WorldWideScience

Sample records for filters pulsatile flow

  1. Surface obstacles in pulsatile flow

    Science.gov (United States)

    Carr, Ian A.; Plesniak, Michael W.

    2017-11-01

    Flows past obstacles mounted on flat surfaces have been widely studied due to their ubiquity in nature and engineering. For nearly all of these studies, the freestream flow over the obstacle was steady, i.e., constant velocity, unidirectional flow. Unsteady, pulsatile flows occur frequently in biology, geophysics, biomedical engineering, etc. Our study is aimed at extending the comprehensive knowledge base that exists for steady flows to considerably more complex pulsatile flows. Characterizing the vortex and wake dynamics of flows around surface obstacles embedded in pulsatile flows can provide insights into the underlying physics in all wake and junction flows. In this study, we experimentally investigate the wake of two canonical obstacles: a cube and a circular cylinder with an aspect ratio of unity. Our previous studies of a surface-mounted hemisphere in pulsatile flow are used as a baseline for these two new, more complex geometries. Phase-averaged PIV and hot-wire anemometry are used to characterize the dynamics of coherent structures in the wake and at the windward junction of the obstacles. Complex physics occur during the deceleration phase of the pulsatile inflow. We propose a framework for understanding these physics based on self-induced vortex propagation, similar to the phenomena exhibited by vortex rings.

  2. Pulsatile pipe flow transition: Flow waveform effects

    Science.gov (United States)

    Brindise, Melissa C.; Vlachos, Pavlos P.

    2018-01-01

    Although transition is known to exist in various hemodynamic environments, the mechanisms that govern this flow regime and their subsequent effects on biological parameters are not well understood. Previous studies have investigated transition in pulsatile pipe flow using non-physiological sinusoidal waveforms at various Womersley numbers but have produced conflicting results, and multiple input waveform shapes have yet to be explored. In this work, we investigate the effect of the input pulsatile waveform shape on the mechanisms that drive the onset and development of transition using particle image velocimetry, three pulsatile waveforms, and six mean Reynolds numbers. The turbulent kinetic energy budget including dissipation rate, production, and pressure diffusion was computed. The results show that the waveform with a longer deceleration phase duration induced the earliest onset of transition, while the waveform with a longer acceleration period delayed the onset of transition. In accord with the findings of prior studies, for all test cases, turbulence was observed to be produced at the wall and either dissipated or redistributed into the core flow by pressure waves, depending on the mean Reynolds number. Turbulent production increased with increasing temporal velocity gradients until an asymptotic limit was reached. The turbulence dissipation rate was shown to be independent of mean Reynolds number, but a relationship between the temporal gradients of the input velocity waveform and the rate of turbulence dissipation was found. In general, these results demonstrated that the shape of the input pulsatile waveform directly affected the onset and development of transition.

  3. AN OVERVIEW ON PULSATILE FLOW DYNAMICS

    OpenAIRE

    Çarpinlioğlu, Melda Özdinç

    2015-01-01

    Pulsatile flow dynamics in reference to the relevant experimental research on the manner between the time periods of 1997- 2015 is presented in this paper. The flow field under discussion is generated through a rigid circular cross-sectional pipe as an axial slightly- compressible and sinusoidal one in a controlled range of the oscillation parameters. Laminar and turbulent flow regimes are considered with a particular emphasis devoted to the transitional characteristics of laminar pulsatile f...

  4. 21 CFR 870.4320 - Cardiopulmonary bypass pulsatile flow generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass pulsatile flow generator... Cardiopulmonary bypass pulsatile flow generator. (a) Identification. A cardiopulmonary bypass pulsatile flow generator is an electrically and pneumatically operated device used to create pulsatile blood flow. The...

  5. Investigation of the pulsatile pipe flow

    Czech Academy of Sciences Publication Activity Database

    Adamec, J.; Nožička, J.; Kořenář, Josef

    2000-01-01

    Roč. 18, č. 2 (2000), s. 17-22 ISSN 0392-8764 Institutional research plan: CEZ:AV0Z2060917 Keywords : pulsatile flow * laminar-turbulent transition * reynolds normal stress Subject RIV: BK - Fluid Dynamics

  6. Positron emission particle tracking in pulsatile flow

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Nitant; Ruggles, Arthur [University of Tennessee-Knoxville, Department of Nuclear Engineering, Knoxville, TN (United States); Wiggins, Cody [University of Tennessee-Knoxville, Department of Physics and Astronomy, Knoxville, TN (United States)

    2017-05-15

    Positron emission particle tracking (PEPT) is increasingly used to understand the flow characteristics in complex systems. This research utilizes PEPT to measure pulsatile flow of frequency 2.1 Hz in an elastic Masterkleer PVC tube of 19 mm inner diameter and 3.2 mm wall thickness. Anion exchange resin beads are labeled with {sup 18}F and delivered to a pump driven flow loop with motorized ball valve used to develop the pulsatile flow. Data are collected in the tube with circular cross section, and measurements are also collected with a section of the tube pinched. Nominal flow velocities are near 1 m/s and Reynolds numbers near 20,000. Many thousand PEPT particle traces are collected and synchronized with the flow pulsation. These Lagrangian data are presented as a series of 20 still frames depicting the 3-D velocity field present during each phase of the flow pulsation. Pressure data are also collected to resolve the pressure wave front moving through the open elastic tube at velocity 15.2 m/s. (orig.)

  7. Pulsatile flow in ventricular catheters for hydrocephalus

    Science.gov (United States)

    Giménez, Á.; Galarza, M.; Thomale, U.; Schuhmann, M. U.; Valero, J.; Amigó, J. M.

    2017-05-01

    The obstruction of ventricular catheters (VCs) is a major problem in the standard treatment of hydrocephalus, the flow pattern of the cerebrospinal fluid (CSF) being one important factor thereof. As a first approach to this problem, some of the authors studied previously the CSF flow through VCs under time-independent boundary conditions by means of computational fluid dynamics in three-dimensional models. This allowed us to derive a few basic principles which led to designs with improved flow patterns regarding the obstruction problem. However, the flow of the CSF has actually a pulsatile nature because of the heart beating and blood flow. To address this fact, here we extend our previous computational study to models with oscillatory boundary conditions. The new results will be compared with the results for constant flows and discussed. It turns out that the corrections due to the pulsatility of the CSF are quantitatively small, which reinforces our previous findings and conclusions. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.

  8. Pulsatile spiral blood flow through arterial stenosis.

    Science.gov (United States)

    Linge, Fabian; Hye, Md Abdul; Paul, Manosh C

    2014-11-01

    Pulsatile spiral blood flow in a modelled three-dimensional arterial stenosis, with a 75% cross-sectional area reduction, is investigated by using numerical fluid dynamics. Two-equation k-ω model is used for the simulation of the transitional flow with Reynolds numbers 500 and 1000. It is found that the spiral component increases the static pressure in the vessel during the deceleration phase of the flow pulse. In addition, the spiral component reduces the turbulence intensity and wall shear stress found in the post-stenosis region of the vessel in the early stages of the flow pulse. Hence, the findings agree with the results of Stonebridge et al. (2004). In addition, the results of the effects of a spiral component on time-varying flow are presented and discussed along with the relevant pathological issues.

  9. Arduino control of a pulsatile flow rig.

    Science.gov (United States)

    Drost, S; de Kruif, B J; Newport, D

    2018-01-01

    This note describes the design and testing of a programmable pulsatile flow pump using an Arduino micro-controller. The goal of this work is to build a compact and affordable system that can relatively easily be programmed to generate physiological waveforms. The system described here was designed to be used in an in-vitro set-up for vascular access hemodynamics research, and hence incorporates a gear pump that delivers a mean flow of 900 ml/min in a test flow loop, and a peak flow of 1106 ml/min. After a number of simple identification experiments to assess the dynamic behaviour of the system, a feed-forward control routine was implemented. The resulting system was shown to be able to produce the targeted representative waveform with less than 3.6% error. Finally, we outline how to further increase the accuracy of the system, and how to adapt it to specific user needs. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Experimental Investigation of Pulsatile Flow in Circular Tubes

    Czech Academy of Sciences Publication Activity Database

    Adamec, J.; Nožička, J.; Hanus, D.; Kořenář, Josef

    2001-01-01

    Roč. 17, č. 5 (2001), s. 1133-1136 ISSN 0748-4658 Institutional research plan: CEZ:AV0Z2060917 Keywords : pulsatile flow * laminar-turbulent transition * reynolds normal stress Subject RIV: BK - Fluid Dynamics Impact factor: 0.418, year: 2001

  11. Leaback of Pulsatile Flow of Particle Fluid Suspension Model of ...

    African Journals Online (AJOL)

    Leaback of Pulsatile Flow of Particle Fluid Suspension Model of Blood Under Periodic Body Acceleration. ... The variation in body acceleration amplitude though affects the velocity profile in the capillary tubes, it has no effect on the leakback in the tubes. Leakback is mainly determined by the balance of the viscous drag and ...

  12. Pulsatile blood flow, shear force, energy dissipation and Murray's Law

    Directory of Open Access Journals (Sweden)

    Bengtsson Hans-Uno

    2006-08-01

    Full Text Available Abstract Background Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. Methods To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. Results For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches of the arterial system. Conclusion A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law.

  13. Pulsatility role in cylinder flow dynamics at low Reynolds number

    KAUST Repository

    Qamar, Adnan

    2012-01-01

    We present dynamics of pulsatile flow past a stationary cylinder characterized by three non-dimensional parameters: the Reynolds number (Re), non-dimensional amplitude (A) of the pulsatile flow velocity, and Keulegan-Carpenter number (KC = Uo/Dωc). This work is motivated by the development of total artificial lungs (TAL) device, which is envisioned to provide ambulatory support to patients. Results are presented for 0.2 ≤ A ≤ 0.6 and 0.57 ≤ KC ≤ 2 at Re = 5 and 10, which correspond to the operating range of TAL. Two distinct fluid regimes are identified. In both regimes, the size of the separated zone is much greater than the uniform flow case, the onset of separation is function of KC, and the separation vortex collapses rapidly during the last fraction of the pulsatile cycle. The vortex size is independent of KC, but with an exponential dependency on A. In regime I, the separation point remains attached to the cylinder surface. In regime II, the separation point migrates upstream of the cylinder. Two distinct vortex collapse mechanisms are observed. For A < 0.4 and all KC and Re values, collapse occurs on the cylinder surface, whereas for A > 0.4 the separation vortex detaches from the cylinder surface and collapses at a certain distance downstream of the cylinder. The average drag coefficient is found to be independent of A and KC, and depends only on Re. However, for A > 0.4, for a fraction of the pulsatile cycle, the instantaneous drag coefficient is negative indicating a thrust production. © 2012 American Institute of Physics.

  14. Pulsatile operation of a continuous-flow right ventricular assist device (RVAD) to improve vascular pulsatility.

    Science.gov (United States)

    Ng, Boon C; Kleinheyer, Matthias; Smith, Peter A; Timms, Daniel; Cohn, William E; Lim, Einly

    2018-01-01

    Despite the widespread acceptance of rotary blood pump (RBP) in clinical use over the past decades, the diminished flow pulsatility generated by a fixed speed RBP has been regarded as a potential factor that may lead to adverse events such as vasculature stiffening and hemorrhagic strokes. In this study, we investigate the feasibility of generating physiological pulse pressure in the pulmonary circulation by modulating the speed of a right ventricular assist device (RVAD) in a mock circulation loop. A rectangular pulse profile with predetermined pulse width has been implemented as the pump speed pattern with two different phase shifts (0% and 50%) with respect to the ventricular contraction. In addition, the performance of the speed modulation strategy has been assessed under different cardiovascular states, including variation in ventricular contractility and pulmonary arterial compliance. Our results indicated that the proposed pulse profile with optimised parameters (Apulse = 10000 rpm and ωmin = 3000 rpm) was able to generate pulmonary arterial pulse pressure within the physiological range (9-15 mmHg) while avoiding undesirable pump backflow under both co- and counter-pulsation modes. As compared to co-pulsation, stroke work was reduced by over 44% under counter-pulsation, suggesting that mechanical workload of the right ventricle can be efficiently mitigated through counter-pulsing the pump speed. Furthermore, our results showed that improved ventricular contractility could potentially lead to higher risk of ventricular suction and pump backflow, while stiffening of the pulmonary artery resulted in increased pulse pressure. In conclusion, the proposed speed modulation strategy produces pulsatile hemodynamics, which is more physiologic than continuous blood flow. The findings also provide valuable insight into the interaction between RVAD speed modulation and the pulmonary circulation under various cardiovascular states.

  15. Pulsatile flow of viscous and viscoelastic fluids in constricted tubes

    Energy Technology Data Exchange (ETDEWEB)

    Javadzadegan, A.; Esmaeili, M.; Majidi, S. [University of Tehran, Tehran (Iran, Islamic Republic of); Fakhimghanbarzadeh, B. [Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2009-09-15

    The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appropriate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is constructed mathematically. A mathematical model is developed by treating blood as a non-Newtonian fluid characterized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Navier- stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate the effects of parameters such as pulsatility, non-Newtonian properties and the flow time on the velocity components, the rate of flow, and the wall shear stress through their graphical representations quantitatively at the end of the paper in order to validate the applicability of the present improved mathematical model under consideration

  16. Pulsatile flow of viscous and viscoelastic fluids in constricted tubes

    International Nuclear Information System (INIS)

    Javadzadegan, A.; Esmaeili, M.; Majidi, S.; Fakhimghanbarzadeh, B.

    2009-01-01

    The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appropriate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is constructed mathematically. A mathematical model is developed by treating blood as a non-Newtonian fluid characterized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Navier- stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate the effects of parameters such as pulsatility, non-Newtonian properties and the flow time on the velocity components, the rate of flow, and the wall shear stress through their graphical representations quantitatively at the end of the paper in order to validate the applicability of the present improved mathematical model under consideration

  17. Mathematical Modelling of CSF Pulsatile Flow in Aqueduct Cerebri.

    Science.gov (United States)

    Czosnyka, Zofia; Kim, Dong-Joo; Balédent, Olivier; Schmidt, Eric A; Smielewski, Peter; Czosnyka, Marek

    2018-01-01

    The phase-contrast MRI technique permits the non-invasive assessment of CSF movements in cerebrospinal fluid cavities of the central nervous system. Of particular interest is pulsatile cerebrospinal fluid (CSF) flow through the aqueduct cerebri. It is allegedly increased in hydrocephalus, having potential diagnostic value, although not all scientific reports contain unequivocally positive conclusions. For the mathematical simulation of CSF flow, we used a computational model of cerebrospinal blood/fluid circulation designed by a former student as his PhD project. With this model, cerebral blood flow and CSF may be simulated in various vessels using a system of non-linear differential equations as time-varying signals. The amplitude of CSF flow seems to be positively related to the amplitude of pulse waveforms of intracranial pressure (ICP) in situations where mean ICP increases, such as during simulated infusion tests and following step increases of resistance to CSF outflow. An additional positive association between the pulse amplitude of ICP and CSF flow can be seen during simulated increases in the amplitude of arterial pulses (without changes in mean arterial pressure, MAP). The opposite effect can be observed during step increases in the resistance of the aqueduct cerebri and with decreasing elasticity of the system, where the CSF flow amplitude and the ICP pulse amplitude are related inversely. Vasodilatation caused by both gradual decreases in MAP and by increases in PaCO2 provokes an elevation in the observed amplitude of pulsatile CSF flow. Preliminary results indicate that the pulsations of CSF flow may carry information about both CSF-circulatory and cerebral vasogenic components. In most cases, the pulsations of CSF flow are positively related to the pulse amplitudes of both arterial pressure and ICP and to a degree of cerebrovascular dilatation.

  18. Heat Transfer to Pulsatile Slip Flow in a Porous Channel Filled With ...

    African Journals Online (AJOL)

    This paper investigate the effect of slip on the hydromagnetic pulsatile flow through a porous channel filled with saturated porous medium with time dependent boundary condition on the heated wall. Based on the pulsatile flow nature, the dimensionless flow governing equations are resolved to harmonic and non-harmonic ...

  19. A study of doppler waveform using pulsatile flow model

    International Nuclear Information System (INIS)

    Chung, Hye Won; Chung, Myung Jin; Park, Jae Hyung; Chung, Jin Wook; Lee, Dong Hyuk; Min, Byoung Goo

    1997-01-01

    Through the construction of a pulsatile flow model using an artificial heart pump and stenosis to demonstrate triphasic Doppler waveform, which simulates in vivo conditions, and to evaluate the relationship between Doppler waveform and vascular compliance. The flow model was constructed using a flowmeter, rubber tube, glass tube with stenosis, and artificial heart pump. Doppler study was carried out at the prestenotic, poststenotic, and distal segments;compliance was changed by changing the length of the rubber tube. With increasing proximal compliance, Doppler waveforms show decreasing peak velocity of the first phase and slightly delayed acceleration time, but the waveform itself did not change significantly. Distal compliance influenced the second phase, and was important for the formation of pulsus tardus and parvus, which without poststenotic vascular compliance, did not develop. The peak velocity of the first phase was inversely proportional to proximal compliance, and those of the second and third phases were directly proportional to distal compliance. After constructing this pulsatile flow model, we were able to explain the relationship between vascular compliance and Doppler waveform, and also better understand the formation of pulsus tardus and parvus

  20. Pulsatile pressure driven rarefied gas flow in long rectangular ducts

    Science.gov (United States)

    Tsimpoukis, Alexandros; Valougeorgis, Dimitris

    2018-04-01

    The pulsatile pressure driven fully developed flow of a rarefied gas through an orthogonal duct is investigated, based on the time-dependent linear Bhatnagar, Gross, and Krook equation, by decomposing the flow into its steady and oscillatory parts. The investigation is focused on the oscillatory part, which is characterized by the gas rarefaction and oscillation parameters, the duct aspect ratio, and the accommodation coefficient. As the oscillation frequency is increased, the amplitude of all macroscopic quantities is decreased, while their phase angle lag is increased reaching the limiting value of π/2. As the gas becomes more rarefied, higher frequencies are needed to trigger this behavior. At small and moderate frequencies, there is a critical degree of gas rarefaction, where a maximum flow rate is obtained. As the duct aspect ratio is decreased and tends to zero, the flow rate and mean wall shear stress amplitudes are increased, while their phase angle lags are slightly affected. The accommodation coefficient has a significant effect on the amplitude and a very weak one on the phase angle of the macroscopic quantities. The computation of the inertia and viscous forces clarifies when the flow consists of only one oscillating viscous region or of two regions, namely, the inviscid piston flow in the core and the oscillating Stokes layer at the wall with the velocity overshooting. Finally, the time average oscillatory pumping power is increased as the oscillation frequency is reduced and its maximum value is one half of the corresponding steady one.

  1. Concentric Split Flow Filter

    Science.gov (United States)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  2. Observation of the CSF pulsatile flow on MRI, (2)

    International Nuclear Information System (INIS)

    Ohara, Shigeki; Nagai, Hajime; Suzuka, Tomonao; Matsumoto, Takashi; Banno, Tatsuo

    1988-01-01

    In a retrospective study of the MR images of 289 neurosurgical patients, a loss of the signal intensity (the signal-void phenomenon =SVP) of the cerebrospinal fluid in the mesencephalic aqueduct was observed in 77 patients. The CSF in the cranial cavity flows toward the spinal sac in a to-and-fro manner in response to the pulsations of the brain. Because the intracranial compliance is lower than the intraspinal compliance, the systolic expansions and diastolic reductions in the brain volume are buffered by the spinal cavity via this to-and-fro flow of CSF. The SVP reflects the CSF pulsatile flow forced out of the intracranial space into the intraspinal space by the brain's pulsations. Intracranial abnormalities can be divided into two categories according to the craniospinal compliance (CC): normal CC (communicating hydrocephalus) and decreased CC (supratentorial tumor). We may expect those conditions which increase compliance to increase the CSF flow and yield a more prominent SVP. Conversely, conditions which decrease compliance may be expected to decrease the flow and extinguish the SVP. Both the brain's pulsations and the compliance of the craniospinal cavity are closely related to the presence of the SVP in CSF, as revealed by MRI. The SVP in CSF may reflect the pressure-buffering capacity of the cranio-spinal cavity. If further investigation supports our hypothesis, it may be possible to estimate the intracranial pressure noninvasively. (author)

  3. Modeling of pulsatile flow-dependent nitric oxide regulation in a realistic microvascular network.

    Science.gov (United States)

    Wang, Ruofan; Pan, Qing; Kuebler, Wolfgang M; Li, John K-J; Pries, Axel R; Ning, Gangmin

    2017-09-01

    Hemodynamic pulsatility has been reported to regulate microcirculatory function. To quantitatively assess the impact of flow pulsatility on the microvasculature, a mathematical model was first developed to simulate the regulation of NO production by pulsatile flow in the microcirculation. Shear stress and pressure pulsatility were selected as regulators of endothelial NO production and NO-dependent vessel dilation as feedback to control microvascular hemodynamics. The model was then applied to a real microvascular network of the rat mesentery consisting of 546 microvessels. As compared to steady flow conditions, pulsatile flow increased the average NO concentration in arterioles from 256.8±93.1nM to 274.8±101.1nM (Pflow as compared to steady flow conditions. Network perfusion and flow heterogeneity were improved under pulsatile flow conditions, and vasodilation within the network was more sensitive to heart rate changes than pulse pressure amplitude. The proposed model simulates the role of flow pulsatility in the regulation of a complex microvascular network in terms of NO concentration and hemodynamics under varied physiological conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effect of Acute Resistance Exercise on Carotid Artery Stiffness and Cerebral Blood Flow Pulsatility

    Directory of Open Access Journals (Sweden)

    Wesley K Lefferts

    2014-03-01

    Full Text Available Arterial stiffness is associated with cerebral flow pulsatility. Arterial stiffness increases following acute resistance exercise (RE. Whether this acute RE-induced vascular stiffening affects cerebral pulsatility remains unknown. Purpose: To investigate the effects of acute RE on common carotid artery (CCA stiffness and cerebral blood flow velocity (CBFv pulsatility. Methods: Eighteen healthy men (22 ± 1 yr; 23.7 ± 0.5 kg∙m-2 underwent acute RE (5 sets, 5-RM bench press, 5 sets 10-RM bicep curls with 90 s rest intervals or a time control condition (seated rest in a randomized order. CCA stiffness (β-stiffness, Elastic Modulus (Ep and hemodynamics (pulsatility index, forward wave intensity and reflected wave intensity were assessed using a combination of Doppler ultrasound, wave intensity analysis and applanation tonometry at baseline and 3 times post-RE. CBFv pulsatility index was measured with transcranial Doppler at the middle cerebral artery (MCA. Results: CCA β-stiffness, Ep and CCA pulse pressure significantly increased post-RE and remained elevated throughout post-testing (p 0.05. There were significant increases in forward wave intensity post-RE (p0.05. Conclusion: Although acute RE increases CCA stiffness and pressure pulsatility, it may not affect CCA or MCA flow pulsatility. Increases in pressure pulsatility may be due to increased forward wave intensity and not pressure from wave reflections.

  5. Pulsatile flow effects on the hemodynamics of intracranial aneurysms.

    Science.gov (United States)

    Le, Trung B; Borazjani, Iman; Sotiropoulos, Fotis

    2010-11-01

    High-resolution numerical simulations are carried out to systematically investigate the effect of the incoming flow waveform on the hemodynamics and wall shear stress patterns of an anatomic sidewall intracranial aneurysm model. Various wave forms are constructed by appropriately scaling a typical human waveform such that the waveform maximum and time-averaged Reynolds numbers, the Womersley number (α), and the pulsatility index (PI) are systematically varied within the human physiologic range. We show that the waveform PI is the key parameter that governs the vortex dynamics across the aneurysm neck and the flow patterns within the dome. At low PI, the flow in the dome is similar to a driven cavity flow and is characterized by a quasi-stationary shear layer that delineates the parent artery flow from the recirculating flow within the dome. At high PI, on the other hand, the flow is dominated by vortex ring formation, transport across the neck, and impingement and breakdown at the distal wall of the aneurysm dome. We further show that the spatial and temporal characteristics of the wall shear stress field on the aneurysm dome are strongly correlated with the vortex dynamics across the neck. We finally argue that the ratio between the characteristic time scale of transport by the mean flow across the neck and the time scale of vortex ring formation can be used to predict for a given sidewall aneurysm model the critical value of the waveform PI for which the hemodynamics will transition from the cavity mode to the vortex ring mode.

  6. Measurement of real pulsatile blood flow using X-ray PIV technique with CO2 microbubbles.

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Seo, Seung-Jun; Lim, Jae-Hong; Lee, Sang-Joon

    2015-03-06

    Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases.

  7. Measurement of real pulsatile blood flow using X-ray PIV technique with CO2 microbubbles

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Seo, Seung-Jun; Lim, Jae-Hong; Lee, Sang-Joon

    2015-01-01

    Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases. PMID:25744850

  8. PLATELET ADHESION TO POLYURETHANE UREA UNDER PULSATILE FLOW CONDITIONS

    Science.gov (United States)

    Navitsky, Michael A.; Taylor, Joshua O.; Smith, Alexander B.; Slattery, Margaret J.; Deutsch, Steven; Siedlecki, Christopher A.; Manning, Keefe B.

    2014-01-01

    Platelet adhesion to a polyurethane urea surface is a precursor to thrombus formation within blood-contacting cardiovascular devices, and platelets have been found to adhere strongly to polyurethane surfaces below a shear rate of approximately 500 s−1. The aim of the current work is to determine platelet adhesion properties to the polyurethane urea surface as a function of time varying shear exposure. A rotating disk system is used to study the influence of steady and pulsatile flow conditions (e.g. cardiac inflow and sawtooth waveforms) for platelet adhesion to the biomaterial surface. All experiments retain the same root mean square angular rotation velocity (29.63 rad/s) and waveform period. The disk is rotated in platelet rich bovine plasma for two hours with adhesion quantified by confocal microscopy measurements of immunofluorescently labeled bovine platelets. Platelet adhesion under pulsating flow is found to exponentially decay with increasing shear rate. Adhesion levels are found to depend upon peak platelet flux and shear rate regardless of rotational waveform. In combination with flow measurements, these results may be useful for predicting regions susceptible to thrombus formation within ventricular assist devices. PMID:24721222

  9. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System.

    Science.gov (United States)

    Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.

  10. Cerebral blood flow and intracranial pulsatility studied with MRI: measurement, physiological and pathophysiological aspects

    Energy Technology Data Exchange (ETDEWEB)

    Waahlin, Anders

    2012-07-01

    During each cardiac cycle pulsatile arterial blood inflates the vascular bed of the brain, forcing cerebrospinal fluid (CSF) and venous blood out of the cranium. Excessive arterial pulsatility may be part of a harmful mechanism causing cognitive decline among elderly. Additionally, restricted venous flow from the brain is suggested as the cause of multiple sclerosis. Addressing hypotheses derived from these observations requires accurate and reliable investigational methods. This work focused on assessing the pulsatile waveform of cerebral arterial, venous and CSF flows. The overall aim of this dissertation was to explore cerebral blood flow and intracranial pulsatility using MRI, with respect to measurement, physiological and pathophysiological aspects.Two-dimensional phase contrast magnetic resonance imaging (2D PCMRI) was used to assess the pulsatile waveforms of cerebral arterial, venous and CSF flow. The repeatability was assessed in healthy young subjects. The 2D PCMRI measurements of cerebral arterial, venous and CSF pulsatility were generally repeatable but the pulsatility decreased systematically during the investigation. A method combining 2D PCMRI measurements with invasive CSF infusion tests to determine the magnitude and distribution of compliance within the craniospinal system was developed and applied in a group of healthy elderly. The intracranial space contained approximately two thirds of the total craniospinal compliance. The magnitude of craniospinal compliance was less than suggested in previous studies. The vascular hypothesis for multiple sclerosis was tested. Venous drainage in the internal jugular veins was compared between healthy controls and multiple sclerosis patients using 2D PCMRI. For both groups, a great variability in the internal jugular flow was observed but no pattern specific to multiple sclerosis could be found. Relationships between regional brain volumes and potential biomarkers of intracranial cardiac-related pulsatile

  11. Cerebral blood flow and intracranial pulsatility studied with MRI: measurement, physiological and pathophysiological aspects

    International Nuclear Information System (INIS)

    Waahlin, Anders

    2012-01-01

    During each cardiac cycle pulsatile arterial blood inflates the vascular bed of the brain, forcing cerebrospinal fluid (CSF) and venous blood out of the cranium. Excessive arterial pulsatility may be part of a harmful mechanism causing cognitive decline among elderly. Additionally, restricted venous flow from the brain is suggested as the cause of multiple sclerosis. Addressing hypotheses derived from these observations requires accurate and reliable investigational methods. This work focused on assessing the pulsatile waveform of cerebral arterial, venous and CSF flows. The overall aim of this dissertation was to explore cerebral blood flow and intracranial pulsatility using MRI, with respect to measurement, physiological and pathophysiological aspects.Two-dimensional phase contrast magnetic resonance imaging (2D PCMRI) was used to assess the pulsatile waveforms of cerebral arterial, venous and CSF flow. The repeatability was assessed in healthy young subjects. The 2D PCMRI measurements of cerebral arterial, venous and CSF pulsatility were generally repeatable but the pulsatility decreased systematically during the investigation. A method combining 2D PCMRI measurements with invasive CSF infusion tests to determine the magnitude and distribution of compliance within the craniospinal system was developed and applied in a group of healthy elderly. The intracranial space contained approximately two thirds of the total craniospinal compliance. The magnitude of craniospinal compliance was less than suggested in previous studies. The vascular hypothesis for multiple sclerosis was tested. Venous drainage in the internal jugular veins was compared between healthy controls and multiple sclerosis patients using 2D PCMRI. For both groups, a great variability in the internal jugular flow was observed but no pattern specific to multiple sclerosis could be found. Relationships between regional brain volumes and potential biomarkers of intracranial cardiac-related pulsatile

  12. The Characteristics of Turbulence in Curved Pipes under Highly Pulsatile Flow Conditions

    Science.gov (United States)

    Kalpakli, A.; Örlü, R.; Tillmark, N.; Alfredsson, P. Henrik

    High speed stereoscopic particle image velocimetry has been employed to provide unique data from a steady and highly pulsatile turbulent flow at the exit of a 90 degree pipe bend. Both the unsteady behaviour of the Dean cells under steady conditions, the so called "swirl switching" phenomenon, as well as the secondary flow under pulsations have been reconstructed through proper orthogonal decomposition. The present data set constitutes - to the authors' knowledge - the first detailed investigation of a turbulent, pulsatile flow through a pipe bend.

  13. An in vitro experimental study of flow past aortic valve under varied pulsatile conditions

    Science.gov (United States)

    Zhang, Ruihang; Zhang, Yan

    2017-11-01

    Flow past aortic valve represents a complex fluid-structure interaction phenomenon that involves pulsatile, vortical, and turbulent conditions. The flow characteristics immediately downstream of the valve, such as the variation of pulsatile flow velocity, formation of vortices, distribution of shear stresses, are of particular interest to further elucidate the role of hemodynamics in various aortic diseases. However, the fluid dynamics of a realistic aortic valve is not fully understood. Particularly, it is unclear how the flow fields downstream of the aortic valve would change under varied pulsatile inlet boundary conditions. In this study, an in vitro experiment has been conducted to investigate the flow fields downstream of a silicone aortic valve model within a cardiovascular flow simulator. Phased-locked Particle Image Velocimetry measurements were performed to map the velocity fields and Reynolds normal and shear stresses at different phases in a cardiac cycle. Temporal variations of pressure across the valve model were measured using high frequency transducers. Results have been compared for different pulsatile inlet conditions, including varied frequencies (heart rates), magnitudes (stroke volumes), and cardiac contractile functions (shapes of waveforms).

  14. Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers

    Science.gov (United States)

    Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P. Henrik

    2011-12-01

    Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.

  15. Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers

    International Nuclear Information System (INIS)

    Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P Henrik

    2011-01-01

    Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.

  16. Experimental study on quantitative evaluation of slow pulsatile flow of CSF with cine MRI

    International Nuclear Information System (INIS)

    Matsuda, Masao

    1991-01-01

    The present study was designed to evaluate the slow pulsatile flow of cerebrospinal fluid (CSF) quantitatively with cine MRI in phantom experiment for the clinical application. The flow phantom was constructed from a plastic tube with a narrow channel to represent the central aqueduct. The phantom was filled with water to represent the CSF. The second tube filled with stationary water was positioned beside the flow phantom and acted as a control for no-flow signal strength. The ratio of signal intensity in regions of interest for the flow phantom and the control was measured. Not only the actual velocity curve of the flowing water through the phantom but also the temporal profile of signal intensity showed two main peaks with other small peaks in one cycle. This suggested a close relationship between signal intensity of cine MRI and flow velocity. A significant correlation between the signal intensity ratio and the velocity was obtained on cine MRI pulse sequences. Cine MRI was thus found to have the ability to give quantitative information about slow pulsatile flow. The most suitable pulse sequence was fast imaging with steady state free precession pulse sequence at the flip angle between 50 and 90 degrees. This preliminary study suggests that the slow pulsatile flow of CSF passing along the aqueduct can be visualized and measured. Thus, the sequence proposed has a potential for the investigation of normal and disturbed CSF circulation and the mapping of the flow pattern in different pathological conditions. (N.K.)

  17. Augmentative effect of pulsatility on the wall shear stress in tube flow.

    Science.gov (United States)

    Nakata, M; Tatsumi, E; Tsukiya, T; Taenaka, Y; Nishimura, T; Nishinaka, T; Takano, H; Masuzawa, T; Ohba, K

    1999-08-01

    Wall shear stress (WSS) has been considered to play an important role in the physiological and metabolic functions of the vascular endothelial cells. We investigated the effects of the pulse rate and the maximum flow rate on the WSS to clarify the influence of pulsatility. Water was perfused in a 1/2 inch transparent straight cylinder with a nonpulsatile centrifugal pump and a pulsatile pneumatic ventricular assist device (VAD). In nonpulsatile flow (NF), the flow rate was changed 1 to 6 L/min by 1 L/min increments to obtain standard values of WSS at each flow rate. In pulsatile flow (PF), the pulse rate was controlled at 40, 60, and 80 bpm, and the maximum flow rate was varied from 3.3 to 12.0 L/min while the mean flow rate was kept at 3 L/min. The WSS was estimated from the velocity profile at measuring points using the laser illuminated fluorescence method. In NF, the WSS was 12.0 dyne/cm2 at 3 L/min and 33.0 dyne/cm2 at 6 L/min. In PF, the pulse rate change with the same mean, and the maximum flow rate did not affect WSS. On the other hand, the increase in the maximum flow rate at the constant mean flow rate of 3 L/min augmented the mean WSS from 13.1 to 32.9 dyne/cm2. We concluded that the maximum flow rate exerted a substantial augmentative effect on WSS, and the maximum flow rate was a dominant factor of pulsatility in this effect.

  18. High flow ceramic pot filters.

    Science.gov (United States)

    van Halem, D; van der Laan, H; Soppe, A I A; Heijman, S G J

    2017-11-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more water without sacrificing their microbial removal efficacy. High flow pot filters, produced by increasing the rice husk content, had a higher initial flow rate (6-19 L h -1 ), but initial LRVs for E. coli of high flow filters was slightly lower than for regular ceramic pot filters. This disadvantage was, however, only temporarily as the clogging in high flow filters had a positive effect on the LRV for E. coli (from below 1 to 2-3 after clogging). Therefore, it can be carefully concluded that regular ceramic pot filters perform better initially, but after clogging, the high flow filters have a higher flow rate as well as a higher LRV for E. coli. To improve the initial performance of new high flow filters, it is recommended to further utilize residence time of the water in the receptacle, since additional E. coli inactivation was observed during overnight storage. Although a relationship was observed between flow rate and LRV of MS2 bacteriophages, both regular and high flow filters were unable to reach over 2 LRV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Numerical investigation of flow parameters for solid rigid spheroidal particle in a pulsatile pipe flow

    Science.gov (United States)

    Varghese, Joffin; Jayakumar, J. S.

    2017-09-01

    Quantifying, forecasting and analysing the displacement rates of suspended particles are essential while discussing about blood flow analysis. Because blood is one of the major organs in the body, which enables transport phenomena, comprising of numerous blood cells. In order to model the blood flow, a flow domain was created and numerically simulated. Flow field velocity in the stream is solved utilizing Finite Volume Method utilizing FVM unstructured solver. In pulsatile flow, the effect of parameters such as average Reynolds number, tube radius, particle size and Womersley number are taken into account. In this study spheroidal particle trajectory in axial direction is simulated at different values of pulsating frequency including 1.2 Hz, 3.33 Hz and 4.00 Hz and various densities including 1005 kg/m3 and 1025 kg/m3 for the flow domain. The analysis accomplishes the interaction study of blood constituents for different flow situations which have applications in diagnosis and treatment of cardio vascular related diseases.

  20. Precise position control of a helical magnetic robot in pulsatile flow using the rotating frequency of the external magnetic field

    Directory of Open Access Journals (Sweden)

    Jongyul Kim

    2017-05-01

    Full Text Available We propose a position control method for a helical magnetic robot (HMR that uses the rotating frequency of the external rotating magnetic field (ERMF to minimize the position fluctuation of the HMR caused by pulsatile flow in human blood vessels. We prototyped the HMR and conducted several experiments in pseudo blood vessel environments with a peristaltic pump. We experimentally obtained the relation between the flow rate and the rotating frequency of the ERMF required to make the HMR stationary in a given pulsatile flow. Then we approximated the pulsatile flow by Fourier series and applied the required ERMF rotating frequency to the HMR in real time. Our proposed position control method drastically reduced the position fluctuation of the HMR under pulsatile flow.

  1. A pulsatile flow model for in vitro quantitative evaluation of prosthetic valve regurgitation

    Directory of Open Access Journals (Sweden)

    S. Giuliatti

    2000-03-01

    Full Text Available A pulsatile pressure-flow model was developed for in vitro quantitative color Doppler flow mapping studies of valvular regurgitation. The flow through the system was generated by a piston which was driven by stepper motors controlled by a computer. The piston was connected to acrylic chambers designed to simulate "ventricular" and "atrial" heart chambers. Inside the "ventricular" chamber, a prosthetic heart valve was placed at the inflow connection with the "atrial" chamber while another prosthetic valve was positioned at the outflow connection with flexible tubes, elastic balloons and a reservoir arranged to mimic the peripheral circulation. The flow model was filled with a 0.25% corn starch/water suspension to improve Doppler imaging. A continuous flow pump transferred the liquid from the peripheral reservoir to another one connected to the "atrial" chamber. The dimensions of the flow model were designed to permit adequate imaging by Doppler echocardiography. Acoustic windows allowed placement of transducers distal and perpendicular to the valves, so that the ultrasound beam could be positioned parallel to the valvular flow. Strain-gauge and electromagnetic transducers were used for measurements of pressure and flow in different segments of the system. The flow model was also designed to fit different sizes and types of prosthetic valves. This pulsatile flow model was able to generate pressure and flow in the physiological human range, with independent adjustment of pulse duration and rate as well as of stroke volume. This model mimics flow profiles observed in patients with regurgitant prosthetic valves.

  2. Computational model on pulsatile flow of blood through a tapered ...

    Indian Academy of Sciences (India)

    S PRIYADHARSHINI

    2017-11-02

    Nov 2, 2017 ... It is pertinent to note that the magnitudes of flow resistance are higher in the case of ... mathematical model on non-Newtonian flow of blood through a ..... The important predictions of the present investigation are enumerating the .... drug carriers for targeted drug delivery, reducing blood flow at the time of ...

  3. Enhancement of arterial pressure pulsatility by controlling continuous-flow left ventricular assist device flow rate in mock circulatory system

    NARCIS (Netherlands)

    Bozkurt, S.; van de Vosse, F.N.; Rutten, M.C.M.

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase

  4. Visualization and quantitative analysis of the CSF pulsatile flow with cine MR phase imaging

    International Nuclear Information System (INIS)

    Katayama, Shinji; Itoh, Takahiko; Kinugasa, Kazushi; Asari, Shoji; Nishimoto, Akira; Tsuchida, Shohei; Ono, Atsushi; Ikezaki, Yoshikazu; Yoshitome, Eiji.

    1991-01-01

    The visualization and the quantitative analysis of the CSF pulsatile flow were performed on ten healthy volunteers with cine MR phase imaging, a combination of the phase-contrast technique and the cardiac-gating technique. The velocities appropriate for the visualization and the quantitative analysis of the CSF pulsatile flow were from 6.0 cm/sec to 15.0 cm/sec. The applicability of this method for the quantitative analysis was proven with a steady-flow phantom. Phase images clearly demonstrated a to-and-fro motion of the CSF flow in the anterior subarachnoid space and in the posterior subarachnoid space. The flow pattern of CSF on healthy volunteers depends on the cardiac cycle. In the anterior subarachnoid space, the cephalic CSF flow continued until a 70-msec delay after the R-wave of the ECG and then reversed to caudal. At 130-190 msec, the caudal CSF flow reached its maximum velocity; thereafter it reversed again to cephalic. The same turn appeared following the phase, but then the amplitude decreased. The cephalic peaked at 370-430 msec, while the caudal peaked at 490-550 msec. The flow pattern of the CSF flow in the posterior subarachnoid space was almost identical to that in the anterior subarachnoid space. Cine MR phase imaging is thus useful for the visualization and the quantitative analysis of the CSF pulsative flow. (author)

  5. Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment

    International Nuclear Information System (INIS)

    Shit, G.C.; Majee, Sreeparna

    2015-01-01

    Unsteady flow of blood and heat transfer characteristics in the neighborhood of an overlapping constricted artery have been investigated in the presence of magnetic field and whole body vibration. The laminar flow of blood is taken to be incompressible and Newtonian fluid with variable viscosity depending upon temperature with an aim to provide resemblance to the real situation in the physiological system. The unsteady flow mechanism in the constricted artery is subjected to a pulsatile pressure gradient arising from systematic functioning of the heart and from the periodic body acceleration. The numerical computation has been performed using finite difference method by developing Crank–Nicolson scheme. The results show that the volumetric flow rate, skin-friction and the rate of heat transfer at the wall are significantly altered in the downstream of the constricted region. The axial velocity profile, temperature and flow rate increases with increase in temperature dependent viscosity, while the opposite trend is observed in the case of skin-friction and flow impedance. - Highlights: • We have investigated the pulsatile MHD flow of blood and heat transfer in arteries. • The influence of periodic body acceleration has been taken into account. • The temperature dependent viscosity of blood is considered. • The variable viscosity has an increasing effect on blood flow and heat transfer. • The overall temperature distribution enhances in the presence of magnetic field

  6. Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment

    Energy Technology Data Exchange (ETDEWEB)

    Shit, G.C., E-mail: gopal_iitkgp@yahoo.co.in; Majee, Sreeparna

    2015-08-15

    Unsteady flow of blood and heat transfer characteristics in the neighborhood of an overlapping constricted artery have been investigated in the presence of magnetic field and whole body vibration. The laminar flow of blood is taken to be incompressible and Newtonian fluid with variable viscosity depending upon temperature with an aim to provide resemblance to the real situation in the physiological system. The unsteady flow mechanism in the constricted artery is subjected to a pulsatile pressure gradient arising from systematic functioning of the heart and from the periodic body acceleration. The numerical computation has been performed using finite difference method by developing Crank–Nicolson scheme. The results show that the volumetric flow rate, skin-friction and the rate of heat transfer at the wall are significantly altered in the downstream of the constricted region. The axial velocity profile, temperature and flow rate increases with increase in temperature dependent viscosity, while the opposite trend is observed in the case of skin-friction and flow impedance. - Highlights: • We have investigated the pulsatile MHD flow of blood and heat transfer in arteries. • The influence of periodic body acceleration has been taken into account. • The temperature dependent viscosity of blood is considered. • The variable viscosity has an increasing effect on blood flow and heat transfer. • The overall temperature distribution enhances in the presence of magnetic field.

  7. Computational fluid dynamics analysis and PIV validation of a bionic vortex flow pulsatile LVAD.

    Science.gov (United States)

    Xu, Liang; Yang, Ming; Ye, Lin; Dong, Zhaopeng

    2015-01-01

    Hemocompatibility is highly affected by the flow field in Left Ventricular Assistant Devices (LVAD). An asymmetric inflow and outflow channel arrangement with a 45° intersection angle with respect to the blood chamber is proposed to approximate the vascular structure of the aorta and left atrium on the left ventricle. The structure is expected to develop uninterruptible vortex flow state which is similar to the flow state in human left ventricle. The Computational Fluid Dynamics (CFD) asymmetric model is simulated using ANSYS workbench. To validate the velocity field calculated by CFD, a Particle Image Velocimetry (PIV) experiment is conducted. The CFD results show that the proposed blood chamber could generate a shifting vortex flow that would be redirected to the aorta during ejection to form a persistent recirculating flow state, which is similar to the echocardiographic flow state in left ventricle. Both the PIV and the CFD results show the development of a persistent vortex during the pulsatile period. Comparison of the qualitative flow pattern and quantitative probed velocity histories in a pulsatile period shows a good agreement between the CFD and PIV data. The goal of developing persistent quasi intra-ventricle vortex flow state in LVAD is realized.

  8. Generating pulsatility by pump speed modulation with continuous-flow total artificial heart in awake calves.

    Science.gov (United States)

    Fukamachi, Kiyotaka; Karimov, Jamshid H; Sunagawa, Gengo; Horvath, David J; Byram, Nicole; Kuban, Barry D; Dessoffy, Raymond; Sale, Shiva; Golding, Leonard A R; Moazami, Nader

    2017-12-01

    The purpose of this study was to evaluate the effects of sinusoidal pump speed modulation of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) on hemodynamics and pump flow in an awake chronic calf model. The sinusoidal pump speed modulations, performed on the day of elective sacrifice, were set at ±15 and ± 25% of mean pump speed at 80 bpm in four awake calves with a CFTAH. The systemic and pulmonary arterial pulse pressures increased to 12.0 and 12.3 mmHg (±15% modulation) and to 15.9 and 15.7 mmHg (±25% modulation), respectively. The pulsatility index and surplus hemodynamic energy significantly increased, respectively, to 1.05 and 1346 ergs/cm at ±15% speed modulation and to 1.51 and 3381 ergs/cm at ±25% speed modulation. This study showed that it is feasible to generate pressure pulsatility with pump speed modulation; the platform is suitable for evaluating the physiologic impact of pulsatility and allows determination of the best speed modulations in terms of magnitude, frequency, and profiles.

  9. Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation.

    Science.gov (United States)

    Ku, D N; Giddens, D P

    1987-01-01

    Hemodynamics at the human carotid bifurcation is important to the understanding of atherosclerotic plaque initiation and progression as well as to the diagnosis of clinically important disease. Laser Doppler anemometry was performed in a large scale model of an average human carotid. Pulsatile waveforms and physiologic flow divisions were incorporated. Disturbance levels and shear stresses were computed from ensemble averages of the velocity waveform measurements. Flow in the common carotid was laminar and symmetric. Flow patterns in the sinus, however, were complex and varied considerably during the cycle. Strong helical patterns and outer wall flow separation waxed and waned during each systole. The changing flow patterns resulted in an oscillatory shear stress at the outer wall ranging from -13 to 9 dyn cm-2 during systole with a time-averaged mean of only -0.5 dyn cm-2. This contrasts markedly with an inner wall shear stress range of 17-50, (mean 26) dyn cm-2. The region of transient separation was confined to the carotid sinus outer wall with no reverse velocities detected in the distal internal carotid. Notable disturbance velocities were also time-dependent, occurring only during the deceleration phase of systole and the beginning of diastole. The present pulsatile flow studies have aided in identifying hemodynamic conditions which correlate with early intimal thickening and predict the physiologic level of flow disturbances in the bulb of undiseased internal carotid arteries.

  10. Pulsatility role in cylinder flow dynamics at low Reynolds number

    KAUST Repository

    Qamar, Adnan; Samtaney, Ravi; Bull, Joseph L.

    2012-01-01

    range of TAL. Two distinct fluid regimes are identified. In both regimes, the size of the separated zone is much greater than the uniform flow case, the onset of separation is function of KC, and the separation vortex collapses rapidly during the last

  11. On heat transfer to pulsatile flow of a two-phase fluid

    Directory of Open Access Journals (Sweden)

    S. P. Chakraborty

    2005-09-01

    Full Text Available The problem of heat transfer to pulsatile flow of a two-phase fluid-particle system contained in a channel bounded by two infinitely long rigid impervious parallel walls has been studied in this paper. The solutions for the steady and the fluctuating temperature distributions are obtained. The rates of heat transfer at the walls are also calculated. The results are discussed numerically with graphical presentations. It is shown that the presence of the particles not only diminishes the steady and unsteady temperature fields but also decreases the reversal of heat flux at the hotter wall irrespective of the influences of other flow parameters.

  12. A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models.

    Science.gov (United States)

    Chaudhury, Rafeed A; Atlasman, Victor; Pathangey, Girish; Pracht, Nicholas; Adrian, Ronald J; Frakes, David H

    2016-06-01

    Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta. We designed a newly capable piston-based pulsatile flow pump system that can generate high volume flow rates (850 mL/s), replicate physiologic waveforms, and pump high viscosity fluids against large impedances. The system is also compatible with a broad range of fluid types, and is operable in magnetic resonance imaging environments. Performance of the system was validated using image processing-based analysis of piston motion as well as particle image velocimetry. The new system represents a more capable pumping solution for aortic flow experiments than other available designs, and can be manufactured at a relatively low cost.

  13. High flow ceramic pot filters

    OpenAIRE

    van Halem, D.; van der Laan, H.; Soppe, A. I.A.; Heijman, S.G.J.

    2017-01-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more water without sacrificing their microbial removal efficacy. High flow pot filters, produced by increasing the rice husk content, had a higher initial flow rate (6–19 L h−1), but initial LRVs for E. coli o...

  14. High flow ceramic pot filters

    NARCIS (Netherlands)

    van Halem, D.; van der Laan, H.; Soppe, A. I.A.; Heijman, S.G.J.

    2017-01-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more

  15. Correlation between vortices and wall shear stress in a curved artery model under pulsatile flow conditions

    Science.gov (United States)

    Cox, Christopher; Plesniak, Michael W.

    2017-11-01

    One of the most physiologically relevant factors within the cardiovascular system is the wall shear stress. The wall shear stress affects endothelial cells via mechanotransduction and atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the shear stress is both oscillatory and multidirectional. Also, the combined effect of curvature and pulsatility in cardiovascular flows produces unsteady vortices. In this work, our goal is to assess the correlation between multiple vortex pairs and wall shear stress. To accomplish this, we use an in-house high-order flux reconstruction Navier-Stokes solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180° curved artery model. We use a physiologically relevant flow rate and generate results using both fully developed and uniform entrance conditions, the latter motivated by the fact that flow upstream to a curved artery may not be fully developed. Under these two inflow conditions, we characterize the evolution of various vortex pairs and their subsequent effect on several wall shear stress metrics. Supported by GW Center for Biomimetics and Bioinspired Engineering.

  16. Secondary flow structures in a 180∘ elastic curved vessel with torsion under steady and pulsatile inflow conditions

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2017-11-01

    Secondary flow vortical structures were investigated in an elastic 180° curved pipe with and without torsion under steady and pulsatile flow using particle image velocimetry (PIV). The elastic thin-walled curved pipes were constructed using Sylgard 184, and inserted into a bath of refractive index matched fluid to perform PIV. A vortex identification method was employed to identify various vortical structures in the flow. The secondary flow structures in the planar compliant model with dilatation of 0.61%-3.23% under pulsatile flow rate were compared with the rigid vessel model results, and it was found that local vessel compliance has a negligible effect on secondary flow morphology. The secondary flow structures were found to be more sensitive to out of plane curvature (torsion) than to vessel compliance. Torsion distorts the symmetry of secondary flow and results in more complex vortical structures in both steady and pulsatile flows. In high Re number steady flow with torsion, a single dominant vortical structure can be detected at the middle of the 90° cross section. In pulsatile flow with torsion, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together. supported by GW Center for Biomimetics and Bioinspired Engineering.

  17. Ocular Perfusion Pressure and Pulsatile Ocular Blood Flow in Normal and Systemic Hypertensive Patients.

    Science.gov (United States)

    Kanadani, Fabio N; Figueiredo, Carlos R; Miranda, Rafaela Morais; Cunha, Patricia Lt; M Kanadani, Tereza Cristina; Dorairaj, Syril

    2015-01-01

    Glaucomatous neuropathy can be a consequence of insufficient blood supply, increase in intraocular pressure (IOP), or other risk factors that diminish the ocular blood flow. To determine the ocular perfusion pressure (OPP) in normal and systemic hypertensive patients. One hundred and twenty-one patients were enrolled in this prospective and comparative study and underwent a complete ophthalmologic examination including slit lamp examination, Goldmann applanation tonometry, stereoscopic fundus examination, and pulsatile ocular blood flow (POBF) measurements. The OPP was calculated as being the medium systemic arterial pressure (MAP) less the IOP. Only right eye values were considered for calculations using Student's t-test. The mean age of the patients was 57.5 years (36-78), and 68.5% were women. There was a statistically significant difference in the OPP of the normal and systemic hypertensive patients (p cite this article: Kanadani FN, Figueiredo CR, Miranda RM, Cunha PLT, Kanadani TCM, Dorairaj S. Ocular Perfusion Pressure and Pulsatile Ocular Blood Flow in Normal and Systemic Hypertensive Patients. J Curr Glaucoma Pract 2015;9(1):16-19.

  18. Filtering Undesirable Flows in Networks

    NARCIS (Netherlands)

    Polevoy, G.; Trajanovski, S.; Grosso, P.; de Laat, C.; Gao, X.; Du, H.; Han, M.

    2017-01-01

    We study the problem of fully mitigating the effects of denial of service by filtering the minimum necessary set of the undesirable flows. First, we model this problem and then we concentrate on a subproblem where every good flow has a bottleneck. We prove that unless P=NP, this subproblem is

  19. Stability of Carotid Artery Under Steady-State and Pulsatile Blood Flow: A Fluid–Structure Interaction Study

    Science.gov (United States)

    Saeid Khalafvand, Seyed; Han, Hai-Chao

    2015-01-01

    It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid–structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17–23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo. PMID:25761257

  20. Stability of carotid artery under steady-state and pulsatile blood flow: a fluid-structure interaction study.

    Science.gov (United States)

    Saeid Khalafvand, Seyed; Han, Hai-Chao

    2015-06-01

    It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid-structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17-23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo.

  1. Transition to turbulence in pulsatile flow through heart valves--a modified stability approach.

    Science.gov (United States)

    Bluestein, D; Einav, S

    1994-11-01

    The presence of turbulence in the cardiovascular system is generally an indication of some type of abnormality. Most cardiologists agree that turbulence near a valve indicates either valvular stenosis or regurgitation, depending on the phase of its occurrence during the cardiac cycle. As no satisfying analytical solutions of the stability of turbulent pulsatile flow exist, accurate, unbiased flow stability criteria are needed for the identification of turbulence initiation. The traditional approach uses a stability diagram based upon the stability of a plane Stokes layer where alpha (the Womersley parameter) is defined by the fundamental heart rate. We suggest a modified approach that involves the decomposition of alpha into its frequency components, where alpha is derived from the preferred modes induced on the flow by interaction between flow pulsation and the valve. Transition to turbulence in pulsatile flow through heart values was investigated in a pulse duplicator system using three polymer aortic valve models representing a normal aortic valve, a 65 percent stenosed valve and a 90 percent severely stenosed valve, and two mitral valve models representing a normal mitral valve and a 65 percent stenosed valve. Valve characteristics were closely simulated as to mimic the conditions that alter flow stability and initiate turbulent flow conditions. Valvular velocity waveforms were measured by laser Doppler anemometry (LDA). Spectral analysis was performed on velocity signals at selected spatial and temporal points to produce the power density spectra, in which the preferred frequency modes were identified. The spectra obtained during the rapid closure stage of the valves were found to be governed by the stenosis geometry. A shift toward higher dominant frequencies was correlated with the severity of the stenosis. According to the modified approach, stability of the flow is represented by a cluster of points, each corresponding to a specific dominant mode apparent

  2. Computational Fluid Dynamics Analysis of Pulsatile Blood Flow Behavior in Modelled Stenosed Vessels with Different Severities

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrabi

    2012-01-01

    Full Text Available This study focuses on the behavior of blood flow in the stenosed vessels. Blood is modelled as an incompressible non-Newtonian fluid which is based on the power law viscosity model. A numerical technique based on the finite difference method is developed to simulate the blood flow taking into account the transient periodic behaviour of the blood flow in cardiac cycles. Also, pulsatile blood flow in the stenosed vessel is based on the Womersley model, and fluid flow in the lumen region is governed by the continuity equation and the Navier-Stokes equations. In this study, the stenosis shape is cosine by using Tu and Devil model. Comparing the results obtained from three stenosed vessels with 30%, 50%, and 75% area severity, we find that higher percent-area severity of stenosis leads to higher extrapressure jumps and higher blood speeds around the stenosis site. Also, we observe that the size of the stenosis in stenosed vessels does influence the blood flow. A little change on the cross-sectional value makes vast change on the blood flow rate. This simulation helps the people working in the field of physiological fluid dynamics as well as the medical practitioners.

  3. Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: a stability analysis.

    Science.gov (United States)

    Sharzehee, Mohammadali; Khalafvand, Seyed Saeid; Han, Hai-Chao

    2018-02-01

    Tortuous aneurysmal arteries are often associated with a higher risk of rupture but the mechanism remains unclear. The goal of this study was to analyze the buckling and post-buckling behaviors of aneurysmal arteries under pulsatile flow. To accomplish this goal, we analyzed the buckling behavior of model carotid and abdominal aorta with aneurysms by utilizing fluid-structure interaction (FSI) method with realistic waveforms boundary conditions. FSI simulations were done under steady-state and pulsatile flow for normal (1.5) and reduced (1.3) axial stretch ratios to investigate the influence of aneurysm, pulsatile lumen pressure and axial tension on stability. Our results indicated that aneurysmal artery buckled at the critical buckling pressure and its deflection nonlinearly increased with increasing lumen pressure. Buckling elevates the peak stress (up to 118%). The maximum aneurysm wall stress at pulsatile FSI flow was (29%) higher than under static pressure at the peak lumen pressure of 130 mmHg. Buckling results show an increase in lumen shear stress at the inner side of the maximum deflection. Vortex flow was dramatically enlarged with increasing lumen pressure and artery diameter. Aneurysmal arteries are more susceptible than normal arteries to mechanical instability which causes high stresses in the aneurysm wall that could lead to aneurysm rupture.

  4. A study of the pulsatile flow and its interaction with rectangular leaflets

    Science.gov (United States)

    Ledesma, Rene; Zenit, Roberto; Pulos, Guillermo

    2009-11-01

    To avoid the complexity and limited understanding of the 3D pulsatile flow field through heart valves, a cardiac-like flow circuit and a test channel were designed to study the behavior of bidimensional leaflets made of hyperelastic materials. We study a simple 2D arrangement to understand the basic physics of the flow-leaflet interaction. Creating a periodic pressure gradient, measurements of leaflet deflection were obtained for different flow conditions, geometries and materials. Using PIV and Phase Locking techniques, we have obtained the leaflet motion and the time-dependent flow velocity fields. The results show that two dimensionless parameters determine the performance of a simple bi-dimensional valve, in accordance with the flow conditions applied: π1=f(sw)^1/2(E/ρ)^1/2 and π2=V/(2slw), where f is the pulsation frequency, V is the stroke volume, s, w and l are the dimensions on the leaftlet and E and ρ are the elastic modulus and density of the material, respectively. Furthermore, we have identified the conditions for which the fluid stresses can be minimized. With these results we propose a new set of parameters to improve the performance of prosthetic heart valves and, in consequence, to reduce blood damage.

  5. Controlling flow conditions of test filters in iodine filters

    International Nuclear Information System (INIS)

    Holmberg, R.; Laine, J.

    1979-03-01

    Several different iodine filter and test filter designs and experience gained from their operation are presented. For the flow experiments, an iodine filter system equipped with flow regulating and measuring devices was built. In the experiments the influence of the packing method of the iodine sorption material and the influence of the flow regulating and measuring divices upon the flow conditions in the test filters was studied. On the basis of the experiments it has been shown that the flows through the test filters always can be adjusted to a correct value if there only is a high enough pressure difference available across the test filter ducting. As a result of the research, several different methods are presented with which the flows through the test filters in both operating and future iodine sorption system can easily be measured and adjusted to their correct values. (author)

  6. PIV Measurement of Pulsatile Flows in 3D Curved Tubes Using Refractive Index Matching Method

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hyeon Ji; Ji, Ho Seong; Kim, Kyung Chun [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2016-08-15

    Three-dimensional models of stenosis blood vessels were prepared using a 3D printer. The models included a straight pipe with axisymmetric stenosis and a pipe that was bent 10° from the center of stenosis. A refractive index matching method was utilized to measure accurate velocity fields inside the 3D tubes. Three different pulsatile flows were generated and controlled by changing the rotational speed frequency of the peristaltic pump. Unsteady velocity fields were measured by a time-resolved particle image velocimetry method. Periodic shedding of vortices occurred and moves depended on the maximum velocity region. The sizes and the positions of the vortices and symmetry are influenced by mean Reynolds number and tube geometry. In the case of the bent pipe, a recirculation zone observed at the post-stenosis could explain the possibility of blood clot formation and blood clot adhesion in view of hemodynamics.

  7. PIV Measurement of Pulsatile Flows in 3D Curved Tubes Using Refractive Index Matching Method

    International Nuclear Information System (INIS)

    Hong, Hyeon Ji; Ji, Ho Seong; Kim, Kyung Chun

    2016-01-01

    Three-dimensional models of stenosis blood vessels were prepared using a 3D printer. The models included a straight pipe with axisymmetric stenosis and a pipe that was bent 10° from the center of stenosis. A refractive index matching method was utilized to measure accurate velocity fields inside the 3D tubes. Three different pulsatile flows were generated and controlled by changing the rotational speed frequency of the peristaltic pump. Unsteady velocity fields were measured by a time-resolved particle image velocimetry method. Periodic shedding of vortices occurred and moves depended on the maximum velocity region. The sizes and the positions of the vortices and symmetry are influenced by mean Reynolds number and tube geometry. In the case of the bent pipe, a recirculation zone observed at the post-stenosis could explain the possibility of blood clot formation and blood clot adhesion in view of hemodynamics.

  8. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device.

    Science.gov (United States)

    Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W

    2013-01-01

    The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.

  9. Pulsatile Flow and Transport of Blood past a Cylinder: Basic Transport for an Artificial Lung.

    Science.gov (United States)

    Zierenberg, Jennifer R.

    2005-11-01

    The fluid mechanics and transport for flow of blood past a single cylinder is investigated using CFD. This work refers to an artificial lung in which oxygen travels through fibers oriented perpendicularly to the incoming blood flow. A pulsatile blood flow was considered: Ux=U0[ 1+A( φt ) ], where Ux is the velocity far from the cylinder. The Casson equation was used to describe the shear thinning and yield stress properties of blood. The presence of hemoglobin (i.e. facilitated diffusion) was considered. We examined the effect of A, U0 and φ on the flow and transport by varying the dimensionless parameters: A; Reynolds number, Re; and Womersley parameter, α. Two different feed gases were considered: pure O2 and air. The flow and concentration fields were computed for Re = 5, 10, and 40, 0 transport is found to primarily depend on Re and to increase with increasing Re, α and decreasing A. The presence of hemoglobin increases mass transport. Supported by NIH HL69420, NSF Fellowship

  10. On the Evolution of Pulsatile Flow Subject to a Transverse Impulse Body Force

    Science.gov (United States)

    di Labbio, Giuseppe; Keshavarz-Motamed, Zahra; Kadem, Lyes

    2014-11-01

    In the event of an unexpected abrupt traffic stop or car accident, automotive passengers will experience an abrupt body deceleration. This may lead to tearing or dissection of the aortic wall known as Blunt Traumatic Aortic Rupture (BTAR). BTAR is the second leading cause of death in automotive accidents and, although quite frequent, the mechanisms leading to BTAR are still not clearly identified, particularly the contribution of the flow field. As such, this work is intended to provide a fundamental framework for the investigation of the flow contribution to BTAR. In this fundamental study, pulsatile flow in a three-dimensional, straight pipe of circular cross-section is subjected to a unidirectional, transverse, impulse body force applied on a strictly bounded volume of fluid. These models were simulated using the Computational Fluid Dynamics (CFD) software FLUENT. The evolution of fluid field characteristics was investigated during and after the application of the force. The application of the force significantly modified the flow field. The force induces a transverse pressure gradient causing the development of secondary flow structures that dissipate the energy added by the acceleration. Once the force ceases to act, these structures are carried downstream and gradually dissipate their excess energy.

  11. DEMONSTRATION BULLETIN: COLLOID POLISHING FILTER METHOD - FILTER FLOW TECHNOLOGY, INC.

    Science.gov (United States)

    The Filter Flow Technology, Inc. (FFT) Colloid Polishing Filter Method (CPFM) was tested as a transportable, trailer mounted, system that uses sorption and chemical complexing phenomena to remove heavy metals and nontritium radionuclides from water. Contaminated waters can be pro...

  12. Assessment of turbulence models for pulsatile flow inside a heart pump.

    Science.gov (United States)

    Al-Azawy, Mohammed G; Turan, A; Revell, A

    2016-02-01

    Computational fluid dynamics (CFD) is applied to study the unsteady flow inside a pulsatile pump left ventricular assist device, in order to assess the sensitivity to a range of commonly used turbulence models. Levels of strain and wall shear stress are directly relevant to the evaluation of risk from haemolysis and thrombosis, and thus understanding the sensitivity to these turbulence models is important in the assessment of uncertainty in CFD predictions. The study focuses on a positive displacement or pulsatile pump, and the CFD model includes valves and moving pusher plate. An unstructured dynamic layering method was employed to capture this cyclic motion, and valves were simulated in their fully open position to mimic the natural scenario, with in/outflow triggered at control planes away from the valves. Six turbulence models have been used, comprising three relevant to the low Reynolds number nature of this flow and three more intended to investigate different transport effects. In the first group, we consider the shear stress transport (SST) [Formula: see text] model in both its standard and transition-sensitive forms, and the 'laminar' model in which no turbulence model is used. In the second group, we compare the one equation Spalart-Almaras model, the standard two equation [Formula: see text] and the full Reynolds stress model (RSM). Following evaluation of spatial and temporal resolution requirements, results are compared with available experimental data. The model was operated at a systolic duration of 40% of the pumping cycle and a pumping rate of 86 BPM (beats per minute). Contrary to reasonable preconception, the 'transition' model, calibrated to incorporate additional physical modelling specifically for these flow conditions, was not noticeably superior to the standard form of the model. Indeed, observations of turbulent viscosity ratio reveal that the transition model initiates a premature increase of turbulence in this flow, when compared with

  13. Secondary flow vortical structures in a 180∘ elastic curved vessel with torsion under steady and pulsatile inflow conditions

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2018-01-01

    Secondary flow structures in a 180∘ curved pipe model of an artery are studied using particle image velocimetry. Both steady and pulsatile inflow conditions are investigated. In planar curved pipes with steady flow, multiple (two, four, six) vortices are detected. For pulsatile flow, various pairs of vortices, i.e., Dean, deformed-Dean, Lyne-type, and split-Dean, are present in the cross section of the pipe at 90∘ into the bend. The effects of nonplanar curvature (torsion) and vessel dilatation on these vortical structures are studied. Torsion distorts the symmetric secondary flows (which exist in planar curvatures) and can result in formation of more complex vortical structures. For example, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together in pulsatile flow. The vortical structures in elastic vessels with dilatation (0.61%-3.23%) are also investigated and the results are compared with rigid model results. It was found that the secondary flow structures in rigid and elastic models are similar, and hence the local compliance of the vessel does not affect the morphology of secondary flow structures.

