convective-radiating extended surfaces or fins is made. The formulations are general so that the spatial and spatial-temperature dependent geometrical and thermal parameters can easily be implemented. The thermal conductivity of the fin is assumed to vary as a linear function of the temperature. The effects of a convective-radiative condition at the fin tip and effective convective condition at the fin base are considered. The optimization of fins with uniform and step cross-sections is investigated. The accuracy of the method is demonstrated by comparing its results with those generated by Adomian's decomposition technique, Taylor transformation technique and finite difference method. It is shown that, using few grid points, highly accurate results are obtained. Less computational effort of the method with respect to the finite difference method is shown
Bio-inspired flexible joints with passive feathering for robotic fish pectoral fins.
Behbahani, Sanaz Bazaz; Tan, Xiaobo
2016-05-04
In this paper a novel flexible joint is proposed for robotic fish pectoral fins, which enables a swimming behavior emulating the fin motions of many aquatic animals. In particular, the pectoral fin operates primarily in the rowing mode, while undergoing passive feathering during the recovery stroke to reduce hydrodynamic drag on the fin. The latter enables effective locomotion even with symmetric base actuation during power and recovery strokes. A dynamic model is developed to facilitate the understanding and design of the joint, where blade element theory is used to calculate the hydrodynamic forces on the pectoral fins, and the joint is modeled as a paired torsion spring and damper. Experimental results on a robotic fish prototype are presented to illustrate the effectiveness of the joint mechanism, validate the proposed model, and indicate the utility of the proposed model for the optimal design of joint depth and stiffness in achieving the trade-off between swimming speed and mechanical efficiency.
International Nuclear Information System (INIS)
Hatami, M.; Ganji, D.D.
2013-01-01
Graphical abstract: - Highlights: • LSM is an accurate technique for simulating heat transfer in circular porous fins. • Rectangular, convex, triangular and exponential variable sections are considered. • Radiation and convection from porous fin are considered. • Effects of material and geometry on heat transfer from fins are studied. - Abstract: In this study, heat transfer and temperature distribution equations for circular convective–radiative porous fins are presented. It’s assumed that the thickness of circular fins varies with radius so four different shapes, rectangular, convex, triangular and exponential, are considered. The heat transfer through porous media is simulated using passage velocity from the Darcy’s model. After deriving equation for each geometry, Least Square Method (LSM) and fourth order Runge–Kutta method (NUM) are applied for predicting the temperature distribution in the porous fins. The selected porous fin’s materials are Al, SiC, Cu and Si 3 N 4 . Results reveal that LSM has very effective and accurate in comparison with the numerical results. As a main outcome, Si 3 N 4 -exponential section fin has the maximum amount of transferred heat among other fins
Directory of Open Access Journals (Sweden)
Akemi Shibuya
2015-06-01
Full Text Available Synchronized bipedal movements of the pelvic fins provide propulsion (punting during displacement on the substrate in batoids with benthic locomotion. In skates (Rajidae this mechanism is mainly generated by the crural cartilages. Although lacking these anatomical structures, some stingray species show modifications of their pelvic fins to aid in benthic locomotion. This study describes the use of the pelvic fins for locomotory performance and body re-orientation in the freshwater stingray Potamotrygon motoro (Müller & Henle, 1841 during foraging. Pelvic fin movements of juvenile individuals of P. motoro were recorded in ventral view by a high-speed camera at 250-500 fields/s-1. Potamotrygon motoro presented synchronous, alternating and unilateral movements of the pelvic fins, similar to those reported in skates. Synchronous movements were employed during straightforward motion for pushing the body off the substrate as well as for strike feeding, whereas unilateral movements were used to maneuver the body to the right or left during both locomotion and prey capture. Alternating movements of the pelvic fins are similar to bipedal movements in terrestrial and semi-aquatic tetrapods. The pelvic fins showed coordinated movements during feeding even when stationary, indicating that they have an important function in maintaining body posture (station holding during prey capture and manipulation. The use of pelvic fins during prey stalking may be advantageous because it results in less substrate disturbance when compared to movements generated by pectoral fin undulation. The range of pelvic fin movements indicates more complex control and coordination of the pelvic radial muscles.
Towards accurate simulation of fringe field effects
International Nuclear Information System (INIS)
Berz, M.; Erdelyi, B.; Makino, K.
2001-01-01
In this paper, we study various fringe field effects. Previously, we showed the large impact that fringe fields can have on certain lattice scenarios of the proposed Neutrino Factory. Besides the linear design of the lattice, the effects depend strongly on the details of the field fall off. Various scenarios are compared. Furthermore, in the absence of detailed information, we study the effects for the LHC, a case where the fringe fields are known, and try to draw some conclusions for Neutrino Factory lattices
Effective Field Theory on Manifolds with Boundary
Albert, Benjamin I.
In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.
An introduction to effective field theory
International Nuclear Information System (INIS)
Donoghue, John F.
1999-01-01
In these lectures I describe the main ideas of effective field theory. These are first illustrated using QED and the linear sigma model as examples. Calculational techniques using both Feynman diagrams and dispersion relations are introduced. Within QCD, chiral perturbation theory is a complete effective field theory, and I give a guide to some calculations in the literature which illustrates key ideas. (author)
Biological effects of electromagnetic fields
African Journals Online (AJOL)
2012-02-28
Feb 28, 2012 ... radiofrequency emitting sources are radars, mobile phones and their base stations, ... and industrial applications, could have effect on living organisms. ...... Hazards of Electromagnetic Pollution (Msc Thesis). Department of ...
Fin shape thermal optimization using Bejan's constuctal theory
Lorenzini, Giulio
2011-01-01
The book contains research results obtained by applying Bejan's Constructal Theory to the study and therefore the optimization of fins, focusing on T-shaped and Y-shaped ones. Heat transfer from finned surfaces is an example of combined heat transfer natural or forced convection on the external parts of the fin, and conducting along the fin. Fin's heat exchange is rather complex, because of variation of both temperature along the fin and convective heat transfer coefficient. Furthermore possible presence of more fins invested by the same fluid flow has to be considered.Classical fin theory tri
Eddy current test of fin tubes for a heat exchanger
International Nuclear Information System (INIS)
KIm, Young Joo; Lee, Se Kyung; Chung, Min Hwa
1992-01-01
Eddy current probes were designed for the test of fin tubes. Fin tubes, often used for heat exchangers, have uneven outer and inner surfaces to enhance the heat emission. The surface roughness make it difficult to detect flaws employing eddy current test(ECT). In order to overcome the difficulties we performed two types of works, one is the delopment of ECT probes, and the other is the signal processing including fast Fourier transform and digital filtering. In the development of ECT probes, we adopted empirical design method. Our ECT probes for fin tubes are inside diameter type. And we are specially concerned about geometric features such as the widths of the coils composing an ECT probe. We fabricated four probes with various coil widths. Eddy current test was performed using those ECT probes on specimens with artificial flaws. After analyzing the output signals, we found that, in order for the effective testing, the width of a coil should be determined considering the pitch of the fins of a tube. And we also learned that the frequency filtering could improve the s/n ratio.
3-D NUMERICAL STUDY AND COMPARISON OF ECCENTRIC AND CONCENTRIC ANNULAR-FINNED TUBE HEAT EXCHANGERS
Directory of Open Access Journals (Sweden)
FAROUK TAHROUR
2015-11-01
Full Text Available The use of 3-D computational fluid dynamics (CFD is proposed to simulate the conjugate conduction-convection of heat transfer problems in eccentric annularfinned tube heat exchangers. The numerical simulation results allow us to evaluate the heat transfer coefficient over fin surfaces, the fin efficiency and the pressure drop. The aim of the present paper is to determine the optimum tube position in the circular fin that maximizes heat dissipation and minimizes pressure drop. In addition, this study analyzes the effects of fin spacing and fin tube diameter on heat transfer and flow characteristics for a range of Reynolds numbers, 4500≤Re≤22500. A satisfactory qualitative and quantitative agreement was obtained between the numerical predictions and the results published in the literature. For small fin spacings, the eccentric annular finned tube is more efficient than the concentric one. Among the cases examined, the average heat transfer coefficient of the eccentric annular-finned tube, for a tube shift St =12 mm and a Reynolds number Re = 9923, was 7.61% greater than that of the concentric one. This gain is associated with a 43.09% reduction in pressure drop.
Performance Analysis of a Self-Propelling Flat Plate Fin with Joint Compliance
Reddy, N. Srinivasa; Sen, Soumen; Pal, Sumit; Shome, Sankar Nath
2017-12-01
Fish fin muscles are compliant and they regulate the stiffness to suit different swimming conditions. This article attempts to understand the significance of presence of compliance in fin muscle with help of a flexible joint flat plate fin model. Blade element method is employed to model hydrodynamics and to compute the forces of interaction during motion of the plate within fluid. The dynamic model of self-propelling fin is developed through multi-body dynamics approach considering the hydrodynamic forces as external forces acting on the fin. The derived hydrodynamic model is validated with experiments on rigid flat plate fin. The effect of the joint stiffness and flapping frequency on the propulsion speed and efficiency is investigated through simulations using the derived and validated model. The propulsion efficiency is found to be highly influenced by the joint stiffness at a given flapping frequency. The fin attained maximum propulsion efficiency when the joint stiffness is tuned to a value at which flapping frequency matches near natural frequency of the fin. At this tuned joint stiffness and flapping frequency, the resulted Strouhal numbers are observed to fall within the optimum range (0.2 to 0.4) for maximized propulsion efficiency of flying birds and swimming aquatic animals reported in literature.
Heat transfer from rotating finned heat exchangers with different orientation angles
Energy Technology Data Exchange (ETDEWEB)
Tawfik, Adel Abdalla [Suez Canal University, Marine Engineering and Naval Architecture Department, Faculty of Engineering, Port Said (Egypt)
2010-03-15
The local and average heat transfer characteristics of spoke like fins that extend outward from a rotating shaft have been determined experimentally. The experiments encompassed a number of geometrical parameters, including the length and chord of the fins, the number of fins deployed around the circumference of the shaft and the orientation angles of the fin. The experiments cover a wider range of rotational speeds, which varies from 25 up to 2,000 rpm. Three wire heat flux sensors have been used in conjunction with a slip ring apparatus to evaluate the local and average heat transfer coefficients. The output results indicated that, the heat transfer transition on rotating fins occurs at Reynolds number lower than encountered on the stationary rectangular fins in crossflow. In general, with non zero incidence angle, the rotating system acts as a fan and creates axial air motion, which enhance the heat transfer rate. However, the effect of orientation angle reduces with increasing the rotational speed. The Nusselt number data are independent of the number of fins in the circumferential array at high rotational speed and are weakly dependent at low Reynolds numbers. To facilitate the use of the results for design, correlations were developed which represent the fin heat transfer coefficient as a continuous function of the investigated independent parameters. (orig.)
International Nuclear Information System (INIS)
Kim, Do Yun; NO, Hee Cheon; Kim, Ho Sik
2015-01-01
Highlights: • Optimization methodology for fin geometry on the steel containment is established. • Optimum spacing is 7 cm in PASS containment. • Optimum thickness is 0.9–1.8 cm when a fin height is 10–25 cm. • Optimal fin geometry is determined in given fin height by overall effectiveness correlation. • 13% of material volume and 43% of containment volume are reduced by using fins. - Abstracts: Heat removal capability through a steel containment is important in accident situations to preserve the integrity of a nuclear power plant which adopts a steel containment concept. A heat transfer rate will be enhanced by using fins on the external surface of the steel containment. The fins, however, cause to increase flow resistance and to deteriorate the heat transfer rate at the same time. Therefore, this study investigates an optimization methodology of large scale fin geometry for a vertical base where a natural convection flow regime is turbulent. Rectangular plate fins adopted in the steel containment of a Public Acceptable Simple SMR (PASS) is used as a reference. The heat transfer rate through the fins is obtained from CFD tools. In order to optimize fin geometry, an overall effectiveness concept is introduced as a fin performance parameter. The optimizing procedure is starting from finding optimum spacing. Then, optimum thickness is calculated and finally optimal fin geometry is suggested. Scale analysis is conducted to show the existence of an optimum spacing which turns out to be 7 cm in case of PASS. Optimum thickness is obtained by the overall effectiveness correlation, which is derived from a total heat transfer coefficient correlation. The total heat transfer coefficient correlation of a vertical fin array is suggested considering both of natural convection and radiation. However, the optimum thickness is changed as a fin height varies. Therefore, optimal fin geometry is obtained as a function of a fin height. With the assumption that the heat
Directory of Open Access Journals (Sweden)
Cihat Arslantürk
2016-08-01
Full Text Available The performance of pin fins transferring heat by convection and radiation and having variable thermal conductivity, variable emissivity and variable heat transfer coefficient was investigated in the present paper. Nondimensionalizing the fin equation, the problem parameters which affect the fin performance were obtained. Dimensionless nonlinear fin equation was solved with the variation of parameters method, which is quite new in the solution of nonlinear heat transfer problems. The solution of variation of parameters method was compared with known analytical solutions and some numerical solution. The comparisons showed that the solutions are seen to be perfectly compatible. The effects of problem parameters were investigated on the heat transfer rate and fin efficiency and results were presented graphically.
Determination of optimum fin profile for a zero-G capillary drained condenser
Mccormick, John A.; Valenzuela, Javier A.; Choudhury, Dipanker
1990-01-01
This paper presents the analytical formulation and numerical results for heat transfer in a high heat flux condenser that relies on capillary flow along shaped fins (Gregorig surfaces) and a drainage network embedded in the condenser walls. Results are shown for a variety of fin profile shapes in order to show the geometric trade-offs involved in seeking a maximum effective heat transfer coefficient for the fin. Predictions of the model show excellent agreement with previously reported measurements for steam. Based on this work, a profile has been selected for a 2 kW ammonia condenser currently under development for use in space. In that design the fin half width is 0.5 mm and the model predicts a heat transfer coefficient referred to the base of the fin of 9 W/sq cm deg C for a heat flux of 10/W sq cm at the base.
International Nuclear Information System (INIS)
Sökmen, Kemal Furkan; Yürüklü, Emrah; Yamankaradeniz, Nurettin
2016-01-01
Highlights: • In the study, cooling of LED headlamps in automotive is investigated. • The study is based on free convection cooling of LED module. • Besides free convection, Monte Carlo model is used as radiation model as well. • A new algorithm is presented for designing optimum fin structure. • Suggested algorithm for optimum design is verified by various simulations. - Abstract: In this study, the effects of fin design, fin material, and free and forced convection on junction temperature in automotive headlamp cooling applications of LED lights are researched by using ANSYS CFX 14 software. Furthermore a new methodology is presented for defining the optimum cylindrical fin structure within the given limits. For measuring the performance of methodology, analyses are carried out for various ambient temperatures (25 °C, 50 °C and 80 °C) and different LED power dissipations (0.5 W, 0.75 W, 1 W and 1.25 W). Then, analyses are repeated at different heat transfer coefficients and different fin materials in order to calculate LED junction temperature in order to see if the fin structure proposed by the methodology is appropriate for staying below the given safety temperature limit. As a result, the suggested method has always proposed proper fin structures with optimum characteristics for given LED designs. As another result, for safe junction temperature ranges, it is seen that for all LED power dissipations, adding aluminum or copper plate behind the printed circuit board at low ambient temperatures is sufficient. Also, as the ambient temperature increases, especially in high powered LED lights, addition of aluminum is not sufficient and fin usage becomes essential. High heat transfer coefficient and using copper fin affect the junction temperature positively.
International Nuclear Information System (INIS)
Aris, M.S.; McGlen, R.; Owen, I.; Sutcliffe, C.J.
2011-01-01
Forced air convection heat pipe cooling systems play an essential role in the thermal management of electronic and power electronic devices such as microprocessors and IGBT's (Integrated Gate Bipolar Transistors). With increasing heat dissipation from these devices, novel methods of improving the thermal performance of fin stacks attached to the heat pipe condenser section are required. The current work investigates the use of a wing type surface protrusions in the form of 3-D delta wing tabs adhered to the fin surface, thin wings punched-out of the fin material and TiNi shape memory alloy delta wings which changed their angles of attack based on the fin surface temperature. The longitudinal vortices generated from the wing designs induce secondary mixing of the cooler free stream air entering the fin stack with the warmer fluid close to the fin surfaces. The change in angle of the attack of the active delta wings provide heat transfer enhancement while managing flow pressure losses across the fin stack. A heat transfer enhancement of 37% compared to a plain fin stack was obtained from the 3-D tabs in a staggered arrangement. The punched-out delta wings in the staggered and inline arrangements provided enhancements of 30% and 26% respectively. Enhancements from the active delta wings were lower at 16%. However, as these devices reduce the pressure drop through the fin stack by approximately 19% in the de-activate position, over the activated position, a reduction in fan operating cost may be achieved for systems operating with inlet air temperatures below the maximum inlet temperature specification for the device. CFD analysis was also carried out to provide additional detail of the local heat transfer enhancement effects. The CFD results corresponded well with previously published reports and were consistent with the experimental findings. - Highlights: → Heat transfer enhancements of heat pipe fin stacks was successfully achieved using fixed and active delta
Performance investigation of an innovative offset strip fin arrays in compact heat exchangers
International Nuclear Information System (INIS)
Peng, Hao; Ling, Xiang; Li, Juan
2014-01-01
Highlights: • The effect of fin pitch, length and bending distance on thermal performance were presented. • The corresponding Re C values at the j and f slope changes are in the range of 2000–2100. • The numerical results showed a good agreement with the experimental data. • Local high Nu values near the channel inlet, decreasing through the flow directions. - Abstract: Experimental and numerical studies on the flow and heat transfer characteristics for an innovative offset strip fins compact heat exchangers were performed. First, five fin schemes were investigated with various air flow velocities and a constant inlet steam pressure by experiments. The Reynolds number ranged from 500 to 5000 at the air side. The experimental results indicated that the fin pitch (P f ), fin length (L f ) and fin bending distance (C f ) have a significant influence on thermal performance of fins. The Colburn factor j, friction factor f and ‘point of transition’ were calculated from the experimental data. Then, the thermal–hydraulic performances of the novel offset strip fins were analyzed numerically. The simulation results obtained are in agreement with experimental data. Based on these simulations, the maximum values for local Nu number are at the channel inlet which is due to the thermal entrance effect. The longitudinal vortexes near the fin region will increase velocity gradient and reduce the thickness of boundary layer to improve heat transfer. The main conclusion draws from this work will be helpful for future development and design of a high-efficiency heat exchangers involving offset strip fin structures
Field emission current from a junction field-effect transistor
International Nuclear Information System (INIS)
Monshipouri, Mahta; Abdi, Yaser
2015-01-01
Fabrication of a titanium dioxide/carbon nanotube (TiO 2 /CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO 2 nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO 2 /CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO 2 /CNT hetero-structure is also investigated, and well modeled
Biological Effects of Electromagnetic Fields
2006-11-27
Warning stimuli, as well as learning material, i.e. the numbers to recall, were presented binaurally via earphones at an intensity of 65dB sound...ensued in a remarkable increase in the yield of ES-derived spontaneously beating cardiomyocytes. Figure 3 Effect of MF on...move the mucus along a surface layer of saline. This is very likely that the cilia, beating with the frequency about few tenth of Hertz, generate some
Handeland, Katina; Skotheim, Siv; Baste, Valborg; Graff, Ingvild E; Frøyland, Livar; Lie, Øyvind; Kjellevold, Marian; Markhus, Maria W; Stormark, Kjell M; Øyen, Jannike; Dahl, Lisbeth
2018-02-23
Adolescence involves changes in dietary habits that may induce imbalances in the intake of different nutrients. Fish is an important dietary source of omega-3 (n-3) long-chain polyunsaturated fatty acids (LCPUFAs), vitamin D, several minerals and high-quality protein. By using secondary outcomes and exploratory analyses, the aims of this paper were to evaluate if nutritional biomarkers (red blood cell fatty acids, serum (s)-25(OH)D, s-ferritin and urinary iodine concentration (UIC)) were altered during a dietary intervention, and if they mediated previously reported changes in attention performance. In addition, to examine the status of the biomarkers and explore associations between dietary pattern, biomarkers and attention performance cross-sectionally at baseline. The Fish Intervention Studies-TEENS (FINS-TEENS) was a three-armed intervention trial, including adolescents from eight secondary schools (n = 415; age: 14-15y) in Bergen, Norway. Participants were individually randomized to receive either fish meals, meat meals or n-3 LCPUFA supplements, three times a week for a total of 12 weeks. Blood and urine samples were collected pre and post intervention and attention performance was assessed with the d2 test of attention. Analyses of covariance (ANCOVA) assessed differences between groups in changes of biomarkers and linear mixed models were applied in analyses of attention performance and biomarkers. The trial is registered in ClinicalTrials.gov (NCT02350322). At baseline, the mean omega-3 index was 5.8 ± 1.3% and deficient status were identified for s-25(OH)D (54%), s-ferritin (10%) and UIC (40%). The intervention resulted in an increase in DHA and the omega-3 index which was larger in the supplement group compared to the fish and meat group (P < 0.01), and in the fish group compared to the meat group (P < 0.01). No differences between the groups were observed for changes in 25(OH)D, s-ferritin or UIC. None of the biomarkers mediated
Design, Implementation and Control of a Fish Robot with Undulating Fins
Directory of Open Access Journals (Sweden)
Mohsen Siahmansouri
2011-11-01
Full Text Available Biomimetic robots can potentially perform better than conventional robots in underwater vehicle designing. This paper describes the design of the propulsion system and depth control of a robotic fish. In this study, inspired by knife fish, we have designed and implemented an undulating fin to produce propulsive force. This undulating fin is a segmental anal fin that produces sinusoidal wave to propel the robot. The relationship between the individual fin segment and phase angles with the overall fin trajectory has also been discussed. This propulsive force can be adjusted and directed for fish robot manoeuvre by a mechanical system with two servomotors. These servomotors regulate the direction and depth of swimming. A wireless remote control system is designed to adjust the servomotors which enables us to control revolution, speed and phase differences of neighbor servomotors of fins. Finally, Field trials are conducted in an outdoor pool to demonstrate the relationship between robotic fish speed and fin parameters like phase difference, the number of phase and undulatory amplitude.
CFD analysis of fin tube heat exchanger with a pair of delta winglet vortex generators
International Nuclear Information System (INIS)
Hwang, Seong Won; Kim, Dong Hwan; Min, June Kee; Jeong, Ji Hwan
2012-01-01
Among tubular heat exchangers, fin tube types are the most widely used in refrigeration and air-conditioning equipment. Efforts to enhance the performance of these heat exchangers included variations in the fin shape from a plain fin to a slit and louver type. In the context of heat transfer augmentation, the performance of vortex generators has also been investigated. Delta winglet vortex generators have recently attracted research interest, partly due to experimental data showing that their addition to fin-tube heat exchangers considerably reduces pressure loss at heat transfer capacity of nearly the same level. The efficiency of the delta winglet vortex generators widely varies depending on their size and shape, as well as the locations where they are implemented. In this paper, the flow field around delta winglet vortex generators in a common flow up arrangement was analyzed in terms of flow characteristics and heat transfer using computational fluid dynamics methods. Flow mixing due to vortices and delayed separation due to acceleration influence the overall fin performance. The fin with delta winglet vortex generators exhibited a pressure loss lower than that of a plain fin, and the heat transfer performance was enhanced at high air velocity or Reynolds number
CFD analysis of fin tube heat exchanger with a pair of delta winglet vortex generators
Energy Technology Data Exchange (ETDEWEB)
Hwang, Seong Won; Kim, Dong Hwan; Min, June Kee; Jeong, Ji Hwan [Pusan National Univ., Busan (Korea, Republic of)
2012-09-15
Among tubular heat exchangers, fin tube types are the most widely used in refrigeration and air-conditioning equipment. Efforts to enhance the performance of these heat exchangers included variations in the fin shape from a plain fin to a slit and louver type. In the context of heat transfer augmentation, the performance of vortex generators has also been investigated. Delta winglet vortex generators have recently attracted research interest, partly due to experimental data showing that their addition to fin-tube heat exchangers considerably reduces pressure loss at heat transfer capacity of nearly the same level. The efficiency of the delta winglet vortex generators widely varies depending on their size and shape, as well as the locations where they are implemented. In this paper, the flow field around delta winglet vortex generators in a common flow up arrangement was analyzed in terms of flow characteristics and heat transfer using computational fluid dynamics methods. Flow mixing due to vortices and delayed separation due to acceleration influence the overall fin performance. The fin with delta winglet vortex generators exhibited a pressure loss lower than that of a plain fin, and the heat transfer performance was enhanced at high air velocity or Reynolds number.
Fish's Muscles Distortion and Pectoral Fins Propulsion of Lift-Based Mode
Yang, S. B.; Han, X. Y.; Qiu, J.
As a sort of MPF(median and/or paired fin propulsion), pectoral fins propulsion makes fish easier to maneuver than other propulsion, according to the well-established classification scheme proposed by Webb in 1984. Pectoral fins propulsion is classified into oscillatory propulsion, undulatory propulsion and compound propulsion. Pectoral fins oscillatory propulsion, is further ascribable to two modes: drag-based mode and lift-based mode. And fish exhibits strong cruise ability by using lift-based mode. Therefore to robot fish design using pectoral fins lift-based mode will bring a new revolution to resources exploration in blue sea. On the basis of the wave plate theory, a kinematic model of fish’s pectoral fins lift-based mode is established associated with the behaviors of cownose ray (Rhinoptera bonasus) in the present work. In view of the power of fish’s locomotion from muscle distortion, it would be helpful benefit to reveal the mechanism of fish’s locomotion variation dependent on muscles distortion. So this study puts forward the pattern of muscles distortion of pectoral fins according to the character of skeletons and muscles of cownose ray in morphology and simulates the kinematics of lift-based mode using nonlinear analysis software. In the symmetrical fluid field, the model is simulated left-right symmetrically or asymmetrically. The results qualitatively show how muscles distortion determines the performance of fish locomotion. Finally the efficient muscles distortion associated with the preliminary dynamics is induced.
Peng, Jifeng; Dabiri, John O; Madden, Peter G; Lauder, George V
2007-02-01
Swimming and flying animals generate unsteady locomotive forces by delivering net momentum into the fluid wake. Hence, swimming and flying forces can be quantified by measuring the momentum of animal wakes. A recently developed model provides an approach to empirically deduce swimming and flying forces based on the measurement of velocity and vortex added-mass in the animal wake. The model is contingent on the identification of the vortex boundary in the wake. This paper demonstrates the application of that method to a case study quantifying the instantaneous locomotive forces generated by the pectoral fins of the bluegill sunfish (Lepomis macrochirus Rafinesque), measured using digital particle image velocimetry (DPIV). The finite-time Lyapunov exponent (FTLE) field calculated from the DPIV data was used to determine the wake vortex boundary, according to recently developed fluid dynamics theory. Momentum of the vortex wake and its added-mass were determined and the corresponding instantaneous locomotive forces were quantified at discrete time points during the fin stroke. The instantaneous forces estimated in this study agree in magnitude with the time-averaged forces quantified for the pectoral fin of the same species swimming in similar conditions and are consistent with the observed global motion of the animals. A key result of this study is its suggestion that the dynamical effect of the vortex wake on locomotion is to replace the real animal fin with an ;effective appendage', whose geometry is dictated by the FTLE field and whose interaction with the surrounding fluid is wholly dictated by inviscid concepts from potential flow theory. Benefits and limitations of this new framework for non-invasive instantaneous force measurement are discussed, and its application to comparative biomechanics and engineering studies is suggested.
Effect of magnetic field on food freezing
村田, 圭治; 奥村, 太一; 荒賀, 浩一; 小堀, 康功
2010-01-01
[Abstract] This paper presents an experimental investigation on effects of magnetic field on food freezing process. Although purpose of food freezing is to suppress the deterioration of food, freezing breaks food tissue down, and some nutrient and delicious element flow out after thawing. Recently, a few of refrigeration equipments with electric and magnetic fields have attracted attention from food production companies and mass media. Water and tuna were freezed in magnetic field (100kH, 1.3...
Boundary effects on quantum field theories
International Nuclear Information System (INIS)
Lee, Tae Hoon
1991-01-01
Quantum field theory in the S 1 *R 3 space-time is simply described by the imaginary time formalism. We generalize Schwinger-DeWitt proper-time technique which is very useful in zero temperature field theories to this case. As an example we calculate the one-loop effective potential of the finite temperature scala field theory by this technique.(Author)
Effective field theory for NN interactions
International Nuclear Information System (INIS)
Tran Duy Khuong; Vo Hanh Phuc
2003-01-01
The effective field theory of NN interactions is formulated and the power counting appropriate to this case is reviewed. It is more subtle than in most effective field theories since in the limit that the S-wave NN scattering lengths go to infinity. It is governed by nontrivial fixed point. The leading two body terms in the effective field theory for nucleon self interactions are scale invariant and invariant under Wigner SU(4) spin-isospin symmetry in this limit. Higher body terms with no derivatives (i.e. three and four body terms) are automatically invariant under Wigner symmetry. (author)
Directory of Open Access Journals (Sweden)
Ahmad Zaini
2013-09-01
Full Text Available Penambahan fin pada pipa penukar kalor merupakan suatu upaya memperbesar perpindahan kalor konduksi dan konveksi, dengan cara memperluas bidang geometri. Pada penelitian ini dianalisa secara analitik dan numerik perpindahan kalor pada fin dengan profil longitudinal tidak seragam atau berubah terhadap jarak dari dasar fin, dengan memvariasikan ketebalan ujung fin. Hasil dari kedua studi ini tidak jauh berbeda, pada keduanya menjelaskan bahwa fin dengan ketebalan ujung 0,9 mm (fin trapesium terbalik paling baik dari 5 variasi lainnya; serta perubahan temperatur paling besar terjadi pada sepertiga pertama dari panjang fin, ini artinya pelepasan kalor terbesar terjadi pada daerah tersebut. Perbedaannya adalah pada persentase penurunan temperatur sepanjang fin terhadap temperatur dasar fin, untuk ketebalan 0,9 mm pada studi analitik sebesar 91,92% dan pada studi numerik sebesar 91,78%. Hal ini berarti metode penyelesaian persamaan diferensial orde 2 dengan koefisien variabel dengan cara pembedahan koefisien variabel pada ODE, sudah benar dan valid. Namun bila ditinjau dari waktu yang diperlukan untuk komputasinya, studi analitik membutuhkan waktu lebih lama. Waktu yang diperlukan dalam komputasinya tergantung dari fungsi koefisien variabel.
A numerical method for PCM-based pin fin heat sinks optimization
International Nuclear Information System (INIS)
Pakrouh, R.; Hosseini, M.J.; Ranjbar, A.A.; Bahrampoury, R.
2015-01-01
Highlights: • Optimization of PCM-based heat sink by using the Taguchi method. • Derivation of optimal PCM percentage to reach the maximum critical time. • Optimization is performed for four different critical temperatures. • Effective design factors are fins’ height and fins’ number. • The optimum configuration depends on geometric properties and the critical temperature. - Abstract: This paper presents a numerical investigation on geometric optimization of PCM-based pin fin heat sinks. Paraffin RT44HC is used as PCM while the fins and heat sink base is made of aluminum. The fins act as thermal conductivity enhancers (TCEs). The main goal of the study is to obtain the configurations that maximize the heat sink operational time. An approach witch couples Taguchi method with numerical simulations is utilized for this purpose. Number of fins, fins height, fins thickness and the base thickness are parameters which are studied for optimization. In this study natural convection and PCM volume variation during melting process are considered in the simulations. Optimization is performed for different critical temperatures of 50 °C, 60 °C, 70 °C and 80 °C. Results show that a complex relation exists between PCM and TCE volume percentages. The optimal case strongly depends on the fins’ number, fins’ height and thickness and also the critical temperature. The optimum PCM percentages are found to be 60.61% (corresponds to 100 pin fin heat sink with 4 mm thick fins) for critical temperature of 50 °C and 82.65% (corresponds to 100 pin fin heat sink with 2 mm thick fins) for other critical temperatures
Characteristics and formation mechanism for stainless steel fiber with periodic micro-fins
Tang, Tao; Wan, Zhenping; Lu, Longsheng; Tang, Yong
2016-05-01
Metal fibers have been widely used in many industrial applications due to their unique advantages. In certain applications, such as catalyst supports or orthopedic implants, a rough surface or tiny outshoots on the surface of metal fibers to increase surface area are needed. However, it has not been concerned about the surface morphologies of metal fiber in the current research of metal fiber manufacturing. In this paper, a special multi-tooth tool composed of a row of triangular tiny teeth is designed. The entire cutting layer of multi-tooth tool bifurcates into several thin cutting layers due to tiny teeth involved in cutting. As a result, several stainless steel fibers with periodic micro-fins are produced simultaneously. Morphology of periodic micro-fins is found to be diverse and can be classified into three categories: unilateral plane, unilateral tapering and bilateral. There are two forming mechanisms for the micro-fins. One is that periodic burrs remained on the free side of cutting layer of a tiny tooth create micro-fins of stainless steel fiber produced by the next neighboring tiny tooth; the other is that the connections between two fibers stuck together come to be micro-fins if the two fibers are finally detached. Influence of cutting conditions on formation of micro-fins is investigated. Experimental results show that cutting depth has no significant effect on micro-fin formation, high cutting speed is conducive to micro-fin formation, and feed should be between 0.12 mm/r and 0.2 mm/r to reliably obtain stainless steel fiber with micro-fins. This research presents a new pattern of stainless steel fiber characterized by periodic micro-fins formed on the edge of fiber and its manufacturing method.
Energy Technology Data Exchange (ETDEWEB)
Stojanovic, B.; Hallberg, D.; Akander, J. [Building Materials Technology, KTH Research School, Centre for Built Environment, University of Gaevle, SE-801 76 Gaevle (Sweden)
2010-10-15
This paper presents the thermal modelling of an unglazed solar collector (USC) flat panel, with the aim of producing a detailed yet swift thermal steady-state model. The model is analytical, one-dimensional (1D) and derived by a fin-theory approach. It represents the thermal performance of an arbitrary duct with applied boundary conditions equal to those of a flat panel collector. The derived model is meant to be used for efficient optimisation and design of USC flat panels (or similar applications), as well as detailed thermal analysis of temperature fields and heat transfer distributions/variations at steady-state conditions; without requiring a large amount of computational power and time. Detailed surface temperatures are necessary features for durability studies of the surface coating, hence the effect of coating degradation on USC and system performance. The model accuracy and proficiency has been benchmarked against a detailed three-dimensional Finite Difference Model (3D FDM) and two simpler 1D analytical models. Results from the benchmarking test show that the fin-theory model has excellent capabilities of calculating energy performances and fluid temperature profiles, as well as detailed material temperature fields and heat transfer distributions/variations (at steady-state conditions), while still being suitable for component analysis in junction to system simulations as the model is analytical. The accuracy of the model is high in comparison to the 3D FDM (the prime benchmark), as long as the fin-theory assumption prevails (no 'or negligible' temperature gradient in the fin perpendicularly to the fin length). Comparison with the other models also shows that when the USC duct material has a high thermal conductivity, the cross-sectional material temperature adopts an isothermal state (for the assessed USC duct geometry), which makes the 1D isothermal model valid. When the USC duct material has a low thermal conductivity, the heat transfer
Directory of Open Access Journals (Sweden)
Chii-Dong Ho
2012-07-01
Full Text Available The collector efficiency in a downward-type double-pass external-recycle solar air heater with fins attached on the absorbing plate has been investigated theoretically. Considerable improvement in collector efficiency is obtainable if the collector is equipped with fins and the operation is carried out with an external recycle. Due to the recycling, the desirable effect of increasing the heat transfer coefficient compensates for the undesirable effect of decreasing the driving force (temperature difference of heat transfer, while the attached fins provide an enlarged heat transfer area. The order of performances in the devices of same size is: double pass with recycle and fins > double pass with recycle but without fins > single pass without recycle and fins.
