WorldWideScience

Sample records for films electrical transport

  1. Surface assisted electric transport in Ag2S thin films

    International Nuclear Information System (INIS)

    Karashanova, D.; Starbov, N.

    2006-01-01

    Electric transport measurements of thickness-dependent electronic and ionic conductivity of epitaxial Ag 2 S films are used to split both kinds of conductivity into bulk and surface components. The established considerable electronic and ionic surface conductances demonstrate unambiguously the co-existance of electronic and ionic space charge regions in the vicinity of silver sulfide free surface oriented along the zone axes [1-bar 01-bar ]. The parameters of both space charge layers - surface potential, thickness of the space charge region and concentration of the surface compensating charges, are calculated. It is estimated that for intrinsic silver sulfide, the effective surface potential of (1-bar 01-bar ) Ag 2 S surface is negative, its value being about -610mV at 400K

  2. Electrical transport properties in Co nanocluster-assembled granular film

    Science.gov (United States)

    Zhang, Qin-Fu; Wang, Lai-Sen; Wang, Xiong-Zhi; Zheng, Hong-Fei; Liu, Xiang; Xie, Jia; Qiu, Yu-Long; Chen, Yuanzhi; Peng, Dong-Liang

    2017-03-01

    A Co nanocluster-assembled granular film with three-dimensional cross-connection paralleled conductive paths was fabricated by using the plasma-gas-condensation method in a vacuum environment. The temperature-dependent longitudinal resistivity and anomalous Hall effect of this new type granular film were systematically studied. The longitudinal resistivity of the Co nanocluster-assembled granular film first decreased and then increased with increasing measuring temperature, revealing a minimum value at certain temperature, T min . In a low temperature region ( T governed the electrical transport process, and the temperature coefficient of resistance (TCR) showed an insulator-type behavior. The thermal fluctuation-induced tunneling conduction progressively increased with increasing temperature, which led to a decrease in the longitudinal resistivity. In a high temperature region, the TCR showed a metallic-type behavior, which was primarily attributed to the temperature-dependent scattering. Different from the longitudinal resistivity behavior, the saturated anomalous Hall resistivity increased monotonically with increasing measuring temperature. The value of the anomalous Hall coefficient ( R S ) reached 2.3 × 10-9 (Ω cm)/G at 300 K, which was about three orders of magnitude larger than previously reported in blocky single-crystal Co [E. N. Kondorskii, Sov. Phys. JETP 38, 977 (1974)]. Interestingly, the scaling relation ( ρx y A ∝ ρx x γ ) between saturated anomalous Hall resistivity ( ρx y A ) and longitudinal resistivity ( ρ x x ) was divided into two regions by T min . However, after excluding the contribution of tunneling, the scaling relation followed the same rule. The corresponding physical mechanism was also proposed to explain these phenomena.

  3. Electric Transport Phenomena of Nanocomposite Organic Polymer Thin Films

    Science.gov (United States)

    Jira, Nicholas C.; Sabirianov, Ildar; Ilie, Carolina C.

    We discuss herein the nanocomposite organic thin film diodes for the use of plasmonic solar cells. This experimental work follows the theoretical calculations done for plasmonic solar cells using the MNPBEM toolbox for MatLab. These calculations include dispersion curves and amount of light scattering cross sections for different metallic nanoparticles. This study gives us clear ideas on what to expect from different metals, allowing us to make the best choice on what to use to obtain the best results. One specific technique for light trapping in thin films solar cells utilizes metal nanoparticles on the surface of the semiconductor. The characteristics of the metal, semiconductor interface allows for light to be guided in between them causing it to be scattered, allowing for more chances of absorption. The samples were fabricated using organic thin films made from polymers and metallic nanoparticles, more specifically Poly(1-vinylpyrrolidone-co-2-dimethylaminoethyl methacrylate) copolymer and silver or gold nanoparticles. The two fabrication methods applied include spin coating and Langmuir-Blodgett technique. The transport properties are obtained by analyzing the I-V curves. We will also discuss the resistance, resistivity, conductance, density of charge carriers. SUNY Oswego SCAC Grant.

  4. Low-temperature electrical transport in B-doped ultrananocrystalline diamond film

    International Nuclear Information System (INIS)

    Li, Lin; Zhao, Jing; Hu, Zhaosheng; Quan, Baogang; Li, Junjie; Gu, Changzhi

    2014-01-01

    B-doped ultrananocrystalline diamond (UNCD) films are grown using hot-filament chemical vapor deposition method, and their electrical transport properties varying with temperature are investigated. When the B-doped concentration of UNCD film is low, a step-like increase feature of the resistance is observed with decreasing temperature, reflecting at least three temperature-modified electronic state densities at the Fermi level according to three-dimensional Mott's variable range hopping transport mechanism, which is very different from that of reported B-doped nanodiamond. With increasing B-doped concentration, a superconductive transformation occurs in the UNCD film and the highest transformation temperature of 5.3 K is observed, which is higher than that reported for superconducting nanodiamond films. In addition, the superconducting coherence length is about 0.63 nm, which breaks a reported theoretical and experimental prediction about ultra-nanoscale diamond's superconductivity

  5. Electrical transport properties of nanoplates shaped tungsten oxide embedded poly(vinyl-alcohol) film

    Science.gov (United States)

    Das, Amit Kumar; Chatterjee, Piyali; Meikap, Ajit Kumar

    2018-04-01

    Tungsten oxide (WO3) nanoplates have been synthesized via hydrothermal method. The average crystallite size of the nanoplates is 28.9 ± 0.5 nm. The direct and indirect band gap of WO3 is observed. The AC conductivity of PVA-WO3 composite film has been observed and carrier transport mechanism follows correlated barrier hopping model. The maximum barrier height of the composite film is 0.1 eV. The electric modulus reflects the non-Debye type behaviour of relaxation time which is simulated by Kohlrausch-Willims-Watts (KWW) function.