  14. Flow Visualization of Three-Dimensionality Inside the 12 cc Penn State Pulsatile Pediatric Ventricular Assist Device

    OpenAIRE

    Roszelle, Breigh N.; Deutsch, Steven; Manning, Keefe B.

    2010-01-01

    In order to aid the ongoing concern of limited organ availability for pediatric heart transplants, Penn State has continued development of a pulsatile Pediatric Ventricular Assist Device (PVAD). Initial studies of the PVAD observed an increase in thrombus formation due to differences in flow field physics when compared to adult sized devices, which included a higher degree of three-dimensionality. This unique flow field brings into question the use of 2D planar particle image velocimetry (PIV...

  15. Mathematical Modeling of Rotary Blood Pumps in a Pulsatile In Vitro Flow Environment.

    Science.gov (United States)

    Pirbodaghi, Tohid

    2017-08-01

    Nowadays, sacrificing animals to develop medical devices and receive regulatory approval has become more common, which increases ethical concerns. Although in vivo tests are necessary for development and evaluation of new devices, nonetheless, with appropriate in vitro setups and mathematical models, a part of the validation process can be performed using these models to reduce the number of sacrificed animals. The main aim of this study is to present a mathematical model simulating the hydrodynamic function of a rotary blood pump (RBP) in a pulsatile in vitro flow environment. This model relates the pressure head of the RBP to the flow rate, rotational speed, and time derivatives of flow rate and rotational speed. To identify the model parameters, an in vitro setup was constructed consisting of a piston pump, a compliance chamber, a throttle, a buffer reservoir, and the CentriMag RBP. A 40% glycerin-water mixture as a blood analog fluid and deionized water were used in the hydraulic circuit to investigate the effect of viscosity and density of the working fluid on the model parameters. First, model variables were physically measured and digitally acquired. Second, an identification algorithm based on regression analysis was used to derive the model parameters. Third, the completed model was validated with a totally different set of in vitro data. The model is usable for both mathematical simulations of the interaction between the pump and heart and indirect pressure measurement in a clinical context. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility--Reykjavik study.

    Science.gov (United States)

    Mitchell, Gary F; van Buchem, Mark A; Sigurdsson, Sigurdur; Gotal, John D; Jonsdottir, Maria K; Kjartansson, Ólafur; Garcia, Melissa; Aspelund, Thor; Harris, Tamara B; Gudnason, Vilmundur; Launer, Lenore J

    2011-11-01

    Aortic stiffness increases with age and vascular risk factor exposure and is associated with increased risk for structural and functional abnormalities in the brain. High ambient flow and low impedance are thought to sensitize the cerebral microcirculation to harmful effects of excessive pressure and flow pulsatility. However, haemodynamic mechanisms contributing to structural brain lesions and cognitive impairment in the presence of high aortic stiffness remain unclear. We hypothesized that disproportionate stiffening of the proximal aorta as compared with the carotid arteries reduces wave reflection at this important interface and thereby facilitates transmission of excessive pulsatile energy into the cerebral microcirculation, leading to microvascular damage and impaired function. To assess this hypothesis, we evaluated carotid pressure and flow, carotid-femoral pulse wave velocity, brain magnetic resonance images and cognitive scores in participants in the community-based Age, Gene/Environment Susceptibility--Reykjavik study who had no history of stroke, transient ischaemic attack or dementia (n = 668, 378 females, 69-93 years of age). Aortic characteristic impedance was assessed in a random subset (n = 422) and the reflection coefficient at the aorta-carotid interface was computed. Carotid flow pulsatility index was negatively related to the aorta-carotid reflection coefficient (R = -0.66, Pwave velocity were each associated with increased risk for silent subcortical infarcts (hazard ratios of 1.62-1.71 per standard deviation, Pwave velocity was associated with higher white matter hyperintensity volume (0.108 ± 0.045 SD/SD, P = 0.018). Pulsatility index was associated with lower whole brain (-0.127 ± 0.037 SD/SD, Pwave velocity (-0.095 ± 0.043 SD/SD, P = 0.028) and carotid pulse pressure (-0.114 ± 0.045 SD/SD, P = 0.013) were associated with lower memory scores. Pulsatility index was associated with lower memory scores (-0.165 ± 0.039 SD/SD, Pwave

  17. The Relationship Between Pulsatile Flow Impingement and Intraluminal Thrombus Deposition in Abdominal Aortic Aneurysms.

    Science.gov (United States)

    Lozowy, Richard J; Kuhn, David C S; Ducas, Annie A; Boyd, April J

    2017-03-01

    Direct numerical simulations were performed on four patient-specific abdominal aortic aneurysm (AAA) geometries and the resulting pulsatile blood flow dynamics were compared to aneurysm shape and correlated with intraluminal thrombus (ILT) deposition. For three of the cases, turbulent vortex structures impinged/sheared along the anterior wall and along the posterior wall a zone of recirculating blood formed. Within the impingement region the AAA wall was devoid of ILT and remote to this region there was an accumulation of ILT. The high wall shear stress (WSS) caused by the impact of vortexes is thought to prevent the attachment of ILT. WSS from impingement is comparable to peak-systolic WSS in a normal-sized aorta and therefore may not damage the wall. Expansion occurred to a greater extent in the direction of jet impingement and the wall-normal force from the continuous impact of vortexes may contribute to expansion. It was shown that the impingement region has low oscillatory shear index (OSI) and recirculation zones can have either low or high OSI. No correlation could be identified between OSI and ILT deposition since different flow dynamics can have similar OSI values.

  18. Observation of the CSF pulsatile flow in the aqueduct using cine MRI with presaturation bolus tracking, 3

    International Nuclear Information System (INIS)

    Nakajima, Satoshi

    1992-01-01

    The to-and-fro motion patterns of the CSF flow in the aqueduct in ten normal adults, ten patients with secondary normal-pressure hydrocephalus (NPH), and fourteen patients with idiopathic ventriculomegaly were analyzed using cine MRI with presaturation bolus tracking. The to-and-fro motion patterns of the CSF flow in the aqueduct were thus classified into four types according to their maximum velocity and the relative time duration of their flow in the rostral and caudal directions. The correlation between the clinical symptoms, the CT findings, the RI-cisternography findings, the results of the ICP monitorings, and the CSF pulsatile-flow patterns were then analyzed. In secondary NPH disclosing frequent B waves on ICP monitoring, the maximum velocity of the CSF flow in the aqueduct was over 15 mm/sec, and the duration of the CSF flow was longer in the caudal direction than in the rostral direction. Furthermore, the faster the maximum velocity of the CSF flow, the larger the ventricular size on CT and the more severe the CSF malabsorption on cisternography. In idiopathic ventriculomegaly, only two cases demonstrated the same CSF flow pattern as was shown in secondary NPH; the other cases demonstrated other CSF flow patterns, which were considered to indicate hydrocephalus ex vacuo or arrested hydrocephalus. The CSF pulsatile-flow pattern was assumed to change according to the degree of the CSF circulatory disorder, its compensatory process, and the plasticity of the brain. The investigation of the CSF pulsatile flow gives important information for the evaluation of various hydrocephalic conditions. (author)

  19. An original valveless artificial heart providing pulsatile flow tested in mock circulatory loops.

    Science.gov (United States)

    Tozzi, Piergiorgio; Maertens, Audrey; Emery, Jonathan; Joseph, Samuel; Kirsch, Matthias; Avellan, François

    2017-11-24

    We present the test bench results of a valveless total artificial heart that is potentially compatible with the pediatric population. The RollingHeart is a valveless volumetric pump generating pulsatile flow. It consists of a single spherical cavity divided into 4 chambers by 2 rotating disks. The combined rotations of both disks produce changes in the volumes of the 4 cavities (suction and ejection). The blood enters/exits the spherical cavity through 4 openings that are symmetrical to the fixed rotation axis of the first disk.Mock circulatory system: The device pumps a 37% glycerin solution through 2 parallel circuits, simulating the pulmonary and systemic circulations. Flow rates are acquired with a magnetic inductive flowmeter, while pressure sensors collect pressure in the left and right outflow and inflow tracts.In vitro test protocol: The pump is run at speeds ranging from 20 to 180 ejections per minute. The waveform of the pressure generated at the inflow and outflow of the 4 chambers and the flow rate in the systemic circulation are measured. At an ejection rate of 178 min-1, the RollingHeart pumps 5.3 L/min for a systemic maximal pressure gradient of 174 mmHg and a pulmonary maximal pressure gradient of 75 mmHg. The power input was 14 W, corresponding to an efficiency of 21%. The RollingHeart represents a new approach in the domain of total artificial heart. This preliminary study endorses the feasibility of a single valveless device acting as a total artificial heart.

  20. Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations

    Directory of Open Access Journals (Sweden)

    Donald P Bernstein

    2010-01-01

    Full Text Available Impedance cardiography (ICG is a branch of bioimpedance pimarily concerned with the determination of left ventricular stroke volume (SV. As implemented, using the transthoracic approach, the technique involves applying a current field longitudinally across a segment of thorax by means of a constant magnitude, high frequency, low amplitude alternating current (AC. By Ohm's Law, the voltage difference measured within the current field is proportional to the electrical impedance Z (Ω. Without ventilatory or cardiac activity, Z is known as the transthoracic, static base impedance Z0. Upon ventricular ejection, a characteristic time dependent cardiac-synchronous pulsatile impedance change is obtained, ΔZ(t, which, when placed electrically in parallel with Z0, constitutes the time-variable total transthoracic impedance Z(t. ΔZ(t represents a dual-element composite waveform, which comprises both the radially-oriented volumetric expansion of and axially-directed forward blood flow within both great thoracic arteries. In its majority, however, ΔZ(t is known to primarily emanate from the ascending aorta. Conceptually, commonly implemented methods assume a volumetric origin for the peak systolic upslope of ΔZ(t, (i.e. dZ/dtmax, with the presumed units of Ω·s-1. A recently introduced method assumes the rapid ejection of forward flowing blood in earliest systole causes significant changes in the velocity-induced blood resistivity variation (Δρb(t, Ωcm·s-1, and it is the peak rate of change of the blood resistivity variation dρb(t/dtmax (Ωcm·s-2 that is the origin of dZ/dtmax. As a consequence of dZ/dtmax peaking in the time domain of peak aortic blood acceleration, dv/dtmax (cm·s-2, it is suggested that dZ/dtmax is an ohmic mean acceleration analog (Ω·s-2 and not a mean flow or velocity surrogate as generally assumed. As conceptualized, the normalized value, dZ/dtmax/Z0, is a dimensionless ohmic mean acceleration equivalent (s-2

  1. Non-invasive estimation of pulsatile flow and differential pressure in an implantable rotary blood pump for heart failure patients

    International Nuclear Information System (INIS)

    AlOmari, A H; Savkin, A V; Karantonis, D M; Lim, E; Lovell, N H

    2009-01-01

    We propose dynamical models for pulsatile flow and head estimation in an implantable rotary blood pump. Pulsatile flow and head data were obtained using a circulatory mock loop where fluid solutions with different values of viscosities were used as a blood analogue with varying haematocrit (HCT). Noninvasive measurements of power and pump speed were used with HCT values as inputs to the flow model while the estimated flow was used with the speed as inputs to a head estimation model. Linear regression analysis between estimated and measured flows obtained from a mock loop resulted in a highly significant correlation (R 2 = 0.982) and a mean absolute error (e) of 0.323 L min −1 , while for head, R 2 = 0.933 and e = 7.682 mmHg were obtained. R 2 = 0.849 and e = 0.584 L min −1 were obtained when the same model derived in the mock loop was used for flow estimation in ex vivo porcine data (N = 6). Furthermore, in the steady state, the solution of the presented flow model can be described by a previously designed and verified static model. The models developed herein will play a vital role in developing a robust control system of the pump flow coping with changing physiological demands

  2. Nonlinear dynamics of shells conveying pulsatile flow with pulse-wave propagation. Theory and numerical results for a single harmonic pulsation

    Science.gov (United States)

    Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.

    2017-05-01

    In deformable shells conveying pulsatile flow, oscillatory pressure changes cause local movements of the fluid and deformation of the shell wall, which propagate downstream in the form of a wave. In biomechanics, it is the propagation of the pulse that determines the pressure gradient during the flow at every location of the arterial tree. In this study, a woven Dacron aortic prosthesis is modelled as an orthotropic circular cylindrical shell described by means of the Novozhilov nonlinear shell theory. Flexible boundary conditions are considered to simulate connection with the remaining tissue. Nonlinear vibrations of the shell conveying pulsatile flow and subjected to pulsatile pressure are investigated taking into account the effects of the pulse-wave propagation. For the first time in literature, coupled fluid-structure Lagrange equations of motion for a non-material volume with wave propagation in case of pulsatile flow are developed. The fluid is modeled as a Newtonian inviscid pulsatile flow and it is formulated using a hybrid model based on the linear potential flow theory and considering the unsteady viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. Contributions of pressure and velocity propagation are also considered in the pressure drop along the shell and in the pulsatile frictional traction on the internal wall in the axial direction. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior of a pressurized Dacron aortic graft conveying blood flow. A pulsatile time-dependent blood flow model is considered by applying the first harmonic of the physiological waveforms of velocity and pressure during the heart beating period. Geometrically nonlinear vibration response to pulsatile flow and transmural pulsatile pressure, considering the propagation of pressure and velocity changes inside the shell, is here presented via frequency-response curves, time histories, bifurcation

  3. Pulsatility of Lenticulostriate Arteries Assessed by 7 Tesla Flow MRI-Measurement, Reproducibility, and Applicability to Aging Effect.

    Science.gov (United States)

    Schnerr, Roald S; Jansen, Jacobus F A; Uludag, Kamil; Hofman, Paul A M; Wildberger, Joachim E; van Oostenbrugge, Robert J; Backes, Walter H

    2017-01-01

    Characterization of flow properties in cerebral arteries with 1.5 and 3 Tesla MRI is usually limited to large cerebral arteries and difficult to evaluate in the small perforating arteries due to insufficient spatial resolution. In this study, we assessed the feasibility to measure blood flow waveforms in the small lenticulostriate arteries with 7 Tesla velocity-sensitive MRI. The middle cerebral artery was included as reference. Imaging was performed in five young and five old healthy volunteers. Flow was calculated by integrating time-varying velocity values over the vascular cross-section. MRI acquisitions were performed twice in each subject to determine reproducibility. From the flow waveforms, the pulsatility index and damping factor were deduced. Reproducibility values, in terms of the intraclass correlation coefficients, were found to be good to excellent. Measured pulsatility index of the lenticulostriate arteries significantly increased and damping factor significantly decreased with age. In conclusion, we demonstrate that blood flow through the lenticostriate arteries can be precisely measured using 7 Tesla MRI and reveal effects of arterial stiffness due to aging. These findings hold promise to provide relevant insights into the pathologies involving perforating cerebral arteries.

  4. INFLUENCE OF PULSATILE FLOW ON THE BEHAVIOR OF HUMAN FIBROBLASTS ADHERED TO GLASS

    NARCIS (Netherlands)

    VANKOOTEN, TG; SCHAKENRAAD, JM; VANDERMEI, HC; BUSSCHER, HJ

    1993-01-01

    In the human body, cells contacting biomaterials surfaces are frequently exposed to pulsatile shear stresses, e.g. blood vessel prostheses. Most studies involving shear, however, try to achieve a steady, pulse-free shear stress in studying cell-biomaterial interactions. In this study, human

  5. FLOWING BILATERAL FILTER: DEFINITION AND IMPLEMENTATIONS

    Directory of Open Access Journals (Sweden)

    Maxime Moreaud

    2015-06-01

    Full Text Available The bilateral filter plays a key role in image processing applications due to its intuitive parameterization and its high quality filter result, smoothing homogeneous regions while preserving the edges of the objects. Considering the image as a topological relief, seeing pixel intensities as peaks and valleys, we introduce a way to control the tonal weighting coefficients, the flowing bilateral filter, reducing "halo" artifacts typically produced by the regular bilateral filter around a large peak surrounded by two valleys of lower values. In this paper we propose to investigate exact and approximated versions of CPU and parallel GPU (Graphical Processing Unit based implementations of the regular and flowing bilateral filter using the NVidia CUDA API. Fast implementations of these filters are important for the processing of large 3D volumes up to several GB acquired by x-ray or electron tomography.

  6. The Effect of Pulsatile Flow on bMSC-Derived Endothelial-Like Cells in a Small-Sized Artificial Vessel Made by 3-Dimensional Bioprinting

    Directory of Open Access Journals (Sweden)

    Kang Woog Lee

    2018-01-01

    Full Text Available Replacement of small-sized vessels is still challenging. This study is aimed at investigating the possibility of small-sized artificial vessels made by 3-dimensional bioprinting and the effect of pulsatile flow on bMSC-derived endothelial-like cells. Cells were harvested from rabbit bone marrow and primary cultured with or without growth factors. Endothelial differentiation was confirmed by the Matrigel tube formation assay, Western blot, and qRT-PCR. In addition, embedment of endothelial-like cells in an artificial vessel was made by 3-dimensional bioprinting, and the pulsatile flow was performed. For pumped and nonpumped groups, qRT-PCR was performed on CD31 and VE-cadherin gene expression. Endothelial-like cells showed increased gene expression of CD31 and VE-cadherin, and tube formation is observed at each week. Endothelial-like cells grow well in a small-sized artificial vessel made by 3-dimensional bioprinting and even express higher endothelial cell markers when they undergo pulsatile flow condition. Moreover, the pulsatile flow condition gives a positive effect for cell observation not only on the sodium alginate hydrogel layer but also on the luminal surface of the artificial vessel wall. We have developed an artificial vessel, which is a mixture of cells and carriers using a 3-dimensional bioprinting method, and applied pulsatile flow using a peristaltic pump, and we also demonstrated cell growth and differentiation into endothelial cells. This study suggests guidelines regarding a small-sized artificial vessel in the field of tissue engineering.

  7. Flow visualization of three-dimensionality inside the 12 cc Penn State pulsatile pediatric ventricular assist device.

    Science.gov (United States)

    Roszelle, Breigh N; Deutsch, Steven; Manning, Keefe B

    2010-02-01

    In order to aid the ongoing concern of limited organ availability for pediatric heart transplants, Penn State has continued development of a pulsatile Pediatric Ventricular Assist Device (PVAD). Initial studies of the PVAD observed an increase in thrombus formation due to differences in flow field physics when compared to adult sized devices, which included a higher degree of three-dimensionality. This unique flow field brings into question the use of 2D planar particle image velocimetry (PIV) as a flow visualization technique, however the small size and high curvature of the PVAD make other tools such as stereoscopic PIV impractical. In order to test the reliability of the 2D results, we perform a pseudo-3D PIV study using planes both parallel and normal to the diaphragm employing a mock circulatory loop containing a viscoelastic fluid that mimics 40% hematocrit blood. We find that while the third component of velocity is extremely helpful to a physical understanding of the flow, particularly of the diastolic jet and the development of a desired rotational pattern, the flow data taken parallel to the diaphragm is sufficient to describe the wall shear rates, a critical aspect to the study of thrombosis and design of such pumps.

  8. Filtered Rayleigh Scattering Measurements in a Buoyant Flow Field

    National Research Council Canada - National Science Library

    Meents, Steven M

    2008-01-01

    Filtered Rayleigh Scattering (FRS) is a non-intrusive, laser-based flow characterization technique that consists of a narrow linewidth laser, a molecular absorption filter, and a high resolution camera behind the filter to record images...

  9. Carotid flow pulsatility is higher in women with greater decrement in gait speed during multi-tasking.

    Science.gov (United States)

    Gonzales, Joaquin U; James, C Roger; Yang, Hyung Suk; Jensen, Daniel; Atkins, Lee; Al-Khalil, Kareem; O'Boyle, Michael

    2017-05-01

    Central arterial hemodynamics is associated with cognitive impairment. Reductions in gait speed during walking while performing concurrent tasks known as dual-tasking (DT) or multi-tasking (MT) is thought to reflect the cognitive cost that exceeds neural capacity to share resources. We hypothesized that central vascular function would associate with decrements in gait speed during DT or MT. Gait speed was measured using a motion capture system in 56 women (30-80y) without mild-cognitive impairment. Dual-tasking was considered walking at a fast-pace while balancing a tray. Multi-tasking was the DT condition plus subtracting by serial 7's. Applanation tonometry was used for measurement of aortic stiffness and central pulse pressure. Doppler-ultrasound was used to measure blood flow velocity and β-stiffness index in the common carotid artery. The percent change in gait speed was larger for MT than DT (14.1±11.2 vs. 8.7±9.6%, p decrement (third tertile) as compared to women with less decrement (first tertile) in gait speed during MT after adjusting for age, gait speed, and task error. Carotid pulse pressure and β-stiffness did not contribute to these tertile differences. Elevated carotid flow pulsatility and resistance are characteristics found in healthy women that show lower cognitive capacity to walk and perform multiple concurrent tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals

    International Nuclear Information System (INIS)

    Binzoni, Tiziano; Tchernin, David; Hyacinthe, Jean-Noël; Van De Ville, Dimitri; Richiardi, Jonas

    2013-01-01

    Human bone blood flow, mean blood speed and the number of moving red blood cells were assessed (in arbitrary units), as a function of time, during one cardiac cycle. The measurements were obtained non-invasively on five volunteers by laser-Doppler flowmetry at large interoptode spacing. The investigated bones included: patella, clavicle, tibial diaphysis and tibial malleolus. As hypothesized, we found that in all bones the number of moving cells remains constant during cardiac cycles. Therefore, we concluded that the pulsatile nature of blood flow must be completely determined by the mean blood speed and not by changes in blood volume (vessels dilation). Based on these results, it is finally demonstrated using a mathematical model (derived from the radiative transport theory) that photoplethysmographic (PPG) pulsations observed by others in the literature, cannot be generated by oscillations in blood oxygen saturation, which is physiologically linked to blood speed. In fact, possible oxygen saturation changes during pulsations decrease the amplitude of PPG pulsations due to specific features of the PPG light source. It is shown that a variation in blood oxygen saturation of 3% may induce a negative change of ∼1% in the PPG signal. It is concluded that PPG pulsations are determined by periodic ‘positive’ changes of the reduced scattering coefficient of the tissue and/or the absorption coefficient at constant blood volume. No explicit experimental PPG measurements have been performed. As a by-product of this study, an estimation of the arterial pulse wave velocity obtained from the analysis of the blood flow pulsations give a value of 7.8 m s −1 (95% confidence interval of the sample mean distribution: [6.7, 9.5] m s −1 ), which is perfectly compatible with data in the literature. We hope that this note will contribute to a better understanding of PPG signals and to further develop the domain of the vascular physiology of human bone. (note)

  11. Axial flow velocity patterns in a normal human pulmonary artery model: pulsatile in vitro studies.

    Science.gov (United States)

    Sung, H W; Yoganathan, A P

    1990-01-01

    It has been clinically observed that the flow velocity patterns in the pulmonary artery are directly modified by disease. The present study addresses the hypothesis that altered velocity patterns relate to the severity of various diseases in the pulmonary artery. This paper lays a foundation for that analysis by providing a detailed description of flow velocity patterns in the normal pulmonary artery, using flow visualization and laser Doppler anemometry techniques. The studies were conducted in an in vitro rigid model in a right heart pulse duplicator system. In the main pulmonary artery, a broad central flow field was observed throughout systole. The maximum axial velocity (150 cm s-1) was measured at peak systole. In the left pulmonary artery, the axial velocities were approximately evenly distributed in the perpendicular plane. However, in the bifurcation plane, they were slightly skewed toward the inner wall at peak systole and during the deceleration phase. In the right pulmonary artery, the axial velocity in the perpendicular plane had a very marked M-shaped profile at peak systole and during the deceleration phase, due to a pair of strong secondary flows. In the bifurcation plane, higher axial velocities were observed along the inner wall, while lower axial velocities were observed along the outer wall and in the center. Overall, relatively low levels of turbulence were observed in all the branches during systole. The maximum turbulence intensity measured was at the boundary of the broad central flow field in the main pulmonary artery at peak systole.

  12. MR angiography of stenosis and aneurysm models in the pulsatile flow: variation with imaging parameters and concentration of contrast media

    International Nuclear Information System (INIS)

    Park, Kyung Joo; Park, Jae Hyung; Lee, Hak Jong; Won, Hyung Jin; Lee, Dong Hyuk; Min, Byung Goo; Chang, Kee Hyun

    1997-01-01

    The image quality of magnetic resonance angiography (MRA) varies according to the imaging techniques applied and the parameters affected by blood flow patterns, as well as by the shape of the blood vessels. This study was designed to assess the influence on signal intensity and its distribution of the geometry of these vessels, the imaging parameters, and the concentration of contrast media in MRA of stenosis and aneurysm models. MRA was performed in stenosis and aneurysm models made of glass tubes, using pulsatile flow with viscosity and flow profile similar to those of blood. Slice and maximum intensity projection (MIP) images were obtained using various imaging techniques and parameters;there was variation in repetition time, flip angle, imaging planes, and concentrations of contrast media. On slice images of three-dimensional (3D) time-of-flight (TOF) techniques, flow signal intensity was measured at five locations in the models, and contrast ratio was calculated as the difference between flow signal intensity (SI) and background signal intensity (SIb) divided by background signal intensity or (SI-SIb)/SIb. MIP images obtained by various techniques and using various parameters were also analyzed, with emphasis in the stenosis model on demonstrated degree of stenosis, severity of signal void and image distortion, and in the aneurysm model, on degree of visualization, distortion of contour and distribution of signals. In 3D TOF, the shortest TR (36 msec) and the largest FA (50 deg ) resulted in the highest contrast ratio, but larger flip angles did not effectively demonstrate the demonstration of the peripheral part of the aneurysm. Loss of signal was most prominent in images of the stenosis model obtained with parallel or oblique planes to the flow direction. The two-dimensional TOF technique also caused signal void in stenosis, but precisely demonstrated the aneurysm, with dense opacification of the peripheral part. The phase contrast technique showed some

  13. Effects of filter housing and ductwork configuration on air flow uniformity inside air cleaning filter housings

    International Nuclear Information System (INIS)

    Paul, J.D.

    1993-01-01

    Each new HEPA filter installation presents a different physical configuration based on the system requirements, the available space and designer preference. Each different configuration can result in variations of air flow uniformity inside the filter housing across the filter banks. This paper presents the results of air flow uniformity testing for six different filter housing/ductwork configurations and discusses if any of those variations in air flow uniformity is attributable to the difference in the physical arrangements for the six cases

  14. Numerical simulation of MHD pulsatile flow of a biofluid in a channel

    Directory of Open Access Journals (Sweden)

    Kashif Ali

    2015-08-01

    Full Text Available The purpose of this paper is to numerically study the interaction of an external magnetic field with the flow of a biofluid through a Darcy-Forchhmeir porous channel, due to an oscillatory pressure gradient, in the presence of wall transpiration as well as chemical reaction considerations. We have noticed that if the Reynolds number of the wall transpiration flow is increased, the average (or maximum velocity of the main flow direction is raised. Similar effect has also been observed for the rheological parameter and the Darcy parameter, whereas an opposite trend has been noted for both the Forchheimer quadratic drag parameter and the magnetic parameter. Further, an increase in the Reynolds number results in straightening the concentration profile, thus making it an almost linear function of the dimensionless spatial variable.

  15. Characterization of a Twin-Entry Radial Turbine under Pulsatile Flow Condition

    Directory of Open Access Journals (Sweden)

    Mahfoudh Cerdoun

    2016-01-01

    Full Text Available In automotive applications radial gas turbines are commonly fitted with a twin-entry volute connected to a divided exhaust manifold, ensuring a better scavenge process owing to less interference between engines’ cylinders. This paper is concerned with the study of the unsteady performances related to the pulsating flows of a twin-entry radial turbine in engine-like conditions and the hysteresis-like behaviour during the pulses period. The results show that the aerodynamic performances deviate noticeably from the steady state and depend mainly on the time shifting between the actual output power and the isentropic power, which is distantly related to the apparent length. The maximum of efficiency and output shaft power are accompanied by low entropy generation through the shroud entry side, and their instantaneous behaviours tend to follow mainly the inlet total pressure curve. As revealed a billow is created by the interaction between the main flow and the infiltrated flow, affecting the flow incidence at rotor entry and producing high losses.

  16. Simulation of the air flows in many industrial pleated filters

    International Nuclear Information System (INIS)

    Del Fabbro, L.; Brun, P.; Laborde, J.C.; Lacan, J.; Ricciardi, L.; Renoux, A.

    2000-01-01

    The study presents results concerning the characterization of the charge loss and the air flow in nuclear and automobile type pleated filters. The experimental studies in correlation with the numerical models showed an homogenous distribution of the air flows in a THE nuclear type filter, whereas the distribution is heterogenous in the case of an automobile filter. (A.L.B.)

  17. PIV-validated numerical modeling of pulsatile flows in distal coronary end-to-side anastomoses.

    Science.gov (United States)

    Xiong, F L; Chong, C K

    2007-01-01

    This study employed particle image velocimetry (PIV) to validate a numerical model in a complementary approach to quantify hemodynamic factors in distal coronary anastomoses and to gain more insights on their relationship with anastomotic geometry. Instantaneous flow fields and wall shear stresses (WSS) were obtained from PIV measurement in a modified life-size silastic anastomosis model adapted from a conventional geometry by incorporating a smooth graft-artery transition. The results were compared with those predicted by a concurrent numerical model. The numerical method was then used to calculate cycle-averaged WSS (WSS(cyc)) and spatial wall shear stress gradient (SWSSG), two critical hemodynamic factors in the pathogenesis of intimal thickening (IT), to compare the conventional and modified geometries. Excellent qualitative agreement and satisfactory quantitative agreement with averaged normalized error in WSS between 0.8% and 8.9% were achieved between the PIV experiment and numerical model. Compared to the conventional geometry, the modified geometry produces a more uniform WSS(cyc) distribution eliminating both high and low WSS(cyc) around the toe, critical in avoiding IT. Peak SWSSG on the artery floor of the modified model is less than one-half that in the conventional case, and high SWSSG at the toe is eliminated. The validated numerical model is useful for modeling unsteady coronary anastomotic flows and elucidating the significance of geometry regulated hemodynamics. The results suggest the clinical relevance of constructing smooth graft-artery transition in distal coronary anastomoses to improve their hemodynamic performance.

  18. Velocity and shear stress distribution downstream of mechanical heart valves in pulsatile flow.

    Science.gov (United States)

    Giersiepen, M; Krause, U; Knott, E; Reul, H; Rau, G

    1989-04-01

    Ten mechanical valves (TAD 27 mm): Starr-Edwards Silastic Ball, Björk-Shiley Standard, Björk-Shiley Concave-Convex, Björk-Shiley Monostrut, Hall-Kaster (Medtronic-Hall), OmniCarbon, Bicer Val, Sorin, Saint-Jude Medical and Hemex (Duromedics) are investigated in a comparative in vitro study. The velocity and turbulent shear stress profiles of the valves were determined by Laser Doppler anemometry in two different downstream axes within a model aortic root. Depending on the individual valve design, velocity peaks up to 1.5 m/s and turbulent shear stress peaks up to 150 N/m2 were measured during the systolic phase. These shear stress peaks mainly occurred in areas of flow separation and intense momentum exchange. Directly downstream of the valves (measuring axis 0.55.dAorta) turbulent shear stress peaks occurred at peak systole and during the deceleration phase, while in the second measuring axis (1.5.dAorta) turbulence levels were lower. Shear stress levels were high at the borders of the fluid jets. The results are discussed from a fluid-dynamic point of view.

  19. Safety and efficacy of the Aperio thrombectomy device when compared to the Solitaire AB/FR and the Revive devices in a pulsatile flow system.

    Science.gov (United States)

    Saleh, Mahdi; Spence, John Nathan; Nayak, Sanjeev; Pearce, Gillian; Tennuci, Christopher; Roffe, Christine

    2012-01-01

    There are a limited number of studies comparing the Aperio mechanical thrombectomy device to other stent-based devices. In this paper, we compared the Aperio thrombectomy device to the Solitaire AB, FR and Revive devices in a model of the middle cerebral artery (MCA) within a modified pulsatile flow system. Thrombi made of lamb's blood were placed into a pulsatile flow system perfused with Hartmann's solution at 80 bpm with a mean pressure of 90 mm Hg. 30 experiments were run with each device. Recanalization rates were similar for all three devices (90% with the Solitaire AB, FR, 80% with the Revive, and 90% with the Aperio). The mean number of attempts to retrieve the thrombus was also similar for all three devices (1.7 with the Solitaire AB, FR, 2.1 with the Revive, 1.6 with the Aperio). Clot fragmentation and embolization rates revealed no statistical significance but there was a trend towards lower embolization rates with the Aperio (23% compared to 40% with the Solitaire AB, FR and 47% with the Revive). The Aperio was the fastest to recanalize the MCA (mean of 66 seconds compared to 186 seconds for the Solitaire AB, FR and 169 seconds for the Revive). In this in vitro setting, the Aperio device seems to be an efficacious and safe device when compared to other similar clinically used mechanical thrombectomy devices. Larger clinical trials are warranted.

  20. A user's evaluation of radial flow HEPA filters

    International Nuclear Information System (INIS)

    Purcell, J.A.

    1992-07-01

    High efficiency particulate air (HEPA) filters of rectangular cross section have been used to remove particulates and the associated radioactivity from air ventilation streams since the advent of nuclear materials processing. Use of round axial flow HEPA filters is also longstanding. The advantages of radial flow filters in a circular configuration have been well demonstrated in UKAEA during the last 5--7 years. An evaluation of radial flow filters for fissile process gloveboxes reveals several substantial benefits in addition to the advantages claimed in UKAEA Facilities. The radial flow filter may be provided in a favorable geometry resulting in improved criticality safety. The filter configuration lends to in-place testing at the glovebox to exhaust duct interface. This will achieve compliance with DOE Order 6430.1A, Section 99.0.2. Preliminary testing at SRS for radial flow filters manufactured by Flanders Filters, Inc. revealed compliance in all the usual specifications for filtration efficiency, pressure differential and materials of construction. An evaluation, further detailed in this report, indicates that the radial flow HEPA filter should be considered for inclusion in new ventilation system designs

  1. Modeling Flow Past a Tilted Vena Cava Filter

    Energy Technology Data Exchange (ETDEWEB)

    Singer, M A; Wang, S L

    2009-06-29

    Inferior vena cava filters are medical devices used to prevent pulmonary embolism (PE) from deep vein thrombosis. In particular, retrievable filters are well-suited for patients who are unresponsive to anticoagulation therapy and whose risk of PE decreased with time. The goal of this work is to use computational fluid dynamics to evaluate the flow past an unoccluded and partially occluded Celect inferior vena cava filter. In particular, the hemodynamic response to thrombus volume and filter tilt is examined, and the results are compared with flow conditions that are known to be thrombogenic. A computer model of the filter inside a model vena cava is constructed using high resolution digital photographs and methods of computer aided design. The models are parameterized using the Overture software framework, and a collection of overlapping grids is constructed to discretize the flow domain. The incompressible Navier-Stokes equations are solved, and the characteristics of the flow (i.e., velocity contours and wall shear stresses) are computed. The volume of stagnant and recirculating flow increases with thrombus volume. In addition, as the filter increases tilt, the cava wall adjacent to the tilted filter is subjected to low velocity flow that gives rise to regions of low wall shear stress. The results demonstrate the ease of IVC filter modeling with the Overture software framework. Flow conditions caused by the tilted Celect filter may elevate the risk of intrafilter thrombosis and facilitate vascular remodeling. This latter condition also increases the risk of penetration and potential incorporation of the hook of the filter into the vena caval wall, thereby complicating filter retrieval. Consequently, severe tilt at the time of filter deployment may warrant early clinical intervention.

  2. Central Pulsatile Pressure and Flow Relationship in the Time and Frequency Domain to Characterise Hydraulic Input to the Brain and Cerebral Vascular Impedance.

    Science.gov (United States)

    Kim, Mi Ok; O'Rourke, Michael F; Adji, Audrey; Avolio, Alberto P

    2016-01-01

    In the time domain, pulsatile flow and pressure can be characterised as the ratio of the late systolic boost of flow or pressure to the pulse amplitude so as to estimate the hydraulic input to the brain. While vascular impedance has been widely used to represent the load presented to the heart by the systemic circulation, it has not been applied to the cerebral circulation.We set out to study the relationship between the pressure and the flow augmentation index (AIx) in the time domain and to determine cerebral vascular impedance using aortic blood pressure and cerebral blood flow waveforms in the frequency domain. Twenty-four young subjects (aged 21-39 years) were recruited; aortic pressure was derived using SphygmoCor from radial pressure. Flow waveforms were recorded from the middle cerebral artery. In three subjects, we performed the Valsalva manoeuvre to investigate their response to physiological intervention. There was a linear relationship between flow and pressure AIx, and cerebral impedance values were similar to those estimated for low resistance vascular beds. Substantial change in pressure and flow wave contour was observed during the Valsalva manoeuvre; however, the relationship in both the time and the frequency domains were unchanged. This confirms that aortic pressure and cerebral flow waveform can be used to study cerebral impedance.

  3. Method of producing monolithic ceramic cross-flow filter

    Science.gov (United States)

    Larsen, David A.; Bacchi, David P.; Connors, Timothy F.; Collins, III, Edwin L.

    1998-01-01

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.

  4. Basic study of intrinsic elastography: Relationship between tissue stiffness and propagation velocity of deformation induced by pulsatile flow

    Science.gov (United States)

    Nagaoka, Ryo; Iwasaki, Ryosuke; Arakawa, Mototaka; Kobayashi, Kazuto; Yoshizawa, Shin; Umemura, Shin-ichiro; Saijo, Yoshifumi

    2015-07-01

    We proposed an estimation method for a tissue stiffness from deformations induced by arterial pulsation, and named this proposed method intrinsic elastography (IE). In IE, assuming that the velocity of the deformation propagation in tissues is closely related to the stiffness, the propagation velocity (PV) was estimated by spatial compound ultrasound imaging with a high temporal resolution of 1 ms. However, the relationship between tissue stiffness and PV has not been revealed yet. In this study, the PV of the deformation induced by the pulsatile pump was measured by IE in three different poly(vinyl alcohol) (PVA) phantoms of different stiffnesses. The measured PV was compared with the shear wave velocity (SWV) measured by shear wave imaging (SWI). The measured PV has trends similar to the measured SWV. These results obtained by IE in a healthy male show the possibility that the mechanical properties of living tissues could be evaluated by IE.

  5. Numerical modelling on pulsatile flow of Casson nanofluid through an inclined artery with stenosis and tapering under the influence of magnetic field and periodic body acceleration

    Science.gov (United States)

    Ponalagusamy, R.; Priyadharshini, S.

    2017-11-01

    The present study investigates the pulsatile flow of Casson nanofluid through an inclined and stenosed artery with tapering in the presence of magnetic field and periodic body acceleration. The iron oxide nanoparticles are allowed to flow along with it. The governing equations for the flow of Casson fluid when the artery is tapered slightly having mild stenosis are highly non-linear and the momentum equations for temperature and concentration are coupled and are solved using finite difference numerical schemes in order to find the solutions for velocity, temperature, concentration, wall shear stress, and resistance to blood flow. The aim of the present study is to analyze the effects of flow parameters on the flow of nanofluid through an inclined arterial stenosis with tapering. These effects are represented graphically and concluded that the wall shear stress profiles enhance with increase in yield stress, magnetic field, thermophoresis parameter and decreases with Brownian motion parameter, local temperature Grashof number, local nanoparticle Grashof number. The significance of the model is the existence of yield stress and it is examined that when the rheology of blood changes from Newtonian to Casson fluid, the percentage of decrease in the flow resistance is higher with respect to the increase in the parameters local temperature Grashof number, local nanoparticle Grashof number, Brownian motion parameter, and Prandtl number. It is pertinent to observe that increase in the Brownian motion parameter leads to increment in concentration and temperature profiles. It is observed that the concentration of nanoparticles decreases with increase in the value of thermophoresis parameter.

  6. Bioaugmentation of flow-through sand filters

    DEFF Research Database (Denmark)

    Samuelsen, Elin Djurhuus

    for degradation performances in flow-through sand columns, with the aim of identifying a suitable inoculant strain for future environmental applications. Another aim was to identify a suitable genetic marker to monitor phenoxy acid degradation in strain Sphingobium sp. PM2. We were not able to link motility...... and biofilm formation to the strains´ ability to adhere to sand. Nevertheless, a correlation was found between cell surface hydrophobicity and adhesion and overall degradation performances in flow-through sand columns. We identified S phingobium sp. PM2 as a promising inoculant strain, displaying efficient...... MCPA degradation for prolonged periods in flow-through sand columns. In an expression study of catabolic genes with putative roles in phenoxy acid degradation, we observed a marked upregulation of catabolic genes cadA and tfdC upon exposure to MCPA, 2,4-D, dichlorprop and mecoprop in strain PM2, which...

  7. Imaging in pulsatile tinnitus

    International Nuclear Information System (INIS)

    Madani, G.; Connor, S.E.J.

    2009-01-01

    Tinnitus may be continuous or pulsatile. Vascular lesions are the most frequent radiologically demonstrable cause of pulsatile tinnitus. These include congenital vascular anomalies (which may be arterial or venous), vascular tumours, and a variety of acquired vasculopathies. The choice of imaging depends on the clinical findings. If a mass is present at otoscopy, thin-section computed tomography (CT) is indicated. In the otoscopically normal patient, there is a range of possible imaging approaches. However, combined CT angiography and venography is particularly useful

  8. Imaging in pulsatile tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Madani, G. [Radiology Department, St Mary' s Hospital, London (United Kingdom)], E-mail: gittamadani@yahoo.com; Connor, S E.J. [Neuroradiology Department, King' s College Hospital, London (United Kingdom)

    2009-03-15

    Tinnitus may be continuous or pulsatile. Vascular lesions are the most frequent radiologically demonstrable cause of pulsatile tinnitus. These include congenital vascular anomalies (which may be arterial or venous), vascular tumours, and a variety of acquired vasculopathies. The choice of imaging depends on the clinical findings. If a mass is present at otoscopy, thin-section computed tomography (CT) is indicated. In the otoscopically normal patient, there is a range of possible imaging approaches. However, combined CT angiography and venography is particularly useful.

  9. Energy Based Clutter Filtering for Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Jensen, Jonas; Ewertsen, Caroline

    2017-01-01

    for obtaining vector flow measurements, since the spectra overlaps at high beam-to-flow angles. In this work a distinct approach is proposed, where the energy of the velocity spectrum is used to differentiate among the two signals. The energy based method is applied by limiting the amplitude of the velocity...... spectrum function to a predetermined threshold. The effect of the clutter filtering is evaluated on a plane wave (PW) scan sequence in combination with transverse oscillation (TO) and directional beamforming (DB) for velocity estimation. The performance of the filter is assessed by comparison...

  10. Spatial-temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow.

    Science.gov (United States)

    Ding, Ting; Hu, Hong; Bai, Chen; Guo, Shifang; Yang, Miao; Wang, Supin; Wan, Mingxi

    2016-07-01

    Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution

  11. A constant flow filter air sampler for workplace environments

    International Nuclear Information System (INIS)

    Parulian, A.; Rodgers, J.C.; McFarland, A.R.

    1996-01-01

    A filter air sampler has been developed for sampling radionuclide aerosol particles form the workplace environment. It provides easy filter changing, constant flow sampling, and a visual display to indicate proper operation. An experimental study was conducted to characterize the collection efficiency of the sampler as affected by variations in room air velocity, particle size, sampling flow rate, inlet geometry, and inlet orientation to the free stream. Tests were carried out in a wing tunnel at velocities between 0.3 m s -1 and 2.0 m s -1 , which is a range that covers anticipated velocities in the typical highly ventilated workplace environment of a nuclear facility. Nearly monodisperse aerosols with sizes between 5 and 20 μm aerodynamic diameter were sampled at flow rates between 28.3 and 84.9 L min -1 . Inlet orientations of 0 degree, 90 degree, and 180 degree from the horizontal were selected for evaluation. When the sampler was oriented at 0 degree over various ranges of free stream velocities, sampling flow rates and particle sizes, the transmission efficiency of aerosol was typically greater than 95%. The transmission efficiencies varied form 80% to 106% for 10-μm aerodynamic diameter particles over the previously noted range of free stream velocities and inlet orientations. Uniformity of deposits of 10 μm aerodynamic diameter particles on collection filters was examined for a sampling rate of 57 L min -1 , a sampler orientation of 90 degree into the wind and wind speeds of 0.3-2 m s -1 . The coefficients of variation for the areal density of the deposits ranged from 6.1% to 37.2%. A miniature critical flow venturi with a constant sampling flow rate of 57 L min -1 was developed for application to the new filter air sampler. It was demonstrated that the performance of the new filter air sampler is quite acceptable over a wide range of conditions. 31 refs., 8 figs., 1 tab

  12. Application of velocity filtering to optical-flow passive ranging

    Science.gov (United States)

    Barniv, Yair

    1992-01-01

    The performance of the velocity filtering method as applied to optical-flow passive ranging under real-world conditions is evaluated. The theory of the 3-D Fourier transform as applied to constant-speed moving points is reviewed, and the space-domain shift-and-add algorithm is derived from the general 3-D matched filtering formulation. The constant-speed algorithm is then modified to fit the actual speed encountered in the optical flow application, and the passband of that filter is found in terms of depth (sensor/object distance) so as to cover any given range of depths. Two algorithmic solutions for the problems associated with pixel interpolation and object expansion are developed, and experimental results are presented.

  13. An innovative, sensorless, pulsatile, continuous-flow total artificial heart: device design and initial in vitro study.

    Science.gov (United States)

    Fukamachi, Kiyotaka; Horvath, David J; Massiello, Alex L; Fumoto, Hideyuki; Horai, Tetsuya; Rao, Santosh; Golding, Leonard A R

    2010-01-01

    We are developing a very small, innovative, continuous-flow total artificial heart (CFTAH) that passively self-balances left and right pump flows and atrial pressures without sensors. This report details the CFTAH design concept and our initial in vitro data. System performance of the CFTAH was evaluated using a mock circulatory loop to determine the range of systemic and pulmonary vascular resistance (SVR and PVR) levels over which the design goal of a maximum absolute atrial pressure difference of 10 mm Hg is achieved for a steady-state flow condition. Pump speed was then modulated at 2,600 +/- 900 rpm to induce flow and arterial pressure pulsation to evaluate the effects of speed pulsations on the system performance. An automatic control mode was also evaluated. Using only passive self-regulation, pump flows were balanced and absolute atrial pressure differences were maintained at mode adjusted pump speed to achieve targeted pump flows based on sensorless calculations of SVR and CFTAH flow. The initial in vitro testing of the CFTAH with a single, valveless, continuous-flow pump demonstrated its passive self-regulation of flows and atrial pressures and a new automatic control mode. Copyright (c) 2010 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  14. Analytical solution for pulsatile viscous flow in a straight elliptic annulus and application to the motion of the cerebrospinal fluid

    Science.gov (United States)

    Gupta, Sumeet; Poulikakos, Dimos; Kurtcuoglu, Vartan

    2008-09-01

    We present here the analytical solution of transient, laminar, viscous flow of an incompressible, Newtonian fluid driven by a harmonically oscillating pressure gradient in a straight elliptic annulus. The analytical formulation is based on the exact solution of the governing fluid flow equations known as Navier-Stokes equations. We validate the analytical solution using a finite-volume computational fluid dynamics approach. As the analytical solution includes Mathieu and modified Mathieu functions, we also present a stepwise procedure for their evaluation for large complex arguments typically associated with viscous flows. We further outline the procedure for evaluating the associated Fourier coefficients and their eigenvalues. We finally apply the analytical solution to investigate the cerebrospinal fluid flow in the human spinal cavity, which features a shape similar to an elliptic annulus.

  15. The effect of varying degrees of stenosis on the characteristics of turbulent pulsatile flow through heart valves.

    Science.gov (United States)

    Bluestein, D; Einav, S

    1995-08-01

    Many problems and complications associated with heart valves are related to the dynamic behavior of the valve and the resultant unsteady flow patterns. An accurate depiction of the spatial and temporal velocity and rms distributions imparts better understanding of flow related valve complications, and may be used as a guideline in valve design. While the generalized correlation between increased turbulence level and the severity of the stenosis is well established, few studies addressed the issue of the intermittent nature of turbulence and its timing in the cardiac cycle, and almost none assessed the effect of a progressive stenosis on the flow characteristics through heart valves. In this experimental work we simulated the type of flow which is present in normal and stenosed valves and conducted a comprehensive investigation of valve hemodynamics, valvular turbulence and morphology under varying degrees of stenosis. The characteristics of valves and stenoses were simulated closely, to achieve the flow conditions that initiate turbulent flow conditions. Laser Doppler anemometry (LDA) measurements were carried out in a pulse duplicator system distal to trileaflet polyurethane prosthetic heart valves, installed at mitral and aortic positions. The effect of the degree of the stenosis was comparatively studied through the structure of the turbulent jets emerging from normal and stenotic heart valves. Maximum turbulence level was achieved during the decelerating phase and correlated to the severity of the stenosis, followed by relaminarization of the flow during the acceleration phase. The intermittent nature of the turbulence emphasized the importance of realizing the timing of the turbulence production and its spatial location for optimizing current valve designs. The plug flow through the normal aortic valve prosthesis was replaced by jet like behavior for a 65% stenosis, with the jet becoming narrower and stronger for a 90% stenosis. The morphology of the velocity

  16. Water flow exchange characteristics in coarse granular filter media

    DEFF Research Database (Denmark)

    Andreasen, Rune Røjgaard; Pugliese, Lorenzo; Poulsen, Tjalfe

    2013-01-01

    Elution of inhibitory metabolites is a key parameter controlling the efficiency of air cleaning bio- and biotrickling filters. To the authors knowledge no studies have yet considered the relationship between specific surface area related elution velocity and physical media characteristics, which...... in this study are performed at a concurrent airflow of 0.3 m s−1, water irrigation rates of 1–21 cm h−1 in materials with particle diameters ranging from 2 to 14 mm to represent media and operation conditions relevant for low flow biotrickling filter design. Specific surface area related elution velocity...... distribution was closely related to the filter water content, water irrigation rate, media specific surface area and particle size distribution. A predictive model linking the specific surface area related elution velocity distribution to irrigation rate, specific surface area and particle size distribution...

  17. Preliminary design of the internal geometry in a minimally invasive left ventricular assist device under pulsatile-flow conditions.

    Science.gov (United States)

    Smith, P Alex; Wang, Yaxin; Metcalfe, Ralph W; Sampaio, Luiz C; Timms, Daniel L; Cohn, William E; Frazier, O H

    2018-03-01

    A minimally invasive, partial-assist, intra-atrial blood pump has been proposed, which would unload the left ventricle with a flow path from the left atrium to the arterial system. Flow modulation is a common strategy for ensuring washout in the pump, but it can increase power consumption because it is typically achieved through motor-speed variation. However, if a pump's performance curve had the proper gradient, flow modulation could be realized passively. To achieve this goal, we propose a pump performance operating curve as an alternative to the more standard operating point. Mean-line theory was employed to generate an initial set of geometries that were then tested on a hydraulic test rig at ~20,000 r/min. Experimental results show that the intra-atrial blood pump performed below the operating region; however, it was determined that smaller hub diameter and longer chord length bring the performance of the intra-atrial blood pump device closer to the operating curve. We found that it is possible to shape the pump performance curve for specifically targeted gradients over the operating region through geometric variations inside the pump.

  18. Calculation of arterial wall temperature in atherosclerotic arteries: effect of pulsatile flow, arterial geometry, and plaque structure

    Directory of Open Access Journals (Sweden)

    Kim Taehong

    2007-03-01

    Full Text Available Abstract Background This paper presents calculations of the temperature distribution in an atherosclerotic plaque experiencing an inflammatory process; it analyzes the presence of hot spots in the plaque region and their relationship to blood flow, arterial geometry, and inflammatory cell distribution. Determination of the plaque temperature has become an important topic because plaques showing a temperature inhomogeneity have a higher likelihood of rupture. As a result, monitoring plaque temperature and knowing the factors affecting it can help in the prevention of sudden rupture. Methods The transient temperature profile in inflamed atherosclerotic plaques is calculated by solving an energy equation and the Navier-Stokes equations in 2D idealized arterial models of a bending artery and an arterial bifurcation. For obtaining the numerical solution, the commercial package COMSOL 3.2 was used. The calculations correspond to a parametric study where arterial type and size, as well as plaque geometry and composition, are varied. These calculations are used to analyze the contribution of different factors affecting arterial wall temperature measurements. The main factors considered are the metabolic heat production of inflammatory cells, atherosclerotic plaque length lp, inflammatory cell layer length lmp, and inflammatory cell layer thickness dmp. Results The calculations indicate that the best location to perform the temperature measurement is at the back region of the plaque (0.5 ≤ l/lp ≤ 0.7. The location of the maximum temperature, or hot spot, at the plaque surface can move during the cardiac cycle depending on the arterial geometry and is a direct result of the blood flow pattern. For the bending artery, the hot spot moves 0.6 millimeters along the longitudinal direction; for the arterial bifurcation, the hot spot is concentrated at a single location due to the flow recirculation observed at both ends of the plaque. Focusing on the

  19. Ultrasonic Mastering of Filter Flow and Antifouling of Renewable Resources.

    Science.gov (United States)

    Radziuk, Darya; Möhwald, Helmuth

    2016-04-04

    Inadequate access to pure water and sanitation requires new cost-effective, ergonomic methods with less consumption of energy and chemicals, leaving the environment cleaner and sustainable. Among such methods, ultrasound is a unique means to control the physics and chemistry of complex fluids (wastewater) with excellent performance regarding mass transfer, cleaning, and disinfection. In membrane filtration processes, it overcomes diffusion limits and can accelerate the fluid flow towards the filter preventing antifouling. Here, we outline the current state of knowledge and technological design, with a focus on physicochemical strategies of ultrasound for water cleaning. We highlight important parameters of ultrasound for the delivery of a fluid flow from a technical perspective employing principles of physics and chemistry. By introducing various ultrasonic methods, involving bubbles or cavitation in combination with external fields, we show advancements in flow acceleration and mass transportation to the filter. In most cases we emphasize the main role of streaming and the impact of cavitation with a perspective to prevent and remove fouling deposits during the flow. We also elaborate on the deficiencies of present technologies and on problems to be solved to achieve a wide-spread application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations

    Science.gov (United States)

    Themelis, George; D'Arceuil, Helen; Diamond, Solomon G.; Thaker, Sonal; Huppert, Theodore J.; Boas, David A.

    2009-01-01

    We describe a near-infrared spectroscopy (NIRS) method to noninvasively measure relative changes in the pulsate components of cerebral blood flow (pCBF) and volume (pCBV) from the shape of heartbeat oscillations. We present a model that is used and data to show the feasibility of the method. We use a continuous-wave NIRS system to measure the arterial oscillations originating in the brains of piglets. Changes in the animals' CBF are induced by adding CO2 to the breathing gas. To study the influence of scalp on our measurements, comparative, invasive measurements are performed on one side of the head simultaneously with noninvasive measurements on the other side. We also did comparative measurements of CBF using a laser Doppler system to validate the results of our method. The results indicate that for sufficient source-detector separation, the signal contribution of the scalp is minimal and the measurements are representative of the cerebral hemodynamics. Moreover, good correlation between the results of the laser Doppler system and the NIRS system indicate that the presented method is capable of measuring relative changes in CBF. Preliminary results show the potential of this NIRS method to measure pCBF and pCBV relative changes in neonatal pigs. PMID:17343508

  1. Adaptive probabilistic collocation based Kalman filter for unsaturated flow problem

    Science.gov (United States)

    Man, J.; Li, W.; Zeng, L.; Wu, L.

    2015-12-01

    The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a relatively large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the Polynomial Chaos to approximate the original system. In this way, the sampling error can be reduced. However, PCKF suffers from the so called "cure of dimensionality". When the system nonlinearity is strong and number of parameters is large, PCKF is even more computationally expensive than EnKF. Motivated by recent developments in uncertainty quantification, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problem. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected. The "restart" technology is used to alleviate the inconsistency between model parameters and states. The performance of RAPCKF is tested by unsaturated flow numerical cases. It is shown that RAPCKF is more efficient than EnKF with the same computational cost. Compared with the traditional PCKF, the RAPCKF is more applicable in strongly nonlinear and high dimensional problems.

  2. Pulsatility index variations using two different transit-time flowmeters in coronary artery bypass surgery.

    Science.gov (United States)

    Nordgaard, Håvard B; Vitale, Nicola; Astudillo, Rafael; Renzulli, Attilio; Romundstad, Pål; Haaverstad, Rune

    2010-05-01

    Transit-time flow measurement is widely accepted as an intra-operative assessment in coronary artery bypass grafting (CABG). However, the two most commonly applied flowmeters, manufactured by MediStim ASA and Transonic Inc., have different default filter settings of 20 and 10 Hz, respectively. This may cause different flow measurements, which will influence the reported results. The aim was to compare pulsatility index (PI) values recorded by the MediStim and Transonic flowmeters in two different clinical settings: (1) analysis of the flow patterns recorded simultaneously by both flowmeters in the same CABGs; and (2) evaluation of flow patterns under different levels of filter settings in the same grafts. Graft flow and PI were measured using the two different flowmeters simultaneously in 19 bypass grafts. Finally, eight grafts were assessed under different digital filter settings at 5, 10, 20, 30, 50 and 100 Hz. The Transonic flowmeter provided substantially lower PI as compared with the MediStim flowmeter. By increasing the filter setting in the flowmeter, PI increased considerably. The Transonic flowmeter displayed a lower PI than the MediStim, due to a lower filter setting. In the Transonic,flow signals are filtered at a lower level, rendering a 'smoother' pattern of flow curves. Because different filter settings determine different PIs, caution must be taken when flow values and flowmeters are compared. The type of flowmeter should be indicated whenever graft flow measurements and derived indexes are provided [corrected]. Copyright 2009 European Association for Cardio-Thoracic Surgery. All rights reserved.

  3. Replacement of fluid-filter elements without interruption of flow

    Science.gov (United States)

    Kotler, R. A.; Ward, J. B.

    1969-01-01

    Gatling-type filter assembly, preloaded with several filter elements enables filter replacement without breaking into the operative fluid system. When the filter element becomes contaminated, a unit inner subassembly is rotated 60 degrees to position a clean filter in the line.

  4. Filter case for separating out radioactive effluents from gas flows

    International Nuclear Information System (INIS)

    Jannakos, K.; Zabel, G.

    1982-01-01

    A remotely operated change of filter in a filter case can be done with an annular or cylindrical filter insert, where the contaminated air side remains separate from the clean air side. A lid is provided which can be divided into two parts, and by which the openings of the filter insert and also in the intermediate floor can be opened or closed using the double lid technique. When closing the filter case lid, the double lid closure is always opened. (DG) [de

  5. Efficient simulations of fluid flow coupled with poroelastic deformations in pleated filters

    KAUST Repository

    Calo, Victor M.; Iliev, Dimitar; Iliev, Oleg; Kirsch, Ralf; Lakdawala, Zahra; Printsypar, Galina

    2015-01-01

    model describes a free fluid flow coupled with a flow in porous media in a domain that contains the filtering media. To discretize the complex computational domain we use quadrilateral boundary fitted grids which resolve porous-fluid interfaces

  6. A granular refillable filter for glas-flows contaminated by radioactive impurities

    International Nuclear Information System (INIS)

    Bonn, J.W.

    1975-01-01

    Description is given of a granular charcoal refillable filter adapted to adsorb the radioactive impurities of a gaseous flow. That flow comprises a number of filtering layers, the consumed charcoal of which can be discharged by a pneumatic device without exposing the personnel to radioactivity. This can be applied to emergency devices in nuclear facilities [fr

  7. Hollywood log-homotopy: movies of particle flow for nonlinear filters

    Science.gov (United States)

    Daum, Fred; Huang, Jim

    2011-06-01

    In this paper we show five movies of particle flow to provide insight and intuition about this new algorithm. The particles flow solves the well known and important problem of particle degeneracy. Bayes' rule is implemented by particle flow rather than as a pointwise multiplication. This theory is roughly seven orders of magnitude faster than standard particle filters, and it often beats the extended Kalman filter by two orders of magnitude in accuracy for difficult nonlinear problems.

  8. Computational Modeling of Blood Flow in the TrapEase Inferior Vena Cava Filter

    Energy Technology Data Exchange (ETDEWEB)

    Singer, M A; Henshaw, W D; Wang, S L

    2008-02-04

    To evaluate the flow hemodynamics of the TrapEase vena cava filter using three dimensional computational fluid dynamics, including simulated thrombi of multiple shapes, sizes, and trapping positions. The study was performed to identify potential areas of recirculation and stagnation and areas in which trapped thrombi may influence intrafilter thrombosis. Computer models of the TrapEase filter, thrombi (volumes ranging from 0.25mL to 2mL, 3 different shapes), and a 23mm diameter cava were constructed. The hemodynamics of steady-state flow at Reynolds number 600 was examined for the unoccluded and partially occluded filter. Axial velocity contours and wall shear stresses were computed. Flow in the unoccluded TrapEase filter experienced minimal disruption, except near the superior and inferior tips where low velocity flow was observed. For spherical thrombi in the superior trapping position, stagnant and recirculating flow was observed downstream of the thrombus; the volume of stagnant flow and the peak wall shear stress increased monotonically with thrombus volume. For inferiorly trapped spherical thrombi, marked disruption to the flow was observed along the cava wall ipsilateral to the thrombus and in the interior of the filter. Spherically shaped thrombus produced a lower peak wall shear stress than conically shaped thrombus and a larger peak stress than ellipsoidal thrombus. We have designed and constructed a computer model of the flow hemodynamics of the TrapEase IVC filter with varying shapes, sizes, and positions of thrombi. The computer model offers several advantages over in vitro techniques including: improved resolution, ease of evaluating different thrombus sizes and shapes, and easy adaptation for new filter designs and flow parameters. Results from the model also support a previously reported finding from photochromic experiments that suggest the inferior trapping position of the TrapEase IVC filter leads to an intra-filter region of recirculating

  9. Generation of tunable and pulsatile concentration gradients via microfluidic network

    KAUST Repository

    Zhou, Bingpu

    2014-06-04

    We demonstrate a compact Polydimethylsiloxane microfluidic chip which can quickly generate ten different chemical concentrations simultaneously. The concentration magnitude of each branch can be flexibly regulated based on the flow rate ratios of the two injecting streams. The temporal/pulsatile concentration gradients are achieved by integrating on-chip pneumatic actuated valves controlled by the external signals. The temporal concentration gradients can also be tuned precisely by varying applied frequency and duty cycle of the trigger signal. It is believed that such microdevice will be potentially used for some application areas of producing stable chemical gradients as well as allowing fast, pulsatile gradient transformation in seconds.

  10. A study on the characteristics of the flow distribution in the Module Ceramic Filter during filter cleaning

    International Nuclear Information System (INIS)

    Chung, Jin-Do; Kim, Jang-Woo; Chung, Hwi-Bok; Im, Byoung-Uk; Chung, Eun-Ho; Yoon, Sang-Wook

    2010-01-01

    Ceramic filter has demonstrated as an attractive system to improve the efficiency and to reduce the effluent pollutants. Removal of particulates from the hot gas stream is very important in air pollution control. In particular, the elimination of the particulate matters discharged from a gas turbine at high temperature can prevent the corrosion the Integrated Gasification Combined Cycle. In this study, a Lab. scale test and numerical simulation were carried out to comprehend the relationship between pulse jet pressure and recovery of pressure drop and to characterize the reverse cleaning flow through a ceramic filter. (author)

  11. Modeling Flow Rate to Estimate Hydraulic Conductivity in a Parabolic Ceramic Water Filter

    Directory of Open Access Journals (Sweden)

    Ileana Wald

    2012-01-01

    Full Text Available In this project we model volumetric flow rate through a parabolic ceramic water filter (CWF to determine how quickly it can process water while still improving its quality. The volumetric flow rate is dependent upon the pore size of the filter, the surface area, and the height of water in the filter (hydraulic head. We derive differential equations governing this flow from the conservation of mass principle and Darcy's Law and find the flow rate with respect to time. We then use methods of calculus to find optimal specifications for the filter. This work is related to the research conducted in Dr. James R. Mihelcic's Civil and Environmental Engineering Lab at USF.

  12. Pulmonary O2 transfer during pulsatile and non-pulsatile perfusion.

    Science.gov (United States)

    Hauge, A; Nicolaysen, G

    1980-07-01

    The importance of the perfusion pattern for the oxygen transfer has been examined in isolated rabbit lungs perfused with plasma at constant volume inflow. The lungs were ventilated with constant tidal volume and constant end-expiratory pressure. Following a standardized rise in FIO2 the rate of rise in pulmonary venous PO2 (delta PO2/delta t) was measured during alternately pulsatile and non-pulsatile perfusion in normal lungs and in lungs made edematous by elevation of left atrial pressure. In normal lungs there was no difference in delta PO2/delta t when the two modes of perfusion were compared. In edematous lungs delta PO/delta t was statistically higher during pulsatile perfusion, indicating a beneficial effect of flow- and pressure pulsations, e.g. a better distribution of V/Q ratios throughout the lungs. In a separate series of expts. the advancement of a high O2 front through the airways was measured, and the two perfusion patterns compared. Since no difference was found, we suggest that the phenomenon of "cardiogenic gas mixing" in the airways in vivo is a result of a direct action of the heart on the lungs rather than arterial pulsations.

  13. Using one filter stage of unsaturated/saturated vertical flow filters for nitrogen removal and footprint reduction of constructed wetlands.

    Science.gov (United States)

    Morvannou, Ania; Troesch, Stéphane; Esser, Dirk; Forquet, Nicolas; Petitjean, Alain; Molle, Pascal

    2017-07-01

    French vertical flow constructed wetlands (VFCW) treating raw wastewater have been developed successfully over the last 30 years. Nevertheless, the two-stage VFCWs require a total filtration area of 2-2.5 m 2 /P.E. Therefore, implementing a one-stage system in which treatment performances reach standard requirements is of interest. Biho-Filter ® is one of the solutions developed in France by Epur Nature. Biho-Filter ® is a vertical flow system with an unsaturated layer at the top and a saturated layer at the bottom. The aim of this study was to assess this new configuration and to optimize its design and operating conditions. The hydraulic functioning and pollutant removal efficiency of three different Biho-Filter ® plants commissioned between 2011 and 2012 were studied. Outlet concentrations of the most efficient Biho-Filter ® configuration are 70 mg/L, 15 mg/L, 15 mg/L and 25 mg/L for chemical oxygen demand (COD), 5-day biological oxygen demand (BOD 5 ), total suspended solids (TSS) and total Kjeldahl nitrogen (TKN), respectively. Up to 60% of total nitrogen is removed. Nitrification efficiency is mainly influenced by the height of the unsaturated zone and the recirculation rate. The optimum recirculation rate was found to be 100%. Denitrification in the saturated zone works at best with an influent COD/NO 3 -N ratio at the inflet of this zone larger than 2 and a hydraulic retention time longer than 0.75 days.

  14. MR imaging of pulsatile CSF movement in hydrocephalus communicans before and after CSF shunt implantation

    International Nuclear Information System (INIS)

    Goldmann, A.; Kunz, U.; Rotermund, F.; Friedrich, J.M.; Schnarkowski, P.