Electric field confinement effect on charge transport in organic field-effect transistors
Li, X.; Kadashchuk, A.; Fishchuk, I.I.; Smaal, W.T.T.; Gelinck, G.H.; Broer, D.J.; Genoe, J.; Heremans, P.; Bässler, H.
2012-01-01
While it is known that the charge-carrier mobility in organic semiconductors is only weakly dependent on the electric field at low fields, the experimental mobility in organic field-effect transistors using silylethynyl-substituted pentacene is found to be surprisingly field dependent at low
QCD Effective Field Theories for Heavy Quarkonium
International Nuclear Information System (INIS)
Brambilla, Nora
2006-01-01
QCD nonrelativistic effective field theories (NREFT) are the modern and most suitable frame to describe heavy quarkonium properties. Here I summarize few relevant concepts and some of the interesting physical applications (spectrum, decays, production) of NREFT
Effective field theory approach to nuclear matter
International Nuclear Information System (INIS)
Saviankou, P.; Gruemmer, F.; Epelbaum, E.; Krewald, S.; Meissner, Ulf-G.
2006-01-01
Effective field theory provides a systematic approach to hardon physics and few-nucleon systems. It allows one to determine the effective two-, three-, and more-nucleon interactions which are consistent with each other. We present a project to derive bulk properties of nuclei from the effective nucleonic interactions
Polarization effects in molecular mechanical force fields
Energy Technology Data Exchange (ETDEWEB)
Cieplak, Piotr [Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92120 (United States); Dupradeau, Francois-Yves [UMR CNRS 6219-Faculte de Pharmacie, Universite de Picardie Jules Verne, 1 rue des Louvels, F-80037 Amiens (France); Duan, Yong [Genome Center and Department of Applied Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Wang Junmei, E-mail: pcieplak@burnham.or [Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Boulevard, ND9.136, Dallas, TX 75390-9050 (United States)
2009-08-19
The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component-polarization energy-and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. (topical review)
Imaging using long range dipolar field effects
International Nuclear Information System (INIS)
Gutteridge, Sarah
2002-01-01
The work in this thesis has been undertaken by the author, except where indicated in reference, within the Magnetic Resonance Centre, at the University of Nottingham during the period from October 1998 to March 2001. This thesis details the different characteristics of the long range dipolar field and its application to magnetic resonance imaging. The long range dipolar field is usually neglected in nuclear magnetic resonance experiments, as molecular tumbling decouples its effect at short distances. However, in highly polarised samples residual long range components have a significant effect on the evolution of the magnetisation, giving rise to multiple spin echoes and unexpected quantum coherences. Three applications utilising these dipolar field effects are documented in this thesis. The first demonstrates the spatial sensitivity of the signal generated via dipolar field effects in structured liquid state samples. The second utilises the signal produced by the dipolar field to create proton spin density maps. These maps directly yield an absolute value for the water content of the sample that is unaffected by relaxation and any RF inhomogeneity or calibration errors in the radio frequency pulses applied. It has also been suggested that the signal generated by dipolar field effects may provide novel contrast in functional magnetic resonance imaging. In the third application, the effects of microscopic susceptibility variation on the signal are studied and the relaxation rate of the signal is compared to that of a conventional spin echo. (author)
Graphene Field Effect Transistor for Radiation Detection
Li, Mary J. (Inventor); Chen, Zhihong (Inventor)
2016-01-01
The present invention relates to a graphene field effect transistor-based radiation sensor for use in a variety of radiation detection applications, including manned spaceflight missions. The sensing mechanism of the radiation sensor is based on the high sensitivity of graphene in the local change of electric field that can result from the interaction of ionizing radiation with a gated undoped silicon absorber serving as the supporting substrate in the graphene field effect transistor. The radiation sensor has low power and high sensitivity, a flexible structure, and a wide temperature range, and can be used in a variety of applications, particularly in space missions for human exploration.
Liu, Song; Jin, Hua; Song, KeWei; Wang, LiangChen; Wu, Xiang; Wang, LiangBi
2017-10-01
The heat transfer performance of the tube bank fin heat exchanger is limited by the air-side thermal resistance. Thus, enhancing the air-side heat transfer is an effective method to improve the performance of the heat exchanger. A new fin pattern with flow redistributors and curved triangular vortex generators is experimentally studied in this paper. The effects of the flow redistributors located in front of the tube stagnation point and the curved vortex generators located around the tube on the characteristics of heat transfer and pressure drop are discussed in detail. A performance comparison is also carried out between the fins with and without flow redistributors. The experimental results show that the flow redistributors stamped out from the fin in front of the tube stagnation points can decrease the friction factor at the cost of decreasing the heat transfer performance. Whether the combination of the flow redistributors and the curved vortex generators will present a better heat transfer performance depends on the size of the curved vortex generators. As for the studied two sizes of vortex generators, the heat transfer performance is promoted by the flow redistributors for the fin with larger size of vortex generators and the performance is suppressed by the flow redistributors for the fin with smaller vortex generators.
Thermal management of electronics using phase change material based pin fin heat sinks
International Nuclear Information System (INIS)
Baby, R; Balaji, C
2012-01-01
This paper reports the results of an experimental study carried out to explore the thermal characteristics of phase change material based heat sinks for electronic equipment cooling. The phase change material (PCM) used in this study is n – eicosane. All heat sinks used in the present study are made of aluminium with dimensions of 80 × 62 mm 2 base with a height of 25 mm. Pin fins acts as the thermal conductivity enhancer (TCE) to improve the distribution of heat more uniformly as the thermal conductivity of the PCM is very low. A total of three different pin fin heat sink geometries with 33, 72 and 120 pin fins filled with phase change materials giving rise to 4%, 9% and 15% volume fractions of the TCE respectively were experimentally investigated. Baseline comparisons are done with a heat sink filled with PCM, without any fin. Studies are conducted for heat sinks on which a uniform heat load is applied at the bottom for the finned and unfinned cases. The effect of pin fins of different volume fractions with power levels ranging from 4 to 8 W corresponding to a heat flux range of 1. 59 to 3.17 kW/m 2 , was explored in this paper. The volume fraction of the PCM (PCM volume / (Total volume – fin volume)) is also varied as 0. 3, 0.6 and 1 to determine the effect of PCM volume on the overall performance of the electronic equipment.
Thermal-hydraulic performance of the finned surface of a compact heat exchanger
International Nuclear Information System (INIS)
Errasti Cabrera, Michel
2015-01-01
In this work the thermal-hydraulic behavior of the finned surface of a compact heat exchanger is obtained in tube-fin configuration corrugated (wavy). Through numerical simulation are determined average values of intensification of heat transfer and pressure loss in the inter-channel finned. The objective is to characterize the surface to use as a reference, to make comparisons with other heat exchange surfaces enhanced using traditional techniques combined with more current, such as vortex generators. The study is conducted in laminar flow, with Reynolds numbers below 1000. In the working model compact exchanger tubes and corrugated fins (wavy) heat is described, and the results of the coefficient of overall heat transfer and the pressure drop are explained from the local characteristics of the velocity field and temperature inside the heat exchanger. (Full text)
A Biologically Derived Pectoral Fin for Yaw Turn Manoeuvres
Directory of Open Access Journals (Sweden)
Jonah R. Gottlieb
2010-01-01
Full Text Available A bio-robotic fin has been developed that models the pectoral fin of the bluegill sunfish as the fish turned to avoid an obstacle. This work involved biological studies of the sunfish fin, the development of kinematic models of the motions of the fin's rays, CFD based predictions of the 3D forces and flows created by the fin, and the implementation of simplified models of the fin's kinematics and mechanical properties in a physical model. The resulting robotic fin produced the forces and flows that drove the manoeuvre and had a sufficiently high number of degrees of freedom to create a variety of non-biologically derived motions. The results indicate that for robotic fins to produce a level of performance on par with biological fins, both the kinematics and the mechanical properties of the biological fin must be modelled well.
Directory of Open Access Journals (Sweden)
Lihua Liang
Full Text Available Fin-angle feedback control is usually used in conventional fin stabilizers, and its actual anti-rolling effect is difficult to reach theoretical design requirements. Primarily, lift of control torque is a theoretical value calculated by static hydrodynamic characteristics of fin. However, hydrodynamic characteristics of fin are dynamic while fin is moving in waves. As a result, there is a large deviation between actual value and theoretical value of lift. Firstly, the reasons of deviation are analyzed theoretically, which could avoid a variety of interference factors and complex theoretical derivations. Secondly, a new device is designed for direct measurement of actual lift, which is composed of fin-shaft combined mechanism and sensors. This new device can make fin-shaft not only be the basic function of rotating fin, but also detect actual lift. Through analysis using stiffness matrix of Euler-Bernoulli beam, displacement of shaft-core end is measured instead of lift which is difficult to measure. Then quantitative relationship between lift and displacement is defined. Three main factors are analyzed with quantitative relationship. What is more, two installation modes of sensors and a removable shaft-end cover are proposed according to hydrodynamic characteristics of fin. Thus the new device contributes to maintenance and measurement. Lastly, the effectiveness and accuracy of device are verified by contrasting calculation and simulation on the basis of actual design parameters. And the new measuring lift method can be proved to be effective through experiments. The new device is achieved from conventional fin stabilizers. Accordingly, the reliability of original equipment is inherited. The alteration of fin stabilizers is minor, which is suitable for engineering application. In addition, the flexural properties of fin-shaft are digitized with analysis of stiffness matrix. This method provides theoretical support for engineering application by
Field emission current from a junction field-effect transistor
Energy Technology Data Exchange (ETDEWEB)
Monshipouri, Mahta; Abdi, Yaser, E-mail: y.abdi@ut.ac.ir [University of Tehran, Nano-Physics Research Laboratory, Department of Physics (Iran, Islamic Republic of)
2015-04-15
Fabrication of a titanium dioxide/carbon nanotube (TiO{sub 2}/CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO{sub 2} nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO{sub 2}/CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO{sub 2}/CNT hetero-structure is also investigated, and well modeled.
Classical Lie Point Symmetry Analysis of a Steady Nonlinear One-Dimensional Fin Problem
Directory of Open Access Journals (Sweden)
R. J. Moitsheki
2012-01-01
Full Text Available We consider the one-dimensional steady fin problem with the Dirichlet boundary condition at one end and the Neumann boundary condition at the other. Both the thermal conductivity and the heat transfer coefficient are given as arbitrary functions of temperature. We perform preliminary group classification to determine forms of the arbitrary functions appearing in the considered equation for which the principal Lie algebra is extended. Some invariant solutions are constructed. The effects of thermogeometric fin parameter and the exponent on temperature are studied. Also, the fin efficiency is analyzed.
Performance ‘S’ Type Savonius Wind Turbine with Variation of Fin Addition on Blade
Pamungkas, S. F.; Wijayanto, D. S.; Saputro, H.; Widiastuti, I.
2018-01-01
Wind power has been receiving attention as the new energy resource in addressing the ecological problems of burning fossil fuels. Savonius wind rotor is a vertical axis wind turbines (VAWT) which has relatively simple structure and low operating speed. These characteristics make it suitable for areas with low average wind speed as in Indonesia. To identify the performance of Savonius rotor in generating electrical energy, this research experimentally studied the effect of fin addition for the ‘S’ shape of Savonius VAWT. The fin is added to fill the space in the blade in directing the wind flow. This rotor has two turbine blades, a rotor diameter of 1.1 m and rotor height of 1.4 m, used pulley transmission system with 1:4.2 multiplication ratio, and used a generator type PMG 200 W. The research was conducted during dry season by measuring the wind speed in the afternoon. The average wind speed in the area is 2.3 m/s with the maximum of 4.5 m/s. It was found that additional fin significantly increase the ability of Savonius rotor VAWT to generate electrical energy shown by increasing of electrical power. The highest power generated is 13.40 Watt at a wind speed of 4.5 m/s by adding 1 (one) fin in the blade. It increased by 22.71% from the rotor blade with no additional fin. However, increasing number of fins in the blade was not linearly increase the electrical power generated. The wind rotor blade with 4 additional fins is indicated has the lowest performance, generating only 10.80 Watt electrical power, accounted lower than the one generated by no fin-rotor blade. By knowing the effect of the rotor shape, the rotor dimension, the addition of fin, transmission, and generator used, it is possible to determine alternative geometry design in increasing the electrical power generated by Savonius wind turbine.
Fin efficiency in 2D with convection at the tip and dissymmetry of exchange
International Nuclear Information System (INIS)
Bouaziz, Najib
2009-01-01
To determine the overall effective surface in the heat exchangers, it is necessary to know the fin efficiency accurately. An analytical formula, taking into account the convective heat at the tip and an unequal exchange in 2D case is derived. Some differences were found between 1D and our expression. The dissymmetry of exchange has a strong effect on the fin efficiency and convection at the tip cannot be ignored.
Heat transfer and pressure drop characteristics of mini-fin structures
International Nuclear Information System (INIS)
Jiang Peixue; Xu Ruina
2007-01-01
Forced convection heat transfer of air and water in bronze and pure copper mini-fin structures and mini-channel structures was investigated experimentally. The mini-fin dimensions were 0.7 mm x 0.2 mm and 0.8 mm x 0.4 mm. The tests included both staggered diamond-shaped and in-line square mini-fin arrangements. The tests investigated the effects of structures, mini-fin dimensions and arrangement, test section materials, and fluid properties on the convection heat transfer and heat transfer enhancement. For the tested conditions, the convection heat transfer coefficient was increased 9-21 fold for water and 12-38 fold for air in the mini-fin structures compared with an empty plate channel. The friction factor and flow resistance in the mini-channel structures and the in-line square mini-fin arrangement were much less than in the staggered diamond-shaped mini-fin arrangement. For the small channel width, W c = 0.2 mm, the convection heat transfer with the in-line square array structure was more intense than with the staggered diamond-shaped structure, the mini-channel structure or the porous media. For the larger channel width, W c = 0.4 mm, the convection heat transfer in the staggered diamond-shaped array structure was more intense than in the others systems while the in-line square structure had the best overall thermal-hydraulic performance
Age estimation of burbot using pectoral fin rays, brachiostegal rays, and otoliths
Klein, Zachary B.; Terrazas, Marc M.; Quist, Michael C.
2014-01-01
Throughout much of its native distribution, burbot (Lota lota) is a species of conservation concern. Understanding dynamic rate functions is critical for the effective management of sensitive burbot populations, which necessitates accurate and precise age estimates. Managing sensitive burbot populations requires an accurate and precise non-lethal alternative. In an effort to identify a non-lethal ageing structure, we compared the precision of age estimates obtained from otoliths, pectoral fin rays, dorsal fin rays and branchiostegal rays from 208 burbot collected from the Green River drainage, Wyoming. Additionally, we compared the accuracy of age estimates from pectoral fin rays, dorsal fin rays and branchiostegal rays to those of otoliths. Dorsal fin rays were immediately deemed a poor ageing structure and removed from further analysis. Age-bias plots of consensus ages derived from branchiostegal rays and pectoral fin rays were appreciably different from those obtained from otoliths. Exact agreement between readers and reader confidence was highest for otoliths and lowest for branchiostegal rays. Age-bias plots indicated that age estimates obtained from branchiostegal rays and pectoral fin rays were substantially different from age estimates obtained from otoliths. Our results indicate that otoliths provide the most precise age estimates for burbot.
Magnetic field effects on electrochemical metal depositions
Directory of Open Access Journals (Sweden)
Andreas Bund, Adriana Ispas and Gerd Mutschke
2008-01-01
Full Text Available This paper discusses recent experimental and numerical results from the authors' labs on the effects of moderate magnetic (B fields in electrochemical reactions. The probably best understood effect of B fields during electrochemical reactions is the magnetohydrodynamic (MHD effect. In the majority of cases it manifests itself in increased mass transport rates which are a direct consequence of Lorentz forces in the bulk of the electrolyte. This enhanced mass transport can directly affect the electrocrystallization. The partial currents for the nucleation of nickel in magnetic fields were determined using an in situ micro-gravimetric technique and are discussed on the basis of the nucleation model of Heerman and Tarallo. Another focus of the paper is the numerical simulation of MHD effects on electrochemical metal depositions. A careful analysis of the governing equations shows that many MHD problems must be treated in a 3D geometry. In most cases there is a complex interplay of natural and magnetically driven convection.
Effective lagrangian from bosonic string field theory
International Nuclear Information System (INIS)
Nakazawa, Naohito
1987-01-01
We investigate the low-energy effective action from the string field theoretical view point. The low-energy effective lagrangian for the massless mode of bosonic string is determined to the order of α'. We find a term which can not be determined from the S-matrix approach. (author)
Methylmercury in dried shark fins and shark fin soup from American restaurants.
Nalluri, Deepthi; Baumann, Zofia; Abercrombie, Debra L; Chapman, Demian D; Hammerschmidt, Chad R; Fisher, Nicholas S
2014-10-15
Consumption of meat from large predatory sharks exposes human consumers to high levels of toxic monomethylmercury (MMHg). There also have been claims that shark fins, and hence the Asian delicacy shark fin soup, contain harmful levels of neurotoxic chemicals in combination with MMHg, although concentrations of MMHg in shark fins are unknown. We measured MMHg in dried, unprocessed fins (n=50) of 13 shark species that occur in the international trade of dried shark fins as well as 50 samples of shark fin soup prepared by restaurants from around the United States. Concentrations of MMHg in fins ranged from 9 to 1720 ng/g dry wt. MMHg in shark fin soup ranged from sharks such as hammerheads (Sphyrna spp.). Consumption of a 240 mL bowl of shark fin soup containing the average concentration of MMHg (4.6 ng/mL) would result in a dose of 1.1 μg MMHg, which is 16% of the U.S. EPA's reference dose (0.1 μg MMHg per 1 kg per day in adults) of 7.4 μg per day for a 74 kg person. If consumed, the soup containing the highest measured MMHg concentration would exceed the reference dose by 17%. While shark fin soup represents a potentially important source of MMHg to human consumers, other seafood products, particularly the flesh of apex marine predators, contain much higher MMHg concentrations and can result in substantially greater exposures of this contaminant for people. Copyright © 2014 Elsevier B.V. All rights reserved.
Effective field equations for expectation values
International Nuclear Information System (INIS)
Jordan, R.D.
1986-01-01
We discuss functional methods which allow calculation of expectation values, rather than the usual in-out amplitudes, from a path integral. The technique, based on Schwinger's idea of summing over paths which go from the past to the future and then back to the past, provides effective field equations satisfied by the expectation value of the field. These equations are shown to be real and causal for a general theory up to two-loop order, and unitarity is checked to this order. These methods are applied to a simple quantum-mechanical example to illustrate the differences between the new formalism and the standard theory. When applied to the gravitational field, the new effective field equations should be useful for studies of quantum cosmology
Ceramic finned-plate recuperator for industrial applications
Energy Technology Data Exchange (ETDEWEB)
Coombs, M.; Strumpf, H.; Kotchick, D.
1985-01-01
High-level recuperation of high-temperature industrial furnaces offers an economically effective means for improving both process and fuel utilization. A ceramic recuperator capable of operating in fuel gas temperatures of up to 1350/sup 0/C and providing a combustion air preheat temperature of 1100/sup 0/C can provide in excess of 50 percent savings in fuel comsumption over an unrecuperated furnace. This recuperator consists of an array of cast ceramic finned plates. The fin geometries are such that when the plates are stacked together, they form the heat transfer flow passages for both the flue gas and combustion air streams. A reference design for industrial recuperator system was created. The current development efforts conducted on this recuperator concept, as well as plans for future activities, are described.
Enhanced Freshwater Production Using Finned-Plate Air Gap Membrane Distillation (AGMD
Directory of Open Access Journals (Sweden)
Perves Bappy Mohammad Jabed
2017-01-01
Full Text Available Air Gap membrane distillation (AGMD, a special type of energy efficient membrane distillation process, is a technology for producing freshwater from waste water. Having some benefits over other traditional processes, this method has been able to draw attention of researchers working in the field of freshwater production technologies. In this study, a basic AGMD system with flat coolant plate has been modified using a specially designed channelled coolant plate of portable size to observe its effect over the production rate and performance of the system. Attempt has been made to increase the amount of distillate flux by using the “fin effect” of the channelled coolant plate. A finned plate have been used instead of a flat coolant plate and experiments were conducted to compare the effect. Coolant temperature and feed temperature of the system have been varied from 10°C to 25°C and 40°C to 70°C respectively. Comparing the data, around 50% to 58% distillate enhancement has been observed for channelled coolant plate. Also, it was seen that the enhancement was higher for higher feed temperatures and coolant temperatures. With these findings, a better performing AGMD module has been introduced to mitigate the scarcity of freshwater.
3D site specific sample preparation and analysis of 3D devices (FinFETs) by atom probe tomography.
Kambham, Ajay Kumar; Kumar, Arul; Gilbert, Matthieu; Vandervorst, Wilfried
2013-09-01
With the transition from planar to three-dimensional device architectures such as Fin field-effect-transistors (FinFETs), new metrology approaches are required to meet the needs of semiconductor technology. It is important to characterize the 3D-dopant distributions precisely as their extent, positioning relative to gate edges and absolute concentration determine the device performance in great detail. At present the atom probe has shown its ability to analyze dopant distributions in semiconductor and thin insulating materials with sub-nm 3D-resolution and good dopant sensitivity. However, so far most reports have dealt with planar devices or restricted the measurements to 2D test structures which represent only limited challenges in terms of localization and site specific sample preparation. In this paper we will discuss the methodology to extract the dopant distribution from real 3D-devices such as a 3D-FinFET device, requiring the sample preparation to be carried out at a site specific location with a positioning accuracy ∼50 nm. Copyright © 2013 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Seidel, Thomas E.; Goldberg, Alexander; Halls, Mat D.; Current, Michael I.
2016-01-01
Simulations for the nucleation and growth of phosphorus films were carried out using density functional theory. The surface was represented by a Si 9 H 12 truncated cluster surface model with 2 × 1-reconstructured (100) Si-OH terminations for the initial reaction sites. Chemistries included phosphorous halides (PF 3 , PCl 3 , and PBr 3 ) and disilane (Si 2 H 6 ). Atomic layer deposition (ALD) reaction sequences were illustrated with three-dimensional molecular models using sequential PF 3 and Si 2 H 6 reactions and featuring SiFH 3 as a byproduct. Exothermic reaction pathways were developed for both nucleation and growth for a Si-OH surface. Energetically favorable reactions for the deposition of four phosphorus atoms including lateral P–P bonding were simulated. This paper suggests energetically favorable thermodynamic reactions for the growth of elemental phosphorus on (100) silicon. Phosphorus layers made by ALD are an option for doping advanced fin field-effect transistors (FinFETs). Phosphorus may be thermally diffused into the silicon or recoil knocked in; simulations of the recoil profile of phosphorus into a FinFET surface are illustrated
On the field determination of effective porosity
International Nuclear Information System (INIS)
Javandel, I.
1989-03-01
Effective porosity of geologic materials is a very important parameter for estimating groundwater travel time and modeling contaminant transport in hydrologic systems. Determination of a representative effective porosity for nonideal systems is a problem still challenging hydrogeologists. In this paper, some of the conventional field geophysical and hydrological methods for estimating effective porosity of geologic materials are reviewed. The limitations and uncertainties associated with each method are discussed. 30 refs., 8 figs
Small Tails Tell Tall Tales--Intra-Individual Variation in the Stable Isotope Values of Fish Fin.
Directory of Open Access Journals (Sweden)
Brian Hayden
Full Text Available Fish fin is a widely used, non-lethal sample material in studies using stable isotopes to assess the ecology of fishes. However, fish fin is composed of two distinct tissues (ray and membrane which may have different stable isotope values and are not homogeneously distributed within a fin. As such, estimates of the stable isotope values of a fish may vary according to the section of fin sampled.To assess the magnitude of this variation, we analysed carbon (δ13C, nitrogen (δ15N, hydrogen (δ2H and oxygen (δ18O stable isotopes of caudal fin from juvenile, riverine stages of Atlantic salmon (Salmo salar and brown trout (Salmo trutta. Individual fins were sub-sectioned into tip, mid and base, of which a further subset were divided into ray and membrane.Isotope variation between fin sections, evident in all four elements, was primarily related to differences between ray and membrane. Base sections were13C depleted relative to tip (~1‰ with equivalent variation evident between ray and membrane. A similar trend was evident in δ2H, though the degree of variation was far greater (~10‰. Base and ray sections were 18O enriched (~2‰ relative to tip and membrane, respectively. Ray and membrane sections displayed longitudinal variation in 15N mirroring that of composite fin (~1‰, indicating that variation in15N values was likely related to ontogenetic variation.To account for the effects of intra-fin variability in stable isotope analyses we suggest that researchers sampling fish fin, in increasing priority, 1 also analyse muscle (or liver tissue from a subsample of fish to calibrate their data, or 2 standardize sampling by selecting tissue only from the extreme tip of a fin, or 3 homogenize fins prior to analysis.
Effective field theory for triaxially deformed nuclei
Energy Technology Data Exchange (ETDEWEB)
Chen, Q.B. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Kaiser, N. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik, Juelich Center for Hadron Physics and JARA-HPC, Forschungszentrum Juelich, Juelich (Germany); Meng, J. [Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); University of Stellenbosch, Department of Physics, Stellenbosch (South Africa)
2017-10-15
Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation. (orig.)
Thermoelectric generator with hinged assembly for fins
International Nuclear Information System (INIS)
Purdy, D.L.; Shapiro, Z.M.; Hursen, T.F.; Maurer, G.W.
1976-01-01
A cylindrical casing has a central shielded capsule of radioisotope fuel. A plurality of thermonuclear modules are axially arranged with their hot junctions resiliently pressed toward the shield and with their cold junctions adjacent a transition member having fins radiating heat to the environment. For each module, the assembly of transition member and fins is hinged to the casing for swinging to permit access to and removal of such module. A ceramic plate having gold layers on opposite faces prevents diffusion bonding of the hot junction to the shield
Vortex Shedding from Finned Circular Cylinders
1980-11-01
FINNED CIRCULAR CYLINDERSo ,rm"" 1..UTNOI .)R*., r. *.040, 111SPOR- / T NuMBII f.John G. elute asOHans J.’/, ugt -. . . , ,<-. -. ,:. =., .. Siil P3RPIO...fins and other sharp protuberances. These purely two-dimensional flows then may be used in a strip theory to include at least some aspects of three...boundary- layer theory . Such a prediction method, together with a technique to provide for a vortex sheet at the separation point, will be included in
Effective field theory and the quark model
International Nuclear Information System (INIS)
Durand, Loyal; Ha, Phuoc; Jaczko, Gregory
2001-01-01
We analyze the connections between the quark model (QM) and the description of hadrons in the low-momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation for the effective baryon fields, we show that the 'nonrelativistic' constituent QM for baryon masses and moments is completely equivalent through O(m s ) to a parametrization of the relativistic field theory in a general spin-flavor basis. The flavor and spin variables can be identified with those of effective valence quarks. Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expansion in effective field theory, and provides a direct connection between the field theory and the semirelativistic models for hadrons used in successful dynamical calculations. This allows dynamical information to be incorporated directly into the chiral expansion. We find, for example, that the striking success of the additive QM for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent corrections
High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure.
Chen, Szu-Hung; Liao, Wen-Shiang; Yang, Hsin-Chia; Wang, Shea-Jue; Liaw, Yue-Gie; Wang, Hao; Gu, Haoshuang; Wang, Mu-Chun
2012-08-01
A three-dimensional (3D) fin-shaped field-effect transistor structure based on III-V metal-oxide-semiconductor field-effect transistor (MOSFET) fabrication has been demonstrated using a submicron GaAs fin as the high-mobility channel. The fin-shaped channel has a thickness-to-width ratio (TFin/WFin) equal to 1. The nano-stacked high-k Al2O3 dielectric was adopted as a gate insulator in forming a metal-oxide-semiconductor structure to suppress gate leakage. The 3D III-V MOSFET exhibits outstanding gate controllability and shows a high Ion/Ioff ratio > 105 and a low subthreshold swing of 80 mV/decade. Compared to a conventional Schottky gate metal-semiconductor field-effect transistor or planar III-V MOSFETs, the III-V MOSFET in this work exhibits a significant performance improvement and is promising for future development of high-performance n-channel devices based on III-V materials.
Experimental study of flow friction characteristics of integral pin-fin tubes
International Nuclear Information System (INIS)
Ding Ming; Yan Changqi; Sun Licheng
2007-01-01
Friction characteristics of integral pin-fin tubes, through which lubricating-oil flowed vertically, were studied experimentally. Effects of the pitch, the height of fins and the machining direction on friction coefficient were analyzed. The experimental results showed that the friction coefficient of the integral pin-fro tube was obviously lager than that of smooth tube. Compared with other influential factors, the effect of the height of fins was dominant. Because the three-dimensional pin fin could disturb and destroy the boundary layer, when the Reynolds Number reached 200-300, the friction coefficient curve began to bend, that was, a turning point was appeared in the friction coefficient curve. (authors)
Study on heat and mass transfer characteristics of humid air-flow in a fin bundle
Energy Technology Data Exchange (ETDEWEB)
Kim, Dong-Hwi [Air-Conditioner Research Laboratory, LG Electronics, Seoul 153-082 (Korea); Koyama, Shigeru; Kuwahara, Ken [Department of Energy and Environmental Engineering, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Kwon, Jeong-Tae [Department of Mechanical Engineering, Hoseo University, Asan, Chungnam 336-795 (Korea); Park, Byung-Duck [School of Mechanical and Automotive Engineering, Kyungpook National University, Sangju, Gyeongbuk 742-711 (Korea)
2010-11-15
This paper deals with the heat and mass transfer characteristics of humid air-flow under frosting conditions. A slit fin bundle was used for the simulation of fins of a heat exchanger. The effects of the cooling block temperature, air humidity and air velocity on the frosting characteristics were experimentally investigated. The frosted mass was affected considerably by the cooling block temperature and air humidity. However, the effect of air velocity on it was not so large. The pressure drop was affected remarkably by all experimental parameters in this study. Local heat flux distribution and frost thickness distribution on each fin were predicted from the measured fin temperatures and the mass and energy conservation equations on the frost surface and inside the frost layer. (author)
The use of hand paddles and fins in front crawl: biomechanical and physiological responses
Directory of Open Access Journals (Sweden)
Cristiano Cardoso de Matos
2013-04-01
Full Text Available Paddles and fins are used during swim training and practice as tools for improving performance. The use of these equipment can alter physiological and kinematic parameters of swimming. The purpose of this literature review was to present and discussthe effects of paddles and fins on kinematic and physiological variables in front crawl,and provide update on the topic for teachers, researchers, coaches and swimmers. Thirty articles were reviewed. To crawl, paddles can change the averages of stroke length and stroke rate, the average swimming speed, the absolute duration of the stroke phases and the index of coordination. Fins can modify the average stroke rate, the average swimming speed, the kick frequency and deep, and the energy cost. We found no studies that verified the longitudinal effects of the use of paddles and fins on these parameters.
Thermal analysis of annular fins with temperature-dependent thermal properties
Institute of Scientific and Technical Information of China (English)
I. G. AKSOY
2013-01-01
The thermal analysis of the annular rectangular profile fins with variable thermal properties is investigated by using the homotopy analysis method (HAM). The thermal conductivity and heat transfer coeﬃcient are assumed to vary with a linear and power-law function of temperature, respectively. The effects of the thermal-geometric fin parameter and the thermal conductivity parameter variations on the temperature distribution and fin eﬃciency are investigated for different heat transfer modes. Results from the HAM are compared with numerical results of the finite difference method (FDM). It can be seen that the variation of dimensionless parameters has a significant effect on the temperature distribution and fin eﬃciency.
A thermal design method for the performance optimization of multi-stream plate-fin heat exchangers
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhe; Li, Yanzhong [Xi’an Jiaotong University, Xi’an (China); Sunden, Bengt [Lund University, Lund (Sweden); Han, Fenghui [Dalian Maritime University, Dalian (China)
2017-06-15
An optimization design method based on field synergy principle is developed for Multi-stream plate-fin heat exchangers (MPHEs) with a segmented differential model. The heat exchanger is divided into a number of sub-exchangers along the main stream, and each sub-exchanger consists of N passages along the height of the exchanger. Compared with the traditional heat exchanger design, this method allows temperature and pressure fields to be obtained via coupling calculation with consideration of variable physical properties and the axial heat loss of the heat exchanger. Finally, the heat exchanger is optimally designed using a temperature-difference uniformity optimization factor based on field synergy principle. This design model can provide an accurate temperature field and pressure field, because the stream properties are determined by the mean temperature and pressure of each local sub-exchanger. Optimum results indicate that the temperature distribution on the cross section of the heat exchanger is relatively uniform and that the temperature difference of heat transfer for each stream is always a small value. These characteristics prove the feasibility and effectiveness of this design model. In this paper, a case of five stream plate-fin heat exchangers for an ethylene plant is designed under a practical cold box operating condition with the proposed model, the structure and heat transfer of which are optimally determined. The design model and optimization method proposed in this work can provide theoretical and technical support to the optimization design of MPHEs.
Playing with QCD I: effective field theories
International Nuclear Information System (INIS)
Fraga, Eduardo S.