  6. Influence of Magnetic Field on Electric Charge Transport in Holomiun Thin Films at Low Temperatures

    Directory of Open Access Journals (Sweden)

    Jan Dudas

    2005-01-01

    Full Text Available Holmium thin films were prepared by evaporation in ultrahigh vacuum (UHV and high precision electrical resistance measurements were performed on them as well as on holomium bulk sample in the wide temperature range from 4,2 K up to the room temperature. Electric charge transport is profoundly influenced by the magnetic structure at low temperatures and a "knee-like" resistance anomaly was observed near the transportation from paramagnetic state to basal-plane spiral structure in bulk with the Neel temperature TN=128,9 K and below ~ 122 K in thin Ho films in a thickness range from 98 nm to 215 nm. Unexpected resistance minimum at ~ 9 K and a slope´s charge of the R vs. T curve near ~ 170 K was observed in 215 nm thin film. Application of magnetic field parallel to the substrate and thin film plane for temperatures below ~ 150 K caused the decrease of resistence value with increasing magnetic flux density. Increasing suppression of the TN value up to ~ 5 K with increasing flux density value up to 5 T was observed in Ho films

  7. Electrical transport and optical band gap of NiFe2Ox thin films

    Science.gov (United States)

    Bougiatioti, Panagiota; Manos, Orestis; Klewe, Christoph; Meier, Daniel; Teichert, Niclas; Schmalhorst, Jan-Michael; Kuschel, Timo; Reiss, Günter

    2017-12-01

    We fabricated NiFe2Ox thin films on MgAl2O4(001) by reactive dc magnetron co-sputtering varying the oxygen partial pressure. The fabrication of a material with a variable oxygen deficiency leads to controllable electrical and optical properties which are beneficial for the investigations of the transport phenomena and could, therefore, promote the use of such materials in spintronic and spin caloritronic applications. We used several characterization techniques to investigate the film properties, focusing on their structural, magnetic, electrical, and optical properties. From the electrical resistivity, we obtained the conduction mechanisms that govern the systems in the high and low temperature regimes. We further extracted low thermal activation energies which unveil extrinsic transport mechanisms. The thermal activation energy decreases in the less oxidized samples revealing the pronounced contribution of a large amount of electronic states localized in the band gap to the electrical conductivity. The Hall coefficient is negative and decreases with increasing conductivity as expected for n-type conduction, while the Hall- and the drift mobilities show a large difference. The optical band gaps were determined via ultraviolet-visible spectroscopy. They follow a similar trend as the thermal activation energies, with lower band gap values in the less oxidized samples.

  8. Electrical Transport and Magnetoresistance Properties of Tensile-Strained CaMnO3 Thin Films

    Science.gov (United States)

    Ullery, Dustin; Lawson, Bridget; Zimmerman, William; Neubauer, Samuel; Chaudhry, Adeel; Hart, Cacie; Yong, Grace; Smolyaninova, Vera; Kolagani, Rajeswari

    We will present our studies of the electrical transport and magnetoresistance properties of tensile strained CaMnO3 thin films. We observe that the resistivity decreases significantly as the film thickness decreases which is opposite to what is observed in thin films of hole doped manganites. The decrease in resistivity is more pronounced in the films on (100) SrTiO3, with resistivity of the thinnest films being about 3 orders of magnitude lower than that of bulk CaMnO3. Structural changes accompanying resistivity changes cannot be fully explained as due to tensile strain, and indicate the presence of oxygen vacancies. These results also suggest a coupling between tensile strain and oxygen deficiency, consistent with predictions from models based on density functional theory calculations. We observe a change in resistance under the application of moderate magnetic field. Experiments are underway to understand the origin of the magnetoresistance and its possible relation to the tensile strain effects. We acknowledge support from: Towson Office of University Undergraduate Research, Fisher Endowment Grant and Undergraduate Research Grants from the Fisher College of Science and Mathematics, and Seed Funding Grant from the School of Emerging technologies.

  9. Electrical transport in (103) YBa2Cu3O7-x thin films

    International Nuclear Information System (INIS)

    Divin, Yu.Ya.; Poppe, U.; Faley, M.I.; Soltner, H.; Seo, J.W.; Kabius, B.; Urban, K.

    1993-01-01

    We have studied the electrical and structural properties of (103) YBa 2 Cu 3 O 7-x thin films to estimate the applicability of these films as base electrodes of planar-type Josephson junctions. (orig.)

  10. Electrical transport properties in Fe-Cr nanocluster-assembled granular films

    Science.gov (United States)

    Wang, Xiong-Zhi; Wang, Lai-Sen; Zhang, Qin-Fu; Liu, Xiang; Xie, Jia; Su, A.-Mei; Zheng, Hong-Fei; Peng, Dong-Liang

    2017-09-01

    The Fe100-xCrx nanocluster-assembled granular films with Cr atomic fraction (x) ranging from 0 to 100 were fabricated by using a plasma-gas-condensation cluster deposition system. The TEM characterization revealed that the uniform Fe clusters were coated with a Cr layer to form a Fe-Cr core-shell structure. Then, the as-prepared Fe100-xCrx nanoclusters were randomly assembled into a granular film in vacuum environments with increasing the deposition time. Because of the competition between interfacial resistance and shunting effect of Cr layer, the room temperature resistivity of the Fe100-xCrx nanocluster-assembled granular films first increased and then decreased with increasing the Cr atomic fraction (x), and revealed a maximum of 2 × 104 μΩ cm at x = 26 at.%. The temperature-dependent longitudinal resistivity (ρxx), magnetoresistance (MR) effect and anomalous Hall effect (AHE) of these Fe100-xCrx nanocluster-assembled granular films were also studied systematically. As the x increased from 0 to 100, the ρxx of all samples firstly decreased and then increased with increasing the measuring temperature. The dependence of ρxx on temperature could be well addressed by a mechanism incorporated for the fluctuation-induced-tunneling (FIT) conduction process and temperature-dependent scattering effect. It was found that the anomalous Hall effect (AHE) had no legible scaling relation in Fe100-xCrx nanocluster-assembled granular films. However, after deducting the contribution of tunneling effect, the scaling relation was unambiguous. Additionally, the Fe100-xCrx nanocluster-assembled granular films revealed a small negative magnetoresistance (MR), which decreased with the increase of x. The detailed physical mechanism of the electrical transport properties in these Fe100-xCrx nanocluster-assembled granular films was also studied.