    1992-01-01

    16 patients with hydrocephalus communicans and 5 healthy volunteers were examined to demonstrate the pattern of the pulsatile CSF flow. After implantation of a CSF shunt system the same patients were examined again to show the influence of the shunt on the CSF pulsations. We used a flow-sensitised, cardiac-gated 2D FLASH sequence and analysed the phase and magnitude images. It could be shown that most patients (n=12) had a hyerdynamic pulsatile flow preoperatively. After shunt implantation the pulsatile CSF motion and the clinical symptoms were improved in 8 of these patients. MRI of pulsatile CSF flow movement seems to be a helpful noninvasive tool to estimate the prognosis of a shunt implantation in patients with hydrocephalus communicans. (orig.) [de

  15. Recleaning of HEPA filters by reverse flow - evaluation of the underlying processes and the cleaning technique

    International Nuclear Information System (INIS)

    Leibold, H.; Leiber, T.; Doeffert, I.; Wilhelm, J.G.

    1993-08-01

    HEPA filter operation at high concentrations of fine dusts requires the periodic recleaning of the filter units in their service locations. Due to the low mechanical stress induced during the recleaning process the regenration via low pressure reverse flow is a very suitable technique. Recleanability of HEPA filter had been attained for particle diameter >0,4 μm at air velocities up to 1 m/s, but filter clogging occurred in case of smaller particles. The recleaning forces are too weak for particles [de

  16. [Design Method Analysis and Performance Comparison of Wall Filter for Ultrasound Color Flow Imaging].

    Science.gov (United States)

    Wang, Lutao; Xiao, Jun; Chai, Hua

    2015-08-01

    The successful suppression of clutter arising from stationary or slowly moving tissue is one of the key issues in medical ultrasound color blood imaging. Remaining clutter may cause bias in the mean blood frequency estimation and results in a potentially misleading description of blood-flow. In this paper, based on the principle of general wall-filter, the design process of three classes of filters, infinitely impulse response with projection initialization (Prj-IIR), polynomials regression (Pol-Reg), and eigen-based filters are previewed and analyzed. The performance of the filters was assessed by calculating the bias and variance of a mean blood velocity using a standard autocorrelation estimator. Simulation results show that the performance of Pol-Reg filter is similar to Prj-IIR filters. Both of them can offer accurate estimation of mean blood flow speed under steady clutter conditions, and the clutter rejection ability can be enhanced by increasing the ensemble size of Doppler vector. Eigen-based filters can effectively remove the non-stationary clutter component, and further improve the estimation accuracy for low speed blood flow signals. There is also no significant increase in computation complexity for eigen-based filters when the ensemble size is less than 10.

  17. Real world efficiency of retrofit partial-flow diesel particulate filters for trucks

    International Nuclear Information System (INIS)

    Van Asch, R.; Verbeek, R.; Ligterink, N.; Kadijk, G.

    2009-11-01

    In 2006 the Dutch Ministry of Housing, Spatial Planning and the Environment (VROM) introduced an incentive scheme for retrofitting diesel particulate filters on Euro II and Euro III trucks. This scheme involves both partial flow and full flow diesel particulate filters (also called semi-open or open respectively wall-flow or closed filters). In the period 2007 till January 2009 about 15,000 partial flow filters and 8,000 full flow diesel particulate filters were installed. The minimum filtration efficiency requirement for the partial flow diesel particulate filters is 50% during the type approval test. In 2008 an engine dynamometer test programme was conducted to measure the filtration efficiency of retrofit open particulates filters of heavy trucks. This led to somewhat disappointing results with average filtration efficiencies in the range of 5-20% during city and national motorway driving conditions up to 20-40% during long distance motorway driving. This result leads to two main questions: (1) Is this result also representative for medium heavy trucks used for delivery, and (2) do similar efficiencies show up also in tests on entire vehicles, tested under conditions as close as possible to their real world usage profile. To this end, an additional measurement programme was defined, which is reported here. The objective of the study reported here is to determine the real world filtration efficiency of retrofit partial flow particulate filters for a number of trucks under different driving conditions such as city and motorway driving. The emphasis should be on medium heavy trucks typically used for national delivery.

  18. Velocity measurements in a rigid ceramic filter in a parallel-flow arrangement

    International Nuclear Information System (INIS)

    Al-Hajeri, M.H.; Aroussi, A.; Witry, A.

    2002-01-01

    Rigid ceramic filters have been developed for cleaning the hot combustion gas streams upstream of the turbine in a combined cycle power plant. To obtain continues operation a periodic cleaning is necessary and the cleaning efficiency depends on the distribution of the filtration cake. Consequently uniform particle deposition on the filter element surface is desired. The flow around three filter elements in cross flow is investigated computationally using the commercial code FLUENT. Three filter elements are placed in a two-dimensional rectangle duct with fixed face velocity and varying the velocity ratio between the approach and face velocity. Particle trajectories are obtained for a number of particle diameters and different inlet (approach) velocity to face filtration velocity ratios to investigate the behavior of particles around the filter element. (author)

  19. Application of Micropore Filter Technology: Exploring the Blood Flow Path in Arterial-Line Filters and Its Effect on Bubble Trapping Functions.

    Science.gov (United States)

    Herbst, Daniel P

    2017-03-01

    Conventional arterial-line filters commonly use a large volume circular shaped housing, a wetted micropore screen, and a purge port to trap, separate, and remove gas bubbles from extracorporeal blood flow. Focusing on the bubble trapping function, this work attempts to explore how the filter housing shape and its resulting blood flow path affect the clinical application of arterial-line filters in terms of gross air handling. A video camera was used in a wet-lab setting to record observations made during gross air-bolus injections in three different radially designed filters using a 30-70% glycerol-saline mixture flowing at 4.5 L/min. Two of the filters both had inlet ports attached near the filter-housing top with bottom oriented outlet ports at the bottom, whereas the third filter had its inlet and outlet ports both located at the bottom of the filter housing. The two filters with top-in bottom-out fluid paths were shown to direct the incoming flow downward as it passed through the filter, placing the forces of buoyancy and viscous drag in opposition to each other. This contrasted with the third filter's bottom-in bottom-out fluid path, which was shown to direct the incoming flow upward so that the forces of buoyancy and viscous drag work together. The direction of the blood flow path through a filter may be important to the application of arterial-line filter technology as it helps determine how the forces of buoyancy and flow are aligned with one another.

  20. Respirator Filter Efficiency Testing Against Particulate and Biological Aerosols Under Moderate to High Flow Rates

    Science.gov (United States)

    2006-08-01

    flow rate through the test filter. The flow rate was measured using a mass flow meter (Series 4000, TSI, Shoreview, MN). Several modifications were made...operating conditions. This included assessing the effect of non- isokinetic sampling, flow calibrations, and characterization of the challenge...sampling bias on the measured penetrations due to the non- isokinetic sampling downstream. 3.3.2.2 System Characterization. Shakedown tests were

  1. Lattice Boltzmann simulations for wall-flow dynamics in porous ceramic diesel particulate filters

    Science.gov (United States)

    Lee, Da Young; Lee, Gi Wook; Yoon, Kyu; Chun, Byoungjin; Jung, Hyun Wook

    2018-01-01

    Flows through porous filter walls of wall-flow diesel particulate filter are investigated using the lattice Boltzmann method (LBM). The microscopic model of the realistic filter wall is represented by randomly overlapped arrays of solid spheres. The LB simulation results are first validated by comparison to those from previous hydrodynamic theories and constitutive models for flows in porous media with simple regular and random solid-wall configurations. We demonstrate that the newly designed randomly overlapped array structures of porous walls allow reliable and accurate simulations for the porous wall-flow dynamics in a wide range of solid volume fractions from 0.01 to about 0.8, which is beyond the maximum random packing limit of 0.625. The permeable performance of porous media is scrutinized by changing the solid volume fraction and particle Reynolds number using Darcy's law and Forchheimer's extension in the laminar flow region.

  2. Molecular filter-based diagnostics in high speed flows

    Science.gov (United States)

    Elliott, Gregory S.; Samimy, MO; Arnette, Stephen A.

    1993-01-01

    The use of iodine molecular filters in nonintrusive planar velocimetry methods is examined. Detailed absorption profiles are obtained to highlight the effects that determine the profile shape. It is shown that pressure broadening induced by the presence of a nonabsorbing vapor can be utilized to significantly change the slopes bounding the absorbing region while remaining in the optically-thick regime.

  3. Pollution by air filters: Continuous vs intermittent air flow

    NARCIS (Netherlands)

    Cox, C.W.J.; Bluyssen, P.M.

    2000-01-01

    Within the framework of the EU research project Airless, a long-term experiment of 28 weeks was carried out to investigate the influence of intermittent airflow compared to continuous airflow on the pollution effect of glass fibre filters (F7). No statistical relevant differences between odour

  4. Recovery of Filtered Graphene Oxide Residue Using Elastic Gel Packed in a Column by Cross Flow

    Directory of Open Access Journals (Sweden)

    Yuji Takaoka

    2018-04-01

    Full Text Available To recover the filtered residues on a gel layer in a column, the method using the elasticity of the gel layer and flowing water in a cross-flow manner is proposed. Polymerized spherical gel (40 μm was packed in a column to a set height of 0.7 cm. The suspensions of graphene oxide at various sizes and shapes were injected on the top of the gel layer and then water was flowed at a flow rate of 1000 mL·h−1 until 0.10 MPa. By releasing the applied pressure, the elastic gel layer rose up, and the filtered graphene oxide also rose above the layer. This rise of the gel layer is due to the difference of pressure between the gel layer, including the filtered graphene oxide, and the open bottom of the column, using the flow of water. The cross flow of water through the column carried away the larger-sized filtered graphene oxide floating above the gel layer. The elasticity of the gel layer and cross flow through the column has the potential to recover the filtered particles.

  5. Modelling of air flows in pleated filters and of their clogging by solid particles

    International Nuclear Information System (INIS)

    Del Fabbro, L.

    2002-01-01

    The devices of air cleaning against particles are widely spread in various branches of industry: nuclear, motor, food, electronic,...; among these devices, numerous are constituted by pleated porous media to increase the surface of filtration and thus to reduce the pressure drop, for given air flow. The objective of our work is to compensate a lack evident of knowledge on the evolution of the pressure drop of pleated filter during the clogging and to deduct a modelling from it, on the basis of experiments concerning industrial filters of nuclear and car types. The obtained model is a function of characteristics of the filtering medium and pleats, of the characteristics of solid particles deposited on the filter, of the mass of particles and of the aeraulic conditions of air flow. It also depends on data on the clogging of flat filters of equivalent medium. To elaborate this model of pressure drop, an initial stage was carried out in order to characterize, experimentally and numerically, the pressure drop and the distribution of air flow in clean pleated filters of nuclear (high efficiency particulate air filter, in fiberglasses) and car (mean efficiency filter, in fibers of cellulose) types. The numerical model allowed to understand the fundamental role played by the aeraulic resistance of the filtering medium. From an non-dimensional approach, we established a semi-empirical model of pressure drop for a clean pleated filter valid for both studied types of medium; this model is used of first base for the development of the final model of clogging. The study of the clogging of the filters showed the complexity of the phenomenon dependent mainly on a reduction of the surface of filtration. This observation brings us to propose a clogging of pleated filters in three phases. Both first phases are similar in those observed for flat filters, while last phase corresponds to a reduction of the surface of filtration and leads a strong increase of the filter pressure drop

  6. Better and faster velocity pulsatility assessment in cerebral white matter perforating arteries with 7T quantitative flow MRI through improved slice profile, acquisition scheme, and postprocessing.

    Science.gov (United States)

    Geurts, Lennart; Biessels, Geert Jan; Luijten, Peter; Zwanenburg, Jaco

    2018-03-01

    A previously published cardiac-gated 2D Qflow protocol at 7 T in cerebral perforating arteries was optimized to reduce velocity underestimation and improve temporal resolution. First, the signal-to-noise ratio (SNR) gain of the velocity measurement (SNR v ) was tested for two signal averages versus one. Second, the decrease in velocity underestimation with a tilted optimized nonsaturating excitation (TONE) pulse was tested. Third, the decrease in pulsatility index (PI) underestimation through improved temporal resolution was tested. Test-retest agreement was measured for the resulting acquisition in older volunteers (mean age 63 years), and the results were compared with the other volunteers (mean age 26 years). Using two signal averages increased SNR v by only 12% (P = 0.04), probably due to motion of the subvoxel-size arteries. The TONE decreased velocity underestimation, thereby increasing the mean velocity from 0.52 to 0.67 cm/s (P < 0.001). The PI increased substantially with increasing temporal resolution. The test-retest agreement showed good coefficients of repeatability of 0.18 cm/s for velocity and 0.14 for PI. The measured velocity was lower in the older group: 0.42 versus 0.51 cm/s (P = 0.05). The optimized sequence yields better velocity and PI estimates in small vessels, has twice as good test-retest agreement, and has a suitable scan time for use in patients. Magn Reson Med 79:1473-1482, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for

  7. Pulsatile fluidic pump demonstration and predictive model application

    International Nuclear Information System (INIS)

    Morgan, J.G.; Holland, W.D.

    1986-04-01

    Pulsatile fluidic pumps were developed as a remotely controlled method of transferring or mixing feed solutions. A test in the Integrated Equipment Test facility demonstrated the performance of a critically safe geometry pump suitable for use in a 0.1-ton/d heavy metal (HM) fuel reprocessing plant. A predictive model was developed to calculate output flows under a wide range of external system conditions. Predictive and experimental flow rates are compared for both submerged and unsubmerged fluidic pump cases

  8. Flow and fouling in membrane filters: Effects of membrane morphology

    Science.gov (United States)

    Sanaei, Pejman; Cummings, Linda J.

    2015-11-01

    Membrane filters are widely-used in microfiltration applications. Many types of filter membranes are produced commercially, for different filtration applications, but broadly speaking the requirements are to achieve fine control of separation, with low power consumption. The answer to this problem might seem obvious: select the membrane with the largest pore size and void fraction consistent with the separation requirements. However, membrane fouling (an inevitable consequence of successful filtration) is a complicated process, which depends on many parameters other than membrane pore size and void fraction; and which itself greatly affects the filtration process and membrane functionality. In this work we formulate mathematical models that can (i) account for the membrane internal morphology (internal structure, pore size & shape, etc.); (ii) fouling of membranes with specific morphology; and (iii) make some predictions as to what type of membrane morphology might offer optimum filtration performance.

  9. Thermal/chemical degradation of ceramic cross-flow filter materials

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  10. Numerical study of magnetohydrodynamic pulsatile flow of Sutterby fluid through an inclined overlapping arterial stenosis in the presence of periodic body acceleration

    Science.gov (United States)

    Abbas, Z.; Shabbir, M. S.; Ali, N.

    2018-06-01

    In the present theoretical investigation, we have numerically simulated the problem of blood flow through an overlapping stenosed arterial blood vessel under the action of externally applied body acceleration and the periodic pressure gradient. The rheology of blood is characterized by the Sutterby fluid model. The blood is considered as an electrically conducting fluid. A steady uniform magnetic field is applied in the radial direction of the blood vessel. The governing nonlinear partial differential equations of the present flow together with prescribed boundary conditions are solved by employing explicit finite difference scheme. Results concerning the temporal distribution of velocity, flow rate, shear stress and resistance to the flow are displayed through graphs. The effects of various emerging parameters on the flow variables are analyzed and discussed in detail. The analysis reveals that the applied magnetic field and periodic body acceleration have considerable effects on the flow field.

  11. Cirurgia de Glenn bidirecional: importância da manutenção de fluxo "pulsátil" na artéria pulmonar Bidirectional Glenn procedure: the importance of "pulsatile" flow in the pulmonary artery

    Directory of Open Access Journals (Sweden)

    Fernando Antônio Fantini

    1995-03-01

    In order to evaluate the effects of pulsatile flow in the pulmonary artery of patients undergoing bidirectional cavopulmonary shunts (BCS, we reviewed the data of 36 patients operated upon from October 1990 to July 1994. Age at operation ranged from 11 months to 14 years (mean 4.4 ± 3.4 years and diagnoses were as follows: tricuspid atresia (18, single ventricle (16, mitral atresia (1 and pulmonary atresia with intact ventricular septum (1. A total of 19 (52.8% patients had a prior palliative operation done. Cardiopulmonary bypass was used in every case, with mild hypothermia in 11 cases and profound hypothermia and circulatory arrest in the remaining. The surgical technique was an anastomosis between the superior vena cava and the ipsilateral pulmonary artery in an end-to-side fashion. The main pulmonary artery was ligated only if the mean pressure taken at the site of the anastomosis was higher than 15 mmHg but in 2 recent cases with a very high mean pulmonary pressure, the main pulmonary artery was banded, adjusting the pressure to the desirable levels. The overall hospital survival was 91.7% (33 patients. One patient required a systemic to pulmonary shunt due to persistent low arterial oxygen saturation, 7 days after the BCS. Twenty-eight patients were followed for a mean of 1.8 ± 1.2 years (3 months to 4.1 years and were divided in 2 groups: A-18 patients without pulsatile flow in the pulmonary artery, and B-10 patients with pulsatile flow. In Group B, the mean arterial saturation has ranged from 80% to 90% (mean 86 ± 3.8% and is significantly higher than in Group A (68 to 85%, mean, 77.6 ± 5.5 (p<0.001. Two patients of Group A are in NYHA functional class III, whereas all patients of Group B are in class I or II (p=0.05. There was one late death and one patient required a subsequent Fontan procedure, both of Group A. Thus, the presence of pulsatile flow in the pulmonary artery improved the arterial oxigen saturation and exercise tolerance in patients submitted to

  12. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment.

    Science.gov (United States)

    Walker, Andrew M; Johnston, Clifton R; Rival, David E

    2012-11-01

    Although deployed in the vasculature to expand vessel diameter and improve blood flow, protruding stent struts can create complex flow environments associated with flow separation and oscillating shear gradients. Given the association between magnitude and direction of wall shear stress (WSS) and endothelial phenotype expression, accurate representation of stent-induced flow patterns is critical if we are to predict sites susceptible to intimal hyperplasia. Despite the number of stents approved for clinical use, quantification on the alteration of hemodynamic flow parameters associated with the Gianturco Z-stent is limited in the literature. In using experimental and computational models to quantify strut-induced flow, the majority of past work has assumed blood or representative analogs to behave as Newtonian fluids. However, recent studies have challenged the validity of this assumption. We present here the experimental quantification of flow through a Gianturco Z-stent wire in representative Newtonian and non-Newtonian blood analog environments using particle image velocimetry (PIV). Fluid analogs were circulated through a closed flow loop at physiologically appropriate flow rates whereupon PIV snapshots were acquired downstream of the wire housed in an acrylic tube with a diameter characteristic of the carotid artery. Hemodynamic parameters including WSS, oscillatory shear index (OSI), and Reynolds shear stresses (RSS) were measured. Our findings show that the introduction of the stent wire altered downstream hemodynamic parameters through a reduction in WSS and increases in OSI and RSS from nonstented flow. The Newtonian analog solution of glycerol and water underestimated WSS while increasing the spatial coverage of flow reversal and oscillatory shear compared to a non-Newtonian fluid of glycerol, water, and xanthan gum. Peak RSS were increased with the Newtonian fluid, although peak values were similar upon a doubling of flow rate. The introduction of the

  13. Construction of Low Dissipative High Order Well-Balanced Filter Schemes for Non-Equilibrium Flows

    Science.gov (United States)

    Wang, Wei; Yee, H. C.; Sjogreen, Bjorn; Magin, Thierry; Shu, Chi-Wang

    2009-01-01

    The goal of this paper is to generalize the well-balanced approach for non-equilibrium flow studied by Wang et al. [26] to a class of low dissipative high order shock-capturing filter schemes and to explore more advantages of well-balanced schemes in reacting flows. The class of filter schemes developed by Yee et al. [30], Sjoegreen & Yee [24] and Yee & Sjoegreen [35] consist of two steps, a full time step of spatially high order non-dissipative base scheme and an adaptive nonlinear filter containing shock-capturing dissipation. A good property of the filter scheme is that the base scheme and the filter are stand alone modules in designing. Therefore, the idea of designing a well-balanced filter scheme is straightforward, i.e., choosing a well-balanced base scheme with a well-balanced filter (both with high order). A typical class of these schemes shown in this paper is the high order central difference schemes/predictor-corrector (PC) schemes with a high order well-balanced WENO filter. The new filter scheme with the well-balanced property will gather the features of both filter methods and well-balanced properties: it can preserve certain steady state solutions exactly; it is able to capture small perturbations, e.g., turbulence fluctuations; it adaptively controls numerical dissipation. Thus it shows high accuracy, efficiency and stability in shock/turbulence interactions. Numerical examples containing 1D and 2D smooth problems, 1D stationary contact discontinuity problem and 1D turbulence/shock interactions are included to verify the improved accuracy, in addition to the well-balanced behavior.

  14. Pulsatile versus steady infusions for hepatic artery chemotherapy

    International Nuclear Information System (INIS)

    Kim, E.E.; Haynie, T.P.; Wright, K.C.; Chaynsangavej, C.; Gianturco, C.; Lamki, L.; Wallace, S.

    1984-01-01

    Hepatic artery chemotherapy for unresectable liver tumors requires an even distribution of the drugs in the tumor or vascular bed. This cannot be determined angiographically because the drugs are infused at a much lower rate than the contrast media. It is easy, however, to determine the quality of the perfusion by injecting a small volume of Tc-99m MAA in one of the side ports while chemotherapeutic agent is being infused at the same rate. Usually this shows a uniform, satisfactory distribution of isotope. Occasionally, however, some areas fail to receive Tc-99m in spite of what appears to be a good position of the catheter tip. Since ''streaming'' of the infused drugs has been blamed for their uneven distribution, the authors decided to compare the usual steady flow infusions with infusions made pulsatile by the addition of a pulsing device (Gianturco Pump) attached to the infusion tubing. Eighty-three patients were studied with steady as well as pulsatile infusions. In 16 of these patients the perfusion pattern was definitely changed by the pulsatile infusion. In one patient the pulsatile mode resulted in an unwanted gastric perfusion. In 5 patients the distribution was improved in one hepatic lobe and in 10 patients it was improved in both lobes. These results show that hepatic artery perfusions can occasionally be improved by pulsing the infusate. However, pulsing can produce the unwanted perfusion of extra-hepatic areas

  15. Void fraction measurement in two-phase flow processes via symbolic dynamic filtering of ultrasonic signals

    International Nuclear Information System (INIS)

    Chakraborty, Subhadeep; Keller, Eric; Talley, Justin; Srivastav, Abhishek; Ray, Asok; Kim, Seungjin

    2009-01-01

    This communication introduces a non-intrusive method for void fraction measurement and identification of two-phase flow regimes, based on ultrasonic sensing. The underlying algorithm is built upon the recently reported theory of a statistical pattern recognition method called symbolic dynamic filtering (SDF). The results of experimental validation, generated on a laboratory test apparatus, show a one-to-one correspondence between the flow measure derived from SDF and the void fraction measured by a conductivity probe. A sharp change in the slope of flow measure is found to be in agreement with a transition from fully bubbly flow to cap-bubbly flow. (rapid communication)

  16. Experimental research on the flow field uniformity in the filter house of a nuclear air cleaning system

    International Nuclear Information System (INIS)

    Jiang Feng; Yang Jun; Ye Suisheng

    2000-01-01

    The filter house structure is designed using similarity laws showing that the filter house structure causes a non-uniform flow field. The flow field is also measured experimentally. The air flow field is analyzed for different conditions. The results show that: (1) The HEPA filters affect the dispersion of the air flow; (2) The appropriate angle for air input to the rectifier satisfies the requirements for uniform air flow for the test conditions; (3) The rectifier has little influence on the air flow for operating conditions

  17. File-based data flow in the CMS Filter Farm

    Science.gov (United States)

    Andre, J.-M.; Andronidis, A.; Bawej, T.; Behrens, U.; Branson, J.; Chaze, O.; Cittolin, S.; Darlea, G.-L.; Deldicque, C.; Dobson, M.; Dupont, A.; Erhan, S.; Gigi, D.; Glege, F.; Gomez-Ceballos, G.; Hegeman, J.; Holzner, A.; Jimenez-Estupiñán, R.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; Morovic, S.; Nunez-Barranco-Fernandez, C.; O'Dell, V.; Orsini, L.; Paus, C.; Petrucci, A.; Pieri, M.; Racz, A.; Roberts, P.; Sakulin, H.; Schwick, C.; Stieger, B.; Sumorok, K.; Veverka, J.; Zaza, S.; Zejdl, P.

    2015-12-01

    During the LHC Long Shutdown 1, the CMS Data Acquisition system underwent a partial redesign to replace obsolete network equipment, use more homogeneous switching technologies, and prepare the ground for future upgrades of the detector front-ends. The software and hardware infrastructure to provide input, execute the High Level Trigger (HLT) algorithms and deal with output data transport and storage has also been redesigned to be completely file- based. This approach provides additional decoupling between the HLT algorithms and the input and output data flow. All the metadata needed for bookkeeping of the data flow and the HLT process lifetimes are also generated in the form of small “documents” using the JSON encoding, by either services in the flow of the HLT execution (for rates etc.) or watchdog processes. These “files” can remain memory-resident or be written to disk if they are to be used in another part of the system (e.g. for aggregation of output data). We discuss how this redesign improves the robustness and flexibility of the CMS DAQ and the performance of the system currently being commissioned for the LHC Run 2.

  18. File-Based Data Flow in the CMS Filter Farm

    Energy Technology Data Exchange (ETDEWEB)

    Andre, J.M.; et al.

    2015-12-23

    During the LHC Long Shutdown 1, the CMS Data Acquisition system underwent a partial redesign to replace obsolete network equipment, use more homogeneous switching technologies, and prepare the ground for future upgrades of the detector front-ends. The software and hardware infrastructure to provide input, execute the High Level Trigger (HLT) algorithms and deal with output data transport and storage has also been redesigned to be completely file- based. This approach provides additional decoupling between the HLT algorithms and the input and output data flow. All the metadata needed for bookkeeping of the data flow and the HLT process lifetimes are also generated in the form of small “documents” using the JSON encoding, by either services in the flow of the HLT execution (for rates etc.) or watchdog processes. These “files” can remain memory-resident or be written to disk if they are to be used in another part of the system (e.g. for aggregation of output data). We discuss how this redesign improves the robustness and flexibility of the CMS DAQ and the performance of the system currently being commissioned for the LHC Run 2.

  19. Substance Flow Analysis and Source Mapping of Chemical UV-filters

    International Nuclear Information System (INIS)

    Eriksson, E.; Andersen, H. R.; Ledin, A.

    2008-01-01

    Chemical ultraviolet (UV)-filters are used in sunscreens to protect the skin from harmful UV radiation which may otherwise cause sunburns and skin cancer. Commonly used chemical UV-filters are known to cause endocrine disrupting effects in both aquatic and terrestrial animals as well as in human skin cells. Here, source mapping and substance flow analysis were applied to find the sources of six UV-filters (oxybenzone, avobenzone, 4-methylbenzylidene camphor, octyl methoxycinnamate, octyl dimethyl PABA and homosalate) and to identify the most dominant flows of these substances in Denmark. Urban water, composed of wastewater and surface waters, was found to be the primary recipient of UV-filters, whereby wastewater received an estimated 8.5-65 tonnes and surface waters received 7.1-51 tonnes in 2005. In wastewater treatment plants, their sorption onto sludge is perceived to be an important process and presence in effluents can be expected due to a lack of biodegradability. In addition, the use of UV-filters is expected to continue to increase significantly. Not all filters (e.g., octyl dimethyl PABA and homosalate) are used in Denmark. For example, 4-MBC is mainly associated with self-tanning liquids and private import of sunscreens

  20. Substance Flow Analysis and Source Mapping of Chemical UV-filters

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, E., E-mail: eve@env.dtu.dk; Andersen, H. R.; Ledin, A. [Technical University of Denmark, Department of Environmental Engineering (Denmark)

    2008-12-15

    Chemical ultraviolet (UV)-filters are used in sunscreens to protect the skin from harmful UV radiation which may otherwise cause sunburns and skin cancer. Commonly used chemical UV-filters are known to cause endocrine disrupting effects in both aquatic and terrestrial animals as well as in human skin cells. Here, source mapping and substance flow analysis were applied to find the sources of six UV-filters (oxybenzone, avobenzone, 4-methylbenzylidene camphor, octyl methoxycinnamate, octyl dimethyl PABA and homosalate) and to identify the most dominant flows of these substances in Denmark. Urban water, composed of wastewater and surface waters, was found to be the primary recipient of UV-filters, whereby wastewater received an estimated 8.5-65 tonnes and surface waters received 7.1-51 tonnes in 2005. In wastewater treatment plants, their sorption onto sludge is perceived to be an important process and presence in effluents can be expected due to a lack of biodegradability. In addition, the use of UV-filters is expected to continue to increase significantly. Not all filters (e.g., octyl dimethyl PABA and homosalate) are used in Denmark. For example, 4-MBC is mainly associated with self-tanning liquids and private import of sunscreens.

  1. Microfiltration of red berry juice with thread filters: Effects of temperature, flow and filter pore size

    DEFF Research Database (Denmark)

    Bagger-Jørgensen, Rico; Casani, Sandra Dobon; Meyer, Anne Boye Strunge

    2002-01-01

    ) on the transmembrane pressure, juice turbidity, protein, sugar, and total phenols levels was evaluated in a lab scale microfiltration unit employing statistically designed factorial experiments. Thread microfiltration reduced significantly the turbidity of both juices. For blackcurrant juice, in all experiments......, the turbidity was immediately reduced to the level required for finished juice without compromising either the protein, the sugar or the phenols content. High flow rates increased the turbidity in blackcurrant juice, but did not affect cherry juice quality. Filtomat(R) thread microfiltration therefore appears...

  2. Visualization of Two Phase Flow in a Horizontal Flow with Electrical Resistance Tomography based on Extended Kalman Filter

    International Nuclear Information System (INIS)

    Lee, Jeong Seong; Malik, Nauman Muhammad; Khambampati, Anil Kumar; Rashid, Ahmar; Kim, Sin; Kim, Kyung Youn

    2008-01-01

    For the visualization of the phase distribution in two phase flows, the electrical resistance tomography (ERT) technique is introduced. In ERT, the internal resistivity distribution is reconstructed based on the known sets of the injected currents and measured voltages on the surface of the object. The physical relationship between the internal resistivity and the surface voltages is governed by a partial differential equation with appropriate boundary conditions. This paper considers the estimation of the phase distribution with ERT in two phase flow in a horizontal flow using extended Kalman filter. To evaluate the reconstruction performance of the proposed algorithm, the experiments simulated two phase flows in a horizontal flow were carried out. The experiments with two phase flow phantom were done to suggest a practical implication of this research in detecting gas bubble in a feed water pipe of heat transfer systems

  3. Efficient simulations of fluid flow coupled with poroelastic deformations in pleated filters

    KAUST Repository

    Calo, Victor M.

    2015-04-27

    Pleated filters are broadly used for various applications. In certain cases, especially in solid-liquid separation case, the filtering media may get deflected and that may change the overall performance characteristics of the filter. From the modeling point of view, this is a challenging multiphysics problem, namely the interaction of the fluid with a so-called poroelastic structure. This work focuses on the development of an algorithm for the simulation of the Fluid Porous Structure Interaction (FPSI) problem in the case of pleated filtering media. The first part of the work is concerned with the development of a robust and accurate numerical method for solving the Stokes-Brinkman system of equations on quadrilateral grids. The mathematical model describes a free fluid flow coupled with a flow in porous media in a domain that contains the filtering media. To discretize the complex computational domain we use quadrilateral boundary fitted grids which resolve porous-fluid interfaces. The Stokes-Brinkman system of equations is discretized here using a sophisticated finite volume method, namely multi-point flux approximation (MPFA) O-method. MPFA is widely used, e.g., in solving scalar elliptic equations with full tensor and highly varying coefficients and/or solving on heterogeneous non-orthogonalgrids. Up to the authors’ knowledge, there was no investigation of MPFA discretization for Stokes-Brinkman problems, and this study aims to fill this gap. Some numerical experiments are presented in order to demonstrate the robustness of the proposed numerical algorithm[1]. The second part of this study focuses on the coupling of the flow model with the deflection of the filtering media. For the consideration of the FPSI problem in 3D, the classical Biot system describes coupled flow and deformations in a porous body due to difference in the upstream and downstream pressures. Solving the Biot system of equations is complicated and requires a significant amount of

  4. On the pulsatile nature of intracranial and spinal CSF-circulation demonstrated by MR imaging

    International Nuclear Information System (INIS)

    Greitz, D.; Franck, A.; Nordell, B.

    1993-01-01

    Cerebrospinal fluid (CSF) flow was studied in 24 healthy volunteers using gated MR phase imaging. The subarachnoid space (SAS) was divided into 5 compartments depending on the magnitude of the pulsatile CSF flows: a high velocity compartment in the area of the brain stem and spinal cord, 2 slow ones at the upper and lower extremes of the SAS, and finally 2 intermediate velocity compartments in between. The main pulsatile spinal flow channel had a meandering pattern. The extraventricular CSF-circulation can be explained by pulsatile CSF flow without the necessity of assuming existence of a net flow. A successive time offset during the cardiac cycle has been found in the fronto-occipital direction of the interplay between the arterial expansion, brain expansion, volume changes of the CSF spaces and of the veins. It is proposed to name this time offset the intracranial ''volume wave'' (VoW). (orig.)

  5. CFD simulation of an internal spin-filter: evidence of lateral migration and exchange flow through the mesh.

    Science.gov (United States)

    Figueredo-Cardero, Alvio; Chico, Ernesto; Castilho, Leda R; Medronho, Ricardo A

    2009-11-01

    In the present work Computational Fluid Dynamics (CFD) was used to study the flow field and particle dynamics in an internal spin-filter (SF) bioreactor system. Evidence of a radial exchange flow through the filter mesh was detected, with a magnitude up to 130-fold higher than the perfusion flow, thus significantly contributing to radial drag. The exchange flow magnitude was significantly influenced by the filter rotation rate, but not by the perfusion flow, within the ranges evaluated. Previous reports had only given indirect evidences of this exchange flow phenomenon in spin-filters, but the current simulations were able to quantify and explain it. Flow pattern inside the spin-filter bioreactor resembled a typical Taylor-Couette flow, with vortices being formed in the annular gap and eventually penetrating the internal volume of the filter, thus being the probable reason for the significant exchange flow observed. The simulations also showed that cells become depleted in the vicinity of the mesh due to lateral particle migration. Cell concentration near the filter was approximately 50% of the bulk concentration, explaining why cell separation achieved in SFs is not solely due to size exclusion. The results presented indicate the power of CFD techniques to study and better understand spin-filter systems, aiming at the establishment of effective design, operation and scale-up criteria.

  6. Soft sensing for two-phase flow using an ensemble Kalman filter

    NARCIS (Netherlands)

    Gryzlov, A.; Leskens, M.; Mudde, R.F.

    2009-01-01

    A new approach for real-time monitoring of horizontal wells, which is based on data assimilation concepts, is presented. Such methodology can be used when the direct measurement of multiphase flow rates is unfeasible or even unavailable. The real-time estimator proposed is an ensemble Kalman filter

  7. High-efficiency particulate air filter behavior at high-speed flows

    International Nuclear Information System (INIS)

    Tang, P.K.; Gregory, W.S.; Ricketts, C.I.; Smith, P.R.

    1984-04-01

    This paper presents a filter model based on the principle of fluid flow through porous media. The model includes both laminar and turbulent effects. The coefficients used in the model are determined empirically based on existing data. Deviation from the model is discussed

  8. Performance evaluation of a dual-flow recharge filter for improving groundwater quality.

    Science.gov (United States)

    Samuel, Manoj P; Senthilvel, S; Mathew, Abraham C

    2014-07-01

    A dual-flow multimedia stormwater filter integrated with a groundwater recharge system was developed and tested for hydraulic efficiency and pollutant removal efficiency. The influent stormwater first flows horizontally through the circular layers of planted grass and biofibers. Subsequently, the flow direction changes to a vertical direction so that water moves through layers of pebbles and sand and finally gets recharged to the deep aquifers. The media in the sequence of vegetative medium:biofiber to pebble:sand were filled in nine proportions and tested for the best performing combination. Three grass species, viz., Typha (Typha angustifolia), Vetiver (Chrysopogon zizanioides), and St. Augustine grass (Stenotaphrum secundatum), were tested as the best performing vegetative medium. The adsorption behavior of Coconut (Cocos nucifera) fiber, which was filled in the middle layer, was determined by a series of column and batch studies.The dual-flow filter showed an increasing trend in hydraulic efficiency with an increase in flowrate. The chemical removal efficiency of the recharge dual-flow filter was found to be very high in case of K+ (81.6%) and Na+ (77.55%). The pH normalizing efficiency and electrical conductivity reduction efficiency were also recorded as high. The average removal percentage of Ca2+ was moderate, while that of Mg2+ was very low. The filter proportions of 1:1 to 1:2 (plant:fiber to pebble:sand) showed a superior performance compared to all other proportions. Based on the estimated annual costs and returns, all the financial viability criteria (internal rate of return, net present value, and benefit-cost ratio) were found to be favorable and affordable to farmers in terms of investing in the developed filtration system.

  9. Modelling and measurement of wear particle flow in a dual oil filter system for condition monitoring

    DEFF Research Database (Denmark)

    Henneberg, Morten; Eriksen, René Lynge; Fich, Jens

    2016-01-01

    . The quantity of wear particles in gear oil is analysed with respect to system running conditions. It is shown that the model fits the data in terms of startup “particle burst” phenomenon, quasi-stationary conditions during operation, and clean-up filtration when placed out of operation. In order to establish...... boundary condition for particle burst phenomenon, the release of wear particles from a pleated mesh filter is measured in a test rig and included in the model. The findings show that a dual filter model, with startup phenomenon included, can describe trends in the wear particle flow observed in the gear...... particle generation is made possible by model parameter estimation and identification of an unintended lack of filter change. The model may also be used to optimise system and filtration performance, and to enable continuous condition monitoring....

  10. Oxygen profile and clogging in vertical flow sand filters for on-site wastewater treatment.

    Science.gov (United States)

    Petitjean, A; Forquet, N; Boutin, C

    2016-04-01

    13 million people (about 20% of the population) use on-site wastewater treatment in France. Buried vertical sand filters are often built, especially when the soil permeability is not sufficient for septic tank effluent infiltration in undisturbed soil. Clogging is one of the main problems deteriorating the operation of vertical flow filters for wastewater treatment. The extent of clogging is not easily assessed, especially in buried vertical flow sand filters. We suggest examining two possible ways of detecting early clogging: (1) NH4-N/NO3-N outlet concentration ratio, and (2) oxygen measurement within the porous media. Two pilot-scale filters were equipped with probes for oxygen concentration measurements and samples were taken at different depths for pollutant characterization. Influent and effluent grab-samples were taken three times a week. The systems were operated using batch-feeding of septic tank effluent. Qualitative description of oxygen transfer processes under unclogged and clogged conditions is presented. NH4-N outlet concentration appears to be useless for early clogging detection. However, NO3-N outlet concentration and oxygen content allows us to diagnose the early clogging of the system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Cascade ultrafiltering of 210Pb and 210Po in freshwater using a tangential flow filtering system

    International Nuclear Information System (INIS)

    Ohtsuka, Y.; Takaku, Y.; Hisamatsu, S.; Inaba, J.; Yamamoto, M.

    2006-01-01

    A rapid method was developed using ultrafilters with a tangential flow filtering system for molecular size separation of naturally occurring 210 Pb and 210 Po in a freshwater sample. Generally, ultrafiltering of a large volume water sample for measuring the nuclides was too time consuming and not practical. The tangential flow filtering system made the filtering time short enough to adapt for in-situ ultrafiltering the large volume sample. In this method, a 20 liter water sample was at first passed through the 0.45 μm pore size membrane filter immediately after sample collection to obtain suspended particle matter [>0.45 μm particulate fraction (PRT)]. Two ultrafilters (Millipore Pellicon 2 R ) were used sequentially. The nuclides in the filtrate were separated into three fractions: high molecular mass (100 kDa-0.45μm; HMM), low molecular mass (10 k-100 kDa; LMM) and ionic ( 210 Pb and 210 Po in an oligotrophic lake, Lake Towada located in the northern area of Japan. (author)

  12. On the Impact of Particulate Matter Distribution on Pressure Drop of Wall-Flow Particulate Filters

    Directory of Open Access Journals (Sweden)

    Vicente Bermúdez

    2017-03-01

    Full Text Available Wall-flow particulate filters are a required exhaust aftertreatment system to abate particulate matter emissions and meet current and incoming regulations applying worldwide to new generations of diesel and gasoline internal combustion engines. Despite the high filtration efficiency covering the whole range of emitted particle sizes, the porous substrate constitutes a flow restriction especially relevant as particulate matter, both soot and ash, is collected. The dependence of the resulting pressure drop, and hence the fuel consumption penalty, on the particulate matter distribution along the inlet channels is discussed in this paper taking as reference experimental data obtained in water injection tests before the particulate filter. This technique is demonstrated to reduce the particulate filter pressure drop without negative effects on filtration performance. In order to justify these experimental data, the characteristics of the particulate layer are diagnosed applying modeling techniques. Different soot mass distributions along the inlet channels are analyzed combined with porosity change to assess the new properties after water injection. Their influence on the subsequent soot loading process and regeneration is assessed. The results evidence the main mechanisms of the water injection at the filter inlet to reduce pressure drop and boost the interest for control strategies able to force the re-entrainment of most of the particulate matter towards the inlet channels’ end.

  13. Superior vena cava syndrome after pulsatile bidirectional Glenn shunt procedure: Perioperative implications

    Directory of Open Access Journals (Sweden)

    Neema Praveen

    2009-01-01

    Full Text Available Bidirectional superior cavopulmonary shunt (bidirectional Glenn shunt is generally performed in many congenital cardiac anomalies where complete two ventricle circulations cannot be easily achieved. The advantages of BDG shunt are achieved by partially separating the pulmonary and systemic venous circuits, and include reduced ventricular preload and long-term preservation of myocardium. The benefits of additional pulsatile pulmonary blood flow include the potential growth of pulmonary arteries, possible improvement in arterial oxygen saturation, and possible prevention of development of pulmonary arteriovenous malformations. However, increase in the systemic venous pressure after BDG with additional pulsatile blood flow is known. We describe the peri-operative implications of severe flow reversal in the superior vena cava after pulsatile BDG shunt construction in a child who presented for surgical interruption of the main pulmonary artery.

  14. Flow behaviour and robustness of non-segregating tailings made from filtered/centrifuged MFT

    Energy Technology Data Exchange (ETDEWEB)

    Nik, R.M.; Sego, D.C.; Morgenstern, N.R. [Alberta Univ., Edmonton, AB (Canada). Geotechnical Center

    2010-07-01

    This PowerPoint presentation described an experimental study of a centrifugal dewatering filtration process for mature fine tailings (MFT). Various MFT samples from different oil sands operations were pumped into a filtering centrifuge that produced cake, thin tailings, and filtrate. The MFT was then transformed into non-segregated tailings (NST) and composite tailings (CT). The depositional characteristics of the CT-NST samples were evaluated in a series of flume tests. Flow profiles were presented for various samples. Vane shear tests were also conducted. The yield stress of each sample was compared with its flow duration and solids content. The results of the experimental tests demonstrated that the centrifugal filtration process can be considered as the initial stage of a multi-stage tailings management plan. The filtering centrifuge method can be used to produce robust CTs with higher solids content. Use of the method can decrease the amount of coagulants or flocculants required for further treatment. tabs., figs.

  15. Least median of squares filtering of locally optimal point matches for compressible flow image registration

    International Nuclear Information System (INIS)

    Castillo, Edward; Guerrero, Thomas; Castillo, Richard; White, Benjamin; Rojo, Javier

    2012-01-01

    Compressible flow based image registration operates under the assumption that the mass of the imaged material is conserved from one image to the next. Depending on how the mass conservation assumption is modeled, the performance of existing compressible flow methods is limited by factors such as image quality, noise, large magnitude voxel displacements, and computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC) method introduced here is based on a localized, nonlinear least squares, compressible flow model that describes the displacement of a single voxel that lends itself to a simple grid search (block matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel filtering approach based on least median of squares fitting and the forward search outlier detection method. The spatial accuracy of the method is measured using ten thoracic CT image sets and large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method produces an average error within the intra-observer error on eight of the ten cases, indicating that the method is capable of achieving a high spatial accuracy for thoracic CT registration. (paper)

  16. Electrical Resistance Imaging of Bubble Boundary in Annular Two-Phase Flows Using Unscented Kalman Filter

    International Nuclear Information System (INIS)

    Lee, Jeong Seong; Chung, Soon Il; Ljaz, Umer Zeeshan; Khambampati, Anil Kumar; Kim, Kyung Youn; Kim, Sin Kim

    2007-01-01

    For the visualization of the phase boundary in annular two-phase flows, the electrical resistance tomography (ERT) technique is introduced. In ERT, a set of predetermined electrical currents is injected trough the electrodes placed on the boundary of the flow passage and the induced electrical potentials are measured on the electrode. With the relationship between the injected currents and the induced voltages, the electrical conductivity distribution across the flow domain is estimated through the image reconstruction algorithm. In this, the conductivity distribution corresponds to the phase distribution. In the application of ERT to two-phase flows where there are only two conductivity values, the conductivity distribution estimation problem can be transformed into the boundary estimation problem. This paper considers a bubble boundary estimation with ERT in annular two-phase flows. As the image reconstruction algorithm, the unscented Kalman filter (UKF) is adopted since from the control theory it is reported that the UKF shows better performance than the extended Kalman filter (EKF) that has been commonly used. We formulated the UKF algorithm to be incorporate into the image reconstruction algorithm for the present problem. Also, phantom experiments have been conducted to evaluate the improvement by UKF

  17. Tonsillar pulsatility before and after surgical decompression for children with Chiari malformation type 1: an application for true fast imaging with steady state precession

    International Nuclear Information System (INIS)

    Radmanesh, Alireza; Greenberg, Jacob K.; Smyth, Matthew D.; Limbrick, David D.; Chatterjee, Arindam; Sharma, Aseem

    2015-01-01

    We hypothesize that surgical decompression for Chiari malformation type 1 (CM-1) is associated with statistically significant decrease in tonsillar pulsatility and that the degree of pulsatility can be reliably assessed regardless of the experience level of the reader. An Institutional Review Board (IRB)-approved Health Insurance Portability and Accountability Act (HIPAA)-compliant retrospective study was performed on 22 children with CM-1 (8 males; mean age 11.4 years) who had cardiac-gated true-FISP sequence and phase-contrast cerebrospinal fluid (CSF) flow imaging as parts of routine magnetic resonance (MR) imaging before and after surgical decompression. The surgical technique (decompression with or without duraplasty) was recorded for each patient. Three independent radiologists with different experience levels assessed tonsillar pulsatility qualitatively and quantitatively and assessed peritonsillar CSF flow qualitatively. Results were analyzed. To evaluate reliability, Fleiss kappa for multiple raters on categorical variables and intra-class correlation for agreement in pulsatility ratings were calculated. After surgical decompression, the degree of tonsillar pulsatility appreciably decreased, confirmed by t test, both qualitatively (p values <0.001, <0.001, and 0.045 for three readers) and quantitatively (amount of decrease/p value for three readers 0.7 mm/<0.001, 0.7 mm/<0.001, and 0.5 mm/0.022). There was a better agreement among the readers in quantitative assessment of tonsillar pulsatility (kappa 0.753-0.834), compared to qualitative assessment of pulsatility (kappa 0.472-0.496) and qualitative assessment of flow (kappa 0.056 to 0.203). Posterior fossa decompression with duraplasty led to a larger decrease in tonsillar pulsatility, compared to posterior fossa decompression alone. Tonsillar pulsatility in CM-1 is significantly reduced after surgical decompression. Quantitative assessment of tonsillar pulsatility was more reliable across readers than

  18. Tonsillar pulsatility before and after surgical decompression for children with Chiari malformation type 1: an application for true fast imaging with steady state precession

    Energy Technology Data Exchange (ETDEWEB)

    Radmanesh, Alireza [University of California, San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Washington University School of Medicine, Mallinckrodt Institute of Radiology, St Louis, MO (United States); Greenberg, Jacob K.; Smyth, Matthew D.; Limbrick, David D. [Washington University School of Medicine, Department of Neurosurgery, St Louis, MO (United States); Chatterjee, Arindam; Sharma, Aseem [Washington University School of Medicine, Mallinckrodt Institute of Radiology, St Louis, MO (United States)

    2015-04-01

    We hypothesize that surgical decompression for Chiari malformation type 1 (CM-1) is associated with statistically significant decrease in tonsillar pulsatility and that the degree of pulsatility can be reliably assessed regardless of the experience level of the reader. An Institutional Review Board (IRB)-approved Health Insurance Portability and Accountability Act (HIPAA)-compliant retrospective study was performed on 22 children with CM-1 (8 males; mean age 11.4 years) who had cardiac-gated true-FISP sequence and phase-contrast cerebrospinal fluid (CSF) flow imaging as parts of routine magnetic resonance (MR) imaging before and after surgical decompression. The surgical technique (decompression with or without duraplasty) was recorded for each patient. Three independent radiologists with different experience levels assessed tonsillar pulsatility qualitatively and quantitatively and assessed peritonsillar CSF flow qualitatively. Results were analyzed. To evaluate reliability, Fleiss kappa for multiple raters on categorical variables and intra-class correlation for agreement in pulsatility ratings were calculated. After surgical decompression, the degree of tonsillar pulsatility appreciably decreased, confirmed by t test, both qualitatively (p values <0.001, <0.001, and 0.045 for three readers) and quantitatively (amount of decrease/p value for three readers 0.7 mm/<0.001, 0.7 mm/<0.001, and 0.5 mm/0.022). There was a better agreement among the readers in quantitative assessment of tonsillar pulsatility (kappa 0.753-0.834), compared to qualitative assessment of pulsatility (kappa 0.472-0.496) and qualitative assessment of flow (kappa 0.056 to 0.203). Posterior fossa decompression with duraplasty led to a larger decrease in tonsillar pulsatility, compared to posterior fossa decompression alone. Tonsillar pulsatility in CM-1 is significantly reduced after surgical decompression. Quantitative assessment of tonsillar pulsatility was more reliable across readers than

  19. Long-term durability testing of ceramic cross-flow filter. Final report, September 29, 1987--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, T.E.; Smeltzer, E.E.; Alvin, M.A.; Bachovchin, D.M.

    1993-08-01

    Long term durability testing of the cross flow filter is described. Two high temperature, high pressure test facilities were built and operated. The facilities were designed to simulate dirty gas environments typical of Pressurized Fluidized Bed Combustion (PFBC) and coal gasification. Details of the design and operation of the test facilities and filter testing results are described.

  20. Tissue Doppler Imaging in the evaluation of abdominal aortic pulsatility: a useful tool for the neonatologist.

    Science.gov (United States)

    Valerio, Enrico; Grison, Alessandra; Capretta, Anna; Golin, Rosanna; Ferrarese, Paola; Bellettato, Massimo

    2017-03-01

    Sonographic cardiac evaluation of newborns with suspected aortic coarctation (AoC) should tend to demonstrate a good phasic and pulsatile flow and the absence of pressure gradient along a normally conformed aortic arch from the modified left parasternal and suprasternal echocardiographic views; these findings, however, may not necessarily rule out a more distal coarctation in the descending aorta. For this reason, the sonographic exam of newborns with suspected AoC should always include a Doppler evaluation of abdominal aortic blood flow from the subcostal view. Occasionally, however, a clearly pulsatile Doppler flow trace in abdominal aorta may be difficult to obtain due to the bad insonation angle existing between the probe and the vessel. In such suboptimal ultrasonic alignment situation, the use of Tissue Doppler Imaging instead of classic Doppler flow imaging may reveal a preserved aortic pulsatility by sampling the aortic wall motion induced by normal flow. We propose to take advantage of the TDI pattern as a surrogate of a normal pulsatile Doppler flow trace in abdominal aorta when the latter is difficult to obtain due to malalignment with the insonated vessel.

  1. Effect of Post-Reconstruction Gaussian Filtering on Image Quality and Myocardial Blood Flow Measurement with N-13 Ammonia PET

    Directory of Open Access Journals (Sweden)

    Hyeon Sik Kim

    2014-10-01

    Full Text Available Objective(s: In order to evaluate the effect of post-reconstruction Gaussian filtering on image quality and myocardial blood flow (MBF measurement by dynamic N-13 ammonia positron emission tomography (PET, we compared various reconstruction and filtering methods with image characteristics. Methods: Dynamic PET images of three patients with coronary artery disease (male-female ratio of 2:1; age: 57, 53, and 76 years were reconstructed, using filtered back projection (FBP and ordered subset expectation maximization (OSEM methods. OSEM reconstruction consisted of OSEM_2I, OSEM_4I, and OSEM_6I with 2, 4, and 6 iterations, respectively. The images, reconstructed and filtered by Gaussian filters of 5, 10, and 15 mm, were obtained, as well as non-filtered images. Visual analysis of image quality (IQ was performed using a 3-grade scoring system by 2 independent readers, blinded to the reconstruction and filtering methods of stress images. Then, signal-to-noise ratio (SNR was calculated by noise and contrast recovery (CR. Stress and rest MBF and coronary flow reserve (CFR were obtained for each method. IQ scores, stress and rest MBF, and CFR were compared between the methods, using Chi-square and Kruskal-Wallis tests. Results: In the visual analysis, IQ was significantly higher by 10 mm Gaussian filtering, compared to other sizes of filter (PP=0.923 and 0.855 for readers 1 and 2, respectively. SNR was significantly higher in 10 mm Gaussian filter. There was a significant difference in stress and rest MBF between several vascular territories. However CFR was not significantly different according to various filtering methods. Conclusion: Post-reconstruction Gaussian filtering with a filter size of 10 mm significantly enhances the IQ of N-13 ammonia PET-CT, without changing the results of CFR calculation. .

  2. Effect of Post-Reconstruction Gaussian Filtering on Image Quality and Myocardial Blood Flow Measurement with N-13 Ammonia PET

    International Nuclear Information System (INIS)

    Kim, Hyeon Sik; Cho, Sang-Geon; Kim, Ju Han; Kwon, Seong Young; Lee, Byeong-il; Bom, Hee-Seung

    2014-01-01

    In order to evaluate the effect of post-reconstruction Gaussian filtering on image quality and myocardial blood flow (MBF) measurement by dynamic N-13 ammonia positron emission tomography (PET), we compared various reconstruction and filtering methods with image characteristics. Dynamic PET images of three patients with coronary artery disease (male-female ratio of 2:1; age: 57, 53, and 76 years) were reconstructed, using filtered back projection (FBP) and ordered subset expectation maximization (OSEM) methods. OSEM reconstruction consisted of OSEM-2I, OSEM-4I, and OSEM-6I with 2, 4, and 6 iterations, respectively. The images, reconstructed and filtered by Gaussian filters of 5, 10, and 15 mm, were obtained, as well as non-filtered images. Visual analysis of image quality (IQ) was performed using a 3-grade scoring system by 2 independent readers, blinded to the reconstruction and filtering methods of stress images. Then, signal-to-noise ratio (SNR) was calculated by noise and contrast recovery (CR). Stress and rest MBF and coronary flow reserve (CFR) were obtained for each method. IQ scores, stress and rest MBF, and CFR were compared between the methods, using Chi-square and Kruskal-Wallis tests. In the visual analysis, IQ was significantly higher by 10 mm Gaussian filtering, compared to other sizes of filter (P<0.001 for both readers). However, no significant difference of IQ was found between FBP and various numbers of iteration in OSEM (P=0.923 and 0.855 for readers 1 and 2, respectively). SNR was significantly higher in 10 mm Gaussian filter. There was a significant difference in stress and rest MBF between several vascular territories. However CFR was not significantly different according to various filtering methods. Post-reconstruction Gaussian filtering with a filter size of 10 mm significantly enhances the IQ of N-13 ammonia PET-CT, without changing the results of CFR calculation

  3. A volume-filtered formulation to capture particle-shock interactions in multiphase compressible flows

    Science.gov (United States)

    Shallcross, Gregory; Capecelatro, Jesse

    2017-11-01

    Compressible particle-laden flows are common in engineering systems. Applications include but are not limited to water injection in high-speed jet flows for noise suppression, rocket-plume surface interactions during planetary landing, and explosions during coal mining operations. Numerically, it is challenging to capture these interactions due to the wide range of length and time scales. Additionally, there are many forms of the multiphase compressible flow equations with volume fraction effects, some of which are conflicting in nature. The purpose of this presentation is to develop the capability to accurately capture particle-shock interactions in systems with a large number of particles from dense to dilute regimes. A thorough derivation of the volume filtered equations is presented. The volume filtered equations are then implemented in a high-order, energy-stable Eulerian-Lagrangian framework. We show this framework is capable of decoupling the fluid mesh from the particle size, enabling arbitrary particle size distributions in the presence of shocks. The proposed method is then assessed against particle-laden shock tube data. Quantities of interest include fluid-phase pressure profiles and particle spreading rates. The effect of collisions in 2D and 3D are also evaluated.

  4. Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering

    KAUST Repository

    El Gharamti, Mohamad

    2013-10-01

    Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data are assimilated in the model. Assuming perfect flow, an ensemble Kalman filter (EnKF) can be used for direct data assimilation into the transport model. This is, however, a crude assumption as flow models can be subject to many sources of uncertainty. If the flow is not accurately simulated, contaminant predictions will likely be inaccurate even after successive Kalman updates of the contaminant model with the data. The problem is better handled when both flow and contaminant states are concurrently estimated using the traditional joint state augmentation approach. In this paper, we introduce a dual estimation strategy for data assimilation into a one-way coupled system by treating the flow and the contaminant models separately while intertwining a pair of distinct EnKFs, one for each model. The presented strategy only deals with the estimation of state variables but it can also be used for state and parameter estimation problems. This EnKF-based dual state-state estimation procedure presents a number of novel features: (i) it allows for simultaneous estimation of both flow and contaminant states in parallel; (ii) it provides a time consistent sequential updating scheme between the two models (first flow, then transport); (iii) it simplifies the implementation of the filtering system; and (iv) it yields more stable and accurate solutions than does the standard joint approach. We conducted synthetic numerical experiments based on various time stepping and observation strategies to evaluate the dual EnKF approach and compare its performance with the joint state augmentation approach. Experimental results show that on average, the dual strategy could reduce the estimation error of the coupled states by 15% compared with the

  5. Flow of Hydrolysed Polyacrylamide Mother Liquor through Filter Bag: Detecting the Effects of Formulation and Process Properties on Pressure Drop

    Directory of Open Access Journals (Sweden)

    Zi-Ming Feng

    2016-01-01

    Full Text Available Hydrolysed polyacrylamide (HPAM mother liquor is mainly used to extract oil. The HPAM solution is needed to filter the impurity using a bag filter before it is injected into the oil well. Therefore, the pressure drop of HPAM mother liquor must be less than 0.02 MPa in the processing of impurity filtration. The influence factors on pressure drop need to be researched. In this work, the computational fluid dynamics program (CFD was used to research some key influence factors on pressure drop, such as porosity, outlet pressure of filter, inlet flow rate and viscosity of mother liquor. The simulation results indicated that with increasing porosity, outlet pressure, inlet flow rate and mother liquor viscosity, the pressure drop had increased after flowing through the filter bag.

  6. Construction of low dissipative high-order well-balanced filter schemes for non-equilibrium flows

    International Nuclear Information System (INIS)

    Wang Wei; Yee, H.C.; Sjoegreen, Bjoern; Magin, Thierry; Shu, Chi-Wang

    2011-01-01

    The goal of this paper is to generalize the well-balanced approach for non-equilibrium flow studied by Wang et al. (2009) to a class of low dissipative high-order shock-capturing filter schemes and to explore more advantages of well-balanced schemes in reacting flows. More general 1D and 2D reacting flow models and new examples of shock turbulence interactions are provided to demonstrate the advantage of well-balanced schemes. The class of filter schemes developed by Yee et al. (1999) , Sjoegreen and Yee (2004) and Yee and Sjoegreen (2007) consist of two steps, a full time step of spatially high-order non-dissipative base scheme and an adaptive non-linear filter containing shock-capturing dissipation. A good property of the filter scheme is that the base scheme and the filter are stand-alone modules in designing. Therefore, the idea of designing a well-balanced filter scheme is straightforward, i.e. choosing a well-balanced base scheme with a well-balanced filter (both with high-order accuracy). A typical class of these schemes shown in this paper is the high-order central difference schemes/predictor-corrector (PC) schemes with a high-order well-balanced WENO filter. The new filter scheme with the well-balanced property will gather the features of both filter methods and well-balanced properties: it can preserve certain steady-state solutions exactly; it is able to capture small perturbations, e.g. turbulence fluctuations; and it adaptively controls numerical dissipation. Thus it shows high accuracy, efficiency and stability in shock/turbulence interactions. Numerical examples containing 1D and 2D smooth problems, 1D stationary contact discontinuity problem and 1D turbulence/shock interactions are included to verify the improved accuracy, in addition to the well-balanced behavior.

  7. A filtering technique for solving the advection equation in two-phase flow problems

    International Nuclear Information System (INIS)

    Devals, C.; Heniche, M.; Bertrand, F.; Tanguy, P.A.; Hayes, R.E.

    2004-01-01

    The aim of this work is to develop a numerical strategy for the simulation of two-phase flow in the context of chemical engineering applications. The finite element method has been chosen because of its flexibility to deal with complex geometries. One of the key points of two-phase flow simulation is to determine precisely the position of the interface between the two phases, which is an unknown of the problem. In this case, the interface can be tracked by the advection of the so-called color function. It is well known that the solution of the advection equation by most numerical schemes, including the Streamline Upwind Petrov-Galerkin (SUPG) method, may exhibit spurious oscillations. This work proposes an approach to filter out these oscillations by means of a change of variable that is efficient for both steady state and transient cases. First, the filtering technique will be presented in detail. Then, it will be applied to two-dimensional benchmark problems, namely, the advection skew to the mesh and the Zalesak's problems. (author)

  8. Entropy Filtered Density Function for Large Eddy Simulation of Turbulent Reacting Flows

    Science.gov (United States)

    Safari, Mehdi

    Analysis of local entropy generation is an effective means to optimize the performance of energy and combustion systems by minimizing the irreversibilities in transport processes. Large eddy simulation (LES) is employed to describe entropy transport and generation in turbulent reacting flows. The entropy transport equation in LES contains several unclosed terms. These are the subgrid scale (SGS) entropy flux and entropy generation caused by irreversible processes: heat conduction, mass diffusion, chemical reaction and viscous dissipation. The SGS effects are taken into account using a novel methodology based on the filtered density function (FDF). This methodology, entitled entropy FDF (En-FDF), is developed and utilized in the form of joint entropy-velocity-scalar-turbulent frequency FDF and the marginal scalar-entropy FDF, both of which contain the chemical reaction effects in a closed form. The former constitutes the most comprehensive form of the En-FDF and provides closure for all the unclosed filtered moments. This methodology is applied for LES of a turbulent shear layer involving transport of passive scalars. Predictions show favor- able agreements with the data generated by direct numerical simulation (DNS) of the same layer. The marginal En-FDF accounts for entropy generation effects as well as scalar and entropy statistics. This methodology is applied to a turbulent nonpremixed jet flame (Sandia Flame D) and predictions are validated against experimental data. In both flows, sources of irreversibility are predicted and analyzed.

  9. Mobile Phone Ratiometric Imaging Enables Highly Sensitive Fluorescence Lateral Flow Immunoassays without External Optical Filters.

    Science.gov (United States)

    Shah, Kamal G; Singh, Vidhi; Kauffman, Peter C; Abe, Koji; Yager, Paul

    2018-05-14

    Paper-based diagnostic tests based on the lateral flow immunoassay concept promise low-cost, point-of-care detection of infectious diseases, but such assays suffer from poor limits of detection. One factor that contributes to poor analytical performance is a reliance on low-contrast chromophoric optical labels such as gold nanoparticles. Previous attempts to improve the sensitivity of paper-based diagnostics include replacing chromophoric labels with enzymes, fluorophores, or phosphors at the expense of increased fluidic complexity or the need for device readers with costly optoelectronics. Several groups, including our own, have proposed mobile phones as suitable point-of-care readers due to their low cost, ease of use, and ubiquity. However, extant mobile phone fluorescence readers require costly optical filters and were typically validated with only one camera sensor module, which is inappropriate for potential point-of-care use. In response, we propose to couple low-cost ultraviolet light-emitting diodes with long Stokes-shift quantum dots to enable ratiometric mobile phone fluorescence measurements without optical filters. Ratiometric imaging with unmodified smartphone cameras improves the contrast and attenuates the impact of excitation intensity variability by 15×. Practical application was shown with a lateral flow immunoassay for influenza A with nucleoproteins spiked into simulated nasal matrix. Limits of detection of 1.5 and 2.6 fmol were attained on two mobile phones, which are comparable to a gel imager (1.9 fmol), 10× better than imaging gold nanoparticles on a scanner (18 fmol), and >2 orders of magnitude better than gold nanoparticle-labeled assays imaged with mobile phones. Use of the proposed filter-free mobile phone imaging scheme is a first step toward enabling a new generation of highly sensitive, point-of-care fluorescence assays.

  10. Constraining a compositional flow model with flow-chemical data using an ensemble-based Kalman filter

    KAUST Repository

    Gharamti, M. E.; Kadoura, A.; Valstar, J.; Sun, S.; Hoteit, Ibrahim

    2014-01-01

    Isothermal compositional flow models require coupling transient compressible flows and advective transport systems of various chemical species in subsurface porous media. Building such numerical models is quite challenging and may be subject to many sources of uncertainties because of possible incomplete representation of some geological parameters that characterize the system's processes. Advanced data assimilation methods, such as the ensemble Kalman filter (EnKF), can be used to calibrate these models by incorporating available data. In this work, we consider the problem of estimating reservoir permeability using information about phase pressure as well as the chemical properties of fluid components. We carry out state-parameter estimation experiments using joint and dual updating schemes in the context of the EnKF with a two-dimensional single-phase compositional flow model (CFM). Quantitative and statistical analyses are performed to evaluate and compare the performance of the assimilation schemes. Our results indicate that including chemical composition data significantly enhances the accuracy of the permeability estimates. In addition, composition data provide more information to estimate system states and parameters than do standard pressure data. The dual state-parameter estimation scheme provides about 10% more accurate permeability estimates on average than the joint scheme when implemented with the same ensemble members, at the cost of twice more forward model integrations. At similar computational cost, the dual approach becomes only beneficial after using large enough ensembles.

  11. Constraining a compositional flow model with flow-chemical data using an ensemble-based Kalman filter

    KAUST Repository

    Gharamti, M. E.

    2014-03-01

    Isothermal compositional flow models require coupling transient compressible flows and advective transport systems of various chemical species in subsurface porous media. Building such numerical models is quite challenging and may be subject to many sources of uncertainties because of possible incomplete representation of some geological parameters that characterize the system\\'s processes. Advanced data assimilation methods, such as the ensemble Kalman filter (EnKF), can be used to calibrate these models by incorporating available data. In this work, we consider the problem of estimating reservoir permeability using information about phase pressure as well as the chemical properties of fluid components. We carry out state-parameter estimation experiments using joint and dual updating schemes in the context of the EnKF with a two-dimensional single-phase compositional flow model (CFM). Quantitative and statistical analyses are performed to evaluate and compare the performance of the assimilation schemes. Our results indicate that including chemical composition data significantly enhances the accuracy of the permeability estimates. In addition, composition data provide more information to estimate system states and parameters than do standard pressure data. The dual state-parameter estimation scheme provides about 10% more accurate permeability estimates on average than the joint scheme when implemented with the same ensemble members, at the cost of twice more forward model integrations. At similar computational cost, the dual approach becomes only beneficial after using large enough ensembles.