2009-01-01
The building blocks of hadrons are quarks and gluons, although color is confined into singlet states. QCD is believed to be the fundamental theory of strong interactions. Its asymptotically free nature puts the vacuum out of reach for perturbation theory. The Lagrangian of QCD and the Feynman rules associated were built by using the Gauge Principle, starting from the quark matter fields and obtaining gluons as connections. A simpler, and sometimes necessary or complementary, approach is provided by effective field theories or effective models, especially when one has to deal with the nonperturbative sector of the theory. (author)
Hisar, Olcay; Sönmez, Adem Yavuz; Hisar, Şükriye Aras; Budak, Harun; Gültepe, Nejdet
2013-04-01
An investigation has been described on the relationship of body length, age and sex with adipose fin length and the number of androgen receptor (AR)-containing cells in the adipose fin as a secondary sexual characteristic for brown trout (Salmo trutta fario). Firstly, body and adipose fin lengths of 2- to 5-year-old brown trout were measured. Thereafter, these fish were killed by decapitation, then their sexes were determined, and adipose fins were excised. The cellular bases of AR binding activities in the adipose fins were analyzed with an antibody against human/rat AR peptide. Immunocytochemistry and western blotting techniques were performed with this antibody. Analysis of morphological measurements indicated that body length and age had a linear relationship with adipose fin length. The coefficients of determination for the body length and age were 0.92 and 0.85 in the male fish and 0.76 and 0.73 in the female fish against the adipose fin length, respectively. At 2 years of age, cells in the adipose fin did not exhibit AR immunoreactivity. However, AR-immunopositive cells were abundant in the adipose fin of 3- to 5-year-old fish. Moreover, the number of AR-immunopositive cells was significantly (P brown trout is a probable target for androgen action and that tissue function or development may to some extent be androgen dependent. In addition, it is likely that such an effect will be mediated by specific androgen receptors.
Swimming performance of a bio-inspired robotic vessel with undulating fin propulsion.
Liu, Hanlin; Curet, Oscar M
2018-06-18
Undulatory fin propulsion exhibits high degree of maneuver control -- an ideal for underwater vessels exploring complex environments. In this work, we developed and tested a self-contained, free-swimming robot with a single undulating fin running along the length of the robot, which controls both forward motion and directional maneuvers. We successfully replicated several maneuvers including forward swimming, reversed motion, diving, station-keeping and vertical swimming. For each maneuver, a series of experiments were performed as a function of fin frequency, wavelength and traveling wave direction to measure swimming velocities, orientation angles and mean power consumption. In addition, three-dimensional flow fields were measured during forward swimming and station-keeping using volumetric particle image velocimetry (PIV). The efficiency for forward swimming was compared using three metrics: cost of transport, wave efficiency and Strouhal number. The results indicate that the cost of transport exhibits a V-shape trend with the minimum value at low swimming velocity. The robot can reach optimal wave efficiency and locomotor performance at a range of 0.2 to 0.4 St. Volumetric PIV data reveal the shed of vortex tubes generated by the fin during forward swimming and station keeping. For forward swimming, a series of vortex tubes are shed off the fin edge with a lateral and downward direction with respect to the longitudinal axis of the fin. For station keeping, flow measurements suggest that the vortex tubes are shed at the mid-section of the fin while the posterior and anterior segment of the vortex stay attached to the fin. These results agree with the previous vortex structures based on simulations and 2D PIV. The further development of this vessel with high maneuverability and station keeping performance can be used for oceanography, coastal exploration, defense, oil industry and other marine industries where operations are unsafe or impractical for divers or
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-04-01
The bibliography contains citations concerning theoretical studies and applications of finned tubing in a variety of heat exchanger design configurations. The effects of turbulent and laminar flow are presented in terms of heat transfer for both external and internal finned surfaces. Energy conservation and waste heat recovery systems are featured and the use of refrigerants is also included. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)
Results from the FIN-2 formal comparison
Connolly, Paul; Hoose, Corinna; Liu, Xiaohong; Moehler, Ottmar; Cziczo, Daniel; DeMott, Paul
2017-04-01
During the Fifth International Ice Nucleation Workshop (FIN-2) at the AIDA Ice Nucleation facility in Karlsruhe, Germany in March 2015, a formal comparison of ice nucleation measurement methods was conducted. During the experiments the samples of ice nucleating particles were not revealed to the instrument scientists, hence this was referred to as a "blind comparison". The two samples used were later revealed to be Arizona Test Dust and an Argentina soil sample. For these two samples seven mobile ice nucleating particle counters sampled directly from the AIDA chamber or from the aerosol preparation chamber at specified temperatures, whereas filter samples were taken for two offline deposition nucleation instruments. Wet suspension methods for determining IN concentrations were also used with 10 different methods employed. For the wet suspension methods experiments were conducted using INPs collected from the air inside the chambers (impinger sampling) and INPs taken from the bulk samples (vial sampling). Direct comparisons of the ice nucleating particle concentrations are reported as well as derived ice nucleation active site densities. The study highlights the difficulties in performing such analyses, but generally indicates that there is reasonable agreement between the wet suspension techniques. It is noted that ice nucleation efficiency derived from the AIDA chamber (quantified using the ice active surface site density approach) is higher than that for the cold stage techniques. This is both true for the Argentina soil sample and, to a lesser extent, for the Arizona Test Dust sample too. Other interesting effects were noted: for the ATD the impinger sampling demonstrated higher INP efficiency at higher temperatures (>255 K) than the vial sampling, but agreed at the lower temperatures (<255K), whereas the opposite was true for the Argentina soil sample. The results are analysed to better understand the performance of the various techniques and to address any
Electric Field Effects in RUS Measurements
Energy Technology Data Exchange (ETDEWEB)
Darling, Timothy W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Allured, Bradley [UNIV NEVADA, RENO; Carpenter, Michael A [CAMBRIDGE UNIV. UK
2009-09-21
Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.
Ramamurti, Ravi; Sandberg, William C; Löhner, Rainald; Walker, Jeffrey A; Westneat, Mark W
2002-10-01
Many fishes that swim with the paired pectoral fins use fin-stroke parameters that produce thrust force from lift in a mechanism of underwater flight. These locomotor mechanisms are of interest to behavioral biologists, biomechanics researchers and engineers. In the present study, we performed the first three-dimensional unsteady computations of fish swimming with oscillating and deforming fins. The objective of these computations was to investigate the fluid dynamics of force production associated with the flapping aquatic flight of the bird wrasse Gomphosus varius. For this computational work, we used the geometry of the wrasse and its pectoral fin, and previously measured fin kinematics, as the starting points for computational investigation of three-dimensional (3-D) unsteady fluid dynamics. We performed a 3-D steady computation and a complete set of 3-D quasisteady computations for a range of pectoral fin positions and surface velocities. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing was then used to compute the unsteady flow about the wrasse through several complete cycles of pectoral fin oscillation. The shape deformation of the pectoral fin throughout the oscillation was taken from the experimental kinematics. The pressure distribution on the body of the bird wrasse and its pectoral fins was computed and integrated to give body and fin forces which were decomposed into lift and thrust. The velocity field variation on the surface of the wrasse body, on the pectoral fins and in the near-wake was computed throughout the swimming cycle. We compared our computational results for the steady, quasi-steady and unsteady cases with the experimental data on axial and vertical acceleration obtained from the pectoral fin kinematics experiments. These comparisons show that steady state computations are incapable of describing the fluid dynamics of flapping fins. Quasi-steady state computations, with correct incorporation of
Effective field theory for magnetic compactifications
Energy Technology Data Exchange (ETDEWEB)
Buchmuller, Wilfried; Dierigl, Markus [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany); Dudas, Emilian [Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay,F-91128 Palaiseau (France); Schweizer, Julian [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany)
2017-04-10
Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.
Gravitational effects in field gravitation theory
International Nuclear Information System (INIS)
Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Vlasov, A.A.
1979-01-01
The possibilities to describe various gravitation effects of field gravitation theory (FGT) are considered. Past-Newtonian approximation of the FGT has been constructed and on the basis of this approximation it has been shown that the field theory allows one to describe the whole set of experimental facts. The comparison of post-Newtonian parameters in FGT with those in the Einstein's theory makes it clear that these two; theories are undistinguishable from the viewpoint of any experiments, realized with post-Newtonian accuracy. Gravitational field of an island type source with spherically symmetrical distribution of matter and unstationary homogeneous model of Universe, which allows to describe the effect of cosmological red shift, are considered
On the derivation of effective field theories
International Nuclear Information System (INIS)
Uzunov, Dimo I.
2004-12-01
A general self-consistency approach allows a thorough treatment of the corrections to the standard mean-field approximation (MFA). The natural extension of standard MFA with the help of cumulant expansion leads to a new point of view on the effective field theories. The proposed approach can be used for a systematic treatment of fluctuation effects of various length scales and, perhaps, for the development of a new coarse graining procedure. We outline and justify our method by some preliminary calculations. Concrete results are given for the critical temperature and the Landau parameters of the φ 4 -theory - the field counterpart of the Ising model. An important unresolved problem of the modern theory of phase transitions - the problem for the calculation of the true critical temperature, is considered within the framework of the present approach. A comprehensive description of the ground state properties of many-body systems is also demonstrated. (author)
PROBABILISTIC APPROACH OF STABILIZED ELECTROMAGNETIC FIELD EFFECTS
Directory of Open Access Journals (Sweden)
FELEA. I.
2017-09-01
Full Text Available The effects of the omnipresence of the electromagnetic field are certain and recognized. Assessing as accurately as possible these effects, which characterize random phenomena require the use of statistical-probabilistic calculation. This paper aims at assessing the probability of exceeding the admissible values of the characteristic sizes of the electromagnetic field - magnetic induction and electric field strength. The first part justifies the need for concern and specifies how to approach it. The mathematical model of approach and treatment is presented in the second part of the paper and the results obtained with reference to 14 power stations are synthesized in the third part. In the last part, are formulated the conclusions of the evaluations.
Performance of tubes-and plate fins heat exchangers
International Nuclear Information System (INIS)
Rosman, E.C.
1979-11-01
By means of a two-dimensional analysis performance, and using local heat transfer coefficients, the plate fin temperature distribution, the air bulk temperature along the stream path and the fin efficiency can be obtained, for several Reynolds numbers and fin materials. Herein are also presented the average heat transfer coefficients for isothermal plate fins, referring to heat exchangers with central-tube and rear-tube row and to two-row tubes heat exchangers configurations. It is possible to obtain the real tax or the real area of heat transfer, using the average hea transfer coefficients for isothermal plate fins and the fin efficiency. (Author) [pt
On some nonlinear effects in ultrasonic fields
Tjotta
2000-03-01
Nonlinear effects associated with intense sound fields in fluids are considered theoretically. Special attention is directed to the study of higher effects that cannot be described within the standard propagation models of nonlinear acoustics (the KZK and Burgers equations). The analysis is based on the fundamental equations of motion for a thermoviscous fluid, for which thermal equations of state exist. Model equations are derived and used to analyze nonlinear sources for generation of flow and heat, and other changes in the ambient state of the fluid. Fluctuations in the coefficients of viscosity and thermal conductivity caused by the sound field, are accounted for. Also considered are nonlinear effects induced in the fluid by flexural vibrations. The intensity and absorption of finite amplitude sound waves are calculated, and related to the sources for generation of higher order effects.
Ferromagnetic hysteresis and the effective field
Naus, H.W.L.
2002-01-01
The Jiles-Atherton model of the behavior of ferromagnetic materials determines the irreversible magnetization from the effective field by using a differential equation. This paper presents an exact, analytical solution to the equation, one displaying hysteresis. The inclusion of magnetomechanical
ALPs effective field theory and collider signatures
DEFF Research Database (Denmark)
Brivio, I.; Gavela, M. B.; Merlo, L.
2017-01-01
We study the leading effective interactions between the Standard Model fields and a generic singlet CP-odd (pseudo-) Goldstone boson. Two possible frameworks for electroweak symmetry breaking are considered: linear and non-linear. For the latter case, the basis of leading effective operators is d...... final states are most promising signals expected in both frameworks. In addition, non-standard Higgs decays and mono-Higgs signatures are especially prominent and expected to be dominant in non-linear realisations....
International Nuclear Information System (INIS)
Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe
2015-01-01
Highlights: • A finned heat pipe-assisted latent heat thermal energy storage system is studied. • The effects of heat pipes spacing and fins geometrical features are investigated. • Smaller heat pipes spacing and longer fins improve the melting rate. • The optimal heat pipe and fin arrangements are determined. - Abstract: In the present study, the thermal characteristics of a finned heat pipe-assisted latent heat thermal energy storage system are investigated numerically. A transient two-dimensional finite volume based model employing enthalpy-porosity technique is implemented to analyze the performance of a thermal energy storage unit with square container and high melting temperature phase change material. The effects of heat pipe spacing, fin length and numbers and the influence of natural convection on the thermal response of the thermal energy storage unit have been studied. The obtained results reveal that the natural convection has considerable effect on the melting process of the phase change material. Increasing the number of heat pipes (decreasing the heat pipe spacing) leads to the increase of melting rate and the decrease of base wall temperature. Also, the increase of fin length results in the decrease of temperature difference within the phase change material in the container, providing more uniform temperature distribution. It was also shown that number of the fins does not have a significant effect on the performance of the system
Energy Technology Data Exchange (ETDEWEB)
Park, Chun Dong; Lee, Dong Hyun; Park, Byung-Sik; Choi, Jaejoon [Korea Institute of Energy Research (KIER), Daejeon (Korea, Republic of)
2017-02-15
In this study, the flow and heat transfer characteristics of the finned annular passage were investigated numerically. The annular passage simulates co-axial geothermal heat exchanger, and fins are installed on its inner wall to reduce heat loss from the production passage (annulus) to injection passage (inner pipe). A commercial CFD program, Ansys Fluent, was used with SST k-ω turbulence model. The effects of the geometric parameters of the fin on the inner tube were analyzed under the periodic boundary condition. The result indicated that most parameters had a tendency to increase with an increase in the height and angle of the fin. However, it was confirmed that the Nusselt number of the inner tube on the coaxial 15, 5, 0.3 was lower than that of the smooth tube. Additionally, the Nusselt number of the inner tube exhibited a tendency of decreasing with a decrease in the spacing in Coaxial 15, S{sub f}, 0.3.
Directory of Open Access Journals (Sweden)
Foued Chabane
2014-03-01
Full Text Available The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s−1. Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s−1 with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency.
Chabane, Foued; Moummi, Noureddine; Benramache, Said
2014-03-01
The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s(-1). Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s(-1) with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency.
Role of fin material and nanofluid in performance enhancement of automobile radiator
Jadar, Raju; Shashishekar, K. S.; Channa Keshava Naik, N.
2018-04-01
An effective cooling system can avoid engine and its components from overheating and helps in achieving optimum engine performance. This work deals with the fabrication and performance evaluation of an automobile radiator with i) Aluminum fins and ii) Al-MWCNT fins using 0.1 w/v% f-MWCNT nanofluid. F-MWCNT nanoparticles in the base fluid improves the rate of heat transfer in an automobile radiator integrated with Al-MWCNT fins. The enhancement of heat transfer mainly depends on the quantity of F-MWCNT nanoparticles added to the host fluid. During the study it was found that at a low weight by volume concentration of nanofluid the heat transfer enhancement of 8% was achieved using Al-MWCNT fins compared to base fluid.
Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins
International Nuclear Information System (INIS)
Hauser, S.G.; Kreid, D.K.; Johnson, B.M.
1981-01-01
The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial
Toroidal field ripple effects in large tokamaks
International Nuclear Information System (INIS)
Uckan, N.A.; Tsang, K.T.; Callen, J.D.
1975-01-01
In an experimental power reactor, the ripple produced by the finite number of toroidal field coils destroys the ideal axisymmetry of the configuration and is responsible for additional particle trapping, loss regions and plasma transport. The effects of toroidal field ripple on the plasma transport coefficient, the loss of alpha particles and energetic injection ions, and the relaxation of toroidal flows are investigated in a new and systematic way. The relevant results are applied to the ORNL-EPR reference design; the maximum ripple there of about 2.2 percent at the outer edge of the plasma column is found to be tolerable from plasma physics considerations
Directory of Open Access Journals (Sweden)
Gbeminiyi Sobamowo
2017-10-01
Full Text Available In this study, by using the finite volume method, the heat transfer in a convective straight fin with temperature-dependent thermal properties and an internal heat generation under multi-boiling heat transfer modes are analyzed. In this regard, the local heat transfer coefficient is considered to vary within a power-law function of temperature. In the present study, the coexistence of all the boiling modes is taken into consideration. The developed heat transfer models and the corresponding numerical solutions are used to investigate the effects of various thermo-geometric parameters on the thermal performance of the longitudinal rectangular fin. The results shows that the fin temperature distribution, the total heat transfer, and the fin efficiency are significantly affected by the thermo-geometric parameters of the fin and the internal heat generation within the fin. The obtained results can provide a platform for improvements in the design of the fin in the heat transfer equipment.
Energy Technology Data Exchange (ETDEWEB)
Hirayama, T; Saito, Y [Yokohama National University, Yokohama (Japan). Faculty of Engineering; Niihara, Y [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)
1997-12-31
Discussed herein are the effects of vertical fin projecting downwards from the bottom of a displacement-type superhigh-speed ship, installed to improve its transverse stability and turning ability. The system for simultaneously controlling rudder and vertical fin by the optimum regulator was studied for maneuverability in directional following waves and smooth water, and maneuverability was simulated numerically. A ship is greatly rolled and sloped when running in waves. It is found that the vertical fin shows a high anti-rolling effect when the ship runs straight. The optimum regulator greatly improves maneuverability in waves, reducing rolling by 92%. Increased rolling with the vertical fin, observed in the previous study in directional following waves, is found to be due to the rudder. The optimum position of the fin is determined to control transverse sloping of a turning ship in a superhigh-speed region. 21 refs., 12 figs., 4 tabs.
Energy Technology Data Exchange (ETDEWEB)
Hirayama, T.; Saito, Y. [Yokohama National University, Yokohama (Japan). Faculty of Engineering; Niihara, Y. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)
1996-12-31
Discussed herein are the effects of vertical fin projecting downwards from the bottom of a displacement-type superhigh-speed ship, installed to improve its transverse stability and turning ability. The system for simultaneously controlling rudder and vertical fin by the optimum regulator was studied for maneuverability in directional following waves and smooth water, and maneuverability was simulated numerically. A ship is greatly rolled and sloped when running in waves. It is found that the vertical fin shows a high anti-rolling effect when the ship runs straight. The optimum regulator greatly improves maneuverability in waves, reducing rolling by 92%. Increased rolling with the vertical fin, observed in the previous study in directional following waves, is found to be due to the rudder. The optimum position of the fin is determined to control transverse sloping of a turning ship in a superhigh-speed region. 21 refs., 12 figs., 4 tabs.
Band mixing effects in mean field theories
International Nuclear Information System (INIS)
Kuyucak, S.; Morrison, I.
1989-01-01
The 1/N expansion method, which is an angular momentum projected mean field theory, is used to investigate the nature of electromagnetic transitions in the interacting boson model (IBM). Conversely, comparison with the exact IBM results sheds light on the range of validity of the mean field theory. It is shown that the projected mean field results for the E2 transitions among the ground, β and γ bands are incomplete for the spin dependent terms and it is essential to include band mixing effect for a correct (Mikhailov) analysis of E2 data. The algebraic expressions derived are general and will be useful in the analysis of experimental data in terms of both the sd and sdg boson models. 17 refs., 7 figs., 8 tabs
Field Effect Microparticle Generation for Cell Microencapsulation.
Hsu, Brend Ray-Sea; Fu, Shin-Huei
2017-01-01
The diameter and sphericity of alginate-poly-L-lysine-alginate microcapsules, determined by the size and the shape of calcium alginate microspheres, affect their in vivo durability and biocompatibility and the results of transplantation. The commonly used air-jet spray method generates microspheres with a wider variation in diameter, larger sphere morphology, and evenly distributed encapsulated cells. In order to overcome these drawbacks, we designed a field effect microparticle generator to create a stable electric field to prepare microparticles with a smaller diameter and more uniform morphology. Using this electric field microparticle generator the encapsulated cells will be located at the periphery of the microspheres, and thus the supply of oxygen and nutrients for the encapsulated cells will be improved compared with the centrally located encapsulated cells in the air-jet spray method.
Energy Technology Data Exchange (ETDEWEB)
Ahmed, Sayed Ahmed E. Sayed; Mesalhy, Osama M.; Abdelatief, Mohamed A. [Zagazig University, Zagazig (Egypt)
2016-06-15
A numerical study is conducted to clarify heat transfer characteristics, effectiveness and entropy generation for a bundle of wingshaped-tubes attached to Longitudinal fins (LF) at downstream side. The air-side Re{sub a} ranged from 1.8 x 10{sup 3} to 9.7 x 10{sup 3} . The fin height (h{sub f}) and fin thickness (δ) have been changed as: (2 mm <= hf <= 12 mm) and (1.5 mm <= δ <= 3.5 mm). The analysis of entropy generation is based on the principle of minimizing the rate of total entropy generation that includes the generation of entropy due to heat transfer and friction losses. The temperature field around the wing-shaped-tubes with (LF) is predicted using commercial CFD FLUENT 6.3.26 software package. Correlations of Nu{sub a}, St{sub a}, and Bejan number (Be), as well as the irreversibility distribution ratio (Φ) in terms of Re{sub a} and design parameters for the studied bundle are presented. Results indicated that, installing fins with heights from 2 to 12 mm results in an increase in Nu{sub a} from 11 to 36% comparing with that of wing-shaped tubes without fins (NOF). The highest and lowest values of effectiveness(ε) at every value of the considered Re{sub a} range are occurred at hf = 6 mm and (NOF), espectively. The wing-shaped-tubes heat exchanger with hf = 6 mm has the highest values of (ε), efficiency index (η) and area goodness factor (G{sub a}) and also the lowest values of Φ and hence the best performance comparing with other arrangements. The minimum values of Φ are occurred at hf = 6 mm. (Be) decreases with increasing Re{sub a} for all studied hf. The heat transfer irreversibility predominates for (1800 <= Re{sub a} <= 4200) while the opposite is true for (6950 < Re{sub a} <= 9700). δ has negligible effect on Nu{sub a} and heat transfer irreversibility. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.
International Nuclear Information System (INIS)
Ahmed, Sayed Ahmed E. Sayed; Mesalhy, Osama M.; Abdelatief, Mohamed A.
2016-01-01
A numerical study is conducted to clarify heat transfer characteristics, effectiveness and entropy generation for a bundle of wingshaped-tubes attached to Longitudinal fins (LF) at downstream side. The air-side Re a ranged from 1.8 x 10 3 to 9.7 x 10 3 . The fin height (h f ) and fin thickness (δ) have been changed as: (2 mm <= hf <= 12 mm) and (1.5 mm <= δ <= 3.5 mm). The analysis of entropy generation is based on the principle of minimizing the rate of total entropy generation that includes the generation of entropy due to heat transfer and friction losses. The temperature field around the wing-shaped-tubes with (LF) is predicted using commercial CFD FLUENT 6.3.26 software package. Correlations of Nu a , St a , and Bejan number (Be), as well as the irreversibility distribution ratio (Φ) in terms of Re a and design parameters for the studied bundle are presented. Results indicated that, installing fins with heights from 2 to 12 mm results in an increase in Nu a from 11 to 36% comparing with that of wing-shaped tubes without fins (NOF). The highest and lowest values of effectiveness(ε) at every value of the considered Re a range are occurred at hf = 6 mm and (NOF), espectively. The wing-shaped-tubes heat exchanger with hf = 6 mm has the highest values of (ε), efficiency index (η) and area goodness factor (G a ) and also the lowest values of Φ and hence the best performance comparing with other arrangements. The minimum values of Φ are occurred at hf = 6 mm. (Be) decreases with increasing Re a for all studied hf. The heat transfer irreversibility predominates for (1800 <= Re a <= 4200) while the opposite is true for (6950 < Re a <= 9700). δ has negligible effect on Nu a and heat transfer irreversibility. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.
Field theory approach to quantum hall effect
International Nuclear Information System (INIS)
Cabo, A.; Chaichian, M.
1990-07-01
The Fradkin's formulation of statistical field theory is applied to the Coulomb interacting electron gas in a magnetic field. The electrons are confined to a plane in normal 3D-space and also interact with the physical 3D-electromagnetic field. The magnetic translation group (MTG) Ward identities are derived. Using them it is shown that the exact electron propagator is diagonalized in the basis of the wave functions of the free electron in a magnetic field whenever the MTG is unbroken. The general tensor structure of the polarization operator is obtained and used to show that the Chern-Simons action always describes the Hall effect properties of the system. A general proof of the Streda formula for the Hall conductivity is presented. It follows that the coefficient of the Chern-Simons terms in the long-wavelength approximation is exactly given by this relation. Such a formula, expressing the Hall conductivity as a simple derivative, in combination with diagonal form of the full propagator allows to obtain a simple expressions for the filling factor and the Hall conductivity. Indeed, these results, after assuming that the chemical potential lies in a gap of the density of states, lead to the conclusion that the Hall conductivity is given without corrections by σ xy = νe 2 /h where ν is the filling factor. In addition it follows that the filling factor is independent of the magnetic field if the chemical potential remains in the gap. (author). 21 ref, 1 fig
Jain, Neeraj; Raj, Balwinder
2017-12-01
Continued scaling of CMOS technology to achieve high performance and low power consumption of semiconductor devices in the complex integrated circuits faces the degradation in terms of electrostatic integrity, short channel effects (SCEs), leakage currents, device variability and reliability etc. Nowadays, multigate structure has become the promising candidate to overcome these problems. SOI FinFET is one of the best multigate structures that has gained importance in all electronic design automation (EDA) industries due to its improved short channel effects (SCEs), because of its more effective gate-controlling capabilities. In this paper, our aim is to explore the sensitivity of underlap spacer region variation on the performance of SOI FinFET at 20 nm channel length. Electric field modulation is analyzed with spacer length variation and electrostatic performance is evaluated in terms of performance parameter like electron mobility, electric field, electric potential, sub-threshold slope (SS), ON current (I on), OFF current (I off) and I on/I off ratio. The potential benefits of SOI FinFET at drain-to-source voltage, V DS = 0.05 V and V DS = 0.7 V towards analog and RF design is also evaluated in terms of intrinsic gain (A V), output conductance (g d), trans-conductance (g m), gate capacitance (C gg), and cut-off frequency (f T = g m/2πC gg) with spacer region variations.
Magnetic field effects in hybrid perovskite devices
Zhang, C.; Sun, D.; Sheng, C.-X.; Zhai, Y. X.; Mielczarek, K.; Zakhidov, A.; Vardeny, Z. V.
2015-05-01
Magnetic field effects have been a successful tool for studying carrier dynamics in organic semiconductors as the weak spin-orbit coupling in these materials gives rise to long spin relaxation times. As the spin-orbit coupling is strong in organic-inorganic hybrid perovskites, which are promising materials for photovoltaic and light-emitting applications, magnetic field effects are expected to be negligible in these optoelectronic devices. We measured significant magneto-photocurrent, magneto-electroluminescence and magneto-photoluminescence responses in hybrid perovskite devices and thin films, where the amplitude and shape are correlated to each other through the electron-hole lifetime, which depends on the perovskite film morphology. We attribute these responses to magnetic-field-induced spin-mixing of the photogenerated electron-hole pairs with different g-factors--the Δg model. We validate this model by measuring large Δg (~ 0.65) using field-induced circularly polarized photoluminescence, and electron-hole pair lifetime using picosecond pump-probe spectroscopy.
Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin
International Nuclear Information System (INIS)
Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno; Das, Prodip K.
2016-01-01
Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid’s thermo-physical properties as well as due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.
Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin
Energy Technology Data Exchange (ETDEWEB)
Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno; Das, Prodip K., E-mail: prodip.das@ncl.ac.uk [School of Mechanical and Systems Engineering Newcastle University Newcastle upon Tyne, NE1 7RU United Kingdom (United Kingdom)
2016-07-12
Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid’s thermo-physical properties as well as due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.
Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin
Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno; Das, Prodip K.
2016-07-01
Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid's thermo-physical properties as well as due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.
Investigations into the dynamic behaviour of finned tube heat exchangers
International Nuclear Information System (INIS)
Sandbrink, J.; Stegemann, D.
1981-01-01
Atmospheric disturbances due to thunder storms, side wind effects on the shell or ground inversion can impair the heat dissipation of a cooling tower. These effects react on the overall power plant, which is reflected in the varied electrical output. This uncontrolled behaviour has been investigated in detail for the case of a boiling water reactor nuclear power station with indirect natural draught dry cooling and compared with controlled performance. A computer model, which has been checked out by means of experimental investigations on three different types of tube, is presented to describe the dynamic behaviour of finned tube heat exchangers. (orig.) [de
Nanowire field effect transistors principles and applications
Jeong, Yoon-Ha
2014-01-01
“Nanowire Field Effect Transistor: Basic Principles and Applications” places an emphasis on the application aspects of nanowire field effect transistors (NWFET). Device physics and electronics are discussed in a compact manner, together with the p-n junction diode and MOSFET, the former as an essential element in NWFET and the latter as a general background of the FET. During this discussion, the photo-diode, solar cell, LED, LD, DRAM, flash EEPROM and sensors are highlighted to pave the way for similar applications of NWFET. Modeling is discussed in close analogy and comparison with MOSFETs. Contributors focus on processing, electrostatic discharge (ESD) and application of NWFET. This includes coverage of solar and memory cells, biological and chemical sensors, displays and atomic scale light emitting diodes. Appropriate for scientists and engineers interested in acquiring a working knowledge of NWFET as well as graduate students specializing in this subject.
Effective-field theories for heavy quarkonium
International Nuclear Information System (INIS)
Brambilla, Nora; Pineda, Antonio; Soto, Joan; Vairo, Antonio
2005-01-01
This article reviews recent theoretical developments in heavy-quarkonium physics from the point of view of effective-field theories of QCD. We discuss nonrelativistic QCD and concentrate on potential nonrelativistic QCD. The main goal will be to derive Schroedinger equations based on QCD that govern heavy-quarkonium physics in the weak- and strong-coupling regimes. Finally, the review discusses a selected set of applications, which include spectroscopy, inclusive decays, and electromagnetic threshold production
Numerical Study of Compact Plate-Fin Heat Exchanger for Rotary-Vane Gas Refrigeration Machine
Directory of Open Access Journals (Sweden)
V. V. Trandafilov
2017-10-01
Full Text Available Plate-fin heat exchangers are widely used in refrigeration technique. They are popular because of their compactness and excellent heat transfer performance. Here we present a numerical model for the development, research and optimization of a plate-fin heat exchanger for a rotary-vane gas refrigeration machine. The method of analysis by graphic method of plate - fin heat exchanger is proposed. The model describes the effects of secondary parameters such as axial thermal conductivity through a metal matrix of the heat exchanger. The influence of geometric parameters and heat transfer coefficient is studied. Graphs of dependences of length, efficiency of a fin and pressure drop in a heat exchanger on the thickness of the fin and the number of fins per meter are obtained. To analyze the results of numerical simulation, the heat exchanger was designed in the Aspen HYSYS program. The simulation results show that the total deviation from the proposed numerical model is not more than 15%.
Osintsev, D.; Sverdlov, V.; Stanojević, Z.; Makarov, A.; Selberherr, S.
2012-05-01
We study the transport properties of the Datta-Das spin field-effect transistor built on InAs and Si. First, we demonstrate that the amplitude of the magnetoresistance oscillations as a function of the band mismatch between the ferromagnetic contacts and the semiconductor channel made of InAs decreases dramatically with increasing temperature. A shorter InAs channel is needed to create an InAs-based SpinFET which will operate at higher temperatures. Second, we show that the [1 0 0] orientation of the fin is preferable for silicon SpinFETs due to stronger modulation of the conductance as a function of spin-orbit interaction and magnetic field. Short silicon fins can be used for current modulation as a function of the conduction band mismatch between the channel and the ferromagnetic contacts only at relatively low temperatures. In contrast, longer silicon channels allow a TMR modulation at room temperature by changing the strength of the spin-orbit interaction through the gate bias.
Performance and cost benefits analysis of double-pass solar collector with and without fins
International Nuclear Information System (INIS)
Fudholi, Ahmad; Sopian, Kamaruzzaman; Ruslan, Mohd Hafidz; Othman, Mohd Yusof
2013-01-01
Highlights: • The thermal performances and cost analysis of the double-pass solar collector with and without fins absorber were discussed. • The theoretical and experimental study on the double-pass solar air collector with and without fins absorber was conducted. • The ratio of AC/AEG or the cost benefit ratio was presented. • The double-pass solar collector with fins absorber is more cost-effective compared to without fins absorber. - Abstract: The performance and cost benefit analysis of double-pass solar collector with and without fins have been conducted. The theoretical model using steady state analysis has been developed and compared with the experimental results. The performance curves of the double-pass solar collector with and without fins, which included the effects of mass flow rate and solar intensity on the thermal efficiency of the solar collector, were obtained. Results indicated that the thermal efficiency is proportional to the solar intensity at a specific mass flow rate. The thermal efficiency increased by 9% at a solar intensity of 425–790 W/m 2 and mass flow rate of 0.09 kg/s. The theoretical and experimental analysis showed a similar trend as well as close agreement. Moreover, a cost-effectiveness model has been developed examine the cost benefit ratio of double-pass solar collector with and without fins. Evaluation of the annual cost (AC) and the annual energy gain (AEG) of the collector were also performed. The results show that the double-pass solar collector with fins is more cost-effective compared to the double-pass solar collector without fins for mass flow rate of 0.01–0.07 kg/s. Also, simulations were obtained for the double-pass solar collector with fins at Nusselt number of 5.42–36.21. The energy efficiency of collector increases with the increase of Nusselt number. The results show that by increasing the Nusselt number simultaneously would drop the outlet temperature at any solar intensity. Increase in Nusselt number
DEFF Research Database (Denmark)
Leong, Carmen; Tan, Barney; Xiao, Xiao
2017-01-01
Financial technology, or FinTech, involves the design and delivery of financial products and services through technology. It impacts financial institutions, regulators, customers, and merchants across a wide range of industries. Pervasive digital technologies are challenging the fundamentals...... of the highly regulated financial sector, leading to the emergence of non-traditional payment systems, peer-to-peer money exchanges and increased turbulence in currency markets. This case study explores the development of a FinTech company in China that offers microloans to college students. Five lessons...... learned are presented for organizations to better manage the challenges and to leverage the opportunities amidst the disruption of financial sector. Our findings also shed light on how digital technology 1) offers the strategic capability for a firm to occupy a market niche in financial sector, 2) enables...
Chuang, Po-Shun; Hung, Tzu-Chiao; Chang, Hung-An; Huang, Chien-Kang; Shiao, Jen-Chieh
2016-01-01
The increasing consumption of shark products, along with the shark's fishing vulnerabilities, has led to the decrease in certain shark populations. In this study we used a DNA barcoding method to identify the species of shark landings at fishing ports, shark fin products in retail stores, and shark fins detained by Taiwan customs. In total we identified 23, 24, and 14 species from 231 fishing landings, 316 fin products, and 113 detained shark fins, respectively. All the three sample sources were dominated by Prionace glauca, which accounted for more than 30% of the collected samples. Over 60% of the species identified in the fin products also appeared in the port landings, suggesting the domestic-dominance of shark fin products in Taiwan. However, international trade also contributes a certain proportion of the fin product markets, as four species identified from the shark fin products are not found in Taiwan's waters, and some domestic-available species were also found in the customs-detained sample. In addition to the species identification, we also found geographical differentiation in the cox1 gene of the common thresher sharks (Alopias vulpinus), the pelagic thresher shark (A. pelagicus), the smooth hammerhead shark (Sphyrna zygaena), and the scalloped hammerhead shark (S. lewini). This result might allow fishing authorities to more effectively trace the origins as well as enforce the management and conservation of these sharks.