  11. Electrical Transport and Magnetoresistance in Single-Wall Carbon Nanotubes Films

    Directory of Open Access Journals (Sweden)

    Vitaly KSENEVICH

    2014-06-01

    Full Text Available Electrical transport properties and magnetoresistance of single-wall carbon nanotubes (SWCNT films were investigated within temperature range (2 – 300 K and in magnetic fields up to 8 T. A crossover between metallic (dR/dT > 0 and non-metallic (dR/dT < 0 temperature dependence of the resistance as well as low-temperature saturation of the resistance in high bias regime indicated on the diminishing of role of the contact barriers between individual nanotubes essential for the charge transport in SWCNT arrays. The magnetoresistance (MR data demonstrated influence of weak localization and electron-electron interactions on charge transport properties in SWCNT films. The low-field negative MR with positive upturn was observed at low temperatures. At T > 10 K only negative MR was observed in the whole range of available magnetic fields. The negative MR can be approximated using 1D weak localization (WL model. The low temperature positive MR is induced by contribution from electron-electron interactions. DOI: http://dx.doi.org/10.5755/j01.ms.20.2.6311

  12. Electrical transport and capacitance characteristics of metal-insulator-metal structures using hexagonal and cubic boron nitride films as dielectrics

    Science.gov (United States)

    Teii, Kungen; Kawamoto, Shinsuke; Fukui, Shingo; Matsumoto, Seiichiro

    2018-04-01

    Metal-insulator-metal capacitor structures using thick hexagonal and cubic boron nitride (hBN and cBN) films as dielectrics are produced by plasma jet-enhanced chemical vapor deposition, and their electrical transport and capacitance characteristics are studied in a temperature range of 298 to 473 K. The resistivity of the cBN film is of the order of 107 Ω cm at 298 K, which is lower than that of the hBN film by two orders of magnitude, while it becomes the same order as the hBN film above ˜423 K. The dominant current transport mechanism at high fields (≥1 × 104 V cm-1) is described by the Frenkel-Poole emission and thermionic emission models for the hBN and cBN films, respectively. The capacitance of the hBN film remains stable for a change in alternating-current frequency and temperature, while that of the cBN film has variations of at most 18%. The dissipation factor as a measure of energy loss is satisfactorily low (≤5%) for both films. The origin of leakage current and capacitance variation is attributed to a high defect density in the film and a transition interlayer between the substrate and the film, respectively. This suggests that cBN films with higher crystallinity, stoichiometry, and phase purity are potentially applicable for dielectrics like hBN films.

  13. Electrical transport and pinning properties of Nb films with washboard-like nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Dobrovolskiy, Oleksandr V. [Physikalisches Institut Goethe-University, Frankfurt am Main (Germany); Department of Physics, Kharkiv National University (Ukraine); Begun, Evgeniya; Huth, Michael [Physikalisches Institut Goethe-University, Frankfurt am Main (Germany); Shklovskij, Valerij A. [Department of Physics, Kharkiv National University (Ukraine); Institute for Theoretical Physics NSC-KIPT, Kharkiv (Ukraine)

    2013-07-01

    A careful analysis of the magneto-transport properties of epitaxial nanostructured Nb thin films in the normal and the mixed state is performed. The nanopatterns were prepared by focused ion beam (FIB) milling. They provide a washboard-like pinning potential landscape for vortices in the mixed state and simultaneously cause a resistivity anisotropy in the normal state. Two matching magnetic fields for the vortex lattice with the underlying nanostructures have been observed. By applying these fields, the most likely pinning sites along which the flux lines move through the samples have been selected. By this, either the background isotropic pinning of the pristine film or the enhanced isotropic pinning originating from the nanoprocessing have been probed. Via an Arrhenius analysis of the resistivity data the pinning activation energies for three vortex lattice parameters have been quantified. The changes in the electrical transport and the pinning properties have been correlated with the results of the microstructural and topographical characterization of the FIB-patterned samples. The obtained results provide further insight into the pinning mechanisms at work in FIB-nanopatterned superconductors for fluxonic applications.

  14. Electrical transport in La1−xCaxMnO3 thin films at low temperatures

    Indian Academy of Sciences (India)

    quadratic temperature dependence at low temperatures is attributed to the collapse of the minority spin band. The two-magnon and electron–phonon processes contribute to scattering of carriers in the temperature range above 120 K. Keywords. La1−x Cax MnO3 thin films; electrical transport; low temperature resistivity; ...

  15. Electrical transport characterization of Al and Sn doped Mg 2 Si thin films

    KAUST Repository

    Zhang, Bo; Zheng, Tao; Sun, Ce; Guo, Zaibing; Kim, Moon J.; Alshareef, Husam N.; Quevedo-Lopez, Manuel; Gnade, Bruce E.

    2017-01-01

    Thin-film Mg2Si was deposited using radio frequency (RF) magnetron sputtering. Al and Sn were incorporated as n-type dopants using co-sputtering to tune the thin-film electrical properties. X-ray diffraction (XRD) analysis confirmed

  16. Electrical transport properties of spray deposited transparent conducting ortho-Zn2SnO4 thin films

    Science.gov (United States)

    Ramarajan, R.; Thangaraju, K.; Babu, R. Ramesh; Joseph, D. Paul

    2018-04-01

    Ortho Zinc Stannate (Zn2SnO4) exhibits excellent electrical and optical properties to serve as alternate transparent electrode in optoelectronic devices. Here we have optimized ortho-Zn2SnO4 thin film by spray pyrolysis method. Deposition was done onto a pre-heated glass substrate at a temperature of 400 °C. The XRD pattern indicated films to be polycrystalline with cubic structure. The surface of films had globular and twisted metal sheet like morphologies. Films were transparent in the visible region with band gap around 3.6 eV. Transport properties were studied by Hall measurements at 300 K. Activation energies were calculated from Arrhenius's plot from temperature dependent electrical measurements and the conduction mechanism is discussed.

  17. Structural and electrical transport properties of La2Mo2O9 thin films prepared by pulsed laser deposition

    Science.gov (United States)

    Paul, T.; Ghosh, A.