  12. Non-invasive assessment of pulsatile intracranial pressure with phase-contrast magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Geir Ringstad

    Full Text Available Invasive monitoring of pulsatile intracranial pressure can accurately predict shunt response in patients with idiopathic normal pressure hydrocephalus, but may potentially cause complications such as bleeding and infection. We tested how a proposed surrogate parameter for pulsatile intracranial pressure, the phase-contrast magnetic resonance imaging derived pulse pressure gradient, compared with its invasive counterpart. In 22 patients with suspected idiopathic normal pressure hydrocephalus, preceding invasive intracranial pressure monitoring, and any surgical shunt procedure, we calculated the pulse pressure gradient from phase-contrast magnetic resonance imaging derived cerebrospinal fluid flow velocities obtained at the upper cervical spinal canal using a simplified Navier-Stokes equation. Repeated measurements of the pulse pressure gradient were also undertaken in four healthy controls. Of 17 shunted patients, 16 responded, indicating high proportion of "true" normal pressure hydrocephalus in the patient cohort. However, there was no correlation between the magnetic resonance imaging derived pulse pressure gradient and pulsatile intracranial pressure (R = -.18, P = .43. Pulse pressure gradients were also similar in patients and healthy controls (P = .26, and did not differ between individuals with pulsatile intracranial pressure above or below established thresholds for shunt treatment (P = .97. Assessment of pulse pressure gradient at level C2 was therefore not found feasible to replace invasive monitoring of pulsatile intracranial pressure in selection of patients with idiopathic normal pressure hydrocephalus for surgical shunting. Unlike invasive, overnight monitoring, the pulse pressure gradient from magnetic resonance imaging comprises short-term pressure fluctuations only. Moreover, complexity of cervical cerebrospinal fluid flow and -pulsatility at the upper cervical spinal canal may render the pulse pressure gradient a poor surrogate

  13. The reaction environment in a filter-press laboratory reactor: the FM01-LC flow cell

    International Nuclear Information System (INIS)

    Rivera, Fernando F.; León, Carlos Ponce de; Walsh, Frank C.; Nava, José L.

    2015-01-01

    A parallel plate cell facilitating controlled flow in a rectangular channel and capable of incorporating a wide range of electrode materials is important in studies of electrode reactions prior to process development and scale-up. The FM01-LC, a versatile laboratory-scale, plane parallel filter-press type electrochemical cell (having a projected electrode area of 64 cm 2 ) which is based on the larger FM21-SP electrolyser (2100 cm 2 area). Many laboratories have used this type of reactor to quantify the importance of reaction environment in fundamental studies and to prepare for industrial applications. A number of papers have concerned the experimental characterization and computational modelling of its reaction environment but the experimental and computational data has become dispersed. The cell has been used in a diverse range of synthesis and processing applications which require controlled flow and known reaction environment. In a previous review, the cell construction and reaction environment was summarised followed by the illustration of its use for a range of applications that include organic and inorganic electrosynthesis, metal ion removal, energy storage, environmental remediation (e.g., metal recycling or anodic destruction of organics) and drinking water treatment. This complementary review considers the characteristics of the FM01-LC electrolyser as an example of a well-engineered flow cell facilitating cell scale-up and provides a rigorous analysis of its reaction environment. Particular aspects include the influence of electrolyte velocity on mass transport rates, flow dispersion and current distribution

  14. Computational fluid dynamics simulations of single-phase flow in a filter-press flow reactor having a stack of three cells

    International Nuclear Information System (INIS)

    Sandoval, Miguel A.; Fuentes, Rosalba; Walsh, Frank C.; Nava, José L.; Ponce de León, Carlos

    2016-01-01

    Highlights: • Computational fluid dynamic simulations in a filter-press stack of three cells. • The fluid velocity was different in each cell due to local turbulence. • The upper cell link pipe of the filter press cell acts as a fluid mixer. • The fluid behaviour tends towards a continuous mixing flow pattern. • Close agreement between simulations and experimental data was achieved. - Abstract: Computational fluid dynamics (CFD) simulations were carried out for single-phase flow in a pre-pilot filter press flow reactor with a stack of three cells. Velocity profiles and streamlines were obtained by solving the Reynolds-Averaged Navier-Stokes (RANS) equations with a standard k − ε turbulence model. The flow behaviour shows the appearance of jet flow at the entrance to each cell. At lengths from 12 to 15 cm along the cells channels, a plug flow pattern is developed at all mean linear flow rates studied here, 1.2 ≤ u ≤ 2.1 cm s −1 . The magnitude of the velocity profiles in each cell was different, due to the turbulence generated by the change of flow direction in the last fluid manifold. Residence time distribution (RTD) simulations indicated that the fluid behaviour tends towards a continuous mixing flow pattern, owing to flow at the output of each cell across the upper cell link pipe, which acts as a mixer. Close agreement between simulations and experimental RTD was obtained.

  15. Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining

    International Nuclear Information System (INIS)

    Dowding, Colin; Lawrence, Jonathan

    2010-01-01

    A closed flowing thick film filtered water immersion technique ensures a controlled geometry for both the optical interfaces of the flowing liquid film and allows repeatable control of flow-rate during machining. This has the action of preventing splashing, ensures repeatable machining conditions and allows control of liquid flow velocity. To investigate the impact of this technique on ablation threshold, bisphenol A polycarbonate samples have been machined using KrF excimer laser radiation passing through a medium of filtered water flowing at a number of flow velocities, that are controllable by modifying the liquid flow-rates. An average decrease in ablation threshold of 7.5% when using turbulent flow velocity regime closed thick film filtered water immersed ablation, compared to ablation using a similar beam in ambient air; however, the use of laminar flow velocities resulted in negligible differences between closed flowing thick film filtered water immersion and ambient air. Plotting the recorded threshold fluence achieved with varying flow velocity showed that an optimum flow velocity of 3.00 m/s existed which yielded a minimum ablation threshold of 112 mJ/cm 2 . This is attributed to the distortion of the ablation plume effected by the flowing immersion fluid changing the ablation mechanism: at laminar flow velocities Bremsstrahlung attenuation decreases etch rate, at excessive flow velocities the plume is completely destroyed, removing the effect of plume etching. Laminar flow velocity regime ablation is limited by slow removal of debris causing a non-linear etch rate over 'n' pulses which is a result of debris produced by one pulse remaining suspended over the feature for the next pulse. The impact of closed thick film filtered water immersed ablation is dependant upon beam fluence: high fluence beams achieved greater etch efficiency at high flow velocities as the effect of Bremsstrahlung attenuation is removed by the action of the fluid on the plume; low

  16. Does Flexible Arterial Tubing Retain More Hemodynamic Energy During Pediatric Pulsatile Extracorporeal Life Support?

    Science.gov (United States)

    Wang, Shigang; Kunselman, Allen R; Ündar, Akif

    2017-01-01

    The objective of this study was to evaluate the hemodynamic performance and energy transmission of flexible arterial tubing as the arterial line in a simulated pediatric pulsatile extracorporeal life support (ECLS) system. The ECLS circuit consisted of a Medos Deltastream DP3 diagonal pump head, Medos Hilite 2400 LT oxygenator, Biomedicus arterial/venous cannula (10 Fr/14 Fr), 3 feet of polyvinyl chloride (PVC) arterial tubing or latex rubber arterial tubing, primed with lactated Ringer's solution and packed red blood cells (hematocrit 40%). Trials were conducted at flow rates of 300 to 1200 mL/min (300 mL/min increments) under nonpulsatile and pulsatile modes at 36°C using either PVC arterial tubing (PVC group) or latex rubber tubing (Latex group). Real-time pressure and flow data were recorded using a custom-based data acquisition system. Mean pressures and energy equivalent pressures (EEP) were the same under nonpulsatile mode between the two groups. Under pulsatile mode, EEPs were significantly great than mean pressure, especially in the Latex group (P tubing retained more hemodynamic energy passing through it under pulsatile mode while mean pressures and pressure drops across the ECLS circuit were similar between PVC and latex rubber arterial tubing. Further studies are warranted to verify our findings. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. Estimation of the blood velocity spectrum using a recursive lattice filter

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Buelund, Claus; Jørgensen, Allan

    1996-01-01

    acquired for showing the blood velocity distribution are inherently non-stationary, due to the pulsatility of the flow. All current signal processing schemes assume that the signal is stationary within the window of analysis, although this is an approximation. In this paper a recursive least......-stationarity are incorporated through an exponential decay factor, that sets the exponential horizon of the filter. A factor close to 1 gives a long horizon with low variance estimates, but can not track a highly non-stationary flow. Setting the factor is therefore a compromise between estimate variance and the filter...... with the actual distributions that always will be smooth. Setting the exponential decay factor to 0.99 gives satisfactory results for in-vivo data from the carotid artery. The filter can easily be implemented using a standard fixed-point signal processing chip for real-time processing...

  18. CVVHD treatment with CARPEDIEM: small solute clearance at different blood and dialysate flows with three different surface area filter configurations.

    Science.gov (United States)

    Lorenzin, Anna; Garzotto, Francesco; Alghisi, Alberta; Neri, Mauro; Galeano, Dario; Aresu, Stefania; Pani, Antonello; Vidal, Enrico; Ricci, Zaccaroa; Murer, Luisa; Goldstein, Stuart L; Ronco, Claudio

    2016-10-01

    The CARdiorenal PEDIatric EMergency (CARPEDIEM) machine was originally designed to perform only continuous venovenous hemofiltration (CVVH) in neonatal and pediatric patients. In some cases, adequate convective clearance may not be reached because of a limited blood flow. In such conditions, the application of diffusive clearance [continuous venovenous hemodialysis (CVVHD)] would help optimize blood purification. In this study, the CARPEDIEM™ machine was modified to enable the circulation of dialysis through the filter allowing testing of the performance of CARPEDIEM™ machine in CVVHD. Three different polyethersulfone hemodialyzers (surface area = 0.1 m(2), 0.2 m(2), and 0.35 m(2), respectively) were tested in vitro with a scheduled combination of plasma flow rates (Qp = 10-20-30 ml/min) and dialysis fluid flow rate (Qd = 5-10-15 ml/min). Three sessions were performed in co-current and one in counter-current configuration (as control) for each filter size. Clearance was measured from the blood and dialysate sides and results with mass balance error greater than 5 % were discarded. Urea and creatinine clearances for each plasma/dialysate combination are reported: clearance increase progressively for every filter proportionally to plasma flow rates. Similarly, clearances increase progressively with dialysate flow rates at a given plasma flow. The clearance curve tends to present a steep increase for small increases in plasma flow in the range below 10 ml/min, while the curve tends to plateau for values averaging 30 ml/min. As expected, the plateau is reached earlier with the smaller filter showing the effect of membrane surface-area limitation. At every plasma flow, the effect of dialysate flow increase is evident and well defined, showing that saturation of effluent was not achieved completely in any of the experimental conditions explored. No differences (p > 0.05 for all values) were obtained in experiments using whole blood instead of

  19. Electrical resistance imaging of a time-varying interface in stratified flows using an unscented Kalman filter

    International Nuclear Information System (INIS)

    Ijaz, Umer Zeeshan; Khambampati, Anil Kumar; Kim, Kyung Youn; Chung, Soon Il; Kim, Sin

    2008-01-01

    In this paper, we estimate a time-varying interfacial boundary in stratified flows of two immiscible liquids using electrical resistance tomography. The interfacial boundary is approximated with front points spaced discretely along the interface. The design variables to be estimated are the locations of the front points, which are varying with the moving interface. The inverse problem is treated as a stochastic nonlinear state estimation problem with the nonstationary phase boundary (state) being estimated with the aid of an unscented Kalman filter. Numerical experiments are performed to evaluate the performance of an unscented Kalman filter. Specifically, a detailed analysis has been done on the effect of the number of front points and contrast ratio on the reconstruction performance. The reconstruction results show that an unscented Kalman filter is better suited for estimation in comparison to the conventional extended Kalman filter

  20. Multilevel Bloom Filters for P2P Flows Identification Based on Cluster Analysis in Wireless Mesh Network

    Directory of Open Access Journals (Sweden)

    Xia-an Bi

    2015-01-01

    Full Text Available With the development of wireless mesh networks and distributed computing, lots of new P2P services have been deployed and enrich the Internet contents and applications. The rapid growth of P2P flows brings great pressure to the regular network operation. So the effective flow identification and management of P2P applications become increasingly urgent. In this paper, we build a multilevel bloom filters data structure to identify the P2P flows through researches on the locality characteristics of P2P flows. Different level structure stores different numbers of P2P flow rules. According to the characteristics values of the P2P flows, we adjust the parameters of the data structure of bloom filters. The searching steps of the scheme traverse from the first level to the last level. Compared with the traditional algorithms, our method solves the drawbacks of previous schemes. The simulation results demonstrate that our algorithm effectively enhances the performance of P2P flows identification. Then we deploy our flow identification algorithm in the traffic monitoring sensors which belong to the network traffic monitoring system at the export link in the campus network. In the real environment, the experiment results demonstrate that our algorithm has a fast speed and high accuracy to identify the P2P flows; therefore, it is suitable for actual deployment.

  1. Chrono pharmacotherapy: A pulsatile Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huma Hameed

    2015-01-01

    Full Text Available Chronopharmacotherapy refers to a treatment in which controlled drug delivery is achieved according to circadian rhythms of disease by enhancing therapeutic outcomes and minimizing side effects. Colon targeting has gained great importance not only for the treatment of local diseases such as Crohn’s disease, inflammatory bowel disease and ulcerative colitis but also very important in systemic delivery of proteins/peptides, antiasthmatic drugs, antidiabetic agents and antihypertensive drugs, which mostly show their efficacy based on circadian rhythms of the body.Colon drug delivery is one of the difficult approaches to achieve the targeted and desired outcomes through pulsatile drug delivery by avoiding dose dumping.The main reasonbehind the use of pulsatile delivery is provision ofconstant drug release where a zero-order release is notpreferred. Chronopharmacotherapy in colon targeting play its role bymany systems such ascapsular systems, pulsatile system and osmotic systems, which are based on use of rupturable membranes and biodegradable polymers.The objective of this review article is to provide latest knowledge about drugs with chrono-pharmacological behavior entails night time dosing specially to the colon.

  2. Behavior of the polygonal HEPA filter exposed to water droplets carried by the offgas flow

    International Nuclear Information System (INIS)

    Jannakos, K.; Potgeter, G.; Legner, W.

    1991-01-01

    A polygonal high-efficiency particulate air (HEPA) filter element has been developed and tested with a view to cleaning the dissolver offgas from reprocessing plants. It is likewise suited to filter process offgases generated in other plants. Due to its high dew point (about 30 degree C) the dissolver offgas, before being directed into the HEPA filter, is heated with a gas heater to approx. 100 degree C so that condensation in the pipework upstream of the filter and in the filter proper is avoided. In case of failure of the heater the offgas may undergo condensation upstream of the HEPA filter until it is bypassed to a standby heater or a standby filter system. Consequently, the filter may be loaded with water droplets. therefore, experiments have been performed with a view to estimating the behavior of the polygonal filter element when exposed to condensate droplets in a real plant. According to the experiments performed so far it can be anticipated that in case of failure of the heater the amount of condensate produced until bypassing to a standby system will not damage a new or little loaded polygonal filter element. The experiments will be carried on with the goal of investigating the behavior of a heavily loaded polygonal filter element exposed to water droplets

  3. Effect of the spatial filtering and alignment error of hot-wire probes in a wall-bounded turbulent flow

    International Nuclear Information System (INIS)

    Segalini, A; Cimarelli, A; Rüedi, J-D; De Angelis, E; Talamelli, A

    2011-01-01

    The effort to describe velocity fluctuation distributions in wall-bounded turbulent flows has raised different questions concerning the accuracy of hot-wire measurement techniques close to the wall and more specifically the effect of spatial averaging resulting from the finite size of the wire. Here, an analytical model which describes the effect of the spatial filtering and misalignment of hot-wire probes on the main statistical moments in turbulent wall-bounded flows is presented. The model, which is based on the two-point velocity correlation function, shows that the filtering is directly related to the transverse Taylor micro-scale. By means of turbulent channel flow DNS data, the capacity of the model to accurately describe the probe response is established. At the same time, the filtering effect is appraised for different wire lengths and for a range of misalignment angles which can be expected from good experimental practice. Effects of the second-order terms in the model equations are also taken into account and discussed. In order to use the model in a practical situation, the Taylor micro-scale distribution at least should be provided. A simple scaling law based on classic turbulence theory is therefore introduced and finally employed to estimate the filtering effect for different wire lengths

  4. On performing of interference technique based on self-adjusting Zernike filters (SA-AVT method) to investigate flows and validate 3D flow numerical simulations

    Science.gov (United States)

    Pavlov, Al. A.; Shevchenko, A. M.; Khotyanovsky, D. V.; Pavlov, A. A.; Shmakov, A. S.; Golubev, M. P.

    2017-10-01

    We present a method for and results of determination of the field of integral density in the structure of flow corresponding to the Mach interaction of shock waves at Mach number M = 3. The optical diagnostics of flow was performed using an interference technique based on self-adjusting Zernike filters (SA-AVT method). Numerical simulations were carried out using the CFS3D program package for solving the Euler and Navier-Stokes equations. Quantitative data on the distribution of integral density on the path of probing radiation in one direction of 3D flow transillumination in the region of Mach interaction of shock waves were obtained for the first time.

  5. Real-Time Blood Flow Estimation Using a Recursive Least-Squares Lattice Filter

    DEFF Research Database (Denmark)

    Stetson, Paul F.; Jensen, Jørgen Arendt

    1997-01-01

    -time processing for both the periodogram and lattice-filter approaches and displays both results on a PC for comparison. Results are shown for phantom data and for demodulated data from the aorta and hepatic vein of a healthy subject. This demonstrates under clinical conditions that the lattice filter gives...

  6. Particle filter for the adsorption of radioactive impurities of a gas flow

    International Nuclear Information System (INIS)

    Bonn, J.W.

    1978-01-01

    The filter casing having several filter beds with e.g. activated carbon adsorbs iodine and methyl iodide from the off-gas of a safety room. The lid of the casing has numerous right-angled charging holes for the activated carbon filter beds which are closed during operation. The filter beds consist of perforated side walls opposite one another which form chambers for the activated carbon as well as limit the alternating gas inflow and outlet channels. Collector troughs for the used activated carbon are at the lower end of the filter beds; the former can be removed from the collector troughs by a suction blower without endangering the personal operating. (DG) [de

  7. Vertical flow soil filter for the elimination of micro pollutants from storm and waste water

    DEFF Research Database (Denmark)

    Janzen, Niklas; Banzhaf, Stefan; Scheytt, Traugott

    2009-01-01

    A technical scale activated soil filter has been used to study the elimination rates of diverse environmentally relevant micro pollutants from storm and waste water. The filter was made of layers of peat, sand and gravel. The upper (organic) layer was planted with reed (phragmites australis......) to prevent clogging and was spiked with activated sludge to enhance microbial biomass and biodegradation potential. Compounds used as UV filters, antioxidants or plasticizers, namely 4-methylbenzylidene camphor (4-MBC), benzophenone-3 (BP-3), butylated hydroxytoluene (BHT), N-butylbenzenesulfonamide (NBBS...

  8. THE EFFECT OF THE REYNOLDS NUMBER OF AIR FLOW TO THE PARTICLE COLLECTION EFFICIENCY OF A FIBROUS FILTER MEDIUM WITH CYLINDRICAL SECTION

    Directory of Open Access Journals (Sweden)

    George P. Kouropoulos

    2014-01-01

    Full Text Available At this study an attempt for the theoretical approach of the Re ynolds number effect of air flow to the particle collection efficiency of a fibrous fil ter with cylindrical section will be made. Initially, a report of the air filtration models to fibrous filter media will be presented along with an explanation of both the parameters and the physical quantities which govern the air filtration process. Furthermore, the resul ting equation from the mathematical model will be applied to a real filter medium and the characteristic curves of filter efficiency will be drawn. The change of a filter medi um efficiency with regard to the Reynolds number of air flow that passes through the filt er, derived from the curves, will be studied. The general conclusion that we have is that as the Reynolds number of filtered air increases, the collection efficiency of the filter decreases.

  9. Renal artery pulsatility index and renal volume: Normal fetuses versus growth-retarded fetuses

    International Nuclear Information System (INIS)

    Lee, Kyung Soon; Woo, Bock Hi

    2001-01-01

    To evaluate the blood flow velocity waveform of the renal artery and renal volume of growth-retarded fetuses and to compare them with those of normal fetuses. Pulsatility index of the renal artery and renal volume measured by three-dimensional ultrasonography were obtained from seventy eight normal fetuses at the gestational age from twenty five to thirty nine weeks and eighteen intrauterine growth retarded fetuses whose weight was below ten percentile at birth. We studied changes of the pulsatility index of the renal artery and renal volume according to the gestational age and compared with those of growth-retarded fetuses. Pulsatility index (PI) of the fetal renal artery decreased throughout the gestational period (r=0.703, p<0.0001). In growth-retarded fetuses, despite of abnormal doppler velocity waveform of the middle cerebral artery, which was showing fetal hypoxia, the renal PI was not increased significantly. The fetal renal volume increased throughout the gestational period (r=0.834, p<0.0001) whereas in growth-retarded fetuses, all renal volume was below fifth percentile of normal fetuses. In growth-retarded fetuses, fetal renal volume was decreased significantly without change of the renal vascular flow. Therefore, the fetal renal volume measured by three-dimensional ultrasonography may be a helpful parameter in the diagnosis of growth-retarded fetuses.

  10. Renal artery pulsatility index and renal volume: Normal fetuses versus growth-retarded fetuses

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Soon; Woo, Bock Hi [Ewha Womans University College of Medicine, Seoul (Korea, Republic of)

    2001-06-15

    To evaluate the blood flow velocity waveform of the renal artery and renal volume of growth-retarded fetuses and to compare them with those of normal fetuses. Pulsatility index of the renal artery and renal volume measured by three-dimensional ultrasonography were obtained from seventy eight normal fetuses at the gestational age from twenty five to thirty nine weeks and eighteen intrauterine growth retarded fetuses whose weight was below ten percentile at birth. We studied changes of the pulsatility index of the renal artery and renal volume according to the gestational age and compared with those of growth-retarded fetuses. Pulsatility index (PI) of the fetal renal artery decreased throughout the gestational period (r=0.703, p<0.0001). In growth-retarded fetuses, despite of abnormal doppler velocity waveform of the middle cerebral artery, which was showing fetal hypoxia, the renal PI was not increased significantly. The fetal renal volume increased throughout the gestational period (r=0.834, p<0.0001) whereas in growth-retarded fetuses, all renal volume was below fifth percentile of normal fetuses. In growth-retarded fetuses, fetal renal volume was decreased significantly without change of the renal vascular flow. Therefore, the fetal renal volume measured by three-dimensional ultrasonography may be a helpful parameter in the diagnosis of growth-retarded fetuses.

  11. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    Directory of Open Access Journals (Sweden)

    Gorji-Bandpy Mofid

    2012-04-01

    Full Text Available This paper presents a computational fluid dynamics (CFD calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  12. Data assimilation for groundwater flow modelling using Unbiased Ensemble Square Root Filter: Case study in Guantao, North China Plain

    Science.gov (United States)

    Li, N.; Kinzelbach, W.; Li, H.; Li, W.; Chen, F.; Wang, L.

    2017-12-01

    Data assimilation techniques are widely used in hydrology to improve the reliability of hydrological models and to reduce model predictive uncertainties. This provides critical information for decision makers in water resources management. This study aims to evaluate a data assimilation system for the Guantao groundwater flow model coupled with a one-dimensional soil column simulation (Hydrus 1D) using an Unbiased Ensemble Square Root Filter (UnEnSRF) originating from the Ensemble Kalman Filter (EnKF) to update parameters and states, separately or simultaneously. To simplify the coupling between unsaturated and saturated zone, a linear relationship obtained from analyzing inputs to and outputs from Hydrus 1D is applied in the data assimilation process. Unlike EnKF, the UnEnSRF updates parameter ensemble mean and ensemble perturbations separately. In order to keep the ensemble filter working well during the data assimilation, two factors are introduced in the study. One is called damping factor to dampen the update amplitude of the posterior ensemble mean to avoid nonrealistic values. The other is called inflation factor to relax the posterior ensemble perturbations close to prior to avoid filter inbreeding problems. The sensitivities of the two factors are studied and their favorable values for the Guantao model are determined. The appropriate observation error and ensemble size were also determined to facilitate the further analysis. This study demonstrated that the data assimilation of both model parameters and states gives a smaller model prediction error but with larger uncertainty while the data assimilation of only model states provides a smaller predictive uncertainty but with a larger model prediction error. Data assimilation in a groundwater flow model will improve model prediction and at the same time make the model converge to the true parameters, which provides a successful base for applications in real time modelling or real time controlling strategies

  13. Filter material charging apparatus for filter assembly for radioactive contaminants

    International Nuclear Information System (INIS)

    Goldsmith, J.M.; O'Nan, A. Jr.

    1977-01-01

    A filter charging apparatus for a filter assembly is described. The filter assembly includes a housing with at least one filter bed therein and the filter charging apparatus for adding filter material to the filter assembly includes a tank with an opening therein, the tank opening being disposed in flow communication with opposed first and second conduit means, the first conduit means being in flow communication with the filter assembly housing and the second conduit means being in flow communication with a blower means. Upon activation of the blower means, the blower means pneumatically conveys the filter material from the tank to the filter housing

  14. Pulsatile atheroprone shear stress affects the expression of transient receptor potential channels in human endothelial cells

    DEFF Research Database (Denmark)

    Thilo, Florian; Vorderwülbecke, Bernd J; Marki, Alex

    2012-01-01

    in comparison with endothelial cells grown under static conditions. There was a significant association between the expression of TRPC6 and tumor necrosis factor-α mRNA in human vascular tissue. No-flow and atheroprone flow conditions are equally characterized by an increase in the expression of tumor necrosis......The goal of the study was to assess whether pulsatile atheroprone shear stress modulates the expression of transient receptor potential (TRP) channels, TRPC3, TRPC6, TRPM7, and TRPV1 mRNA, in human umbilical vascular endothelial cells. Exposure of cultured vascular endothelial cells to defined...

  15. Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering

    KAUST Repository

    El Gharamti, Mohamad; Hoteit, Ibrahim; Valstar, Johan R.

    2013-01-01

    Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data

  16. Non-dimensional physics of pulsatile cardiovascular networks and energy efficiency.

    Science.gov (United States)

    Yigit, Berk; Pekkan, Kerem

    2016-01-01

    In Nature, there exist a variety of cardiovascular circulation networks in which the energetic ventricular load has both steady and pulsatile components. Steady load is related to the mean cardiac output (CO) and the haemodynamic resistance of the peripheral vascular system. On the other hand, the pulsatile load is determined by the simultaneous pressure and flow waveforms at the ventricular outlet, which in turn are governed through arterial wave dynamics (transmission) and pulse decay characteristics (windkessel effect). Both the steady and pulsatile contributions of the haemodynamic power load are critical for characterizing/comparing disease states and for predicting the performance of cardiovascular devices. However, haemodynamic performance parameters vary significantly from subject to subject because of body size, heart rate and subject-specific CO. Therefore, a 'normalized' energy dissipation index, as a function of the 'non-dimensional' physical parameters that govern the circulation networks, is needed for comparative/integrative biological studies and clinical decision-making. In this paper, a complete network-independent non-dimensional formulation that incorporates pulsatile flow regimes is developed. Mechanical design variables of cardiovascular flow systems are identified and the Buckingham Pi theorem is formally applied to obtain the corresponding non-dimensional scaling parameter sets. Two scaling approaches are considered to address both the lumped parameter networks and the distributed circulation components. The validity of these non-dimensional number sets is tested extensively through the existing empirical allometric scaling laws of circulation systems. Additional validation studies are performed using a parametric numerical arterial model that represents the transmission and windkessel characteristics, which are adjusted to represent different body sizes and non-dimensional haemodynamic states. Simulations demonstrate that the proposed non

  17. Assessment of ground-water flow and chemical transport in a tidally influenced aquifer using geostatistical filtering and hydrocarbon fingerprinting

    International Nuclear Information System (INIS)

    Marquis, S.A. Jr.; Smith, E.A.

    1994-01-01

    Traditional environmental investigations at tidally influenced hazardous waste sites such as marine fuel storage terminals have generally failed to characterize ground-water flow and chemical transport because they have been based on only a cursory knowledge of plume geometry, chemicals encountered, and hydrogeologic setting and synoptic ground-water level measurement. Single-time observations cannot be used to accurately determine flow direction and gradient in tidally fluctuating aquifers since these measurements delineate hydraulic head at only one point in time during a tidal cycle, not the net effect of the fluctuations. In this study, a more rigorous approach was used to characterize flow and chemical transport in a tidally influenced aquifer at a marine fuel storage terminal using: (1) ground-water-level monitoring over three tidal cycles (72 hours), (2) geostatistical filtering of ground-water-level data using 25-hour and 71-hour filtering methods, and (3) hydrocarbon fingerprinting analysis. The results from the study indicate that naphtha released from one of the on-site naphtha tanks has been the predominant contributor to the hydrocarbon plume both on-site and downgradient off-site and that net ground-water and hydrocarbon movement has been to the southeast away from the tank since 1989

  18. Assessment of reduced-order unscented Kalman filter for parameter identification in 1-dimensional blood flow models using experimental data.

    Science.gov (United States)

    Caiazzo, A; Caforio, Federica; Montecinos, Gino; Muller, Lucas O; Blanco, Pablo J; Toro, Eluterio F

    2016-10-25

    This work presents a detailed investigation of a parameter estimation approach on the basis of the reduced-order unscented Kalman filter (ROUKF) in the context of 1-dimensional blood flow models. In particular, the main aims of this study are (1) to investigate the effects of using real measurements versus synthetic data for the estimation procedure (i.e., numerical results of the same in silico model, perturbed with noise) and (2) to identify potential difficulties and limitations of the approach in clinically realistic applications to assess the applicability of the filter to such setups. For these purposes, the present numerical study is based on a recently published in vitro model of the arterial network, for which experimental flow and pressure measurements are available at few selected locations. To mimic clinically relevant situations, we focus on the estimation of terminal resistances and arterial wall parameters related to vessel mechanics (Young's modulus and wall thickness) using few experimental observations (at most a single pressure or flow measurement per vessel). In all cases, we first perform a theoretical identifiability analysis on the basis of the generalized sensitivity function, comparing then the results owith the ROUKF, using either synthetic or experimental data, to results obtained using reference parameters and to available measurements. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Application of the extended Kalman filtering for the estimation of core coolant flow rate in pressurized water reactors

    International Nuclear Information System (INIS)

    Shieh, D.J.; Upadhyaya, B.R.

    1986-01-01

    In-core neutron detector and core-exit temperature signals in a pressurized water reactor (PWR) satisfy the condition of observability of the core dynamic system, and can be used to estimate nonmeasurable state variables and model parameters. The extension of the Kalman filtering technique is very useful for direct parameter estimation. This approach is applied to the determination of core coolant mass flow rate in PWRs and is evaluated using in-core measurements at the Loss-of-Fluid Test (LOFT) reactor. The influence of model uncertainties on the estimation accuracy was studied using the ambiguity function analysis. A sequential discretization method was developed to achieve faster convergence to the true value, avoiding model discretization at each sample point. The performance of the extended Kalman filter and the computational innovations were evaluated using a reduced order core dynamic model of the LOFT reactor and random data simulation. The technique was then applied to the determination of LOFT core coolant flow rate from operational data at 100% and 65% flow conditions

  20. A durability study of a paracorporeal pulsatile electro-mechanical pneumatic biventricular assist device.

    Science.gov (United States)

    Choi, Hyuk; Lee, Heung-Man; Nam, Kyoung Won; Choi, Jaesoon; Lee, Jung-Joo; Kim, Ho Chul; Song, Seung Joon; Ahn, Chi Bum; Son, Ho Sung; Lim, Choon Hak; Son, Kuk Hui; Park, Yong Doo; Jeong, Gi Seok; Sun, Kyung

    2011-06-01

    In 2002, the paracorporeal pulsatile electro-mechanical pneumatic ventricular assist device (VAD) began to be developed by the Korea Artificial Organ Center at Korea University under a Health & Medical Technology Research and Development program which finished in 2008. In vitro durability testing was conducted on the paracorporeal pulsatile pneumatic VAD to determine device durability and to evaluate device failures. The 1- and 2-year reliability of the paracorporeal pulsatile pneumatic VAD was shown to be 91.2% and 54.9%, respectively, with an 80% confidence level. Failure modes were analyzed using fault tree analysis, with customized software continuously acquiring data during the test period. After this period, 21 in vivo animal tests were done, with 14 cases of left atrium to left ventricle (LV) inflow cannulation (36Fr)/outflow grafting to descending aorta, and seven cases of apex cannulation of LV to descending aorta (12 mm). The longest postoperative day (182 days) in Korea was recently recorded in in vivo animal testing (bovine, 90 kg, male, 3.5-4.0 L/min flow rate, and 55 bpm). © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. Investigation of pulsatile flowfield in healthy thoracic aorta models.

    Science.gov (United States)

    Wen, Chih-Yung; Yang, An-Shik; Tseng, Li-Yu; Chai, Jyh-Wen

    2010-02-01

    Cardiovascular disease is the primary cause of morbidity and mortality in the western world. Complex hemodynamics plays a critical role in the development of aortic dissection and atherosclerosis, as well as many other diseases. Since fundamental fluid mechanics are important for the understanding of the blood flow in the cardiovascular circulatory system of the human body aspects, a joint experimental and numerical study was conducted in this study to determine the distributions of wall shear stress and pressure and oscillatory WSS index, and to examine their correlation with the aortic disorders, especially dissection. Experimentally, the Phase-Contrast Magnetic Resonance Imaging (PC-MRI) method was used to acquire the true geometry of a normal human thoracic aorta, which was readily converted into a transparent thoracic aorta model by the rapid prototyping (RP) technique. The thoracic aorta model was then used in the in vitro experiments and computations. Simulations were performed using the computational fluid dynamic (CFD) code ACE+((R)) to determine flow characteristics of the three-dimensional, pulsatile, incompressible, and Newtonian fluid in the thoracic aorta model. The unsteady boundary conditions at the inlet and the outlet of the aortic flow were specified from the measured flowrate and pressure results during in vitro experiments. For the code validation, the predicted axial velocity reasonably agrees with the PC-MRI experimental data in the oblique sagittal plane of the thoracic aorta model. The thorough analyses of the thoracic aorta flow, WSSs, WSS index (OSI), and wall pressures are presented. The predicted locations of the maxima of WSS and the wall pressure can be then correlated with that of the thoracic aorta dissection, and thereby may lead to a useful biological significance. The numerical results also suggest that the effects of low WSS and high OSI tend to cause wall thickening occurred along the inferior wall of the aortic arch and the

  2. Distributed Cerebral Blood Flow estimation using a spatiotemporal hemodynamic response model and a Kalman-like Filter approach

    KAUST Repository

    Belkhatir, Zehor

    2015-11-23

    This paper discusses the estimation of distributed Cerebral Blood Flow (CBF) using spatiotemporal traveling wave model. We consider a damped wave partial differential equation that describes a physiological relationship between the blood mass density and the CBF. The spatiotemporal model is reduced to a finite dimensional system using a cubic b-spline continuous Galerkin method. A Kalman Filter with Unknown Inputs without Direct Feedthrough (KF-UI-WDF) is applied on the obtained reduced differential model to estimate the source term which is the CBF scaled by a factor. Numerical results showing the performances of the adopted estimator are provided.

  3. Time-resolved flow reconstruction with indirect measurements using regression models and Kalman-filtered POD ROM

    Science.gov (United States)

    Leroux, Romain; Chatellier, Ludovic; David, Laurent

    2018-01-01

    This article is devoted to the estimation of time-resolved particle image velocimetry (TR-PIV) flow fields using a time-resolved point measurements of a voltage signal obtained by hot-film anemometry. A multiple linear regression model is first defined to map the TR-PIV flow fields onto the voltage signal. Due to the high temporal resolution of the signal acquired by the hot-film sensor, the estimates of the TR-PIV flow fields are obtained with a multiple linear regression method called orthonormalized partial least squares regression (OPLSR). Subsequently, this model is incorporated as the observation equation in an ensemble Kalman filter (EnKF) applied on a proper orthogonal decomposition reduced-order model to stabilize it while reducing the effects of the hot-film sensor noise. This method is assessed for the reconstruction of the flow around a NACA0012 airfoil at a Reynolds number of 1000 and an angle of attack of {20}°. Comparisons with multi-time delay-modified linear stochastic estimation show that both the OPLSR and EnKF combined with OPLSR are more accurate as they produce a much lower relative estimation error, and provide a faithful reconstruction of the time evolution of the velocity flow fields.

  4. Demonstration of uneven distribution of intracranial pulsatility in hydrocephalus patients.

    Science.gov (United States)

    Eide, Per K

    2008-11-01

    Data from intracranial pressure (ICP) recordings in patients with hydrocephalus were reviewed to determine whether intracranial pulsatility within the cerebrospinal fluid (CSF) of cerebral ventricles (ICP(LV)) may differ from that within the brain parenchyma (ICP(PAR)), and whether pulsatility may differ between noncommunicating ventricles. The authors retrieved data from recordings previously obtained in 7 patients with hydrocephalus (noncommunicating in 4 and communicating in 3) and shunt failure who received both an external ventricular drainage (EVD) and an ICP sensor as part of surveillance during intensive care. Simultaneous ICP(LV) and ICP(PAR) signals were available in 6 cases, and simultaneous signals from the lateral and fourth ventricles (ICP(LV) and ICP4V, respectively) were recorded in 1 case. The recordings with both signals were parsed into 6-second time windows. Pulsatility was characterized by the wave amplitude and rise time coefficient, and differences in pulsatility between the ICP(LV) and ICP(PAR) signals (6 cases) or ICP(LV) and ICP4V signals (1 case) were determined. There was uneven distribution of intracranial pulsatility in all 7 patients, shown as significantly elevated pulsatility (that is, higher wave amplitudes and rise time coefficients) within the ventricles (ICP(LV)) than within brain parenchyma (ICP(PAR)) in 6 patients, and significantly higher pulsatility in the fourth (ICP4V) than in the lateral (ICP(LV)) ventricles in 1 patient. Differences > or = 1 mm Hg in ICP wave amplitude were found in 0.5-100% (median 9.4%) of observations in the 7 patients (total number of 6-second time windows, 68,242). The present observations demonstrate uneven distribution of intracranial pulsatility in patients with hydrocephalus, higher pulse pressure amplitudes within the ventricular CSF (ICP(LV)) than within the brain parenchyma (ICP(PAR)). This may be one mechanism behind ventricular enlargement in hydrocephalus.

  5. Pulse cleaning flow models and numerical computation of candle ceramic filters.

    Science.gov (United States)

    Tian, Gui-shan; Ma, Zhen-ji; Zhang, Xin-yi; Xu, Ting-xiang

    2002-04-01

    Analytical and numerical computed models are developed for reverse pulse cleaning system of candle ceramic filters. A standard turbulent model is demonstrated suitably to the designing computation of reverse pulse cleaning system from the experimental and one-dimensional computational result. The computed results can be used to guide the designing of reverse pulse cleaning system, which is optimum Venturi geometry. From the computed results, the general conclusions and the designing methods are obtained.

  6. PERFORMANCE OF A SURFACE FLOW CONSTRUCTED WETLAND SYSTEM USED TO TREAT SECONDARY EFFLUENT AND FILTER BACKWASH WATER

    Directory of Open Access Journals (Sweden)

    Juan Antonio Vidales-Contreras

    2011-05-01

    The performance of a surface flow wetland system used to treat activated sludge effluent and filter backwash water from a tertiary treatment facility was evaluated. Samples were collected before and after vegetation removal from the system which consists of two densely vegetated settling basins (0.35 ha, an artificial stream, and a 3-ha surface flow wetland. Bulrush (Scripus spp. and cattail (Typha domingensis were the dominant plant species. The average inflow of chlorinated secondary effluent during the first two months of the actual study was 1.9  m3 min-1 while the inflow for backwash water treatment ranged from 0.21 to 0.42 m3 min-1. The system was able to reduce TSS and BOD5 to tertiary effluent standards; however, monitoring of chloride concentrations revealed that wetland evapotranspiration is probably enriching pollutant concentrations in the wetland outflow. Coliphage removal from the filter backwash was 97 and 35% during 1999 and 2000, respectively. However, when secondary effluent entered the system, coliphage removal averaged 65%. After vegetation removal, pH and coliphage density increased significantly (p

  7. Filtered Rayleigh scattering mixing measurements of merging and non-merging streamwise vortex interactions in supersonic flow

    Science.gov (United States)

    Ground, Cody R.; Gopal, Vijay; Maddalena, Luca

    2018-04-01

    By introducing large-scale streamwise vortices into a supersonic flow it is possible to enhance the rate of mixing between two fluid streams. However, increased vorticity content alone does not explicitly serve as a predictor of mixing enhancement. Additional factors, particularly the mutual interactions occurring between neighboring vortical structures, affect the underlying fundamental physics that influence the rate at which the fluids mix. As part of a larger systematic study on supersonic streamwise vortex interactions, this work experimentally quantifies the average rate of mixing of helium and air in the presence of two separate modes of vortex interaction, the merging and non-merging of a pair of co-rotating vortices. In these experiments vortex-generating expansion ramps are placed on a strut injector. The freestream Mach number is set at 2.5 and helium is injected as a passive scalar. Average injectant mole fractions at selected flow planes downstream of the injector are measured utilizing the filtered Rayleigh scattering technique. The filtered Rayleigh scattering measurements reveal that, in the domain surveyed, the merging vortex interaction strongly displaces the plume from its initial horizontal orientation while the non-merging vortex interaction more rapidly mixes the helium and air. The results of the current experiments are consistent with associated knowledge derived from previous analyses of the two studied configurations which have included the detailed experimental characterization of entrainment, turbulent kinetic energy, and vorticity of both modes of vortex interaction.

  8. Progress Toward Affordable High Fidelity Combustion Simulations Using Filtered Density Functions for Hypersonic Flows in Complex Geometries

    Science.gov (United States)

    Drozda, Tomasz G.; Quinlan, Jesse R.; Pisciuneri, Patrick H.; Yilmaz, S. Levent

    2012-01-01

    Significant progress has been made in the development of subgrid scale (SGS) closures based on a filtered density function (FDF) for large eddy simulations (LES) of turbulent reacting flows. The FDF is the counterpart of the probability density function (PDF) method, which has proven effective in Reynolds averaged simulations (RAS). However, while systematic progress is being made advancing the FDF models for relatively simple flows and lab-scale flames, the application of these methods in complex geometries and high speed, wall-bounded flows with shocks remains a challenge. The key difficulties are the significant computational cost associated with solving the FDF transport equation and numerically stiff finite rate chemistry. For LES/FDF methods to make a more significant impact in practical applications a pragmatic approach must be taken that significantly reduces the computational cost while maintaining high modeling fidelity. An example of one such ongoing effort is at the NASA Langley Research Center, where the first generation FDF models, namely the scalar filtered mass density function (SFMDF) are being implemented into VULCAN, a production-quality RAS and LES solver widely used for design of high speed propulsion flowpaths. This effort leverages internal and external collaborations to reduce the overall computational cost of high fidelity simulations in VULCAN by: implementing high order methods that allow reduction in the total number of computational cells without loss in accuracy; implementing first generation of high fidelity scalar PDF/FDF models applicable to high-speed compressible flows; coupling RAS/PDF and LES/FDF into a hybrid framework to efficiently and accurately model the effects of combustion in the vicinity of the walls; developing efficient Lagrangian particle tracking algorithms to support robust solutions of the FDF equations for high speed flows; and utilizing finite rate chemistry parametrization, such as flamelet models, to reduce

  9. Recirculating electric air filter

    Science.gov (United States)

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  10. Measuring pulsatile forces on the human cranium.

    Science.gov (United States)

    Goldberg, Cory S; Antonyshyn, Oleh; Midha, Rajiv; Fialkov, Jeffrey A

    2005-01-01

    The cyclic stresses in the cranium caused by pulsation of the brain play an important role in the design of materials for cranioplasty, as well as craniofacial development. However, these stresses have never been quantified. In this study, the force in the epidural space against the cranium was measured intraoperatively in 10 patients using a miniature force probe. Heart and ventilatory rates computed from the force tracing correlated closely with the corresponding measured values in the patients, confirming that the forces measured were indeed a result of brain pulsation. The mean outward systolic normal and tangential stresses were 54.2 kilo-Pascals (kPa) and 345.4 kPa, respectively. The systolic shear stress was 199.8 kPa. Through mechanotransduction, these stresses play a role in cranial development. The calculated yield stress of a cranioplasty repair was 0.4 MPa, which is within one order of magnitude of the known strength of common calcium-phosphate cements. This indicates a possible relation of these pulsatile forces and occult failure of calcium-phosphate cement cranioplasties through material fatigue.

  11. Experimental–theoretical methodology for determination of inertial pressure drop distribution and pore structure properties in wall-flow diesel particulate filters (DPFs)

    International Nuclear Information System (INIS)

    Payri, F.; Broatch, A.; Serrano, J.R.; Piqueras, P.

    2011-01-01

    Wall-flow particulate filters have been placed as a standard technology for Diesel engines because of the increasing restrictions to soot emissions. The inclusion of this system within the exhaust line requires the development of computational tools to properly simulate its flow dynamics and acoustics behaviour. These aspects become the key to understand the influence on engine performance and driveability as a function of the filter placement. Since the pressure drop and the filtration process are strongly depending on the pore structure properties – permeability, porosity and pore size – a reliable definition of these characteristics is essential for model development. In this work a methodology is proposed to determine such properties based on the combination of the pressure drop rement in a steady flow test rig and two theoretical approaches. The later are a lumped model and a one-dimensional (1D) unsteady compressible flow model. The purpose is to simplify the integration of particulate filters into the global engine modelling and development processes avoiding the need to resort to specific and expensive characterisation tests. The proposed methodology was validated against measurements of the response of an uncoated diesel particulate filter (DPF) under different flow conditions as cold steady flow, impulsive flow and hot pulsating flow. -- Highlights: ► Experimental and modelling tools to characterise wall-flow DPFs pressure drop. ► Decomposition of inertial pressure drop contributions in canned DPFs. ► Methodology to define pore structure properties in clean wall-flow DPFs. ► Evaluation of specific permeability, porosity and mean pore diameter. ► Significant influence of slip-flow effect on uncoated wall-flow DPFs.

  12. Estimating right ventricular stroke work and the pulsatile work fraction in pulmonary hypertension.

    Science.gov (United States)

    Chemla, Denis; Castelain, Vincent; Zhu, Kaixian; Papelier, Yves; Creuzé, Nicolas; Hoette, Susana; Parent, Florence; Simonneau, Gérald; Humbert, Marc; Herve, Philippe

    2013-05-01

    The mean pulmonary artery pressure (mPAP) replaces mean systolic ejection pressure (msePAP) in the classic formula of right ventricular stroke work (RVSW) = (mPAP - RAP) × stroke volume, where RAP is mean right atrial pressure. Only the steady work is thus taken into account, not the pulsatile work, whereas pulmonary circulation is highly pulsatile. Our retrospective, high-fidelity pressure study tested the hypothesis that msePAP was proportional to mPAP, and looked at the implications for RVSW. Eleven patients with severe, precapillary pulmonary hypertension (PH) (six patients with idiopathic pulmonary arterial hypertension and five with chronic thromboembolic PH; mPAP = 57 ± 10 mm Hg) were studied at rest and during mild to moderate exercise. Eight non-PH control subjects were also studied at rest (mPAP = 16 ± 2 mm Hg). The msePAP was averaged from end diastole to dicrotic notch. In the full data set (53 pressure-flow points), mPAP ranged from 14 to 99.5 mm Hg, cardiac output from 2.38 to 11.1 L/min, and heart rate from 53 to 163 beats/min. There was a linear relationship between msePAP and mPAP (r² = 0.99). The msePAP matched 1.25 mPAP (bias, -0.5 ± 2.6 mm Hg). Results were similar in the resting non-PH group and in resting and the exercising PH group. This implies that the classic formula markedly underestimates RVSW and that the pulsatile work may be a variable 20% to 55% fraction of RVSW, depending on RAP and mPAP. At rest, RVSW in patients with PH was twice as high as that of the non-PH group (P work fraction was similar between the two groups (26 ± 4% vs 24 ± 1%) because of the counterbalancing effects of high RAP (11 ± 5 mm Hg vs 4 ± 2 mm Hg), which increases the fraction, and high mPAP, which decreases the fraction. Our study favored the use of an improved formula that takes into account the variable pulsatile work fraction: RVSW = (1.25 mPAP - RAP) × stroke volume. Increased RAP and increased mPAP have opposite effects on the pulsatile work

  13. Analysis on Experimental Investigation and Mathematical Modeling of Incompressible Flow Through Ceramic Foam Filters

    Science.gov (United States)

    Akbarnejad, Shahin; Jonsson, Lage Tord Ingemar; Kennedy, Mark William; Aune, Ragnhild Elizabeth; Jönsson, Pӓr Göran

    2016-08-01

    This paper presents experimental results of pressure drop measurements on 30, 50, and 80 pores per inch (PPI) commercial alumina ceramic foam filters (CFF) and compares the obtained pressure drop profiles to numerically modeled values. In addition, it is aimed at investigating the adequacy of the mathematical correlations used in the analytical and the computational fluid dynamics (CFD) simulations. It is shown that the widely used correlations for predicting pressure drop in porous media continuously under-predict the experimentally obtained pressure drop profiles. For analytical predictions, the negative deviations from the experimentally obtained pressure drop using the unmodified Ergun and Dietrich equations could be as high as 95 and 74 pct, respectively. For the CFD predictions, the deviation to experimental results is in the range of 84.3 to 88.5 pct depending on filter PPI. Better results can be achieved by applying the Forchheimer second-order drag term instead of the Brinkman-Forchheimer drag term. Thus, the final deviation of the CFD model estimates lie in the range of 0.3 to 5.5 pct compared to the measured values.

  14. Hydrogen production from a rectangular horizontal filter press Divergent Electrode-Flow-Through (DEFT™) alkaline electrolysis stack

    Science.gov (United States)

    Gillespie, M. I.; Kriek, R. J.

    2017-12-01

    A membraneless Divergent Electrode-Flow-Through (DEFT™) alkaline electrolyser, for unlocking profitable hydrogen production by combining a simplistic, inexpensive, modular and durable design, capable of overcoming existing technology current density thresholds, is ideal for decentralised renewable hydrogen production, with the only requirement of electrolytic flow to facilitate high purity product gas separation. Scale-up of the technology was performed, representing a deviation from the original tested stack design, incorporating elongated electrodes housed in a filter press assembly. The pilot plant operating parameters were limited to a low flow velocity range (0.03 m s-1 -0.04 m s-1) with an electrode gap of 2.5 mm. Performance of this pilot plant demonstrated repeatability to results previously obtained. Mesh electrodes with geometric area of 344.32 cm2 were used for plant performance testing. A NiO anode and Ni cathode combination developed optimal performance yielding 508 mA cm-2 at 2 VDC in contrast to a Ni anode and cathode combination providing 467 mA cm-2 at 2.26 VDC at 0.04 m s-1, 30% KOH and 80 °C. An IrO2/RuO2/TiO2 anode and Pt cathode combination underwent catalyst deactivation. Owing to the nature of the gas/liquid separation system, gas qualities were inadequate compared to results achieved previously. Future improvements will provide qualities similar to results achieved before.

  15. Study on unsteady tip leakage vortex cavitation in an axial-flow pump using an improved filter-based model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Desheng; Shi, Lei; Zhao, Ruijie; Shi, Weidong; Pan, Qiang [Jiangsu University, Zhenjiang (China); Esch, B. P. [Eindhoven University of Technology, Eindhoven (Netherlands)

    2017-02-15

    The aim of the present investigation is to simulate and analyze the tip leakage flow structure and instantaneous evolution of tip vortex cavitation in a scaled axial-flow pump model. The improved filter-based turbulence model based on the density correction and a homogeneous cavitation model were used for implementing this work. The results show that when entering into the tip clearance, the backward flow separates from the blade tip near the pressure side, resulting in the generation of a corner vortex with high magnitude of turbulence kinetic energy. Then, at the exit of the tip clearance, the leakage jets would re-attach on the blade tip wall. Moreover, the maximum swirling strength method was employed in identifying the TLV core and a counter-rotating induced vortex near the end-wall successfully. The three dimensional cavitation patterns and in-plain cavitation structures obtained by the improved numerical method agree well with the experimental results. At the sheet cavitation trailing edge in the tip region, the perpendicular cavitation cloud induced by TLV sheds and migrates toward the pressure side of the neighboring blade. During its migration, it breaks down abruptly and generates a large number of smallscale cavities, leading to severe degradation of the pump performance, which is similar with the phenomenon observed by Tan et al.

  16. Fast reconstruction and prediction of frozen flow turbulence based on structured Kalman filtering

    NARCIS (Netherlands)

    Fraanje, P.R.; Rice, J.; Verhaegen, M.; Doelman, N.J.

    2010-01-01

    Efficient and optimal prediction of frozen flow turbulence using the complete observation history of the wavefront sensor is an important issue in adaptive optics for large ground-based telescopes. At least for the sake of error budgeting and algorithm performance, the evaluation of an accurate

  17. A diode laser-based velocimeter providing point measurements in unseeded flows using modulated filtered Rayleigh scattering (MFRS)

    Science.gov (United States)

    Jagodzinski, Jeremy James

    2007-12-01

    The development to date of a diode-laser based velocimeter providing point-velocity-measurements in unseeded flows using molecular Rayleigh scattering is discussed. The velocimeter is based on modulated filtered Rayleigh scattering (MFRS), a novel variation of filtered Rayleigh scattering (FRS), utilizing modulated absorption spectroscopy techniques to detect a strong absorption of a relatively weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption; alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry. Semiconductor diode lasers are used to generate the relatively weak Rayleigh scattered signal; due to their compact, rugged construction diode lasers are ideally suited for the environmental extremes encountered in many experiments. The MFRS technique utilizes the frequency-tuning capability of diode lasers to implement a homodyne detection scheme using lock-in amplifiers. The optical frequency of the diode-based laser system used to interrogate the flow is rapidly modulated about a reference frequency in the D2-line of Rb. The frequency modulation is imposed on the Rayleigh scattered light that is collected from the probe volume in the flow under investigation. The collected frequency modulating Rayleigh scattered light is transmitted through a Rb vapor filter before being detected. The detected modulated absorption signal is fed to two lock-in amplifers synchronized with the modulation frequency of the source laser. High levels of background rejection are attained since the lock-ins are both frequency and phase selective. The two lock-in amplifiers extract different Fourier components of the detected modulated absorption signal, which are ratioed to provide an intensity normalized frequency dependent signal from a single detector. A Doppler frequency shift in the collected Rayleigh scattered light due to a change

  18. An improved method based on wavelet coefficient correlation to filter noise in Doppler ultrasound blood flow signals

    Science.gov (United States)

    Wan, Renzhi; Zu, Yunxiao; Shao, Lin

    2018-04-01

    The blood echo signal maintained through Medical ultrasound Doppler devices would always include vascular wall pulsation signal .The traditional method to de-noise wall signal is using high-pass filter, which will also remove the lowfrequency part of the blood flow signal. Some scholars put forward a method based on region selective reduction, which at first estimates of the wall pulsation signals and then removes the wall signal from the mixed signal. Apparently, this method uses the correlation between wavelet coefficients to distinguish blood signal from wall signal, but in fact it is a kind of wavelet threshold de-noising method, whose effect is not so much ideal. In order to maintain a better effect, this paper proposes an improved method based on wavelet coefficient correlation to separate blood signal and wall signal, and simulates the algorithm by computer to verify its validity.

  19. Impaired crosstalk between pulsatile insulin and glucagon secretion in prediabetic individuals

    DEFF Research Database (Denmark)

    Rohrer, Stefan; Menge, Björn A; Grüber, Lena

    2012-01-01

    Postprandial hyperglucagonemia is frequently found in patients with diabetes. Recently, a loss of the inverse relationship between pulsatile insulin and glucagon secretion has been reported in patients with type 2 diabetes. The crosstalk between pulsatile islet hormone secretion in prediabetic...

  20. Cerebrovascular pulsatility in patients with sleep-disordered breathing.

    Science.gov (United States)

    Ramos, Alberto R; Cabral, Digna; Lee, David J; Sacco, Ralph L; Rundek, Tatjana

    2013-05-01

    The aim of our study is to determine the association between the pulsatility index (PI), a surrogate of cerebral small vessel disease and sleep-disordered breathing (SDB). We conducted a transcranial Doppler ultrasound (TCD) study of 19 consecutive patients free of stroke and cardiovascular disease, referred for the evaluation of SDB. TCD was performed by a certified technologist. Subsequent polysomnography was performed according to the practice parameters of the American Academy of Sleep Medicine. We evaluated the association between the apnea-hypopnea index (AHI), the oxygen nadir, the blood flow velocities, and the Gosling PI, for the middle cerebral artery. We performed Spearman's rank correlation and nonparametric regression to evaluate the relationship between AHI, oxygen levels, and the PI. Median age was 48 years (range 37-83), with 52 % male sex (n = 10), and median BMI of 29.9 (range 25-40.4). The median AHI was 16.4 (0.2-69). The median PI was 0.97 (0.72-1.89) cm/s. The PI correlated with the AHI (rho = 0.44; p = 0.004) and with age (rho = 0.57; p = 0.001). Nonparametric regression adjusting for age showed a positive association between the AHI and the PI (standardized estimate = 0.88; p = 0.002). There was no relation between the oxygen nadir and the PI. We observed increased PI in patients with SDB during wakefulness. The PI could potentially be an estimate of cerebral small vessel disease in patients with SDB and hence allow evaluating cerebral hemodynamics during wakefulness with a clinically relevant device.

  1. Loss of inverse relationship between pulsatile insulin and glucagon secretion in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Menge, Björn A; Grüber, Lena; Jørgensen, Signe M

    2011-01-01

    In patients with type 2 diabetes, glucagon levels are often increased. Furthermore, pulsatile secretion of insulin is disturbed in such patients. Whether pulsatile glucagon secretion is altered in type 2 diabetes is not known.......In patients with type 2 diabetes, glucagon levels are often increased. Furthermore, pulsatile secretion of insulin is disturbed in such patients. Whether pulsatile glucagon secretion is altered in type 2 diabetes is not known....

  2. TOMOGRAPHY OF PLASMA FLOWS IN THE UPPER SOLAR CONVECTION ZONE USING TIME-DISTANCE INVERSION COMBINING RIDGE AND PHASE-SPEED FILTERING

    International Nuclear Information System (INIS)

    Švanda, Michal

    2013-01-01

    The consistency of time-distance inversions for horizontal components of the plasma flow on supergranular scales in the upper solar convection zone is checked by comparing the results derived using two k-ω filtering procedures—ridge filtering and phase-speed filtering—commonly used in time-distance helioseismology. I show that both approaches result in similar flow estimates when finite-frequency sensitivity kernels are used. I further demonstrate that the performance of the inversion improves (in terms of a simultaneously better averaging kernel and a lower noise level) when the two approaches are combined together in one inversion. Using the combined inversion, I invert for horizontal flows in the upper 10 Mm of the solar convection zone. The flows connected with supergranulation seem to be coherent only for the top ∼5 Mm; deeper down there is a hint of change of the convection scales toward structures larger than supergranules

  3. Flow-dependent empirical singular vector with an ensemble Kalman filter data assimilation for El Nino prediction

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Yoo-Geun [NASA/GSFC Code 610.1, Global Modeling and Assimilation Office, Greenbelt, MD (United States); Universities Space Research Association, Goddard Earth Sciences Technology and Research Studies and Investigations, Baltimore, MD (United States); Rienecker, Michele M. [NASA/GSFC Code 610.1, Global Modeling and Assimilation Office, Greenbelt, MD (United States)

    2012-10-15

    In this study, a new approach for extracting flow-dependent empirical singular vectors (FESVs) for seasonal prediction using ensemble perturbations obtained from an ensemble Kalman filter (EnKF) assimilation is presented. Due to the short interval between analyses, EnKF perturbations primarily contain instabilities related to fast weather variability. To isolate slower, coupled instabilities that would be more suitable for seasonal prediction, an empirical linear operator for seasonal time-scales (i.e. several months) is formulated using a causality hypothesis; then, the most unstable mode from the linear operator is extracted for seasonal time-scales. It is shown that the flow-dependent operator represents nonlinear integration results better than a conventional empirical linear operator static in time. Through 20 years of retrospective seasonal predictions, it is shown that the skill of forecasting equatorial SST anomalies using the FESV is systematically improved over that using Conventional ESV (CESV). For example, the correlation skill of the NINO3 SST index using FESV is higher, by about 0.1, than that of CESV at 8-month leads. In addition, the forecast skill improvement is significant over the locations where the correlation skill of conventional methods is relatively low, indicating that the FESV is effective where the initial uncertainty is large. (orig.)

  4. Leaback of Pulsatile Flow of Particle Fluid Suspension Model of ...

    African Journals Online (AJOL)

    If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs. Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link ...

  5. Does the location of a vascular loop in the cerebellopontine angle explain pulsatile and non-pulsatile tinnitus?

    International Nuclear Information System (INIS)

    Nowe, V.; Wang, X.L.; Gielen, J.; Goethem, J.Van; Oezsarlak, Oe.; De Schepper, A.M.; Parizel, P.M.; Ridder, D. De; Heyning, P.H.Van de

    2004-01-01

    The purpose was to investigate patients with unexplained pulsatile and non-pulsatile tinnitus by means of MR imaging of the cerebellopontine angle (CPA) and to correlate the clinical subtype of tinnitus with the location of a blood vessel (in the internal auditory canal or at the cisternal part of the VIIIth cranial nerve). Clinical presentation of tinnitus and perceptive hearing loss were correlated. In 47 patients with unexplained tinnitus, an MR examination of the CPA was performed. Virtual endoscopy reconstructions were obtained using a 3D axial thin-section high-resolution heavily T2-weighted gradient echo constructive interference in steady state (CISS) data-set. High-resolution T2-weighted CISS images showed a significantly higher number of vascular loops in the internal auditory canal in patients with arterial pulsatile tinnitus compared to patients with non-pulsatile tinnitus (P<0.00001). Virtual endoscopy images were used to investigate vascular contacts at the cisternal part of the VIIIth cranial nerve in patients with low pitch and high pitch non-pulsatile tinnitus. A significantly different distribution of the vascular contacts (P=0.0320) was found. Furthermore, a correlation between the clinical presentation of non-pulsatile tinnitus (high pitch and low pitch) and the perceptive hearing loss was found (P=0.0235). High-resolution heavily T2-weighted CISS images and virtual endoscopy of the CPA can be used to evaluate whether a vascular contact is present in the internal auditory canal or at the cisternal part of the VIIIth cranial nerve and whether the location of the vascular contact correlates with the clinical subtype of tinnitus. Our findings suggest that there is a tonotopical structure of the cisternal part of the VIIIth cranial nerve. A correlation between the clinical presentation of tinnitus and hearing loss was found. (orig.)

  6. Does the location of a vascular loop in the cerebellopontine angle explain pulsatile and non-pulsatile tinnitus?

    Energy Technology Data Exchange (ETDEWEB)

    Nowe, V; Wang, X L; Gielen, J; Goethem, J Van; Oezsarlak, Oe; De Schepper, A M; Parizel, P M [University of Antwerp, Department of Radiology, Edegem (Belgium); Ridder, D De [University of Antwerp, Department of Neurosurgery, Edegem (Belgium); Heyning, P.H.Van de [University of Antwerp, Department of Otorhinolaryngology, Edegem (Belgium)

    2004-12-01

    The purpose was to investigate patients with unexplained pulsatile and non-pulsatile tinnitus by means of MR imaging of the cerebellopontine angle (CPA) and to correlate the clinical subtype of tinnitus with the location of a blood vessel (in the internal auditory canal or at the cisternal part of the VIIIth cranial nerve). Clinical presentation of tinnitus and perceptive hearing loss were correlated. In 47 patients with unexplained tinnitus, an MR examination of the CPA was performed. Virtual endoscopy reconstructions were obtained using a 3D axial thin-section high-resolution heavily T2-weighted gradient echo constructive interference in steady state (CISS) data-set. High-resolution T2-weighted CISS images showed a significantly higher number of vascular loops in the internal auditory canal in patients with arterial pulsatile tinnitus compared to patients with non-pulsatile tinnitus (P<0.00001). Virtual endoscopy images were used to investigate vascular contacts at the cisternal part of the VIIIth cranial nerve in patients with low pitch and high pitch non-pulsatile tinnitus. A significantly different distribution of the vascular contacts (P=0.0320) was found. Furthermore, a correlation between the clinical presentation of non-pulsatile tinnitus (high pitch and low pitch) and the perceptive hearing loss was found (P=0.0235). High-resolution heavily T2-weighted CISS images and virtual endoscopy of the CPA can be used to evaluate whether a vascular contact is present in the internal auditory canal or at the cisternal part of the VIIIth cranial nerve and whether the location of the vascular contact correlates with the clinical subtype of tinnitus. Our findings suggest that there is a tonotopical structure of the cisternal part of the VIIIth cranial nerve. A correlation between the clinical presentation of tinnitus and hearing loss was found. (orig.)

  7. Kisspeptin and LH pulsatile temporal coupling in PCOS patients.

    Science.gov (United States)

    Katulski, Krzysztof; Podfigurna, Agnieszka; Czyzyk, Adam; Meczekalski, Blazej; Genazzani, Alessandro D

    2018-05-04

    To evaluate the temporal coupling between spontaneous kisspeptin and luteinizing hormone (LH) pulsatile releases in polycystic ovary syndrome (PCOS) patients. We examined 71 patients diagnosed with PCOS. A 2 h pulsatility study was performed to evaluate serum kisspeptin and LH pulse frequency and concentration, sampled every 10 min; baseline follicle-stimulating hormone (FSH), estradiol (E2), prolactin (PRL), cortisol, 17-hydroksy-progesterone (17OHP), testosterone (T), free testosterone index (FTI, and insulin levels were also measured. Detect and Specific Concordance (SC) algorithms were used to evaluate the temporal coupling associations between spontaneous episodic secretion of kisspeptin and LH. All PCOS patients demonstrated LH and kisspeptin pulsatile secretions. When the SC index was calculated across the sample of PCOS patients (n = 71), no temporal coupling was observed between kisspeptin and LH pulses. When PCOS patients were subdivided according to their menstrual cyclicity, oligomenorrheic patients demonstrated elevated kisspeptin pulse frequency. Additionally, the SC index reveled a temporal coupling between kisspeptin and LH secretory peaks only in eumenorrheic patients (n = 30, intermenstrual interval PCOS patients (intermenstrual interval > 45 days) did not demonstrate temporal coupling between kisspeptin and LH secretory peaks. The study of the endogenous kisspeptin and LH pulsatile release revealed the temporal coupling of kisspeptin with LH secretory pulses only in eumenorrheic. This data supports the hypothesis that neuroendocrine impairments in PCOS affect the coupling of kisspeptin with LH pulses and potentially worsen as the disease progresses, becoming unequivocally evident in oligomenorrheic PCOS patients.