Directory of Open Access Journals (Sweden)
Po-Shun Chuang
Full Text Available The increasing consumption of shark products, along with the shark's fishing vulnerabilities, has led to the decrease in certain shark populations. In this study we used a DNA barcoding method to identify the species of shark landings at fishing ports, shark fin products in retail stores, and shark fins detained by Taiwan customs. In total we identified 23, 24, and 14 species from 231 fishing landings, 316 fin products, and 113 detained shark fins, respectively. All the three sample sources were dominated by Prionace glauca, which accounted for more than 30% of the collected samples. Over 60% of the species identified in the fin products also appeared in the port landings, suggesting the domestic-dominance of shark fin products in Taiwan. However, international trade also contributes a certain proportion of the fin product markets, as four species identified from the shark fin products are not found in Taiwan's waters, and some domestic-available species were also found in the customs-detained sample. In addition to the species identification, we also found geographical differentiation in the cox1 gene of the common thresher sharks (Alopias vulpinus, the pelagic thresher shark (A. pelagicus, the smooth hammerhead shark (Sphyrna zygaena, and the scalloped hammerhead shark (S. lewini. This result might allow fishing authorities to more effectively trace the origins as well as enforce the management and conservation of these sharks.
Stability Criterion for a Finned Spinning Projectile
S. D. Naik
2000-01-01
The state-of-the-art in gun projectile technology has been used for the aerodynamic stabilisation.This approach is acceptable for guided and controlled rockets but the free-flight rockets suffer fromunacceptable dispersion. Sabot projectiles with both spin and fms developed during the last decadeneed careful analysis. In this study, the second method of Liapunov has been used to develop stability criterion for a projectile to be designed with small fins and is made to spin in the flight. This...
International Nuclear Information System (INIS)
Hong, Sung Kook; Rhee, Dong Ho; Cho, Hyung Hee
2005-01-01
Impingement/effusion cooling technique is used for combustor liner or turbine parts cooling in gas turbine engine. In the impingement/effusion cooling system, the crossflow generated in the cooling channel induces an adverse effect on the cooling performance, which consequently affects the durability of the cooling system. In the present study, to reduce the adverse effect of the crossflow and improve the cooling performance, circular pin fins are installed in impingement/effusion cooling system and the heat transfer characteristics are investigated. The pin fins are installed between two perforated plates and the crossflow passes between these two plates. A blowing ratio is changed from 0.5 to 1.5 for the fixed jet Reynolds number of 10,000 and five circular pin fin arrangements are considered in this study. The local heat/mass transfer coefficients on the effusion plate are measured using a naphthalene sublimation method. The results show that local distributions of heat/mass transfer coefficient are changed due to the installation of pin fins. Due to the generation of vortex and wake by the pin fin, locally low heat/mass transfer regions are reduced. Moreover, the pin fin prevents the wall jet from being swept away, resulting in the increase of heat/mass transfer. When the pin fin is installed in front of the impinging jet, the blockage effect on the crossflow enhances the heat/mass transfer. However, the pin fin installed just behind the impinging jet blocks up the wall jet, decreasing the heat/mass transfer. As the blowing ratio increases, the pin fins lead to the higher Sh value compared to the case without pin fins, inducing 16%∼22% enhancement of overall Sh value at high blowing ratio of M=1.5
Directory of Open Access Journals (Sweden)
Qitao Zhou
2013-01-01
Full Text Available The turbine blade works at high thermal loads, especially the trailing edge of the blade due to the hot gas leakage flow. Pin-fins are well recognized as a kind of effective device to augment the convective heat transfer and effectively cool the trailing edge. In this paper, the cooling effectiveness of chordwise outlet pin-fins distance and inner pin fin diameter is, respectively, studied on the heat transfer and flow friction of the trailing edge of the blade with software CFX. A 90 deg turn cooling wedge passage with cylindrical pin-fins is used to model the trailing edge. Results show that the pin-fins distance at the outlet and the arithmetic arrangement of the inner pin-fins diameter both are vital factors to influence the cooling effectiveness in the trailing edge of the blade.
Kannojiya, Vikas; Sharma, Riya; Gaur, Rahul; Jangra, Anil; Yadav, Pushpender; Prajapati, Pooja
2018-03-01
The overheating of an industrial component sometimes may leads to system failure. The convection heat transfer from a heated surface can be effectively enhanced by employing fins on that surface. This Paper emphasizes on the experimental investigation of temperature distribution along the length of pin shaped fin. The analysis is performed on a 100 mm long fin made up of brass with 19.6 mm diameter having thermal conductivity as 111 W/m.K. Temperature at different section of the fin along its length is evaluated experimentally and theoretically. The influence of convection mode viz natural & forced convection and variable heat input on the temperature distribution is evaluated. The result outcomes are then compared with the widely accepted analytical relations. A comparison of convective heat transfer coefficient for uniform and non-uniform area fin is also presented. The results by experimental and analytical method are found to be in good agreement for free convection phenomenon.
The impact of internal longitudinal fins in parabolic trough collectors operating with gases
International Nuclear Information System (INIS)
Bellos, Evangelos; Tzivanidis, Christos; Daniil, Ilias; Antonopoulos, Kimon A.
2017-01-01
Highlights: • In this study, the impact of internal fins in PTC operating with gases is presented. • Air, helium and CO_2 are tested in smooth absorber and with fins of 5–10 mm and 15 mm. • Greater fin length leads to higher thermal efficiency and 10 mm is the optimum length exergetically. • Helium is the best working fluid exergetically, with CO_2 and air to follow. • Up to 290 °C, helium performs better energetically, while CO_2 in higher temperatures. - Abstract: In this study, the use of internal fins in parabolic trough collectors operating with gas working fluids is examined. Air, helium and carbon dioxide are the investigated working fluids, while Eurotrough ET-150 is the examined solar collector. The design and the simulation of this solar collector are performed with the commercial software Solidworks Flow Simulation. The internal fins lead to higher thermal efficiency but also to higher pressure losses; something very important for the solar fields of Concentrated Power Plants. Thus, the collector is examined energetically and exergetically in order to take into account the increase in the useful output with the simultaneous greater need of pumping power. Various fin lengths are examined and finally the fin of 10 mm was proved to be the most appropriate exergetically. In working fluid comparison, helium is the most efficient working fluid exergetically for all the examined cases. In the thermal efficiency comparison, helium performs better up to 290 °C, while carbon dioxide is the best choice in higher temperature levels. Moreover, the optimum mass flow rate for the helium was proved to be 0.03 kg/s and for the other working fluids the value of 0.015 kg/s seems to lead to the most satisfying results.
Hattori, Junichi; Fukuda, Koichi; Ikegami, Tsutomu; Ota, Hiroyuki; Migita, Shinji; Asai, Hidehiro; Toriumi, Akira
2018-04-01
We study the effects of fringing electric fields on the behavior of negative-capacitance (NC) field-effect transistors (FETs) with a silicon-on-insulator body and a gate stack consisting of an oxide film, an internal metal film, a ferroelectric film, and a gate electrode using our own device simulator that can properly handle the complicated relationship between the polarization and the electric field in ferroelectric materials. The behaviors of such NC FETs and the corresponding metal-oxide-semiconductor (MOS) FETs are simulated and compared with each other to evaluate the effects of the NC of the ferroelectric film. Then, the fringing field effects are evaluated by comparing the NC effects in NC FETs with and without gate spacers. The fringing field between the gate stack, especially the internal metal film, and the source/drain region induces more charges at the interface of the film with the ferroelectric film. Accordingly, the function of the NC to modulate the gate voltage and the resulting function to improve the subthreshold swing are enhanced. We also investigate the relationships of these fringing field effects to the drain voltage and four design parameters of NC FETs, i.e., gate length, gate spacer permittivity, internal metal film thickness, and oxide film thickness.
The Supersymmetric Effective Field Theory of Inflation
Energy Technology Data Exchange (ETDEWEB)
Delacrétaz, Luca V.; Gorbenko, Victor [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,Menlo Park, CA 94025 (United States)
2017-03-10
We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable Stückelberg transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplifying the analysis in this regime. We study the phenomenology of this Lagrangian. The Goldstino can have a non-relativistic dispersion relation. Gravitino and Goldstino affect the primordial curvature perturbations at loop level. The UV modes running in the loops generate three-point functions which are degenerate with the ones coming from operators already present in the absence of supersymmetry. Their size is potentially as large as corresponding to f{sub NL}{sup equil.,orthog.}∼1 or, for particular operators, even ≫1. The non-degenerate contribution from modes of order H is estimated to be very small.
Effective field theories for correlated electrons
International Nuclear Information System (INIS)
Wallington, J.P.
1999-10-01
In this thesis, techniques of functional integration are applied to the construction of effective field theories for models of strongly correlated electrons. This is accomplished by means of the Hubbard-Stratonovic transformation which maps a system of interacting fermions onto one of free fermions interacting, not with each other, but with bosonic fields representing the collective modes of the system. Different choices of transformation are investigated throughout the thesis. It is shown that there exists a new group of discrete symmetries and transformations of the Hubbard model. Using this new group, the problem of choosing a Hubbard-Stratonovic decomposition of the Hubbard interaction term is solved. In the context of the exotic doped barium bismuthates, an extended Hubbard model with on-site attraction and nearest neighbour repulsion is studied. Mean field and renormalisation group analyses show a 'pseudospin-flop' from charge density wave to superconductivity as a function of filling. The nearest neighbour attractive Hubbard model on a quasi-2D lattice is studied as a simple phenomenological model for the high-T c cuprates. Mean field theory shows a transition from pure d-wave to pure s-wave superconductivity, via a mixed symmetry s + id state. Using Gaussian fluctuations, the BCS-Bose crossover is examined and suggestions are made about the origin of the angle dependence of the pseudogap. The continuum delta-shell potential model is introduced for anisotropic superconductors. Its mean field phases are studied and found to have some unusual properties. The BCS-Bose crossover is examined and the results are compared with those of the lattice model. Quasi-2D (highly anisotropic 3D) systems are considered. The critical properties of a Bose gas are investigated as the degree of anisotropy is varied. A new 2D Bose condensate state is found. A renormalisation group analysis is used to investigate the crossover from 2D to 3D. (author)
Regan, William; Zettl, Alexander
2015-05-05
This disclosure provides systems, methods, and apparatus related to field-effect p-n junctions. In one aspect, a device includes an ohmic contact, a semiconductor layer disposed on the ohmic contact, at least one rectifying contact disposed on the semiconductor layer, a gate including a layer disposed on the at least one rectifying contact and the semiconductor layer and a gate contact disposed on the layer. A lateral width of the rectifying contact is less than a semiconductor depletion width of the semiconductor layer. The gate contact is electrically connected to the ohmic contact to create a self-gating feedback loop that is configured to maintain a gate electric field of the gate.
A biorobotic pectoral fin for autonomous undersea vehicles.
Tangorra, James L; Davidson, S Naomi; Madden, Peter G; Lauder, George V; Hunter, Ian W
2006-01-01
A biorobotic fin for autonomous undersea vehicles (AUVs) was developed based on studies of the anatomy, kinematics, and hydrodynamics of the bluegill sunfish pectoral fin. The biorobotic fin was able to produce many of the complex fin motions used by the sunfish during steady swimming and was used to investigate mechanisms of thrust production and control. This biorobotic fin is an excellent experimental tool and is an important first step towards developing propulsive devices that give AUVs maneuvering characteristics that match and exceed those of highly maneuverable fish.
Ultra-high density out-of-plane strain sensor 3D architecture based on sub-20 nm PMOS FinFET
Ghoneim, Mohamed T.; Alfaraj, Nasir; Sevilla, Galo T.; Hussain, Muhammad Mustafa
2016-01-01
Future wearable electronics require not only flexibility but also preservation of the perks associated with today's high-performance, traditional silicon electronics. In this work we demonstrate a state-of-the-art fin-shaped field-effect transistor (FinFET)-based, out-of-plane strain sensor on flexible silicon through transforming the bulk device in a transfer-less process. The device preserves the functionality and high performance associated with its bulk, inflexible state. Furthermore, gate leakage current shows sufficient dependence on the value of the applied out-of-plane strain that enables permits use of the flexible device as a switching device as well as a strain sensor.
Ultra-high density out-of-plane strain sensor 3D architecture based on sub-20 nm PMOS FinFET
Ghoneim, Mohamed T.
2016-02-03
Future wearable electronics require not only flexibility but also preservation of the perks associated with today\\'s high-performance, traditional silicon electronics. In this work we demonstrate a state-of-the-art fin-shaped field-effect transistor (FinFET)-based, out-of-plane strain sensor on flexible silicon through transforming the bulk device in a transfer-less process. The device preserves the functionality and high performance associated with its bulk, inflexible state. Furthermore, gate leakage current shows sufficient dependence on the value of the applied out-of-plane strain that enables permits use of the flexible device as a switching device as well as a strain sensor.
Effective field theory analysis of Higgs naturalness
Energy Technology Data Exchange (ETDEWEB)
Bar-Shalom, Shaouly [Technion-Israel Inst. of Tech., Haifa (Israel); Soni, Amarjit [Brookhaven National Lab. (BNL), Upton, NY (United States); Wudka, Jose [Univ. of California, Riverside, CA (United States)
2015-07-20
Assuming the presence of physics beyond the Standard Model ( SM) with a characteristic scale M ~ O (10) TeV, we investigate the naturalness of the Higgs sector at scales below M using an effective field theory (EFT) approach. We obtain the leading 1 -loop EFT contributions to the Higgs mass with a Wilsonian-like hard cutoff, and determine t he constraints on the corresponding operator coefficients for these effects to alleviate the little hierarchy problem up to the scale of the effective action Λ < M , a condition we denote by “EFT-naturalness”. We also determine the types of physics that can lead to EFT-naturalness and show that these types of new physics are best probed in vector-boson and multiple-Higgs production. The current experimental constraints on these coefficients are also discussed.
Effective Field Theory with Two Higgs Doublets
Crivellin, Andreas; Procura, Massimiliano
2016-01-01
In this article we extend the effective field theory framework describing new physics effects to the case where the underlying low-energy theory is a Two-Higgs-Doublet model. We derive a complete set of independent operators up to dimension six assuming a $Z_2$-invariant CP-conserving Higgs potential. The effects on Higgs and gauge boson masses, mixing angles in the Higgs sector as well as couplings to fermions and gauge bosons are computed. At variance with the case of a single Higgs doublet, we find that pair production of SM-like Higgses, arising through dimension-six operators, is not fixed by fermion-fermion-Higgs couplings and can therefore be sizable.
Effective masses and the nuclear mean field
International Nuclear Information System (INIS)
Mahaux, C.; Sartor, R.
1985-01-01
The effective mass characterizes the energy dependence of the empirical average nuclear potential. This energy dependence has two different sources, namely the nonlocality in space of the microscopic mean field on the one hand, and its true energy dependence on the other hand. Correspondingly it is convenient to divide the effective mass into two components, the k-mass and the ω-mass. The latter is responsible for the existence of a peak in the energy dependence of the effective mass. This peak is located near the Fermi energy in nuclear matter and in nuclei, as well as in the electron gas, the hard sphere Fermi gas and liquid helium 3. A related phenomenon is the existence of a low energy anomaly in the energy dependence of the optical model potential between two heavy ions. (orig.)
Higgs effective field theories. Systematics and applications
Energy Technology Data Exchange (ETDEWEB)
Krause, Claudius G.
2016-07-28
Researchers of the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) announced on July 4th, 2012, the observation of a new particle. The properties of the particle agree, within the relatively large experimental uncertainties, with the properties of the long-sought Higgs boson. Particle physicists around the globe are now wondering, ''Is it the Standard Model Higgs that we observe; or is it another particle with similar properties?'' We employ effective field theories (EFTs) for a general, model-independent description of the particle. We use a few, minimal assumptions - Standard Model (SM) particle content and a separation of scales to the new physics - which are supported by current experimental results. By construction, effective field theories describe a physical system only at a certain energy scale, in our case at the electroweak-scale v. Effects of new physics from a higher energy-scale, Λ, are described by modified interactions of the light particles. In this thesis, ''Higgs Effective Field Theories - Systematics and Applications'', we discuss effective field theories for the Higgs particle, which is not necessarily the Higgs of the Standard Model. In particular, we focus on a systematic and consistent expansion of the EFT. The systematics depends on the dynamics of the new physics. We distinguish two different consistent expansions. EFTs that describe decoupling new-physics effects and EFTs that describe non-decoupling new-physics effects. We briefly discuss the first case, the SM-EFT. The focus of this thesis, however, is on the non-decoupling EFTs. We argue that the loop expansion is the consistent expansion in the second case. We introduce the concept of chiral dimensions, equivalent to the loop expansion. Using the chiral dimensions, we expand the electroweak chiral Lagrangian up to next-to-leading order, O(f{sup 2}/Λ{sup 2})=O(1/16π{sup 2}). Further, we discuss how different
Structure and Output Characteristics of a TEM Array Fitted to a Fin Heat Exchanger
Zhang, Z.; Chen, L. N.; Chen, Z. J.; Xiao, G. Q.; Liu, Z. J.
2015-06-01
In the design of a thermoelectric generator, both the heat transfer area and the number of thermoelectric modules (TEMs) should be increased accordingly as the generator power increases; crucially, both aspects need to be coordinated. A kilowatt thermoelectric generator with a fin heat exchanger is proposed for use in a constant-speed diesel generator unit. Interior fins enhance convective heat transfer, whereas an exterior fin segment increases the heat transfer area. The heat transfer surface is double that of a plane heat exchanger, and the temperature field over the exterior fins is constrained to a one-dimensional distribution. Between adjoining exterior fins, there is a cooling water channel with trapezoid cross-section, enabling compact TEMs and cooling them. Hence, more TEMs are built as a series-parallel array of TEMs with lower resistance and more stable output current. Under nonuniform conditions, to prevent circulation and energy loss, bypass diodes and antidiodes are added. Experiments and numerical calculations show that, with matching and optimization of the heat exchanger and TEM array, a stable maximum output power is obtainable from the interior of the thermoelectric generator system, which can be connected to an external maximum power point tracking system.
The Effective Field Theory of nonsingular cosmology
Energy Technology Data Exchange (ETDEWEB)
Cai, Yong [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Wan, Youping [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy,University of Science and Technology of China, Chinese Academy of Sciences,Hefei, Anhui 230026 (China); Li, Hai-Guang [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Qiu, Taotao [Institute of Astrophysics, Central China Normal University,Wuhan 430079 (China); Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University,Wuhan 430079 (China); Piao, Yun-Song [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Institute of Theoretical Physics, Chinese Academy of Sciences,P.O. Box 2735, Beijing 100190 (China)
2017-01-20
In this paper, we explore the nonsingular cosmology within the framework of the Effective Field Theory (EFT) of cosmological perturbations. Due to the recently proved no-go theorem, any nonsingular cosmological models based on the cubic Galileon suffer from pathologies. We show how the EFT could help us clarify the origin of the no-go theorem, and offer us solutions to break the no-go. Particularly, we point out that the gradient instability can be removed by using some spatial derivative operators in EFT. Based on the EFT description, we obtain a realistic healthy nonsingular cosmological model, and show the perturbation spectrum can be consistent with the observations.
The Effective Field Theory of nonsingular cosmology
International Nuclear Information System (INIS)
Cai, Yong; Wan, Youping; Li, Hai-Guang; Qiu, Taotao; Piao, Yun-Song
2017-01-01
In this paper, we explore the nonsingular cosmology within the framework of the Effective Field Theory (EFT) of cosmological perturbations. Due to the recently proved no-go theorem, any nonsingular cosmological models based on the cubic Galileon suffer from pathologies. We show how the EFT could help us clarify the origin of the no-go theorem, and offer us solutions to break the no-go. Particularly, we point out that the gradient instability can be removed by using some spatial derivative operators in EFT. Based on the EFT description, we obtain a realistic healthy nonsingular cosmological model, and show the perturbation spectrum can be consistent with the observations.
Global effects in quaternionic quantum field theory
International Nuclear Information System (INIS)
Brumby, S.P.; Joshi, G.C.
1997-01-01
A local quaternionic gauge structure is introduced onto space-time. It is a theory of vector bosons and dimensionless scalar fields, which recalls semi-classical treatments of gravity. After transforming to the 'i' gauge, it was found that the quaternionic symmetry takes the form of an exotic SU (2) gauge theory in the standard complex framework, with global phenomena appearing in the form of cosmic strings. Coupling this quaternionic sector to the Standard Model sector has only been achieved at the level of an effective theory, which is constrained by the quaternionic origin of the bosons to be of a nonrenormalisable form. 14 refs.,
Oxidation and crystal field effects in uranium
Energy Technology Data Exchange (ETDEWEB)
Tobin, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Booth, C. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shuh, D. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); van der Laan, G. [Diamond Light Source, Didcot (United Kingdom); Sokaras, D. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States); Weng, T. -C. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States); Yu, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bagus, P. S. [Univ. of North Texas, Denton, TX (United States); Tyliszczak, T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nordlund, D. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States)
2015-07-06
An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO_{2}), uranium trioxide (UO_{3}), and uranium tetrafluoride (UF_{4}). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.
The Biological Effects of Weak Electromagnetic Fields
International Nuclear Information System (INIS)
Algattawi, A.; Elshyrih, H.
2010-01-01
Many studies investigated that weak electromagnetic fields remove calcium ions bound to the membranes of living cells, making them more likely to tear,. There is an enzyme that destroys DNA this enzyme leaking through the membranes of lysosomes explains the fragmentation of DNA. This case was seen in cells exposed to mobile phone signals. When this occurs in the germ line it reduces fertility and predicts genetic damage in future generations. Although leakage of calcium ions into the cytosol (the main part of the cell) accelerates the growth, but it also promotes the growth of tumors. Leakage of calcium ions into neurons (brain cells) makes nerve impulses accounting for pain and other neurological symptoms in electro sensitive. It also reduces the signal to noise ratio of the brain making it less likely to respond. This may be partially responsible for the increased accident rate of drivers using mobile phones. More details for the molecular mechanisms to explain characteristics of electromagnetic exposure are needed, e.g. I) why weak fields are more effective than strong ones, II) why some frequencies such as 16 Hz are especially potent and III) why pulsed fields do more damage
Suzuki, Tohru; Haga, Yutaka; Takeuchi, Toshio; Uji, Susumu; Hashimoto, Hisashi; Kurokawa, Tadahide
2003-01-01
In teleosts, the embryonic fin fold consists of a peridermis, an underlying epidermis and a small number of mesenchymal cells. Beginning from such a simple structure, the fin skeletons, including the proximal and distal radials and lepidotrichia (finrays), develop in the dorsal fin fold at the larval stage. Their process of skeletogenesis and embryonic origin are unclear. Using flounder larvae, we report the differentiation process for chondrocytes and scleroblasts prior to fin skeletogenesis and the effects of retinoic acid (RA) on it. In early larvae, the mesenchymal cells grow between the epidermis and spinal cord to form a line of periodical condensations, which are proximal radial primordia, to produce chondrocytes. The prescleroblasts, which ossify the proximal radial cartilages, differentiate in the mesenchymal cells remaining between the cartilages. Then, mesenchymal condensations occur between the distal ends of the proximal radials, forming distal radial primordia, to produce chondrocytes. Simultaneously, condensations occur between the distal radial primordia and peridermis, which are lepidotrichia primordia, to produce prescleroblasts. Exogenous RA specifically inhibits the mesenchymal condensation prior to the proximal radial formation together with the down-regulation of sonic hedgehog (shh) and patched (pta) expression, resulting in the loss of proximal radials. Thus, it was indicated that differentiation of the precursor cells of radials and lepidotrichia begins in the proximal part of the fin fold and that the initial mesenchymal condensation prior to the proximal radial formation is highly susceptible to the effects of RA. Lepidotrichia formation does not occur where proximal radials are absent, indicating that lepidotrichia differentiation requires interaction with the radial cartilages. To examine the suggestion that neural crest cells contribute to the medial fin skeletons, we localized the HNK-1 positive cells in flounder embryos and slug and
Nucleon Polarisabilities and Effective Field Theories
Griesshammer, Harald W.
2017-09-01
Low-energy Compton scattering probes the nucleon's two-photon response to electric and magnetic fields at fixed photon frequency and multipolarity. It tests the symmetries and strengths of the interactions between constituents, and with photons. For convenience, this energy-dependent information is often compressed into the two scalar dipole polarisabilities αE 1 and βM 1 at zero photon energy. These are fundamental quantities, and important for the proton charge radius puzzle and the Lamb shift of muonic hydrogen. Combined with emerging lattice QCD computations, they provide stringent tests for our understanding of hadron structure. Extractions of the proton and neutron polarisabilities from all published elastic data below 300 MeV in Chiral Effective Field Theory with explicit Δ (1232) are now available. This talk emphasises χEFT as natural bridge between lattice QCD and ongoing or approved efforts at HI γS, MAMI and MAX-lab. Chiral lattice extrapolations from mπ > 200 MeV to the physical point compare well to lattice computations. Combining χEFT with high-intensity experiments with polarised targets and polarised beams will extract not only scalar polarisabilities, but in particular the four so-far poorly explored spin-polarisabilities. These parametrise the stiffness of the spin in external electro-magnetic fields (nucleonic bi-refringence/Faraday effect). New chiral predictions for proton, deuteron and 3He observables show intriguing sensitivities on spin and neutron polarisabilities. Data consistency and a model-independent quantification of residual theory uncertainties by Bayesian analysis are also discussed. Proton-neutron differences explore the interplay between chiral symmetry breaking and short-distance Physics. Finally, I address their impact on the neutron-proton mass difference, big-bang nucleosynthesis, and their relevance for anthropic arguments. Supported in part by DOE DE-SC0015393 and George Washington University.
ALPs effective field theory and collider signatures
Energy Technology Data Exchange (ETDEWEB)
Brivio, I. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); University of Copenhagen, Niels Bohr International Academy, Copenhagen (Denmark); Gavela, M.B.; Merlo, L.; Rey, R. del [Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Mimasu, K. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Universite Catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium); No, J.M. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); King' s College London, Department of Physics, London (United Kingdom); Sanz, V. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)
2017-08-15
We study the leading effective interactions between the Standard Model fields and a generic singlet CP-odd (pseudo-) Goldstone boson. Two possible frameworks for electroweak symmetry breaking are considered: linear and non-linear. For the latter case, the basis of leading effective operators is determined and compared with that for the linear expansion. Associated phenomenological signals at colliders are explored for both scenarios, deriving new bounds and analyzing future prospects, including LHC and High Luminosity LHC sensitivities. Mono-Z, mono-W, W-photon plus missing energy and on-shell top final states are most promising signals expected in both frameworks. In addition, non-standard Higgs decays and mono-Higgs signatures are especially prominent and expected to be dominant in non-linear realisations. (orig.)
Consistency relations in effective field theory
Energy Technology Data Exchange (ETDEWEB)
Munshi, Dipak; Regan, Donough, E-mail: D.Munshi@sussex.ac.uk, E-mail: D.Regan@sussex.ac.uk [Astronomy Centre, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH (United Kingdom)
2017-06-01
The consistency relations in large scale structure relate the lower-order correlation functions with their higher-order counterparts. They are direct outcome of the underlying symmetries of a dynamical system and can be tested using data from future surveys such as Euclid. Using techniques from standard perturbation theory (SPT), previous studies of consistency relation have concentrated on continuity-momentum (Euler)-Poisson system of an ideal fluid. We investigate the consistency relations in effective field theory (EFT) which adjusts the SPT predictions to account for the departure from the ideal fluid description on small scales. We provide detailed results for the 3D density contrast δ as well as the scaled divergence of velocity θ-bar . Assuming a ΛCDM background cosmology, we find the correction to SPT results becomes important at k ∼> 0.05 h/Mpc and that the suppression from EFT to SPT results that scales as square of the wave number k , can reach 40% of the total at k ≈ 0.25 h/Mpc at z = 0. We have also investigated whether effective field theory corrections to models of primordial non-Gaussianity can alter the squeezed limit behaviour, finding the results to be rather insensitive to these counterterms. In addition, we present the EFT corrections to the squeezed limit of the bispectrum in redshift space which may be of interest for tests of theories of modified gravity.
Deformable Organic Nanowire Field-Effect Transistors.
Lee, Yeongjun; Oh, Jin Young; Kim, Taeho Roy; Gu, Xiaodan; Kim, Yeongin; Wang, Ging-Ji Nathan; Wu, Hung-Chin; Pfattner, Raphael; To, John W F; Katsumata, Toru; Son, Donghee; Kang, Jiheong; Matthews, James R; Niu, Weijun; He, Mingqian; Sinclair, Robert; Cui, Yi; Tok, Jeffery B-H; Lee, Tae-Woo; Bao, Zhenan
2018-02-01
Deformable electronic devices that are impervious to mechanical influence when mounted on surfaces of dynamically changing soft matters have great potential for next-generation implantable bioelectronic devices. Here, deformable field-effect transistors (FETs) composed of single organic nanowires (NWs) as the semiconductor are presented. The NWs are composed of fused thiophene diketopyrrolopyrrole based polymer semiconductor and high-molecular-weight polyethylene oxide as both the molecular binder and deformability enhancer. The obtained transistors show high field-effect mobility >8 cm 2 V -1 s -1 with poly(vinylidenefluoride-co-trifluoroethylene) polymer dielectric and can easily be deformed by applied strains (both 100% tensile and compressive strains). The electrical reliability and mechanical durability of the NWs can be significantly enhanced by forming serpentine-like structures of the NWs. Remarkably, the fully deformable NW FETs withstand 3D volume changes (>1700% and reverting back to original state) of a rubber balloon with constant current output, on the surface of which it is attached. The deformable transistors can robustly operate without noticeable degradation on a mechanically dynamic soft matter surface, e.g., a pulsating balloon (pulse rate: 40 min -1 (0.67 Hz) and 40% volume expansion) that mimics a beating heart, which underscores its potential for future biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DEFF Research Database (Denmark)
Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph
2016-01-01
Heat transfer and pressure loss characteristics of a fin and tube heat exchanger are numerically investigated based on parametric fin geometry. The cross-flow type heat exchanger with circular tubes and rectangular fin profile is selected as a reference design. The fin geometry is varied using...... a design aspect ratio as a variable parameter in a range of 0.1-1.0 to predict the impact on overall performance of the heat exchanger. In this paper, geometric profiles with a constant thickness of fin base are studied. Three-dimensional, steady state CFD model is developed using commercially available...... are determined. The best performed geometric fin profile based on the higher heat transfer and lower pressure loss is predicted. The study provides insights into the impact of fin geometry on the heat transfer performance which help escalate the understanding of heat exchanger designing and manufacturing...
Electromagnetic field induced biological effects in humans.
Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J
2015-01-01
Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF
O'Bryhim, Jason R.
2017-01-31
Mercury (Hg) exposure poses a threat to both fish and human health. Sharks are known to bioaccumulate Hg, however, little is known regarding how Hg is distributed between different tissue groups (e.g. muscle regions, organs). Here we evaluated total mercury (THg) concentrations from eight muscle regions, four fins (first dorsal, left and right pectorals, caudal-from both the inner core and trailing margin of each fin), and five internal organs (liver, kidney, spleen, heart, epigonal organ) from two different shark species, bonnethead (Sphyrna tiburo) and silky shark (Carcharhinus falciformis) to determine the relationships of THg concentrations between and within tissue groups. Total Hg concentrations were highest in the eight muscle regions with no significant differences in THg concentrations between the different muscle regions and muscle types (red and white). Results from tissue collected from any muscle region would be representative of all muscle sample locations. Total Hg concentrations were lowest in samples taken from the fin inner core of the first dorsal, pectoral, and caudal (lower lobe) fins. Mercury concentrations for samples taken from the trailing margin of the dorsal, pectoral, and caudal fins (upper and lower lobe) were also not significantly different from each other for both species. Significant relationships were found between THg concentrations in dorsal axial muscle tissue and the fin inner core, liver, kidney, spleen and heart for both species as well as the THg concentrations between the dorsal fin trailing margin and the heart for the silky shark and all other sampled tissue types for the bonnethead shark. Our results suggest that biopsy sampling of dorsal muscle can provide data that can effectively estimate THg concentrations in specific organs without using more invasive, or lethal methods.
Sciacca, Virginia; Caruso, Francesco; Beranzoli, Laura; Chierici, Francesco; De Domenico, Emilio; Embriaco, Davide; Favali, Paolo; Giovanetti, Gabriele; Larosa, Giuseppina; Marinaro, Giuditta; Papale, Elena; Pavan, Gianni; Pellegrino, Carmelo; Pulvirenti, Sara; Simeone, Francesco; Viola, Salvatore; Riccobene, Giorgio
2015-01-01
In recent years, an increasing number of surveys have definitively confirmed the seasonal presence of fin whales (Balaenoptera physalus) in highly productive regions of the Mediterranean Sea. Despite this, very little is yet known about the routes that the species seasonally follows within the Mediterranean basin and, particularly, in the Ionian area. The present study assesses for the first time fin whale acoustic presence offshore Eastern Sicily (Ionian Sea), throughout the processing of about 10 months of continuous acoustic monitoring. The recording of fin whale vocalizations was made possible by the cabled deep-sea multidisciplinary observatory, “NEMO-SN1”, deployed 25 km off the Catania harbor at a depth of about 2,100 meters. NEMO-SN1 is an operational node of the European Multidisciplinary Seafloor and water-column Observatory (EMSO) Research Infrastructure. The observatory was equipped with a low-frequency hydrophone (bandwidth: 0.05 Hz–1 kHz, sampling rate: 2 kHz) which continuously acquired data from July 2012 to May 2013. About 7,200 hours of acoustic data were analyzed by means of spectrogram display. Calls with the typical structure and patterns associated to the Mediterranean fin whale population were identified and monitored in the area for the first time. Furthermore, a background noise analysis within the fin whale communication frequency band (17.9–22.5 Hz) was conducted to investigate possible detection-masking effects. The study confirms the hypothesis that fin whales are present in the Ionian Sea throughout all seasons, with peaks in call detection rate during spring and summer months. The analysis also demonstrates that calls were more frequently detected in low background noise conditions. Further analysis will be performed to understand whether observed levels of noise limit the acoustic detection of the fin whales vocalizations, or whether the animals vocalize less in the presence of high background noise. PMID:26581104
Energy Technology Data Exchange (ETDEWEB)
Prokopov, V.G.; Sherenkovskii, Yu.V.; Stelyuk, Yu.I.