    2017-04-01

    We have studied the structure and electrical properties of La2Mo2O9 thin films of different thicknesses prepared by the laser deposition technique at different substrate temperatures. The structural properties of the thin films have been investigated using XRD, XPS, AFM, TEM, SEM, and Raman spectroscopy. The electrical transport properties of the thin films have been investigated in wide temperature and frequency ranges. The cubic nature of the thin films has been confirmed from structural analysis. An enhancement of the oxygen ion conductivity of the films up to five orders of magnitude is obtained compared to that of the bulk La2Mo2O9, suggesting usefulness of the thin films as electrolytes in micro-solid oxide fuel cells. The enhanced dc ionic conductivity of the thin films has been interpreted using the rule of the mixture model, while a power law model has been used to investigate the frequency and temperature dependences of the conductivity. The analysis of the results predicts the three-dimensional oxygen ion conduction in the thin films.

  18. Electrical transport properties of MoO3 thin films prepared by laser assisted evaporation

    International Nuclear Information System (INIS)

    Lopez-Carreno, L.D.; Pardo, A.; Zuluaga, M.; Torres, J.; Alfonso, J.E.; Cortes-Bracho, O.L.

    2007-01-01

    In the present paper the growth of MoO 3 thin films on common glass substrates are described. The films were prepared by evaporation of a MoO 3 target with a CO 2 laser (10.6 μm), operating in the continuous wave mode. The effect of substrate temperature on the crystallographic structure and electrical properties of MoO 3 thin films was studied. The chemical composition of the different species formed on the films surface was obtained by X-ray photoelectron spectroscopy (XPS) and the crystalline structure was studied with X-ray diffraction (XRD). The electrical conductivity of the films was determined using the standard four-points method. Conductivity of the films varied from de 10 -9 to 10 -5 (Ωcm) -1 in the 300-600 K temperature range. Arrhenius-type plots for the electrical conductivity indicate the presence of at least two different conduction mechanisms. The I-V characteristic curve shows an ohmic behavior only in the 4.5-60 V range. Outside this interval the I-V curve has a behavior described by a power law. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Electrical transport properties of MoO{sub 3} thin films prepared by laser assisted evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Carreno, L.D.; Pardo, A.; Zuluaga, M.; Torres, J.; Alfonso, J.E. [Group of Materials with Technological Applications, GMAT, Physics Department, Universidad Nacional de Colombia, Bogota (Colombia); Cortes-Bracho, O.L. [Group of Materials with Technological Applications, GMAT, Physics Department, Universidad Nacional de Colombia, Bogota (Colombia); Electronic Engineering Department, Universidad Nacional de Colombia, Bogota (Colombia)

    2007-07-01

    In the present paper the growth of MoO{sub 3} thin films on common glass substrates are described. The films were prepared by evaporation of a MoO{sub 3} target with a CO{sub 2} laser (10.6 {mu}m), operating in the continuous wave mode. The effect of substrate temperature on the crystallographic structure and electrical properties of MoO{sub 3} thin films was studied. The chemical composition of the different species formed on the films surface was obtained by X-ray photoelectron spectroscopy (XPS) and the crystalline structure was studied with X-ray diffraction (XRD). The electrical conductivity of the films was determined using the standard four-points method. Conductivity of the films varied from de 10{sup -9} to 10{sup -5} ({omega}cm){sup -1} in the 300-600 K temperature range. Arrhenius-type plots for the electrical conductivity indicate the presence of at least two different conduction mechanisms. The I-V characteristic curve shows an ohmic behavior only in the 4.5-60 V range. Outside this interval the I-V curve has a behavior described by a power law. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Nanocrystalline SnO2 thin films: Structural, morphological, electrical transport and optical studies

    International Nuclear Information System (INIS)

    Sakhare, R.D.; Khuspe, G.D.; Navale, S.T.; Mulik, R.N.; Chougule, M.A.; Pawar, R.C.; Lee, C.S.; Sen, Shashwati; Patil, V.B.

    2013-01-01

    Highlights: ► Novel chemical route of synthesis of SnO 2 films. ► Physical properties SnO 2 are influenced by process temperature. ► The room temperature electrical conductivity of SnO 2 is of 10 −7 –10 −5 (Ω cm) −1 . ► SnO 2 exhibit high absorption coefficient (10 4 cm −1 ). -- Abstract: Sol–gel spin coating method has been successfully employed for preparation of nanocrystalline tin oxide (SnO 2 ) thin films. The effect of processing temperature on the structure, morphology, electrical conductivity, thermoelectric power and band gap was studied using X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, selected area electron diffraction pattern, atomic force microscopy, two probe technique and UV–visible spectroscopy. X-ray diffraction (XRD) analysis showed that SnO 2 films are crystallized in the tetragonal phase and present a random orientation. Field emission scanning electron microscopy (FESEM) analysis revealed that surface morphology of the tin oxide film consists nanocrystalline grains with uniform coverage of the substrate surface. Transmission electron microscopy (TEM) of SnO 2 film showed nanocrystals having diameter ranging from 5 to 10 nm. Selected area electron diffraction (SAED) pattern confirms tetragonal phase evolution of SnO 2 . Atomic force microscopy (AFM) analysis showed surface morphology of SnO 2 film is smooth. The dc electrical conductivity showed the semiconducting nature with room temperature electrical conductivity increased from 10 −7 to 10 −5 (Ω cm) −1 as processing temperature increased from 400 to 700 °C. Thermo power measurement confirms n-type conduction. The band gap energy of SnO 2 film decreased from 3.88 to 3.60 eV as processing temperature increased from 400 to 700 °C

  1. Electrical transport characterization of Al and Sn doped Mg 2 Si thin films

    KAUST Repository

    Zhang, Bo

    2017-05-22

    Thin-film Mg2Si was deposited using radio frequency (RF) magnetron sputtering. Al and Sn were incorporated as n-type dopants using co-sputtering to tune the thin-film electrical properties. X-ray diffraction (XRD) analysis confirmed that the deposited films are polycrystalline Mg2Si. The Sn and Al doping concentrations were measured using Rutherford backscattering spectroscopy (RBS) and energy dispersive X-ray spectroscopy (EDS). The charge carrier concentration and the charge carrier type of the Mg2Si films were measured using a Hall bar structure. Hall measurements show that as the doping concentration increases, the carrier concentration of the Al-doped films increases, whereas the carrier concentration of the Sn-doped films decreases. Combined with the resistivity measurements, the mobility of the Al-doped Mg2Si films is found to decrease with increasing doping concentration, whereas the mobility of the Sn-doped Mg2Si films is found to increase.