  8. Pulsatile thyrotropin secretion in patients with Cushing's syndrome

    NARCIS (Netherlands)

    Adriaanse, R.; Brabant, G.; Endert, E.; Wiersinga, W. M.

    1994-01-01

    Pulsatile and circadian thyrotropin (TSH) secretion were studied in 16 healthy controls and in three patients with Cushing's syndrome who were studied twice (before and after treatment). Blood was sampled every 10 minutes over 24 hours for TSH (immunoradiometric assay [IRMA]). Mean 24-hour TSH in

  9. Pre-study of exhaust gases of diesel engines with 'open' and 'wall-flow' diesel particulate filters and their toxicity

    International Nuclear Information System (INIS)

    Verbeek, R.; Rabe, E.

    2007-04-01

    The Dutch Ministry of VROM (Housing, Spatial Planning and the Environment) has recently introduced financial support programmes for the installation of Diesel Particulate Filters on both passenger cars and trucks. To obtain funding, the minimum filtration efficiency for passenger cars should be 30%. For trucks there are 2 categories: minimally 50% and minimally 90%. The 30 to 50% filtration efficiency is in practice realized with so called 'open' filters. More than 90% filtration efficiency is accomplished with the 'wall-flow' or 'closed' diesel particulate filter. All filters are combined with an integrated oxidation catalyst. The oxidation catalyst is necessary for the regeneration of the particulate matter captured within the filter; it will also oxidize and hence reduce components like unburned hydrocarbons and carbon monoxide. For any automotive catalytic after-treatment system there is theoretically a risk of undesirable reactions that might occur under certain conditions. Therefore, a number of international studies were conducted during the last decade to investigate the emission of potentially toxic components from diesel engines equipped with wall-flow diesel particulate filters and with oxidation catalysts. The results of these studies were generally positive: a reduction of many potentially toxic components and particulate mass although in some cases certain potentially toxic components had increased. The open filters have a very similar oxidation catalyst but a different way of filter trapping. The question was raised whether there would be significant risks of formation of certain potentially toxic components or ultra-fine particles that might be harmful for human health. VROM asked TNO to conduct this pre-study, which was also meant as a preparation for an experimental study. Several international studies as well as studies conducted by TNO during the past 8 years were evaluated with the focus on information on known toxic components, on particle

  10. Bacterial community involved in the nitrogen cycle in a down-flow sponge-based trickling filter treating UASB effluent.

    Science.gov (United States)

    Mac Conell, E F A; Almeida, P G S; Martins, K E L; Araújo, J C; Chernicharo, C A L

    2015-01-01

    The bacterial community composition of a down-flow sponge-based trickling filter treating upflow anaerobic sludge blanket (UASB) effluent was investigated by pyrosequencing. Bacterial community composition considerably changed along the reactor and over the operational period. The dominant phyla detected were Proteobacteria, Verrucomicrobia, and Planctomycetes. The abundance of denitrifiers decreased from the top to the bottom and it was consistent with the organic matter concentration gradients. At lower loadings (organic and nitrogen loading rates), the abundance of anammox bacteria was higher than that of the ammonium-oxidizing bacteria in the upper portion of the reactor, suggesting that aerobic and anaerobic ammonium oxidation occurred. Nitrification occurred in all the compartments, while anammox bacteria prominently appeared even in the presence of high organic carbon to ammonia ratios (around 1.0-2.0 gCOD gN(-1)). The results suggest that denitrifiers, nitrifiers, and anammox bacteria coexisted in the reactor; thus, different metabolic pathways were involved in ammonium removal in the post-UASB reactor sponge-based.

  11. Application of Bayesian Maximum Entropy Filter in parameter calibration of groundwater flow model in PingTung Plain

    Science.gov (United States)

    Cheung, Shao-Yong; Lee, Chieh-Han; Yu, Hwa-Lung

    2017-04-01

    Due to the limited hydrogeological observation data and high levels of uncertainty within, parameter estimation of the groundwater model has been an important issue. There are many methods of parameter estimation, for example, Kalman filter provides a real-time calibration of parameters through measurement of groundwater monitoring wells, related methods such as Extended Kalman Filter and Ensemble Kalman Filter are widely applied in groundwater research. However, Kalman Filter method is limited to linearity. This study propose a novel method, Bayesian Maximum Entropy Filtering, which provides a method that can considers the uncertainty of data in parameter estimation. With this two methods, we can estimate parameter by given hard data (certain) and soft data (uncertain) in the same time. In this study, we use Python and QGIS in groundwater model (MODFLOW) and development of Extended Kalman Filter and Bayesian Maximum Entropy Filtering in Python in parameter estimation. This method may provide a conventional filtering method and also consider the uncertainty of data. This study was conducted through numerical model experiment to explore, combine Bayesian maximum entropy filter and a hypothesis for the architecture of MODFLOW groundwater model numerical estimation. Through the virtual observation wells to simulate and observe the groundwater model periodically. The result showed that considering the uncertainty of data, the Bayesian maximum entropy filter will provide an ideal result of real-time parameters estimation.

  12. Long-Term Durability Test for the Left Ventricular Assist System EVAHEART under the Physiologic Pulsatile Load.

    Science.gov (United States)

    Kitano, Tomoya; Iwasaki, Kiyotaka

    The EVAHEART Left Ventricular Assist System (LVAS) was designed for the long-term support of a patient with severe heart failure. It has an original water lubrication system for seal and bearing and wear on these parts was considered one of its critical failure modes. A durability test focusing on wear was designed herein. We developed a mock loop, which generates a physiologic pulsatile flow and is sufficiently durable for a long-term test. The pulsatile load and the low fluid viscosity enable the creation of a severe condition for the mechanical seal. A total of 18 EVAHEART blood pumps completed 2 years of operation under the pulsatile condition without any failure. It indicated the EVAHEART blood pump had a greater than 90% reliability with a 88% confidence level. The test was continued with six blood pumps and achieved an average of 8.6 years, which was longer than the longest clinical use in Japan. The test result showed that no catastrophic, critical, marginal, or minor failures of the blood pump or their symptoms were observed. The seal performance was maintained after the test. Moreover, the surface roughness did not change, which showed any burn or abnormal wear occurred. The original water lubrication system equipped in EVAHEART LVAS prevent severe wear on the seal and the bearing, and it can be used in the bridge to transplant and destination therapy.

  13. Dynamic Kalman filtering to separate low-frequency instabilities from turbulent fluctuations: Application to the Large-Eddy Simulation of unsteady turbulent flows

    International Nuclear Information System (INIS)

    Cahuzac, A; Boudet, J; Borgnat, P; Lévêque, E

    2011-01-01

    A dynamic method based on Kalman filtering is presented to isolate low-frequency unsteadiness from turbulent fluctuations in the large-eddy simulation (LES) of unsteady turbulent flows. The method can be viewed as an adaptive exponential smoothing, in which the smoothing factor adapts itself dynamically to the local behavior of the flow. Interestingly, the proposed method does not require any empirical tuning. In practice, it is used to estimate a shear-improved Smagorinsky viscosity, in which the low-frequency component of the velocity field is used to estimate a correction term to the Smagorinsky viscosity. The LES of the flow past a circular cylinder at Reynolds number Re D = 4.7 × 10 4 is examined as a challenging test case. Good comparisons are obtained with the experimental results, indicating the relevance of the shear-improved Smagorinsky model and the efficiency of the Kalman filtering. Finally, the adaptive cut-off of the Kalman filter is investigated, and shown to adapt locally and instantaneously to the complex flow around the cylinder.

  14. Influence of flow direction in the performance of anaerobic filters - doi: 10.4025/actascitechnol.v34i2.10353

    Directory of Open Access Journals (Sweden)

    Ronaldo Fia

    2012-03-01

    Full Text Available This work aimed to evaluate the performance of similar anaerobic filters operating with opposite wastewater flows, and compare mathematical models that describe the kinetics of organic matter degradation in both. Two pilot-scale filters were fed with domestic effluent – one filter worked as upflow (UAF and the other as downflow (DAF. Experimental COD data obtained from samples taken along the length of the filters were used to fit the first-order mathematical model, the model proposed by Leduy and Zajic (1973 and the model proposed by Brasil et al. (2007. The first model showed overestimated reaction constant (k values when compared to those obtained using the other models. The models proposed by Brasil et al. (2007 and Leduy and Zajic (1973 presented the highest coefficients of determination (R2. The average removal efficiencies of total COD were equal to 68 and 79% for UAF and DAF, respectively. The results revealed no significant differences between the two filters with regard to the variables applied.

  15. Enhanced azo dye removal in a continuously operated up-flow anaerobic filter packed with henna plant biomass

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jingang, E-mail: hjg@hdu.edu.cn [Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Wu, Mengke; Chen, Jianjun; Liu, Xiuyan; Chen, Tingting [Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wen, Yue [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Tang, Junhong; Xie, Zhengmiao [Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-12-15

    Highlights: • Henna stem mixed with ceramic media in UAF enhanced the removal of AO7. • Bio-reduction was the main AO7 removal pathway in henna-added UAF. • Adsorption and endogenous reduction were the main removal pathways in the control. • Henna played a multiple role in providing electron donors and redox mediator. - Abstract: Effects of henna plant biomass (stem) packed in an up-flow anaerobic bio-filter (UAF) on an azo dye (AO7) removal were investigated. AO7 removal, sulfanilic acid (SA) formation, and pseudo first-order kinetic constants for these reactions (k{sub AO7} and k{sub SA}) were higher in the henna-added UAF (R2) than in the control UAF without henna (R1). The maximum k{sub AO7} in R1 and R2 were 0.0345 and 0.2024 cm{sup −1}, respectively, on day 18; the corresponding molar ratios of SA formation to AO7 removal were 0.582 and 0.990. Adsorption and endogenous bio-reduction were the main AO7 removal pathways in R1, while in R2 bio-reduction was the dominant. Organics in henna could be released and fermented to volatile fatty acids, acting as effective electron donors for AO7 reduction, which was accelerated by soluble and/or fixed lawsone. Afterwards, the removal process weakened over time, indicating the demand of electron donation and lawsone-releasing during the long-term operation of UAF.

  16. Imaging findings of pulsatile tinnitus caused by sigmoid sinus abnormalities

    International Nuclear Information System (INIS)

    Liang Xihong; Wang Zhenchang; Gong Shusheng; Xia Yin; Wang Zhengyu; Yang Bentao; Yan Fei; Li Jing; Xian Junfang; Chen Guangli

    2010-01-01

    Objective: To study a rare CT finding of pulsatile tinnitus (PT) caused by sigmoid sinus abnormalities. Methods: The imaging data of PT caused by sigmoid sinus abnormalities were analyzed retrospectively in 15 patients (15 female). The median age was 45 years (24 to 63 years). The duration of persistence pulsatile tinnitus was from 0.5 year to 36.0 years (median time, 2.0 years). The tinnitus was at left side in 5 patients and right side in 10 patients. Fifteen patients underwent HRCT of the temporal bone. Of them, 12 patients underwent cerebral CT angiography and CT venogram (CTA/CTV), and 9 patients underwent cerebral digital subtraction angiography (DSA). Nine patients underwent transmastoid reconstruction surgery of the sigmoid sinus. Of them, the tinnitus was at left side in 2 patients and right side in 7 patients. Paired rank sum test was used to compare the cross-sectional area of the sigmoid sinus of the tinnitus side and normal side.Results: On HRCT, foca bony coarse defect is shown in the anterior sigmoid wall in 11 patients and anterolateral sigmoid wall in 4 patients. On CTA/CTV, the sigmoid sinus focally protuded into the adjacent mastoid air cells and formed diverticulum in 10 patients. The pulsatile tinnitus disappeared immediately after transmastoid reconstruction surgery of the sigmoid sinus in all 9 patients. The cross-sectional area of the sigmoid sinus of the tinnitus side was 100.6 (41.5-96.2)mm 2 , it was 77.0 (92.1-122.4)mm 2 in the nonmal side (Z=2.158, P=0.031). Conclusion: Focal bony defect of the sigmoid wall with sigmoid sinus diverticula is one of the causes which lead to pulsatile tinnitus, which can be easily identified by imaging examination. (authors)

  17. Imaging findings of pulsatile tinnitus caused by sigmoid sinus abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Xihong, Liang; Zhenchang, Wang; Shusheng, Gong; Yin, Xia; Zhengyu, Wang; Bentao, Yang; Fei, Yan; Jing, Li; Junfang, Xian; Guangli, Chen [Department of Radiology, Beijing Tongren Hospital, Capital University of Medical Science, Beijing (China)

    2010-04-15

    Objective: To study a rare CT finding of pulsatile tinnitus (PT) caused by sigmoid sinus abnormalities. Methods: The imaging data of PT caused by sigmoid sinus abnormalities were analyzed retrospectively in 15 patients (15 female). The median age was 45 years (24 to 63 years). The duration of persistence pulsatile tinnitus was from 0.5 year to 36.0 years (median time, 2.0 years). The tinnitus was at left side in 5 patients and right side in 10 patients. Fifteen patients underwent HRCT of the temporal bone. Of them, 12 patients underwent cerebral CT angiography and CT venogram (CTA/CTV), and 9 patients underwent cerebral digital subtraction angiography (DSA). Nine patients underwent transmastoid reconstruction surgery of the sigmoid sinus. Of them, the tinnitus was at left side in 2 patients and right side in 7 patients. Paired rank sum test was used to compare the cross-sectional area of the sigmoid sinus of the tinnitus side and normal side.Results: On HRCT, foca bony coarse defect is shown in the anterior sigmoid wall in 11 patients and anterolateral sigmoid wall in 4 patients. On CTA/CTV, the sigmoid sinus focally protuded into the adjacent mastoid air cells and formed diverticulum in 10 patients. The pulsatile tinnitus disappeared immediately after transmastoid reconstruction surgery of the sigmoid sinus in all 9 patients. The cross-sectional area of the sigmoid sinus of the tinnitus side was 100.6 (41.5-96.2)mm{sup 2}, it was 77.0 (92.1-122.4)mm{sup 2} in the nonmal side (Z=2.158, P=0.031). Conclusion: Focal bony defect of the sigmoid wall with sigmoid sinus diverticula is one of the causes which lead to pulsatile tinnitus, which can be easily identified by imaging examination. (authors)

  18. Pulsatility Index as a Diagnostic Parameter of Reciprocating Wall Shear Stress Parameters in Physiological Pulsating Waveforms.

    Directory of Open Access Journals (Sweden)

    Idit Avrahami

    Full Text Available Arterial wall shear stress (WSS parameters are widely used for prediction of the initiation and development of atherosclerosis and arterial pathologies. Traditional clinical evaluation of arterial condition relies on correlations of WSS parameters with average flow rate (Q and heart rate (HR measurements. We show that for pulsating flow waveforms in a straight tube with flow reversals that lead to significant reciprocating WSS, the measurements of HR and Q are not sufficient for prediction of WSS parameters. Therefore, we suggest adding a third quantity-known as the pulsatility index (PI-which is defined as the peak-to-peak flow rate amplitude normalized by Q. We examine several pulsating flow waveforms with and without flow reversals using a simulation of a Womersley model in a straight rigid tube and validate the simulations through experimental study using particle image velocimetry (PIV. The results indicate that clinically relevant WSS parameters such as the percentage of negative WSS (P[%], oscillating shear index (OSI and the ratio of minimum to maximum shear stress rates (min/max, are better predicted when the PI is used in conjunction with HR and Q. Therefore, we propose to use PI as an additional and essential diagnostic quantity for improved predictability of the reciprocating WSS.

  19. Can a numerically stable subgrid-scale model for turbulent flow computation be ideally accurate?: a preliminary theoretical study for the Gaussian filtered Navier-Stokes equations.

    Science.gov (United States)

    Ida, Masato; Taniguchi, Nobuyuki

    2003-09-01

    This paper introduces a candidate for the origin of the numerical instabilities in large eddy simulation repeatedly observed in academic and practical industrial flow computations. Without resorting to any subgrid-scale modeling, but based on a simple assumption regarding the streamwise component of flow velocity, it is shown theoretically that in a channel-flow computation, the application of the Gaussian filtering to the incompressible Navier-Stokes equations yields a numerically unstable term, a cross-derivative term, which is similar to one appearing in the Gaussian filtered Vlasov equation derived by Klimas [J. Comput. Phys. 68, 202 (1987)] and also to one derived recently by Kobayashi and Shimomura [Phys. Fluids 15, L29 (2003)] from the tensor-diffusivity subgrid-scale term in a dynamic mixed model. The present result predicts that not only the numerical methods and the subgrid-scale models employed but also only the applied filtering process can be a seed of this numerical instability. An investigation concerning the relationship between the turbulent energy scattering and the unstable term shows that the instability of the term does not necessarily represent the backscatter of kinetic energy which has been considered a possible origin of numerical instabilities in large eddy simulation. The present findings raise the question whether a numerically stable subgrid-scale model can be ideally accurate.

  20. The Up-Flow Biological Aerated Filter (UFBAF) process in treating mixed (urban and industrial) sewage. Its performance in a pilot plant; Proceso de biofiltracion Up-Flow Biological Aerated Filter-UFBAF para el tratamiento de aguas residuales mixtas (urbanas e industriales). Rendimientos en planta piloto

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The Up-Flow Biological Aerated Filter (UFBAF) process is a variant on the conventional activated sludge process. It is based on a greater sludge density, as the sludge sticks to expanded clay balls of between 3 and 6 mm in diameter. A trial of this process was conducted using a pilot plant whose main components were a bio filter for eliminating organic matter and a single layer filter for eliminating the solids left over from the bio filter. the effluent employed in the trial was waste water that had been pretreated by sieving and primary decanting. The main object of these trials was to determine the capacity and limits of the treatment in eliminating organic matter under overload conditions in order to determine the recovery time required to return to normal operation. (Author) 3 refs.

  1. Closing in on the Mechanisms of Pulsatile Insulin Secretion.

    Science.gov (United States)

    Bertram, Richard; Satin, Leslie S; Sherman, Arthur S

    2018-03-01

    Insulin secretion from pancreatic islet β-cells occurs in a pulsatile fashion, with a typical period of ∼5 min. The basis of this pulsatility in mouse islets has been investigated for more than four decades, and the various theories have been described as either qualitative or mathematical models. In many cases the models differ in their mechanisms for rhythmogenesis, as well as other less important details. In this Perspective, we describe two main classes of models: those in which oscillations in the intracellular Ca 2+ concentration drive oscillations in metabolism, and those in which intrinsic metabolic oscillations drive oscillations in Ca 2+ concentration and electrical activity. We then discuss nine canonical experimental findings that provide key insights into the mechanism of islet oscillations and list the models that can account for each finding. Finally, we describe a new model that integrates features from multiple earlier models and is thus called the Integrated Oscillator Model. In this model, intracellular Ca 2+ acts on the glycolytic pathway in the generation of oscillations, and it is thus a hybrid of the two main classes of models. It alone among models proposed to date can explain all nine key experimental findings, and it serves as a good starting point for future studies of pulsatile insulin secretion from human islets. © 2018 by the American Diabetes Association.

  2. Development of a gastroretentive pulsatile drug delivery platform.

    Science.gov (United States)

    Thitinan, Sumalee; McConville, Jason T

    2012-04-01

    To develop a novel gastroretentive pulsatile drug delivery platform by combining the advantages of floating dosage forms for the stomach and pulsatile drug delivery systems. A gastric fluid impermeable capsule body was used as a vessel to contain one or more drug layer(s) as well as one or more lag-time controlling layer(s). A controlled amount of air was sealed in the innermost portion of the capsule body to reduce the overall density of the drug delivery platform, enabling gastric floatation. An optimal mass fill inside the gastric fluid impermeable capsule body enabled buoyancy in a vertical orientation to provide a constant surface area for controlled erosion of the lag-time controlling layer. The lag-time controlling layer consisted of a swellable polymer, which rapidly formed a gel to seal the mouth of capsule body and act as a barrier to gastric fluid ingress. By varying the composition of the lag-time controlling layer, it was possible to selectively program the onset of the pulsatile delivery of a drug. This new delivery platform offers a new method of delivery for a variety of suitable drugs targeted in chronopharmaceutical therapy. This strategy could ultimately improve drug efficacy and patient compliance, and reduce harmful side effects by scaling back doses of drug administered. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  3. The effects of material loading and flow rate on the disinfection of pathogenic microorganisms using cation resin-silver nanoparticle filter system

    Science.gov (United States)

    Mpenyana-Monyatsi, L.; Mthombeni, N. H.; Onyango, M. S.; Momba, M. N. B.

    2017-08-01

    Waterborne diseases have a negative impact on public health in instances where the available drinking water is of a poor quality. Decentralised systems are needed to provide safe drinking water to rural communities. Therefore, the present study aimed to develop and investigate the point-of-use (POU) water treatment filter packed with resin-coated silver nanoparticles. The filter performance was evaluated by investigating the effects of various bed masses (10 g, 15 g, 20 g) and flow rates (2 mL/min, 5 mL/min, 10 mL/min) by means of breakthrough curves for the removal efficiency of presumptive Escherichia coli, Shigella dysenteriae, Salmonella typhimurium and Vibrio cholerae from spiked groundwater samples. The results revealed that, as the bed mass increases the breakthrough time also increases with regards to all targeted microorganisms. However, when the flow rate increases the breakthrough time decreased. These tests demonstrated that resin-coated silver nanoparticle can be an effective material in removing all targeted microorganisms at 100% removal efficiency before breakthrough points are achieved. Moreover the filter system demonstrated that it is capable of producing 15 L/day of treated water at an operating condition of 10 mL/min flow rate and 15 g bed mass, which is sufficient to provide for seven individuals in the household if they consume 2 L/person/day for drinking purpose. Therefore, the bed mass of the filter system should be increased in order for it to produce sufficient water that will conform to the daily needs of an individual.

  4. Rapid washing of filter paper discs in a solid-phase radioimmunoassay with a constant flow washing device

    International Nuclear Information System (INIS)

    Kemeny, D.M.; West, F.B.

    1982-01-01

    A machine has been developed for the rapid washing of the cellulose filter paper discs that are used in a number of radioimmunoassays. The machine is simple in design, easy to use, and is capable of washing 96 filter paper discs simultaneously. The efficiency of the machine is demonstrated by a RAST assay for measuring IgE antibodies to the venom. Time taken to wash the discs was reduced 3-fold without loss of sensitivity or reproducibility. (Auth.)

  5. The pulsatility index and the resistive index in renal arteries. Associations with long-term progression in chronic renal failure

    DEFF Research Database (Denmark)

    Petersen, L J; Petersen, J R; Talleruphuus, U

    1997-01-01

    The pulsatility index (PI) and the resistive index (RI) are used as pulsed-wave Doppler measurements of downstream renal artery resistance. PI and RI have been found to correlate with renal vascular resistance, filtration fraction and effective renal plasma flow in chronic renal failure. The aim...... of the present study was to evaluate the potential relationship between these indices and the rate of decline in renal function, as reflected by changes in different parameters of renal function in patients with chronic renal failure....

  6. UV filters analyzed by isotope diluted TurboFlow-LC-MS/MS in urine from Danish children and adolescents

    DEFF Research Database (Denmark)

    Frederiksen, Hanne; Nielsen, Ole; Skakkebaek, Niels E

    2017-01-01

    INTRODUCTION: Experimental studies indicate that some chemicals with UV blocking properties (known as UV filters) can act as endocrine disruptors. UV filters are used in sunscreens and other cosmetic- and personal care products, as well as in other consumer products such as food packaging, clothing...... and furniture textiles to protect the products against UV radiation. Here we present the urinary excretion of suspected endocrine active UV filters in Danish children and adolescents recruited from the general population. METHODS: The content of benzophenone (BP), benzophenone-1 (BP-1), benzophenone-2 (BP-2......), benzophenone-3 (BP-3), 5-chloro-2- hydroxybenzophenone (BP-7), 4-hydroxybenzophenone (4-HBP), 4-methyl-benzophenone (4-MBP), 3-(4- methylbenzylidene)-camphor (4-MBC) and 3-benzylidene camphor (3-BC) were monitored in 24h urine and two consecutive first morning samples from 129 healthy Danish children...

  7. Air sampling by pumping through a filter: effects of air flow rate, concentration, and decay of airborne substances

    OpenAIRE

    Šoštarić, Marko; Petrinec, Branko; Babić, Dinko

    2016-01-01

    This paper tackles the issue of interpreting the number of airborne particles adsorbed on a filter through which a certain volume of sampled air has been pumped. This number is equal to the product of the pumped volume and particle concentration in air, but only if the concentration is constant over time and if there is no substance decomposition on the filter during sampling. If this is not the case, one must take into account the inconstancy of the concentration and the decay law for a give...

  8. Cardiac-driven Pulsatile Motion of Intracranial Cerebrospinal Fluid Visualized Based on a Correlation Mapping Technique.

    Science.gov (United States)

    Yatsushiro, Satoshi; Sunohara, Saeko; Hayashi, Naokazu; Hirayama, Akihiro; Matsumae, Mitsunori; Atsumi, Hideki; Kuroda, Kagayaki

    2018-04-10

    A correlation mapping technique delineating delay time and maximum correlation for characterizing pulsatile cerebrospinal fluid (CSF) propagation was proposed. After proofing its technical concept, this technique was applied to healthy volunteers and idiopathic normal pressure hydrocephalus (iNPH) patients. A time-resolved three dimensional-phase contrast (3D-PC) sampled the cardiac-driven CSF velocity at 32 temporal points per cardiac period at each spatial location using retrospective cardiac gating. The proposed technique visualized distributions of propagation delay and correlation coefficient of the PC-based CSF velocity waveform with reference to a waveform at a particular point in the CSF space. The delay time was obtained as the amount of time-shift, giving the maximum correlation for the velocity waveform at an arbitrary location with that at the reference location. The validity and accuracy of the technique were confirmed in a flow phantom equipped with a cardiovascular pump. The technique was then applied to evaluate the intracranial CSF motions in young, healthy (N = 13), and elderly, healthy (N = 13) volunteers and iNPH patients (N = 13). The phantom study demonstrated that root mean square error of the delay time was 2.27%, which was less than the temporal resolution of PC measurement used in this study (3.13% of a cardiac cycle). The human studies showed a significant difference (P correlation coefficient between the young, healthy group and the other two groups. A significant difference (P correlation coefficients in intracranial CSF space among all groups. The result suggests that the CSF space compliance of iNPH patients was lower than that of healthy volunteers. The correlation mapping technique allowed us to visualize pulsatile CSF velocity wave propagations as still images. The technique may help to classify diseases related to CSF dynamics, such as iNPH.

  9. Pulsatile luteinising hormone releasing hormone for ovulation induction in subfertility associated with polycystic ovary syndrome

    NARCIS (Netherlands)

    Bayram, N.; van Wely, M.; Vandekerckhove, P.; Lilford, R.; van der Veen, F.

    2000-01-01

    BACKGROUND: In normal menstrual cycles, gonadotrophin releasing hormone (GnRH) secretion is pulsatile, with intervals of 60-120 minutes in the follicular phase. Treatment with pulsatile GnRH infusion by the intra-venous or subcutaneous route using a portable pump has been used successfully in

  10. Pulsatile gonadotrophin releasing hormone for ovulation induction in subfertility associated with polycystic ovary syndrome

    NARCIS (Netherlands)

    Bayram, N.; van Wely, M.; van der Veen, F.

    2004-01-01

    BACKGROUND: In normal menstrual cycles, gonadotrophin releasing hormone (GnRH) secretion is pulsatile, with intervals of 60-120 minutes in the follicular phase. Treatment with pulsatile GnRH infusion by the intravenous or subcutaneous route using a portable pump has been used successfully in

  11. Modelling of air flows in pleated filters and of their clogging by solid particles; Modelisation des ecoulements d'air et du colmatage des filtres plisses par des aerosols solides

    Energy Technology Data Exchange (ETDEWEB)

    Del Fabbro, L

    2002-07-01

    The devices of air cleaning against particles are widely spread in various branches of industry: nuclear, motor, food, electronic,...; among these devices, numerous are constituted by pleated porous media to increase the surface of filtration and thus to reduce the pressure drop, for given air flow. The objective of our work is to compensate a lack evident of knowledge on the evolution of the pressure drop of pleated filter during the clogging and to deduct a modelling from it, on the basis of experiments concerning industrial filters of nuclear and car types. The obtained model is a function of characteristics of the filtering medium and pleats, of the characteristics of solid particles deposited on the filter, of the mass of particles and of the aeraulic conditions of air flow. It also depends on data on the clogging of flat filters of equivalent medium. To elaborate this model of pressure drop, an initial stage was carried out in order to characterize, experimentally and numerically, the pressure drop and the distribution of air flow in clean pleated filters of nuclear (high efficiency particulate air filter, in fiberglasses) and car (mean efficiency filter, in fibers of cellulose) types. The numerical model allowed to understand the fundamental role played by the aeraulic resistance of the filtering medium. From an non-dimensional approach, we established a semi-empirical model of pressure drop for a clean pleated filter valid for both studied types of medium; this model is used of first base for the development of the final model of clogging. The study of the clogging of the filters showed the complexity of the phenomenon dependent mainly on a reduction of the surface of filtration. This observation brings us to propose a clogging of pleated filters in three phases. Both first phases are similar in those observed for flat filters, while last phase corresponds to a reduction of the surface of filtration and leads a strong increase of the filter pressure drop

  12. Induction of pulsatile secretion of leptin in horses following thyroidectomy.

    Science.gov (United States)

    Buff, Preston R; Messer, Nat T; Cogswell, Andria M; Wilson, David A; Johnson, Philip J; Keisler, Duane H; Ganjam, Venkataseshu K

    2007-02-01

    Endocrine characteristics of Quarter Horse-type mares were determined during a 68 h feed deprivation and again in the same mares following surgical thyroidectomy (THX). A crossover experimental design was implemented, in which mares received brome hay available ad libitum (FED) or were food deprived (RES) for 68 h. Blood samples were collected every 20 min for 48 h, beginning 20 h after the onset of food deprivation. Concentrations of triiodothyronine and thyroxine were undetectable post-THX. Plasma concentrations of thyrotropin were greater post-THX versus pre-THX (P<0 x 001). Plasma concentrations of leptin were greater in the THX FED group than in the THX RES group (P<0 x 01). The existence of leptin pulse secretion was found only in post-THX compared with the same horses pre-THX (P=0 x 02). We theorize that non-pulsatile secretion of leptin may have contributed to the survival of this species, as it evolved in the regions of seasonal availability of food. Lack of pulsatile secretion of leptin may contribute to the accumulation of energy stores by modulating leptin sensitivity.

  13. Multicomponent kinetic determination of lanthanides with stopped-flow, diode array spectrophotometry and the extended Kalman filter

    International Nuclear Information System (INIS)

    Quencer, B.M.; Crouch, S.R.

    1994-01-01

    The application of the extended Kalman filter to multicomponent kinetic data is described. The method is based on obtaining data at multiple wavelengths over time using a linear photodiode array detector. The extended Kalman filter is used to process the data obtained. It is shown that accurate results can be obtained even if the estimated value of the rate constant is not completely accurate or reproducible. No pH, ionic strength, or temperature controls were used in testing the chemical system. A system of three lanthanides reacting with 4-(2-pyridylazo)resorcinol (PAR) was used. Accurate estimates of concentrations were obtained even though the relative rate constants for the reactions of La, Pr, and Nd with PAR were 1:1.7:1.9, and a high degree of spectral overlap is present. 23 refs., 4 figs., 4 tabs

  14. Filters in nuclear facilities

    International Nuclear Information System (INIS)

    Berg, K.H.; Wilhelm, J.G.

    1985-01-01

    The topics of the nine papers given include the behavior of HEPA filters during exposure to air flows of high humidity as well as of high differential pressure, the development of steel-fiber filters suitable for extreme operating conditions, and the occurrence of various radioactive iodine species in the exhaust air from boiling water reactors. In an introductory presentation the German view of the performance requirements to be met by filters in nuclear facilities as well as the present status of filter quality assurance are discussed. (orig.) [de

  15. Corrosion and flow resistance of metal filter elements used in the cleanup of syngas from the Transport Gasifier at the Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Dahlin; E. Carl Landham; Xiaofeng Guan [Southern Research Institute, Wilsonville, AL (United States). Power Systems Development Facility

    2008-07-01

    At the Power Systems Development Facility (PSDF), a variety of filter elements and failsafes are being tested for the cleanup of coal-generated syngas from the Kellogg Brown and Root (KBR) Transport Gasifier. Thus far, no evidence of corrosion or plugging has been found in the HR-160 failsafes or sinterned metal fiber elements. However, a progressive corrosion and increase in pressure drop has been noted in the iron aluminide elements. The corrosion was first detected as reddish-brown spots of iron oxide after about 2,000 to 3,000 hours of syngas exposure. As the corrosion progressed, the spots of iron oxide merged to form a continuous scale after about 5,000 to 5,500 hours of exposure. With additional exposure, a black scale containing iron sulfide also appeared, and localized areas of sulfidation and plugging were noted in element cross sections. These effects have not resulted in any significant reduction in tensile strength, but a gradual increase in the clean element pressure drop has been noted. Flow test results suggest that there is an interaction between the corroded filter surface and the dustcake that effectively increases the residual cake flow resistance and baseline pressure drop. 10 refs., 14 figs., 1 tab.

  16. Reference Curve for the Mean Uterine Artery Pulsatility Index in Singleton Pregnancies.

    Science.gov (United States)

    Weichert, Alexander; Hagen, Andreas; Tchirikov, Michael; Fuchs, Ilka B; Henrich, Wolfgang; Entezami, Michael

    2017-05-01

    Doppler sonography of the uterine artery (UA) is done to monitor pregnancies, because the detected flow patterns are useful to draw inferences about possible disorders of trophoblast invasion. Increased resistance in the UA is associated with an increased risk of preeclampsia and/or intrauterine growth restriction (IUGR) and perinatal mortality. In the absence of standardized figures, the normal ranges of the various available reference curves sometimes differ quite substantially from one another. The causes for this are differences in the flow patterns of the UA depending on the position of the pulsed Doppler gates as well as branching of the UA. Because of the discrepancies between the different reference curves and the practical problems this poses for guideline recommendations, we thought it would be useful to create our own reference curves for Doppler measurements of the UA obtained from a singleton cohort under standardized conditions. This retrospective cohort study was carried out in the Department of Obstetrics of the Charité - Universitätsmedizin Berlin, the Department for Obstetrics and Prenatal Medicine of the University Hospital Halle (Saale) and the Center for Prenatal Diagnostics and Human Genetics Kurfürstendamm 199. Available datasets from the three study locations were identified and reference curves were generated using the LMS method. Measured values were correlated with age of gestation, and a cubic model and Box-Cox power transformation (L), the median (M) and the coefficient of variation (S) were used to smooth the curves. 103 720 Doppler examinations of the UA carried out in singleton pregnancies from the 11th week of gestation (10 + 1 GW) were analyzed. The mean pulsatility index (Mean PI) showed a continuous decline over the course of pregnancy, dropping to a plateau of around 0.84 between the 23rd and 27th GW, after which it decreased again. Age of gestation, placental position, position of pulsed Doppler gates and branching of

  17. Analysis and Experimental Verification of New Power Flow Control for Grid-Connected Inverter with LCL Filter in Microgrid

    Science.gov (United States)

    Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang

    2014-01-01

    Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method. PMID:24672304

  18. Analysis and experimental verification of new power flow control for grid-connected inverter with LCL filter in microgrid.

    Science.gov (United States)

    Gu, Herong; Guan, Yajuan; Wang, Huaibao; Wei, Baoze; Guo, Xiaoqiang

    2014-01-01

    Microgrid is an effective way to integrate the distributed energy resources into the utility networks. One of the most important issues is the power flow control of grid-connected voltage-source inverter in microgrid. In this paper, the small-signal model of the power flow control for the grid-connected inverter is established, from which it can be observed that the conventional power flow control may suffer from the poor damping and slow transient response. While the new power flow control can mitigate these problems without affecting the steady-state power flow regulation. Results of continuous-domain simulations in MATLAB and digital control experiments based on a 32-bit fixed-point TMS320F2812 DSP are in good agreement, which verify the small signal model analysis and effectiveness of the proposed method.

  19. DAFi: A directed recursive data filtering and clustering approach for improving and interpreting data clustering identification of cell populations from polychromatic flow cytometry data.

    Science.gov (United States)

    Lee, Alexandra J; Chang, Ivan; Burel, Julie G; Lindestam Arlehamn, Cecilia S; Mandava, Aishwarya; Weiskopf, Daniela; Peters, Bjoern; Sette, Alessandro; Scheuermann, Richard H; Qian, Yu

    2018-04-17

    Computational methods for identification of cell populations from polychromatic flow cytometry data are changing the paradigm of cytometry bioinformatics. Data clustering is the most common computational approach to unsupervised identification of cell populations from multidimensional cytometry data. However, interpretation of the identified data clusters is labor-intensive. Certain types of user-defined cell populations are also difficult to identify by fully automated data clustering analysis. Both are roadblocks before a cytometry lab can adopt the data clustering approach for cell population identification in routine use. We found that combining recursive data filtering and clustering with constraints converted from the user manual gating strategy can effectively address these two issues. We named this new approach DAFi: Directed Automated Filtering and Identification of cell populations. Design of DAFi preserves the data-driven characteristics of unsupervised clustering for identifying novel cell subsets, but also makes the results interpretable to experimental scientists through mapping and merging the multidimensional data clusters into the user-defined two-dimensional gating hierarchy. The recursive data filtering process in DAFi helped identify small data clusters which are otherwise difficult to resolve by a single run of the data clustering method due to the statistical interference of the irrelevant major clusters. Our experiment results showed that the proportions of the cell populations identified by DAFi, while being consistent with those by expert centralized manual gating, have smaller technical variances across samples than those from individual manual gating analysis and the nonrecursive data clustering analysis. Compared with manual gating segregation, DAFi-identified cell populations avoided the abrupt cut-offs on the boundaries. DAFi has been implemented to be used with multiple data clustering methods including K-means, FLOCK, FlowSOM, and

  20. Filter arrays

    Science.gov (United States)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  1. Experience With a Long-term Pulsatile Ventricular Assist Device as a Bridge to Heart Transplant in Adults.

    Science.gov (United States)

    Gómez Bueno, Manuel; Segovia Cubero, Javier; Serrano Fiz, Santiago; Ugarte Basterrechea, Juan; Hernández Pérez, Francisco José; Goirigolzarri Artaza, Josebe; Castedo Mejuto, Evaristo; Burgos Lázaro, Raúl; García Montero, Carlos; Moñivas Palomero, Vanessa; Mingo Santos, Susana; González Román, Ana Isabel; Álvarez Avelló, José Manuel; Vidal Fernández, Mercedes; Forteza Gil, Alberto; Alonso-Pulpón, Luis

    2017-09-01

    Most long-term ventricular assist devices (VADs) that are currently implanted are intracorporeal continuous-flow devices. Their main limitations include their high cost and inability to provide biventricular support. The aim of this study was to describe the results of using paracorporeal pulsatile-flow VADs as a bridge to transplant (BTT) in adult patients. Retrospective analysis of the characteristics, complications, and outcomes of a single-center case series of consecutive patients treated with the EXCOR VAD as BTT between 2009 and 2015. During the study period, 25 VADs were implanted, 6 of them biventricular. Ventricular assist devices were indicated directly as a BTT in 12 patients and as a bridge to decision in 13 due to the presence of potentially reversible contraindications or chance of heart function recovery. Twenty patients (80%) were successfully bridged to heart transplant after a median of 112 days (range, 8-239). The main complications included infectious (52% of patients), neurological events (32%, half of them fatal), bleeding (28%), and VAD malfunction requiring component replacement (28%). Eighty percent of patients with the EXCOR VAD as BTT achieved the goal after an average of almost 4 months of support. The most frequent complications were infectious, and the most severe were neurological. In our enivonment, the use of these pulsatile-flow VAD as BTT is a feasible strategy that obtains similar outcomes to those of intracorporeal continuous-flow devices. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  2. Filter bed systems treating domestic wastewater in the Nordic countries - Performance and reuse of filter media

    DEFF Research Database (Denmark)

    Jenssen, Petter D.; Krogstad, T.; Paruch, A.M.

    2010-01-01

    Nine filter beds have been constructed in the Nordic countries, Denmark, Finland, Norway and Sweden. Filter beds consist of a septic tank followed by an aerobic pre-treatment biofilter and a subsequent saturated flow grass-covered filter. Thus, filter beds are similar to subsurface flow construct...

  3. FEATURES OF LONG-TERM MECHANICAL CIRCULATORY SUPPORT WITH CONTINUOUS-FLOW PUMP

    Directory of Open Access Journals (Sweden)

    G. P. Itkin

    2012-01-01

    Full Text Available In a review of the comparative analysis of methods and tools for long-term mechanical circulatory support with continuous flow and pulsatile flow implantable pumps. Particular attention is paid to the choice of the optimal modes of the operation of pumps based on the physical principles of the interaction between a the steady flow of blood to the pulsatile mechanics of the heart chambers. 

  4. Planar Spontaneous Raman-Scattering Spectroscopy for Reacting Jet-Flow Diagnostics Using Lyot-Ehman Tunable Filter

    Science.gov (United States)

    Sharaborin, D. K.; Markovich, D. M.; Dulin, V. M.

    2018-01-01

    The spatial-density distribution in burning a premixed methane-air swirling turbulent jet has been studied by measuring the intensity of the Stokes branch of spontaneous Raman scattering for vibrational-rotational transitions in nitrogen. An optical system comprising a Nd:YAG laser and the liquid-crystalline Lyot-Ehman tunable filter has been created and tested by measuring the temperature and density fields in a cone-shaped laminar flame. It has been established that the difference of data obtained using the Stokes component of Raman scattering in nitrogen and its ratio to the anti-Stokes component does not exceed 5% in a temperature range from 300 to 1800 K.

  5. Gas exchange efficiency of an oxygenator with integrated pulsatile displacement blood pump for neonatal patients.

    Science.gov (United States)

    Schlanstein, Peter C; Borchardt, Ralf; Mager, Ilona; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Arens, Jutta

    2014-01-01

    Oxygenators have been used in neonatal extracorporeal membrane oxygenation (ECMO) since the 1970s. The need to develop a more effective oxygenator for this patient cohort exists due to their size and blood volume limitations. This study sought to validate the next design iteration of a novel oxygenator for neonatal ECMO with an integrated pulsatile displacement pump, thereby superseding an additional blood pump. Pulsating blood flow within the oxygenator is generated by synchronized active air flow expansion and contraction of integrated silicone pump tubes and hose pinching valves located at the oxygenator inlet and outlet. The current redesign improved upon previous prototypes by optimizing silicone pump tube distribution within the oxygenator fiber bundle; introduction of an oval shaped inner fiber bundle core, and housing; and a higher fiber packing density, all of which in combination reduced the priming volume by about 50% (50 to 27 mL and 41 to 20 mL, respectively). Gas exchange efficiency was tested for two new oxygenators manufactured with different fiber materials: one with coating and one with smaller pore size, both capable of long-term use (OXYPLUS® and CELGARD®). Results demonstrated that the oxygen transfer for both oxygenators was 5.3-24.7 mlO2/min for blood flow ranges of 100-500 mlblood/min. Carbon dioxide transfer for both oxygenators was 3.7-26.3 mlCO2/min for the same blood flow range. These preliminary results validated the oxygenator redesign by demonstrating an increase in packing density and thus in gas transfer, an increase in pumping capacity and a reduction in priming volume.

  6. Application and advantages of novel clay ceramic particles (CCPs) in an up-flow anaerobic bio-filter (UAF) for wastewater treatment.

    Science.gov (United States)

    Han, Wei; Yue, Qinyan; Wu, Suqing; Zhao, Yaqin; Gao, Baoyu; Li, Qian; Wang, Yan

    2013-06-01

    Utilization of clay ceramic particles (CCPs) as the novel filter media employed in an up-flow anaerobic bio-filter (UAF) was investigated. After a series of tests and operations, CCPs have presented higher total porosity and roughness, meanwhile lower bulk and grain density. When CCPs were utilized as fillers, the reactor had a shorter start up period of 45 days comparing with conventional reactors, and removal rate of chemical oxygen demand (COD) still reached about 76% at a relatively lower temperature during the stable state. In addition, degradation of COD and ammonia nitrogen (NH4-N) at different media height along the reactor was evaluated, and the dates showed that the main reduction process happened within the first 30 cm media height from the bottom flange. Five phases were observed according to different organic loadings during the experiment period, and the results indicated that COD removal increased linearly when the organic loading was increased. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Flow-thermal analysis of power plant with budget dry pocket filter type TTFP 6/220 in foundry AD Kikinda

    Directory of Open Access Journals (Sweden)

    Salemović Duško R.

    2014-01-01

    Full Text Available In this paper, the power budget is given in the application of contemporary and modern methods in the treatment of air from the production facility in which the electric arc furnace. For this calculation, for existing construction and known dimensions dusters calculate flow rates and temperatures at various points of the complete piping systems for waste gases. The analysis contributes maximum energy utilization, significant financial savings and increase in energy and environmental efficiency. Engineering supervision and active computer control of a computer in pieces of PLC are supported. The possible errors are diagnosed and their causes are explained and the procedures to be followed when it comes to them. Also, the paper gives the guidelines for the maintenance and servicing of equipment for proper operation of the filter plant. The tables presented in the plant control activities to be conducted at periodic intervals.

  8. Backflushable filter insert

    International Nuclear Information System (INIS)

    Keith, R.C.; Vandenberg, T.; Randolph, M.C.; Lewis, T.B.; Gillis, P.J. Jr.

    1988-01-01

    Filter elements are mounted on a tube plate beneath an accumulator chamber whose wall is extended by skirt and flange to form a closure for the top of pressure vessel. The accumulator chamber is annular around a central pipe which serves as the outlet for filtered water passing from the filter elements. The chamber contains filtered compressed air from supply. Periodically the filtration of water is stopped and vessel is drained. Then a valve is opened, allowing the accumulated air to flow from chamber up a pipe and down pipe, pushing the filtered water from pipe back through the filter elements to clean them. The accumulator chamber is so proportioned, relative to the volume of the system communicating therewith during backflushing, that the equilibrium pressure during backflushing cannot exceed the pressure rating of the vessel. However a line monitors the pressure at the top of the vessel, and if it rises too far a bleed valve is automatically opened to depressurise the system. The chamber is intended to replace the lid of an existing vessel to convert a filter using filter aid to one using permanent filter elements. (author)

  9. A flow-through aqueous standard generation system for thin film microextraction investigations of UV filters and biocides partitioning to different environmental compartments

    International Nuclear Information System (INIS)

    Ahmadi, Fardin; Sparham, Chris; Pawliszyn, Janusz

    2017-01-01

    In this paper problems associated with preparation of aqueous standard of highly hydrophobic compounds such as partial precipitation, being lost on the surfaces, low solubility in water and limited sample volume for accurate determination of their distribution coefficients are addressed. The following work presents two approaches that utilize blade thin film microextraction (TFME) to investigate partitioning of UV filters and biocides to humic acid (dissolved organic carbon) and sediment. A steady-state concentration of target analytes in water was generated using a flow-through aqueous standard generation (ASG) system. Dialysis membranes, a polytetrafluoroethylene permeation tube, and a frit porous (0.5 μm) coated by epoxy glue were basic elements used for preparation of the ASG system. In the currently presented study, negligible depletion TFME using hydrophilic-lipophilic balance (HLB) and octadecyl silica-based (C18) sorbents was employed towards the attainment of free concentration values of target analytes in the studied matrices. Thin film geometry provided a large volume of extraction phase, which improved the sensitivity of the method towards highly matrix-bound analytes. Extractions were performed in the equilibrium regime so as to prevent matrix effects and with aims to reach maximum method sensitivity for all analytes under study. Partitioning of analytes on dissolved organic carbon (DOC) was investigated in ASG to facilitate large sample volume conditions. Binding percentages and DOC distribution coefficients (Log K DOC ) ranged from 20 to 98% and 3.71–6.72, respectively. Furthermore, sediment-water partition coefficients (K d ), organic-carbon normalized partition coefficients (Log K OC ), and DOC distribution coefficients (Log K DOC ) were investigated in slurry sediment, and ranged from 33 to 2860, 3.31–5.24 and 4.52–5.75 Lkg -1 , respectively. The obtained results demonstrated that investigations utilizing ASG and TFME can yield reliable

  10. Dynamic time warping and machine learning for signal quality assessment of pulsatile signals

    International Nuclear Information System (INIS)

    Li, Q; Clifford, G D

    2012-01-01

    In this work, we describe a beat-by-beat method for assessing the clinical utility of pulsatile waveforms, primarily recorded from cardiovascular blood volume or pressure changes, concentrating on the photoplethysmogram (PPG). Physiological blood flow is nonstationary, with pulses changing in height, width and morphology due to changes in heart rate, cardiac output, sensor type and hardware or software pre-processing requirements. Moreover, considerable inter-individual and sensor-location variability exists. Simple template matching methods are therefore inappropriate, and a patient-specific adaptive initialization is therefore required. We introduce dynamic time warping to stretch each beat to match a running template and combine it with several other features related to signal quality, including correlation and the percentage of the beat that appeared to be clipped. The features were then presented to a multi-layer perceptron neural network to learn the relationships between the parameters in the presence of good- and bad-quality pulses. An expert-labeled database of 1055 segments of PPG, each 6 s long, recorded from 104 separate critical care admissions during both normal and verified arrhythmic events, was used to train and test our algorithms. An accuracy of 97.5% on the training set and 95.2% on test set was found. The algorithm could be deployed as a stand-alone signal quality assessment algorithm for vetting the clinical utility of PPG traces or any similar quasi-periodic signal. (paper)

  11. Dynamic time warping and machine learning for signal quality assessment of pulsatile signals.

    Science.gov (United States)

    Li, Q; Clifford, G D

    2012-09-01

    In this work, we describe a beat-by-beat method for assessing the clinical utility of pulsatile waveforms, primarily recorded from cardiovascular blood volume or pressure changes, concentrating on the photoplethysmogram (PPG). Physiological blood flow is nonstationary, with pulses changing in height, width and morphology due to changes in heart rate, cardiac output, sensor type and hardware or software pre-processing requirements. Moreover, considerable inter-individual and sensor-location variability exists. Simple template matching methods are therefore inappropriate, and a patient-specific adaptive initialization is therefore required. We introduce dynamic time warping to stretch each beat to match a running template and combine it with several other features related to signal quality, including correlation and the percentage of the beat that appeared to be clipped. The features were then presented to a multi-layer perceptron neural network to learn the relationships between the parameters in the presence of good- and bad-quality pulses. An expert-labeled database of 1055 segments of PPG, each 6 s long, recorded from 104 separate critical care admissions during both normal and verified arrhythmic events, was used to train and test our algorithms. An accuracy of 97.5% on the training set and 95.2% on test set was found. The algorithm could be deployed as a stand-alone signal quality assessment algorithm for vetting the clinical utility of PPG traces or any similar quasi-periodic signal.

  12. Recent Advancement and Technological Aspects of Pulsatile Drug Delivery System - A Laconic Review.

    Science.gov (United States)

    Pandit, Vinay; Kumar, Ajay; Ashawat, Mahendra S; Verma, Chander P; Kumar, Pravin

    2017-01-01

    Pulsatile drug delivery system (PDDS) shows potential significance in the field of drug delivery to release the maximum amount of drug at a definite site and at specific time. PDDS are mainly time controlled delivery devices having a definite pause period for drug release, which is not affected by acidity, alkalinity, motility and enzymes present in the gastrointestinal tract. Pulsatile medication possess the potential to deliver the drugs in the therapy of diseases where drug dose is essential during sleep, drugs having greater first pass metabolism and absorption at precise location in digestive tract. The review article, discuss the general concepts, marketed formulations and patents or any other recent advancement in pulsatile release technology. It also highlights on diseases requiring therapy by pulsatile release, various researches on herbal pulsatile formulations and quality control aspects of PDDS. Pulsatile medication possess the potential to deliver the drugs in the therapy of diseases where drug dose is essential during sleep, drugs having greater first pass metabolism and absorption at precise location in digestive tract. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Cerebrovascular blood oxygenation level dependent pulsatility at baseline and following acute exercise among healthy adolescents.

    Science.gov (United States)

    Theyers, Athena E; Goldstein, Benjamin I; Metcalfe, Arron Ws; Robertson, Andrew D; MacIntosh, Bradley J

    2018-01-01

    Arterial stiffness is linked to cerebral small vessel damage and neurodegeneration, but barriers to accessing deep cerebrovascular anatomy limit our ability to assess the brain. This study describes an adaptation of a cardiac-related scrubbing method as a means of generating blood oxygenation level-dependent pulsatility maps based on the cardiac cycle. We examine BOLD pulsatility at rest, based on the non-parametric deviation from null metric, as well as changes following acute physiological stress from 20 min of moderate-intensity cycling in 45 healthy adolescents. We evaluate the influence of repetition time (TR) and echo time (TE) using simulated and multi-echo empirical data, respectively. There were tissue-specific and voxel-wise BOLD pulsatility decreases 20 min following exercise cessation. BOLD pulsatility detection was comparable over a range of TR and TE values when scan volumes were kept constant; however, short TRs (≤500 ms) and TEs (∼14 ms) acquisitions would yield the most efficient detection. Results suggest cardiac-related BOLD pulsatility may represent a robust and easily adopted method of mapping cerebrovascular pulsatility with voxel-wise resolution.

  14. Rectifier Filters

    Directory of Open Access Journals (Sweden)

    Y. A. Bladyko

    2010-01-01

    Full Text Available The paper contains definition of a smoothing factor which is suitable for any rectifier filter. The formulae of complex smoothing factors have been developed for simple and complex passive filters. The paper shows conditions for application of calculation formulae and filters

  15. Method and apparatus for a self-cleaning filter

    Science.gov (United States)

    Diebold, James P.; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael

    2010-11-16

    A method and apparatus for removing fine particulate matter from a fluid stream without interrupting the overall process or flow. The flowing fluid inflates and expands the flexible filter, and particulate is deposited on the filter media while clean fluid is permitted to pass through the filter. This filter is cleaned when the fluid flow is stopped, the filter collapses, and a force is applied to distort the flexible filter media to dislodge the built-up filter cake. The dislodged filter cake falls to a location that allows undisrupted flow of the fluid after flow is restored. The shed particulate is removed to a bin for periodic collection. A plurality of filter cells can operate independently or in concert, in parallel, or in series to permit cleaning the filters without shutting off the overall fluid flow. The self-cleaning filter is low cost, has low power consumption, and exhibits low differential pressures.

  16. Method and apparatus for a self-cleaning filter

    Science.gov (United States)

    Diebold, James P.; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael

    2013-09-10

    A method and apparatus for removing fine particulate matter from a fluid stream without interrupting the overall process or flow. The flowing fluid inflates and expands the flexible filter, and particulate is deposited on the filter media while clean fluid is permitted to pass through the filter. This filter is cleaned when the fluid flow is stopped, the filter collapses, and a force is applied to distort the flexible filter media to dislodge the built-up filter cake. The dislodged filter cake falls to a location that allows undisrupted flow of the fluid after flow is restored. The shed particulate is removed to a bin for periodic collection. A plurality of filter cells can operate independently or in concert, in parallel, or in series to permit cleaning the filters without shutting off the overall fluid flow. The self-cleaning filter is low cost, has low power consumption, and exhibits low differential pressures.

  17. CT evaluation of sigmoid plate dehiscence causing pulsatile tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pengfei; Lv, Han; Dong, Cheng; Wang, Zhenchang [Capital Medical University, Department of Radiology, Beijing Friendship Hospital, Beijing (China); Niu, Yantao; Xian, Junfang [Capital Medical University, Department of Radiology, Beijing Tongren Hospital, Beijing (China)

    2016-01-15

    To evaluate the characteristics of sigmoid plate dehiscence (SPD) causing pulsatile tinnitus (PT) on CT arteriography and venography (CTA + V). Thirty PT patients treated successfully with SPD reconstruction were enrolled. Sixty asymptomatic patients were matched. The location, extent, number of SPD cases and concomitant signs, including venous outflow dominance, transverse sinus stenosis, high jugular bulb, temporal bone pneumatization, height of pituitary gland and pituitary fossa, abnormal mastoid emissary vein, were detected and compared using CTA + V. More than one SPD was found on the symptomatic side in 13/30 PT patients (43.3 %). The upper segment of the sigmoid plate was involved in 29/44 SPDs in the vertical direction (65.9 %); the lateral wall was involved in 38/44 SPDs in the horizontal direction (86.4 %). Singular SPD was detected in 3/60 asymptomatic patients (1.67 ± 0.35 mm{sup 2}), less so in PT patients (7.97 ± 5.17 mm{sup 2}). Compared with the control group, ipsilateral venous outflow dominance, high jugular bulb and bilateral transverse sinus stenosis were more common in the PT group, together with deeper pituitary fossa and flatter pituitary glands. SPD causing PT has characteristic CT findings. It may be generated by vascular or intracranial pressure abnormalities and act as a common key to triggering PT's perception. (orig.)

  18. Measurement of pulsatile motion with millisecond resolution by MRI.

    Science.gov (United States)

    Souchon, Rémi; Gennisson, Jean-Luc; Tanter, Mickael; Salomir, Rares; Chapelon, Jean-Yves; Rouvière, Olivier

    2012-06-01

    We investigated a technique based on phase-contrast cine MRI combined with deconvolution of the phase shift waveforms to measure rapidly varying pulsatile motion waveforms. The technique does not require steady-state displacement during motion encoding. Simulations and experiments were performed in porcine liver samples in view of a specific application, namely the observation of transient displacements induced by acoustic radiation force. Simulations illustrate the advantages and shortcomings of the methods. For experimental validation, the waveforms were acquired with an ultrafast ultrasound scanner (Supersonic Imagine Aixplorer), and the rates of decay of the waveforms (relaxation time) were compared. With bipolar motion-encoding gradient of 8.4 ms, the method was able to measure displacement waveforms with a temporal resolution of 1 ms over a time course of 40 ms. Reasonable agreement was found between the rate of decay of the waveforms measured in ultrasound (2.8 ms) and in MRI (2.7-3.3 ms). Copyright © 2011 Wiley-Liss, Inc.

  19. CT evaluation of sigmoid plate dehiscence causing pulsatile tinnitus

    International Nuclear Information System (INIS)

    Zhao, Pengfei; Lv, Han; Dong, Cheng; Wang, Zhenchang; Niu, Yantao; Xian, Junfang

    2016-01-01

    To evaluate the characteristics of sigmoid plate dehiscence (SPD) causing pulsatile tinnitus (PT) on CT arteriography and venography (CTA + V). Thirty PT patients treated successfully with SPD reconstruction were enrolled. Sixty asymptomatic patients were matched. The location, extent, number of SPD cases and concomitant signs, including venous outflow dominance, transverse sinus stenosis, high jugular bulb, temporal bone pneumatization, height of pituitary gland and pituitary fossa, abnormal mastoid emissary vein, were detected and compared using CTA + V. More than one SPD was found on the symptomatic side in 13/30 PT patients (43.3 %). The upper segment of the sigmoid plate was involved in 29/44 SPDs in the vertical direction (65.9 %); the lateral wall was involved in 38/44 SPDs in the horizontal direction (86.4 %). Singular SPD was detected in 3/60 asymptomatic patients (1.67 ± 0.35 mm 2 ), less so in PT patients (7.97 ± 5.17 mm 2 ). Compared with the control group, ipsilateral venous outflow dominance, high jugular bulb and bilateral transverse sinus stenosis were more common in the PT group, together with deeper pituitary fossa and flatter pituitary glands. SPD causing PT has characteristic CT findings. It may be generated by vascular or intracranial pressure abnormalities and act as a common key to triggering PT's perception. (orig.)

  20. A filter-flow perspective of haematogenous metastasis offers a non-genetic paradigm for personalised cancer therapy.

    Science.gov (United States)

    Scott, Jacob G; Fletcher, Alexander G; Maini, Philip K; Anderson, Alexander R A; Gerlee, Philip

    2014-11-01

    Research into mechanisms of haematogenous metastasis has largely become genetic in focus, attempting to understand the molecular basis of 'seed-soil' relationships. Preceding this biological mechanism is the physical process of dissemination of circulating tumour cells (CTCs) in the circulation. Patterns of metastatic spread have been previously quantified using the metastatic efficiency index, a measure quantifying metastatic incidence for a given primary-target organ pair and the relative blood flow between them. We extend this concept to take into account the reduction in CTCs which occurs in organ capillary beds connected by a realistic vascular network topology. Application to a dataset of metastatic incidence reveals that metastatic patterns depend strongly on assumptions about the existence and location of micrometastatic disease which governs CTC dynamics on the network, something which has heretofore not been considered - an oversight which precludes our ability to predict metastatic patterns in individual patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Grid-Connection Half-Bridge PV Inverter System for Power Flow Controlling and Active Power Filtering

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2012-01-01

    Full Text Available A half-bridge photovoltaic (PV system is proposed, which can not only deal with bidirectional power flowing but also improve power quality. According to varying insolation, the system conditions real power for dc and ac loads to accommodate different amounts of PV power. Furthermore, the system eliminates current harmonics and improves power factor simultaneously. As compared with conventional PV inverter, the total number of active switches and current sensors can be reduced so that its cost is lower significantly. For current command determination, a linear-approximation method (LAM is applied to avoid the complicated calculation and achieve the maximum power point tracking (MPPT feature. For current controlling, a direct-source-current-shaping (DSCS algorithm is presented to shape the waveform of line current. Simulation results and practical measurements also demonstrate the feasibility of the proposed half-bridge PV system.

  2. Spatial filtring and thermocouple spatial filter

    International Nuclear Information System (INIS)

    Han Bing; Tong Yunxian

    1989-12-01

    The design and study on thermocouple spatial filter have been conducted for the flow measurement of integrated reactor coolant. The fundamental principle of spatial filtring, mathematical descriptions and analyses of thermocouple spatial filter are given

  3. Determination of Diclofenac on a Dysprosium Nanowire- Modified Carbon Paste Electrode Accomplished in a Flow Injection System by Advanced Filtering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Moosavi-Movahedi

    2009-09-01

    Full Text Available A new detection technique called Fast Fourier Transform Square-Wave Voltammetry (FFT SWV is based on measurements of electrode admittance as a function of potential. The response of the detector (microelectrode, which is generated by a redox processes, is fast, which makes the method suitable for most applications involving flowing electrolytes. The carbon paste electrode was modified by nanostructures to improve sensitivity. Synthesized dysprosium nanowires provide a more effective nanotube-like surface [1-4] so they are good candidates for use as a modifier for electrochemical reactions. The redox properties of diclofenac were used for its determination in human serum and urine samples. The support electrolyte that provided a more defined and intense peak current for diclofenac determination was a 0.05 mol L−1 acetate buffer pH = 4.0. The drug presented an irreversible oxidation peak at 850 mV vs. Ag/AgCl on a modified nanowire carbon paste electrode which produced high current and reduced the oxidation potential by about 100 mV. Furthermore, the signal-to-noise ratio was significantly increased by application of a discrete Fast Fourier Transform (FFT method, background subtraction and two-dimensional integration of the electrode response over a selected potential range and time window. To obtain the much sensivity the effective parameters such as frequency, amplitude and pH was optimized. As a result, CDL of 2.0 × 10−9 M and an LOQ of 5.0 × 10−9 M were found for the determination for diclofenac. A good recovery was obtained for assay spiked urine samples and a good quantification of diclofenac was achieved in a commercial formulation.

  4. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  5. Experimental study of filter cake formation on different filter media

    International Nuclear Information System (INIS)

    Saleem, M.

    2009-01-01

    Removal of particulate matter from gases generated in the process industry is important for product recovery as well as emission control. Dynamics of filtration plant depend on operating conditions. The models, that predict filter plant behaviour, involve empirical resistance parameters which are usually derived from limited experimental data and are characteristics of the filter media and filter cake (dust deposited on filter medium). Filter cake characteristics are affected by the nature of filter media, process parameters and mode of filter regeneration. Removal of dust particles from air is studied in a pilot scale jet pulsed bag filter facility resembling closely to the industrial filters. Limestone dust and ambient air are used in this study with two widely different filter media. All important parameters like pressure drop, gas flow rate, dust settling, are recorded continuously at 1s interval. The data is processed for estimation of the resistance parameters. The pressure drop rise on test filter media is compared. Results reveal that the surface of filter media has an influence on pressure drop rise (concave pressure drop rise). Similar effect is produced by partially jet pulsed filter surface. Filter behaviour is also simulated using estimated parameters and a simplified model and compared with the experimental results. Distribution of cake area load is therefore an important aspect of jet pulse cleaned bag filter modeling. Mean specific cake resistance remains nearly constant on thoroughly jet pulse cleaned membrane coated filter bags. However, the trend can not be confirmed without independent cake height and density measurements. Thus the results reveal the importance of independent measurements of cake resistance. (author)

  6. Numerical study of canister filters with alternatives filter cap configurations

    Science.gov (United States)

    Mohammed, A. N.; Daud, A. R.; Abdullah, K.; Seri, S. M.; Razali, M. A.; Hushim, M. F.; Khalid, A.

    2017-09-01

    Air filtration system and filter play an important role in getting a good quality air into turbo machinery such as gas turbine. The filtration system and filter has improved the quality of air and protect the gas turbine part from contaminants which could bring damage. During separation of contaminants from the air, pressure drop cannot be avoided but it can be minimized thus helps to reduce the intake losses of the engine [1]. This study is focused on the configuration of the filter in order to obtain the minimal pressure drop along the filter. The configuration used is the basic filter geometry provided by Salutary Avenue Manufacturing Sdn Bhd. and two modified canister filter cap which is designed based on the basic filter model. The geometries of the filter are generated by using SOLIDWORKS software and Computational Fluid Dynamics (CFD) software is used to analyse and simulates the flow through the filter. In this study, the parameters of the inlet velocity are 0.032 m/s, 0.063 m/s, 0.094 m/s and 0.126 m/s. The total pressure drop produce by basic, modified filter 1 and 2 is 292.3 Pa, 251.11 Pa and 274.7 Pa. The pressure drop reduction for the modified filter 1 is 41.19 Pa and 14.1% lower compared to basic filter and the pressure drop reduction for modified filter 2 is 17.6 Pa and 6.02% lower compared to the basic filter. The pressure drops for the basic filter are slightly different with the Salutary Avenue filter due to limited data and experiment details. CFD software are very reliable in running a simulation rather than produces the prototypes and conduct the experiment thus reducing overall time and cost in this study.

  7. Uric acid association with pulsatile and steady components of central and peripheral blood pressures.

    Science.gov (United States)

    Lepeytre, Fanny; Lavoie, Pierre-Luc; Troyanov, Stéphan; Madore, François; Agharazii, Mohsen; Goupil, Rémi

    2018-03-01

    Whether the cardiovascular risk attributed to elevated uric acid levels may be explained by changes in central and peripheral pulsatile and/or steady blood pressure (BP) components remains controversial. In a cross-sectional analysis of normotensive and untreated hypertensive participants of the CARTaGENE populational cohort, we examined the relationship between uric acid, and both pulsatile and steady components of peripheral and central BP, using sex-stratified linear regressions. Of the 20 004 participants, 10 161 individuals without antihypertensive or uric acid-lowering drugs had valid pulse wave analysis and serum uric acid levels. In multivariate analysis, pulsatile components of BP were not associated with uric acid levels, whereas steady components [mean BP (MBP), peripheral and central DBP] were all associated with higher levels of uric acid levels in women and men (all P uric acid levels but not for MBP-adjusted cSBP. Peripheral and cSBP, which are aggregate measures of pulsatile and steady BP, were also associated with uric acid levels in women (β = 0.063 and 0.072, respectively, both P uric acid levels. Serum uric acid levels appear to be associated with both central and peripheral steady but not pulsatile BP, regardless of sex.