1977-01-01
Results are given for an approximate analytical two-dimensional solution of the problem on the distribution of temperatures in the cross-section of a linear fin. Relationships are suggested which make it possible to evaluate the effectiveness of finning in comparison to a smooth wall. Single-dimensional relationships are shown to be unacceptable for determining the boundaries for the rational use of finning.
Magnetic Field Effects on Plasma Plumes
Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.
2012-01-01
Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results
FinTech Market Development Perspectives
Kalmykova, Ekaterina Yurievna; Ryabova, Anna
2016-01-01
Fast development of technologies has led to emergence of the new market – FinTech – which is very attractive for investors today. By now this market has a great number of different concepts: P2P-crediting, E-wallets, Bitcoins, mPOS-acquiring, T-commerce, mobile banks, etc. Many of these tools have already heavily entered our ordinary life. People can obtain any credits through special services on the Internet from other users without participation of banks, pay by credit card using mobile dev...
Fontaine, Guillaume
2007-01-01
En el momento en que los demócratas de los Estados Unidos han encabezado, al parecer, la cruzada mundial contra el cambio climático, quizá no es inútil leer (o releer) el ensayo del periodista Paul Roberts, publicado a finales del 2004 bajo el título llamativo de "El fin del petróleo". En efecto, cuando se reactivan las recetas del "charity business" (como eran los megaconciertos contra la hambruna y la sequía en Somalia, o para la liberación de Mandela) para salvar nuestro planeta, y m...
Effective field theory of cosmological perturbations
International Nuclear Information System (INIS)
Piazza, Federico; Vernizzi, Filippo
2013-01-01
The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu–Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy. (paper)
Effective field theory of cosmological perturbations
Piazza, Federico; Vernizzi, Filippo
2013-11-01
The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu-Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy.
DEFF Research Database (Denmark)
Tudorache, Christian; Jordan, Anders D.; Svendsen, Jon Christian
2009-01-01
The objective of this study was to identify kinematic variables correlated with oxygen consumption during spontaneous labriform swimming. Kinematic variables (swimming speed, change of speed, turning angle, turning rate, turning radius and pectoral fin beat frequency) and oxygen consumption (MO2......) of spontaneous swimming in Embiotoca lateralis were measured in a circular arena using video tracking and respirometry, respectively. The main variable influencing MO2 was pectoral fin beat frequency (r (2) = 0.71). No significant relationship was found between swimming speed and pectoral fin beat frequency....... Complementary to other methods within biotelemetry such as EMG it is suggested that such correlations of pectoral fin beat frequency may be used to measure the energy requirements of labriform swimming fish such as E. lateralis in the field, but need to be taken with great caution since movement and oxygen...
Effective field theory for cold atoms
International Nuclear Information System (INIS)
Hammer, H.-W.
2005-01-01
Effective Field Theory (EFT) provides a powerful framework that exploits a separation of scales in physical systems to perform systematically improvable, model-independent calculations. Particularly interesting are few-body systems with short-range interactions and large two-body scattering length. Such systems display remarkable universal features. In systems with more than two particles, a three-body force with limit cycle behavior is required for consistent renormalization already at leading order. We will review this EFT and some of its applications in the physics of cold atoms. Recent extensions of this approach to the four-body system and N-boson droplets in two spatial dimensions will also be discussed
Nuclear parity violation in effective field theory
International Nuclear Information System (INIS)
Zhu Shilin; Maekawa, C.M.; Holstein, B.R.; Ramsey-Musolf, M.J.; Kolck, U. van
2005-01-01
We reformulate the analysis of nuclear parity violation (PV) within the framework of effective field theory (EFT). To O(Q), the PV nucleon-nucleon (NN) interaction depends on five a priori unknown constants that parameterize the leading-order, short-range four-nucleon operators. When pions are included as explicit degrees of freedom, the potential contains additional medium- and long-range components parameterized by PV πNN coupling. We derive the form of the corresponding one- and two-pion-exchange potentials. We apply these considerations to a set of existing and prospective PV few-body measurements that may be used to determine the five independent low-energy constants relevant to the pionless EFT and the additional constants associated with dynamical pions. We also discuss the relationship between the conventional meson-exchange framework and the EFT formulation, and argue that the latter provides a more general and systematic basis for analyzing nuclear PV
Strain relaxation of germanium-tin (GeSn) fins
Kang, Yuye; Huang, Yi-Chiau; Lee, Kwang Hong; Bao, Shuyu; Wang, Wei; Lei, Dian; Masudy-Panah, Saeid; Dong, Yuan; Wu, Ying; Xu, Shengqiang; Tan, Chuan Seng; Gong, Xiao; Yeo, Yee-Chia
2018-02-01
Strain relaxation of biaxially strained Ge1-xSnx layer when it is patterned into Ge1-xSnx fin structures is studied. Ge1-xSnx-on-insulator (GeSnOI) substrate was realized using a direct wafer bonding (DWB) technique and Ge1-xSnx fin structures were formed by electron beam lithography (EBL) patterning and dry etching. The strain in the Ge1-xSnx fins having fin widths (WFin) ranging from 1 μm down to 80 nm was characterized using micro-Raman spectroscopy. Raman measurements show that the strain relaxation increases with decreasing WFin. Finite element (FE) simulation shows that the strain component in the transverse direction relaxes with decreasing WFin, while the strain component along the fin direction remains unchanged. For various Ge1-xSnx fin widths, transverse strain relaxation was further extracted using micro-Raman spectroscopy, which is consistent with the simulation results.
Numerical simulation of heat exchangers elliptical tubes and corrugated fins
International Nuclear Information System (INIS)
Borrajo Pérez, Rubén; González Bayón, Juan José; Menéndez Pérez, Alberto
2015-01-01
The intensified heat exchangers fins are widely used in the automotive and domestic industry. The low heat transfer coefficients on the air side are the main reason why these fins of heat exchangers need to be intensified. In this paper, the numerical simulation of a wavy fin type is made with elliptical tubes. The dimensions of the fin is in the range of those used in air conditioning equipment. The friction factor and the mass transfer coefficient as a function of the Reynolds number for this type of fin, always within the laminar regime is determined. The numerical model against experimental results published in the literature is validated. In addition the mechanisms that produce intensified heat transfer fin in such occur. (full text)
Two-dimensional nonlinear transient heat transfer analysis of variable section pin fins
Energy Technology Data Exchange (ETDEWEB)
Malekzadeh, P. [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Boushehr 75168 (Iran); Rahideh, H. [Department of Chemical Engineering, School of Engineering, Persian Gulf University, Boushehr 75168 (Iran)
2009-04-15
The two-dimensional nonlinear transient heat transfer analysis of variable cross section pin-fins is studied using the incremental differential quadrature method (IDQM) as a simple, accurate, and computationally efficient numerical tool. The formulations are general so that it can easily be used for arbitrary continuously varying cross section pin fins with the spatial-temperature dependent thermal parameters. On all external surfaces of the pin fin, the convective-radiative condition is considered. The effects of two different types of boundary conditions at the base of pin fin are investigated: time and spatial dependent temperature, and the convection heat transfer. The thermal conductivity of the pin fin is assumed to vary as a linear function of the temperature. The accuracy of the method is demonstrated by comparing its results with those generated by finite difference method. It is shown that using few grid points, results in excellent agreements with those of FDM are obtained. Less computational efforts of the method with respect to finite difference method is shown. (author)
Protective Role of Comfrey Leave Extracts on UV-induced Zebrafish Fin Damage.
Cheng, Chien-Chung; Chou, Chi-Yuan; Chang, Yao-Chin; Wang, Hsuan-Wen; Wen, Chi-Chung; Chen, Yau-Hung
2014-07-01
In zebrafish, UV exposure leads to fin malformation phenotypes including fin reduction or absence. The present study evaluated UV-protective activities of comfrey leaves extracts in a zebrafish model by recording fin morphological changes. Chemopreventive effects of comfrey leave extracts were evaluated using Kaplan-Meier analysis and Cox proportional hazards regression. The results showed that (1) the mean times of return to normal fin in the UV+comfrey (50 and 100 ppm) groups were 3.43 and 2.86 days and were quicker compared with that in the UV only group (4.21 days); (2) zebrafish fins in the UV+comfrey (50 and 100 ppm) groups were 2.05 and 3.25 times more likely to return to normal than those in the UV only group; and (3) comfrey leave extracts had UV-absorbance abilities and significantly reduced ROS production in UV-exposed zebrafish embryos, which may attenuate UV-mediated apoptosis. In conclusion, comfrey leaves extracts may have the potential to be developed as UV-protective agents to protect zebrafish embryos from UV-induced damage.
Research on dynamic characteristics of new chaotic-advection fins
International Nuclear Information System (INIS)
Kong Songtao; Dong Qiwu; Liu Minshan; Zhu Qing
2007-01-01
Analysis and the numerical simulation has confirmed that the flow is of the chaotic advection in the flow channel of the new fin. The chaotic advection results in stronger mixing under low Re, and thus enhances the heat transfer and anti-scaling ability. The new fin provides the beneficial exploration to the concept of chaotic advection which applies to the plate-fin heat exchanger. (authors)
An IPMC-enabled bio-inspired bending/twisting fin for underwater applications
International Nuclear Information System (INIS)
Palmre, Viljar; Pugal, David; Kim, Sungjun; Kim, Kwang J; Hubbard, Joel J; Fleming, Maxwell; Leang, Kam K
2013-01-01
This paper discusses the design, fabrication, and characterization of an ionic polymer–metal composite (IPMC) actuator-based bio-inspired active fin capable of bending and twisting motion. It is pointed out that IPMC strip actuators are used in the simple cantilever configuration to create simple bending (flapping-like) motion for propulsion in underwater autonomous systems. However, the resulting motion is a simple 1D bending and performance is rather limited. To enable more complex deformation, such as the flapping (pitch and heaving) motion of real pectoral and caudal fish fins, a new approach which involves molding or integrating IPMC actuators into a soft boot material to create an active control surface (called a ‘fin’) is presented. The fin can be used to realize complex deformation depending on the orientation and placement of the actuators. In contrast to previously created IPMCs with patterned electrodes for the same purpose, the proposed design avoids (1) the more expensive process of electroless plating platinum all throughout the surface of the actuator and (2) the need for specially patterning the electrodes. Therefore, standard shaped IPMC actuators such as those with rectangular dimensions with varying thicknesses can be used. One unique advantage of the proposed structural design is that custom shaped fins and control surfaces can be easily created without special materials processing. The molding process is cost effective and does not require functionalizing or ‘activating’ the boot material similar to creating IPMCs. For a prototype fin (90 mm wide × 60 mm long × 1.5 mm thick), the measured maximum tip displacement was approximately 44 mm and the twist angle of the fin exceeded 10°. Lift and drag measurements in water where the prototype fin with an airfoil profile was dragged through water at a velocity of 21 cm s −1 showed that the lift and drag forces can be affected by controlling the IPMCs embedded into the fin structure
An IPMC-enabled bio-inspired bending/twisting fin for underwater applications
Palmre, Viljar; Hubbard, Joel J.; Fleming, Maxwell; Pugal, David; Kim, Sungjun; Kim, Kwang J.; Leang, Kam K.
2013-01-01
This paper discusses the design, fabrication, and characterization of an ionic polymer-metal composite (IPMC) actuator-based bio-inspired active fin capable of bending and twisting motion. It is pointed out that IPMC strip actuators are used in the simple cantilever configuration to create simple bending (flapping-like) motion for propulsion in underwater autonomous systems. However, the resulting motion is a simple 1D bending and performance is rather limited. To enable more complex deformation, such as the flapping (pitch and heaving) motion of real pectoral and caudal fish fins, a new approach which involves molding or integrating IPMC actuators into a soft boot material to create an active control surface (called a ‘fin’) is presented. The fin can be used to realize complex deformation depending on the orientation and placement of the actuators. In contrast to previously created IPMCs with patterned electrodes for the same purpose, the proposed design avoids (1) the more expensive process of electroless plating platinum all throughout the surface of the actuator and (2) the need for specially patterning the electrodes. Therefore, standard shaped IPMC actuators such as those with rectangular dimensions with varying thicknesses can be used. One unique advantage of the proposed structural design is that custom shaped fins and control surfaces can be easily created without special materials processing. The molding process is cost effective and does not require functionalizing or ‘activating’ the boot material similar to creating IPMCs. For a prototype fin (90 mm wide × 60 mm long × 1.5 mm thick), the measured maximum tip displacement was approximately 44 mm and the twist angle of the fin exceeded 10°. Lift and drag measurements in water where the prototype fin with an airfoil profile was dragged through water at a velocity of 21 cm s-1 showed that the lift and drag forces can be affected by controlling the IPMCs embedded into the fin structure. These
Boominathan, Vijay P; Ferreira, Tracie L
2012-12-01
Student interest in topics of tissue engineering is increasing exponentially as the number of universities offering programs in bioengineering are on the rise. Bioengineering encompasses all of the STEM categories: Science, Technology, Engineering, and Math. Inquiry-based learning is one of the most effective techniques for promoting student learning and has been demonstrated to have a high impact on learning outcomes. We have designed program outcomes for our bioengineering program that require tiered activities to develop problem solving skills, peer evaluation techniques, and promote team work. While it is ideal to allow students to ask unique questions and design their own experiments, this can be difficult for instructors to have reagents and supplies available for a variety of activities. Zebrafish can be easily housed, and multiple variables can be tested on a large enough group to provide statistical value, lending them well to inquiry-based learning modules. We have designed a laboratory activity that takes observation of fin regeneration to the next level: analyzing conditions that may impact regeneration. Tissue engineers seek to define the optimum conditions to grow tissue for replacement parts. The field of tissue engineering is likely to benefit from understanding natural mechanisms of regeneration and the factors that influence the rate of regeneration. We have outlined the results of varying temperature on fin regeneration and propose other inquiry modules such as the role of pH in fin regeneration. Furthermore, we have provided useful tools for developing critical thinking and peer review of research ideas, assessment guidelines, and grading rubrics for the activities associated with this exercise.
DETERMINATION OF THE TEMPERATURE DISTRIBUTION THE PERFORATED FINS UNDER
Directory of Open Access Journals (Sweden)
Aziz7 M. Mhamuad
2015-02-01
Full Text Available This work treats the problem of heat transfer for perforated fins under natural convection. The temperature distribution is examined for an array of rectangular fins (15 fins with uniform cross-sectional area (100x270 mm embedded with various vertical body perforations that extend through the fin thickness. The patterns of perforations include 18 circular perforations (holes. Experiments were carried out in an experimental facility that was specifically design and constructed for this purpose. The heat transfer rate and the coefficient of heat transfer increases with perforation diameter increased.
Effective field theory description of halo nuclei
Hammer, H.-W.; Ji, C.; Phillips, D. R.
2017-10-01
Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.
Effective field theory approaches for tensor potentials
Energy Technology Data Exchange (ETDEWEB)
Jansen, Maximilian
2016-11-14
Effective field theories are a widely used tool to study physical systems at low energies. We apply them to systematically analyze two and three particles interacting via tensor potentials. Two examples are addressed: pion interactions for anti D{sup 0}D{sup *0} scattering to dynamically generate the X(3872) and dipole interactions for two and three bosons at low energies. For the former, the one-pion exchange and for the latter, the long-range dipole force induce a tensor-like structure of the potential. We apply perturbative as well as non-perturbative methods to determine low-energy observables. The X(3872) is of major interest in modern high-energy physics. Its exotic characteristics require approaches outside the range of the quark model for baryons and mesons. Effective field theories represent such methods and provide access to its peculiar nature. We interpret the X(3872) as a hadronic molecule consisting of neutral D and D{sup *} mesons. It is possible to apply an effective field theory with perturbative pions. Within this framework, we address chiral as well as finite volume extrapolations for low-energy observables, such as the binding energy and the scattering length. We show that the two-point correlation function for the D{sup *0} meson has to be resummed to cure infrared divergences. Moreover, next-to-leading order coupling constants, which were introduced by power counting arguments, appear to be essential to renormalize the scattering amplitude. The binding energy as well as the scattering length display a moderate dependence on the light quark masses. The X(3872) is most likely deeper bound for large light quark masses. In a finite volume on the other hand, the binding energy significantly increases. The dependence on the light quark masses and the volume size can be simultaneously obtained. For bosonic dipoles we apply a non-perturbative, numerical approach. We solve the Lippmann-Schwinger equation for the two-dipole system and the Faddeev
International Nuclear Information System (INIS)
Noh, Hyung Gyun; Kang, Hie Chan
2016-01-01
In severe accident, the molten corium would discharge into the reactor cavity and interact with water and concrete of cavity. Molten corium includes non-oxidation metals such as Zr, Fe and Cr. These metal species reacted with water emit hydrogen gas. In addition to this, a mount of steam can be emitted to the containment such as steam line break accident. As a result, steam and hydrogen gas can pressurize containment over the design pressure and threaten its integrity. For this reasons, a concept equipped with finned on the containment building was proposed for coping with prolonged accident. Finned containment can enhance heat transfer to the ambient, and the building itself is working as a heat sink. Multiple metal fins and metal rod are penetrated into containment wall, and the rods are working as an additional path of heat removal. To be accepted in the nuclear power plants, this configuration should satisfy the requirement of heat removal and follow all regulations related with containment also. For applying to Korean nuclear power plants, the finned containment should follow all regulations specialized in Korea such as Nuclear regulatory criteria for light water reactor and Guidelines of nuclear safety examination for light water reactor. A concept of containment as a passive cooling system has been proposed. Furthermore, the new containment concept can be applied on the real containment which satisfies the various regulations. Finned containment would be expected positive effects on heat removal from the containment. If the fins are properly welded to the liner, finned containment could satisfy the leak tightness and prevention of external influences. Finned containment could be favorable to protect external impact like aircraft crash because of the additional structural integrity by the fins
Energy Technology Data Exchange (ETDEWEB)
Noh, Hyung Gyun [Pohang University, Pohang (Korea, Republic of); Kang, Hie Chan [Kunsan University, Gunsan (Korea, Republic of)
2016-05-15
In severe accident, the molten corium would discharge into the reactor cavity and interact with water and concrete of cavity. Molten corium includes non-oxidation metals such as Zr, Fe and Cr. These metal species reacted with water emit hydrogen gas. In addition to this, a mount of steam can be emitted to the containment such as steam line break accident. As a result, steam and hydrogen gas can pressurize containment over the design pressure and threaten its integrity. For this reasons, a concept equipped with finned on the containment building was proposed for coping with prolonged accident. Finned containment can enhance heat transfer to the ambient, and the building itself is working as a heat sink. Multiple metal fins and metal rod are penetrated into containment wall, and the rods are working as an additional path of heat removal. To be accepted in the nuclear power plants, this configuration should satisfy the requirement of heat removal and follow all regulations related with containment also. For applying to Korean nuclear power plants, the finned containment should follow all regulations specialized in Korea such as Nuclear regulatory criteria for light water reactor and Guidelines of nuclear safety examination for light water reactor. A concept of containment as a passive cooling system has been proposed. Furthermore, the new containment concept can be applied on the real containment which satisfies the various regulations. Finned containment would be expected positive effects on heat removal from the containment. If the fins are properly welded to the liner, finned containment could satisfy the leak tightness and prevention of external influences. Finned containment could be favorable to protect external impact like aircraft crash because of the additional structural integrity by the fins.
Heat transfer simulation of motorcycle fins under varying velocity using CFD method
Shahril, K.; Mohd Kasim, Nurhayati Binti; Sabri, M.
2013-12-01
Motorcycle engine releases heat to the atmosphere through the mode of force convection. To solve this, fins are provided on the outer of the cylinder. The heat transfer rate is defined depending on the velocity of vehicle, fin geometry and the ambient temperature. Increasing the temperature difference between the object and the environment, increasing the convection heat transfer coefficient, or increasing the surface area of the object increases the heat transfer. Many experimental methods are available in literature to analyze the effect of these factors on the heat transfer rate. However, CFD analysis will be use to simulate the heat transfer of the engine block. ANSYS software is selected to run the simulation.
International Nuclear Information System (INIS)
Yoo, Sung Min; Kim, Yoon Young
2007-01-01
This work is concerned with the topology optimization of three-dimensional cooling fins or heat sinks. Motivated by earlier success of the Internal Element Connectivity Method (I-ECP) method in two dimensional problems, the extension of I-ECP to three-dimensional problems is carried out. The main efforts were made to maintain the numerical trouble-free characteristics of I-ECP for full three-dimensional problems; a serious numerical problem appearing in thermal topology optimization is erroneous temperature undershooting. The effectiveness of the present implementation was checked through the design optimization of three-dimensional fins
Chemical effects in the near-field
International Nuclear Information System (INIS)
Ewart, F.T.; Tasker, P.W.
1987-01-01
A research program is described which is designed to investigate the chemical conditions in the near-field of a concrete based repository and the behavior of the radiologically important nuclides under these conditions. The chemical conditions are determined by the corrosion of the iron components of the repository and by the soluble components of the concrete. Both of these have been investigated experimentally and models developed which have been validated by further experiment. The effect of these reactions on the repository pH and Eh, and how these develop in time and space have been modelled using a new coupled chemical equilibrium and transport code. The solubility of the important nuclides are being studied experimentally under these conditions, and under sensible variations. Results are reported for plutonium, americium, neptunium and lead; these results have been under to refine the thermodynamic data base used for the geochemical code PHREEQE. The sorption behavior of plutonium and americium, under the same conditions, have been studied, the sorption coefficients were found to be large and independent of the concrete formulation, particle size and solid liquid ratio
A periodic table of effective field theories
Energy Technology Data Exchange (ETDEWEB)
Cheung, Clifford [Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena, CA (United States); Kampf, Karol; Novotny, Jiri [Institute of Particle and Nuclear Physics,Faculty of Mathematics and Physics, Charles University,Prague (Czech Republic); Shen, Chia-Hsien [Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena, CA (United States); Trnka, Jaroslav [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA (United States)
2017-02-06
We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTs with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d<6 and verify that they correspond to known theories in the literature. Our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.
Room Temperature Silicene Field-Effect Transistors
Akinwande, Deji
Silicene, a buckled Si analogue of graphene, holds significant promise for future electronics beyond traditional CMOS. In our predefined experiments via encapsulated delamination with native electrodes approach, silicene devices exhibit an ambipolar charge transport behavior, corroborating theories on Dirac band in Ag-free silicene. Monolayer silicene device has extracted field-effect mobility within the theoretical expectation and ON/OFF ratio greater than monolayer graphene, while multilayer silicene devices show decreased mobility and gate modulation. Air-stability of silicene devices depends on the number of layers of silicene and intrinsic material structure determined by growth temperature. Few or multi-layer silicene devices maintain their ambipolar behavior for days in contrast to minutes time scale for monolayer counterparts under similar conditions. Multilayer silicene grown at different temperatures below 300oC possess different intrinsic structures and yield different electrical property and air-stability. This work suggests a practical prospect to enable more air-stable silicene devices with layer and growth condition control, which can be leveraged for other air-sensitive 2D materials. In addition, we describe quantum and classical transistor device concepts based on silicene and related buckled materials that exploit the 2D topological insulating phenomenon. The transistor device physics offer the potential for ballistic transport that is robust against scattering and can be employed for both charge and spin transport. This work was supported by the ARO.
PZT thin film actuated elastic fin micromotor.
Dubois, M A; Muralt, P
1998-01-01
A piezoelectric elastic fin micromotor based on a PbZr(0.53 )Ti(0.47)O(3) thin film driving a micromachined silicon membrane was fabricated and studied. The stator was characterized by interferometry, and a laser set-up was used to measure the angular velocity and acceleration of the motor. The torque, the output power, and the efficiency of the device were extracted from these measurements. Values up to 1020 rpm and 0.94 microNm were observed for the velocity and the torque, respectively, which would be sufficient for a wristwatch application. The present version exhibited an efficiency of 0.17%, which could theoretically be increased to 4.8%
Positrons trapped in polyethylene: Electric field effect
International Nuclear Information System (INIS)
Bertolaccini, M.; Bisi, A.; Gambarini, G.; Zappa, L.
1978-01-01
The intensity of the iot 2 -component of positrons annihilated in polyethylene is found to increase with increasing electric field, while the formation probability of the positron state responsible for this component remains independent of the field. (orig.) 891 HPOE [de
Orbital effect of the magnetic field in dynamical mean-field theory
Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.
2017-12-01
The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.
Directory of Open Access Journals (Sweden)
Klosowiak Julian
2010-10-01
Full Text Available Abstract Background Vertebrate limb development involves a reciprocal feedback loop between limb mesenchyme and the overlying apical ectodermal ridge (AER. Several gene pathways participate in this feedback loop, including Fgf signaling. In the forelimb lateral plate mesenchyme, Tbx5 activates Fgf10 expression, which in turn initiates and maintains the mesenchyme/AER Fgf signaling loop. Recent findings have revealed that Tbx5 transcriptional activity is regulated by dynamic nucleocytoplasmic shuttling and interaction with Pdlim7, a PDZ-LIM protein family member, along actin filaments. This Tbx5 regulation is critical in heart formation, but the coexpression of both proteins in other developing tissues suggests a broader functional role. Results Knock-down of Pdlim7 function leads to decreased pectoral fin cell proliferation resulting in a severely stunted fin phenotype. While early gene induction and patterning in the presumptive fin field appear normal, the pectoral fin precursor cells display compaction and migration defects between 18 and 24 hours post-fertilization (hpf. During fin growth fgf24 is sequentially expressed in the mesenchyme and then in the apical ectodermal ridge (AER. However, in pdlim7 antisense morpholino-treated embryos this switch of expression is prevented and fgf24 remains ectopically active in the mesenchymal cells. Along with the lack of fgf24 in the AER, other critical factors including fgf8 are reduced, suggesting signaling problems to the underlying mesenchyme. As a consequence of perturbed AER function in the absence of Pdlim7, pathway components in the fin mesenchyme are misregulated or absent, indicating a breakdown of the Fgf signaling feedback loop, which is ultimately responsible for the loss of fin outgrowth. Conclusion This work provides the first evidence for the involvement of Pdlim7 in pectoral fin development. Proper fin outgrowth requires fgf24 downregulation in the fin mesenchyme with subsequent
Directory of Open Access Journals (Sweden)
Yen-Tso Chang
2014-01-01
Full Text Available This study applied the commercial software ANSYS CFD (FLUENT, for simulating the transient flow field and investigating the influence of each parameter of longitudinal vortex generators (LVGs on the thermal flux of a plate-fin heat sink. Vortex generator was set in front of plate-fin heat sink and under the channel, which was in common-flow-down (CFD and common-flow-up (CFU conditions, which have the result of vortex generator of delta winglet pair (DWP. In this study the parameters were varied, such as the minimum transverse distance between winglet pair, the attack angle of the vortex generator, fins number, the fin height, and the distance between the vortex generator and plate-fin. The coolant fluid flew into the fin-to-fin channel and pushed the vortex from different geometry toward the bottom. This phenomenon took off the heat from the plate to enhance the heat transfer. The numerical results indicated that the LVGs located close to the plate-fin heat sink are zero with the attack angle being 30°, presenting optimal overall conditions.
En Defensa del Fin de Lucro en Salud.
Directory of Open Access Journals (Sweden)
Ramón Abel Castaño Yepes
2007-06-01
La quinta premisa se deriva de la cuarta y de la segunda, es decir, que si el diseño del sistema de salud introducido por la Ley 100 tiene como elemento distintivo el fin de lucro, entonces el resultado de dicho diseño tiene que ser indeseable, puesto que el fin de lucro es indeseable...
High performance flexible CMOS SOI FinFETs
Fahad, Hossain M.; Sevilla, Galo T.; Ghoneim, Mohamed T.; Hussain, Muhammad Mustafa
2014-01-01
We demonstrate the first ever CMOS compatible soft etch back based high performance flexible CMOS SOI FinFETs. The move from planar to non-planar FinFETs has enabled continued scaling down to the 14 nm technology node. This has been possible due
FinFET modeling for IC simulation and design
Hu, Chenming; Lu, Darsen D
2015-01-01
This book is the first to explain FinFET modeling for IC simulation and the industry standard - BSIM-CMG - describing the rush in demand for advancing the technology from planar to 3D architecture, as now enabled by the approved industry standard. The book gives a strong foundation on the physics and operation of FinFET, details aspects of the BSIM-CMG model such as surface potential, charge and current calculations, and includes a dedicated chapter on parameter extraction procedures, providing a step-by-step approach for the efficient extraction of model parameters. With this book you will learn: * Why you should use FinFET* The physics and operation of FinFET* Details of the FinFET standard model (BSIM-CMG)* Parameter extraction in BSIM-CMG* FinFET circuit design and simulation * Authored by the lead inventor and developer of FinFET, and developers of the BSIM-CM standard model, providing an experts' insight into the specifications of the standard* The first book on the industry-standard FinFET model - BSIM...
Nuclear Forces from Effective Field Theory
International Nuclear Information System (INIS)
Krebs, H.
2011-01-01
Chiral effective field theory allows for a systematic and model-independent derivation of the forces between nucleons in harmony with the symmetries of the quantum chromodynamics. After a brief review on the current status in the development of the chiral nuclear forces I will focus on the role of the Δ-resonance contributions in the nuclear dynamics.We find improvement in the convergence of the chiral expansion of the nuclear forces if we explicitly take into account the Δ-resonance degrees of freedom. The overall results for two-nucleon forces with and without explicit Δ-resonance degrees of freedom are remarkably similar. We discussed the long- and shorter-range N 3 LO contributions to chiral three-nucleon forces. No additional free parameters appear at this order. There are five different topology classes which contribute to the forces. Three of them describe long-range contributions which constitute the first systematic corrections to the leading 2π exchange that appear at N 2 LO. Another two contributions are of a shorter range and include, additionally to an exchange of pions, also one short-range contact interaction and all corresponding 1/m corrections. The requirement of renormalizability leads to unique expressions for N 3 LO contributions to the three-nucleon force (except for 1/m-corrections). We presented the complete N 2 LO analysis of the nuclear forces with explicit Δ-isobar degrees of freedom. Although the overall results in the isospin-conserving case are very similar in the Δ-less and Δ-full theories, we found a much better convergence in all peripheral partial waves once Δ-resonance is explicitly taken into account. The leading CSB contributions to nuclear forces are proportional to nucleon- and Δ-mass splittings. There appear strong cancellations between the two contributions which at leading order yield weaker V III potentials. This effect is, however, entirely compensated at subleading order such that the results in the theories
International Nuclear Information System (INIS)
Gajek, Z.; Lahalle, M.P.; Krupa, J.C.; Mulak, J.
1988-01-01
Simple ab initio model perturbation calculations of the crystal-field parameters for the U 4+ ion in UO 2 crystals are reported. The crystal-field parameters obtained, B 0 4 = -7130 cm -1 and B 0 6 = 2890 cm -1 , turn out to be much lower in value, particularly the first one, than those usually assumed for this compound. They are found, however, to agree with new spectroscopic data and recent inelastic neutron scattering measurements. (orig.)
Utilizing Urban Environments for Effective Field Experiences
MacAvoy, S. E.; Knee, K.
2014-12-01
Research surveys suggest that students are demanding more applied field experiences from their undergraduate environmental science programs. For geoscience educators at liberal arts colleges without field camps, university vehicles, or even geology departments, getting students into the field is especially rewarding - and especially challenging. Here, we present strategies that we have used in courses ranging from introductory environmental science for non-majors, to upper level environmental methods and geology classes. Urban locations provide an opportunity for a different type of local "field-work" than would otherwise be available. In the upper-level undergraduate Environmental Methods class, we relied on a National Park area located a 10-minute walk from campus for most field exercises. Activities included soil analysis, measuring stream flow and water quality parameters, dendrochronology, and aquatic microbe metabolism. In the non-majors class, we make use of our urban location to contrast water quality in parks and highly channelized urban streams. Here we share detailed lesson plans and budgets for field activities that can be completed during a class period of 2.5 hours with a $75 course fee, show how these activities help students gain quantitative competency, and provide student feedback about the classes and activities.
Transverse Field Effect in Fluxgate Sensors
DEFF Research Database (Denmark)
Brauer, Peter; Merayo, José M.G.; Nielsen, Otto V
1997-01-01
A model of the fluxgate magnetometer based on the field interactions in the fluxgate core has been derived. The non-linearity of the ringcore sensors due to large uncompensated fields transverse to the measuring axis are calculated and compared with measurements. Measurements of the non-linearity......A model of the fluxgate magnetometer based on the field interactions in the fluxgate core has been derived. The non-linearity of the ringcore sensors due to large uncompensated fields transverse to the measuring axis are calculated and compared with measurements. Measurements of the non......-linearity are made with a spectrum analyser, measuring the higher harmonics of an applied sinusoidal field. For a sensor with a permalloy ringcore of 1" in diameter the deviation from linearity is measured to about 15 nTp-p in the earth's field and the measurements are shown to fit well the calculations. Further......, the measurements and the calculations are also compared with a calibration model of the fluxgate sensor onboard the "MAGSAT" satellite. The later has a deviation from linearity of about 50 nTp-p but shows basically the same form of non-linearity as the measurements....
Development of a Simulation Model for Swimming with Diving Fins
Directory of Open Access Journals (Sweden)
Motomu Nakashima
2018-02-01
Full Text Available The simulation model to assess the performance of diving fin was developed by extending the swimming human simulation model SWUM. A diving fin was modeled as a series of five rigid plates and connected to the human model by springs and dampers. These plates were connected to each other by virtual springs and dampers, and fin’s bending property was represented by springs and dampers as well. An actual diver’s swimming motion with fins was acquired by a motion capture experiment. In order to determine the bending property of the fin, two bending tests on land were conducted. In addition, an experiment was conducted in order to determine the fluid force coefficients in the fluid force model for the fin. Finally, using all measured and identified information, a simulation, in which the experimental situation was reproduced, was carried out. It was confirmed that the diver in the simulation propelled forward in the water successfully.
International Nuclear Information System (INIS)
Atouei, S.A.; Hosseinzadeh, Kh.; Hatami, M.; Ghasemi, Seiyed E.; Sahebi, S.A.R.; Ganji, D.D.
2015-01-01
In this study, heat transfer and temperature distribution equations for semi-spherical convective–radiative porous fins are presented. Temperature-dependent heat generation, convection and radiation effects are considered and after deriving the governing equation, Least Square Method (LSM), Collocation Method (CM) and fourth order Runge-Kutta method (NUM) are applied for predicting the temperature distribution in the described fins. Results reveal that LSM has excellent agreement with numerical method, so can be suitable analytical method for solving the problem. Also, the effect of some physical parameters which are appeared in the mathematical formulation on fin surface temperature is investigated to show the effect of radiation and heat generation in a solid fin temperature. - Highlights: • Thermal analysis of a semi-spherical fin is investigated. • Collocation and Least Square Methods are applied on the problem. • Convection, radiation and heat generation is considered. • Physical results are compared to numerical outcomes.