  2. Electrical Transport Ability of Nanostructured Potassium-Doped Titanium Oxide Film

    Science.gov (United States)

    Lee, So-Yoon; Matsuno, Ryosuke; Ishihara, Kazuhiko; Takai, Madoka

    2011-02-01

    Potassium-doped nanostructured titanium oxide films were fabricated using a wet corrosion process with various KOH solutions. The doped condition of potassium in TiO2 was confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Nanotubular were synthesized at a dopant concentration of 0.27%, these structures disappeared. To investigate the electrical properties of K-doped TiO2, pseudo metal-oxide-semiconductor field-effect transistor (MOSFET) samples were fabricated. The samples exhibited a distinct electrical behavior and p-type characteristics. The electrical behavior was governed by the volume of the dopant when the dopant concentration was 0.18%.

  3. Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films

    Science.gov (United States)

    Preissler, Natalie; Bierwagen, Oliver; Ramu, Ashok T.; Speck, James S.

    2013-08-01

    A comprehensive study of the room-temperature electrical and electrothermal transport of single-crystalline indium oxide (In2O3) and indium tin oxide (ITO) films over a wide range of electron concentrations is reported. We measured the room-temperature Hall mobility μH and Seebeck coefficient S of unintentionally doped and Sn-doped high-quality, plasma-assisted molecular-beam-epitaxy-grown In2O3 for volume Hall electron concentrations nH from 7×1016 cm-3 (unintentionally doped) to 1×1021 cm-3 (highly Sn-doped, ITO). The resulting empirical S(nH) relation can be directly used in other In2O3 samples to estimate the volume electron concentration from simple Seebeck coefficient measurements. The mobility and Seebeck coefficient were modeled by a numerical solution of the Boltzmann transport equation. Ionized impurity scattering and polar optical phonon scattering were found to be the dominant scattering mechanisms. Acoustic phonon scattering was found to be negligible. Fitting the temperature-dependent mobility above room temperature of an In2O3 film with high mobility allowed us to find the effective Debye temperature (ΘD=700 K) and number of phonon modes (NOPML=1.33) that best describe the polar optical phonon scattering. The modeling also yielded the Hall scattering factor rH as a function of electron concentration, which is not negligible (rH≈1.4) at nondegenerate electron concentrations. Fitting the Hall-scattering-factor corrected concentration-dependent Seebeck coefficient S(n) for nondegenerate samples to the numerical solution of the Boltzmann transport equation and to widely used, simplified equations allowed us to extract an effective electron mass of m*=(0.30±0.03)me (with free electron mass me). The modeled mobility and Seebeck coefficient based on polar optical phonon and ionized impurity scattering describes the experimental results very accurately up to electron concentrations of 1019 cm-3, and qualitatively explains a mobility plateau or local

  4. Influence of functional group on the electrical transport properties of polyvinyl alcohol grafted multiwall carbon nanotube composite thick film

    Science.gov (United States)

    Kumar Das, Amit; Dharmana, Reuben; Mukherjee, Ayan; Baba, Koumei; Hatada, Ruriko; Kumar Meikap, Ajit

    2018-04-01

    We present a novel technique to obtain a higher or lower value of dielectric constant due to the variation of a functional group on the surface of multiwall carbon nanotube (MWCNTs) for a polyvinyl alcohol (PVA) grafted MWCNT system. We have prepared PVA grafted pristine and different types of functionalized (-COOH, -OH, and -NH2) MWCNT nanocomposite films. The strong interfacial interaction between the host PVA matrix and nanofiller is characterized by different experimental techniques. The frequency variation of the electrical transport properties of the composite films is investigated in a wide temperature range (303 ≤ T ≤ 413 K) and frequency range (20 Hz ≤ f ≤ 1 MHz). The dielectric constant of the amine (-NH2) functionalized MWCNT incorporated PVA film is about 2 times higher than that of the pristine MWCNT embedded PVA film. The temperature variation of the dielectric constant shows an anomalous behaviour. The modified Cole-Cole equation simulated the experimentally observed dielectric spectroscopy at high temperature. The ac conductivity of the composite films obeys the correlated barrier hopping model. The imaginary part of the electric modulus study shows the ideal Debye-type behaviour at low frequency and deviation of that at high frequency. To illustrate the impedance spectroscopy of the nanocomposite films, we have proposed an impedance based battery equivalent circuit model. The current-voltage characteristic shows hysteresis behaviour of the nanocomposite films. The trap state height for all composite films is evaluated by simulating the current density-electric field data with the Poole-Frenkel emission model. This investigation opens a new avenue for designing electronic devices with a suitable combination of cost effective soft materials.

  5. Electrical transport properties of thermally evaporated phthalocyanine (H 2Pc) thin films

    Science.gov (United States)

    El-Nahass, M. M.; Farid, A. M.; Attia, A. A.; Ali, H. A. M.

    2006-08-01

    Thin films of H 2Pc of various thicknesses have been deposited onto glass substrates using thermal evaporation technique at room temperature. The dark electrical resistivity measurements were carried out at different temperatures in the range 298-473 K. An estimation of mean free path ( lo) of charge carriers in H 2Pc thin films was attempted. Measurements of thermoelectric power confirm that H 2Pc thin films behave as a p-type semiconductor. The current density-voltage characteristics of Au/H 2Pc/Au at room temperature showed ohmic conduction mechanism at low voltages. At higher voltages the space-charge-limited conduction (SCLC) accompanied by an exponential trap distribution was dominant. The temperature dependence of current density allows the determination of some essential parameters such as the hole mobility ( μh), the total trap concentration ( Nt), the characteristic temperature ( Tt) and the trap density P( E).

  6. Electrical bistability and charge-transport mechanisms in cuprous sulfide nanosphere-poly(N-vinylcarbazole) composite films

    International Nuclear Information System (INIS)

    Tang Aiwei; Teng Feng; Liu Jie; Wang Yichao; Peng Hongshang; Hou Yanbing; Wang Yongsheng

    2011-01-01

    In this study, electrically bistable devices were fabricated by incorporating cuprous sulfide (Cu 2 S) nanospheres with mean size less than 10 nm into a poly(N-vinylcarbazole) (PVK) matrix. A remarkable electrical bistability was clearly observed in the current–voltage curves of the devices due to an electric-field-induced charge transfer between the dodecanethiol-capped Cu 2 S nanospheres and PVK. The maximum ON/OFF current ratio reached up to value as large as 10 4 , which was dependent on the mass ratios of Cu 2 S nanospheres to PVK, the amplitude of the scanning voltages, and the film thickness. The charge-transport mechanisms of the electrically bistable devices were described on the basis of the experimental results using different theoretical models of organic electronics.