  8. A rigid porous filter and filtration method

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ta-Kuan; Straub, Douglas, Straub L.; Dennis, Richard A.

    1998-12-01

    The present invention involves a porous rigid filter comprising a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulate from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulate. The present filter has the advantage of requiring fewer filter elements due to the high surface area- to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  9. From Microwave Filter to Digital Filter and Back Again

    DEFF Research Database (Denmark)

    Dalby, Arne Brejning

    1989-01-01

    A new very simple state variable flow graph representation for interdigital transmission line bandpass filters is presented, which has led to two important results: 1) A new type of digital filter with properties, that surpass the properties of most other (all pole) digital filtertypes. 2) The st...

  10. Pharmaceutical and personal care products in domestic wastewater and their removal in anaerobic treatment systems: Septic tank – up flow anaerobic filter.

    Directory of Open Access Journals (Sweden)

    Juan Pablo Arrubla Vélez

    2016-01-01

    Full Text Available In several countries around the world, Pharmaceutical and Personal Care Products (PPCPs exist in aquatic environments, a fact that increases the awareness within the scientific community with respect to their possible fate and environment effects. This research presents a preliminary monitoring of use, consumption and presence of PPCPs in wastewater from a treatment plant in a rural area of Pereira (Colombia. Domestic sewage is treated in a septic tank followed by an Up-Flow Anaerobic Filter and its effluent is discharged into the Otún River, upstream of the water intake of the supply system of the city. The compounds monitored in this research included ibuprofen, naproxen, diclofenac, aspirin, ketoprofen, caffeine, galaxolide, tonalide and dihydrojasmonate. An adapted method of multi-residue analysis was used, which is based on solid phase extraction with hydrophilic-lipophilic balance cartridges, and determination by gas chromatography-mass spectrometry. The removal efficiencies demonstrated that the treatment plant could eliminate less than 50% of dihydrojasmonate, diclofenac and galaxolide existing in wastewater; concentration of aspirin, naproxen and tonalide could only be reduced in 15%; and caffeine, ibuprofen and ketoprofen were not removed. Results provided basic information to decide over the necessity of complementary treatments for effluents from systems with the mentioned units.

  11. Comparison of simple, small, full-scale sewage treatment systems in Brazil: UASB-maturation ponds-coarse filter; UASB-horizontal subsurface-flow wetland; vertical-flow wetland (first stage of French system).

    Science.gov (United States)

    von Sperling, M

    2015-01-01

    This paper presents a comparison between three simple sewage treatment lines involving natural processes: (a) upflow anaerobic sludge blanket (UASB) reactor-three maturation ponds in series-coarse rock filter; (b) UASB reactor-horizontal subsurface-flow constructed wetland; and (c) vertical-flow constructed wetlands treating raw sewage (first stage of the French system). The evaluation was based on several years of practical experience with three small full-scale plants receiving the same influent wastewater (population equivalents of 220, 60 and 100 inhabitants) in the city of Belo Horizonte, Brazil. The comparison included interpretation of concentrations and removal efficiencies based on monitoring data (organic matter, solids, nitrogen, phosphorus, coliforms and helminth eggs), together with an evaluation of practical aspects, such as land and volume requirements, sludge production and handling, plant management, clogging and others. Based on an integrated evaluation of all aspects involved, it is worth emphasizing that each system has its own specificities, and no generalization can be made on the best option. The overall conclusion is that the three lines are suitable for sewage treatment in small communities in warm-climate regions.

  12. Device for filtering gaseous media

    International Nuclear Information System (INIS)

    Benzel, M.

    1978-01-01

    The air filter system for gaseous radioactive substances consists of a vertical chamber with filter material (charcoal, e.g. impregnated). On one side of the chamber there is an inlet compartment and an outlet compartment. On the other side a guiding compartment turns the gas flow coming from the natural-air side through the lower part of filter chamber to the upper part of the filter. The gas flow leaves the upper part through the outlet conpartment as cleaned-air flow. The filter material may be filled into the chamber from above and drawn off below. For better utilization of the filter material the filter chamber is separated by means of a wall between the inlet and outlet compartment. This partition wall consist of two sheets arranged one above the other provided with slots which may be superposed in alignment. In this case filter material is tickling from the upper part of the chamber into the lower part avoiding to form a crater in the filter bed. (DG) [de

  13. Filter apparatus

    International Nuclear Information System (INIS)

    Butterworth, D.J.

    1980-01-01

    This invention relates to liquid filters, precoated by replaceable powders, which are used in the production of ultra pure water required for steam generation of electricity. The filter elements are capable of being installed and removed by remote control so that they can be used in nuclear power reactors. (UK)

  14. A flow-through aqueous standard generation system for thin film microextraction investigations of UV filters and biocides partitioning to different environmental compartments.

    Science.gov (United States)

    Ahmadi, Fardin; Sparham, Chris; Pawliszyn, Janusz

    2017-11-01

    In this paper problems associated with preparation of aqueous standard of highly hydrophobic compounds such as partial precipitation, being lost on the surfaces, low solubility in water and limited sample volume for accurate determination of their distribution coefficients are addressed. The following work presents two approaches that utilize blade thin film microextraction (TFME) to investigate partitioning of UV filters and biocides to humic acid (dissolved organic carbon) and sediment. A steady-state concentration of target analytes in water was generated using a flow-through aqueous standard generation (ASG) system. Dialysis membranes, a polytetrafluoroethylene permeation tube, and a frit porous (0.5 μm) coated by epoxy glue were basic elements used for preparation of the ASG system. In the currently presented study, negligible depletion TFME using hydrophilic-lipophilic balance (HLB) and octadecyl silica-based (C18) sorbents was employed towards the attainment of free concentration values of target analytes in the studied matrices. Thin film geometry provided a large volume of extraction phase, which improved the sensitivity of the method towards highly matrix-bound analytes. Extractions were performed in the equilibrium regime so as to prevent matrix effects and with aims to reach maximum method sensitivity for all analytes under study. Partitioning of analytes on dissolved organic carbon (DOC) was investigated in ASG to facilitate large sample volume conditions. Binding percentages and DOC distribution coefficients (Log K DOC ) ranged from 20 to 98% and 3.71-6.72, respectively. Furthermore, sediment-water partition coefficients (K d ), organic-carbon normalized partition coefficients (Log K OC ), and DOC distribution coefficients (Log K DOC ) were investigated in slurry sediment, and ranged from 33 to 2860, 3.31-5.24 and 4.52-5.75 Lkg -1 , respectively. The obtained results demonstrated that investigations utilizing ASG and TFME can yield reliable binding

  15. Hypersensitivity reaction with intravenous GnRH after pulsatile subcutaneous GnRH treatment in male hypogonadotrophic hypogonadism.

    OpenAIRE

    Popović, V.; Milosević, Z.; Djukanović, R.; Micić, D.; Nesović, M.; Manojlović, D.; Djordjević, P.; Mićić, J.

    1988-01-01

    Chronic pulsatile subcutaneous administration of low doses of gonadotrophin releasing hormone (GnRH) is an effective therapy for men with hypogonadotrophic hypogonadism. Hypersensitivity reactions to GnRH are rare. We wish to report hypersensitivity reactions with intravenous GnRH after low dose subcutaneous pulsatile GnRH treatment in two men with hypogonadotrophic hypogonadism due to suprasellar disease.

  16. Simulation of a pulsatile total artificial heart: Development of a partitioned Fluid Structure Interaction model

    Science.gov (United States)

    Sonntag, Simon J.; Kaufmann, Tim A. S.; Büsen, Martin R.; Laumen, Marco; Linde, Torsten; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2013-04-01

    Heart disease is one of the leading causes of death in the world. Due to a shortage in donor organs artificial hearts can be a bridge to transplantation or even serve as a destination therapy for patients with terminal heart insufficiency. A pusher plate driven pulsatile membrane pump, the Total Artificial Heart (TAH) ReinHeart, is currently under development at the Institute of Applied Medical Engineering of RWTH Aachen University.This paper presents the methodology of a fully coupled three-dimensional time-dependent Fluid Structure Interaction (FSI) simulation of the TAH using a commercial partitioned block-Gauss-Seidel coupling package. Partitioned coupling of the incompressible fluid with the slender flexible membrane as well as a high fluid/structure density ratio of about unity led inherently to a deterioration of the stability (‘artificial added mass instability’). The objective was to conduct a stable simulation with high accuracy of the pumping process. In order to achieve stability, a combined resistance and pressure outlet boundary condition as well as the interface artificial compressibility method was applied. An analysis of the contact algorithm and turbulence condition is presented. Independence tests are performed for the structural and the fluid mesh, the time step size and the number of pulse cycles. Because of the large deformation of the fluid domain, a variable mesh stiffness depending on certain mesh properties was specified for the fluid elements. Adaptive remeshing was avoided. Different approaches for the mesh stiffness function are compared with respect to convergence, preservation of mesh topology and mesh quality. The resulting mesh aspect ratios, mesh expansion factors and mesh orthogonalities are evaluated in detail. The membrane motion and flow distribution of the coupled simulations are compared with a top-view recording and stereo Particle Image Velocimetry (PIV) measurements, respectively, of the actual pump.

  17. [Effectiveness and safety of pulsatile GnRH pump therapy on female patients with IHH].

    Science.gov (United States)

    Liu, Zhaoxiang; Mao, Jiangfeng; Wu, Xueyan; Nie, Min; Huang, Bingkun; Xu, Hongli; Wang, Xi; Zheng, Junjie

    2015-11-10

    To investigate the therapeutic effect of pulsatile GnRH (gonadorelin) pump on female patients with idiopathic hypogonadotropic hypogonadism (IHH). In this retrospective study, five female IHH patients were recruited. Patients were treated with pulsatile gonadorelin (10 µg per 90 min) via a pump for at least 12 weeks. Serum gonadotropins and sex steroid levels were measured, and menses were recorded. After one-week treatment, luteinizing hormone (LH) level increased from (2.2 ± 2.0) U/L to (5.4 ± 2.5) U/L (P=0.028), follicle-stimulating hormone(FSH) level increased from (3.7 ± 2.7) U/L to(6.3 ± 1.0) U/L (P=0.162), and estradiol (E2) level increased from (58 ± 13) pmol/L to (260 ± 97) pmol/L (P=0.011). Menstrual bleeding was observed in 4 patients after starting treatment for 35-55 days and two natural pregnancies were reported. No menstrual bleeding was reported in another patient. The frequency of pulsatile GnRH had to be adjusted according to endogenous GnRH secretion during the follicular phase of normal women and regular menses were induced. Pulsatile GnRH is effective in treating female IHH. A constant frequency of pulsatile GnRH is suitable for most of IHH patients. However, for those who failed to produce regular menses, adjusting pulsatile frequency to imitate the physiological rhythm of GnRH may be an alternative option.

  18. Evaluation of hepatic venous pulsatility and portal venous velocity with doppler ultrasonography during the puerperium

    Energy Technology Data Exchange (ETDEWEB)

    Pekindil, Goekhan [Department of Radiology, Trakya University School of Medicine, 22030 Edirne (Turkey); Varol, Fuesun G. [Department of Obstetrics and Gynecology, Trakya University School of Medicine, 22030 Edirne (Turkey); Ali Yuece, M. [Department of Obstetrics and Gynecology, Trakya University School of Medicine, 22030 Edirne (Turkey); Yardim, Turgut [Department of Obstetrics and Gynecology, Trakya University School of Medicine, 22030 Edirne (Turkey)

    1999-03-01

    Objective: The aim of this study is to evaluate pregnancy-induced changes of hepatic venous pulsatility and portal venous velocity in the puerperium and to determine if these changes disappeared by the end of the puerperium. Methods and material: Healthy normal volunteers (90) were examined on the 2nd and 7th days of puerperium and between the 6th and 8th weeks postpartum. Doppler waveform patterns were obtained in the middle hepatic vein and main portal vein. The hepatic venous pulsatility was named as normal, damped or flat. Results: On the 2nd day postpartum, the hepatic vein pulsatility was shown as normal in 8 (26%), damped in 11 (37%) and flat in 11 (37%) cases. On the 7th day postpartum, 15 (50%) cases had normal, 9 (30%) cases had dampened, and 6 (20%) cases had still flat pattern. The majority of the cases (60%) displayed normal hepatic venous pulsatility in the 6th and 8th weeks of puerperium, whereas 23% had still dampened and 17% had flat patterns. There was a trend toward normal pulsatility with increasing puerperal age. The mean portal venous velocity was still higher than the non-pregnant levels and did not showed significant alterations during puerperium. Conclusion: This study emphasised that, since pregnancy-induced alterations in hepatic venous pulsatility and portal venous velocity had not completely returned to normal in most cases until the end of the puerperium, these physiological changes should be considered whenever hepatic and portal systems are interpreted with Doppler sonography during the puerperal period.

  19. Evaluation of hepatic venous pulsatility and portal venous velocity with doppler ultrasonography during the puerperium

    International Nuclear Information System (INIS)

    Pekindil, Goekhan; Varol, Fuesun G.; Ali Yuece, M.; Yardim, Turgut

    1999-01-01

    Objective: The aim of this study is to evaluate pregnancy-induced changes of hepatic venous pulsatility and portal venous velocity in the puerperium and to determine if these changes disappeared by the end of the puerperium. Methods and material: Healthy normal volunteers (90) were examined on the 2nd and 7th days of puerperium and between the 6th and 8th weeks postpartum. Doppler waveform patterns were obtained in the middle hepatic vein and main portal vein. The hepatic venous pulsatility was named as normal, damped or flat. Results: On the 2nd day postpartum, the hepatic vein pulsatility was shown as normal in 8 (26%), damped in 11 (37%) and flat in 11 (37%) cases. On the 7th day postpartum, 15 (50%) cases had normal, 9 (30%) cases had dampened, and 6 (20%) cases had still flat pattern. The majority of the cases (60%) displayed normal hepatic venous pulsatility in the 6th and 8th weeks of puerperium, whereas 23% had still dampened and 17% had flat patterns. There was a trend toward normal pulsatility with increasing puerperal age. The mean portal venous velocity was still higher than the non-pregnant levels and did not showed significant alterations during puerperium. Conclusion: This study emphasised that, since pregnancy-induced alterations in hepatic venous pulsatility and portal venous velocity had not completely returned to normal in most cases until the end of the puerperium, these physiological changes should be considered whenever hepatic and portal systems are interpreted with Doppler sonography during the puerperal period

  20. Obstructive Hydrocephalus Secondary to Enlarged Virchow-Robin Spaces: A Rare Cause of Pulsatile Tinnitus.

    Science.gov (United States)

    Donaldson, Christopher; Chatha, Gurkirat; Chandra, Ronil V; Goldschlager, Tony

    2017-05-01

    Obstructive hydrocephalus secondary to enlarged Virchow-Robin Spaces (VRS) is a rare entity, with only a few cases reported in the literature. Presenting symptoms vary widely from headaches to dizziness. We report a case of a 31-year-old man who presented with pulsatile tinnitus and magnetic resonance imaging showing obstructive hydrocephalus secondary to tumefactive VRS. After a cerebrospinal fluid diversion procedure in the form of an endoscopic third ventriculostomy, he had almost complete resolution of his symptoms. This is the first case of obstructive hydrocephalus secondary to enlarged VRS, presenting with pulsatile tinnitus. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Filter-extruded liposomes revisited

    DEFF Research Database (Denmark)

    Hinna, Askell; Steiniger, Frank; Hupfeld, Stefan

    2016-01-01

    (pore-size, number of filter passages, and flow-rate), flow field-flow fractionation in conjunction with multi-angle laser light scattering (AF4-MALLS, Wyatt Technology Corp., Santa Barbara, CA) was employed. Liposome size-distributions determined by AF4-MALLS were compared with those of dynamic light...... is suggested to prepare large (300 nm) liposomes with rather narrow size distribution, based on the filter extrusion at defined flow-rates in combination with freeze-/ thaw-cycling and bench-top centrifugation....

  2. Evaluation of a treatment system type septic tank - filter anaerobic of upward flow for the residual waters of the ecological benefit of the coffee

    International Nuclear Information System (INIS)

    Sanchez C, Jose Alejandro

    1997-01-01

    Colombia is the first country in the production of soft coffee in the world. The benefit for humid way it makes that this quality of coffee is obtained; however, the high consumption of water in the process and the later discharge to the superficial or underground sources, they have generated an environmental problem of great magnitude. Also, the sources of water that they have been contaminated with the discharges of the liquid waste that come from benefit of coffee they present, among other, serious inconveniences to be used as supplying sources of drinkable water. In time of crop, the coffee areas and their superficial sources of water usually register high indexes of contamination like consequence of the discharges of residual waters that come from the benefit of the coffee. In the Departments of Quindio, Valle, Caldas, Antioquia, etc., they have been come executing investigations of the residuals treatment that are derived of the pulp removal of the coffee (via humid), for anaerobic methods with satisfactory results. This project had the collaboration of the Departmental Committee of Coffee of Antioquia and the Environmental Engineering of the Antioquia University and it is formulated toward the evaluation of a Anaerobic filter of Ascendant flow, FAFA, preceded of a septic tank (biological sedimentation), as a treatment system of the coffee residual waters, with a waste native of a ecological benefit area. The obtained results were satisfactory although the generated waste is very intermittent and in times that are not of coffee crop it doesn't take place; what hinders more the application of biological systems for its treatment

  3. Filter systems

    International Nuclear Information System (INIS)

    Vanin, V.R.

    1990-01-01

    The multidetector systems for high resolution gamma spectroscopy are presented. The observable parameters for identifying nuclides produced simultaneously in the reaction are analysed discussing the efficiency of filter systems. (M.C.K.)

  4. Cerebrospinal fluid flow. Pt. 3

    International Nuclear Information System (INIS)

    Schroth, G.; Klose, U.

    1992-01-01

    Cardiac- and respiration-related movements of the cerebrospinal fluid (CSF) were investigated by MRI in 71 patients. In most patients with arteriosclerotic occlusive vascular disease CSF pulsations are normal. Decreased pulsatile flow is detectable in those with arteriovenous malformations, intracranial air and following lumbar puncture and withdrawal of CSF. Increased pulsatile flow in the cerebral aqueduct was found in 2 patients with large aneurysms, idiopathic communicating syringomyelia and in most cases of normal pressure hydrocephalus (NPH). CSF flow in the cervical spinal canal is, however, reduced or normal in NPH, indicating reduction of the unfolding ability of the surface of the brain and/or inhibition of rapid CSF movements in the subrachnoid space over its convexity. (orig.)

  5. Device for automatic filter changing. Einrichtung zum selbsttaetigen Wechseln eines Filters

    Energy Technology Data Exchange (ETDEWEB)

    Matschoss, V; Naschwitz, A; Wild, H

    1984-01-05

    A filter is moved from a store to an aerosol pipe by a lifting device and is clamped there. At the end of the operating period, the lifting device moves a new filter to a parking place. Control is from limit switches of the lifting, clamping and thrust devices and the position control of the store is by the limit switches. The filter changing device is enclosed in a gastight case, prevents blockage of a filter and makes it possible to set a certain operating period, to change the filter without interrupting the aerosol flow and to measure each filter in the sequence of operation outside the aerosol flow.

  6. Pulsatile secretion of thyrotropin during fasting: a decrease of thyrotropin pulse amplitude

    NARCIS (Netherlands)

    Romijn, J. A.; Adriaanse, R.; Brabant, G.; Prank, K.; Endert, E.; Wiersinga, W. M.

    1990-01-01

    The effect of fasting on circadian and pulsatile TSH secretion was investigated in eight healthy subjects (four men and four women in the follicular phase). Each subject was studied twice, once during 24 h with normal food intake and once during the last 24 h of a 60-h fast. Blood was sampled every

  7. Partial thickness autologus calvarial bone orbitocranioplasty for a sphenorbital encephalocele presenting as pulsatile exophthalmos

    OpenAIRE

    Trivedi, Adarsh; Garg, Amrish Kumar; Hiran, Subodh

    2015-01-01

    Basal encephalocele accounts only 1.5% of all encephaloceles. But Sphenorbital encephalocele is the rarest cause of herniation of brain into orbit leading to pulsatile exphothalmos. Authors presenting a case of sphenorbital encephalocele in a 16 yrs old girl successsfully managed by orbitcranioplasty by partilal thickness autologus calvarial bone graft.

  8. Pulsatile hyperglucagonemia fails to increase hepatic glucose production in normal man

    International Nuclear Information System (INIS)

    Paolisso, G.; Scheen, A.J.; Luyckx, A.S.; Lefebvre, P.J.

    1987-01-01

    To study the metabolic effects of pulsatile glucagon administration, six male volunteers were submitted to a 260-min glucose-controlled glucose intravenous infusion using the Biostator. The endogenous secretion of the pancreatic hormones was inhibited by somatostatin, basal insulin secretion was replaced by a continuous insulin infusion, and glucagon was infused intravenously in two conditions at random: either continuously or intermittently. Blood glucose levels and glucose infusion rate were monitored continuously by the Biostator, and classical methodology using a D-[3- 3 H]glucose infusion allowed the authors to study glucose turnover. While basal plasma glucagon levels were similar in both conditions, they plateaued at 189 +/- 38 pg ml -1 during continuous infusion and varied between 95 and 501 pg x ml -1 during pulsatile infusion. When compared with continuous administration, pulsatile glucagon infusion 1) initially induced a similar increase in endogenous (hepatic) glucose production and blood glucose, 2) did not prevent the so-called evanescent effect of glucagon on blood glucose, and 3) after 3 h tended to reduce rather than increase hepatic glucose production. In conclusion, in vivo pulsatile hyperglucanemia in normal man fails to increase hepatic glucose production

  9. Tolerance to continuous intrathecal baclofen infusion can be reversed by pulsatile bolus infusion

    NARCIS (Netherlands)

    Heetla, H. W.; Staal, M. J.; van Laar, T.

    Study design: Pilot study. Objective: To study the effect of pulsatile bolus infusion of intrathecal baclofen (ITB) on daily ITB dose, in patients showing dose increases, probably due to tolerance. Setting: Department of neurology and neurosurgery, University Medical Center Groningen, the

  10. Hydrodynamics of microbial filter feeding.

    Science.gov (United States)

    Nielsen, Lasse Tor; Asadzadeh, Seyed Saeed; Dölger, Julia; Walther, Jens H; Kiørboe, Thomas; Andersen, Anders

    2017-08-29

    Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate amounts of water. Also, the trade-off in the filter spacing remains unexplored, despite its simple formulation: A filter too coarse will allow suitably sized prey to pass unintercepted, whereas a filter too fine will cause strong flow resistance. We quantify the feeding flow of the filter-feeding choanoflagellate Diaphanoeca grandis using particle tracking, and demonstrate that the current understanding of microbial filter feeding is inconsistent with computational fluid dynamics (CFD) and analytical estimates. Both approaches underestimate observed filtration rates by more than an order of magnitude; the beating flagellum is simply unable to draw enough water through the fine filter. We find similar discrepancies for other choanoflagellate species, highlighting an apparent paradox. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet), something notoriously difficult to visualize but sporadically observed in the related choanocytes (sponges). A CFD model with a flagellar vane correctly predicts the filtration rate of D. grandis , and using a simple model we can account for the filtration rates of other microbial filter feeders. We finally predict how optimum filter mesh size increases with cell size in microbial filter feeders, a prediction that accords very well with observations. We expect our results to be of significance for small-scale biophysics and trait-based ecological modeling.

  11. Adaptive digital filters

    CERN Document Server

    Kovačević, Branko; Milosavljević, Milan

    2013-01-01

    “Adaptive Digital Filters” presents an important discipline applied to the domain of speech processing. The book first makes the reader acquainted with the basic terms of filtering and adaptive filtering, before introducing the field of advanced modern algorithms, some of which are contributed by the authors themselves. Working in the field of adaptive signal processing requires the use of complex mathematical tools. The book offers a detailed presentation of the mathematical models that is clear and consistent, an approach that allows everyone with a college level of mathematics knowledge to successfully follow the mathematical derivations and descriptions of algorithms.   The algorithms are presented in flow charts, which facilitates their practical implementation. The book presents many experimental results and treats the aspects of practical application of adaptive filtering in real systems, making it a valuable resource for both undergraduate and graduate students, and for all others interested in m...

  12. Pulsatile Lavage of Musculoskeletal Wounds Causes Muscle Necrosis and Dystrophic Calcification in a Rat Model.

    Science.gov (United States)

    Chiaramonti, Alexander M; Robertson, Astor D; Nguyen, Thao P; Jaffe, David E; Hanna, E Lex; Holmes, Robert; Barfield, William R; Fourney, William L; Stains, Joseph P; Pellegrini, Vincent D

    2017-11-01

    Adequate irrigation of open musculoskeletal injuries is considered the standard of care to decrease bacterial load and other contaminants. While the benefit of debris removal compared with the risk of further seeding by high-pressure lavage has been studied, the effects of irrigation on muscle have been infrequently reported. Our aim in the present study was to assess relative damage to muscle by pulsatile lavage compared with bulb-syringe irrigation. In an animal model of heterotopic ossification, 24 Sprague-Dawley rats underwent hindlimb blast amputation via detonation of a submerged explosive, with subsequent through-the-knee surgical amputation proximal to the zone of injury. All wounds were irrigated and underwent primary closure. In 12 of the animals, pulsatile lavage (20 psi [138 kPa]) was used as the irrigation method, and in the other 12 animals, bulb-syringe irrigation was performed. A third group of 6 rats did not undergo the blast procedure but instead underwent surgical incision into the left thigh muscle followed by pulsatile lavage. Serial radiographs of the animals were made to monitor the formation of soft-tissue radiopaque lesions until euthanasia at 6 months. Image-guided muscle biopsies were performed at 8 weeks and 6 months (at euthanasia) on representative animals from each group. Histological analysis was performed with hematoxylin and eosin, alizarin red, and von Kossa staining on interval biopsy and postmortem specimens. All animals managed with pulsatile lavage, with or without blast injury, developed soft-tissue radiopaque lesions, whereas no animal that had bulb-syringe irrigation developed these lesions (p = 0.001). Five of the 12 animals that underwent blast amputation with pulsatile lavage experienced wound complications, whereas no animal in the other 2 groups experienced wound complications (p = 0.014). Radiopaque lesions appeared approximately 10 days postoperatively, increased in density until approximately 16 weeks, then

  13. Increasing awareness with recognition of pulsatile tinnitus for nurse practitioners in the primary care setting: A case study.

    Science.gov (United States)

    Vecchiarelli, Kelly; Amar, Arun Paul; Emanuele, Donna

    2017-09-01

    Pulsatile tinnitus is a whooshing sound heard synchronous with the heartbeat. It is an uncommon symptom affecting fewer than 10% of patients with tinnitus. It often goes unrecognized in the primary care setting. Failure to recognize this symptom can result in a missed or delayed diagnosis of a potentially life-threatening condition known as a dural arteriovenous fistula. The purpose of this case study is to provide a structured approach to the identification of pulsatile tinnitus and provide management recommendations. A case study and review of pertinent literature. Pulsatile tinnitus usually has a vascular treatable cause. A comprehensive history and physical examination will alert the nurse practitioner (NP) when pulsatile tinnitus is present. Auscultation in specific areas of the head can detect audible or objective pulsatile tinnitus. Pulsatile tinnitus that is audible to the examiner is an urgent medical condition requiring immediate consultation and referral. Knowledge of pulsatile tinnitus and awareness of this often treatable condition directs the NP to perform a detailed assessment when patients present with tinnitus, directs appropriate referral for care and treatment, and can reduce the risk of delayed or missed diagnosis. ©2017 American Association of Nurse Practitioners.

  14. Influence of hormonal control on LH pulsatility and secretion in women with classical congenital adrenal hyperplasia.

    Science.gov (United States)

    Bachelot, Anne; Chakhtoura, Zeina; Plu-Bureau, Geneviève; Coudert, Mathieu; Coussieu, Christiane; Badachi, Yasmina; Dulon, Jérome; Charbit, Beny; Touraine, Philippe

    2012-10-01

    Women with classical congenital adrenal hyperplasia (CAH) exhibit reduced fertility due to several factors including anovulation. This has been attributed to a disturbed gonadotropic axis as in polycystic ovary syndrome (PCOS), but there is no precise evaluation. Our aim was to evaluate the gonadotropic axis and LH pulsatility patterns and to determine factor(s) that could account for the potential abnormality of LH pulsatility. Case/control study. Sixteen CAH women (11 with the salt-wasting form and five with the simple virilizing form), aged from 18 to 40 years, and 16 age-matched women, with regular menstrual cycles (28 ± 3 days), were included. LH pulse patterns over 6 h were determined in patients and controls. No differences were observed between patients and controls in terms of mean LH levels, LH pulse amplitude, or LH frequency. In CAH patients, LH pulsatility patterns were heterogeneous, leading us to perform a clustering analysis of LH data, resulting in a two-cluster partition. Patients in cluster 1 had similar LH pulsatility patterns to the controls. Patients in cluster 2 had: lower LH pulse amplitude and frequency and presented menstrual cycle disturbances more frequently; higher 17-OH progesterone, testosterone, progesterone, and androstenedione levels; and lower FSH levels. LH pulsatility may be normal in CAH women well controlled by hormonal treatment. Undertreatment is responsible for hypogonadotropic hypogonadism, with low LH pulse levels and frequency, but not PCOS. Suppression of progesterone and androgen concentrations during the follicular phase of the menstrual cycle should be a major objective in these patients.

  15. Is the use of low-pressure pulsatile lavage for pressure ulcer management associated with environmental contamination with Acinetobacter baumannii?

    Science.gov (United States)

    Ho, Chester H; Johnson, Tova; Miklacic, Joan; Donskey, Curtis J

    2009-10-01

    Ho CH, Johnson T, Miklacic J, Donskey CJ. Is the use of low-pressure pulsatile lavage for pressure ulcer management associated with environmental contamination with Acinetobacter baumannii? To determine the extent of environmental contamination associated with low-pressure pulsatile lavage of stage III or IV pressure ulcers in patients with spinal cord injury (SCI) when routine infection control precautions are used for wounds colonized or infected with Acinetobacter baumannii. Prospective investigation in which pressure ulcer cultures and environmental cultures were obtained before and after low-pressure pulsatile lavage treatment, and before and after regular dressing changes. Environmental cultures included the patient's bedrail and settle plates placed 0.6, 1.5, and 2.4m from the wound to assess airborne spread of A. baumannii. SCI inpatient unit in a Department of Veterans Affairs Medical Center. Inpatients (N=15) with SCI receiving daily low-pressure pulsatile lavage treatment for stage III or IV pressure ulcers with standard dressing change, as well as regular dressing changes without low-pressure pulsatile lavage at other times of the day. Standard, regular dressing changes and dressing changes with low-pressure pulsatile lavage. Comparison of frequency of environmental contamination with A. baumannii associated with low-pressure pulsatile lavage versus regular dressing changes. Of the 15 SCI inpatients meeting inclusion criteria, 9 (60%) grew A. baumannii from their wounds. Of the 9 patients with wound cultures positive for A. baumannii, only 1 (11%) had environmental contamination with this organism after performance of low-pressure pulsatile lavage, and the same patient had environmental contamination after a standard dressing change. The antibiotic susceptibility patterns of the wound and environmental A. baumannii isolates were identical. Low-pressure pulsatile lavage using the infection control methods described is not associated with an increased

  16. Effects of acute aerobic exercise on arterial stiffness and cerebrovascular pulsatility in adults with and without hypertension.

    Science.gov (United States)

    Lefferts, Wesley K; DeBlois, Jacob P; Receno, Candace N; Barreira, Tiago V; Brutsaert, Tom D; Carhart, Robert L; Heffernan, Kevin S

    2018-04-19

    Stiffer central arteries, as seen in hypertension (HTN), foster transmission of pulsatile hemodynamics into fragile cerebral vessels. Aerobic exercise is recommended for adults with HTN, but its effects on arterial stiffness and pulsatility in this group are unclear. This study sought to investigate the effect of acute aerobic exercise on arterial stiffness and cerebrovascular pulsatility in 30 adults with treated HTN and 30 age, sex, and BMI-matched adults without HTN (56 ± 6 years, BMI 28.2 ± 2.9 kg/m; 28 women). Patients underwent hemodynamic measures before/after 30-min cycling (≈55% peak oxygen consumption). Aortic stiffness was measured using carotid-femoral pulse wave velocity, and carotid artery stiffness was assessed with β-stiffness via ultrasound. Aortic/carotid pulse pressure (aortic via radial generalized transfer function) was measured by tonometry and calibrated to brachial mean pressure and diastolic pressure. Carotid/middle cerebral artery (MCA) blood velocity pulsatility indices were measured using Doppler. Carotid wave intensity analysis was used to derive forward wave intensity (W1). Exercise impacted hemodynamics similarly in HTN compared to no-HTN. Carotid-femoral pulse wave velocity, MCA pulsatility index, carotid pulsatility index, and W1 increased similarly after exercise in both groups (P < 0.05). Carotid pulse pressure and β-stiffness were unaltered after exercise. Postexercise changes in W1 were positively associated with carotid pulsatility index, which was further associated with MCA pulsatility index. These data suggest adults with treated HTN experience similar increases in aortic stiffness and cerebrovascular hemodynamic pulsatility during early recovery from acute aerobic exercise as their counterparts without HTN.

  17. Sigmoid Sinus Diverticulum, Dehiscence, and Venous Sinus Stenosis: Potential Causes of Pulsatile Tinnitus in Patients with Idiopathic Intracranial Hypertension?

    Science.gov (United States)

    Lansley, J A; Tucker, W; Eriksen, M R; Riordan-Eva, P; Connor, S E J

    2017-09-01

    Pulsatile tinnitus is experienced by most patients with idiopathic intracranial hypertension. The pathophysiology remains uncertain; however, transverse sinus stenosis and sigmoid sinus diverticulum/dehiscence have been proposed as potential etiologies. We aimed to determine whether the prevalence of transverse sinus stenosis and sigmoid sinus diverticulum/dehiscence was increased in patients with idiopathic intracranial hypertension and pulsatile tinnitus relative to those without pulsatile tinnitus and a control group. CT vascular studies of patients with idiopathic intracranial hypertension with pulsatile tinnitus ( n = 42), without pulsatile tinnitus ( n = 37), and controls ( n = 75) were independently reviewed for the presence of severe transverse sinus stenosis and sigmoid sinus diverticulum/dehiscence according to published criteria. The prevalence of transverse sinus stenosis and sigmoid sinus diverticulum/dehiscence in patients with idiopathic intracranial hypertension with pulsatile tinnitus was compared with that in the nonpulsatile tinnitus idiopathic intracranial hypertension group and the control group. Further comparisons included differing degrees of transverse sinus stenosis (50% and 75%), laterality of transverse sinus stenosis/sigmoid sinus diverticulum/dehiscence, and ipsilateral transverse sinus stenosis combined with sigmoid sinus diverticulum/dehiscence. Severe bilateral transverse sinus stenoses were more frequent in patients with idiopathic intracranial hypertension than in controls ( P tinnitus within the idiopathic intracranial hypertension group. Sigmoid sinus dehiscence (right- or left-sided) was also more common in patients with idiopathic intracranial hypertension compared with controls ( P = .01), but there was no significant association with pulsatile tinnitus within the idiopathic intracranial hypertension group. While our data corroborate previous studies demonstrating increased prevalence of sigmoid sinus diverticulum

  18. Dynamic exercise enhances regional cerebral artery mean flow velocity

    DEFF Research Database (Denmark)

    Linkis, P; Jørgensen, L G; Olesen, H L

    1995-01-01

    Dynamic exercise enhances regional cerebral artery mean flow velocity. J. Appl. Physiol. 78(1): 12-16, 1995.--Anterior (ACA) and middle (MCA) cerebral artery mean flow velocities (Vmean) and pulsatility indexes were determined using transcranial Doppler in 14 subjects during dynamic exercise afte...

  19. Generation of tunable and pulsatile concentration gradients via microfluidic network

    KAUST Repository

    Zhou, Bingpu; Xu, Wei; Wang, Cong; Chau, Yeungyeung; Zeng, Xiping; Zhang, Xixiang; Shen, Rong; Wen, Weijia

    2014-01-01

    We demonstrate a compact Polydimethylsiloxane microfluidic chip which can quickly generate ten different chemical concentrations simultaneously. The concentration magnitude of each branch can be flexibly regulated based on the flow rate ratios

  20. Implicit LES using adaptive filtering

    Science.gov (United States)

    Sun, Guangrui; Domaradzki, Julian A.

    2018-04-01

    In implicit large eddy simulations (ILES) numerical dissipation prevents buildup of small scale energy in a manner similar to the explicit subgrid scale (SGS) models. If spectral methods are used the numerical dissipation is negligible but it can be introduced by applying a low-pass filter in the physical space, resulting in an effective ILES. In the present work we provide a comprehensive analysis of the numerical dissipation produced by different filtering operations in a turbulent channel flow simulated using a non-dissipative, pseudo-spectral Navier-Stokes solver. The amount of numerical dissipation imparted by filtering can be easily adjusted by changing how often a filter is applied. We show that when the additional numerical dissipation is close to the subgrid-scale (SGS) dissipation of an explicit LES the overall accuracy of ILES is also comparable, indicating that periodic filtering can replace explicit SGS models. A new method is proposed, which does not require any prior knowledge of a flow, to determine the filtering period adaptively. Once an optimal filtering period is found, the accuracy of ILES is significantly improved at low implementation complexity and computational cost. The method is general, performing well for different Reynolds numbers, grid resolutions, and filter shapes.

  1. Factors Influencing HEPA Filter Performance

    International Nuclear Information System (INIS)

    Parsons, M.S.; Waggoner, Ch.A.

    2009-01-01

    Properly functioning HEPA air filtration systems depend on a variety of factors that start with the use of fully characterized challenge conditions for system design and then process control during operation. This paper addresses factors that should be considered during the design phase as well as operating parameters that can be monitored to ensure filter function and lifetime. HEPA filters used in nuclear applications are expected to meet design, fabrication, and performance requirements set forth in the ASME AG-1 standard. The DOE publication Nuclear Air Cleaning Handbook (NACH) is an additional guidance document for design and operation HEPA filter systems in DOE facilities. These two guidelines establish basic maximum operating parameters for temperature, maximum aerosol particle size, maximum particulate matter mass concentration, acceptable differential pressure range, and filter media velocity. Each of these parameters is discussed along with data linking variability of each parameter with filter function and lifetime. Temporal uncertainty associated with gas composition, temperature, and absolute pressure of the air flow can have a direct impact on the volumetric flow rate of the system with a corresponding impact on filter media velocity. Correlations between standard units of flow rate (standard meters per minute or cubic feet per minute) versus actual units of volumetric flow rate are shown for variations in relative humidity for a 70 deg. C to 200 deg. C temperature range as an example of gas composition that, uncorrected, will influence media velocity. The AG-1 standard establishes a 2.5 cm/s (5 feet per minute) ceiling for media velocities of nuclear grade HEPA filters. Data are presented that show the impact of media velocities from 2.0 to 4.0 cm/s media velocities (4 to 8 fpm) on differential pressure, filter efficiency, and filter lifetime. Data will also be presented correlating media velocity effects with two different particle size

  2. [Application of N-isopropyl-p-[123I] iodoamphetamine quantification of regional cerebral blood flow using iterative reconstruction methods: selection of the optimal reconstruction method and optimization of the cutoff frequency of the preprocessing filter].

    Science.gov (United States)

    Asazu, Akira; Hayashi, Masuo; Arai, Mami; Kumai, Yoshiaki; Akagi, Hiroyuki; Okayama, Katsuyoshi; Narumi, Yoshifumi

    2013-05-01

    In cerebral blood flow tests using N-Isopropyl-p-[123I] Iodoamphetamine "I-IMP, quantitative results of greater accuracy than possible using the autoradiography (ARG) method can be obtained with attenuation and scatter correction and image reconstruction by filtered back projection (FBP). However, the cutoff frequency of the preprocessing Butterworth filter affects the quantitative value; hence, we sought an optimal cutoff frequency, derived from the correlation between the FBP method and Xenon-enhanced computed tomography (XeCT)/cerebral blood flow (CBF). In this study, we reconstructed images using ordered subsets expectation maximization (OSEM), a method of successive approximation which has recently come into wide use, and also three-dimensional (3D)-OSEM, a method by which the resolution can be corrected with the addition of collimator broad correction, to examine the effects on the regional cerebral blood flow (rCBF) quantitative value of changing the cutoff frequency, and to determine whether successive approximation is applicable to cerebral blood flow quantification. Our results showed that quantification of greater accuracy was obtained with reconstruction employing the 3D-OSEM method and using a cutoff frequency set near 0.75-0.85 cycles/cm, which is higher than the frequency used in image reconstruction by the ordinary FBP method.

  3. Application of N-isopropyl-p-[123I] iodoamphetamine quantification of regional cerebral blood flow using iterative reconstruction methods. Selection of the optimal reconstruction method and optimization of the cutoff frequency of the preprocessing filter

    International Nuclear Information System (INIS)

    Asazu, Akira; Hayashi, Masuo; Arai, Mami; Kumai, Yoshiaki; Akagi, Hiroyuki; Okayama, Katsuyoshi; Narumi, Yoshifumi

    2013-01-01

    In cerebral blood flow tests using N-Isopropyl-p-[ 123 I] Iodoamphetamine 123 I-IMP, quantitative results of greater accuracy than possible using the autoradiography (ARG) method can be obtained with attenuation and scatter correction and image reconstruction by filtered back projection (FBP). However, the cutoff frequency of the preprocessing Butterworth filter affects the quantitative value; hence, we sought an optimal cutoff frequency, derived from the correlation between the FBP method and Xenon-enhanced computed tomography (XeCT)/cerebral blood flow (CBF). In this study, we reconstructed images using ordered subsets expectation maximization (OSEM), a method of successive approximation which has recently come into wide use, and also three-dimensional (3D)-OSEM, a method by which the resolution can be corrected with the addition of collimator broad correction, to examine the effects on the regional cerebral blood flow (rCBF) quantitative value of changing the cutoff frequency, and to determine whether successive approximation is applicable to cerebral blood flow quantification. Our results showed that quantification of greater accuracy was obtained with reconstruction employing the 3D-OSEM method and using a cutoff frequency set near 0.75-0.85 cycles/cm, which is higher than the frequency used in image reconstruction by the ordinary FBP method. (author)

  4. Particle Filtering Methods for Incorporating Intelligence Updates

    Science.gov (United States)

    2017-03-01

    past time steps. 3.2.1 Particle Filtering through Bayesian Bootstrap Sampling Although SIS helps resolve the computational and complexity issues...variables. This insight was called the Bayesian bootstrap filter, or more commonly called the particle filter. Multiple particles are sampled from an...2012) 16 maps of drug flow into the United States. Business Insider Online, (July 8), http://www.businessinsider.com/16-maps-of-drug-flow-into-the

  5. Generalised Filtering

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2010-01-01

    Full Text Available We describe a Bayesian filtering scheme for nonlinear state-space models in continuous time. This scheme is called Generalised Filtering and furnishes posterior (conditional densities on hidden states and unknown parameters generating observed data. Crucially, the scheme operates online, assimilating data to optimize the conditional density on time-varying states and time-invariant parameters. In contrast to Kalman and Particle smoothing, Generalised Filtering does not require a backwards pass. In contrast to variational schemes, it does not assume conditional independence between the states and parameters. Generalised Filtering optimises the conditional density with respect to a free-energy bound on the model's log-evidence. This optimisation uses the generalised motion of hidden states and parameters, under the prior assumption that the motion of the parameters is small. We describe the scheme, present comparative evaluations with a fixed-form variational version, and conclude with an illustrative application to a nonlinear state-space model of brain imaging time-series.

  6. Filter This

    Directory of Open Access Journals (Sweden)

    Audrey Barbakoff

    2011-03-01

    Full Text Available In the Library with the Lead Pipe welcomes Audrey Barbakoff, a librarian at the Milwaukee Public Library, and Ahniwa Ferrari, Virtual Experience Manager at the Pierce County Library System in Washington, for a point-counterpoint piece on filtering in libraries. The opinions expressed here are those of the authors, and are not endorsed by their employers. [...

  7. Reference ranges for uterine artery pulsatility index during the menstrual cycle: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Luís Guedes-Martins

    Full Text Available Cyclic endometrial neoangiogenesis contributes to changes in local vascular patterns and is amenable to non-invasive assessment with Doppler sonography. We hypothesize that the uterine artery (UtA impedance, measured by its pulsatility index (PI, exhibits a regular pattern during the normal menstrual cycle. Therefore, the main study objective was to derive normative new day-cycle-based reference ranges for the UtA-PI during the entire cycle from days 1 to 34 according to the isolated time effect and potential confounders such as age and parity.From January 2009 to December 2012, a cross-sectional study of 1,821 healthy women undergoing routine gynaecological ultrasound was performed. The Doppler flow of the right and left UtA-PI was studied transvaginally by colour and pulsed Doppler imaging. The mean right and left values and the presence or absence of a bilateral protodiastolic notch were recorded. Reference intervals for the PI according to the cycle day were generated by classical linear regression.The majority of patients (97.5% presented unilateral or bilateral UtA notches. The crude 5th, 50th, and 95th reference percentile curves of the UtA-PI at 1-34 days of the normal menstrual cycle were derived. In all curves, a progressive significant decrease occurred during the first 13 days, followed by an increase and recovery in the UtA-PI. The adjusted 5th, 50th, and 95th reference percentile curves for the effects of age and parity were also obtained. These two conditions generated an approximately identical UtA-PI pattern during the cycle, except with small but significant reductions at the temporal extremes.The median, 5th, and the 95th percentiles of the UtA-PI decrease during the first third of the menstrual cycle and recover to their initial values during the last two thirds of the cycle. The rates of decrease and recovery depend significantly on age and parity.

  8. Low-Dose Pulsatile Interleukin-6 As a Treatment Option for Diabetic Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Gautam Ghatnekar

    2017-05-01

    Full Text Available Diabetic peripheral neuropathy (DPN remains one of the most common and serious complications of diabetes. Currently, pharmacological agents are limited to treating the pain associated with DPN, and do not address the underlying pathological mechanisms driving nerve damage, thus leaving a significant unmet medical need. Interestingly, research conducted using exercise as a treatment for DPN has revealed interleukin-6 (IL-6 signaling to be associated with many positive benefits such as enhanced blood flow and lipid metabolism, decreased chronic inflammation, and peripheral nerve fiber regeneration. IL-6, once known solely as a pro-inflammatory cytokine, is now understood to signal as a multifunctional cytokine, capable of eliciting both pro- and anti-inflammatory responses in a context-dependent fashion. IL-6 released from muscle in response to exercise signals as a myokine and as such has a unique kinetic profile, whereby levels are transiently elevated up to 100-fold and return to baseline levels within 4 h. Importantly, this kinetic profile is in stark contrast to long-term IL-6 elevation that is associated with pro-inflammatory states. Given exercise induces IL-6 myokine signaling, and exercise has been shown to elicit numerous beneficial effects for the treatment of DPN, a causal link has been suggested. Here, we discuss both the clinical and preclinical literature related to the application of IL-6 as a treatment strategy for DPN. In addition, we discuss how IL-6 may directly modulate Schwann and nerve cells to explore a mechanistic understanding of how this treatment elicits a neuroprotective and/or regenerative response. Collectively, studies suggest that IL-6, when administered in a low-dose pulsatile strategy to mimic the body’s natural response to exercise, may prove to be an effective treatment for the protection and/or restoration of peripheral nerve function in DPN. This review highlights the studies supporting this assertion and

  9. Pulsatile dry cupping in chronic low back pain - a randomized three-armed controlled clinical trial.

    Science.gov (United States)

    Teut, M; Ullmann, A; Ortiz, M; Rotter, G; Binting, S; Cree, M; Lotz, F; Roll, S; Brinkhaus, B

    2018-04-02

    We aimed to investigate the effectiveness of two different forms of dry pulsatile cupping in patients with chronic low back pain (cLBP) compared to medication on demand only in a three-armed randomized trial. 110 cLBP patients were randomized to regular pulsatile cupping with 8 treatments plus paracetamol on demand (n = 37), minimal cupping with 8 treatments plus paracetamol on demand (n = 36) or the control group with paracetamol on demand only (n = 37). Primary outcome was the pain intensity on a visual analogue scale (VAS, 0-100 mm) after 4 weeks, secondary outcome parameter included VAS pain intensity after 12 weeks, back function as measured with the 'Funktionsfragebogen Hannover Rücken' (FFbH-R) and health related quality of life questionnaire Short form 36 (SF-36) after 4 and 12 weeks. The mean baseline-adjusted VAS after 4 weeks was 34.9 mm (95% CI: 28.7; 41.2) for pulsatile cupping, 40.4 (34.2; 46.7) for minimal cupping and 56.1 (49.8; 62.4) for control group, resulting in statistically significant differences between pulsatile cupping vs. control (21.2 (12.2; 30.1); p back function after 4 weeks, but not after 12 weeks (- 5.4 (- 11.7;0.8); p = 0.088), pulsatile cupping also showed better improvements on SF-36 physical component scale compared to control at 4 and 12 weeks (- 5.6 (- 9.3;-2.0); p = 0.003; - 6.1 (- 9.9;-2.4); p = 0.002). For back function and quality of life minimal cupping group was not statistically different to control after 4 and 12 weeks. Paracetamol intake did not differ between the groups (cupping vs. control (7.3 (- 0.4;15.0); p = 0.063); minimal cupping vs. control (6.3 (- 2.0;14.5); p = 0.133). Both forms of cupping were effective in cLBP without showing significant differences in direct comparison after four weeks, only pulsatile cupping showed effects compared to control after 12 weeks. The study was registered at ClinicalTrials.gov (identifier: NCT02090686 ).

  10. Nanoscaffold matrices for size-controlled, pulsatile transdermal testosterone delivery: nanosize effects on the time dimension

    International Nuclear Information System (INIS)

    Malik, Ritu; Misra, Amit; Tondwal, Shailesh; Venkatesh, K S

    2008-01-01

    Pulsatile transdermal testosterone (T) has applications in hormone supplementation and male contraception. Pulsatile T delivery was achieved by assembling crystalline and nanoparticulate T in nucleation-inhibiting polymer matrices of controlled porosity. Different interference patterns observed from various polymeric films containing T were due to the various particle sizes of T present in the polymer matrices. Scanning electron microscopy was used to determine the size and shape of T crystals. Skin-adherent films containing T nanoparticles of any size between 10-500 nm could be prepared using pharmaceutically acceptable vinylic polymers. Drug release and skin permeation profiles were studied. The dissolution-diffusion behavior of nanoparticles differed from crystalline and molecular states. Nanosize may thus be used to engineer chronopharmacologically relevant drug delivery.

  11. Nanoscaffold matrices for size-controlled, pulsatile transdermal testosterone delivery: nanosize effects on the time dimension

    Science.gov (United States)

    Malik, Ritu; Tondwal, Shailesh; Venkatesh, K. S.; Misra, Amit

    2008-10-01

    Pulsatile transdermal testosterone (T) has applications in hormone supplementation and male contraception. Pulsatile T delivery was achieved by assembling crystalline and nanoparticulate T in nucleation-inhibiting polymer matrices of controlled porosity. Different interference patterns observed from various polymeric films containing T were due to the various particle sizes of T present in the polymer matrices. Scanning electron microscopy was used to determine the size and shape of T crystals. Skin-adherent films containing T nanoparticles of any size between 10-500 nm could be prepared using pharmaceutically acceptable vinylic polymers. Drug release and skin permeation profiles were studied. The dissolution-diffusion behavior of nanoparticles differed from crystalline and molecular states. Nanosize may thus be used to engineer chronopharmacologically relevant drug delivery.

  12. Investigation of Steady Fluid Flow in Pre-Screen Zone of Well During Its Regeneration while Using Tube Post-Filter Flushing

    Directory of Open Access Journals (Sweden)

    V. V. Ivashechkin

    2013-01-01

    Full Text Available The paper describes a steady pressure and free-flow circulation flow in the pre-screen zone of a well during its hydrodynamic reagent-free flushing. Calculation dependences for description of a filtration flow and creation of a hydrodynamic grid have been obtained in the paper. The paper presents results of experimental investigations on filtration flow. The obtained results agree completely with the calculation dependences that testifies about the possibility to use the obtained formulas for description of the filtration flow originating in the pre-screen zone of a well during its hydrodynamic reagent-free flushing.

  13. Colon-specific pulsatile drug release provided by electrospun shellac nanocoating on hydrophilic amorphous composites.

    Science.gov (United States)

    Yang, Yao-Yao; Liu, Zhe-Peng; Yu, Deng-Guang; Wang, Ke; Liu, Ping; Chen, Xiaohong

    2018-01-01

    Colon-specific pulsatile drug release, as a combined drug controlled-release model, is a useful drug delivery manner for a series of diseases. New nanomedicines and related preparation methods are highly desired. With diclofenac sodium (DS) as a model drug, a new type of structural nanocomposite (SC), in which composite polyvinylpyrrolidone (PVP)-DS core was coated by shellac, was fabricated via modified coaxial electrospinning. For comparison, traditional PVP-DS monolithic hydrophilic nanocomposites (HCs) were generated using a traditional blending process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), water contact angle (WCA), and in vitro dissolution and ex vivo permeation tests were conducted to characterize the composites. SEM images demonstrated that both composites were linear nanofibers with smooth surface morphology and cross sections. TEM disclosed that the SCs had a thin shellac sheath layer of approximately 12 nm. XRD and ATR-FTIR results demonstrated that the crystalline DS was converted into amorphous composites with PVP because of favorable secondary interactions. WCA and in vitro dissolution tests demonstrated that the sheath shellac layers in SC could resist acid conditions and provide typical colon-specific pulsatile release, rather than a pulsatile release of HC under acid conditions. Ex vivo permeation results demonstrated that the SCs were able to furnish a tenfold drug permeation rate than the DS particles on the colon membrane. A new SC with a shellac coating on hydrophilic amorphous nanocomposites could furnish a colon-specific pulsatile drug release profile. The modified coaxial process can be exploited as a useful tool to create nanocoatings.

  14. Feasibility Study of Ex Ovo Chick Chorioallantoic Artery Model for Investigating Pulsatile Variation of Arterial Geometry.

    Directory of Open Access Journals (Sweden)

    Kweon-Ho Nam

    Full Text Available Despite considerable research efforts on the relationship between arterial geometry and cardiovascular pathology, information is lacking on the pulsatile geometrical variation caused by arterial distensibility and cardiomotility because of the lack of suitable in vivo experimental models and the methodological difficulties in examining the arterial dynamics. We aimed to investigate the feasibility of using a chick embryo system as an experimental model for basic research on the pulsatile variation of arterial geometry. Optical microscope video images of various arterial shapes in chick chorioallantoic circulation were recorded from different locations and different embryo samples. The high optical transparency of the chorioallantoic membrane (CAM allowed clear observation of tiny vessels and their movements. Systolic and diastolic changes in arterial geometry were visualized by detecting the wall boundaries from binary images. Several to hundreds of microns of wall displacement variations were recognized during a pulsatile cycle. The spatial maps of the wall motion harmonics and magnitude ratio of harmonic components were obtained by analyzing the temporal brightness variation at each pixel in sequential grayscale images using spectral analysis techniques. The local variations in the spectral characteristics of the arterial wall motion were reflected well in the analysis results. In addition, mapping the phase angle of the fundamental frequency identified the regional variations in the wall motion directivity and phase shift. Regional variations in wall motion phase angle and fundamental-to-second harmonic ratio were remarkable near the bifurcation area. In summary, wall motion in various arterial geometry including straight, curved and bifurcated shapes was well observed in the CAM artery model, and their local and cyclic variations could be characterized by Fourier and wavelet transforms of the acquired video images. The CAM artery model with

  15. Flow pumping system for physiological waveforms.

    Science.gov (United States)

    Tsai, William; Savaş, Omer

    2010-02-01

    A pulsatile flow pumping system is developed to replicate flow waveforms with reasonable accuracy for experiments simulating physiological blood flows at numerous points in the body. The system divides the task of flow waveform generation between two pumps: a gear pump generates the mean component and a piston pump generates the oscillatory component. The system is driven by two programmable servo controllers. The frequency response of the system is used to characterize its operation. The system has been successfully tested in vascular flow experiments where sinusoidal, carotid, and coronary flow waveforms are replicated.

  16. An intriguing design concept to enhance the pulsatile fatigue life of self-expanding stents.

    Science.gov (United States)

    Hsiao, Hao-Ming; Yin, Ming-Ting

    2014-02-01

    Intravascular stenting has emerged as the primary treatment for vascular diseases and has received great attention from the medical community since its introduction two decades ago. The endovascular self-expanding stent is used to treat peripheral artery diseases; however, once implanted, these stents suffer from various cyclic motions caused by pulsatile blood pressure and daily activities. Due to this challenging environment, fatigue performance has become a critical issue for stent design. In this paper, a simple yet intriguing concept of stent design aimed at enhancing pulsatile fatigue life is investigated. The concept of this design is to shift the highly concentrated stresses/strains away from the crown and re-distribute them along the stress-free bar arm by tapering its strut width. Finite element models were developed to evaluate the mechanical integrity and pulsatile fatigue resistance of the stent to various loading conditions. Results show that the fatigue safety factor jumped to 2.5-3.0 times that of the standard stent with constant strut width. This is astonishing considering that the stent profile and scaffolding were not compromised. The findings of this paper provide an excellent approach to the optimization of future stent design to greatly improve stent fatigue performance.

  17. MR angiography with a matched filter

    International Nuclear Information System (INIS)

    De Castro, J.B.; Riederer, S.J.; Lee, J.N.

    1987-01-01

    The technique of matched filtering was applied to a series of cine MR images. The filter was devised to yield a subtraction angiographic image in which direct current components present in the cine series are removed and the signal-to-noise ratio (S/N) of the vascular structures is optimized. The S/N of a matched filter was compared with that of a simple subtraction, in which an image with high flow is subtracted from one with low flow. Experimentally, a range of results from minimal improvement to significant (60%) improvement in S/N was seen in the comparisons of matched filtered subtraction with simple subtraction

  18. Filtered cathodic arc source

    International Nuclear Information System (INIS)

    Falabella, S.; Sanders, D.M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45 degree to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures

  19. In-vivo imaging of blood flow dynamics using color Doppler optical coherence tomography

    Science.gov (United States)

    Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    2000-04-01

    Noninvasive quantitation of blood flow in the retinal micro circulation may elucidate the progression and treatment of ocular disorders including diabetic retinopathy, age-related degeneration, and glaucoma. Color Doppler optical coherence tomography was recently introduced as a technique allowing simultaneous micron-scale resolution cross-sectional imaging of tissue micro structure and blood flow in the human retina. Here, time-resolved imaging of dynamics of blood flow profiles was performed to measure cardiac pulsatility within retinal vessels. Retinal pulsatility has been shown to decrease throughout the progression of diabetic retinopathy.

  20. Effects of fresh gas flow, tidal volume, and charcoal filters on the washout of sevoflurane from the Datex Ohmeda (GE) Aisys, Aestiva/5, and Excel 210 SE Anesthesia Workstations.

    Science.gov (United States)

    Sabouri, A Sassan; Lerman, Jerrold; Heard, Christopher

    2014-10-01

    We investigated the effects of tidal volume (VT), fresh gas flow (FGF), and a charcoal filter in the inspiratory limb on the washout of sevoflurane from the following Datex Ohmeda (GE) Anesthesia Workstations (AWSs): Aisys, Aestiva/5, and Excel 210SE. After equilibrating the AWSs with 2% sevoflurane, the anesthetic was discontinued, and the absorbent anesthesia breathing circuit (ABC), reservoir bag, and test lung were changed. The lung was ventilated with 350 or 200 mL·breath(-1), 15 breaths·min(-1), and a FGF of 10 L·min(-1) while the washout of sevoflurane was performed in triplicate using a calibrated Datex Ohmeda Capnomac Ultima™ and a calibrated MIRAN SapphIRe XL ambient air analyzer until the concentration was ≤ 10 parts per million (ppm). The effects of decreasing the FGF to 5 and 2 L·min(-1) after the initial washout and of a charcoal filter in the ABC were recorded separately. The median washout times with the Aisys AWS (14 min, P Excel 210SE (32 min). The mean (95% confidence interval) washout time with the Aisys increased to 23.5 (21.5 to 25.5) min with VT 200 mL·breath(-1) (P < 0.01). Decreasing the FGF from 10 to 5 and 2 L·min(-1) with the Aisys caused a rebound in sevoflurane concentration to ≥ 50 ppm. Placement of a charcoal filter in the inspiratory limb reduced the sevoflurane concentration to < 2 ppm in the Aisys and Aestiva/5 AWSs within two minutes. The GE AWSs should be purged with large FGFs and VTs ~350 mL·breath(-1) for ~25 min to achieve 10 ppm sevoflurane. The FGF should be maintained to avoid a rebound in anesthetic concentration. Charcoal filters rapidly decrease the anesthetic concentration to < 2 ppm.

  1. Bag filters

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, M; Komeda, I; Takizaki, K

    1982-01-01

    Bag filters are widely used throughout the cement industry for recovering raw materials and products and for improving the environment. Their general mechanism, performance and advantages are shown in a classification table, and there are comparisons and explanations. The outer and inner sectional construction of the Shinto ultra-jet collector for pulverized coal is illustrated and there are detailed descriptions of dust cloud prevention, of measures used against possible sources of ignition, of oxygen supply and of other topics. Finally, explanations are given of matters that require careful and comprehensive study when selecting equipment.

  2. Digital filters

    CERN Document Server

    Hamming, Richard W

    1997-01-01

    Digital signals occur in an increasing number of applications: in telephone communications; in radio, television, and stereo sound systems; and in spacecraft transmissions, to name just a few. This introductory text examines digital filtering, the processes of smoothing, predicting, differentiating, integrating, and separating signals, as well as the removal of noise from a signal. The processes bear particular relevance to computer applications, one of the focuses of this book.Readers will find Hamming's analysis accessible and engaging, in recognition of the fact that many people with the s

  3. Regenerative-filter-incinerator device

    Energy Technology Data Exchange (ETDEWEB)

    Rosebrock, T.L.

    1977-10-18

    A regenerative-filter-incinerator device, for use in the exhaust system of a diesel engine, includes a drum-like regenerative-heat exchanger-filter assembly rotatably mounted within a housing that is adapted to be installed directly in the exhaust gas stream discharged from a diesel engine as close to the engine as possible. The regenerative-heat exchanger-filter assembly provides an inner chamber which serves as a reaction chamber for the secondary combustion of exhaust gases including particulates discharged from the engine. The regenerative-heat exchanger-filter assembly includes separately rotatable heat exchange-filter elements pervious to radial flow of fluid therethrough and adapted to filter out particulates from the exhaust gases and to carry them into the reaction chamber. During engine operation, the reaction chamber is provided with a quantity of heat, as necessary, to effect secondary combustion of the exhaust gases and particulates by means of an auxiliary heat source and the heat generated within the reaction chamber is stored in the individual heat exchange-filter elements during the discharge of exhaust gases therethrough from the reaction chamber and this heat is then transferred to the inflowing volume of the exhaust gases so that, in effect, exhaust gas is discharged from the device at substantially the same temperature as it was during its inlet into the device from the engine.

  4. Extension of the maintenance cycle of HEPA filters by optimization of the technical characteristics of filters and their construction

    International Nuclear Information System (INIS)

    Bella, H.; Stiehl, H.H.; Sinhuber, D.

    1977-01-01

    The knowledge of the parameters of HEPA filters used at present in nuclear plants allows optimization of such filters with respect to flow rate, pressure drop and service life. The application of optimizing new types of HEPA filters of improved performance is reported. The calculated results were checked experimentally. The use of HEPA filters optimized with respect to dust capacity and service life, and the effects of this new type of filter on the reduction of operating and maintenance costs are discussed

  5. A neurokinin 3 receptor-selective agonist accelerates pulsatile luteinizing hormone secretion in lactating cattle.

    Science.gov (United States)

    Nakamura, Sho; Wakabayashi, Yoshihiro; Yamamura, Takashi; Ohkura, Satoshi; Matsuyama, Shuichi

    2017-07-01

    Pulsatile gonadotropin-releasing hormone (GnRH) secretion, which is indispensable for follicular development, is suppressed in lactating dairy and beef cattle. Neurokinin B (NKB) neurons in the arcuate nucleus of the hypothalamus are considered to play an essential role in generating the pulsatile mode of GnRH/luteinizing hormone (LH) secretion. The present study aimed to clarify the role of NKB-neurokinin 3 receptor (NK3R) signaling in the pulsatile pattern of GnRH/gonadotropin secretion in postpartum lactating cattle. We examined the effects of the administration of an NK3R-selective agonist, senktide, on gonadotropin secretion in lactating cattle. The lactating cattle, at approximately 7 days postpartum, were intravenously infused with senktide (30 or 300 nmol/min) or vehicle for 24 h. The administration of 30 or 300 nmol/min senktide significantly increased LH pulse frequency compared to in the control group during 0-4 or 20-24 h after infusion, respectively. Moreover, LH and follicle-stimulating hormone levels were gradually increased by 300 nmol/min administration of senktide during the 0-4-h sampling period. Ultrasonography of the ovaries was performed to identify the first postpartum ovulation in senktide-administered lactating cattle. The interval from calving to first postpartum ovulation was significantly shorter in the 300 nmol/min senktide-administered group than in the control group. Taken together, these findings suggest that senktide infusion elicits an increase in LH pulse frequency that may stimulate follicular development and, in turn, induce the first postpartum ovulation in lactating cattle. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Development and evaluation of hot filters

    International Nuclear Information System (INIS)

    Thexton, H.E.

    1975-01-01

    High temperature, high flow filtration removes radioactive particles from the primary coolant, as well as inactive particles before they can become activated. Canadian experience with edge, graphite, and magnetic filters is described. (Author)

  7. An Application of Filtered Renewal Processes in Hydrology

    Directory of Open Access Journals (Sweden)

    Mario Lefebvre

    2014-01-01

    Full Text Available Filtered renewal processes are used to forecast daily river flows. For these processes, contrary to filtered Poisson processes, the time between consecutive events is not necessarily exponentially distributed, which is more realistic. The model is applied to obtain one- and two-day-ahead forecasts of the flows of the Delaware and Hudson Rivers, both located in the United States. Better results are obtained than with filtered Poisson processes, which are often used to model river flows.

  8. Electroresponsive polymer-carbon nanotube hydrogel hybrids for pulsatile drug delivery in vivo.

    Science.gov (United States)

    Servant, Ania; Methven, Laura; Williams, Rhodri P; Kostarelos, Kostas

    2013-06-01

    Drug release triggered by an external non-invasive stimulus is of great interest for the development of new drug delivery systems. The preparation of an electroresponsive multiwalled carbon nanotube/poly(methylacrylic acid) (MWNT/PMAA)-based hybrid material is reported. The hydrogel hybrids achieve a controlled drug release upon the ON/OFF application of an electric field, giving rise to in vitro and in vivo pulsatile release profiles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Pulsatile luteinizing hormone secretion in patients with Addison's disease. Impact of glucocorticoid substitution

    DEFF Research Database (Denmark)

    Hangaard, J; Andersen, M; Grodum, E

    1998-01-01

    The physiological and pathophysiological role of cortisol in pulsatile LH release was investigated in 14 patients (5 men, 6 premenopausal women, and 3 postmenopausal women) with Addison's disease. The explicit effect of cortisol in relation to the effect of corticotropin-releasing factor (CRF......), ACTH, and opioids was ensured by hypo-, normo-, and hypercortisolism. Hypocortisolism was obtained by 24-h discontinuation of hydrocortisone (HC) followed by 23-h saline infusion. Eucortisolism was secured by infusion of HC (0.5 mg/kg) over 23 h. Stress-appropriate hypercortisolism was obtained...