Magnetic field and screening effects in condensed and ultradense matter
International Nuclear Information System (INIS)
Roussel, K.M.
1974-01-01
The investigations of three topics are presented: the origin of magnetic fields in white dwarfs and neutron stars, the detection of magnetic fields in white dwarfs, and screening effects due to free charged particles, particularly in semiconductors. (U.S.)
International Nuclear Information System (INIS)
Uvarov, V.M.; Barashkov, P.D.
1985-01-01
The problem on the effect of the interplanetary magnetic field (IMF) on the distribution of electric fields in polar ionosphere is discussed. The problem on excitation of electric fields is reduced to the solution of the system of continuity equations for the current in three regions-northern polar cap, southern cap and the region outside the caps. It is shown that one succeeds in reproducing the observed types of distributions of electric fields
Effect of electromagnetic fields on the bacteria bioluminescent activity
International Nuclear Information System (INIS)
Berzhanskaya, L.Yu.; Berzhanskij, V.N.; Beloplotova, O.Yu.
1995-01-01
The effect of electromagnetic field with frequency from 36.2 to 55.9 GHz on bioluminescence activity of bacterium were investigated. Electromagnetic field results in decrease of bioluminescence, which depends from frequency. The electromagnetic field adaptation time is higher of intrinsic time parameters of bioluminescence system. The effect has nonthermal nature. It is suggested that electromagnetic field influence connects with structure rearrangements near cell emitter. 8 refs.; 3 figs
Direct coupled amplifiers using field effect transistors
Energy Technology Data Exchange (ETDEWEB)
Fowler, E P [Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)
1964-03-15
The concept of the uni-polar field effect transistor (P.E.T.) was known before the invention of the bi-polar transistor but it is only recently that they have been made commercially. Being produced as yet only in small quantities, their price imposes a restriction on use to circuits where their peculiar properties can be exploited to the full. One such application is described here where the combination of low voltage drift and relatively low input leakage current are necessarily used together. One of the instruments used to control nuclear reactors has a logarithmic response to the mean output current from a polarised ionisation chamber. The logarithmic signal is then differentiated electrically, the result being displayed on a meter calibrated to show the reactor divergence or doubling time. If displayed in doubling time the scale is calibrated reciprocally. Because of the wide range obtained in the logarithmic section and the limited supply voltage, an output of 1 volt per decade change in ionisation current is used. Differentiating this gives a current of 1.5 x 10{sup -8} A for p.s.D. (20 sec. doubling time) in the differentiating amplifier. To overcome some of the problems of noise due to statistical variations in input current, the circuit design necessitates a resistive path to ground at the amplifier input of 20 M.ohms. A schematic diagram is shown. 1. It is evident that a zero drift of 1% can be caused by a leakage current of 1.5 x 10{sup -10} A or an offset voltage of 3 mV at the amplifier input. Although the presently used electrometer valve is satisfactory from the point of view of grid current, there have been sudden changes in grid to grid voltage (the valve is a double triode) of up to 10 m.V. It has been found that a pair of F.E.T's. can be used to replace the electrometer valve so long as care is taken in correct balance of the two devices. An investigation has been made into the characteristics of some fourteen devices to see whether those with
The stark effect in intense field. 2
International Nuclear Information System (INIS)
Popov, V.S.; Mur, V.D.; Sergeev, A.V.; Weinberg, V.M.
1987-01-01
The problem of hydrogen atom in homogeneous electric field is considered. The Stark shifts and widths of atomic levels are computed by summation of divergent perturbation series and by 1/n-expansion - up to E values comparable with the field on the electron orbit. The results of the calculations are presented for the following sequences of states: |n 1 ,0,0>, |0,n 2 ,0>, |n 1 ,n 1 ,0>, as well as for all states with n=2 and 3 (n is the principal quantum number). The Stark shifts and widths of Rydberg states (with n=15-30) in electric field which exceeds the classical ionization threshold are computed. The results of our calculations agree with experiment
Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity
International Nuclear Information System (INIS)
Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori
2016-01-01
Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.
International Nuclear Information System (INIS)
Solomon, Gnanadurai Ravikumar; Velraj, Ramalingam
2013-01-01
Highlights: • Freezing behavior of a PCM, in a cylinder with annular longitudinal fins is presented. • Among various fin heights, 20 mm fin contribute maximum heat transfer enhancement. • Addition of fins plays a contradictory role during the sensible cooling of liquid PCM. • The fin effect along with external cooling, vary the sensible cooling rate of liquid PCM. • The surface convective resistance dominated over the conductive resistance of PCM. - Abstract: The heat transfer performance of the Phase Change Material (PCM) used in free cooling application is low due to poor thermal conductivity. The addition of fins to enhance the heat transfer during solidification process is commonly employed, to address this. However for application such as free cooling, where the driving temperature potential is very less, the present experimental study is intended to investigate the sensible and subcooling phenomena during the outward cylindrical solidification of the PCM stored on the annulus side, along with 8 longitudinal uniformly spaced copper fins of different heights. The performance of the fins during solidification is analyzed, and the best suitable height is arrived at. The addition of fins plays a contradicting role during the sensible cooling of the liquid PCM, due to the suppression of free convection. The external cooling conditions along with the effect of the fin, vary the sensible cooling rate of the liquid PCM, that influences the subcooling effect, and also drifts the temperature at which major phase change occurs. In addition, the effects due to the inlet velocity of the heat transfer fluid, and its temperature on heat transfer are investigated and reported. The increase in velocity decreases the duration of solidification, and this effect is more pronounced towards the entry region, due to the higher local convective heat transfer co-efficient and a comparatively higher driving temperature potential
Exergo-economic analysis of finned tube for waste heat recovery including phase change heat transfer
International Nuclear Information System (INIS)
Wu, Shuang Ying; Jiu, Jing Rui; Xiao, Lan; Li, You Rong; Liu, Chao; Xu, Jin Liang
2013-01-01
In this paper, an exergo-economic criterion, i.e. the net profit per unit transferred heat load, is established from the perspective of exergy recovery to evaluate the performance of finned tube used in waste heat recovery. Also, the dimensionless exergy change number is introduced to investigate the effect of the flow (mechanical) exergy loss rate on the recovered thermal exergy. Selecting R245fa as a working fluid and exhaust flue gas as a heat source, the effects of the internal Reynolds number Re_i, the external Reynolds number Re_o , the unit cost of thermal exergy ε_q , the geometric parameter of finned tube η_oβ and the phase change temperature T_v etc. on the performance of finned tube are discussed in detail. The results show that the higher T_v and η_oβ, and lower Re_i may lead to the negligible flow(mechanical) exergy loss rate. There exists an optimal value of Re_i where the net profit per unit transferred heat load peaks, while the variations of Re_o, ε_q and T_v cause monotonic change of the net profit per unit transferred heat load. The phase change temperature exerts relatively greater influence on the exergo-economic performance of finned tube in comparison with other parameters. And there exists a critical phase change temperature, where the net profit per unit transferred heat load is equal to zero.
Efficiency analysis of straight fin with variable heat transfer coefficient and thermal conductivity
International Nuclear Information System (INIS)
Sadri, Somayyeh; Raveshi, Mohammad Reza; Amiri, Shayan
2012-01-01
In this study, one type of applicable analytical method, differential transformation method (DTM), is used to evaluate the efficiency and behavior of a straight fin with variable thermal conductivity and heat transfer coefficient. Fins are widely used to enhance heat transfer between primary surface and the environment in many industrial applications. The performance of such a surface is significantly affected by variable thermal conductivity and heat transfer coefficient, particularly for large temperature differences. General heat transfer equation related to the fin is derived and dimensionalized. The concept of differential transformation is briefly introduced, and then this method is employed to derive solutions of nonlinear equations. Results are evaluated for several cases such as: laminar film boiling or condensation, forced convection, laminar natural convection, turbulent natural convection, nucleate boiling, and radiation. The obtained results from DTM are compared with the numerical solution to verify the accuracy of the proposed method. The effects of design parameters on temperature and efficiency are evaluated by some figures. The major aim of the present study, which is exclusive for this article, is to find the effect of the modes of heat transfer on fin efficiency. It has been shown that for radiation heat transfer, thermal efficiency reaches its maximum value
Simulation study of a 3-D device integrating FinFET and UTBFET
Fahad, Hossain M.; Hu, Chenming; Hussain, Muhammad Mustafa
2015-01-01
By integrating 3-D nonplanar fins and 2-D ultrathin bodies, wavy FinFETs merge two formerly competing technologies on a silicon-on-insulator platform to deliver enhanced transistor performance compared with conventional trigate Fin
Fields, Andrew T; Fischer, Gunter A; Shea, Stanley K H; Zhang, Huarong; Abercrombie, Debra L; Feldheim, Kevin A; Babcock, Elizabeth A; Chapman, Demian D
2018-04-01
The shark fin trade is a major driver of shark exploitation in fisheries all over the world, most of which are not managed on a species-specific basis. Species-specific trade information highlights taxa of particular concern and can be used to assess the efficacy of management measures and anticipate emerging threats. The species composition of the Hong Kong Special Administrative Region of China, one of the world's largest fin trading hubs, was partially assessed in 1999-2001. We randomly selected and genetically identified fin trimmings (n = 4800), produced during fin processing, from the retail market of Hong Kong in 2014-2015 to assess contemporary species composition of the fin trade. We used nonparametric species estimators to determine that at least 76 species of sharks, batoids, and chimaeras supplied the fin trade and a Bayesian model to determine their relative proportion in the market. The diversity of traded species suggests species substitution could mask depletion of vulnerable species; one-third of identified species are threatened with extinction. The Bayesian model suggested that 8 species each comprised >1% of the fin trimmings (34.1-64.2% for blue [Prionace glauca], 0.2-1.2% for bull [Carcharhinus leucas] and shortfin mako [Isurus oxyrinchus]); thus, trade was skewed to a few globally distributed species. Several other coastal sharks, batoids, and chimaeras are in the trade but poorly managed. Fewer than 10 of the species we modeled have sustainably managed fisheries anywhere in their range, and the most common species in trade, the blue shark, was not among them. Our study and approach serve as a baseline to track changes in composition of species in the fin trade over time to better understand patterns of exploitation and assess the effects of emerging management actions for these animals. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
International Nuclear Information System (INIS)
Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe
2016-01-01
Highlights: • The discharging process of a latent heat thermal energy storage system is studied. • The thermal energy storage system is assisted by finned heat pipes. • The influences of heat pipe spacing and fins geometrical features are studied. • Smaller heat pipe spacing enhances the solidification rate. • Better heat pipe and fin arrangements are determined. - Abstract: This paper presents the results of a numerical study conducted to investigate the discharging process of a latent heat thermal energy storage system assisted by finned heat pipes. A two-dimensional finite volume based numerical model along with enthalpy-porosity technique is employed to simulate the phase change of storage media during the discharging mode. The thermal energy storage system in this study consists of a square container, finned heat pipes, and potassium nitrate (KNO 3 ) as the phase change material. The charging process of the same thermal energy storage system was reported in an early paper by the authors. This paper reports the results of discharging process of the thermal energy storage system. The influences of heat pipe spacing, fin geometry and quantities as well as the effects of natural convection heat transfer on the thermal performance of the storage system were studied. The results indicate that the phase change material solidification process is hardly affected by the natural convection. Decreasing the heat pipe spacing results in faster discharging process and higher container base wall temperature. Increasing the fins length does not change the discharging time but yields higher base wall temperature. Using more fins also accelerates the discharging process and increases the container base wall temperature.
Self-field effects on electron dynamics in free-electron lasers with axial magnetic field
International Nuclear Information System (INIS)
Mirzanejhad, S.; Maraghechi, B.; Mohsenpour, T.
2004-01-01
A self-consistent method for the analysis of self-magnetic field for a free-electron laser with a one-dimensional helical wiggler and an axial guide magnetic field is presented. The equilibrium orbits and their stability, under the influence of self-electric and self-magnetic fields, are analyzed. New unstable orbits, in the first part of the Group I orbits and in the resonance region of the Group II orbits, are found. It is shown that an increase in the defocusing effect of self-fields will widen the unstable orbits. An anomalous self-field regime is found where an increase in the defocusing effect of self-fields can have stabilizing effect on the resonance region
FinTech Market Development Perspectives
Directory of Open Access Journals (Sweden)
Kalmykova Ekaterina
2016-01-01
Full Text Available Fast development of technologies has led to emergence of the new market – FinTech – which is very attractive for investors today. By now this market has a great number of different concepts: P2P-crediting, E-wallets, Bitcoins, mPOS-acquiring, T-commerce, mobile banks, etc. Many of these tools have already heavily entered our ordinary life. People can obtain any credits through special services on the Internet from other users without participation of banks, pay by credit card using mobile devices, and get information about expenses and incomes according to the card anywhere in the world. Users do not need to go to banks anymore and to spend their time for credit arrangements, currency exchange, to look for ATMs to remove cash. Purchases on the Internet can be paid not only in rubles, but also in new digital currency. These tools make life easier, however, they pose a serious threat for banks. Now, bank institutions should create more convenient and utility services for the clients to keep clients. Therefore, bank and credit systems start to change actively.
Directory of Open Access Journals (Sweden)
Du Xueping
2014-01-01
Full Text Available A tremendous quantity of water can be saved if the air cooling system is used, comparing with the ordinary water-cooling technology. In this study, two kinds of finned tube heat exchangers in an indirect air-cooling tower are experimentally studied, which are a plain finned oval-tube heat exchanger and a wavy-finned flat-tube heat exchanger in a cross flow of air. Four different air inlet angles (90°, 60 °, 45°, and 30° are tested separately to obtain the heat transfer and resistance performance. Then the air-side experimental correlations of the Nusselt number and friction factor are acquired. The comprehensive heat transfer performances for two finned tube heat exchangers under four air inlet angles are compared. For the plain finned oval-tube heat exchanger, the vertical angle (90° has the worst performance while 45° and 30° has the best performance at small ReDc and at large ReDc, respectively. For the wavy-finned flat-tube heat exchanger, the worst performance occurred at 60°, while the best performance occurred at 45° and 90° at small ReDc and at large ReDc, respectively. From the comparative results, it can be found that the air inlet angle has completely different effects on the comprehensive heat transfer performance for the heat exchangers with different structures.
Effects of Resonant Helical Field on Toroidal Field Ripple in IR-T1 Tokamak
Mahdavipour, B.; Salar Elahi, A.; Ghoranneviss, M.
2018-02-01
The toroidal magnetic field which is created by toroidal coils has the ripple in torus space. This magnetic field ripple has an importance in plasma equilibrium and stability studies in tokamak. In this paper, we present the investigation of the interaction between the toroidal magnetic field ripple and resonant helical field (RHF). We have estimated the amplitude of toroidal field ripples without and with RHF (with different q = m/n) ( m = 2, m = 3, m = 4, m = 5, m = 2 & 3, n = 1) using “Comsol Multiphysics” software. The simulations show that RHF has effects on the toroidal ripples.
Field-effect detection using phospholipid membranes -Topical Review
Directory of Open Access Journals (Sweden)
Chiho Kataoka-Hamai and Yuji Miyahara
2010-01-01
Full Text Available The application of field-effect devices to biosensors has become an area of intense research interest. An attractive feature of field-effect sensing is that the binding or reaction of biomolecules can be directly detected from a change in electrical signals. The integration of such field-effect devices into cell membrane mimics may lead to the development of biosensors useful in clinical and biotechnological applications. This review summarizes recent studies on the fabrication and characterization of field-effect devices incorporating model membranes. The incorporation of black lipid membranes and supported lipid monolayers and bilayers into semiconductor devices is described.
Effect of tidal fields on star clusters
Chernoff, David; Weinberg, Martin
1991-01-01
We follow the dynamical evolution of a star cluster in a galactic tidal field using a restricted N-body code. We find large asymmetric distortions in the outer profile of the cluster in the first 10 or so crossing times as material is lost. Prograde stars escape preferentially and establish a potentially observable retrograde rotation in the halo. We present the rate of particle loss and compare with the prescription proposed by Lee and Ostriker (1987).
Effects of the magnetic field on the structure of materials
International Nuclear Information System (INIS)
Nakajima, Tetsuo
1984-02-01
This is a report of the ''Meeting on the effects of a magnetic field on the structure of materials'' held at KEK, Japan. The purpose of the Meeting was to study the diffraction of SR X-ray in a magnetic field. It was found that the effects of a magnetic field have been seen in various substnaces. The effects are due to the Zeeman effect, the Lamor diamagnetism, the Landau diamagnetism, the Meissner effect and the polarization effect. The topics discussed at the Meeting were the structure study of biological specimens by field orientation, the study of cell structure by field orientation, the phase transition under a strong pulse field, the behavior of high molecular liquid crystal in a magnetic field, the change of the f-electron density of the Tb 3+ ions in Tb IG in a magnetic field at low temperature, an electromagnet loaded on a goniometer and an in-situ observation system for the structure of magnetic domain, the control of structural phase transition by a magnetic field, the use of synchrotron orbit radiation for the structural analysis of random systems, and the field effect on chemical reactions. (Kato, T.)
Boundary effects in quantum field theory
International Nuclear Information System (INIS)
Deutsch, D.; Candelas, P.
1979-01-01
Electromagnetic and scalar fields are quantized in the region near an arbitrary smooth boundary, and the renormalized expectation value of the stress-energy tensor is calculated. The energy density is found to diverge as the boundary is approached. For nonconformally invariant fields it varies, to leading order, as the inverse fourth power of the distance from the boundary. For conformally invariant fields the coefficient of this leading term is zero, and the energy density varies as the inverse cube of the distance. An asymptotic series for the renormalized stress-energy tensor is developed as far as the inverse-square term in powers of the distance. Some criticisms are made of the usual approach to this problem, which is via the ''renormalized mode sum energy,'' a quantity which is generically infinite. Green's-function methods are used in explicit calculations, and an iterative scheme is set up to generate asymptotic series for Green's functions near a smooth boundary. Contact is made with the theory of the asymptotic distribution of eigenvalues of the Laplacian operator. The method is extended to nonflat space-times and to an example with a nonsmooth boundary
Planar Hall effect bridge magnetic field sensors
DEFF Research Database (Denmark)
Henriksen, A.D.; Dalslet, Bjarke Thomas; Skieller, D.H.
2010-01-01
Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can...... Hall effect bridge sensors....
Generalization of the cogeneration concept as field theory effects
International Nuclear Information System (INIS)
Forje, A.; Tiberiu, C.; Calugaru, A.; Carstea, O.; Dorobantu, G.; Barota, R.; Balan, N.; Mariam, G.; Udrea, E.
1990-01-01
This paper reports on the reformulated notions regarding energy, action geodesic and non-linearity that were defined. Information geodesic is defined as pathway of perceptible and quantifiable signals emitted and received during the evolution of the conversion of a mass field in interaction with the energy field. The objective reality at the level of the distances ranging in between the limits of human ability of perception and quantification can be regarded as an interpenetrative complex of two fields namely: a diffuse, extensive and continuous energy field with multiple manifestation possibilities which is indirectly perceived and quantified through its interaction effects with the field of masses during their conversion; a discrete, intensive and discontinuous field of masses also showing multiple manifestation possibilities which render possible both the perception of this field and quantification of its conversions as an effect of the interactions with the energy field
Bessho, N.; Chen, L. J.; Hesse, M.; Wang, S.
2017-12-01
In asymmetric reconnection with a guide field in the Earth's magnetopause, electron motion in the electron diffusion region (EDR) is largely affected by the guide field, the Hall electric field, and the reconnection electric field. The electron motion in the EDR is neither simple gyration around the guide field nor simple meandering motion across the current sheet. The combined meandering motion and gyration has essential effects on particle acceleration by the in-plane Hall electric field (existing only in the magnetospheric side) and the out-of-plane reconnection electric field. We analyze electron motion and crescent-shaped electron distribution functions in the EDR in asymmetric guide field reconnection, and perform 2-D particle-in-cell (PIC) simulations to elucidate the effect of reconnection electric field on electron distribution functions. Recently, we have analytically expressed the acceleration effect due to the reconnection electric field on electron crescent distribution functions in asymmetric reconnection without a guide field (Bessho et al., Phys. Plasmas, 24, 072903, 2017). We extend the theory to asymmetric guide field reconnection, and predict the crescent bulge in distribution functions. Assuming 1D approximation of field variations in the EDR, we derive the time period of oscillatory electron motion (meandering + gyration) in the EDR. The time period is expressed as a hybrid of the meandering period and the gyro period. Due to the guide field, electrons not only oscillate along crescent-shaped trajectories in the velocity plane perpendicular to the antiparallel magnetic fields, but also move along parabolic trajectories in the velocity plane coplanar with magnetic field. The trajectory in the velocity space gradually shifts to the acceleration direction by the reconnection electric field as multiple bounces continue. Due to the guide field, electron distributions for meandering particles are bounded by two paraboloids (or hyperboloids) in the
Robotic Pectoral Fin Thrust Vectoring Using Weighted Gait Combinations
Directory of Open Access Journals (Sweden)
John S. Palmisano
2012-01-01
Full Text Available A method was devised to vector propulsion of a robotic pectoral fin by means of actively controlling fin surface curvature. Separate flapping fin gaits were designed to maximize thrust for each of three different thrust vectors: forward, reverse, and lift. By using weighted combinations of these three pre-determined main gaits, new intermediate hybrid gaits for any desired propulsion vector can be created with smooth transitioning between these gaits. This weighted gait combination (WGC method is applicable to other difficult-to-model actuators. Both 3D unsteady computational fluid dynamics (CFD and experimental results are presented.
Del fin de la guerra fria al comienzo de la guerra sin fin
Ferrier, Jean Pierre
2006-01-01
El Profesor Ferrier nos describe los acontecimientos de la sociedad internacional en los ultimos 15 años y señala la profunda diferencia entre "la estabilidad" durante la guerra fría y la "revolucion" que se ha producido en el escenario internacional a partir de la caida del muro de Berlin. Hace especial referencia al comportamiento de la superpotencia (Estados Unidos) y su guerra sin fin contra los "nuevos enemigos" en los diferentes teatros internacionales en su lucha por imponer el "Bien" ...
Directory of Open Access Journals (Sweden)
Zhongchao Zhao
2017-11-01
Full Text Available As a new kind of highly compact and efficient micro-channel heat exchanger, the printed circuit heat exchanger (PCHE is a promising candidate satisfying the heat exchange requirements of liquefied natural gas (LNG vaporization at low and high pressure. The effects of airfoil fin arrangement on heat transfer and flow resistance were numerically investigated using supercritical liquefied natural gas (LNG as working fluid. The thermal properties of supercritical LNG were tested by utilizing the REFPROF software database. Numerical simulations were performed using FLUENT. The inlet temperature of supercritical LNG was 121 K, and its pressure was 10.5 MPa. The reference mass flow rate of LNG was set as 1.22 g/s for the vertical pitch Lv = 1.67 mm and the staggered pitch Ls = 0 mm, with the Reynolds number of about 3750. The SST k-ω model was selected and verified by comparing with the experimental data using supercritical liquid nitrogen as cold fluid. The airfoil fin PCHE had better thermal-hydraulic performance than that of the straight channel PCHE. Moreover, the airfoil fins with staggered arrangement displayed better thermal performance than that of the fins with parallel arrangement. The thermal-hydraulic performance of airfoil fin PCHE was improved with increasing Ls and Lv. Moreover, Lv affected the Nusselt number and pressure drop of airfoil fin PCHE more obviously. In conclusion, a sparser staggered arrangement of fins showed a better thermal-hydraulic performance in airfoil fin PCHE.
Chuang, Po-Shun; Hung, Tzu-Chiao; Chang, Hung-An; Huang, Chien-Kang; Shiao, Jen-Chieh
2016-01-01
The increasing consumption of shark products, along with the shark’s fishing vulnerabilities, has led to the decrease in certain shark populations. In this study we used a DNA barcoding method to identify the species of shark landings at fishing ports, shark fin products in retail stores, and shark fins detained by Taiwan customs. In total we identified 23, 24, and 14 species from 231 fishing landings, 316 fin products, and 113 detained shark fins, respectively. All the three sample sources were dominated by Prionace glauca, which accounted for more than 30% of the collected samples. Over 60% of the species identified in the fin products also appeared in the port landings, suggesting the domestic-dominance of shark fin products in Taiwan. However, international trade also contributes a certain proportion of the fin product markets, as four species identified from the shark fin products are not found in Taiwan’s waters, and some domestic-available species were also found in the customs-detained sample. In addition to the species identification, we also found geographical differentiation in the cox1 gene of the common thresher sharks (Alopias vulpinus), the pelagic thresher shark (A. pelagicus), the smooth hammerhead shark (Sphyrna zygaena), and the scalloped hammerhead shark (S. lewini). This result might allow fishing authorities to more effectively trace the origins as well as enforce the management and conservation of these sharks. PMID:26799827
Effects of magnetic fields in white dwarfs
International Nuclear Information System (INIS)
Franzon, Bruno; Schramm, Stefan
2017-01-01
We perform calculations of white dwarfs endowed with strong magnetic fields. White dwarfs are the progenitors of supernova Type Ia explosions and they are widely used as candles to show that the Universe is expanding and accelerating. However, observations of ultraluminous supernovae have suggested that the progenitor of such an explosion should be a white dwarf with mass above the well-known Chandrasekhar limit ∼ 1.4 M⊙. In corroboration with other works, but by using a fully general relativistic framework, we obtained also strongly magnetized white dwarfs with masses M ∼ 2.0 M⊙. (paper)
Nuclear matter from chiral effective field theory
International Nuclear Information System (INIS)
Drischler, Christian
2017-01-01
Nuclear matter is an ideal theoretical system that provides key insights into the physics of different length scales. While recent ab initio calculations of medium-mass to heavy nuclei have demonstrated that realistic saturation properties in infinite matter are crucial for reproducing experimental binding energies and charge radii, the nuclear-matter equation of state allows tight constraints on key quantities of neutron stars. In the present thesis we take advantage of both aspects. Chiral effective field theory (EFT) with pion and nucleon degrees of freedom has become the modern low-energy approach to nuclear forces based on the symmetries of quantum chromodynamics, the fundamental theory of strong interactions. The systematic chiral expansion enables improvable calculations associated with theoretical uncertainty estimates. In recent years, chiral many-body forces were derived up to high orders, allowing consistent calculations including all many-body contributions at next-to-next-to-next-to-leading order (N 3 LO). Many further advances have driven the construction of novel chiral potentials with different regularization schemes. Here, we develop advanced methods for microscopic calculations of the equation of state of homogeneous nuclear matter with arbitrary proton-to-neutron ratio at zero temperature. Specifically, we push the limits of many-body perturbation theory (MBPT) considerations to high orders in the chiral and in the many-body expansion. To address the challenging inclusion of three-body forces, we introduce a new partial-wave method for normal ordering that generalizes the treatment of these contributions. We show improved predictions for the neutron-matter equation of state with consistent N 3 LO nucleon-nucleon (NN) plus three-nucleon (3N) potentials using MBPT up to third order and self-consistent Green's function theory. The latter also provides nonperturbative benchmarks for the many-body convergence. In addition, we extend the normal
Nuclear matter from chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Drischler, Christian
2017-11-15
Nuclear matter is an ideal theoretical system that provides key insights into the physics of different length scales. While recent ab initio calculations of medium-mass to heavy nuclei have demonstrated that realistic saturation properties in infinite matter are crucial for reproducing experimental binding energies and charge radii, the nuclear-matter equation of state allows tight constraints on key quantities of neutron stars. In the present thesis we take advantage of both aspects. Chiral effective field theory (EFT) with pion and nucleon degrees of freedom has become the modern low-energy approach to nuclear forces based on the symmetries of quantum chromodynamics, the fundamental theory of strong interactions. The systematic chiral expansion enables improvable calculations associated with theoretical uncertainty estimates. In recent years, chiral many-body forces were derived up to high orders, allowing consistent calculations including all many-body contributions at next-to-next-to-next-to-leading order (N{sup 3}LO). Many further advances have driven the construction of novel chiral potentials with different regularization schemes. Here, we develop advanced methods for microscopic calculations of the equation of state of homogeneous nuclear matter with arbitrary proton-to-neutron ratio at zero temperature. Specifically, we push the limits of many-body perturbation theory (MBPT) considerations to high orders in the chiral and in the many-body expansion. To address the challenging inclusion of three-body forces, we introduce a new partial-wave method for normal ordering that generalizes the treatment of these contributions. We show improved predictions for the neutron-matter equation of state with consistent N{sup 3}LO nucleon-nucleon (NN) plus three-nucleon (3N) potentials using MBPT up to third order and self-consistent Green's function theory. The latter also provides nonperturbative benchmarks for the many-body convergence. In addition, we extend the
Analysis of a high brightness photo electron beam with self field and wake field effects
International Nuclear Information System (INIS)
Parsa, Z.
1991-01-01
High brightness sources are the basic ingredients in the new accelerator developments such as Free-Electron Laser experiments. The effects of the interactions between the highly charged particles and the fields in the accelerating structure, e.g. R.F., Space charge and Wake fields can be detrimental to the beam and the experiments. We present and discuss the formulation used, some simulation and results for the Brookhaven National Laboratory high brightness beam that illustrates effects of the accelerating field, space charge forces (e.g. due to self field of the bunch), and the wake field (e.g. arising from the interaction of the cavity surface and the self field of the bunch)
Effective field theory: A modern approach to anomalous couplings
International Nuclear Information System (INIS)
Degrande, Céline; Greiner, Nicolas; Kilian, Wolfgang; Mattelaer, Olivier; Mebane, Harrison; Stelzer, Tim; Willenbrock, Scott; Zhang, Cen
2013-01-01
We advocate an effective field theory approach to anomalous couplings. The effective field theory approach is the natural way to extend the standard model such that the gauge symmetries are respected. It is general enough to capture any physics beyond the standard model, yet also provides guidance as to the most likely place to see the effects of new physics. The effective field theory approach also clarifies that one need not be concerned with the violation of unitarity in scattering processes at high energy. We apply these ideas to pair production of electroweak vector bosons. -- Highlights: •We discuss the advantages of effective field theories compared to anomalous couplings. •We show that one need not be concerned with unitarity violation at high energy. •We discuss the application of effective field theory to weak boson physics
Dissipative Effects in the Effective Field Theory of Inflation
Energy Technology Data Exchange (ETDEWEB)
Lopez Nacir, Diana; /Buenos Aires, CONICET /Buenos Aires U.; Porto, Rafael A.; /Princeton, Inst. Advanced Study /ISCAP, New York /Columbia U.; Senatore, Leonardo; /Stanford U., ITP /SLAC /KIPAC, Menlo Park; Zaldarriaga, Matias; /Princeton, Inst. Advanced Study
2012-09-14
We generalize the effective field theory of single clock inflation to include dissipative effects. Working in unitary gauge we couple a set of composite operators, {Omicron}{sub {mu}{nu}}..., in the effective action which is constrained solely by invariance under time-dependent spatial diffeomorphisms. We restrict ourselves to situations where the degrees of freedom responsible for dissipation do not contribute to the density perturbations at late time. The dynamics of the perturbations is then modified by the appearance of 'friction' and noise terms, and assuming certain locality properties for the Green's functions of these composite operators, we show that there is a regime characterized by a large friction term {gamma} >> H in which the {zeta}-correlators are dominated by the noise and the power spectrum can be significantly enhanced. We also compute the three point function <{zeta}{zeta}{zeta}> for a wide class of models and discuss under which circumstances large friction leads to an increased level of non-Gaussianities. In particular, under our assumptions, we show that strong dissipation together with the required non-linear realization of the symmetries implies |f{sub NL}| {approx} {gamma}/c{sub s}{sup 2} H >> 1. As a paradigmatic example we work out a variation of the 'trapped inflation' scenario with local response functions and perform the matching with our effective theory. A detection of the generic type of signatures that result from incorporating dissipative effects during inflation, as we describe here, would teach us about the dynamics of the early universe and also extend the parameter space of inflationary models.
Directory of Open Access Journals (Sweden)
Gheorghe Stan
2017-04-01
Full Text Available The exploitation of nanoscale size effects to create new nanostructured materials necessitates the development of an understanding of relationships between molecular structure, physical properties and material processing at the nanoscale. Numerous metrologies capable of thermal, mechanical, and electrical characterization at the nanoscale have been demonstrated over the past two decades. However, the ability to perform nanoscale molecular/chemical structure characterization has only been recently demonstrated with the advent of atomic-force-microscopy-based infrared spectroscopy (AFM-IR and related techniques. Therefore, we have combined measurements of chemical structures with AFM-IR and of mechanical properties with contact resonance AFM (CR-AFM to investigate the fabrication of 20–500 nm wide fin structures in a nanoporous organosilicate material. We show that by combining these two techniques, one can clearly observe variations of chemical structure and mechanical properties that correlate with the fabrication process and the feature size of the organosilicate fins. Specifically, we have observed an inverse correlation between the concentration of terminal organic groups and the stiffness of nanopatterned organosilicate fins. The selective removal of the organic component during etching results in a stiffness increase and reinsertion via chemical silylation results in a stiffness decrease. Examination of this effect as a function of fin width indicates that the loss of terminal organic groups and stiffness increase occur primarily at the exposed surfaces of the fins over a length scale of 10–20 nm. While the observed structure–property relationships are specific to organosilicates, we believe the combined demonstration of AFM-IR with CR-AFM should pave the way for a similar nanoscale characterization of other materials where the understanding of such relationships is essential.
Radiation, waves, fields. Causes and effects on environment and health
International Nuclear Information System (INIS)
Leitgeb, N.
1990-01-01
The book discusses static electricity, alternating electric fields, magnetostatic fields, alternating magnetic fields, electromagnetic radiation, optical and ionizing radiation and their hazards and health effects. Each chapter presents basic physical and biological concepts and describes the common radiation sources and their biological effects. Each chapter also contains hints for everyday behaviour as well as in-depth information an specific scientific approaches for assessing biological effects; the latter are addressed to all expert readers working in these fields. There is a special chapter on the problem of so-called 'terrestrial radiation'. (orig.) With 88 figs., 31 tabs [de
Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins
Lauder, George V.; Madden, Peter G. A.