  7. Electrical Transport Mechanisms and Photoconduction in Undoped Crystalline Flash-Evaporated Lead Iodide Thin Films

    Science.gov (United States)

    Al-Daraghmeh, Tariq M.; Saleh, Mahmoud H.; Ahmad, Mais Jamil A.; Bulos, Basim N.; Shehadeh, Khawla M.; Jafar, Mousa M. Abdul-Gader

    2018-03-01

    The flash-evaporation technique was utilized to fabricate undoped 1.35-μm and 1.2-μm thick lead iodide films at substrate temperatures T_{{s}} = 150 °C and 200°C, respectively. The films were deposited onto a coplanar comb-like copper (Cu-) electrode pattern, previously coated on glass substrates to form lateral metal-semiconductor-metal (MSM-) structures. The as-measured constant- temperature direct-current (dc)-voltage ( I( {V;T} ) - V ) curves of the obtained lateral coplanar Cu-PbI2-Cu samples (film plus electrode) displayed remarkable ohmic behavior at all temperatures ( T = 18 - 90°C). Their dc electrical resistance R_{{dc}} (T ) revealed a single thermally-activated conduction mechanism over the temperature range with activation energy E_{{act}} ≈ 0.90 - 0.98 {eV} , slightly less than half of room-temperature bandgap energy E_{{g}} ( ≈ 2.3 {eV} ) of undoped 2H-polytype PbI2 single crystals. The undoped flash-evaporated {PbI}_{{x}} thin films were homogeneous and almost stoichiometric ( x ≈ 1.87 ), in contrast to findings on lead iodide films prepared by other methods, and were highly crystalline hexagonal 2H-polytypic structure with c-axis perpendicular to the surface of substrates maintained at T_{s} ≳ 150°C. Photoconductivity measurements made on these lateral Cu-PbI2-Cu-structures under on-off visible-light illumination reveal a feeble photoresponse for long wavelengths ( λ > 570 {nm} ), but a strong response to blue light of photon energy E_{{ph}} ≈ 2.73 {eV} ( > E_{{g}} ), due to photogenerated electron-hole (e-h) pairs via direct band-to-band electronic transitions. The constant-temperature/dc voltage current-time I( {T,V} ) - t curves of the studied lateral PbI2 MSM-structures at low ambient temperatures ( T < 50°C), after cutting off the blue-light illumination, exhibit two trapping mechanisms with different relaxation times. These strongly depend on V and T , with thermally generated charge carriers in the PbI2 mask photogenerated

  8. Electrical transport and pinning properties of Nb thin films patterned with focused ion beam-milled washboard nanostructures

    International Nuclear Information System (INIS)

    Dobrovolskiy, O V; Begun, E; Huth, M; Shklovskij, V A

    2012-01-01

    A careful analysis of the magneto-transport properties of epitaxial nanostructured Nb thin films in the normal and the mixed state is performed. The nanopatterns were prepared by focused ion beam (FIB) milling. They provide a washboard-like pinning potential landscape for vortices in the mixed state and simultaneously cause a resistivity anisotropy in the normal state. Two matching magnetic fields for the vortex lattice with the underlying nanostructures have been observed. By applying these fields, the most likely pinning sites along which the flux lines move through the samples have been selected. By this, either the background isotropic pinning of the pristine film or the enhanced isotropic pinning originating from the nanoprocessing have been probed. Via an Arrhenius analysis of the resistivity data the pinning activation energies for three vortex lattice parameters have been quantified. The changes in the electrical transport and the pinning properties have been correlated with the results of the microstructural and topographical characterization of the FIB-patterned samples. Accordingly, along with the surface processing, FIB milling has been found to alter the material composition and the degree of disorder in as-grown films. The obtained results provide further insight into the pinning mechanisms at work in FIB-nanopatterned superconductors, e.g. for fluxonic applications. (paper)

  9. Electric and magnetic fields effects on the transport properties of La0.5Ca0.5MnO3 thin films

    International Nuclear Information System (INIS)

    Villafuerte, M.; Duhalde, S.; Rubi, D.; Bridoux, G.; Heluani, S.; Sirena, M.; Steren, L.

    2004-01-01

    The insulator to metal transition in manganites can be drastically influenced by internal factors, such as chemical composition, or under a variety of external perturbations, like magnetic or electric fields. In this work, the electrical resistance of La 0.5 Ca 0.5 MnO 3 thin films was investigated using different constant voltages. At low temperature the conductivity of the films is non-Ohmic and moderate electric fields results in resistivity switching to metastable states. Comparisons between the influence of magnetic and electric fields on transport measurements are reported

  10. Electrical transport properties of sputtered Nd2-xCexCuO4±δ thin films

    Science.gov (United States)

    Guarino, Anita; Leo, Antonio; Avella, Adolfo; Avitabile, Francesco; Martucciello, Nadia; Grimaldi, Gaia; Romano, Alfonso; Pace, Sandro; Romano, Paola; Nigro, Angela

    2018-05-01

    Thin films of the electron-doped high-temperature superconductor Nd2-xCexCuO4±δ have been deposited by dc sputtering technique on (100) SrTiO3 substrates. A tuning of the oxygen content in the as-grown non-superconducting samples has been achieved by changing the oxygen partial pressure during the growth in the Argon sputtering atmosphere. All samples show the superconducting transition after a suitable two-step thermal treatment in an oxygen-reducing environment. Structural and electrical transport properties on the as-grown as well as on the superconducting samples have been investigated. We find that the structural properties are consistent with a deficiency of the oxygen content with respect to optimally annealed samples, and that the transition to the superconducting phase is always accompanied by an increase of the c-axis lattice parameter. Measurements of the Hall coefficient RH as a function of temperature and in the normal state of our epitaxial films are presented and discussed. RH results negative for all the films regardless of the oxygen content and it decreases with the temperature. In particular, the Hall coefficient is only about 10% lower than the value measured in the as-grown oxygen-deficient phase, in contrast to the results reported in literature. The removal of the excess oxygen in as-grown samples seems not to be the only requirement for triggering the superconducting transition in electron-doped compounds. The microstructural change associated with the increase of the c-axis parameter in our deoxygenated samples could help in understanding the microscopic mechanism underlying the reduction process of n-type superconductors, which is still under debate.