  10. Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy

    International Nuclear Information System (INIS)

    Farzam, Parisa; Zirak, Peyman; Durduran, Turgut; Binzoni, Tiziano

    2013-01-01

    The cardiac cycle related pulsatile behavior of the absorption and scattering coefficients of diffuse light and the corresponding alterations in hemoglobin concentrations in the human patella was studied. The pulsations in scattering is considerably smaller than absorption. The difference in amplitude of absorption coefficient pulsations for different wavelengths was translated to pulsations in oxygenated and deoxygenated hemoglobin, which leads to strong pulsations in the total hemoglobin concentration and oxygen saturation. The physiological origin of the observed signals was confirmed by applying a thigh-cuff. Moreover, we have investigated the optical and physiological properties of the patella bone and their changes in response to arterial cuff occlusion. (paper)

  11. Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy.

    Science.gov (United States)

    Farzam, Parisa; Zirak, Peyman; Binzoni, Tiziano; Durduran, Turgut

    2013-08-01

    The cardiac cycle related pulsatile behavior of the absorption and scattering coefficients of diffuse light and the corresponding alterations in hemoglobin concentrations in the human patella was studied. The pulsations in scattering is considerably smaller than absorption. The difference in amplitude of absorption coefficient pulsations for different wavelengths was translated to pulsations in oxygenated and deoxygenated hemoglobin, which leads to strong pulsations in the total hemoglobin concentration and oxygen saturation. The physiological origin of the observed signals was confirmed by applying a thigh-cuff. Moreover, we have investigated the optical and physiological properties of the patella bone and their changes in response to arterial cuff occlusion.

  12. Convergent Filter Bases

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2015-09-01

    Full Text Available We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections.

  13. Association between the extent of sigmoid sinus dehiscence and an occurrence of pulsatile tinnitus: a retrospective imaging study

    International Nuclear Information System (INIS)

    Dong, C.; Zhao, P.; Liu, Z.; Xu, W.; Lv, H.; Pang, S.; Wang, Z.

    2016-01-01

    Aim: To assess the extent of sigmoid sinus dehiscence (SSD) on high-resolution computed tomography venography (HRCTV) or high-resolution computed tomography (HRCT) images in pulsatile tinnitus (PT) and non-PT groups to determine whether there is an association between the extent of SSD and occurrence of PT. Materials and methods: Twenty-eight SSD patients with ipsilateral PT and 28 age- and gender-matched SSD patients without PT who underwent HRCTV or HRCT were enrolled in this study and categorised into two groups: “PT group” and “non-PT group”. The extent of SSD in each group was calculated and compared. Results: The largest transverse diameter and largest vertical diameter of SSD in the PT group were 6.21±1.7 and 6.15±2.19 mm, respectively. The largest transverse diameter and largest vertical diameter of SSD in the non-PT group were 3.06±1.38 and 2.51±1.03 mm, respectively. The extent of SSD was statistically different between the two groups (p<0.001; p<0.001). Conclusions: As a cause of PT, SSD can also occur in individuals without PT symptoms. Preliminary findings suggest that there may be a potential correlation between the extent of SSD and an occurrence of PT. - Highlights: • We compared the extent of sigmoid sinus dehiscence in pulsatile tinnitus and non-pulsatile tinnitus groups. • The sigmoid sinus dehiscence in the pulsatile tinnitus patients was larger than those in non-pulsatile tinnitus patients. • There may be a potential correlation between the extent of sigmoid sinus dehiscence and an occurrence of pulsatile tinnitus.

  14. Clay Ceramic Filter for Water Treatment

    Directory of Open Access Journals (Sweden)

    Zereffa Enyew Amare

    2017-05-01

    Full Text Available Ceramic water filters were prepared from different proportions of kaolin and soft wood and sintered at 900 °C, 950 °C, and 1000 °C. The flow rate, conductivity, pH of filtered water and removal efficiency (microbial, water hardness agent’s, nitrite and turbidity were analysed. The ceramic filter with 15 % saw dust, 80 % clay and 5 % grog that was fired at temperature of 950 °C or 1000 °C showed the best removal efficiency. Statistical ANOVA tests showed a significant difference between ceramic filters with various compositions in their removal efficiencies.

  15. Anti-inflammatory effect with high intensity focused ultrasound-mediated pulsatile delivery of diclofenac.

    Science.gov (United States)

    Wang, Chih-Yu; Yang, Chih-Hui; Lin, Yung-Sheng; Chen, Chih-Hsin; Huang, Keng-Shiang

    2012-02-01

    A pulsatile ultrasound controlled drug release platform with diclofenac-loaded alginate microcapsules (fabricated with a home-made electrostatic device, 75% embedded rate) was established to evaluate anti-inflammation efficiency. Better anti-inflammation efficiency was found using the ultrasound system and the drug delivery can be adjusted based on the programmed ultrasound cycle. The results of the in vitro study show that an approx. 30% higher drug release rate was obtained by using continuous ultrasound irradiation (9-Watt, 180 min), and an approx. 16% higher drug release rate was obtained by using pulsatile ultrasound irradiation (9-Watt, 60 min) compared to without ultrasound activation. For the in vivo study, the anti-inflammatory test with carrageenan-induced rat's paw edema shows that diclofenac-loaded microcapsules followed by ultrasound irradiation (9-Watt, 60 min) contributed to an 81% inhibition rate, which was significantly higher than diclofenac only (approx. 60% higher). In addition, because of their heat conducting properties, gold nanoparticles encapsulated in the diclofenac-loaded microcapsules resulted in better drug release efficiency, but tended to depress the anti-inflammation effect. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Biological time series analysis using a context free language: applicability to pulsatile hormone data.

    Directory of Open Access Journals (Sweden)

    Dennis A Dean

    Full Text Available We present a novel approach for analyzing biological time-series data using a context-free language (CFL representation that allows the extraction and quantification of important features from the time-series. This representation results in Hierarchically AdaPtive (HAP analysis, a suite of multiple complementary techniques that enable rapid analysis of data and does not require the user to set parameters. HAP analysis generates hierarchically organized parameter distributions that allow multi-scale components of the time-series to be quantified and includes a data analysis pipeline that applies recursive analyses to generate hierarchically organized results that extend traditional outcome measures such as pharmacokinetics and inter-pulse interval. Pulsicons, a novel text-based time-series representation also derived from the CFL approach, are introduced as an objective qualitative comparison nomenclature. We apply HAP to the analysis of 24 hours of frequently sampled pulsatile cortisol hormone data, which has known analysis challenges, from 14 healthy women. HAP analysis generated results in seconds and produced dozens of figures for each participant. The results quantify the observed qualitative features of cortisol data as a series of pulse clusters, each consisting of one or more embedded pulses, and identify two ultradian phenotypes in this dataset. HAP analysis is designed to be robust to individual differences and to missing data and may be applied to other pulsatile hormones. Future work can extend HAP analysis to other time-series data types, including oscillatory and other periodic physiological signals.

  17. Chronotherapeutically Modulated Pulsatile System of Valsartan Nanocrystals-an In Vitro and In Vivo Evaluation.

    Science.gov (United States)

    Biswas, Nikhil; Kuotsu, Ketousetuo

    2017-02-01

    The objective was to improve the dissolution of valsartan by developing valsartan nanocrystals and design a pulsed release system for the chronotherapy of hypertension. Valsartan nanocrystals were prepared by sonication-anti-solvent precipitation method and lyophilized to obtain dry powder. Nanocrystals were directly compressed to minitablets and coated to achieve pulsatile valsartan release. Pharmacokinetic profiles of optimized and commercial formulations were compared in rabbit model. The mean particle size and PDI of the optimized nanocrystal batch V4 was reported as 211 nm and 0.117, respectively. DSC and PXRD analysis confirmed the crystalline nature of valsartan in nanocrystals. The dissolution extent of valsartan was markedly enhanced with both nanocrystals and minitablets as compared to pure valsartan irrespective of pH of the medium. Core minitablet V4F containing 5% w/w polyplasdone XL showed quickest release of valsartan, over 90% within 15 min. Coated formulation CV4F showed two spikes in release profile after successive lag times of 235 and 390 min. The pharmacokinetic study revealed that the bioavailability of optimized formulation (72.90%) was significantly higher than the commercial Diovan tablet (30.18%). The accelerated stability studies showed no significant changes in physicochemical properties, release behavior, and bioavialability of CV4F formulation. The formulation was successfully designed to achieve enhanced bioavailability and dual pulsatile release. Bedtime dosing will more efficiently control the circadian spikes of hypertension in the morning.

  18. Aneurysm pulsatility after endovascular exclusion: an experimental study using human aortic aneurysms

    Directory of Open Access Journals (Sweden)

    Hussein Amin Orra

    2008-01-01

    Full Text Available OBJECTIVE: To measure the pulsatility of human aneurysms before and after complete exclusion with an endograft. METHOD: Five aortic aneurysms obtained during necropsy were submitted to pulsatile perfusion before and after implantation of a bifurcated endograft. The specimens were contained in a closed chamber filled with saline solution. A vertical tube attached to the chamber was used to measure volume dislocation in each systole. Mural thrombus was kept intact, and the space around the device was filled with human blood. After each experiment, the aneurysm was opened to check for the correct positioning and attachment of the device. RESULTS: The level of the saline column oscillated during pulsation in each case, with respective amplitudes of 17, 16, 13, 7, and 25 cm before the endograft insertion. After the insertion, the amplitudes dropped to 13, 12, 9, 3.5, and 23 cm, respectively. The differences were not significant. During the post-experimental examination, all devices were found to be in position and well attached to the neck and iliacs. No endoleak was detected during perfusion or by visual inspection. CONCLUSION: Pulsation of an endograft is transmitted to the aneurysm wall even in the absence of endoleak, and should not be interpreted as procedural failure.

  19. Effects of continuous and pulsatile PTH treatments on rat bone marrow stromal cells

    International Nuclear Information System (INIS)

    Yang Chiming; Frei, Hanspeter; Burt, Helen M.; Rossi, Fabio

    2009-01-01

    Bone marrow stromal cells (MSCs) differentiation and proliferation are controlled by numerous growth factors and hormones. Continuous parathyroid hormone (PTH) treatment has been shown to decrease osteoblast differentiation, whereas pulsatile PTH increases osteoblast differentiation. However, the effects of PTH treatments on MSCs have not been investigated. This study showed continuous PTH treatment in the presence of dexamethasone (DEX) promoted osteogenic differentiation of rat MSCs in vitro, as demonstrated by increased alkaline phosphatase (ALP) activity, number of ALP expressing cells, and up-regulation of PTH receptor-1, ALP, and osteocalcin mRNA expressions. In contrast, pulsatile PTH treatment was found to suppress osteogenesis of rat MSCs, possibly by promoting the maintenance of undifferentiated cells. Additionally, the observed effects of PTH were strongly dependent on the presence of DEX. MSC proliferation however was not influenced by PTH independent of treatment regimen and presence or absence of DEX. Furthermore, our work raised the possibility that PTH treatment may modulate stem/progenitor cell activity within MSC cultures.

  20. Miniaturized dielectric waveguide filters

    OpenAIRE

    Sandhu, MY; Hunter, IC

    2016-01-01

    Design techniques for a new class of integrated monolithic high-permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled transverse electromagnetic filters with the same unloaded Q-factor. Designs for Chebyshev and asymmetric generalised Chebyshev filter and a diplexer are presented with experimental results for an 1800 MHz Chebyshev filter and a 1700 MHz generalised Chebyshev filter showing excellent agreement with theory.

  1. Clinical impact of quantitative left atrial vortex flow analysis in patients with atrial fibrillation: a comparison with invasive left atrial voltage mapping.

    Science.gov (United States)

    Lee, Jung Myung; Hong, Geu-Ru; Pak, Hui-Nam; Shim, Chi Young; Houle, Helene; Vannan, Mani A; Kim, Minji; Chung, Namsik

    2015-08-01

    Recently, left atrial (LA) vortex flow analysis using contrast transesophageal echocardiography (TEE) has been shown to be feasible and has demonstrated significant differences in vortex flow morphology and pulsatility between normal subjects and patients with atrial fibrillation (AF). However, the relationship between LA vortex flow and electrophysiological properties and the clinical significance of LA vortex flow are unknown. The aims of this study were (1) to compare LA vortex flow parameters with LA voltage and (2) to assess the predictive value of LA vortex flow parameters for the recurrence of AF after radiofrequency catheter ablation (RFCA). Thirty-nine patients with symptomatic non-valvular AF underwent contrast TEE before undergoing RFCA for AF. Quantitative LA vortex flow parameters were analyzed by Omega flow (Siemens Medical Solution, Mountain View, CA, USA). The morphology and pulsatility of LA vortex flow were compared with electrophysiologic parameters that were measured invasively. Hemodynamic, electrophysiological, and vortex flow parameters were compared between patients with and without early recurrence of AF after RFCA. Morphologic parameters, including LA vortex depth, length, width, and sphericity index were not associated with LA voltage or hemodynamic parameters. The relative strength (RS), which represents the pulsatility power of LA, was positively correlated with LA voltage (R = 0.53, p = 0.01) and LA appendage flow velocity (R = 0.73, p vortex flow analysis, especially RS, correlated well with LA voltage. Decreased pulsatility strength in the LA was associated with recurrent AF. LA vortex may have incremental value in predicting the recurrence of AF.

  2. 14 CFR 23.1019 - Oil strainer or filter.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil strainer or filter. 23.1019 Section 23....1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of the engine oil flows and which meets the following requirements: (1) Each oil...

  3. Interface stability of granular filter structures under currents

    NARCIS (Netherlands)

    Verheij, H.J.; Hoffmans, G.; Dorst, K.; Van de Sande, S.

    2012-01-01

    Granular filters are used for protection of structures against scour and erosion. For a proper functioning it is necessary that the interfaces between the filter structure, the subsoil and the water flowing above the filter structure are stable. Stability means that there is no transport of subsoil

  4. Virtual analysis of influence of a filter on mould filling

    Directory of Open Access Journals (Sweden)

    Zhian Xu

    2011-11-01

    Full Text Available Ceramic filters are used to avoid slag and impurities in foundry applications. When not properly applied, the presence of these filters may have a significant influence on mould filling. 3-D casting simulation has been applied to study the effects of the use of a ceramic filter on the metal flow in a gating system. Instead of using a pressure drop model to represent the behaviour of a fluid metal flow passing through a filter, a real exact filter geometry, which is created by a high resolution CT-scan and a non-destructive imaging technique, in the gating system is applied in the simulation. In this research, nodular cast iron is poured into a block casting. A depressurized gating system is used. After a choke, a filter with different orientations is placed in the system. Mould filling coupled with temperature is simulated. Geometries using different orientations of the filter, and without the filter have been researched. The simulated results show that the filter has no influence on the pouring time of the casting if the choke section is small enough compared to the effective section of the filter. Although the filter has no significant influence on the flow patterns in the block casting itself, the flow patterns in the filter zone are different. When the liquid metal passes a horizontal filter, it will be broken into many small streams and show a shower effect. After the part under the filter is full, the shower effect disappears. When the filter is located at the vertical position, due to the gravity, the shower effect is less. If no filter presents on the system, the liquid metal passes through the filter zone with a high speed and causes surface turbulence.

  5. Selection vector filter framework

    Science.gov (United States)

    Lukac, Rastislav; Plataniotis, Konstantinos N.; Smolka, Bogdan; Venetsanopoulos, Anastasios N.

    2003-10-01

    We provide a unified framework of nonlinear vector techniques outputting the lowest ranked vector. The proposed framework constitutes a generalized filter class for multichannel signal processing. A new class of nonlinear selection filters are based on the robust order-statistic theory and the minimization of the weighted distance function to other input samples. The proposed method can be designed to perform a variety of filtering operations including previously developed filtering techniques such as vector median, basic vector directional filter, directional distance filter, weighted vector median filters and weighted directional filters. A wide range of filtering operations is guaranteed by the filter structure with two independent weight vectors for angular and distance domains of the vector space. In order to adapt the filter parameters to varying signal and noise statistics, we provide also the generalized optimization algorithms taking the advantage of the weighted median filters and the relationship between standard median filter and vector median filter. Thus, we can deal with both statistical and deterministic aspects of the filter design process. It will be shown that the proposed method holds the required properties such as the capability of modelling the underlying system in the application at hand, the robustness with respect to errors in the model of underlying system, the availability of the training procedure and finally, the simplicity of filter representation, analysis, design and implementation. Simulation studies also indicate that the new filters are computationally attractive and have excellent performance in environments corrupted by bit errors and impulsive noise.

  6. Radiant zone heated particulate filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-12-27

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  7. Electrochemical degradation of the herbicide picloram using a filter-press flow reactor with a boron-doped diamond or β-PbO2 anode

    International Nuclear Information System (INIS)

    Pereira, Gabriel F.; Rocha-Filho, Romeu C.; Bocchi, Nerilso; Biaggio, Sonia R.

    2015-01-01

    Galvanostatic electrolyses are performed in a filter-press reactor to investigate the electrochemical degradation of picloram (100 mg L −1 , from a commercial herbicide formulation) using a boron-doped diamond (BDD) or β-PbO 2 anode. The effect of pH (3, 6, or 10), applied current density (j apl = 10, 30, or 50 mA cm −2 ), and absence or presence of Cl – ions (25 mM) in the supporting electrolyte (aqueous 0.10 M Na 2 SO 4 ) is investigated, while the picloram concentration, solution chemical oxygen demand (COD) and total organic carbon content (TOC), and energy consumption are monitored as a function of electrolysis time. From the obtained results, it is clear that the electrochemical degradation of picloram is possible using either of the anodes, but with different overall performances. In general, the presence of Cl – ions in the supporting electrolyte (leading to electrogenerated active chlorine) has a positive effect on the performance of both anodes, except for TOC abatement using the BDD anode; the best electrodegradation performances are attained at pH values around 6, when HClO is the predominant active-chlorine species. Faster rates of initial electrodegradation of picloram and of solution TOC abatement are obtained as j apl is increased, but, as expected, lower energy consumptions are always attained at the lowest value of j apl . The performances of the two anodes are virtually the same in the initial degradation of picloram; however, the BDD anode greatly surpasses the β-PbO 2 anode in the abatement of solution COD or TOC. This confirms the importance of the oxidation power of the anode, even when indirect oxidation by active chlorine plays a concomitant role.

  8. Jointly Amplified Basal and Pulsatile Growth Hormone (GH) Secretion and Increased Process Irregularity in Women with Anorexia Nervosa

    DEFF Research Database (Denmark)

    Støving, R K; Veldhuis, J D; Flyvbjerg, A

    1999-01-01

    Anorexia nervosa (AN) is associated with multiple endocrine alterations. In the majority of AN patients, basal and GHRH-stimulated serum GH levels are increased. The metabolic effects of GH are known to be related to its pulsatile secretory pattern. The present study was performed to examine GH...

  9. Pulsatile drug delivery to ileo-colonic segments by structured incorporation of disintegrants in pH-responsive polymer coatings

    NARCIS (Netherlands)

    Schellekens, R.C.A.; Stellaard, F.; Mitrovic, D.; Stuurman, F.E.; Kosterink, J.G.W.; Frijlink, H.W.

    2008-01-01

    Conventional pH-responsive coatings used for oral drug delivery to the lower parts of the gastro-intestinal tract often show a poor performance. A new system for site-specific pulsatile delivery in the ileo-colonic regions is described. The system is based on the non-percolating incorporation of

  10. Polycystic ovarian disease unmasked by pulsatile GnRH therapy in a subgroup of women with hypothalamic amenorrhea.

    Science.gov (United States)

    Mattle, Verena; Bilgyicildirim, Aysen; Hadziomerovic, Dijana; Ott, Helmut W; Zervomanolakis, Ioannis; Leyendecker, Gerhard; Wildt, Ludwig

    2008-02-01

    To present the observation in six out of 120 women treated with pulsatile GnRH for ovulation induction, who developed hyperandrogenemia and polycystic ovaries during treatment. Clinical observation. Department of Gynecologic Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Austria. A total of 120 women initially diagnosed as suffering from primary or secondary hypothalamic amenorrhea were treated for ovulation induction with pulsatile administration of GnRH for up to 140 days. There was no indication of the presence of polycystic ovaries or hyperandrogenemia before therapy. Pulsatile GnRH therapy using the Zyklomat pump. Ovulatory menstrual cycles. Initially, all patients responded to pulsatile GnRH administration with ovulation and corpus luteum formation. During continuation of treatment, 6 patients developed an increase in LH and LH/FSH ratio as well as a progressive rise in serum T levels resulting in hyperandrogenemia. This was accompanied by the development of polycystic ovaries and cessation of follicular maturation. We conclude from these observations that restoration of normal GnRH stimulation of the pituitary gland can result in the development of hyperandrogenemia and polycystic ovaries, suggesting a pituitary or ovarian defect underlying the pathogenesis of this disorder.

  11. Pulsatile delivery of a leucine supplement during long-term continuous enteral feeding enhances lean growth in term neonatal pigs

    Science.gov (United States)

    Neonatal pigs are used as a model to study and optimize the clinical treatment of infants who are unable to maintain oral feeding. Using this model, we have previously shown that pulsatile administration of leucine during continuous feeding over 24 h via orogastric tube enhanced protein synthesis in...

  12. Force Trends and Pulsatility for Catheter Contact Identification in Intracardiac Electrograms during Arrhythmia Ablation.

    Science.gov (United States)

    Rivas-Lalaleo, David; Muñoz-Romero, Sergio; Huerta, Mónica; Erazo-Rodas, Mayra; Sánchez-Muñoz, Juan José; Rojo-Álvarez, José Luis; García-Alberola, Arcadi

    2018-05-02

    The intracardiac electrical activation maps are commonly used as a guide in the ablation of cardiac arrhythmias. The use of catheters with force sensors has been proposed in order to know if the electrode is in contact with the tissue during the registration of intracardiac electrograms (EGM). Although threshold criteria on force signals are often used to determine the catheter contact, this may be a limited criterion due to the complexity of the heart dynamics and cardiac vorticity. The present paper is devoted to determining the criteria and force signal profiles that guarantee the contact of the electrode with the tissue. In this study, we analyzed 1391 force signals and their associated EGM recorded during 2 and 8 s, respectively, in 17 patients (82 ± 60 points per patient). We aimed to establish a contact pattern by first visually examining and classifying the signals, according to their likely-contact joint profile and following the suggestions from experts in the doubtful cases. First, we used Principal Component Analysis to scrutinize the force signal dynamics by analyzing the main eigen-directions, first globally and then grouped according to the certainty of their tissue-catheter contact. Second, we used two different linear classifiers (Fisher discriminant and support vector machines) to identify the most relevant components of the previous signal models. We obtained three main types of eigenvectors, namely, pulsatile relevant, non-pulsatile relevant, and irrelevant components. The classifiers reached a moderate to sufficient discrimination capacity (areas under the curve between 0.84 and 0.95 depending on the contact certainty and on the classifier), which allowed us to analyze the relevant properties in the force signals. We conclude that the catheter-tissue contact profiles in force recordings are complex and do not depend only on the signal intensity being above a threshold at a single time instant, but also on time pulsatility and trends. These

  13. Shielded regeneration heating element for a particulate filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-01-04

    An exhaust system includes a particulate filter (PF) that is disposed downstream from an engine. The PF filters particulates within an exhaust from the engine. A heating element heats particulate matter in the PF. A catalyst substrate or a flow converter is disposed upstream from said heating element. The catalyst substrate oxidizes the exhaust prior to reception by the heating element. The flow converter converts turbulent exhaust flow to laminar exhaust flow prior to reception by the heating element.

  14. Filter system for purifying gas or air streams

    International Nuclear Information System (INIS)

    Ohlmeyer, M.; Wilhelm, J.

    1981-01-01

    A filter system is provided for purifying a gas stream by means of flowable or tricklable contact filter material, wherein the stream flows through the filter material and the filter material forms a movable bed. The system contains a filter chamber through which the filter material can flow and which is provided with an inlet opening and an outlet opening for the filter material between which the filter material is conveyed by gravity. The filter system includes deflection means for deflecting the stream , after a first passage of the stream through the filter bed to charge the filter bed for a first time, to a position above where the stream first passed through the filter bed and for conducting the stream at least once again transversely through the filter bed above the first charge so that the filter bed is charged a second time. The filter chamber contains a first opening where the stream enters the filter bed for the first time and is aligned with the deflection means, and a second opening aligned with the deflection means and above the first opening. The second opening is located where the stream leaves the filter bed for the second time, with a partial quantity of the gas stream being able to pass directly through the filter bed from the first opening to the second opening without going through the deflection means. The distance between the upper edge of the first opening and the lower edge of the second opening is at least twice the thickness of the filter chamber

  15. Passive Power Filters

    CERN Document Server

    Künzi, R.

    2015-06-15

    Power converters require passive low-pass filters which are capable of reducing voltage ripples effectively. In contrast to signal filters, the components of power filters must carry large currents or withstand large voltages, respectively. In this paper, three different suitable filter struc tures for d.c./d.c. power converters with inductive load are introduced. The formulas needed to calculate the filter components are derived step by step and practical examples are given. The behaviour of the three discussed filters is compared by means of the examples. P ractical aspects for the realization of power filters are also discussed.

  16. Filter replacement lifetime prediction

    Science.gov (United States)

    Hamann, Hendrik F.; Klein, Levente I.; Manzer, Dennis G.; Marianno, Fernando J.

    2017-10-25

    Methods and systems for predicting a filter lifetime include building a filter effectiveness history based on contaminant sensor information associated with a filter; determining a rate of filter consumption with a processor based on the filter effectiveness history; and determining a remaining filter lifetime based on the determined rate of filter consumption. Methods and systems for increasing filter economy include measuring contaminants in an internal and an external environment; determining a cost of a corrosion rate increase if unfiltered external air intake is increased for cooling; determining a cost of increased air pressure to filter external air; and if the cost of filtering external air exceeds the cost of the corrosion rate increase, increasing an intake of unfiltered external air.

  17. A Novel Approach to Flurbiprofen Pulsatile Colonic Release: Formulation and Pharmacokinetics of Double-Compression-Coated Mini-Tablets.

    Science.gov (United States)

    Vemula, Sateesh Kumar

    2015-12-01

    A significant plan is executed in the present study to study the effect of double-compression coating on flurbiprofen core mini-tablets to achieve the pulsatile colonic delivery to deliver the drug at a specific time as per the patho-physiological need of the disease that results in improved therapeutic efficacy. In this study, pulsatile double-compression-coated tablets were prepared based on time-controlled hydroxypropyl methylcellulose K100M inner compression coat and pH-sensitive Eudragit S100 outer compression coat. Then, the tablets were evaluated for both physical evaluation and drug-release studies, and to prove these results, in vivo pharmacokinetic studies in human volunteers were conducted. From the in vitro drug-release studies, F6 tablets were considered as the best formulation, which retarded the drug release in the stomach and small intestine (3.42 ± 0.12% in 5 h) and progressively released to the colon (99.78 ± 0.74% in 24 h). The release process followed zero-order release kinetics, and from the stability studies, similarity factor between dissolution data before and after storage was found to be 88.86. From the pharmacokinetic evaluation, core mini-tablets producing peak plasma concentration (C max) was 14,677.51 ± 12.16 ng/ml at 3 h T max and pulsatile colonic tablets showed C max = 12,374.67 ± 16.72 ng/ml at 12 h T max. The area under the curve for the mini and pulsatile tablets was 41,238.52 and 72,369.24 ng-h/ml, and the mean resident time was 3.43 and 10.61 h, respectively. In conclusion, development of double-compression-coated tablets is a promising way to achieve the pulsatile colonic release of flurbiprofen.

  18. Does polycystic ovarian morphology influence the response to treatment with pulsatile GnRH in functional hypothalamic amenorrhea?

    Science.gov (United States)

    Dumont, Agathe; Dewailly, Didier; Plouvier, Pauline; Catteau-Jonard, Sophie; Robin, Geoffroy

    2016-04-29

    Pulsatile GnRH therapy is the gold standard treatment for ovulation induction in women having functional hypothalamic amenorrhea (FHA). The use of pulsatile GnRH therapy in FHA patients with polycystic ovarian morphology (PCOM), called "FHA-PCOM", has been little studied in the literature and results remain contradictory. The aim of this study was to compare the outcomes of pulsatile GnRH therapy for ovulation induction between FHA and "FHA-PCOM" patients in order to search for an eventual impact of PCOM. Retrospective study from August 2002 to June 2015, including 27 patients with FHA and 40 "FHA-PCOM" patients (85 and 104 initiated cycles, respectively) treated by pulsatile GnRH therapy for induction ovulation. The two groups were similar except for markers of PCOM (follicle number per ovary, serum Anti-Müllerian Hormone level and ovarian area), which were significantly higher in patients with "FHA-PCOM". There was no significant difference between the groups concerning the ovarian response: with equivalent doses of GnRH, both groups had similar ovulation (80.8 vs 77.7 %, NS) and excessive response rates (12.5 vs 10.6 %, NS). There was no significant difference in on-going pregnancy rates (26.9 vs 20 % per initiated cycle, NS), as well as in miscarriage, multiple pregnancy or biochemical pregnancy rates. Pulsatile GnRH seems to be a successful and safe method for ovulation induction in "FHA-PCOM" patients. If results were confirmed by prospective studies, GnRH therapy could therefore become a first-line treatment for this specific population, just as it is for women with FHA without PCOM.

  19. Optimization of filter loading

    International Nuclear Information System (INIS)

    Turney, J.H.; Gardiner, D.E.; Sacramento Municipal Utility District, Herald, CA)

    1985-01-01

    The introduction of 10 CFR Part 61 has created potential difficulties in the disposal of spent cartridge filters. When this report was prepared, Rancho Seco had no method of packaging and disposing of class B or C filters. This work examined methods to minimize the total operating cost of cartridge filters while maintaining them below the class A limit. It was found that by encapsulating filters in cement the filter operating costs could be minimized

  20. Implantable batteryless device for on-demand and pulsatile insulin administration

    Science.gov (United States)

    Lee, Seung Ho; Lee, Young Bin; Kim, Byung Hwi; Lee, Cheol; Cho, Young Min; Kim, Se-Na; Park, Chun Gwon; Cho, Yong-Chan; Choy, Young Bin

    2017-04-01

    Many implantable systems have been designed for long-term, pulsatile delivery of insulin, but the lifetime of these devices is limited by the need for battery replacement and consequent replacement surgery. Here we propose a batteryless, fully implantable insulin pump that can be actuated by a magnetic field. The pump is prepared by simple-assembly of magnets and constituent units and comprises a drug reservoir and actuator equipped with a plunger and barrel, each assembled with a magnet. The plunger moves to noninvasively infuse insulin only when a magnetic field is applied on the exterior surface of the body. Here we show that the dose is easily controlled by varying the number of magnet applications. Also, pump implantation in diabetic rats results in profiles of insulin concentration and decreased blood glucose levels similar to those observed in rats treated with conventional subcutaneous insulin injections.

  1. Testing Of The Dual Rotary Filter System

    International Nuclear Information System (INIS)

    Herman, D.; Fowley, M.; Stefanko, D.

    2011-01-01

    The Savannah River National Laboratory (SRNL) installed and tested two hydraulically connected SpinTek rotary microfilter (RMF) units to determine the behavior of a multiple filter system. Both units were successfully controlled by a control scheme written in DELTA-V architecture by Savannah River Remediation (SRR) Process Control Engineering personnel. The control system was tuned to provide satisfactory response to changing conditions during the operation of the multi-filter system. Stability was maintained through the startup and shutdown of one of the filter units while the second was still in operation. The installation configuration originally proposed by the Small Colum Ion Exchange (SCIX) project of independent filter and motor mountings may be susceptible to vibration. Significant stiffening of the filter and motor mounts was required to minimize the vibration. Alignment of the motor to the filter was a challenge in this test configuration. The deployment configuration must be easy to manipulate and allow for fine adjustment. An analysis of the vibration signature of the test system identified critical speeds. Whether it corresponds to the resonance frequency of a rotor radial vibration mode that was excited by rotor unbalance is uncertain based upon the measurements. A relative motion series should be completed on the filter with the final shaft configuration to determine if the resonances exist in the final filter design. The instrumentation selected for deployment, including the concentrate discharge control valve and flow meters, performed well. Automation of the valve control integrated well with the control scheme and when used in concert with the other control variables, allowed automated control of the dual RMF system. The one area of concern with the instrumentation was the condition resulting when the filtrate flow meter operated with less than three gpm. This low flow was at the lower range of performance for the flow meter. This should not be

  2. TESTING OF THE DUAL ROTARY FILTER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D.; Fowley, M.; Stefanko, D.

    2011-08-29

    The Savannah River National Laboratory (SRNL) installed and tested two hydraulically connected SpinTek rotary microfilter (RMF) units to determine the behavior of a multiple filter system. Both units were successfully controlled by a control scheme written in DELTA-V architecture by Savannah River Remediation (SRR) Process Control Engineering personnel. The control system was tuned to provide satisfactory response to changing conditions during the operation of the multi-filter system. Stability was maintained through the startup and shutdown of one of the filter units while the second was still in operation. The installation configuration originally proposed by the Small Colum Ion Exchange (SCIX) project of independent filter and motor mountings may be susceptible to vibration. Significant stiffening of the filter and motor mounts was required to minimize the vibration. Alignment of the motor to the filter was a challenge in this test configuration. The deployment configuration must be easy to manipulate and allow for fine adjustment. An analysis of the vibration signature of the test system identified critical speeds. Whether it corresponds to the resonance frequency of a rotor radial vibration mode that was excited by rotor unbalance is uncertain based upon the measurements. A relative motion series should be completed on the filter with the final shaft configuration to determine if the resonances exist in the final filter design. The instrumentation selected for deployment, including the concentrate discharge control valve and flow meters, performed well. Automation of the valve control integrated well with the control scheme and when used in concert with the other control variables, allowed automated control of the dual RMF system. The one area of concern with the instrumentation was the condition resulting when the filtrate flow meter operated with less than three gpm. This low flow was at the lower range of performance for the flow meter. This should not be

  3. Seasonal and pulsatile dynamics of thyrotropin and leptin in mares maintained under a constant energy balance.

    Science.gov (United States)

    Buff, P R; Messer, N T; Cogswell, A M; Johnson, P J; Keisler, D H; Ganjam, V K

    2007-11-01

    The objective of this study was to determine if seasonal and/or pulsatile variations occur in plasma concentrations of thyrotropin (TSH) and leptin in mares while maintaining a constant energy balance. Blood samples were collected every 20 min during a 24h period in winter and again in summer from six Quarter Horse type mares. Plasma concentrations of TSH, leptin, and T(4) were determined by radioimmunoassay. No differences were observed in body weight between winter (388.1+/-12.5 kg) and summer (406.2+/-12.5 kg; P=0.11). Plasma concentrations of TSH were greater in the summer (2.80+/-0.07 ng/ml) when compared to winter (0.97+/-0.07 ng/ml; P<0.001). Pulse frequency of TSH was not different between winter (6.17+/-0.78 pulses/24h) and summer (5.33+/-0.78 pulses/24h; P=0.49). Mean TSH pulse amplitude, pulse area, and area under the curve were all greater in summer compared to winter (3.11+/-0.10 ng/ml versus 1.20+/-0.10 ng/ml, 24.86+/-0.10 ng/ml min versus 13.46+/-1.90 ng/ml min, 3936+/-72.93 ng/ml versus 1284+/-72.93 ng/ml, respectively; P<0.01). Mean concentrations of leptin were greater in summer (2.48+/-0.17 ng/ml) compared to winter (0.65+/-0.17 ng/ml; P<0.001). Pulsatile secretion patterns of leptin were not observed in any horses during experimentation. Mean concentrations of T(4) were greater in winter (20.3+/-0.4 ng/ml) compared to summer (18.2+/-0.4 ng/ml; P<0.001). These seasonal differences between winter and summer provide evidence of possible seasonal regulation of TSH and leptin.

  4. [Spermatogenesis of pulsatile gonadotropin-releasing hormone infusion versus gonadotropin therapy in male idiopathic hypogonadotropic hypogonadism].

    Science.gov (United States)

    Huang, Bingkun; Mao, Jiangfeng; Xu, Hongli; Wang, Xi; Liu, Zhaoxiang; Nie, Min; Wu, Xueyan

    2015-05-26

    To compare the efficacies of pulsatile gonadotropin-releasing hormone (GnRH) versus human chorionic gonadotropin/human menopausal gonadotropin (HCG/HMG) for spermatogenesis in male idiopathic hypogonadotropic hypogonadism (IHH). For this retrospective study, a total of 92 male IHH outpatients from May 2010 to October 2014 were recruited and categorized into GnRH (n = 40) and HCG/HMG (n = 52) groups. Each subject selected one specific therapy voluntarily. The gonadotropin levels were measured in the first week and monthly post-treatment in GnRH group. And serum total testosterone (TT), testicular volume (TV) and rate of spermatogenesis were observed monthly post-treatment in two groups. Spermatogenesis, TT and TV were compared between two groups. All IHH patients were treated for over 3 months. The median follow-up periods in GnRH and HCG/HMG groups was 8.2 (3.0-18.4) and 9.2 (3.0-18.6) months respectively (P = 0.413). In GnRH group, LH ((0.5 ± 0.6) vs (3.4 ± 2.4) U/L, P treatment. In GnRH group, at the end of follow-up, TT ((1.0 ± 1.0) vs (7.4 ± 5.2) nmol/L, P treatment time for initial sperm appearance than HCG/HMG group ((6.5 ± 3.1) vs (10.8 ± 3.7) months, P = 0.001). Pulsatile GnRH requires a shorter time for initiation of spermatogenesis than gonadotropin therapy in IHH male patients.

  5. Secondary flow in a curved artery model with Newtonian and non-Newtonian blood-analog fluids

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2016-11-01

    Steady and pulsatile flows of Newtonian and non-Newtonian fluids through a 180°-curved pipe were investigated using particle image velocimetry (PIV). The experiment was inspired by physiological pulsatile flow through large curved arteries, with a carotid artery flow rate imposed. Sodium iodide (NaI) and sodium thiocyanate (NaSCN) were added to the working fluids to match the refractive index (RI) of the test section to eliminate optical distortion. Rheological measurements revealed that adding NaI or NaSCN changes the viscoelastic properties of non-Newtonian solutions and reduces their shear-thinning property. Measured centerline velocity profiles in the upstream straight pipe agreed well with an analytical solution. In the pulsatile case, secondary flow structures, i.e. deformed-Dean, Dean, Wall and Lyne vortices, were observed in various cross sections along the curved pipe. Vortical structures at each cross section were detected using the d2 vortex identification method. Circulation analysis was performed on each vortex separately during the systolic deceleration phase, and showed that vortices split and rejoin. Secondary flow structures in steady flows were found to be morphologically similar to those in pulsatile flows for sufficiently high Dean number. supported by the George Washington University Center for Biomimetics and Bioinspired Engineering.

  6. Luteinizing hormone pulsatility in females following radiation therapy for central nervous system malignancies

    International Nuclear Information System (INIS)

    Brasacchio, R.A.; Constine, L.S.; Woolf, P.; Raubertas, R.F.; Veldhuis, J.D.; Muhs, A.G.

    1997-01-01

    Purpose: Females incidentally irradiated to the hypothalamic-pituitary axis (H/P-A) during radiation therapy (RT) for brain tumors may become oligoamenorrheic. We previously demonstrated that these women are hypoestrogenemic but frequently have near normal or only moderately decreased basal luteinizing hormone (LH) levels and maintain appropriate peak pituitary responses to exogenous gonadotropin releasing hormone (GnRH). We postulated that hypothalamic injury resulting in abnormal LH pulsatility could explain this complex of findings. This investigation intended to characterize this hypothalamic injury and test two potentially corrective pharmacologic interventions. Catecholamines (specifically dopamine) and opiates are known to suppress pituitary LH release through inhibition of the pituitary gonadotropes or of the GnRH neuronal terminals in the hypothalamus. Radiation-induced dysfunction of the catecholaminergic or opiate control mechanisms might translate into an increase in dopamine or opiate release or receptor responsiveness, which in turn would inhibit pulsatile gonadotropin secretion, leading to reduced LH pulsatility and to gonadal dysfunction. We therefore determined the pattern of LH release in normal controls and in patients, at baseline as well as after administration of the dopamine receptor antagonist metoclopramide (MCP), and the opiate-receptor antagonist naloxone (NAL). Methods: Patient eligibility criteria included RT to the H/P-A for a non-H/P-A CNS tumor, usually astrocytoma, with subsequent hypoestrogenemia and oligo-amenorrhea. Patients and normal volunteers were studied first under control conditions and then using MCP and NAL in a randomized cross-over manner at monthly intervals. Serum samples for LH determination were taken every 10 minutes for 12 hours during an overnight hospital stay. MCP (10 mg) was administered as an IV bolus every 4.5 hours, and NAL was administered as a continuous infusion (1.6 mg/hour). The following morning each

  7. Degradation of HEPA filters exposed to DMSO

    International Nuclear Information System (INIS)

    Bergman, W.; Wilson, K.; Larsen, G.; Lopez, R.; LeMay, J.

    1994-01-01

    Dimethyl sulfoxide (DMSO) sprays are being used to remove the high explosive (HE) from nuclear weapons in the process of their dismantlement. A boxed 50 cfm HEPA filter with an integral prefilter was exposed to DMSO vapor and aerosols that were generated by a spray nozzle to simulate conditions expected in the HE dissolution operation. After 198 hours of operation, the pressure drop of the filter had increased from 1.15 inches to 2.85 inches, and the efficiency for 0.3 μm dioctyl sebacate (DOS) aerosols decreased from 99.992% to 98.6%. Most of the DMSO aerosols had collected as a liquid pool inside the boxed HEPA. The liquid was blown out of the filter exit with 100 cfm air flow at the end of the test. Since the filter still met the minimum allowed efficiency of 99.97% after 166 hours of exposure, we recommend replacing the filter every 160 hours of operation or sooner if the pressure drop increases by 50%. Examination of the filter showed that visible cracks appeared at the joints of the wooden frame and a portion of the sealant had pulled away from the frame. Since all of the DMSO will be trapped in the first HEPA filter, the second HEPA filter should not suffer from DMSO degradation. Thus the combined efficiency for the first filter (98.6%) and the second filter (99.97%) is 99.99996% for 0.3μm particles. If the first filter is replaced prior to its degradation, each of the filters will have 99.97% efficiency, and the combined efficiency will be 99.999991%. The collection efficiency for DMSO/HE aerosols will be much higher because the particle size is much greater

  8. Degradation of HEPA filters exposed to DMSO

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Wilson, K.; Larsen, G. [Lawrence Livermore National Laboratory, CA (United States)] [and others

    1995-02-01

    Dimethyl sulfoxide (DMSO) sprays are being used to remove the high explosive (HE) from nuclear weapons in the process of their dismantlement. A boxed 50 cmf HEPA filter with an integral prefilter was exposed to DMSO vapor and aerosols that were generated by a spray nozzle to simulate conditions expected in the HE dissolution operation. After 198 hours of operation, the pressure drop of the filter had increased form 1.15 inches to 2,85 inches, and the efficiency for 0.3 {mu}m dioctyl sebacate (DOS) aerosols decreased form 99.992% to 98.6%. Most of the DMSO aerosols had collected as a liquid pool inside the boxed HEPA. The liquid was blown out of the filter exit with 100 cmf air flow at the end of the test. Since the filter still met the minimum allowed efficiency of 99.97% after 166 hours of exposure, we recommend replacing the filter every 160 hours of operation or sooner if the pressure drop increases by 50%. Examination of the filter showed that visible cracks appeared at the joints of the wooden frame and a portion of the sealant had pulled away from the frame. Since all of the DMSO will be trapped in the first HEPA filter, the second HEPA filter should not suffer from DMSO degradation. Thus the combined efficiency for the first filter (98.6%) and the second filter (99.97%) is 99.99996% for 0.3 {mu}m particles. If the first filter is replaced prior to its degradation, each of the filters will have 99.97% efficiency, and the combined efficiency will be 99.999991%. The collection efficiency for DMSO/HE aerosols will be much higher because the particle size is much greater.

  9. Laboratory for filter testing

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, W.

    1987-07-01

    Filters used for mine draining in brown coal surface mines are tested by the Mine Draining Department of Poltegor. Laboratory tests of new types of filters developed by Poltegor are analyzed. Two types of tests are used: tests of scale filter models and tests of experimental units of new filters. Design and operation of the test stands used for testing mechanical properties and hydraulic properties of filters for coal mines are described: dimensions, pressure fluctuations, hydraulic equipment. Examples of testing large-diameter filters for brown coal mines are discussed.

  10. Evaluation of residential furnace filters

    Energy Technology Data Exchange (ETDEWEB)

    Bowser, D. [Bowser Technical Inc. (Canada)

    1999-07-01

    Various filters rotated through six houses in southern Ontario during the heating season were evaluated for their filtration efficiency, including their ability to trap respirable particulate matter. Particulate levels were continuously monitored in the outside air, before and after the filter in the ducting system; also in the air in two rooms in each house. Results show that the filters performed according to their respective efficiency ratings. The integrated breathing zone exposure reading were not considered as significant as the reductions in the ducting system, dur to the fact that the integrated breathing zone exposure reflects both dust generation and dust removal mechanisms. Electronic air filters were found to produce ozone inside the home when the air-handling system was in operation. There was no evidence of any particular relationship between cleanliness and ozone production. Indoor ozone levels were always lower than outdoor levels. Continuous blower operation was found to improve filtration efficiency , however, it could result in an increase of about $250 in annual energy expenses. Bypass filters recorded significantly higher electrical energy consumption than full-flow systems. Continuous low-speed air handler fan operation appeared to be the most effective strategy. Portable air cleaners were shown to be highly effective in removing particulates in a single room. Removing footwear on entering the house, keeping major dust generators out of the house, frequent vacuuming, improving the air tightness of the house, and installing an air intake filter on the air supply may all be all be helpful in controlling exposure to particulates. 21 refs., 8 tabs., 32 figs.

  11. Sensory Pollution from Bag Filters, Carbon Filters and Combinations

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Clausen, Geo; Weschler, Charles J.

    2008-01-01

    by an upstream pre-filter (changed monthly), an EU7 filter protected by an upstream activated carbon (AC) filter, and EU7 filters with an AC filter either downstream or both upstream and downstream. In addition, two types of stand-alone combination filters were evaluated: a bag-type fiberglass filter...... that contained AC and a synthetic fiber cartridge filter that contained AC. Air that had passed through used filters was most acceptable for those sets in which an AC filter was used downstream of the particle filter. Comparable air quality was achieved with the stand-alone bag filter that contained AC...

  12. HEPA Filter Vulnerability Assessment

    International Nuclear Information System (INIS)

    GUSTAVSON, R.D.

    2000-01-01

    This assessment of High Efficiency Particulate Air (HEPA) filter vulnerability was requested by the USDOE Office of River Protection (ORP) to satisfy a DOE-HQ directive to evaluate the effect of filter degradation on the facility authorization basis assumptions. Within the scope of this assessment are ventilation system HEPA filters that are classified as Safety-Class (SC) or Safety-Significant (SS) components that perform an accident mitigation function. The objective of the assessment is to verify whether HEPA filters that perform a safety function during an accident are likely to perform as intended to limit release of hazardous or radioactive materials, considering factors that could degrade the filters. Filter degradation factors considered include aging, wetting of filters, exposure to high temperature, exposure to corrosive or reactive chemicals, and exposure to radiation. Screening and evaluation criteria were developed by a site-wide group of HVAC engineers and HEPA filter experts from published empirical data. For River Protection Project (RPP) filters, the only degradation factor that exceeded the screening threshold was for filter aging. Subsequent evaluation of the effect of filter aging on the filter strength was conducted, and the results were compared with required performance to meet the conditions assumed in the RPP Authorization Basis (AB). It was found that the reduction in filter strength due to aging does not affect the filter performance requirements as specified in the AB. A portion of the HEPA filter vulnerability assessment is being conducted by the ORP and is not part of the scope of this study. The ORP is conducting an assessment of the existing policies and programs relating to maintenance, testing, and change-out of HEPA filters used for SC/SS service. This document presents the results of a HEPA filter vulnerability assessment conducted for the River protection project as requested by the DOE Office of River Protection

  13. Penetration of asbestos fibers in respirator filters

    International Nuclear Information System (INIS)

    Cheng, Yung-Sung; Pearson, S.D.; Rohrbacher, K.D.; Yeh, Hsu-Chi.

    1994-01-01

    Currently, the health risks associated with asbestos have restricted its use and created a growing asbestos abatement industry with a need for respirator filters that are effective for worker protection. The main purpose of this project is to determine the influence of fiber size, electrostatic charge, and flow rate on the penetration of asbestos fibers in respirator filter cartridges. The study includes four types of filters each tested at two flow rates: the AO-R57A, a dual cartridge HEPA filter tested at 16 and 42.5 L/min; the MSA-S, a dust and mist filter tested at 16 and 42.5 L/min; the MSA-A power filter tested at 32 and 85 L/min; and the 3M-8710, a low-efficiency disposable face mask filter tested at 32 and 85 L/min. The three types of asbestos fibers used (amosite, crocidolite, and chrysotile) ranged in length from 0.04-0.5 μm and in aspect ratio (ratio of length to diameter) from 3 to 60. The fibers were used in both charged and neutralized forms. The results from amosite fibers are reported here

  14. Development of circular filters for active facilities

    International Nuclear Information System (INIS)

    Pratt, R.P.

    1986-01-01

    An assessment of problems associated with remote handling, changing and disposal of filters suggested that significant improvements to filtration systems could be made if circular geometries were adopted in place of conventional systems. Improved systems have been developed and are now available for a range of applications and air flow rates. Where primary filters are installed within the active cell or cave, circular filters incorporating a lip seal have been developed which enable the filters to be sealed into the facility without recourse to clamping. For smaller cells, a range of push-through filter change systems have been developed, the principal feature being that the filter is passed into the housing from the clean side, but transferred from the housing directly into the cell for subsequent disposal. For plant room applications, circular bag change canister systems have been developed which ease the sealing and bag change operation. Such systems have a rated air flow of up to 3000 m 3 /h whilst still allowing ultimate disposal via the 200 litre waste drum route without prior volume reduction of the filter inserts. (author)

  15. Bias aware Kalman filters

    DEFF Research Database (Denmark)

    Drecourt, J.-P.; Madsen, H.; Rosbjerg, Dan

    2006-01-01

    This paper reviews two different approaches that have been proposed to tackle the problems of model bias with the Kalman filter: the use of a colored noise model and the implementation of a separate bias filter. Both filters are implemented with and without feedback of the bias into the model state....... The colored noise filter formulation is extended to correct both time correlated and uncorrelated model error components. A more stable version of the separate filter without feedback is presented. The filters are implemented in an ensemble framework using Latin hypercube sampling. The techniques...... are illustrated on a simple one-dimensional groundwater problem. The results show that the presented filters outperform the standard Kalman filter and that the implementations with bias feedback work in more general conditions than the implementations without feedback. 2005 Elsevier Ltd. All rights reserved....

  16. Simon-nitinol filter

    International Nuclear Information System (INIS)

    Simon, M.; Kim, D.; Porter, D.H.; Kleshinski, S.

    1989-01-01

    This paper discusses a filter that exploits the thermal shape-memory properties of the nitinol alloy to achieve an optimized filter shape and a fine-bore introducer. Experimental methods and materials are given and results are analyzed

  17. MST Filterability Tests

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duignan, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-12

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRR was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO2, and NaNO3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.

  18. A perturbation model for the oscillatory flow of a Bingham plastic in rigid and periodically displaced tubes.

    Science.gov (United States)

    De Chant, L J

    1999-10-01

    An approximate analytical model for the pulsatile flow of an ideal Bingham plastic fluid in both a rigid and a periodically displaced tube has been developed using regular perturbation methods. Relationships are derived for the velocity field and dimensionless flow rate. The solution compares adequately with available experimentally measured oscillatory non-Newtonian fluid flow data. These solutions provide useful analytical models supporting experimental and computation studies of arterial blood flow.

  19. Radioactive liquid waste filtering device

    International Nuclear Information System (INIS)

    Inami, Ichiro; Tabata, Masayuki; Kubo, Koji.

    1988-01-01

    Purpose: To prevent clogging in filter materials and improve the filtration performance for radioactive liquid wastes without increasing the amount of radioactive wastes. Constitution: In a radioactive waste filtering device, a liquid waste recycling pipe and a liquid recycling pump are disposed for recycling the radioactive liquid wastes in a liquid wastes vessel. In this case, the recycling pipe and the recycling pump are properly selected so as to satisfy the conditions capable of making the radioactive liquid wastes flowing through the pipe to have the Reynolds number of 10 4 - 10 5 . By repeating the transportation of radioactive liquid wastes in the liquid waste vessel through the liquid waste recycling pipe by the liquid waste recycling pump and then returning them to the liquid waste vessel again, particles of fine grain size in the suspended liquids are coagulated with each other upon collision to increase the grain size of the suspended particles. In this way, clogging of the filter materials caused by the particles of fine grain size can be prevented, thereby enabling to prevent the increase in the rising rate of the filtration differential pressure, reduce the frequency for the occurrence of radioactive wastes such as filter sludges and improve the processing performance. (Kamimura, M.)

  20. Menstrual phase-related differences in the pulsatility index on the central retinal artery suggest an oestrogen vasodilatation effect that antagonizes with progesterone.

    Science.gov (United States)

    Viana, Luiz Carlos; Faria, Marcos; Pettersen, Heverton; Sampaio, Marcos; Geber, Selmo

    2011-03-01

    The actual effect of steroid hormones on cerebral microcirculation is still controversial. Therefore, the aim of our study was to investigate vascular flow variations in the central retinal artery that may exist during the ovulatory menstrual cycle. A total of 34 healthy women were included in this observational, longitudinal, and prospective study. All participants were submitted to dopplerfluxometric evaluation of the eyes in order to study the pulsatility index (PI) of the central retinal arteries, during four phases of the menstrual cycle: early follicular, mid follicular, periovulatory, and mid luteal phases. Subjects' ages ranged from 14 to 47 years old (mean: 29.7 ± 10.1) and PI did not differ among age groups. The PI of the central retinal artery was different among the four phases of the menstrual cycle. PI showed a significant decrease from early follicular phase (1.72) to mid follicular phase (1.57) (p = 0.037), and was similar during periovulatory phase (1.56) and significantly increased in mid luteal phase (1.70). After that it returned to the values observed in the early follicular phase. Our results suggest the existence of an oestrogen vasodilatation effect on the central retinal artery that is menstrual phase-related and antagonized by progesterone.

  1. Analysis of pulsatile retinal movements by spectral-domain low-coherence interferometry: influence of age and glaucoma on the pulse wave.

    Directory of Open Access Journals (Sweden)

    Carolyne Dion

    Full Text Available Recent studies have shown that ocular hemodynamics and eye tissue biomechanical properties play an important role in the pathophysiology of glaucoma. Nevertheless, better, non-invasive methods to assess these characteristics in vivo are essential for a thorough understanding of degenerative mechanisms. Here, we propose to measure ocular tissue movements induced by cardiac pulsations and study the ocular pulse waveform as an indicator of tissue compliance. Using a novel, low-cost and non-invasive device based on spectral-domain low coherence interferometry (SD-LCI, we demonstrate the potential of this technique to differentiate ocular hemodynamic and biomechanical properties. We measured the axial movement of the retina driven by the pulsatile ocular blood flow in 11 young healthy individuals, 12 older healthy individuals and 15 older treated glaucoma patients using our custom-made SD-OCT apparatus. The cardiac pulse was simultaneously measured through the use of an oximeter to allow comparison. Spectral components up to the second harmonic were obtained and analyzed. For the different cohorts, we computed a few parameters that characterize the three groups of individuals by analyzing the movement of the retinal tissue at two locations, using this simple, low-cost interferometric device. Our pilot study indicates that spectral analysis of the fundus pulsation has potential for the study of ocular biomechanical and vascular properties, as well as for the study of ocular disease.

  2. [Ovulation induction by pulsatile GnRH therapy in 2014: literature review and synthesis of current practice].

    Science.gov (United States)

    Gronier, H; Peigné, M; Catteau-Jonard, S; Dewailly, D; Robin, G

    2014-10-01

    The hypogonadotropic hypogonadism is an easily treatable form of female infertility. The most common cause of hypogonadotropic hypogonadism is functional hypothalamic amenorrhea. The GnRH pump is a simple and effective treatment to restore fertility of patients with hypothalamic amenorrhea: cumulative pregnancy rate is estimated between 70 and 100% after 6 cycles, compared to a low rate of complications and multiple pregnancies. While only 2.8 cycles are on average required to achieve a pregnancy with a pump, this induction of ovulation stays underused in France. The objective of this paper is to propose a practical manual of pulsatile GnRH, in order to improve the accessibility of pulsatile GnRH for patients with hypogonadotropic hypogonadism. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Prediction of low birth weight: the placental T2* estimated by MRI versus the uterine artery pulsatility index

    DEFF Research Database (Denmark)

    Sinding, Marianne Munk; Peters, David Alberg; Frøkjær, Jens Brøndum

    (MRI) variable T2* reflects the placental oxygenation and thereby placental function. Therefore, we aimed to evaluate the performance of placental T2* in the prediction of low birth weight using the uterine artery (UtA) pulsatility index (PI) as gold standard. Methods: The study population......CONTROL ID: 2516296 ABSTRACT FINAL ID: P22.05 TITLE: Prediction of low birth weight: the placental T2* estimated by MRI versus the uterine artery pulsatility index AUTHORS (FIRST NAME, LAST NAME): Marianne Sinding1, David Peters2, Jens B. Frøkjær3, 4, Ole B. Christiansen1, 4, Astrid Petersen5...... had an EFW T2* was measured by MRI at 1.5T. A gradient recalled echo MRI sequence with readout at 16 echo times was used, and the placental T2* value was obtained by fitting the signal intensity as a function of the echo times...

  4. The discrete Kalman filtering approach for seismic signals deconvolution

    International Nuclear Information System (INIS)

    Kurniadi, Rizal; Nurhandoko, Bagus Endar B.

    2012-01-01

    Seismic signals are a convolution of reflectivity and seismic wavelet. One of the most important stages in seismic data processing is deconvolution process; the process of deconvolution is inverse filters based on Wiener filter theory. This theory is limited by certain modelling assumptions, which may not always valid. The discrete form of the Kalman filter is then used to generate an estimate of the reflectivity function. The main advantage of Kalman filtering is capability of technique to handling continually time varying models and has high resolution capabilities. In this work, we use discrete Kalman filter that it was combined with primitive deconvolution. Filtering process works on reflectivity function, hence the work flow of filtering is started with primitive deconvolution using inverse of wavelet. The seismic signals then are obtained by convoluting of filtered reflectivity function with energy waveform which is referred to as the seismic wavelet. The higher frequency of wavelet gives smaller wave length, the graphs of these results are presented.

  5. Advanced Filter Technology For Nuclear Thermal Propulsion

    Science.gov (United States)

    Castillon, Erick

    2015-01-01

    The Scrubber System focuses on using HEPA filters and carbon filtration to purify the exhaust of a Nuclear Thermal Propulsion engine of its aerosols and radioactive particles; however, new technology may lend itself to alternate filtration options, which may lead to reduction in cost while at the same time have the same filtering, if not greater, filtering capabilities, as its predecessors. Extensive research on various types of filtration methods was conducted with only four showing real promise: ionization, cyclonic separation, classic filtration, and host molecules. With the four methods defined, more research was needed to find the devices suitable for each method. Each filtration option was matched with a device: cyclonic separators for the method of the same name, electrostatic separators for ionization, HEGA filters, and carcerands for the host molecule method. Through many hours of research, the best alternative for aerosol filtration was determined to be the electrostatic precipitator because of its high durability against flow rate and its ability to cleanse up to 99.99% of contaminants as small as 0.001 micron. Carcerands, which are the only alternative to filtering radioactive particles, were found to be non-existent commercially because of their status as a "work in progress" at research institutions. Nevertheless, the conclusions after the research were that HEPA filters is recommended as the best option for filtering aerosols and carbon filtration is best for filtering radioactive particles.

  6. Treatment of cellulite with a bipolar radiofrequency, infrared heat, and pulsatile suction device: a pilot study.

    Science.gov (United States)

    Wanitphakdeedecha, Rungsima; Manuskiatti, Woraphong

    2006-12-01

    Very few therapeutic options have proven effective in the treatment of cellulite. To evaluate the effectiveness and adverse effects of a bipolar radiofrequency (RF), infrared (IR) heat and pulsatile suction device for the treatment of cellulite. Twelve subjects were treated with the RF-light-based device. All subjects were treated twice weekly for a total number of eight to nine treatments. Subjects were evaluated using standardized photographs, and measurements of body weight and circumference of treatment sites at baseline, immediately after the last treatment, and four weeks and one year after the last treatment. Clinical improvement scores of comparable photographs using a quartile grading scale (0 = 75% improvement) were judged independently by two non-treating dermatologists after the series of treatment. The average body weights at baseline, immediately after the last treatment, and four weeks and one year after the complete treatment were 56.30, 56.05, 56.23, and 56.53 kg, respectively. The average circumferential reductions of the abdomen and thigh at the last treatment visit were 5.17 +/- 1.04 cm (6.32%+/- 1.82%) and 3.50 +/- 2.16 cm (6.23 +/- 3.58%), respectively. At four weeks after the last treatment, the average circumferential reductions of the abdomen and thigh were sustained at 3.17 +/- 2.75 cm (4.04%+/- 3.69%) and 3.50 +/- 2.04 cm (6.26%+/- 3.52%), respectively. At one year follow-up visit, the average circumferential reductions of the abdomen and thigh were maintained at 3.83 +/- 0.76 cm (4.64%+/- 1.15%) and 3.13 +/- 3.54 (5.50%+/- 6.12%), respectively. Average clinical improvement scores of the abdomen and thigh after the series of treatments were 0.75 (corresponding to approximately 25% improvement), and 1.75 (corresponding to approximately 50% improvement), respectively. A bipolar RF, IR heat and pulsatile suction device provides a beneficial effect on reduction of abdomen and thigh circumference, and smoothening of the cellulite.

  7. EIT based pulsatile impedance monitoring during spontaneous breathing in cystic fibrosis.

    Science.gov (United States)

    Krueger-Ziolek, Sabine; Schullcke, Benjamin; Gong, Bo; Müller-Lisse, Ullrich; Moeller, Knut

    2017-06-01

    Evaluating the lung function in patients with obstructive lung disease by electrical impedance tomography (EIT) usually requires breathing maneuvers containing deep inspirations and forced expirations. Since these maneuvers strongly depend on the patient's co-operation and health status, normal tidal breathing was investigated in an attempt to develop continuous maneuver-free measurements. Ventilation related and pulsatile impedance changes were systematically analyzed during normal tidal breathing in 12 cystic fibrosis (CF) patients and 12 lung-healthy controls (HL). Tidal breaths were subdivided into three inspiratory (In1, In2, In3) and three expiratory (Ex1, Ex2, Ex3) sections of the same amplitude of global impedance change. Maximal changes of the ventilation and the pulsatile impedance signal occurring during these sections were determined (▵I V and ▵I P ). Differences in ▵I V and ▵I P among sections were ascertained in relation to the first inspiratory section. In addition, ▵I V /▵I P was calculated for each section. Medians of changes in ▵I V were  <0.05% in all sections for both subject groups. Both groups showed a similar pattern of ▵I P changes during tidal breathing. Changes in ▵I P first decreased during inspiration (In2), then increased towards the end of inspiration (In3) and reached a maximum at the beginning of expiration (Ex1). During the last two sections of expiration (Ex2, Ex3) ▵I P changes decreased. The CF patients showed higher variations in ▵I P changes compared to the controls (CF:  -426.5%, HL:  -158.1%, coefficient of variation). Furthermore, ▵I V /▵I P significantly differed between expiratory sections for the CF patients (Ex1-Ex2, p  <  0.01; Ex1-Ex3, p  <  0.001; Ex2-Ex3, p  <  0.05), but not for the controls. No significant differences in ▵I V /▵I P between inspiratory sections were determined for both groups. Differences in ▵I P changes and in ▵I V /▵I P between

  8. Rotationally invariant correlation filtering

    International Nuclear Information System (INIS)

    Schils, G.F.; Sweeney, D.W.

    1985-01-01

    A method is presented for analyzing and designing optical correlation filters that have tailored rotational invariance properties. The concept of a correlation of an image with a rotation of itself is introduced. A unified theory of rotation-invariant filtering is then formulated. The unified approach describes matched filters (with no rotation invariance) and circular-harmonic filters (with full rotation invariance) as special cases. The continuum of intermediate cases is described in terms of a cyclic convolution operation over angle. The angular filtering approach allows an exact choice for the continuous trade-off between loss of the correlation energy (or specificity regarding the image) and the amount of rotational invariance desired

  9. Neuroanatomical Alterations in Patients with Early Stage of Unilateral Pulsatile Tinnitus: A Voxel-Based Morphometry Study

    Directory of Open Access Journals (Sweden)

    Yawen Liu

    2018-01-01

    Full Text Available During the past several years, the rapid development of neuroimaging techniques has contributed greatly in the noninvasive imaging studies of tinnitus. The aim of the present study was to explore the brain anatomical alterations in patients with right-sided unilateral pulsatile tinnitus (PT in the early stage of PT symptom using voxel-based morphometry (VBM analysis. Twenty-four patients with right-sided pulsatile tinnitus and 24 age- and gender-matched normal controls were recruited to this study. Structural image data preprocessing was performed using VBM8 toolbox. Tinnitus Handicap Inventory (THI score was acquired in the tinnitus group to assess the severity of tinnitus and tinnitus-related distress. Two-sample t-test and Pearson’s correlation analysis were used in statistical analysis. Patients with unilateral pulsatile tinnitus had significantly increased gray matter (GM volume in bilateral superior temporal gyrus compared with the normal controls. However, the left cerebellum posterior lobe, left frontal superior orbital lobe (gyrus rectus, right middle occipital gyrus (MOG, and bilateral putamen showed significantly decreased brain volumes. This was the first study which demonstrated the features of neuroanatomical changes in patients with unilateral PT during their early stages of the symptom.

  10. Glucose uptake and pulsatile insulin infusion: euglycaemic clamp and [3-3H]glucose studies in healthy subjects

    International Nuclear Information System (INIS)

    Schmitz, O.; Arnfred, J.; Hother Nielsen, O.; Beck-Nielsen, H.; Oerskov, H.

    1986-01-01

    To test the hypothesis that insulin has a greater effect on glucose metabolism when given as pulsatile than as continuous infusion, a 354-min euglycaemic clamp study was carried out in 8 healthy subjects. At random order soluble insulin was given intravenously either at a constant rate of 0.45mU/kg · min or in identical amounts in pulses of 1 1 / 2 to 2 1 / 4 min followed by intervals of 10 1 / 2 to 9 3 / 4 min. Average serum insulin levels were similar during the two infusion protocols, but pulsatile administration induced oscillations ranging between 15 and 62 μU/ml. Glucose uptake expressed as metabolic clearance rate (MCR) for glucose was significantly increased during pulsatile insulin delivery as compared with continuous administration (270-294 min: 8.7±0.7 vs 6.8±0.9 ml/kg · min, P 3 H]glucose infusion technique was suppressed to insignificant values. Finally, the effect of insulin on endogenous insulin secretion and lipolysis as assessed by changes in serum C-peptide and serum FFA was uninfluenced by the infusion mode. In conclusion, insulin infusion resulting in physiological serum insulin levels enhances glucose uptake in peripheral tissues in healthy subjects to a higher degree when given in a pulsed pattern mimicking that of the normal endocrine pancreas than when given as a continuous infusion. (author)

  11. Local pulsatile contractions are an intrinsic property of the myosin 2A motor in the cortical cytoskeleton of adherent cells.