2007-11-01
The fins of fishes are remarkable propulsive devices that appear at the origin of fishes about 500 million years ago and have been a key feature of fish evolutionary diversification. Most fish species possess both median (midline) dorsal, anal, and caudal fins as well as paired pectoral and pelvic fins. Fish fins are supported by jointed skeletal elements, fin rays, that in turn support a thin collagenous membrane. Muscles at the base of the fin attach to and actuate each fin ray, and fish fins thus generate their own hydrodynamic wake during locomotion, in addition to fluid motion induced by undulation of the body. In bony fishes, the jointed fin rays can be actively deformed and the fin surface can thus actively resist hydrodynamic loading. Fish fins are highly flexible, exhibit considerable deformation during locomotion, and can interact hydrodynamically during both propulsion and maneuvering. For example, the dorsal and anal fins shed a vortex wake that greatly modifies the flow environment experienced by the tail fin. New experimental kinematic and hydrodynamic data are presented for pectoral fin function in bluegill sunfish. The highly flexible sunfish pectoral fin moves in a complex manner with two leading edges, a spanwise wave of bending, and substantial changes in area through the fin beat cycle. Data from scanning particle image velocimetry (PIV) and time-resolved stereo PIV show that the pectoral fin generates thrust throughout the fin beat cycle, and that there is no time of net drag. Continuous thrust production is due to fin flexibility which enables some part of the fin to generate thrust at all times and to smooth out oscillations that might arise at the transition from outstroke to instroke during the movement cycle. Computational fluid dynamic analyses of sunfish pectoral fin function corroborate this conclusion. Future research on fish fin function will benefit considerably from close integration with studies of robotic model fins.
Impact of electric field on Hofmeister effects in aggregation of ...
Indian Academy of Sciences (India)
Electric field; Hofmeister effects; ionic polarization; colloidal minerals; electrostatic interaction. 1. Introduction. Aggregation .... sions containing a given quantity of colloidal minerals ..... account to explain the observed Hofmeister effects. On the ...
The effects of magnetic fields on carnauba wax electret formation
Clator, Irvin G.
1987-08-01
The results of thermally stimulated depolarization current and effective surface charge-density measurements indicate that magnetic fields do not produce carnauba wax electrets and that previously reported data can be attributed to nonmagnetic effects.
Nanometer size field effect transistors for terahertz detectors
International Nuclear Information System (INIS)
Knap, W; Rumyantsev, S; Coquillat, D; Dyakonova, N; Teppe, F; Vitiello, M S; Tredicucci, A; Blin, S; Shur, M; Nagatsuma, T
2013-01-01
Nanometer size field effect transistors can operate as efficient resonant or broadband terahertz detectors, mixers, phase shifters and frequency multipliers at frequencies far beyond their fundamental cut-off frequency. This work is an overview of some recent results concerning the application of nanometer scale field effect transistors for the detection of terahertz radiation. (paper)
High mobility polymer gated organic field effect transistor using zinc ...
Indian Academy of Sciences (India)
Organic thin film transistors were fabricated using evaporated zinc phthalocyanine as the active layer. Parylene film ... At room temperature, these transistors exhibit p-type conductivity with field-effect ... Keywords. Organic semiconductor; field effect transistor; phthalocyanine; high mobility. ... The evaporation rate was kept at ...
Field variation is one of the important factors that can have a significant impact on genetic data analysis. Ineffective control of field variation may result in an inflated residual variance and/or biased estimation of genetic variations and/or effects. In this study, we addressed this problem by m...
Effective potentials in gauge field theories
International Nuclear Information System (INIS)
Caldas, P.S.S.; Fleming, H.; Garcia, R.L.
An elementary and very efficient method for computing the effective potential of any theory containing scalar bosons is described. Examples include massless scalar electrodynamics and Yang-Mills theories [pt
Flexible nanoscale high-performance FinFETs
Sevilla, Galo T.
2014-10-28
With the emergence of the Internet of Things (IoT), flexible high-performance nanoscale electronics are more desired. At the moment, FinFET is the most advanced transistor architecture used in the state-of-the-art microprocessors. Therefore, we show a soft-etch based substrate thinning process to transform silicon-on-insulator (SOI) based nanoscale FinFET into flexible FinFET and then conduct comprehensive electrical characterization under various bending conditions to understand its electrical performance. Our study shows that back-etch based substrate thinning process is gentler than traditional abrasive back-grinding process; it can attain ultraflexibility and the electrical characteristics of the flexible nanoscale FinFET show no performance degradation compared to its rigid bulk counterpart indicating its readiness to be used for flexible high-performance electronics.
Transient heat transfer in longitudinal fins of various profiles with ...
Indian Academy of Sciences (India)
School of Computational and Applied Mathematics, University of the Witwatersrand, ... by frequent encounters of fin problems in many engineering applications to enhance heat transfer. In recent .... where β is the thermal conductivity gradient.
Heat transfer in laminar flow for a finned double - tube
International Nuclear Information System (INIS)
Colle, S.
1977-01-01
An analitical study of the steady-state heat transfer in laminar flow in finned double-tube heat exchangers is presented. The fins are plane, straight and continous, equally spaced and are fixed over the external surface of the inner tube. A constant peripheral temperature distribution is assumed to apply over the inner tube surface and each fin, and a constant peripheral heat flux is assumed to apply over the outer tube surface, while the overall heat flux is suposed to be uniform in the longitudinal direction of the duct. The prediction of the thermal performance of the finned double-tube is made by means of the relationship between the Nusselt number, the boundary conditions and the geometric characteristcs of the duct. (author) [pt
Steady-state and transient heat transfer through fins of complex geometry
Directory of Open Access Journals (Sweden)
Taler Dawid
2014-06-01
Full Text Available Various methods for steady-state and transient analysis of temperature distribution and efficiency of continuous-plate fins are presented. For a constant heat transfer coefficient over the fin surface, the plate fin can be divided into imaginary rectangular or hexangular fins. At first approximate methods for determining the steady-state fin efficiency like the method of equivalent circular fin and the sector method are discussed. When the fin geometry is complex, thus transient temperature distribution and fin efficiency can be determined using numerical methods. A numerical method for transient analysis of fins with complex geometry is developed. Transient temperature distributions in continuous fins attached to oval tubes is computed using the finite volume - finite element methods. The developed method can be used in the transient analysis of compact heat exchangers to calculate correctly the heat flow rate transferred from the finned tubes to the fluid.
Is the effective field theory of dark energy effective?
Energy Technology Data Exchange (ETDEWEB)
Linder, Eric V. [Berkeley Center for Cosmological Physics and Berkeley Lab, University of California, New Campbell Hall 341, Berkeley, CA, 94720 (United States); Sengör, Gizem; Watson, Scott, E-mail: evlinder@lbl.gov, E-mail: gsengor@syr.edu, E-mail: gswatson@syr.edu [Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244 (United States)
2016-05-01
The effective field theory of cosmic acceleration systematizes possible contributions to the action, accounting for both dark energy and modifications of gravity. Rather than making model dependent assumptions, it includes all terms, subject to the required symmetries, with four (seven) functions of time for the coefficients. These correspond respectively to the Horndeski and general beyond Horndeski class of theories. We address the question of whether this general systematization is actually effective, i.e. useful in revealing the nature of cosmic acceleration when compared with cosmological data. The answer is no and yes: there is no simple time dependence of the free functions —assumed forms in the literature are poor fits, but one can derive some general characteristics in early and late time limits. For example, we prove that the gravitational slip must restore to general relativity in the de Sitter limit of Horndeski theories, and why it doesn't more generally. We also clarify the relation between the tensor and scalar sectors, and its important relation to observations; in a real sense the expansion history H ( z ) or dark energy equation of state w ( z ) is 1/5 or less of the functional information! In addition we discuss the de Sitter, Horndeski, and decoupling limits of the theory utilizing Goldstone techniques.
Water flow and fin shape polymorphism in coral reef fishes.
Binning, Sandra A; Roche, Dominique G
2015-03-01
Water flow gradients have been linked to phenotypic differences and swimming performance across a variety of fish assemblages. However, the extent to which water motion shapes patterns of phenotypic divergence within species remains unknown. We tested the generality of the functional relationship between swimming morphology and water flow by exploring the extent of fin and body shape polymorphism in 12 widespread species from three families (Acanthuridae, Labridae, Pomacentridae) of pectoral-fin swimming (labriform) fishes living across localized wave exposure gradients. The pectoral fin shape of Labridae and Acanthuridae species was strongly related to wave exposure: individuals with more tapered, higher aspect ratio (AR) fins were found on windward reef crests, whereas individuals with rounder, lower AR fins were found on leeward, sheltered reefs. Three of seven Pomacentridae species showed similar trends, and pectoral fin shape was also strongly related to wave exposure in pomacentrids when fin aspect ratios of three species were compared across flow habitats at very small spatial scales (fish body fineless ratio across habitats or depths. Contrary to our predictions, there was no pattern relating species' abundances to polymorphism across habitats (i.e., abundance was not higher at sites where morphology is better adapted to the environment). This suggests that there are behavioral and/or physiological mechanisms enabling some species to persist across flow habitats in the absence of morphological differences. We suggest that functional relationships between swimming morphology and water flow not only structure species assemblages, but are yet another important variable contributing to phenotypic differences within species. The close links between fin shape polymorphism and local water flow conditions appear to be important for understanding species' distributions as well as patterns of diversification across environmental gradients.
Microbes safely, effectively bioremediate oil field pits
International Nuclear Information System (INIS)
Shaw, B.; Block, C.S.; Mills, C.H.
1995-01-01
Natural and augmented bioremediation provides a safe, environmental, fast, and effective solution for removing hydrocarbon stains from soil. In 1992, Amoco sponsored a study with six bioremediation companies, which evaluated 14 different techniques. From this study, Amoco continued using Environmental Protection Co.'s (EPC) microbes for bioremediating more than 145 sites near Farmington, NM. EPC's microbes proved effective on various types of hydrocarbon molecules found in petroleum stained soils from heavy crude and paraffin to volatiles such as BTEX (benzene, toluene, ethylbenzene, xylene) compounds. Controlled laboratory tests have shown that these microbes can digest the hydrocarbon molecules with or without free oxygen present. It is believed that this adaptation gives these microbes their resilience. The paper describes the bioremediation process, environmental advantages, in situ and ex situ bioremediation, goals of bioremediation, temperature effects, time, cost, and example sites that were treated
FARADAY ROTATION: EFFECT OF MAGNETIC FIELD REVERSALS
International Nuclear Information System (INIS)
Melrose, D. B.
2010-01-01
The standard formula for the rotation measure (RM), which determines the position angle, ψ = RMλ 2 , due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution Δψ needed to correct this omission. In contrast with a result proposed by Broderick and Blandford, Δψ is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.
FARADAY ROTATION: EFFECT OF MAGNETIC FIELD REVERSALS
Energy Technology Data Exchange (ETDEWEB)
Melrose, D B [SIfA, School of Physics, University of Sydney, NSW 2006 (Australia)
2010-12-20
The standard formula for the rotation measure (RM), which determines the position angle, {psi} = RM{lambda}{sup 2}, due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution {Delta}{psi} needed to correct this omission. In contrast with a result proposed by Broderick and Blandford, {Delta}{psi} is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.
Effective and fundamental quantum fields at criticality
Energy Technology Data Exchange (ETDEWEB)
Scherer, Michael
2010-10-28
We employ Wetterich's approach to functional renormalization as a suitable method to investigate universal phenomena in non-perturbative quantum field theories both qualitatively and quantitatively. Therefore we derive and investigate flow equations for a class of chiral Yukawa models with and without gauge bosons and reveal fixed-point mechanisms. In four dimensions chiral Yukawa systems serve as toy models for the standard model Higgs sector and show signatures of asymptotically safe fixed points by a balancing of bosonic and fermionic contributions. In the approximations investigated this renders the theory fundamental and solves the triviality problem. Further, we obtain predictions for the Higgs mass and even for the top mass of our toy model. In three dimensions we compute the critical exponents which define new universality classes and provide benchmark values for systems of strongly correlated chiral fermions. In a Yukawa system of non-relativistic two-component fermions a fixed point dominates the renormalization flow giving rise to universality in the BCS-BEC crossover. We push the functional renormalization method to a quantitative level and we compute the critical temperature and the single-particle gap with a considerable precision for the whole crossover. Finally, we provide further evidence for the asymptotic safety scenario in quantum gravity by confirming the existence of an ultraviolet fixed point under inclusion of a curvature-ghost coupling. (orig.)
Effective and fundamental quantum fields at criticality
International Nuclear Information System (INIS)
Scherer, Michael
2010-01-01
We employ Wetterich's approach to functional renormalization as a suitable method to investigate universal phenomena in non-perturbative quantum field theories both qualitatively and quantitatively. Therefore we derive and investigate flow equations for a class of chiral Yukawa models with and without gauge bosons and reveal fixed-point mechanisms. In four dimensions chiral Yukawa systems serve as toy models for the standard model Higgs sector and show signatures of asymptotically safe fixed points by a balancing of bosonic and fermionic contributions. In the approximations investigated this renders the theory fundamental and solves the triviality problem. Further, we obtain predictions for the Higgs mass and even for the top mass of our toy model. In three dimensions we compute the critical exponents which define new universality classes and provide benchmark values for systems of strongly correlated chiral fermions. In a Yukawa system of non-relativistic two-component fermions a fixed point dominates the renormalization flow giving rise to universality in the BCS-BEC crossover. We push the functional renormalization method to a quantitative level and we compute the critical temperature and the single-particle gap with a considerable precision for the whole crossover. Finally, we provide further evidence for the asymptotic safety scenario in quantum gravity by confirming the existence of an ultraviolet fixed point under inclusion of a curvature-ghost coupling. (orig.)
International Nuclear Information System (INIS)
Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo
2011-01-01
Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields. (author)
Directory of Open Access Journals (Sweden)
Cheng-Hao Huang
2015-06-01
Full Text Available In this work, we study characteristics of 14-nm-gate InGaAs-based trigate MOSFET (metal-oxide-semiconductor field effect transistor devices with a channel capping layer. The impacts of thickness and gallium (Ga concentration of the channel capping layer on the device characteristic are firstly simulated and optimized by using three-dimensional quantum-mechanically corrected device simulation. Devices with In1−xGaxAs/In0.53Ga0.47As channels have the large driving current owing to small energy band gap and low alloy scattering at the channel surface. By simultaneously considering various physical and switching properties, a 4-nm-thick In0.68Ga0.32As channel capping layer can be adopted for advanced applications. Under the optimized channel parameters, we further examine the effects of channel fin angle and the work-function fluctuation (WKF resulting from nano-sized metal grains of NiSi gate on the characteristic degradation and variability. To maintain the device characteristics and achieve the minimal variation induced by WKF, the physical findings of this study indicate a critical channel fin angle of 85o is needed for the device with an averaged grain size of NiSi below 4x4 nm2.
END FIELD EFFECTS IN BEND ONLY COOLING LATTICES
International Nuclear Information System (INIS)
BEERG, J.S.; KIRK, H.; GARREN, A.
2003-01-01
Cooling lattices consisting only of bends (using either rotated pole faces or gradient dipoles to achieve focusing) often require large apertures and short magnets. One expects the effect of end fields to be significant in this case. In this paper we explore the effect of adding end fields to a working lattice design that originally lacked them. The paper describes the process of correcting the lattice design for the added end fields so as to maintain desirable lattice characteristics. It then compares the properties of the lattice with end fields relative to the lattice without them
Magnetic field and magnetic isotope effects on photochemical reactions
International Nuclear Information System (INIS)
Wakasa, Masanobu
1999-01-01
By at present exact experiments and the theoretical analysis, it was clear that the magnetic field less than 2 T affected a radical pair reaction and biradical reaction. The radical pair life and the dissipative radical yield showed the magnetic field effects on chemical reactions. The radical pair mechanism and the triplet mechanism were known as the mechanism of magnetic field effects. The radical pair mechanism consists of four mechanisms such as the homogeneous hyperfine interaction (HFC), the delta-g mechanism, the relaxation mechanism and the level cross mechanism. In order to observe the magnetic effects of the radical pair mechanism, two conditions need, namely, the recombination rate of singlet radical pair > the dissipation rate and the spin exchange rate > the dissipation rate. A nanosecond laser photo-decomposition equipment can observe the magnetic field effects. The inversion phenomena of magnetic field effect, isolation of the relaxation mechanism and the delta-g mechanism, the magnetic field effect of heavy metal radical reaction, the magnetic field effect in homogeneous solvent, saturation of delta-g mechanism are explained. The succeeded examples of isotope concentration by the magnetic isotope effect are 17 O, 19 Si, 33 S, 73 Ge and 235 U. (S.Y.)
Electric field effects in hyperexcitable neural tissue: A review
International Nuclear Information System (INIS)
Durand, D.M.
2003-01-01
Uniform electric fields applied to neural tissue can modulate neuronal excitability with a threshold value of about 1mV mm -1 in normal physiological conditions. However, electric fields could have a lower threshold in conditions where field sensitivity is enhanced, such as those simulating epilepsy. Uniform electrical fields were applied to hippocampal brain slices exposed to picrotoxin, high potassium or low calcium solutions. The results in the low calcium medium show that neuronal activity can be completely blocked in 10% of the 30 slices tested with a field amplitude of 1mV mm -1 . These results suggest that the threshold for this effect is clearly smaller than 1mV mm -1 . The hypothesis that the extracellular resistance could affect the sensitivity to the electrical fields was tested by measuring the effect of the osmolarity of the extracellular solution on the efficacy of the field. A 10% decrease on osmolarity resulted in a 56% decrease ( n =4) in the minimum field required for full suppression. A 14% in osmolarity produced an 81% increase in the minimum field required for full suppression. These results show that the extracellular volume can modulate the efficacy of the field and could lower the threshold field amplitudes to values lower than ∼1mmV mm -. (author)
Information loss in effective field theory: Entanglement and thermal entropies
Boyanovsky, Daniel
2018-03-01
Integrating out high energy degrees of freedom to yield a low energy effective field theory leads to a loss of information with a concomitant increase in entropy. We obtain the effective field theory of a light scalar field interacting with heavy fields after tracing out the heavy degrees of freedom from the time evolved density matrix. The initial density matrix describes the light field in its ground state and the heavy fields in equilibrium at a common temperature T . For T =0 , we obtain the reduced density matrix in a perturbative expansion; it reveals an emergent mixed state as a consequence of the entanglement between light and heavy fields. We obtain the effective action that determines the time evolution of the reduced density matrix for the light field in a nonperturbative Dyson resummation of one-loop correlations of the heavy fields. The Von-Neumann entanglement entropy associated with the reduced density matrix is obtained for the nonresonant and resonant cases in the asymptotic long time limit. In the nonresonant case the reduced density matrix displays an incipient thermalization albeit with a wave-vector, time and coupling dependent effective temperature as a consequence of memory of initial conditions. The entanglement entropy is time independent and is the thermal entropy for this effective, nonequilibrium temperature. In the resonant case the light field fully thermalizes with the heavy fields, the reduced density matrix loses memory of the initial conditions and the entanglement entropy becomes the thermal entropy of the light field. We discuss the relation between the entanglement entropy ultraviolet divergences and renormalization.
Fahad, Hossain M.
2014-03-01
scaling on silicon, the amount of current generated per device has to be increased while keeping short channel effects and off-state leakage at bay. The objective of this doctoral thesis is the investigation of an innovative vertical silicon based architecture called the silicon nanotube field effect transistor (Si NTFET). This topology incorporates a dual inner/outer core/shell gate stack strategy to control the volume inversion properties in a hollow silicon 1D quasi-nanotube under a tight electrostatic configuration. Together with vertically aligned source and drain, the Si NTFET is capable of very high on-state performance (drive current) in an area-efficient configuration as opposed to arrays of gate-all-around nanowires, while maintaining leakage characteristics similar to a single nanowire. Such a device architecture offsets the need of device arraying that is needed with fin and nanowire architectures. Extensive simulations are used to validate the potential benefits of Si NTFETs over GAA NWFETs on a variety of platforms such as conventional MOSFETs, tunnel FETs, junction-less FETs. This thesis demonstrates a novel CMOS compatible process flow to fabricate vertical nanotube transistors that offer a variety of advantages such as lithography-independent gate length definition, integration of epitaxially grown silicon nanotubes with spacer based gate dielectrics and abrupt in-situ doped source/drain junctions. Experimental measurement data will showcase the various materials and processing challenges in fabricating these devices. Finally, an extension of this work to topologically transformed wavy channel FinFETs is also demonstrated keeping in line with the theme of area efficient high-performance electronics.
Effects of hypersonic field and anharmonic interactions on channelling radiation
International Nuclear Information System (INIS)
George, Juby; Pathak, Anand P; Goteti, L N S Prakash; Nagamani, G
2007-01-01
The effects of a hypersonic field on positron channelling radiation are considered. Anharmonic effects of the transverse potential induced by these longitudinal fields are incorporated and the wavefunction of the planar channelled positron is found by the solution of Dirac equation under the resonant influence of hypersound. An expression for the resonant frequency is estimated. The transition probabilities and the intensity of the channelling radiation are also calculated. It is found that the anharmonic effects change the spectral distributions considerably
Developmental effects of extremely low frequency electric and magnetic fields
International Nuclear Information System (INIS)
Juutilainen, J.
2003-01-01
Developmental effects of extremely low frequency (ELF) electric and magnetic fields are briefly reviewed in this paper. The results of animal studies on ELF electric fields are rather consistent, and do not suggest adverse effects on development. The results of studies on ELF magnetic fields suggest effects on bird embryo development, but not consistently in all studies. Results from experiments with other non-mammalian species have also suggested effects on developmental stability. In mammals, pre-natal exposure to ELF magnetic fields does not result in strong adverse effects on development. The only finding that shows some consistency is increase of minor skeleton alterations. Epidemiological studies do not establish an association between human adverse pregnancy outcomes and maternal exposure to ELF fields, although a few studies have reported increased risks associated with some characteristics of magnetic field exposure. Taken as a whole, the results do not show strong adverse effects on development. However, additional studies on the suggested subtle effects on developmental stability might increase our understanding of the sensitivity of organisms to weak ELF fields. (author)
Magnetic field shielding effect for CFETR TF coil-case
Energy Technology Data Exchange (ETDEWEB)
Xu, Weiwei; Liu, Xufeng, E-mail: Lxf@ipp.ac.cn; Du, Shuangsong; Zheng, Jinxing
2017-05-15
Highlights: • The eddy current of CFETR vacuum vessel can be calculated by using a series of ideal current loops. • The shielding effect with different eddy current is studied by decomposing the exciting magnetic field as two orthogonal components. • The shielding effect can be determined from the rate of eddy current magnetic field to the external magnetic field. - Abstract: The operation of superconducting magnet for fusion device is under the complex magnetic field condition, which affect the stabilization of superconductor. The coil-case of TF coil can shield the magnetic field to some extent. The shielding effect is related to the eddy current of coil-case. The shielding effect with different eddy current is studied by decomposing the exciting magnetic field as two orthogonal components, respectively. The results indicate that the shielding effect of CFETR TF coil-case has obvious different with the different directional magnetic field, and it’s larger for tangential magnetic compared with that for normal field.
International Nuclear Information System (INIS)
Yamagishi, Tomejiro; Sanuki, Heiji.
1996-01-01
Anomalous cross field plasma fluxes induced by the electric field fluctuations has been evaluated in a rotating plasma with shear flow in a helical system. The anomalous ion flux is evaluated by the contribution from ion curvature drift resonance continuum in the test particle model. The radial electric field induces the Doppler frequency shift which disappears in the frequency integrated anomalous flux. The inhomogeneity of the electric field (shear flow effect), however, induces a new force term in the flux. The curvature drift resonance also induces a new force term '/ which, however, did not make large influence in the ion flux in the CHS configuration. The shear flow term in the flux combined with the electric field in neoclassical flux reduces to a first order differential equation which governs the radial profile of the electric field. Numerical results indicate that the shear flow effect is important for the anomalous cross field flux and for determination of the radial electric field particularly in the peripheral region. (author)
Experimental realization of a silicon spin field-effect transistor
Huang, Biqin; Monsma, Douwe J.; Appelbaum, Ian
2007-01-01
A longitudinal electric field is used to control the transit time (through an undoped silicon vertical channel) of spin-polarized electrons precessing in a perpendicular magnetic field. Since an applied voltage determines the final spin direction at the spin detector and hence the output collector current, this comprises a spin field-effect transistor. An improved hot-electron spin injector providing ~115% magnetocurrent, corresponding to at least ~38% electron current spin polarization after...
Cylindrical-shaped nanotube field effect transistor
Hussain, Muhammad Mustafa
2015-12-29
A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.
Cylindrical-shaped nanotube field effect transistor
Hussain, Muhammad Mustafa; Fahad, Hossain M.; Smith, Casey E.; Rojas, Jhonathan Prieto
2015-01-01
A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.
Channel-closing effects in strong-field ionization by a bicircular field
Milošević, D. B.; Becker, W.
2018-03-01
Channel-closing effects, such as threshold anomalies and resonantlike intensity-dependent enhancements in strong-field ionization by a bicircular laser field are analyzed. A bicircular field consists of two coplanar corotating or counter-rotating circularly polarized fields having different frequencies. For the total detachment rate of a negative ion by a bicircular field we observe threshold anomalies and explain them using the Wigner threshold law and energy and angular momentum conservation. For the corotating bicircular case, these effects are negligible, while for the counter-rotating case they are pronounced and their position depends on the magnetic quantum number of the initial state. For high-order above-threshold ionization of rare-gas atoms by a counter-rotating bicircular laser field we observe very pronounced intensity-dependent enhancements. We find all four types of threshold anomalies known from collision theory. Contrary to the case of linear polarization, channel-closing effects for a bicircular field are visible also in the cutoff region of the electron energy spectrum, which is explained using quantum-orbit theory.
Magnetic Field Effects on the Plume of a Diverging Cusped-Field Thruster
Matlock, Taylor
2010-07-25
The Diverging Cusped-Field Thruster (DCFT) uses three permanent ring magnets of alternating polarity to create a unique magnetic topology intended to reduce plasma losses to the discharge chamber surfaces. The magnetic field strength within the DCFT discharge chamber (up to 4 kG on axis) is much higher than in thrusters of similar geometry, which is believed to be a driving factor in the high measured anode efficiencies. The field strength in the near plume region is large as well, which may bear on the high beam divergences measured, with peaks in ion current found at angles of around 30-35 from the thruster axis. Characterization of the DCFT has heretofore involved only one magnetic topology. It is then the purpose of this study to investigate changes to the near-field plume caused by altering the shape and strength of the magnetic field. A thick magnetic collar, encircling the thruster body, is used to lower the field strength outside of the discharge chamber and thus lessen any effects caused by the external field. Changes in the thruster plume with field topology are monitored by the use of normal Langmuir and emissive probes interrogating the near-field plasma. Results are related to other observations that suggest a unified conceptual framework for the important near-exit region of the thruster.
3-dimensional simulation of dynamo effect of reversed field pinch
International Nuclear Information System (INIS)
Koide, Shinji.
1990-09-01
A non-linear numerical simulation of the dynamo effect of a reversed field pinch (RFP) with finite beta is presented. It is shown that the m=-1, n=(9,10,11,....,19) modes cause the dynamo effect and sustain the field reversed configuration. The role of the m=0 modes on the dynamo effect is carefully examined. Our simulation shows that the magnetic field fluctuation level scales as S -0.2 or S -0.3 in the range of 10 3 5 , while Nebel, Caramana and Schnack obtained the fluctuation level is independent of S for a pressureless RFP plasma. (author)
The performance of a new gas to gas heat exchanger with strip fin
Wang, J.; Hirs, Gerard; Rollmann, P.
1999-01-01
A compact gas to gas heat exchanger needs large heat transfer areas on both fluid sides. This can be realised by adding secondary surfaces. The secondary surfaces are plate fin, strip fin, and louvered fin, etc. The fins extend the heat transfer surfaces and promote turbulence. This paper presents a
Anbarashan, Padmavathy; Gopalswamy, Poyyamoli
2013-07-15
The usage of synthetic fertilizers/insecticides in conventional farming has dramatically increased over the past decades. The aim of the study was to compare the effects of bio-pesticides and insecticides/pesticides on selected beneficial non targeted arthropods. Orders Collembola, Arachinida/Opiliones, Oribatida and Coleoptera were the main groups of arthropods found in the organic fields and Coleoptera, Oribatida, Gamasida and Collembola in conventional fields. Pesticides/insecticides had a significant effect on non-targeted arthropods order- Collembola, Arachinida/Opiliones, Hymenoptera and Thysonoptera were suppressed after pesticides/insecticides spraying. Bio-insecticides in organic fields had a non-significant effect on non targeted species and they started to increase in abundance after 7 days of spraying, whereas insecticide treatment in conventional fields had a significant long-term effect on non targeted arthropods and short term effect on pests/insects, it started to increase after 21 days of the spraying. These results indicate that insecticide treatment kept non targeted arthropods at low abundance. In conclusion, organic farming does not significantly affected the beneficial-non targeted arthropods biodiversity, whereas preventive insecticide application in conventional fields had significant negative effects on beneficial non targeted arthropods. Therefore, conventional farmers should restrict insecticide applications, unless pest densities reach the thresholds and more desirably can switch to organic farming practices.
3D quantum gravity and effective noncommutative quantum field theory.
Freidel, Laurent; Livine, Etera R
2006-06-09
We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.
Effects of Radial Electric Fields on ICRF Waves
International Nuclear Information System (INIS)
Phillips, C.K.; Hosea, J.C.; Ono, M.; Wilson, J.R.
2001-01-01
Equilibrium considerations infer that large localized radial electric fields are associated with internal transport barrier structures in tokamaks and other toroidal magnetic confinement configurations. In this paper, the effects of an equilibrium electric field on fast magnetosonic wave propagation are considered in the context of a cold plasma model
Effective interactions from q-deformed quark fields
International Nuclear Information System (INIS)
Timoteo, V. S.; Lima, C. L.
2007-01-01
From the mass term for q-deformed quark fields, we obtain effective contact interactions of the NJL type. The parameters of the model that maps a system of non-interacting deformed fields into quarks interacting via NJL contact terms is discussed
The effectiveness of Farmer Field School (FFS) training on farmers ...
African Journals Online (AJOL)
The effectiveness of Farmer Field School (FFS) training on farmers competence in Integrated Pest Management (IPM) of Cocoa in Ondo state, Nigeria. ... of years of cocoa farming (b=1.785) and participation in Farmer Field School training (b ...
Quark pair creation in color electric fields and effects of magnetic fields
International Nuclear Information System (INIS)
Tanji, Noato
2010-01-01
The time evolution of a system where a uniform and classical SU(3) color electric field and quantum fields of quarks interact with each other is studied focusing on non-perturbative pair creation and its back reaction. We characterize a color direction of an electric field in a gauge invariant way, and investigate its dependence. Momentum distributions of created quarks show plasma oscillation as well as quantum effects such as the Pauli blocking and interference. Pressure of the system is also calculated, and we show that pair creation moderates degree of anisotropy of pressure. Furthermore, enhancement of pair creation and induction of chiral charge under a color magnetic field which is parallel to an electric field are discussed.
Pros and cons of symmetrical dual-k spacer technology in hybrid FinFETs
Pradhan, K. P.; Andrade, M. G. C.; Sahu, P. K.
2016-12-01
The symmetrical dual-k spacer technology in hybrid FinFETs has been widely explored for better electrostatic control of the fin-based devices in nanoscale region. Since, high-k tangible spacer materials are broadly became a matter of study due to their better immunity to the short channel effects (SCEs) in nano devices. However, the only cause that restricts the circuit designers from using high-k spacer is the unreasonable increasing fringing capacitances. This work quantitatively analyzed the benefits and drawbacks of considering two different dielectric spacer materials symmetrically in either sides of the channel for the hybrid device. From the demonstrated results, the inclusion of high-k spacer predicts an effective reduction in off-state leakage along with an improvement in drive current. However, these devices have paid the cost in terms of a high total gate-to-gate capacitance (Cgg) that consequently results poor cutoff frequency (fT) and delay.
Effects of an electric field on interaction of aromatic systems.
Youn, Il Seung; Cho, Woo Jong; Kim, Kwang S
2016-04-30
The effect of uniform external electric field on the interactions between small aromatic compounds and an argon atom is investigated using post-HF (MP2, SCS-MP2, and CCSD(T)) and density functional (PBE0-D3, PBE0-TS, and vdW-DF2) methods. The electric field effect is quantified by the difference of interaction energy calculated in the presence and absence of the electric field. All the post-HF methods describe electric field effects accurately although the interaction energy itself is overestimated by MP2. The electric field effect is explained by classical electrostatic models, where the permanent dipole moment from mutual polarization mainly determines its sign. The size of π-conjugated system does not have significant effect on the electric field dependence. We found out that PBE0-based methods give reasonable interaction energies and electric field response in every case, while vdW-DF2 sometimes shows spurious artifact owing to its sensitivity toward the real space electron density. © 2015 Wiley Periodicals, Inc.
Differentiated-effect shims for medium field levels and saturation
International Nuclear Information System (INIS)
Richie, A.
1976-01-01
The arrangement of shims on the upstream and downstream ends of magnets may be based on the independent effects of variations in the geometric length and degree of saturation at the edges of the poles. This technique can be used to match the bending strength of an accelerator's magnets at two field levels (medium fields and maximum fields) and thus save special procedures (mixing the laminations, local compensation for errors by arranging the magnets in the appropriate order) and special devices (for instance, correcting dipoles) solely for correcting bending strengths at low field levels. (Auth.)
Toroidal field effects on the stability of Heliotron E
International Nuclear Information System (INIS)
Carreras, B.A.; Garcia, L.; Lynch, V.E.
1986-02-01
The addition of a small toroidal field to the Heliotron E configuration improves the stability of the n = 1 mode and increases the value of the stability beta critical. Total stabilization of this mode can be achieved with added toroidal fields between 5 and 15% of the total field. In this situation, the plasma can have direct access to the second stability regime. For the Heliotron E configuration, the self-stabilization effect is due to the shear, not to the magnetic well. The toroidal field threshold value for stability depends strongly on the pressure profile and the plasma radius. 21 refs., 15 figs
Nucleon effective masses in field theories of dense matter
Energy Technology Data Exchange (ETDEWEB)
Lee, C H; Reddy, S; Prakash, M [Dept. of Physics and Astronomy, Stony Brook, NY (United States)
1998-06-01
We point out some generic trends of effective masses in commonly used field-theoretical descriptions of stellar matter in which several species of strongly interacting particles of dissimilar masses may be present. (orig.)
effect of brinkman number and magnetic field on laminar convection ...
African Journals Online (AJOL)
Joseph et al.
Science World Journal Vol 12(No 4) 2017 ... Joule heating on the fully developed MHD flow with heat transfer .... fluid in a vertical parallel – plate with effect of magnetic field and ..... Plates Channel, Proceedings of the 2013 International.
Nucleon effective masses in field theories of dense matter
International Nuclear Information System (INIS)
Lee, C.H.; Reddy, S.; Prakash, M.
1998-01-01
We point out some generic trends of effective masses in commonly used field-theoretical descriptions of stellar matter in which several species of strongly interacting particles of dissimilar masses may be present. (orig.)
Cylindrical Field Effect Transistor: A Full Volume Inversion Device
Fahad, Hossain M.