  11. Electric transport in composite Fe-Ta-O granular film prepared by plasma jet technique

    Czech Academy of Sciences Publication Activity Database

    Lobotka, P.; Vávra, O.; Fendrych, František; Kraus, Luděk

    2002-01-01

    Roč. 240, - (2002), s. 491-493 ISSN 0304-8853. [Metallic Multillayers 2001 (MML'01). Aachen, 25.06.2001-29.06.2001] Institutional research plan: CEZ:AV0Z1010914 Keywords : granular systems * magnetoresistance -thin films * tunneling * Coulomb blockade Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.046, year: 2002

  12. Effects of electric-field-induced piezoelectric strain on the electronic transport properties of La0.9Ce0.1MnO3 thin films

    International Nuclear Information System (INIS)

    Zheng, R.K.; Dong, S.N.; Wu, Y.Q.; Zhu, Q.X.; Wang, Y.; Chan, H.L.W.; Li, X.M.; Luo, H.S.; Li, X.G.

    2012-01-01

    The authors constructed multiferroic structures by growing La 0.9 Ce 0.1 MnO 3 (LCEMO) thin films on piezoelectric 0.68Pb(Mg 1/3 Nb 2/3 )O 3 –0.32PbTiO 3 (PMN-PT) single-crystal substrates. Due to the efficient elastic coupling at the interface, the electric-field-induced piezoelectric strain in PMN-PT substrates is effectively transferred to LCEMO films and thus, leads to a decrease in the resistance and an increase in the magnetoresistance of the films. Particularly, it was found that the resistance-strain coefficient [(ΔR/R) film /(Δε zz ) film ] of the LCEMO film was considerably enhanced by the application of magnetic fields, demonstrating strong coupling between the lattice and the spin degrees of freedom. (ΔR/R) film /(Δε zz ) film at 122 K was enhanced by ∼ 28.8% by a magnetic field of 1.2 T. An analysis of the overall results demonstrates that the phase separation is crucial to understand strain-mediated modulation of electronic transport properties of manganite film/PMN-PT multiferroic structures. - Highlights: ► La 0.9 Ce 0.1 Mn O3 films were epitaxially grown on piezoelectric single crystals. ► Piezoelectric strain influences the electronic transport properties of films. ► Magnetic field enhances the piezoelectric strain effect. ► Phase separation is crucial to understand the piezoelectric strain effect.

  13. Investigation of the structural, optical and electrical transport properties of n-doped CdSe thin films

    Science.gov (United States)

    Ali, H. M.; Abd El-Ghanny, H. A.

    2008-04-01

    Thin films of (CdSe)90(In2O3)10, (CdSe)90(SnO2)10 and (CdSe)90(ZnO)10 have been grown on glass substrates by the electron beam evaporation technique. It has been found that undoped and Sn or In doped CdSe films have two direct transitions corresponding to the energy gaps Eg and Eg+Δ due to spin-orbit splitting of the valence band. The electrical resistivity for n-doped CdSe thin films as a function of light exposure time has been studied. The influence of doping on the structural, optical and electrical characteristics of In doped CdSe films has been investigated in detail. The lattice parameters, grain size and dislocation were determined from x-ray diffraction patterns. The optical transmittance and band gap of these films were determined using a double beam spectrophotometer. The DC conductivity of the films was measured in vacuum using a two-probe technique.

  14. Effect of annealing temperature on the electrical transport properties of CaRuO3-δ thin films directly deposited on the Si substrate

    International Nuclear Information System (INIS)

    Paik, Hanjong; Kim, Youngha; No, Kwangsoo; Cann, David P.; Yoon, DongJoo; Kim, ByungIl; Kim, Yangsoo

    2007-01-01

    We investigate the effect of annealing temperature on the preferentially (110)-oriented CaRuO 3-δ (CRO) thin films directly prepared on Si(100) substrate by rf magnetron sputtering. Crystalline quality and electrical transport properties of the CRO thin films were modified by post-annealing treatment. It was obvious that 700 C post-annealing brought about excellent metallic characteristics with the elevation of carrier concentration and mobility. From this result, we suggested that enhanced (110) orientation, and the ratio of chemical composition Ru 4+ /Ca 2+ ion were responsible for the transport properties of CRO thin film. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Effect of large compressive strain on low field electrical transport in La0.88Sr0.12MnO3 thin films

    International Nuclear Information System (INIS)

    Prasad, Ravikant; Gaur, Anurag; Siwach, P K; Varma, G D; Kaur, A; Singh, H K

    2007-01-01

    We have investigated the effect of large in-plane compressive strain on the electrical transport in La 0.88 Sr 0.12 MnO 3 in thin films. For achieving large compressive strain, films have been deposited on single crystal LaAlO 3 (LAO, a = 3.798 A) substrate from a polycrystalline bulk target having average in-plane lattice parameter a av = (a b + b b )/2 = 3.925 A. The compressive strain was further relaxed by varying the film thickness in the range ∼6-75 nm. In the film having least thickness (∼6 nm) large increase (c = 3.929 A) in the out-of-plane lattice parameter is observed which gradually decreases towards the bulk value (c bulk = 3.87 A) for ∼75 nm thick film. This shows that the film having the least thickness is under large compressive strain, which partially relaxes with increasing film thickness. The T IM of the bulk target ∼145 K goes up to ∼235 K for the ∼6 nm thin film and even for partially strain relaxed ∼75 nm thick film T IM is as high as ∼200 K. This enhancement in T IM is explained in terms of suppression of Jahn-Teller distortion of the MnO 6 octahedra by the large in-plane compressive strain. We observe a large enhancement in the low field magnetoresistance (MR) just below T IM in the films having partial strain relaxation. Thick films of 6 and 20 nm have MR ∼14% at 3 kOe that almost doubles in 35 nm film to ∼27%. Similar enhancement is also obtained in the case of the temperature coefficient of resistivity. The near doubling of low field MR is explained in terms of delocalization of weakly localized carriers around T IM by small magnetic fields

  16. Electrical transport properties of V2O5 thin films obtained by thermal annealing of layers grown by RF magnetron sputtering at room temperature

    International Nuclear Information System (INIS)

    Giannetta, H.M.R.; Calaza, C.; Lamas, D.G.; Fonseca, L.; Fraigi, L.