    Science.gov (United States)

    Baird, Michelle A; Billington, Neil; Wang, Aibing; Adelstein, Robert S; Sellers, James R; Fischer, Robert S; Waterman, Clare M

    2017-01-15

    The role of nonmuscle myosin 2 (NM2) pulsatile dynamics in generating contractile forces required for developmental morphogenesis has been characterized, but whether these pulsatile contractions are an intrinsic property of all actomyosin networks is not known. Here we used live-cell fluorescence imaging to show that transient, local assembly of NM2A "pulses" occurs in the cortical cytoskeleton of single adherent cells of mesenchymal, epithelial, and sarcoma origin, independent of developmental signaling cues and cell-cell or cell-ECM interactions. We show that pulses in the cortical cytoskeleton require Rho-associated kinase- or myosin light chain kinase (MLCK) activity, increases in cytosolic calcium, and NM2 ATPase activity. Surprisingly, we find that cortical cytoskeleton pulses specifically require the head domain of NM2A, as they do not occur with either NM2B or a 2B-head-2A-tail chimera. Our results thus suggest that pulsatile contractions in the cortical cytoskeleton are an intrinsic property of the NM2A motor that may mediate its role in homeostatic maintenance of tension in the cortical cytoskeleton of adherent cells. © 2017 Baird et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Retina-Inspired Filter.

    Science.gov (United States)

    Doutsi, Effrosyni; Fillatre, Lionel; Antonini, Marc; Gaulmin, Julien

    2018-07-01

    This paper introduces a novel filter, which is inspired by the human retina. The human retina consists of three different layers: the Outer Plexiform Layer (OPL), the inner plexiform layer, and the ganglionic layer. Our inspiration is the linear transform which takes place in the OPL and has been mathematically described by the neuroscientific model "virtual retina." This model is the cornerstone to derive the non-separable spatio-temporal OPL retina-inspired filter, briefly renamed retina-inspired filter, studied in this paper. This filter is connected to the dynamic behavior of the retina, which enables the retina to increase the sharpness of the visual stimulus during filtering before its transmission to the brain. We establish that this retina-inspired transform forms a group of spatio-temporal Weighted Difference of Gaussian (WDoG) filters when it is applied to a still image visible for a given time. We analyze the spatial frequency bandwidth of the retina-inspired filter with respect to time. It is shown that the WDoG spectrum varies from a lowpass filter to a bandpass filter. Therefore, while time increases, the retina-inspired filter enables to extract different kinds of information from the input image. Finally, we discuss the benefits of using the retina-inspired filter in image processing applications such as edge detection and compression.

  13. Study of different filters

    International Nuclear Information System (INIS)

    Cochinal, R.; Rouby, R.

    1959-01-01

    This note first contains a terminology related to filters and to their operation, and then proposes an overview of general characteristics of filters such as load loss with respect to gas rate, efficiency, and clogging with respect to filter pollution. It also indicates standard aerosols which are generally used, how they are dosed, and how efficiency is determined with a standard aerosol. Then, after a presentation of the filtration principle, this note reports the study of several filters: glass wool, filter papers provided by different companies, Teflon foam, English filters, Teflon wool, sintered Teflonite, quartz wool, polyvinyl chloride foam, synthetic filter, sintered bronze. The third part reports the study of some aerosol and dust separators

  14. Changing ventilation filters

    International Nuclear Information System (INIS)

    Hackney, S.

    1980-01-01

    A filter changing unit has a door which interlocks with the door of a filter chamber so as to prevent contamination of the outer surfaces of the doors by radioactive material collected on the filter element and a movable support which enables a filter chamber thereonto to be stored within the unit in such a way that the doors of the unit and the filter chamber can be replaced. The door pivots and interlocks with another door by means of a bolt, a seal around the periphery lip of the first door engages the periphery of the second door to seal the gap. A support pivots into a lower filter element storage position. Inspection windows and glove ports are provided. The unit is releasably connected to the filter chamber by bolts engaging in a flange provided around an opening. (author)

  15. Balanced microwave filters

    CERN Document Server

    Hong, Jiasheng; Medina, Francisco; Martiacuten, Ferran

    2018-01-01

    This book presents and discusses strategies for the design and implementation of common-mode suppressed balanced microwave filters, including, narrowband, wideband, and ultra-wideband filters This book examines differential-mode, or balanced, microwave filters by discussing several implementations of practical realizations of these passive components. Topics covered include selective mode suppression, designs based on distributed and semi-lumped approaches, multilayer technologies, defect ground structures, coupled resonators, metamaterials, interference techniques, and substrate integrated waveguides, among others. Divided into five parts, Balanced Microwave Filters begins with an introduction that presents the fundamentals of balanced lines, circuits, and networks. Part 2 covers balanced transmission lines with common-mode noise suppression, including several types of common-mode filters and the application of such filters to enhance common-mode suppression in balanced bandpass filters. Next, Part 3 exa...

  16. Um sistema de ventrículo pulmonar produzindo pressão pulsátil em único ventrículo: modelo experimental A pulmonary ventricle system producing pulsatile pressure in single ventricle: experimental model

    Directory of Open Access Journals (Sweden)

    Bilgein Emrecan

    2006-09-01

    systolic and diastolic pulmonary artery pressures were 15,6 ± 2.0 mmHg and 4.5 ± 1.5 mmHg. The mean of the left ventricular systolic pressure was mean 76.6 ± 4.4 mmHg. CONCLUSION: A ventricle producing pulsatile pressure is necessary for regulating the pulmonary artery flow with high central venous pressure and low non-pulsatile pulmonary pressure in the anomalies with functional single ventricles.

  17. Low-pressure sequential compression of lower limbs enhances forearm skin blood flow.

    Science.gov (United States)

    Amah, Guy; Voicu, Sebastian; Bonnin, Philippe; Kubis, Nathalie

    2016-12-01

    We investigated whether forearm skin blood flow could be improved when a multilayer pulsatile inflatable suit was applied at a low pressure to the lower limbs and abdomen. We hypothesized that a non-invasive purely mechanical stimulation of the lower limbs could induce remote forearm blood flow modifications. The pulsatile suit induced a sequential compartmentalized low compression (65 mmHg), which was synchronized with each diastole of the cardiac cycle with each phase evolving centripetally (lower limbs to abdomen). Modifications of the forearm skin blood flow were continuously recorded by laser Doppler flowmetry (LDF) at baseline and during the pulsatile suit application. Endothelium-dependent and endothelium-independent vasodilations of the forearm skin microcirculation were measured by LDF in response to a local transdermal iontophoretic application of acetylcholine (ACh-test) and to hyperthermia (hyperT- test). Twenty-four healthy volunteers, 12 men and 12 women (43±14 years) were included in the study. LDF responses increased 1) under pulsatile suit (97±106%, p.

  18. Percutaneous Retrieval of Permanent Inferior Vena Cava Filters

    International Nuclear Information System (INIS)

    Tamrazi, Anobel; Wadhwa, Vibhor; Holly, Brian; Bhagat, Nikhil; Marx, Jonathan K.; Streiff, Michael; Lessne, Mark L.

    2016-01-01

    PurposeTo evaluate the feasibility, risks, and techniques of percutaneous removal of permanent TrapEase and Simon Nitinol IVC filters.Materials and MethodsBetween August 2011 and August 2015, 12 patients (5 women, 7 men; age range, 26–75 years) underwent an attempt at percutaneous removal of permanent TrapEase (10) and Simon Nitinol (2) IVC filters due to a history of IVC filter complications or need for lifelong anticoagulation due to the filter. Medical records were reviewed for filter dwell time, presence of iliocaval deep venous thrombosis, procedural technique, and complications.ResultsFilter dwell times ranged from 7 days to 15 years (mean 5.1 years). Successful removal of permanent IVC filters was possible in 11 of 12 patients (91.6 %). In 1 patient, a chronically thrombosed IVC filter could not be removed despite laser sheath assistance, but was successfully recanalized with the PowerWire RF guidewire. In the failed retrieval attempt, a stent was placed through the chronically thrombosed IVC filter with restoration of in-line flow. One major complication of large venous groin hematoma was encountered.ConclusionsIn carefully selected patients, percutaneous removal of permanent IVC filters can be performed safely despite prolonged filter dwell times. Extraction of chronically embedded permanent IVC filters may be facilitated by jugular and femoral approaches, often with laser sheath assistance. Chronic filter thrombosis and caval scarring may increase the risk of retrieval failure.

  19. Percutaneous Retrieval of Permanent Inferior Vena Cava Filters

    Energy Technology Data Exchange (ETDEWEB)

    Tamrazi, Anobel, E-mail: atamraz1@jhmi.edu; Wadhwa, Vibhor, E-mail: vwadhwa1@jhmi.edu; Holly, Brian, E-mail: bholly3@jhmi.edu [Johns Hopkins University School of Medicine, Division of Vascular & Interventional Radiology (United States); Bhagat, Nikhil, E-mail: nikhibhagat@gmail.com [Kaiser Permanente, Division of Vascular & Interventional Radiology (United States); Marx, Jonathan K., E-mail: jmarx9@jhmi.edu [Johns Hopkins University School of Medicine, Division of Vascular & Interventional Radiology (United States); Streiff, Michael, E-mail: mstreif@jhmi.edu [Johns Hopkins University School of Medicine, Department of Hematology (United States); Lessne, Mark L., E-mail: mlessne@gmail.com [Johns Hopkins University School of Medicine, Division of Vascular & Interventional Radiology (United States)

    2016-04-15

    PurposeTo evaluate the feasibility, risks, and techniques of percutaneous removal of permanent TrapEase and Simon Nitinol IVC filters.Materials and MethodsBetween August 2011 and August 2015, 12 patients (5 women, 7 men; age range, 26–75 years) underwent an attempt at percutaneous removal of permanent TrapEase (10) and Simon Nitinol (2) IVC filters due to a history of IVC filter complications or need for lifelong anticoagulation due to the filter. Medical records were reviewed for filter dwell time, presence of iliocaval deep venous thrombosis, procedural technique, and complications.ResultsFilter dwell times ranged from 7 days to 15 years (mean 5.1 years). Successful removal of permanent IVC filters was possible in 11 of 12 patients (91.6 %). In 1 patient, a chronically thrombosed IVC filter could not be removed despite laser sheath assistance, but was successfully recanalized with the PowerWire RF guidewire. In the failed retrieval attempt, a stent was placed through the chronically thrombosed IVC filter with restoration of in-line flow. One major complication of large venous groin hematoma was encountered.ConclusionsIn carefully selected patients, percutaneous removal of permanent IVC filters can be performed safely despite prolonged filter dwell times. Extraction of chronically embedded permanent IVC filters may be facilitated by jugular and femoral approaches, often with laser sheath assistance. Chronic filter thrombosis and caval scarring may increase the risk of retrieval failure.

  20. Numerical Study on Self-Cleaning Canister Filter With Add-On Filter Cap

    Directory of Open Access Journals (Sweden)

    Mohammed Akmal Nizam

    2017-01-01

    Full Text Available Filtration in a turbo machinery system such as a gas turbine will ensure that the air entering the inlet is free from contaminants that could bring damage to the main system. Self-cleaning filter systems for gas turbines are designed for continuously efficient flow filtration. A good filter would be able to maintain its effectiveness over a longer time period, prolonging the duration between filter replacements and providing lower pressure drop over its operating lifetime. With this goal in mind, the current study is focused on the difference in pressure loss of the benchmark Salutary Avenue Self-cleaning filter in comparison to a new design with an add-on filter cap. Geometry for the add-on filter cap will be based from Salutary Avenue Manufacturing Sdn.Bhd. SOLIDWORKS software was used to model the geometry of the filter, while simulation analysis on the flow through the filter was done using Computational Fluid Dynamic (CFD software. The simulations are based on a low velocity condition, in which the parameter for the inlet velocity are set at 0.032 m/s, 0.063 m/s, 0.094 m/s and 0.126 m/s respectively. From the simulation data obtained for the inlet velocities considered, the pressure drop reduction of the modified filter compared to the benchmark was found to be between 7.59% and 30.18%. All in all, the modification of the filter cap produced a lower pressure drop in comparison with the benchmark filter; an improvement of 27.02% for the total pressure drop was obtained.

  1. A Novel Pulsatile Bioreactor for Mechanical Stimulation of Tissue Engineered Cardiac Constructs

    Directory of Open Access Journals (Sweden)

    Günther Eissner

    2011-07-01

    Full Text Available After myocardial infarction, the implantation of stem cell seeded scaffolds on the ischemic zone represents a promising strategy for restoration of heart function. However, mechanical integrity and functionality of tissue engineered constructs need to be determined prior to implantation. Therefore, in this study a novel pulsatile bioreactor mimicking the myocardial contraction was developed to analyze the behavior of mesenchymal stem cells derived from umbilical cord tissue (UCMSC colonized on titanium-coated polytetrafluorethylene scaffolds to friction stress. The design of the bioreactor enables a simple handling and defined mechanical forces on three seeded scaffolds at physiological conditions. The compact system made of acrylic glass, Teflon®, silicone, and stainless steel allows the comparison of different media, cells and scaffolds. The bioreactor can be gas sterilized and actuated in a standard incubator. Macroscopic observations and pressure-measurements showed a uniformly sinusoidal pulsation, indicating that the bioreactor performed well. Preliminary experiments to determine the adherence rate and morphology of UCMSC after mechanical loadings showed an almost confluent cellular coating without damage on the cell surface. In summary, the bioreactor is an adequate tool for the mechanical stress of seeded scaffolds and offers dynamic stimuli for pre-conditioning of cardiac tissue engineered constructs in vitro.

  2. Development and optimization of press coated tablets of release engineered valsartan for pulsatile delivery.

    Science.gov (United States)

    Shah, Sunny; Patel, Romik; Soniwala, Moinuddin; Chavda, Jayant

    2015-01-01

    The present work is aimed to develop and optimize pulsatile delivery during dissolution of an improved formulation of valsartan to coordinate the drug release with circadian rhythm. Preliminary studies suggested that β cyclodextrin could improve the solubility of valsartan and showed AL type solubility curve. A 1:1 stoichiometric ratio of valsartan to β cyclodextrin was revealed from phase solubility studies and Job's plot. The prepared complex showed significantly better dissolution efficiency (p valsartan β cyclodextrin complex was significantly higher (p valsartan β cyclodextrin complex were subsequently prepared and application of the Plackett-Burman screening design revealed that HPMC K4M and EC showed significant effect on lag time. A 3(2) full factorial design was used to measure the response of HPMC K4M and EC on lag time and time taken for 90% drug release (T90). The optimized batch prepared according to the levels obtained from the desirability function had a lag time of 6 h and consisted of HPMC K4M:ethylcellulose in a 1:1.5 ratio with 180 mg of coating and revealed a close agreement between observed and predicted value (R(2 )= 0.9694).

  3. Cerebral Pulsatility Index Is Elevated in Patients with Elevated Right Atrial Pressure.

    Science.gov (United States)

    Lahiri, Shouri; Schlick, Konrad H; Padrick, Matthew M; Rinsky, Brenda; Gonzalez, Nestor; Jones, Heather; Mayer, Stephan A; Lyden, Patrick D

    2018-01-01

    Extracerebral venous congestion can precipitate intracranial hypertension due to obstruction of cerebral blood outflow. Conditions that increase right atrial pressure, such as hypervolemia, are thought to increase resistance to jugular venous outflow and contribute to cerebro-venous congestion. Cerebral pulsatility index (CPI) is considered a surrogate marker of distal cerebrovascular resistance and is elevated with intracranial hypertension. Thus, we sought to test the hypothesis that elevated right atrial pressure is associated with increased CPI compared to normal right atrial pressure. We retrospectively reviewed 61 consecutive patients with subarachnoid hemorrhage. We calculated CPI from transcranial Doppler studies and correlated these with echocardiographic measures of right atrial pressure. CPIs were compared from patients with elevated and normal right atrial pressure. There was a significant difference between CPI obtained from all patients with elevated right atrial pressure compared to those with normal right atrial pressure (P right and left hemispheric CPI from patients with both elevated and normal right atrial pressure. Patients with elevated right atrial pressure had significantly higher CPI compared to patients with normal right atrial pressure. These findings suggest that cerebro-venous congestion due to impaired jugular venous outflow may increase distal cerebrovascular resistance as measured by CPI. Since elevated CPI is associated with poor outcome in numerous neurological conditions, future studies are needed to elucidate the significance of these results in other populations. Copyright © 2017 by the American Society of Neuroimaging.

  4. Obesity, serum steroid levels, and pulsatile gonadotropin secretion in polycystic ovarian disease.

    Science.gov (United States)

    Laatikainen, T; Tulenheimo, A; Andersson, B; Kärkkäinen, J

    1983-04-01

    Serum binding capacity of sex-hormone binding globulin (SHBG-BC), steroid concentrations, and secretion patterns of LH and FSH were compared between groups of seven nonobese and seven obese patients with polycystic ovarian disease (PCOD). Obese patients with PCOD differed from those with normal weight in having very low SHBG-BC and elevated serum levels of free and albumin bound testosterone. Compared to healthy women in the follicular phase, both nonobese and obese patients with PCOD showed equally elevated serum levels of androstenedione, estrone, and albumin-bound and free estradiol. Pattern of gonadotropin secretion was studied from blood samples taken at 15 min intervals for 6 h. In 6 patients of both groups low pulses of FSH were found coincidently with pulses of LH. Serum level of LH showed a clear pulsatile pattern in all patients with PCOD, varying from 4.5 to 7.5 pulses per 6 h. The mean pulse rate in the groups of nonobese and obese patients with PCOD was similar, 5.9 pulses per 6 h. In the obese patients the mean LH levels were, however, less elevated and the pulse amplitudes were smaller than those in the nonobese patients. We suggest that this difference is due to high levels of biologically active testosterone in obese patients with PCOD.

  5. Bioavailability assessment of hydroxymethylglutaryl coenzyme A reductase inhibitor utilizing pulsatile drug delivery system: a pilot study.

    Science.gov (United States)

    Taha, Ehab I

    2016-09-01

    Chronotherapy or pulsatile drug delivery system could be achieved by increasing drug plasma concentration exactly at the time of disease incidence. Cholesterol synthesis shows a circadian rhythm being high at late night and early in the morning. Simvastatin (SIM) inhibits hydroxymethylglutaryl coenzyme A reductase, which is responsible for cholesterol synthesis. In this study, SIM lipid-based formulation filled in gelatin capsules and coated with aqueous Eudragit® S100 dispersion was prepared for chronotherapeutic treatment of hypercholesterolemia. The pharmacokinetic parameters of SIM capsules were studied in human volunteers after a single oral dose and compared with that of Zocor® tablets as a reference in a randomized cross-over study. Pharmacokinetic parameters such as AUC 0-∞ , C max , T max , t 1/2 and elimination rate constant were determined from plasma concentration-time profile for both formulations. The tested formulation had the ability to delay drug absorption and provide higher drug concentrations from 3 up to 10 h after oral administration compared to that of commercial tablets. The data in this study revealed that the prepared formulation could be effective in chronotherapeutic treatment of hypercholesterolemia. Moreover, the tested formulation was found to enhance SIM bioavailability by 29% over the reference tablets.

  6. Adaptive Filtering Queueing for Improving Fairness

    Directory of Open Access Journals (Sweden)

    Jui-Pin Yang

    2015-06-01

    Full Text Available In this paper, we propose a scalable and efficient Active Queue Management (AQM scheme to provide fair bandwidth sharing when traffic is congested dubbed Adaptive Filtering Queueing (AFQ. First, AFQ identifies the filtering level of an arriving packet by comparing it with a flow label selected at random from the first level to an estimated level in the filtering level table. Based on the accepted traffic estimation and the previous fair filtering level, AFQ updates the fair filtering level. Next, AFQ uses a simple packet-dropping algorithm to determine whether arriving packets are accepted or discarded. To enhance AFQ’s feasibility in high-speed networks, we propose a two-layer mapping mechanism to effectively simplify the packet comparison operations. Simulation results demonstrate that AFQ achieves optimal fairness when compared with Rotating Preference Queues (RPQ, Core-Stateless Fair Queueing (CSFQ, CHOose and Keep for responsive flows, CHOose and Kill for unresponsive flows (CHOKe and First-In First-Out (FIFO schemes under a variety of traffic conditions.

  7. Process and device for regulating an electromagnetic filter

    International Nuclear Information System (INIS)

    Dolle, Lucien.

    1980-01-01

    Process for regulating the operation of an electromagnetic filter and, in particular, for keeping the efficiency of the filter at a sufficiently high level irrespective of the degree of filter clogging, fluid flow rate and temperature of the fluid. The filter includes an envelope containing a filling that can be magnetized by a coil activated by a d.c. supply arranged around the envelope. The regulating process includes the following stages: - activating the coil by a current of lower intensity than that of the saturation current of the filling, - determining the pressure drop of the filter, fluid flow rate and fluid temperature, - increasing the intensity of the current activating the coil when the efficiency of the filter corresponding to the measured values drops below a given level [fr

  8. Dedusting and filtering technology; Entstaubungs- und Filtertechnik

    Energy Technology Data Exchange (ETDEWEB)

    Selck, S.; Stockmann, H.W.; Both, R. [Deutsche Montan Technologie GmbH, Essen (Germany). Gas and Fire Div.

    2004-07-01

    For the further development of the filtration and dedusting technology within the last research period the new regulations in occupational hygiene concerning dust as well as ISO and EN standards have been considered. Also the new requirements concerning fire and explosion protection filter materials based in the test regulations for synthetic materials have been taken into account. The adoption of these new regulations inhibits the further use of the available high effective filter materials in underground coal mines. The development of new filter materials has been forced by the test regulations for synthetic materials, as the specific aspects of electrostatic behaviour, soot and toxic gases formed by burning of filter materials impacting the CO self rescue filters, have been taken into account. Even these requirements are partially inhibiting high filter efficiencies and air flows, all the requirements have been fulfilled on a high level on filter efficiencies matching the present state of art in occupational hygiene as reported in the Silicosis Reports Vol. 20 and 21. (orig.)

  9. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  10. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Wells, George; Beaton, Dorcas E; Tugwell, Peter

    2014-01-01

    The "Discrimination" part of the OMERACT Filter asks whether a measure discriminates between situations that are of interest. "Feasibility" in the OMERACT Filter encompasses the practical considerations of using an instrument, including its ease of use, time to complete, monetary costs......, and interpretability of the question(s) included in the instrument. Both the Discrimination and Reliability parts of the filter have been helpful but were agreed on primarily by consensus of OMERACT participants rather than through explicit evidence-based guidelines. In Filter 2.0 we wanted to improve this definition...

  11. Nanofiber Filters Eliminate Contaminants

    Science.gov (United States)

    2009-01-01

    With support from Phase I and II SBIR funding from Johnson Space Center, Argonide Corporation of Sanford, Florida tested and developed its proprietary nanofiber water filter media. Capable of removing more than 99.99 percent of dangerous particles like bacteria, viruses, and parasites, the media was incorporated into the company's commercial NanoCeram water filter, an inductee into the Space Foundation's Space Technology Hall of Fame. In addition to its drinking water filters, Argonide now produces large-scale nanofiber filters used as part of the reverse osmosis process for industrial water purification.

  12. Washing method of filter

    International Nuclear Information System (INIS)

    Izumidani, Masakiyo; Tanno, Kazuo.

    1978-01-01

    Purpose: To enable automatic filter operation and facilitate back-washing operation by back-washing filters used in a bwr nuclear power plant utilizing an exhaust gas from a ventilator or air conditioner. Method: Exhaust gas from an exhaust pipe of an ventilator or air conditioner is pressurized in a compressor and then introduced in a back-washing gas tank. Then, the exhaust gas pressurized to a predetermined pressure is blown from the inside to the outside of a filter to thereby separate impurities collected on the filter elements and introduce them to a waste tank. (Furukawa, Y.)

  13. Development of nuclear standard filter elements for PWR plant

    International Nuclear Information System (INIS)

    Weng Minghui; Wu Jidong; Gu Xiuzhang; Zhang Jinghua

    1988-11-01

    Model FRX-5 and FRX-10 nuclear standard filter elements are used for the fluid clarification of the chemical and volume control system (CVCS), boron recycle system (BRS), spent fuel pit cooling system (SFPCS) and steam generator blowdown system (SGBS) in Qinshan Nuclear Power Plant. The radioactive contaminant, fragment of resin and impurity are collected by these filter elements, The core of filter elements consists of polypropylene frames and paper filter medium bonded by resin. A variety of filter papers are tested for optimization. The flow rate and comprehensive performance have been measured in the simulation condition. The results showed that the performance and lifetime have met the designing requirements. The advantages of the filter elements are simple in manufacturing, less expense and facilities for waste-disposal. At present, some of filter elements have been produced and put in operation

  14. Electron beam selectively seals porous metal filters

    Science.gov (United States)

    Snyder, J. A.; Tulisiak, G.

    1968-01-01

    Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.

  15. COMPARATIVE EVALUATION OF FILTERS USED IN TRACKING AIR TARGETS

    Directory of Open Access Journals (Sweden)

    Y. I. Strekalovskaya

    2015-01-01

    Full Text Available Using an imitation model for a flow of heterogeneous air targets the comparative assessment of the αβ, αβγ and the Kalman filters efficiency is evaluated. In the case of slightly maneuvering target the difference in filters’ efficiency is statistically insignificant; in the case of sharp maneuvering the Kalman filter is significantly more precise.

  16. Development of filters and housings for use on active plant

    International Nuclear Information System (INIS)

    Hackney, S.; Pratt, R.P.

    1983-01-01

    New designs of housings for conventional HEPA filters have been developed and are now in use. A further design is planned for future use. The main features to be developed are the engineering of double door systems to replace bag posting and other methods of filter changing which expose personnel to hazardous environments and the addition of a secondary containment to reduce the role of the gasket seal in the filtration efficiency. Also under development are circular geometry filters of HEPA standard which offer significant advantages over rectangular filters for applications requiring remote shielded change facilities. Two types of filter construction are being evaluated, conventional radial flow cartridge filters and spiral-wound, axial-flow filters. The application of circular filters for primary filter systems on active plant is in hand. A push-through change system has been developed for a new cell facility under construction at Harwell. Existing rectangular filters on a high activity cell are being replaced with clusters of small cartridge filters to overcome changing and disposal problems. A similar system but using 1700 m 3 /h filters for large volume off-gas treatment is also being studied. A remote change shielded filter installation is being developed for use in high alpha, beta, gamma extract systems. The design incorporates large cartridge filters in sealed drums with remote transfer and connection to duct work in the facility. A novel application of the use of double-lid technology removes the need for separate shut off dampers and enables the drums to be sealed for all transfer operations

  17. Increased pulsatility index supports diagnosis of vascular parkinsonism versus idiopathic Parkinson's disease.

    Science.gov (United States)

    Caba, L M; Ferrairó, J I T; Torres, I M; Costa, J F V; Muñoz, R B; Martin, A L

    2017-12-29

    The diagnosis of vascular parkinsonism (VP) is based on a series of clinical criteria and neuroimaging findings. An increase in transcranial Doppler ultrasonography pulsatility index (PI) has been described as a frequent finding in patients with VP. We aimed to confirm this association and to determine the PI value with the highest sensitivity and specificity for diagnosis of VP. PI was determined in all patients admitted to Hospital Universitari i Politècnic La Fe due to parkinsonism between January 2012 and June 2016. We assessed the probability of having VP based on PI values in patients with a definite diagnosis of either VP or idiopathic Parkinson's disease (IPD). A ROC curve was created to determine the PI value with the highest sensitivity and specificity. We assessed a total of 146 patients with suspected parkinsonism; 54 (37%) were diagnosed with IPD and 15 (10%) with VP. Patients with VP were significantly older than those with IPD (mean age of 79 vs 68.5, P=.00144) and had a higher PI (median of 1.29 [IQR: 1.09-1.38] vs 0.96 [IQR: 0.89-1.16], P=.01328). In our sample, a PI of 1.09 conferred 84% sensitivity and 70% specificity. In our series, the PI was significantly higher in patients with VP than in those with IPD. We therefore support the use of transcranial Doppler ultrasonography for the initial assessment of elderly patients with akinetic-rigid syndrome. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Contact-Free Screening of Atrial Fibrillation by a Smartphone Using Facial Pulsatile Photoplethysmographic Signals.

    Science.gov (United States)

    Yan, Bryan P; Lai, William H S; Chan, Christy K Y; Chan, Stephen Chun-Hin; Chan, Lok-Hei; Lam, Ka-Ming; Lau, Ho-Wang; Ng, Chak-Ming; Tai, Lok-Yin; Yip, Kin-Wai; To, Olivia T L; Freedman, Ben; Poh, Yukkee C; Poh, Ming-Zher

    2018-04-05

    We aimed to evaluate a novel method of atrial fibrillation (AF) screening using an iPhone camera to detect and analyze photoplethysmographic signals from the face without physical contact by extracting subtle beat-to-beat variations of skin color that reflect the cardiac pulsatile signal. Patients admitted to the cardiology ward of the hospital for clinical reasons were recruited. Simultaneous facial and fingertip photoplethysmographic measurements were obtained from 217 hospital inpatients (mean age, 70.3±13.9 years; 71.4% men) facing the front camera and with an index finger covering the back camera of 2 independent iPhones before a 12-lead ECG was recorded. Backdrop and background light intensity was monitored during signal acquisition. Three successive 20-second (total, 60 seconds) recordings were acquired per patient and analyzed for heart rate regularity by Cardiio Rhythm (Cardiio Inc, Cambridge, MA) smartphone application. Pulse irregularity in ≥1 photoplethysmographic readings or 3 uninterpretable photoplethysmographic readings were considered a positive AF screening result. AF was present on 12-lead ECG in 34.6% (n=75/217) patients. The Cardiio Rhythm facial photoplethysmographic application demonstrated high sensitivity (95%; 95% confidence interval, 87%-98%) and specificity (96%; 95% confidence interval, 91%-98%) in discriminating AF from sinus rhythm compared with 12-lead ECG. The positive and negative predictive values were 92% (95% confidence interval, 84%-96%) and 97% (95% confidence interval, 93%-99%), respectively. Detection of a facial photoplethysmographic signal to determine pulse irregularity attributable to AF is feasible. The Cardiio Rhythm smartphone application showed high sensitivity and specificity, with low negative likelihood ratio for AF from facial photoplethysmographic signals. The convenience of a contact-free approach is attractive for community screening and has the potential to be useful for distant AF screening. © 2018 The

  19. Sigmoid sinus diverticulum and pulsatile tinnitus - Analysis of CT scans from 15 cases

    International Nuclear Information System (INIS)

    Liu, Zhaohui; Wang, Zhenchang; Xian, Junfang; Wang, Yongzhe; Liang, Xihong; Chen, Chengfang; Gong, Shusheng; Ma, Xiaobo; Li, Yi

    2013-01-01

    Background: Although the imaging features of sigmoid sinus diverticulum induced pulsatile tinnitus (PT) have been presented in some extent, detailed imaging findings still have not been systematically evaluated and precise diagnostic radiographic criteria has not been established. Purpose: To examine the computed tomography (CT) characteristics of sigmoid sinus diverticulum accompanied with PT. Material and Methods: Fifteen PT patients with sigmoid sinus diverticula proven by surgery were recruited after consenting. CT images of 15 patients were obtained and analyzed, including features of diverticula, brain venous systems, integrity of the sigmoid plate, and the degree of temporal bone pneumatization. Results: Sigmoid sinus diverticulum was located on the same side of PT in 15 patients. Diverticula originated at the superior curve of the sigmoid sinus in 11 patients and the descending segment of the sigmoid sinus in four patients. Sigmoid sinus diverticula focally eroded into the adjacent mastoid air cells in 12 patients and mastoid cortex in three patients. Among eight patients with unilateral dominant brain venous systems, the diverticula were seen on the dominant side in seven patients and non-dominant side in one patient. In contrast, the other seven patients showed co-dominant brain venous systems, with three presenting diverticula on the right side and four on the left. More notably, dehiscent sigmoid plate on the PT side was demonstrated in all patients. In addition, temporal bone hyper-pneumatization was found in nine patients, good and moderate pneumatization in three patients, respectively. Conclusion: Dehiscent sigmoid plate and extensive temporal bone pneumatization are two important imaging characteristics of the PT induced by sigmoid sinus diverticulum

  20. The Use of Fluid Mechanics to Predict Regions of Microscopic Thrombus Formation in Pulsatile VADs.

    Science.gov (United States)

    Topper, Stephen R; Navitsky, Michael A; Medvitz, Richard B; Paterson, Eric G; Siedlecki, Christopher A; Slattery, Margaret J; Deutsch, Steven; Rosenberg, Gerson; Manning, Keefe B

    2014-03-01

    We compare the velocity and shear obtained from particle image velocimetry (PIV) and computational fluid dynamics (CFD) in a pulsatile ventricular assist device (VAD) to further test our thrombus predictive methodology using microscopy data from an explanted VAD. To mimic physiological conditions in vitro , a mock circulatory loop is used with a blood analog that matched blood's viscoelastic behavior at 40% hematocrit. Under normal physiologic pressures and for a heart rate of 75 bpm, PIV data is acquired and wall shear maps are produced. The resolution of the PIV shear rate calculations are tested using the CFD and found to be in the same range. A bovine study, using a model of the 50 cc Penn State V-2 VAD, for 30 days at a constant beat rate of 75 beats per minute (bpm) provides the microscopic data whereby after the 30 days, the device is explanted and the sac surface analyzed using scanning electron microscopy (SEM) and, after immunofluorescent labeling for platelets and fibrin, confocal microscopy. Areas are examined based on PIV measurements and CFD, with special attention to low shear regions where platelet and fibrin deposition are most likely to occur. Data collected within the outlet port in a direction normal to the front wall of the VAD shows that some regions experience wall shear rates less than 500 s -1 , which increases the likelihood of platelet and fibrin deposition. Despite only one animal study, correlations between PIV, CFD, and in vivo data show promise. Deposition probability is quantified by the thrombus susceptibility potential, a calculation to correlate low shear and time of shear with deposition.

  1. Sigmoid sinus diverticulum and pulsatile tinnitus - Analysis of CT scans from 15 cases

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhaohui; Wang, Zhenchang; Xian, Junfang; Wang, Yongzhe; Liang, Xihong [Dept. of Radiology, Capital Medical Univ., Beijing Tongren Hospital, Beijing (China); Chen, Chengfang; Gong, Shusheng; Ma, Xiaobo; Li, Yi [Dept. of Otolaryngology Head and Neck Surgery, Capital Medical Univ., Beijing Tongren Hospital, Beijing (China)

    2013-09-15

    Background: Although the imaging features of sigmoid sinus diverticulum induced pulsatile tinnitus (PT) have been presented in some extent, detailed imaging findings still have not been systematically evaluated and precise diagnostic radiographic criteria has not been established. Purpose: To examine the computed tomography (CT) characteristics of sigmoid sinus diverticulum accompanied with PT. Material and Methods: Fifteen PT patients with sigmoid sinus diverticula proven by surgery were recruited after consenting. CT images of 15 patients were obtained and analyzed, including features of diverticula, brain venous systems, integrity of the sigmoid plate, and the degree of temporal bone pneumatization. Results: Sigmoid sinus diverticulum was located on the same side of PT in 15 patients. Diverticula originated at the superior curve of the sigmoid sinus in 11 patients and the descending segment of the sigmoid sinus in four patients. Sigmoid sinus diverticula focally eroded into the adjacent mastoid air cells in 12 patients and mastoid cortex in three patients. Among eight patients with unilateral dominant brain venous systems, the diverticula were seen on the dominant side in seven patients and non-dominant side in one patient. In contrast, the other seven patients showed co-dominant brain venous systems, with three presenting diverticula on the right side and four on the left. More notably, dehiscent sigmoid plate on the PT side was demonstrated in all patients. In addition, temporal bone hyper-pneumatization was found in nine patients, good and moderate pneumatization in three patients, respectively. Conclusion: Dehiscent sigmoid plate and extensive temporal bone pneumatization are two important imaging characteristics of the PT induced by sigmoid sinus diverticulum.

  2. Changes in cerebral artery blood flow velocity after intermittent cerebrospinal fluid drainage.

    OpenAIRE

    Kempley, S T; Gamsu, H R

    1993-01-01

    Doppler ultrasound was used to measure blood flow velocity in the anterior cerebral artery of six premature infants with posthaemorrhagic hydrocephalus, before and after intermittent cerebrospinal fluid (CSF) drainage, on 23 occasions. There was a significant increase in mean blood flow velocity after the drainage procedures (+5.6 cm/s, 95% confidence interval +2.9 to +8.3 cm/s), which was accompanied by a decrease in velocity waveform pulsatility. CSF pressure also fell significantly. In pat...

  3. Multilevel ensemble Kalman filter

    KAUST Repository

    Chernov, Alexey; Hoel, Haakon; Law, Kody; Nobile, Fabio; Tempone, Raul

    2016-01-01

    This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.

  4. Neutron Beam Filters

    International Nuclear Information System (INIS)

    Adib, M.

    2011-01-01

    The purpose of filters is to transmit neutrons with selected energy, while remove unwanted ones from the incident neutron beam. This reduces the background, and the number of spurious. The types of commonly used now-a-day neutron filters and their properties are discussed in the present work. There are three major types of neutron filters. The first type is filter of selective thermal neutron. It transmits the main reflected neutrons from a crystal monochromate, while reject the higher order contaminations accompanying the main one. Beams coming from the moderator always contain unwanted radiation like fast neutrons and gamma-rays which contribute to experimental background and to the biological hazard potential. Such filter type is called filter of whole thermal neutron spectrum. The third filter type is it transmits neutrons with energies in the resonance energy range (En . 1 KeV). The main idea of such neutron filter technique is the use of large quantities of a certain material which have the deep interference minima in its total neutron cross-section. By transmitting reactor neutrons through bulk layer of such material, one can obtain the quasimonochromatic neutron lines instead of white reactor spectrum.

  5. Side loading filter apparatus

    International Nuclear Information System (INIS)

    Reynolds, K.E.

    1981-01-01

    A side loading filter chamber for use with radioactive gases is described. The equipment incorporates an inexpensive, manually operated, mechanism for aligning filter units with a number of laterally spaced wall openings and for removing the units from the chamber. (U.K.)

  6. Multilevel ensemble Kalman filter

    KAUST Repository

    Chernov, Alexey

    2016-01-06

    This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.

  7. Endocrine dynamics during pulsatile GnRH administration in patients with hypothalamic amenorrhea and polycystic ovarian disease.

    Science.gov (United States)

    Rossmanith, W G; Wirth, U; Benz, R; Wolf, A S

    1989-01-01

    The LH secretory patterns and ovarian endocrine responses have been determined during pulsatile gonadotropin-releasing hormone (GnRH) administration for induction of ovulation in patients with hypothalamic amenorrhea (HA). However, until now these endocrine dynamics during GnRH therapy have not been thoroughly investigated in patients with polycystic ovarian disease (PCOD). Seven patients with HA and 4 patients with PCOD have therefore been studied to determine changes in LH pulsatile activity and in serum sex steroid levels in response to chronic intermittent GnRH stimulation. GnRH was administered intravenously (5-10 micrograms/90 minutes) by means of a portable infusion pump. Blood samples were obtained at 15-minute intervals for 4 hours on the day before the start of GnRH stimulation (control day) and on treatment days 5, 10 and 15. LH was determined in all samples and FSH, serum androgens and estrogens were measured in baseline samples by RIA. While 8 (62%) ovulations and 5 conceptions were observed in 13 treatment cycles in patients with HA, no ovulations were achieved during 9 treatment cycles in patients with PCOD. On the control day significantly (p less than 0.05) higher basal LH and testosterone (T) levels and significantly (p less than 0.05) lower FSH levels were found in the PCOD patients. The LH pulsatile profiles of the PCOD patients showed significantly (p less than 0.05) higher pulse amplitudes and areas under the curve (integrated responses). Pulsatile GnRH administration induced a significant (p less than 0.05) increase in LH pulse amplitudes in both HA and PCOD patients, and also increased (p less than 0.05) the integrated responses in patients with HA. During the GnRH stimulation, the LH interpulse intervals of both HA and PCOD patients were found to be similar to the frequency in which exogenous GnRH was administered. FSH levels rose continuously (p less than 0.001) during stimulation in patients with HA, but remained unchanged in patients

  8. Urethral anatomy and semen flow during ejaculation

    Science.gov (United States)

    Kelly, Diane

    2016-11-01

    Ejaculation is critical for reproductive success in many animals, but little is known about its hydrodynamics. In mammals, ejaculation pushes semen along the length of the penis through the urethra. Although the urethra also carries urine during micturition, the flow dynamics of micturition and ejaculation differ: semen is more viscous than urine, and the pressure that drives its flow is derived primarily from the rhythmic contractions of muscles at the base of the penis, which produce pulsatile rather than steady flow. In contrast, Johnston et al. (2014) describe a steady flow of semen through the crocodilian urethral groove during ejaculation. Anatomical differences of tissues associated with mammalian and crocodilian urethral structures may underlie these differences in flow behavior.

  9. Filtering and prediction

    CERN Document Server

    Fristedt, B; Krylov, N

    2007-01-01

    Filtering and prediction is about observing moving objects when the observations are corrupted by random errors. The main focus is then on filtering out the errors and extracting from the observations the most precise information about the object, which itself may or may not be moving in a somewhat random fashion. Next comes the prediction step where, using information about the past behavior of the object, one tries to predict its future path. The first three chapters of the book deal with discrete probability spaces, random variables, conditioning, Markov chains, and filtering of discrete Markov chains. The next three chapters deal with the more sophisticated notions of conditioning in nondiscrete situations, filtering of continuous-space Markov chains, and of Wiener process. Filtering and prediction of stationary sequences is discussed in the last two chapters. The authors believe that they have succeeded in presenting necessary ideas in an elementary manner without sacrificing the rigor too much. Such rig...

  10. Filter cake breaker systems

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Marcelo H.F. [Poland Quimica Ltda., Duque de Caxias, RJ (Brazil)

    2004-07-01

    Drilling fluids filter cakes are based on a combination of properly graded dispersed particles and polysaccharide polymers. High efficiency filter cakes are formed by these combination , and their formation on wellbore walls during the drilling process has, among other roles, the task of protecting the formation from instantaneous or accumulative invasion of drilling fluid filtrate, granting stability to well and production zones. Filter cake minimizes contact between drilling fluid filtrate and water, hydrocarbons and clay existent in formations. The uniform removal of the filter cake from the entire interval is a critical factor of the completion process. The main methods used to breaking filter cake are classified into two groups, external or internal, according to their removal mechanism. The aim of this work is the presentation of these mechanisms as well their efficiency. (author)

  11. Sub-micron filter

    Science.gov (United States)

    Tepper, Frederick [Sanford, FL; Kaledin, Leonid [Port Orange, FL

    2009-10-13

    Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2/g have been found to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of microbes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolecules such as proteins may be separated from each other based on their electronegative charges.

  12. A segmented K-space velocity mapping protocol for quantification of renal artery blood flow during breath-holding

    DEFF Research Database (Denmark)

    Thomsen, C; Cortsen, M; Söndergaard, L

    1995-01-01

    for renal artery flow determination. The protocol uses 16 phase-encoding lines per heart beat during 16 heart cycles and gives a temporal velocity resolution of 160 msec. Comparison with a conventional ECG-triggered velocity mapping protocol was made in phantoms as well as in volunteers. In our study, both...... methods showed sufficient robustness toward complex flow in a phantom model. In comparison with the ECG technique, the segmentation technique reduced vessel blurring and pulsatility artifacts caused by respiratory motion, and average flow values obtained in vivo in the left renal artery agreed between......Two important prerequisites for MR velocity mapping of pulsatile motion are synchronization of the sequence execution to the time course of the flow pattern and robustness toward loss of signal in complex flow fields. Synchronization is normally accomplished by using either prospective ECG...

  13. Monolithic Integrated Ceramic Waveguide Filters

    OpenAIRE

    Hunter, IC; Sandhu, MY

    2014-01-01

    Design techniques for a new class of integrated monolithic high permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled TEM filters with the same unloaded Q-Factor. Designs for both chebyshev and asymmetric generalized chebyshev filter are presented, with experimental results for an 1800 MHz chebyshev filter showing excellent agreement with theory.

  14. Increased basal and pulsatile secretion of FSH and LH in young men with 47,XXY or 46,XX karyotypes

    DEFF Research Database (Denmark)

    Aksglaede, L.; Jensen, Rikke Bodin Beck; Carlsen, E.

    2008-01-01

    testicular failure due to supernumerary X chromosomes. DESIGN: Cross-sectional study. METHODS: In this study, 7 untreated patients with primary gonadal insufficiency due to SRY-positive 46,XX (n=4) and 46,XXY karyotypes (n=3) aged 18.8 years and 25 age-matched healthy controls participated. Reproductive...... basal, pulsatile, and total LH and FSH secretion were associated with significantly more LH peaks per 24 h in comparison with healthy controls. Thus, our data indicate that in patients with Klinefelter syndrome and XX male karyotypes the entire hypothalamic-pituitary-gonadal axis has undergone...

  15. The pulsatility index and the resistive index in renal arteries in patients with hypertension and chronic renal failure

    DEFF Research Database (Denmark)

    Petersen, L J; Petersen, J R; Ladefoged, S D

    1995-01-01

    The pulsatility index (PI) and the resistive index (RI) are used as pulsed-wave Doppler measurement of downstream renal artery resistance. Little information is available on their value in chronic renal failure and their correlation to parameters of renal function and haemodynamics. The aim...... was to compare PI and RI of renal arteries in healthy volunteers and in patients with hypertension and chronic renal failure, and furthermore to study the correlation of these indices to measurements of renal haemodynamics and function by standard methods in patients with renal failure and hypertension....

  16. Penetration of Combustion Aerosol Particles Through Filters of NIOSH-Certified Filtering Facepiece Respirators (FFRs).

    Science.gov (United States)

    Gao, Shuang; Kim, Jinyong; Yermakov, Michael; Elmashae, Yousef; He, Xinjian; Reponen, Tiina; Grinshpun, Sergey A

    2015-01-01

    Filtering facepiece respirators (FFRs) are commonly worn by first responders, first receivers, and other exposed groups to protect against exposure to airborne particles, including those originated by combustion. Most of these FFRs are NIOSH-certified (e.g., N95-type) based on the performance testing of their filters against charge-equilibrated aerosol challenges, e.g., NaCl. However, it has not been examined if the filtration data obtained with the NaCl-challenged FFR filters adequately represent the protection against real aerosol hazards such as combustion particles. A filter sample of N95 FFR mounted on a specially designed holder was challenged with NaCl particles and three combustion aerosols generated in a test chamber by burning wood, paper, and plastic. The concentrations upstream (Cup) and downstream (Cdown) of the filter were measured with a TSI P-Trak condensation particle counter and a Grimm Nanocheck particle spectrometer. Penetration was determined as (Cdown/Cup) ×100%. Four test conditions were chosen to represent inhalation flows of 15, 30, 55, and 85 L/min. Results showed that the penetration values of combustion particles were significantly higher than those of the "model" NaCl particles (p combustion particles. Aerosol type, inhalation flow rate and particle size were significant (p combustion particles through R95 and P95 FFR filters (were tested in addition to N95) were not significantly higher than that obtained with NaCl particles. The findings were attributed to several effects, including the degradation of an N95 filter due to hydrophobic organic components generated into the air by combustion. Their interaction with fibers is anticipated to be similar to those involving "oily" particles. The findings of this study suggest that the efficiency of N95 respirator filters obtained with the NaCl aerosol challenge may not accurately predict (and rather overestimate) the filter efficiency against combustion particles.

  17. Pulsatile Hyperglycaemia Induces Vascular Oxidative Stress and GLUT 1 Expression More Potently than Sustained Hyperglycaemia in Rats on High Fat Diet

    DEFF Research Database (Denmark)

    Rakipovski, Gunaj; Lykkesfeldt, Jens; Raun, Kirsten

    2016-01-01

    expression of glucose transporter 1 (GLUT1), gp-91(PHOX) and super oxide dismutase (SOD), while only the PLG group showed increased accumulation of oxidative stress and oxidised low density lipoprotein (oxLDL) in aorta. Conclusion Pulsatile hyperglycaemia induced relatively higher levels of oxidative stress......Introduction Pulsatile hyperglycaemia resulting in oxidative stress may play an important role in the development of macrovascular complications. We investigated the effects of sustained vs. pulsatile hyperglycaemia in insulin resistant rats on markers of oxidative stress, enzyme expression...... and glucose metabolism in liver and aorta. We hypothesized that liver's ability to regulate the glucose homeostasis under varying states of hyperglycaemia may indirectly affect oxidative stress status in aorta despite the amount of glucose challenged with. Methods Animals were infused with sustained high (SHG...

  18. Real time monitoring of pulsatile change in hemoglobin concentrations of cerebral tissue by a portable tissue oximeter with a 10-Hz sampling rate

    Science.gov (United States)

    Shiga, Toshikazu; Chihara, Eiichi; Tanabe, Kazuhisa; Tanaka, Yoshifumi; Yamamoto, Katsuyuki

    1998-01-01

    A portable CW tissue oximeter of a 10-Hz sampling rate was developed for examination of pulsatile components of the output signals as a mean of checking the signal reliability during long-term monitoring. Feasible studies were performed on a healthy subject. Changes in Hb and HbO2 signals of cerebral tissue were continuously measured by placing a photoprobe on the forehead during 6-hour sleep. Pulsatile changes in Hb and HbO2 were steadily observed over a whole period of the recording. The phase relation of pulsation in Hb and HbO2 was almost inverse. Not only information for reliable monitoring but also physiological parameters with respect to cerebral circulation and metabolism could be obtained by measuring the pulsatile components.

  19. Collection of aerosols in high efficiency particulate air filters

    International Nuclear Information System (INIS)

    Pratt, R.P.; Green, B.L.

    1987-01-01

    The investigation of the performance of HEPA filters of both minipleat and conventional deep pleat designs has continued at Harwell. Samples of filters from several manufacturers have been tested against the UKAEA/BNF plc filter purchasing specification. No unexpected problems have come to light in these tests, apart from some evidence to suggest that although meeting the specification minipleat filters are inherently weaker in burst strength terms than conventional filters. In addition tests have been carried out to investigate the dust loading versus pressure drop characteristics of both designs of filters using a range of test dusts - ASHRAE dust, carbon black, BS 2831 No. 2 test dust and sodium chloride. In parallel with laboratory test work a more fundamental study on the effects of geometric arrangement of filter media within the filter frame has been carried out on behalf of the UKAEA by Loughborough University. The results of this study has been the development of a mathematical model to predict the dust load versus pressure drop characteristic as a function of filter media geometry. This has produced good agreement with laboratory test results using a challenge aerosol in the 1-5 μm size range. Further observations have been made to enhance understanding of the deposition of aerosols within the filter structure. The observations suggest that the major influence on dust loading is the depth of material collected in the flow channel as a surface deposition, and this explains the relatively poor performance of the minipleat design of filter

  20. Ash reduction system using electrically heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  1. Variable flexure-based fluid filter

    Science.gov (United States)

    Brown, Steve B.; Colston, Jr., Billy W.; Marshall, Graham; Wolcott, Duane

    2007-03-13

    An apparatus and method for filtering particles from a fluid comprises a fluid inlet, a fluid outlet, a variable size passage between the fluid inlet and the fluid outlet, and means for adjusting the size of the variable size passage for filtering the particles from the fluid. An inlet fluid flow stream is introduced to a fixture with a variable size passage. The size of the variable size passage is set so that the fluid passes through the variable size passage but the particles do not pass through the variable size passage.

  2. Circuits and filters handbook

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    A bestseller in its first edition, The Circuits and Filters Handbook has been thoroughly updated to provide the most current, most comprehensive information available in both the classical and emerging fields of circuits and filters, both analog and digital. This edition contains 29 new chapters, with significant additions in the areas of computer-aided design, circuit simulation, VLSI circuits, design automation, and active and digital filters. It will undoubtedly take its place as the engineer's first choice in looking for solutions to problems encountered in the design, analysis, and behavi

  3. EMI filter design

    CERN Document Server

    Ozenbaugh, Richard Lee

    2011-01-01

    With today's electrical and electronics systems requiring increased levels of performance and reliability, the design of robust EMI filters plays a critical role in EMC compliance. Using a mix of practical methods and theoretical analysis, EMI Filter Design, Third Edition presents both a hands-on and academic approach to the design of EMI filters and the selection of components values. The design approaches covered include matrix methods using table data and the use of Fourier analysis, Laplace transforms, and transfer function realization of LC structures. This edition has been fully revised

  4. Randomized Filtering Algorithms

    DEFF Research Database (Denmark)

    Katriel, Irit; Van Hentenryck, Pascal

    2008-01-01

    of AllDifferent and is generalization, the Global Cardinality Constraint. The first delayed filtering scheme is a Monte Carlo algorithm: its running time is superior, in the worst case, to that of enforcing are consistency after every domain event, while its filtering effectiveness is analyzed...... in the expected sense. The second scheme is a Las Vegas algorithm using filtering triggers: Its effectiveness is the same as enforcing are consistency after every domain event, while in the expected case it is faster by a factor of m/n, where n and m are, respectively, the number of nodes and edges...

  5. Fetal umbilical artery Doppler pulsatility index and childhood neurocognitive outcome at 12 years.

    Science.gov (United States)

    Mone, Fionnuala; McConnell, Barbara; Thompson, Andrew; Segurado, Ricardo; Hepper, Peter; Stewart, Moira C; Dornan, James C; Ong, Stephen; McAuliffe, Fionnuala M; Shields, Michael D

    2016-06-15

    To determine whether an elevated fetal umbilical artery Doppler (UAD) pulsatility index (PI) at 28 weeks' gestation, in the absence of fetal growth restriction (FGR) and prematurity, is associated with adverse neurocognitive outcome in children aged 12 years. Prospective cohort study, comparing children with a normal fetal UAD PI (<90th centile) (n=110) and those with an elevated PI (≥90th centile) (n=40). UAD was performed at 28, 32 and 34 weeks gestation. At 12 years of age, all children were assessed under standardised conditions at Queen's University, Belfast, UK to determine cognitive and behavioural outcomes using the British Ability Score-II and Achenbach Child Behavioural Checklist Parent Rated Version under standardised conditions. Regression analysis was performed, controlling for confounders such as gender, socioeconomic status and age at assessment. The mean age of follow-up was 12.4 years (±0.5 SD) with 44% of children male (n=63). When UAD was assessed at 28 weeks, the elevated fetal UAD group had lower scores in cognitive assessments of information processing and memory. Parameters included (1) recall of objects immediate verbal (p=0.002), (2) delayed verbal (p=0.008) and (3) recall of objects immediate spatial (p=0.0016). There were no significant differences between the Doppler groups at 32 or 34 weeks' gestation. An elevated UAD PI at 28 weeks' gestation in the absence of FGR or prematurity is associated with lower scores of declarative memory in children aged 12 years. A potential explanation for this is an element of placental insufficiency in the presence of the appropriately grown fetus, which affects the development of the fetal hippocampus and information processing and memory long-term. These findings, however, had no impact on overall academic ability, mental processing and reasoning or overall behavioural function. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a

  6. Impaired Central Pulsatile Hemodynamics in Children and Adolescents With Marfan Syndrome.

    Science.gov (United States)

    Grillo, Andrea; Salvi, Paolo; Marelli, Susan; Gao, Lan; Salvi, Lucia; Faini, Andrea; Trifirò, Giuliana; Carretta, Renzo; Pini, Alessandro; Parati, Gianfranco

    2017-11-07

    Marfan syndrome is characterized by aortic root dilation, beginning in childhood. Data about aortic pulsatile hemodynamics and stiffness in pediatric age are currently lacking. In 51 young patients with Marfan syndrome (12.0±3.3 years), carotid tonometry was performed for the measurement of central pulse pressure, pulse pressure amplification, and aortic stiffness (carotid-femoral pulse wave velocity). Patients underwent an echocardiogram at baseline and at 1 year follow-up and a genetic evaluation. Pathogenetic fibrillin-1 mutations were classified between "dominant negative" and "haploinsufficient." The hemodynamic parameters of patients were compared with those of 80 sex, age, blood pressure, and heart-rate matched controls. Central pulse pressure was significantly higher (38.3±12.3 versus 33.6±7.8 mm Hg; P =0.009), and pulse pressure amplification was significantly reduced in Marfan than controls (17.9±15.3% versus 32.3±17.4%; P Marfan and controls (4.98±1.00 versus 4.75±0.67 m/s). In the Marfan group, central pulse pressure and pulse pressure amplification were independently associated with aortic diameter at the sinuses of Valsalva (respectively, β=0.371, P =0.010; β=-0.271, P =0.026). No significant difference in hemodynamic parameters was found according to fibrillin-1 genotype. Patients who increased aortic Z-scores at 1-year follow-up presented a higher central pulse pressure than the remaining (42.7±14.2 versus 32.3±5.9 mm Hg; P =0.004). Central pulse pressure and pulse pressure amplification were impaired in pediatric Marfan syndrome, and associated with aortic root diameters, whereas aortic pulse wave velocity was similar to that of a general pediatric population. An increased central pulse pressure was present among patients whose aortic dilatation worsened at 1-year follow-up. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  7. Criteria for calculating the efficiency of HEPA filters during and after design basis accidents

    International Nuclear Information System (INIS)

    Bergman, W.; First, M.W.; Anderson, W.L.; Gilbert, H.; Jacox, J.W.

    1994-12-01

    We have reviewed the literature on the performance of high efficiency particulate air (HEPA) filters under normal and abnormal conditions to establish criteria for calculating the efficiency of HEPA filters in a DOE nonreactor nuclear facility during and after a Design Basis Accident (DBA). The literature review included the performance of new filters and parameters that may cause deterioration in the filter performance such as filter age, radiation, corrosive chemicals, seismic and rough handling, high temperature, moisture, particle clogging, high air flow and pressure pulses. The deterioration of the filter efficiency depends on the exposure parameters; in severe exposure conditions the filter will be structurally damaged and have a residual efficiency of 0%. Despite the many studies on HEPA filter performance under adverse conditions, there are large gaps and limitations in the data that introduce significant error in the estimates of HEPA filter efficiencies under DBA conditions. Because of this limitation, conservative values of filter efficiency were chosen when there was insufficient data

  8. Methodology for modeling the microbial contamination of air filters.

    Science.gov (United States)

    Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho

    2014-01-01

    In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter.

  9. Methodology for modeling the microbial contamination of air filters.

    Directory of Open Access Journals (Sweden)

    Yun Haeng Joe

    Full Text Available In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter.

  10. An experimental and numerical study of the flow and mass transfer in a model of the wearable artificial kidney dialyzer

    Directory of Open Access Journals (Sweden)

    Rosenfeld Moshe

    2010-05-01

    Full Text Available Abstract Background Published studies of the past decades have established that mass transfer across the dialyzer membrane is governed by diffusion, convection and osmosis. While the former is independent of the pressure in the liquids, the latter two are pressure dependent and are enhanced when the pressure difference across the membrane is increased. The goal of the present study is to examine the impact of pulsatile flow on the transport phenomena across the membrane of a high-flux dialyzer in a wearable artificial kidney (WAK with a novel single small battery-operated pulsatile pump that drives both the blood and dialysate in a counter-phased manner, maximizing the trans-membrane pressure. Methods Both in-vitro experimental and numerical tools are employed to compare the performance of the pulsatile WAK dialyzer with a traditional design of a single-channel roller blood pump together with a centrifugal pump that drives the dialysate flow. The numerical methods utilize the axisymmetric Navier-Stokes and mass transfer equations to model the flow in the fibers of the dialyzer. Results While diffusion is still the dominating transport regime, the WAK pump enhances substantially the trans-membrane pressure and thus increases mass convection that might be as high as 30% of the overall transfer. This increase is obtained due to the design of the pulsatile WAK pump that increases ultrafiltration by increasing the trans-membrane pressure. Conclusions The experimental and numerical results revealed that when pumping at similar flow rates, a small battery-operated pulsatile pump provides clearances of urea and creatinine similar as or better than a large heavy AC-powered roller pump.

  11. Extrinsic nerves are not involved in branchial 5-HT dynamics or pulsatile urea excretion in Gulf toadfish, Opsanus beta.

    Science.gov (United States)

    Cartolano, Maria C; Amador, Molly H B; Tzaneva, Velislava; Milsom, William K; McDonald, M Danielle

    2017-12-01

    Gulf toadfish (Opsanus beta) can switch from continuously excreting ammonia as their primary nitrogenous waste to excreting predominantly urea in distinct pulses. Previous studies have shown that the neurotransmitter serotonin (5-HT) is involved in controlling this process, but it is unknown if 5-HT availability is under central nervous control or if the 5-HT signal originates from a peripheral source. Following up on a previous study, cranial nerves IX (glossopharyngeal) and X (vagus) were sectioned to further characterize their role in controlling pulsatile urea excretion and 5-HT release within the gill. In contrast to an earlier study, nerve sectioning did not result in a change in urea pulse frequency. Total urea excretion, average pulse size, total nitrogen excretion, and percent ureotely were reduced the first day post-surgery in nerve-sectioned fish but recovered by 72h post-surgery. Nerve sectioning also had no effect on toadfish urea transporter (tUT), 5-HT transporter (SERT), or 5-HT 2A receptor mRNA expression or 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) abundance in the gill, all of which were found consistently across the three gill arches except 5-HIAA, which was undetectable in the first gill arch. Our findings indicate that the central nervous system does not directly control pulsatile urea excretion or local changes in gill 5-HT and 5-HIAA abundance. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Changes in Bone Mineral Density and Metabolic Parameters after Pulsatile Gonadorelin Treatment in Young Men with Hypogonadotropic Hypogonadism

    Directory of Open Access Journals (Sweden)

    Chen-Xi Li

    2015-01-01

    Full Text Available To assess the prevalence of osteoporosis in young men with hypogonadotropic hypogonadism (HH and to investigate the changes of BMD and metabolic parameters, a total of 22 young male patients with HH and 20 healthy controls were enrolled in the study. BMD, biochemical, and hormonal parameters were measured in two groups. Osteoporosis was more prevalent in HH patients (45.45% than the control subjects (10.00% (P<0.001. The patients with HH had lower BMD in lumbar spine 2–4, femoral neck, and total hip (P<0.001, for all and higher fasting insulin (P=0.001, HOMA-IR (P=0.002, and SHBG (P<0.001 compared to the controls. After 6 months of pulsatile gonadorelin treatment, BMI (P=0.021 and BMD in lumbar spine 2–4, femoral neck, and total hip (P=0.002, P=0.003, and P=0.003, resp. increased dramatically and total cholesterol (P=0.034, fasting insulin (P=0.025, HOMA-IR (P=0.021, and SHBG (P=0.001 decreased significantly in HH patients. The study shows a higher prevalence of osteoporosis in young men with HH. Long-term pulsatile gonadorelin treatment indicates a positive effect on BMD and metabolic parameters of HH patients.

  13. The induction of ovulation by pulsatile administration of GnRH: an appropriate method in hypothalamic amenorrhea.

    Science.gov (United States)

    Christou, Fotini; Pitteloud, Nelly; Gomez, Fulgencio

    2017-08-01

    The induction of ovulation by the means of a pump which assures the pulsatile administration of GnRH is a well-known method that applies to women suffering from amenorrhea of hypothalamic origin. Although a simple and efficient method to establish fertility, it is underused. Twelve patients suffering from this condition, 1 Kallmann syndrome, 4 normosmic isolated hypogonadotropic hypogonadism, and 7 functional hypothalamic amenorrhea desiring pregnancy were treated. They underwent one or more cycles of pulsatile GnRH, at a frequency of 90 minutes, either by the intravenous or the subcutaneous route. An initial dose of 5 μg per pulse in the intravenous route was administered and of 15 μg per pulse in the subcutaneous route. The treatment was monitored by regular dosing of gonadotropins, estradiol and progesterone, and the development of follicles and ovulation was monitored by intra-vaginal ultrasonography. All the patients had documented ovulation, after a mean of 17 days on pump stimulation. Single ovulation occurred in 30 of 33 treatment cycles, irrespective of the route of administration. Ovulation resulted in 10 pregnancies over 7 patients (2 pregnancies in 3 of them), distributed in the 3 diagnostic categories. For comparison, a patient with PCOS treated similarly, disclosed premature LH surge without ovulation.

  14. Anti-Mullerian hormone levels do not predict response to pulsatile GnRH in women with hypothalamic amenorrhea.

    Science.gov (United States)

    Billington, Emma O; Corenblum, Bernard

    2016-09-01

    Pulsatile GnRH is used to induce ovulation in women with hypothalamic amenorrhea (HA), but tools to predict response are lacking. We assessed whether baseline AMH levels are associated with response to pulsatile GnRH in 16 women with HA. AMH levels were compared between non-responders and women who achieved follicular development or pregnancy. Median AMH for the cohort was 2.2 ng/mL. AMH levels were undetectable or low in four women, normal in nine and high in three. Follicular development was observed in 13 (81%) women (82% of cycles) and pregnancy achieved in 10 (63%) women (29% of cycles). All four women with low or undetectable AMH had follicular response and three achieved pregnancy. Of the 12 women with normal or high AMH, 10 had a follicular response and seven achieved pregnancy. Median AMH levels were comparable in those who achieved follicular development and those who did not (2.2 ng/mL versus 1.3 ng/mL, p = 0.78) and in those who became pregnant and those who did not (2.2 ng/mL versus 1.9 ng/mL, p = 0.52). In summary, low AMH does not preclude response to ovulation induction in women with HA, suggesting that ovarian potential may not be the primary determinant of AMH concentrations in this population.

  15. Metalcasting: Filtering Molten Metal

    International Nuclear Information System (INIS)

    Lauren Poole; Lee Recca

    1999-01-01

    A more efficient method has been created to filter cast molten metal for impurities. Read about the resulting energy and money savings that can accrue to many different industries from the use of this exciting new technology

  16. Perspectives on Nonlinear Filtering

    KAUST Repository

    Law, Kody

    2015-01-01

    The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).

  17. HEPA air filter (image)

    Science.gov (United States)

    ... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...

  18. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Tugwell, Peter; Boers, Maarten; D'Agostino, Maria-Antonietta

    2014-01-01

    OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter requires that criteria be met to demonstrate that the outcome instrument meets...... the criteria for content, face, and construct validity. METHODS: Discussion groups critically reviewed a variety of ways in which case studies of current OMERACT Working Groups complied with the Truth component of the Filter and what issues remained to be resolved. RESULTS: The case studies showed...... that there is broad agreement on criteria for meeting the Truth criteria through demonstration of content, face, and construct validity; however, several issues were identified that the Filter Working Group will need to address. CONCLUSION: These issues will require resolution to reach consensus on how Truth...

  19. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Kirwan, John R; Boers, Maarten; Hewlett, Sarah

    2014-01-01

    OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter presupposes an explicit framework for identifying the relevant core outcomes...... for defining core areas of measurement ("Filter 2.0 Core Areas of Measurement") was presented at OMERACT 11 to explore areas of consensus and to consider whether already endorsed core outcome sets fit into this newly proposed framework. METHODS: Discussion groups criticall