2010-01-01
inversion in the body. However, these devices are still limited by lithographic and processing challenges making them unsuitable for commercial production. This thesis explores a unique device structure called the CFET (Cylindrical Field Effect Transistors
Hyperon-nucleon interactions - a chiral effective field theory approach
Polinder, H.; Haidenbauer, J.; Meissner, U.G.
2006-01-01
We construct the leading order hyperon–nucleon potential in chiral effective field theory. We show that a good description of the available data is possible and discuss briefly further improvements of this scheme
Vertically aligned carbon nanotube field-effect transistors
Li, Jingqi; Zhao, Chao; Wang, Qingxiao; Zhang, Qiang; Wang, Zhihong; Zhang, Xixiang; Abutaha, Anas I.; Alshareef, Husam N.
2012-01-01
Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been developed using pure semiconducting carbon nanotubes. The source and drain were vertically stacked, separated by a dielectric, and the carbon nanotubes were placed
Gravitomagnetic effects in conductor in applied magnetic field
International Nuclear Information System (INIS)
Ahmedov, B.J.; Karim, M.
1999-11-01
The electromagnetic measurements of general relativistic gravitomagnetic effects which can be performed within a conductor embedded in the space-time of slow rotating gravitational object in the presence of magnetic field are proposed. (author)
International Nuclear Information System (INIS)
Zhang Dan; Liu Changwen; Lu Jianchao
2011-01-01
Tight lattice fuel assembly usually adopts spiral-fin fuel elements. Compared with the traditional PWR fuel rods, the closely packed and spiral fin spacers make the heat transfer and hydraulic phenomena in sub-channels very complicated, and: there was no suitable model and correlation to study it. This paper studied the effect of spiral spacers on the channel geometry in the equivalent annulus and physical performance based on the Rehme equivalent annulus methods, and the heat transfer of the spiral fin fuel rods and hydraulic model were obtained. The new model was verified with the traditional one, and the verification showed that two new models agreed well, which could provide certain theoretical explanation to the effect of the spiral spacer on the thermal hydraulics. (authors)
Effect of external fields in Axelrod's model of social dynamics
Peres, Lucas R.; Fontanari, José F.
2012-09-01
The study of the effects of spatially uniform fields on the steady-state properties of Axelrod's model has yielded plenty of counterintuitive results. Here, we reexamine the impact of this type of field for a selection of parameters such that the field-free steady state of the model is heterogeneous or multicultural. Analyses of both one- and two-dimensional versions of Axelrod's model indicate that the steady state remains heterogeneous regardless of the value of the field strength. Turning on the field leads to a discontinuous decrease on the number of cultural domains, which we argue is due to the instability of zero-field heterogeneous absorbing configurations. We find, however, that spatially nonuniform fields that implement a consensus rule among the neighborhood of the agents enforce homogenization. Although the overall effects of the fields are essentially the same irrespective of the dimensionality of the model, we argue that the dimensionality has a significant impact on the stability of the field-free homogeneous steady state.
Progresses in organic field-effect transistors and molecular electronics
Institute of Scientific and Technical Information of China (English)
Wu Weiping; Xu Wei; Hu Wenping; Liu Yunqi; Zhu Daoben
2006-01-01
In the past years,organic semiconductors have been extensively investigated as electronic materials for organic field-effect transistors (OFETs).In this review,we briefly summarize the current status of organic field-effect transistors including materials design,device physics,molecular electronics and the applications of carbon nanotubes in molecular electronics.Future prospects and investigations required to improve the OFET performance are also involved.
Versatility of field theory motivated nuclear effective Lagrangian approach
International Nuclear Information System (INIS)
Arumugam, P.; Sharma, B.K.; Sahu, P.K.; Patra, S.K.; Sil, Tapas; Centelles, M.; Vinas, X.
2004-01-01
We analyze the results for infinite nuclear and neutron matter using the standard relativistic mean field model and its recent effective field theory motivated generalization. For the first time, we show quantitatively that the inclusion in the effective theory of vector meson self-interactions and scalar-vector cross-interactions explains naturally the recent experimental observations of the softness of the nuclear equation of state, without losing the advantages of the standard relativistic model for finite nuclei
Baryon non-invariant couplings in Higgs effective field theory
International Nuclear Information System (INIS)
Merlo, Luca; Saa, Sara; Sacristan-Barbero, Mario
2017-01-01
The basis of leading operators which are not invariant under baryon number is constructed within the Higgs effective field theory. This list contains 12 dimension six operators, which preserve the combination B - L, to be compared to only 6 operators for the standard model effective field theory. The discussion of the independent flavour contractions is presented in detail for a generic number of fermion families adopting the Hilbert series technique. (orig.)
Effect of External Electric Field Stress on Gliadin Protein Conformation
Singh, Ashutosh; Munshi, Shirin; Raghavan, Vijaya
2013-01-01
A molecular dynamic (MD) modeling approach was applied to evaluate the effect of external electric field on gliadin protein structure and surface properties. Static electric field strengths of 0.001 V/nm and 0.002 V/nm induced conformational changes in the protein but had no significant effect on its surface properties. The study of hydrogen bond evolution during the course of simulation revealed that the root mean square deviation, radius of gyration and secondary structure formation, all de...
Numerical simulation of the hydrodynamic behavior of fuel rod with longitudinal cooling fins
International Nuclear Information System (INIS)
Naot, D.; Emrani, S.
1982-01-01
Four processes which considerably affect the distribution of the local shear stress in turbulent cooling flow along a fuel rod with longitudinal fins are discussed. The effect of boundary layers' development, geometry driven secondary currents, roughness induced lateral motion and geometry imperfections were studied and compared. Turbulence was modeled by an energy-dissipation model with an algebraic stress model. The three-dimensional flow was numerically simulated using a parabolic pressure correction algorithm. (orig.)
Niño-Torres, Carlos Alberto; Zenteno-Savín, Tania; Gardner, Susan C; Urbán R, Jorge
2010-08-01
The present study reports unique data on concentrations of several classes of organochlorine pesticides and polychlorinated biphenyls in blubber biopsies from healthy living fin whales (Balaenoptera physalus) from the Gulf of California, Mexico, one of the most isolated and unstudied population in the world. OC levels in this population were generally lower than levels reported in fin whales from other regions. The rank order of OCs were SigmaDDTs (range from 300 to 2400 ng g(-1) lw) > SigmaPCBs (range from 40 to 290 ng g(-1) lw) > SigmaHCHs (range from or = SigmaCHLORs (from pesticide measured was the DDT metabolite, p,p'-DDE. The PCBs 138, 153, and 180 were the most abundant PCBs congeners found in the fin whales samples. Males had significant higher concentrations of SigmaOC, SigmaDDTs and SigmaPCBs than females (P < 0.05), although the p,p'-DDE/SigmaDDTs ratios were similar between the sexes. Although the OC concentrations found in this population were generally below the levels that would be expected to cause deleterious health effects, the maximum values observed (2700 ng g(-1) lw) in some animals were higher than those associated with reproductive effects in whales. Given the small population size and highly isolated characteristics of Gulf of California fin whales, health effects in individuals could readily translate into population-level effects. Future research on this topic will be necessary to better understand the role that these compounds may have on the health of this population.
Topological magnetoelectric effects in microwave far-field radiation
Energy Technology Data Exchange (ETDEWEB)
Berezin, M.; Kamenetskii, E. O.; Shavit, R. [Microwave Magnetic Laboratory, Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva (Israel)
2016-07-21
Similar to electromagnetism, described by the Maxwell equations, the physics of magnetoelectric (ME) phenomena deals with the fundamental problem of the relationship between electric and magnetic fields. Despite a formal resemblance between the two notions, they concern effects of different natures. In general, ME-coupling effects manifest in numerous macroscopic phenomena in solids with space and time symmetry breakings. Recently, it was shown that the near fields in the proximity of a small ferrite particle with magnetic-dipolar-mode (MDM) oscillations have the space and time symmetry breakings and the topological properties of these fields are different from the topological properties of the free-space electromagnetic fields. Such MDM-originated fields—called magnetoelectric (ME) fields—carry both spin and orbital angular momenta. They are characterized by power-flow vortices and non-zero helicity. In this paper, we report on observation of the topological ME effects in far-field microwave radiation based on a small microwave antenna with a MDM ferrite resonator. We show that the microwave far-field radiation can be manifested with a torsion structure where an angle between the electric and magnetic field vectors varies. We discuss the question on observation of the regions of localized ME energy in far-field microwave radiation.
Effects of a static electric field on nonsequential double ionization
International Nuclear Information System (INIS)
Li Hongyun; Wang Bingbing; Li Xiaofeng; Fu Panming; Chen Jing; Liu Jie; Jiang Hongbing; Gong Qihuang; Yan Zongchao
2007-01-01
Using a three-dimensional semiclassical method, we perform a systematic analysis of the effects of an additional static electric field on nonsequential double ionization (NSDI) of a helium atom in an intense, linearly polarized laser field. It is found that the static electric field influences not only the ionization rate, but also the kinetic energy of the ionized electron returning to the parent ion, in such a way that, if the rate is increased, then the kinetic energy of the first returning electron is decreased, and vice versa. These two effects compete in NSDI. Since the effect of the static electric field on the ionization of the first electron plays a more crucial role in the competition, the symmetric double-peak structure of the He 2+ momentum distribution parallel to the polarization of the laser field is destroyed. Furthermore, the contribution of the trajectories with multiple recollisions to the NSDI is also changed dramatically by the static electric field. As the static electric field increases, the trajectories with two recollisions, which start at the time when the laser and the static electric field are in the same direction, become increasingly important for the NSDI
Effect of Weak Magnetic Field on Bacterial Growth
Masood, Samina
Effects of weak magnetic fields are observed on the growth of various bacterial strains. Different sources of a constant magnetic field are used to demonstrate that ion transport in the nutrient broth and bacterial cellular dynamics is perturbed in the presence of weak magnetic field which affects the mobility and absorption of nutrients in cells and hence their doubling rate. The change is obvious after a few hours of exposure and keeps on increasing with time for all the observed species. The growth rate depends on the field strength and the nature of the magnetic field. The field effect varies with the shape and the structure of the bacterial cell wall as well as the concentration of nutrient broth. We closely study the growth of three species Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis with the same initial concentrations at the same temperature in the same laboratory environment. Our results indicate that the weak static field of a few gauss after a few hours gives a measurable change in the growth rates of all bacterial species. This shows that the same magnetic field has different effects on different species in the same environment.
Induced magnetic-field effects in inductively coupled plasmas
International Nuclear Information System (INIS)
Cohen, R.H.; Rognlien, T.D.
1995-01-01
In inductive plasma sources, the rapid spatial decay of the electric field arising from the skin effect produces a large radio frequency (RF) magnetic field via Faraday's law. We previously determined that this magnetic field leads to a reduction of the electron density in the skin region, as well as a reduction in the collisionless heating rate. The electron deficit leads to the formation of an electrostatic potential which pulls electrons in to restore quasineutrality. Here we calculate the electron density including both the induced and electrostatic fields. If the wave frequency is not too low, the ions respond only to the averaged fields, and hence the electrostatic field is oscillatory, predominantly at the second harmonic of the applied field. We calculate the potential required to establish a constant electron density, and compare with numerical orbit-code calculations. For times short compared to ion transit times, the quasineutral density is just the initial ion density. For timescales long enough that the ions can relax, the density profile can be found from the solution of fluid equations with an effective (ponderomotive-like) potential added. Although the time-varying electrostatic potential is an extra source of heating, the net effect of the induced magnetic and electrostatic fields through trapping, early turning, and direct heating is a significant reduction in collisionless heating for parameters of interest
Fringe field effects in small rings of large acceptance
Directory of Open Access Journals (Sweden)
Martin Berz
2000-12-01
Full Text Available Recently there has been renewed interest in the influence of fringe fields on particle dynamics, due to studies that revealed their importance in some cases, as, for example, the proposed Neutrino Factory and muon colliders. In this paper, we present a systematic study of generic fringe field effects. Using as an example a lattice of the proposed Neutrino Factory, we show that fringe fields influence the dynamics of particles at all orders, starting with the linear motion. It is found that the widely used sharp cutoff approximation leads to divergences regardless of the specific fall-off shape of the fields. The results suggest that a careful consideration of fringe field effects in the design stage of small machines for large emittances is always recommended.
Effective-field theory on the kinetic Ising model
International Nuclear Information System (INIS)
Shi Xiaoling; Wei Guozhu; Li Lin
2008-01-01
As an analytical method, the effective-field theory (EFT) is used to study the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field. The effective-field equations of motion of the average magnetization are given for the square lattice (Z=4) and the simple cubic lattice (Z=6), respectively. The dynamic order parameter, the hysteresis loop area and the dynamic correlation are calculated. In the field amplitude h 0 /ZJ-temperature T/ZJ plane, the phase boundary separating the dynamic ordered and the disordered phase has been drawn, and the dynamical tricritical point has been observed. We also make the compare results of EFT with that given by using the mean field theory (MFT)
Characteristics of fin whale vocalizations recorded on instruments in the northeast Pacific Ocean
Weirathmueller, Maria Michelle Josephine
This thesis focuses on fin whale vocalizations recorded on ocean bottom seismometers (OBSs) in the Northeast Pacific Ocean, using data collected between 2003 and 2013. OBSs are a valuable, and largely untapped resource for the passive acoustic monitoring of large baleen whales. This dissertation is divided into three parts, each of which uses the recordings of fin whale vocalizations to better understand their calling behaviors and distributions. The first study describes the development of a technique to extract source levels of fin whale vocalizations from OBS recordings. Source levels were estimated using data collected on a network of eight OBSs in the Northeast Pacific Ocean. The acoustic pressure levels measured at the instruments were adjusted for the propagation path between the calling whales and the instruments using the call location and estimating losses along the acoustic travel path. A total of 1241 calls were used to estimate an average source level of 189 +/-5.8 dB re 1uPa 1m. This variability is largely attributed to uncertainties in the horizontal and vertical position of the fin whale at the time of each call, and the effect of these uncertainties on subsequent calculations. The second study describes a semi-automated method for obtaining horizontal ranges to vocalizing fin whales using the timing and relative amplitude of multipath arrivals. A matched filter is used to detect fin whale calls and pick the relative times and amplitudes of multipath arrivals. Ray-based propagation models are used to predict multipath times and amplitudes as function of range. Because the direct and first multiple arrivals are not always observed, three hypotheses for the paths of the observed arrivals are considered; the solution is the hypothesis and range that optimizes the fit to the data. Ray-theoretical amplitudes are not accurate and solutions are improved by determining amplitudes from the observations using a bootstrap method. Data from ocean bottom
Optimization of geometric parameters of heat exchange pipes pin finning
Akulov, K. A.; Golik, V. V.; Voronin, K. S.; Zakirzakov, A. G.
2018-05-01
The work is devoted to optimization of geometric parameters of the pin finning of heat-exchanging pipes. Pin fins were considered from the point of view of mechanics of a deformed solid body as overhang beams with a uniformly distributed load. It was found out under what geometric parameters of the nib (diameter and length); the stresses in it from the influence of the washer fluid will not exceed the yield strength of the material (aluminum). Optimal values of the geometric parameters of nibs were obtained for different velocities of the medium washed by them. As a flow medium, water and air were chosen, and the cross section of the nibs was round and square. Pin finning turned out to be more than 3 times more compact than circumferential finning, so its use makes it possible to increase the number of fins per meter of the heat-exchanging pipe. And it is well-known that this is the main method for increasing the heat transfer of a convective surface, giving them an indisputable advantage.
Physical effects in gravitational field of black holes
International Nuclear Information System (INIS)
Frolov, V.P.
1986-01-01
A large number of problems related to peculiarities of physical processes in a strong gravitational field of black holes has been considered. Energy shift and the complete structure of physical fields for charged sources near a black hole have been investigated. Density matrix and generating functional for quantum effects in stationary black holes have been calculated. Contributions of massless and massive fields to vacuum polarization in black holes have been investigated and influence of quantum effects on the global structure of a black hole has been discussed
Directory of Open Access Journals (Sweden)
Yeong-Jun Jang
2017-11-01
Full Text Available This paper presents an experimental investigation on the enhancement of the heat transfer rate of steam condensation on the external surfaces of a vertical tube with annular fins. A cylindrical condenser tube, which is 40 mm in outer diameter and 1000 mm in length, with annular disks of uniform cross-sectional area is fabricated in the manner of ensuring perfect contact between the base surface and fins. A total of 13 annular fins of 80 mm diameter were installed along the tube height in order to increase the effective heat transfer area by 85%. Through a series of condensation tests for the air-steam mixture under natural convection conditions, the heat transfer data was measured in the pressure range of between 2 and 5 bar, and the air mass fraction from 0.3 to 0.7. The rates of heat transfer of the finned tube are compared to those that are measured on a bare tube to demonstrate the enhanced performance by extended surfaces. In addition, based on the experimental results and the characteristics of steam condensation, the applicability of finned tubes to a large condenser system with a bundle layout is evaluated.
Barforoush, M. S. M.; Saedodin, S.
2018-01-01
This article investigates the thermal performance of convective-radiative annular fins with a step reduction in local cross section (SRC). The thermal conductivity of the fin's material is assumed to be a linear function of temperature, and heat transfer coefficient is assumed to be a power-law function of surface temperature. Moreover, nonzero convection and radiation sink temperatures are included in the mathematical model of the energy equation. The well-known differential transformation method (DTM) is used to derive the analytical solution. An exact analytical solution for a special case is derived to prove the validity of the obtained results from the DTM. The model provided here is a more realistic representation of SRC annular fins in actual engineering practices. Effects of many parameters such as conduction-convection parameters, conduction-radiation parameter and sink temperature, and also some parameters which deal with step fins such as thickness parameter and dimensionless parameter describing the position of junction in the fin on the temperature distribution of both thin and thick sections of the fin are investigated. It is believed that the obtained results will facilitate the design and performance evaluation of SRC annular fins.
Non-Planar Nanotube and Wavy Architecture Based Ultra-High Performance Field Effect Transistors
Hanna, Amir
2016-11-01
This dissertation presents a unique concept for a device architecture named the nanotube (NT) architecture, which is capable of higher drive current compared to the Gate-All-Around Nanowire architecture when applied to heterostructure Tunnel Field Effect Transistors. Through the use of inner/outer core-shell gates, heterostructure NT TFET leverages physically larger tunneling area thus achieving higher driver current (ION) and saving real estates by eliminating arraying requirement. We discuss the physics of p-type (Silicon/Indium Arsenide) and n-type (Silicon/Germanium hetero-structure) based TFETs. Numerical TCAD simulations have shown that NT TFETs have 5x and 1.6 x higher normalized ION when compared to GAA NW TFET for p and n-type TFETs, respectively. This is due to the availability of larger tunneling junction cross sectional area, and lower Shockley-Reed-Hall recombination, while achieving sub 60 mV/dec performance for more than 5 orders of magnitude of drain current, thus enabling scaling down of Vdd to 0.5 V. This dissertation also introduces a novel thin-film-transistors architecture that is named the Wavy Channel (WC) architecture, which allows for extending device width by integrating vertical fin-like substrate corrugations giving rise to up to 50% larger device width, without occupying extra chip area. The novel architecture shows 2x higher output drive current per unit chip area when compared to conventional planar architecture. The current increase is attributed to both the extra device width and 50% enhancement in field effect mobility due to electrostatic gating effects. Digital circuits are fabricated to demonstrate the potential of integrating WC TFT based circuits. WC inverters have shown 2× the peak-to-peak output voltage for the same input, and ~2× the operation frequency of the planar inverters for the same peak-to-peak output voltage. WC NAND circuits have shown 2× higher peak-to-peak output voltage, and 3× lower high-to-low propagation
Magnetic field effects on brain monoamine oxidase activity
Energy Technology Data Exchange (ETDEWEB)
Borets, V.M.; Ostrovskiy, V.Yu.; Bankovskiy, A.A.; Dudinskaya, T.F.
1985-03-01
In view of the increasing use of magnetotherapy, studies were conducted on the effects of 35 mTesla magnetic fields on monoamine oxidase activity in the rat brain. Under in vitro conditions a constant magnetic field in the continuous mode was most effective in inhibiting deamination of dopamine following 1 min exposure, while in vivo studies with 8 min or 10 day exposures showed that inhibition was obtained only with a variable field in the continuous mode. However, inhibition of dopamine deamination was only evident within the first 24 h after exposure was terminated. In addition, in none of the cases was norepinephrine deamination inhibited. The effects of the magnetic fields were, therefore, transient and selective with the CNS as the target system. 9 references.
Wang, Tian; Cui, Xiaoxin; Ni, Yewen; Liao, Kai; Liao, Nan; Yu, Dunshan; Cui, Xiaole
2017-04-01
With shrinking transistor feature size, the fin-type field-effect transistor (FinFET) has become the most promising option in low-power circuit design due to its superior capability to suppress leakage. To support the VLSI digital system flow based on logic synthesis, we have designed an optimized high-performance low-power FinFET standard cell library based on employing the mixed FBB/RBB technique in the existing stacked structure of each cell. This paper presents the reliability evaluation of the optimized cells under process and operating environment variations based on Monte Carlo analysis. The variations are modelled with Gaussian distribution of the device parameters and 10000 sweeps are conducted in the simulation to obtain the statistical properties of the worst-case delay and input-dependent leakage for each cell. For comparison, a set of non-optimal cells that adopt the same topology without employing the mixed biasing technique is also generated. Experimental results show that the optimized cells achieve standard deviation reduction of 39.1% and 30.7% at most in worst-case delay and input-dependent leakage respectively while the normalized deviation shrinking in worst-case delay and input-dependent leakage can be up to 98.37% and 24.13%, respectively, which demonstrates that our optimized cells are less sensitive to variability and exhibit more reliability. Project supported by the National Natural Science Foundation of China (No. 61306040), the State Key Development Program for Basic Research of China (No. 2015CB057201), the Beijing Natural Science Foundation (No. 4152020), and Natural Science Foundation of Guangdong Province, China (No. 2015A030313147).
Quasiparticle propagation in aluminum fins and tungsten TES dynamics in the CDMS ZIP detector
Energy Technology Data Exchange (ETDEWEB)
Pyle, M. [Department of Physics, Stanford University, Stanford, CA 94305 (United States)]. E-mail: mpyle1@stanford.edu; Brink, P.L. [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Cabrera, B. [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Castle, J.P. [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Colling, P. [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Chang, C.L. [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Cooley, J. [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Lipus, T. [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Ogburn, R.W. [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Young, B.A. [Department of Physics, Santa Clara University, Santa Clara, CA 95053 (United States)
2006-04-15
With the aim of improving the rejection of surface beta contamination on the CDMS ZIP detector, we have studied the effectiveness of our phonon pulse-shape discrimination by matching a Monte Carlo calculation to data from a 350{mu}m long Al fin with W TESs (Transition-Edge Sensors) at both ends. From this fit, we determined the Al film diffusivity to be D{sub Al}=0.010+/-0.001m{sup 2}/s, the quasiparticle trapping length in the Al fin to be l{sub trap}=180+/-10{mu}m, and the Al to W TES transmission to be f{sub Al/W}=0.002+/-0.001.
Directory of Open Access Journals (Sweden)
Chun Sheng Lin
2013-03-01
Full Text Available The study of the heat transfer of solar air heaters with a new design using an absorbing plate with fins and baffles, which facilitate the recycling of flowing air, is reported. The mathematical formulation and analytical analysis for such a recyclic baffled double-pass solar air heater were developed theoretically. The performance of the device was studied experimentally as well. The theoretical predicted and experimental results were compared with another design, i.e., a downward-type single-pass solar air heater without recycle and double-pass operations reported in our previous work. Significant improvement in heat-transfer efficiency is achieved with the baffle and fin design due to the recycling heating and the extended heat transfer area. The effects of mass flow rate and recycle ratio on the heat-transfer efficiency enhancement as well as on the power consumption increment are also discussed.
A new model for predicting performance of fin-and-tube heat exchanger under frost condition
International Nuclear Information System (INIS)
Cui, J.; Li, W.Z.; Liu, Y.; Zhao, Y.S.
2011-01-01
Accurate prediction of frost characteristics has crucial influence on designing effective heat exchangers. In this paper, a new CFD (Computational Fluid Dynamics) model has been proposed to predict the frost behaviour. The initial period of frost formation can be predicted and the influence of surface structure can be considered. The numerical simulations have been carried out to investigate the performance of fin-and-tube heat exchanger under frost condition. The results have been validated by comparison of simulations with the data computed by empirical formulas. The transient local frost formation has been obtained. The average frost thickness, heat exchanger coefficient and pressure drop on air side has been analysed as well. In addition, the influence factors have also been discussed, such as fin pitch, relative humidity, air flow rate and evaporating temperature of refrigerant.
Directory of Open Access Journals (Sweden)
Iliev Iliya K.
2016-01-01
Full Text Available The experimental research aims at the analysis of the thermal performance of a gas-liquid heat exchanger in a pilot plant. Results of the conducted experiment with a finned tubes thermosyphon heat exchanger using natural gas are presented. The installation was mounted at the exit of a flue gas from an existing steam generator “PK-4” with total power of 2.88 MW in the boiler room of Vini, Sliven, Bulgaria. Different experiments were carried out at different loads of the steam generator in order to determine the efficiency of the heat exchanger. Based on these results the coefficient of heat transfer of flue gas to the finned tubes was determined, based on different modes of operation with crossed and straight pipe bundles. The effectiveness-number of transfer units method was used.
Review: Bioenergetic Fields and Their Biologic Effects Mechanism
Directory of Open Access Journals (Sweden)
Zahra Movaffaghi
2007-04-01
Full Text Available As interests in complementary and alternative medicine grows, the scientists are looking forward in researches which determine the mechanisms in which they exert their effectiveness. Some of these modalities like Yoga, Acupuncture, and especially other bio-field therapies such as none contact therapeutic touch, affects the bio-field which spreads throughout the body and into the space around it. According to physic’s law, when electricity flows throw the living tissues, like what happens in our heart and brain, biomagnetic fields are being induced in the surrounding space. Beside that moving charges like ions and free radicals which finally produce electromagnetic fields. Using very sensitive magnetometers, biomagnetic fields have been detected and get amplified up to 1000 times by meditation. This phenomenon could be the basis for most of most complementaty therapeutic approaches like therapeutic touch. On the other hand the electrical, magnetic and bio-magnetic fields have a well known application in conventional medicine. Modern research about bio-magnetism and magneto-biology suggests that in term of both aspects, the effects and the mechanisms for all the different looking modalities used in conventional medicine and complementary medicine which have commons in their fundamentals. This article reviews some of the recent works on biological effects of natural or artificial electromagnetic fields.
Laser Welding Of Finned Tubes Made Of Austenitic Steels
Directory of Open Access Journals (Sweden)
Stolecki M.
2015-09-01
Full Text Available This paper describes the technology of welding of finned tubes made of the X5CrNi1810 (1.4301 austenitic steel, developed at Energoinstal SA, allowing one to get high quality joints that meet the requirements of the classification societies (PN-EN 15614, and at the same time to significantly reduce the manufacturing costs. The authors described an automatic technological line equipped with a Trumph disc laser and a tube production technological process. To assess the quality of the joints, one performed metallographic examinations, hardness measurements and a technological attempt to rupture the fin. Analysis of the results proved that the laser-welded finned tubes were performed correctly and that the welded joints had shown no imperfections.
A thermal study of pipes with outer transverse fins
Directory of Open Access Journals (Sweden)
S. Gil
2016-10-01
Full Text Available This paper provides results of thermal investigations on pipes with outer transverse fins produced by placing a strip, being a form of helical spring which functions as a radiator, on the basis pipe. The investigations were carried out at the facility that enables measurements with respect to both natural and forced convection. Performance of the investigated pipes was assessed in relation to a non-finned pipe and a pipe welded with the use of Metal Active Gas (MAG technology. The experiments have shown that the finned pipe welding technology does not markedly affect their thermal efficiency, which has been confirmed by performed model calculations, while the welding technology has a crucial impact on their operating performance.
Thermohydraulic analysis of smooth and finned annular ducts
International Nuclear Information System (INIS)
Braga, C.V.M.
1987-01-01
The present work is concerned with the turbulent heat transfer and pressure drop in smooth and finned annular ducts overage heat transfer coefficients have been obtained by means of the heat exchanger theory. In addition, friction factors have also been determined. The experiments were performed by utilizing four double-pipe heat exchangers. The flowing fluids, in the heat exchangers, were air and water. The average heat transfer coefficients, for air flowing in the annular section, were determined by measuring the overall heat transfer coefficients of the heat exchangers. In order to attain fully developed conditions, the heat exchangers had a starting length of 30 hydraulic diameters. The thermal boundary conditions consisted of uniform temperature on the inner surface, the outer surface being insulated. The heat transfer coefficients and friction factors are presented in dimensionaless forms, as functions of the Reynolds number of the flow. The results for the smooth and finned annular ducts were compared. The purpose of such comparison was to study the influence of the fins on the pressure drop and heat transfer rate. In the case of the finned nular ducts, it is shown that the fin efficiency has some fluence on the heat transfer rates. The, a two-dimensional at transfer analysis was performed in order to obtain the n efficiency and the annular region efficiency. It is also shown that the overall thermal performance of finned surfaces epends mainly on the Nusselt number and on the region eficiency. These parameters are presented as functions of the Reynolds number of the flow and the geometry of the problem. (author) [pt
Experimental testing of the thermal performance of finned air coolers
International Nuclear Information System (INIS)
Imhof, A.; Keller, J.; Koelliker, A.
1988-05-01
Finned heat exchangers are often used as regenerators in heat recovery systems or as a heat source for heat pump installations. These exchangers are usually operating as air coolers. Heat is extracted from the air flowing through the heat exchanger. If the fin temperature lies below the dew point at the air inlet, water vapour may be condensed, increasing the thermal performance of the cooler. If the air/water heat exchanger is installed outdoors, the blower is usually mounted directly at the exchaner's case. In general this leads to non-ideal air flow conditions. For the sizing of such components the manufacturers dispose of design rules which are based either on theoretical models or on experiments using a uniform air stream. These rules which are mostly internal codes of the individual companies presumably do not take into account some non-ideal conditions such as an inhomogeneous air flow, a poorly sized blower or an increased pressure drop between the fins due to condensed water vapour. Moreover, these codes are possibly not sophisticated enough to enable a correct sizing of the products for any given condition of operation, especially in heat pumps operating under condensation conditions. Therfore, the Swiss Federal Institute for Reactor Research (EIR) carried out a research program dealing with the thermal performance of commercially available finned air coolers. The results give a strong evidence that the sizing of finned air coolers involving a phase change in one of the heat transfer fluids is not yet a procedure belonging to the common knowledge of most of the manufacturers. Moreover, the correct sizing of the blower is at least as important as the sizing of the finned exchanger itself. However, it is evident that there are companies on the Swiss market which use already reliable design tools. 25 refs., 81 figs., 12 tabs
Fin Type Variation of Lionhead Strain Goldfish (Carassius auratus Offspring
Directory of Open Access Journals (Sweden)
M. Syaifudin
2007-12-01
Full Text Available Lionhead strain goldfish (Carassius auratus inheritance produce many variations in phenotype qualitative traits of their offspring that is not common with the parents. Lionhead is an ornamental freshwater fish, they do not have a dorsal fin, but it is a beauty finfish, is popular to the people and have a high economic value. Of the 846 offspring of lionhead is produced in this experiment, and 57,7% of them have dorsal fin (42,3% normal, 13,1% of them have anal fin which did not similar with their parents, 58,6% caudal fin of them did not have similar to their parents. It might be caused by incompletely segregation in meiosis and many gen responsible to certain phenotype trait. Another abnormalities such as no anal fin, blindness, stumped and no pigmen in their gill lamella also occurred. Key words: Inheritance, fin, phenotype, abnormality ABSTRAK Ikan maskoki strain lionhead menghasilkan keturunan dengan fenotip yang sangat bervariasi dan berbeda dengan induknya. Ikan ini merupakan ikan hias air tawar yang tidak memiliki sirip punggung namun tetap memiliki keindahan, sehingga menjadi begitu populer di masyarakat dan memiliki nilai ekonomi yang tinggi. Sebanyak 846 keturunan (anakan telah dihasilkan dalam percobaan ini, dan sebanyak 57,7% dari populasi tersebut memiliki sirip punggung (berarti 42,3% merupakan keturunan normal, 13,1% memiliki sirip dubur yang tidak mirip dengan induknya. Variasi keturunan ikan maskoki strain lionhead ini disebabkan oleh segregasi yang tidak sempurna dalam proses meiosis dan banyaknya gen yang terlibat dalam pembentukan penotip tertentu. Abnormalitas lainnya juga terjadi pada keturunan ikan maskoki strain lionhead ini, seperti tidak adanya sirip dubur, mata buta, tubuh pendek dan tidak adanya pigmen pada lemela insang Kata kunci: Keturunan, sirip, fenotip, abnormalitas
Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin
Energy Technology Data Exchange (ETDEWEB)
Low, K H; Chong, C W, E-mail: mkhlow@ntu.edu.s, E-mail: ch0018ee@ntu.edu.s [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)
2010-12-15
In this paper, we aim to study the swimming performance of fish robots by using a statistical approach. A fish robot employing a carangiform swimming mode had been used as an experimental platform for the performance study. The experiments conducted aim to investigate the effect of various design parameters on the thrust capability of the fish robot with a flexible caudal fin. The controllable parameters associated with the fin include frequency, amplitude of oscillation, aspect ratio and the rigidity of the caudal fin. The significance of these parameters was determined in the first set of experiments by using a statistical approach. A more detailed parametric experimental study was then conducted with only those significant parameters. As a result, the parametric study could be completed with a reduced number of experiments and time spent. With the obtained experimental result, we were able to understand the relationship between various parameters and a possible adjustment of parameters to obtain a higher thrust. The proposed statistical method for experimentation provides an objective and thorough analysis of the effects of individual or combinations of parameters on the swimming performance. Such an efficient experimental design helps to optimize the process and determine factors that influence variability.
Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin.
Low, K H; Chong, C W
2010-12-01
In this paper, we aim to study the swimming performance of fish robots by using a statistical approach. A fish robot employing a carangiform swimming mode had been used as an experimental platform for the performance study. The experiments conducted aim to investigate the effect of various design parameters on the thrust capability of the fish robot with a flexible caudal fin. The controllable parameters associated with the fin include frequency, amplitude of oscillation, aspect ratio and the rigidity of the caudal fin. The significance of these parameters was determined in the first set of experiments by using a statistical approach. A more detailed parametric experimental study was then conducted with only those significant parameters. As a result, the parametric study could be completed with a reduced number of experiments and time spent. With the obtained experimental result, we were able to understand the relationship between various parameters and a possible adjustment of parameters to obtain a higher thrust. The proposed statistical method for experimentation provides an objective and thorough analysis of the effects of individual or combinations of parameters on the swimming performance. Such an efficient experimental design helps to optimize the process and determine factors that influence variability.