    2015-01-01

    The present study investigates the main electrical transport mechanism in V 2 O 5 thin films deposited by RF magnetron sputtering on the basis of the Mott's small polaron hopping model. The material under test was obtained at room temperature from a V 2 O 5 target and then oxidized at high temperature under air atmosphere to obtain the desired V 2 O 5 phase. The dependence of the electrical conductivity of the V 2 O 5 thin films with temperature was analyzed using the Mott's small polarons hopping transport model under the Schnakenberg form. Model results suggest a polaron binding energy W H = 0.1682 eV, with a structural disorder energy W D = 0.2241 eV and an optical phonon frequency ν 0 = 0.468 × 10 13 s −1 . These results are in agreement with data reported in literature for single crystal V 2 O 5 . However, the carrier mobility μ = 1.5019 × 10 −5 cm 2 /Vs computed in the non-adiabatic regime is significantly smaller than that of the single crystal, suggesting a strong electron–phonon coupling in the V 2 O 5 thin films obtained with the proposed deposition method. - Highlights: • A two-stage deposition method compatible with lift-off patterning is proposed. • V 2 O 5 films are deposited by RF magnetron sputtering and then annealed in air. • Films are analyzed by SEM and its pure phase nature is confirmed by XRD. • Electrical conductivity was fitted using Mott's model for small polarons. • Fit derived parameters confirm charge transport through small-polarons hopping

  17. Electrical transport properties of V{sub 2}O{sub 5} thin films obtained by thermal annealing of layers grown by RF magnetron sputtering at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Giannetta, H.M.R., E-mail: hgiann@inti.gov.ar [Centro de Micro y Nano Electrónica del Bicentenario (CMNB), Instituto Nacional de Tecnología Industrial (INTI), San Martín, Buenos Aires (Argentina); Universidad Tecnológica Nacional (UTN) — Facultad Regional Buenos Aires (FRBA) (Argentina); Calaza, C. [Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193 Barcelona (Spain); Lamas, D.G. [Universidad Nacional del Comahue CONICET-CITEFA — Laboratorio de Caracterización de Materiales, Facultad de Ingeniería, Neuquen (Argentina); Fonseca, L. [Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193 Barcelona (Spain); Fraigi, L. [Centro de Micro y Nano Electrónica del Bicentenario (CMNB), Instituto Nacional de Tecnología Industrial (INTI), San Martín, Buenos Aires (Argentina); Universidad Tecnológica Nacional (UTN) — Facultad Regional Buenos Aires (FRBA) (Argentina)

    2015-08-31

    The present study investigates the main electrical transport mechanism in V{sub 2}O{sub 5} thin films deposited by RF magnetron sputtering on the basis of the Mott's small polaron hopping model. The material under test was obtained at room temperature from a V{sub 2}O{sub 5} target and then oxidized at high temperature under air atmosphere to obtain the desired V{sub 2}O{sub 5} phase. The dependence of the electrical conductivity of the V{sub 2}O{sub 5} thin films with temperature was analyzed using the Mott's small polarons hopping transport model under the Schnakenberg form. Model results suggest a polaron binding energy W{sub H} = 0.1682 eV, with a structural disorder energy W{sub D} = 0.2241 eV and an optical phonon frequency ν{sub 0} = 0.468 × 10{sup 13}s{sup −1}. These results are in agreement with data reported in literature for single crystal V{sub 2}O{sub 5}. However, the carrier mobility μ = 1.5019 × 10{sup −5} cm{sup 2}/Vs computed in the non-adiabatic regime is significantly smaller than that of the single crystal, suggesting a strong electron–phonon coupling in the V{sub 2}O{sub 5} thin films obtained with the proposed deposition method. - Highlights: • A two-stage deposition method compatible with lift-off patterning is proposed. • V{sub 2}O{sub 5} films are deposited by RF magnetron sputtering and then annealed in air. • Films are analyzed by SEM and its pure phase nature is confirmed by XRD. • Electrical conductivity was fitted using Mott's model for small polarons. • Fit derived parameters confirm charge transport through small-polarons hopping.

  18. Study of Electrical Transport Properties of Thin Films Used as HTL and as Active Layer in Organic Solar Cells, through Impedance Spectroscopy Measurements

    Directory of Open Access Journals (Sweden)

    Camilo A. Otalora

    2016-01-01

    Full Text Available Impedance spectroscopy (IS is used for studying the electrical transport properties of thin films used in organic solar cells with structure ITO/HTL/active layer/cathode, where PEDOT:PSS (poly(3,4-ethylenedioxythiophene:polystyrene sulfonic acid and CuPC (tetrasulfonated copper-phthalocyanine were investigated as HTL (hole transport layer and P3HT:PCBM (poly-3-hexylthiophene:phenyl-C61-butyric acid methyl ester blends prepared from mesitylene and chlorobenzene based solutions were studied as active layer and Ag and Al were used as cathode. The study allowed determining the influence of the type of solvent used for the preparation of the active layer as well as the speed at which the solvents are removed on the carriers mobility. The effect of exposing the layer of P3HT to the air on its mobility was also studied. It was established that samples of P3HT and P3HT:PCBM prepared using mesitylene as a solvent have mobility values significantly higher than those prepared from chlorobenzene which is the solvent most frequently used. It was also determined that the mobility of carriers in P3HT films strongly decreases when this sample is exposed to air. In addition, it was found that the electrical properties of P3HT:PCBM thin films can be improved by removing the solvent slowly which is achieved by increasing the pressure inside the system of spin-coating during the film growth.

  19. Ultra-violet absorption induced modifications in bulk and nanoscale electrical transport properties of Al-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata, E-mail: tsom@iopb.res.in [SUNAG Laboratory, Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India)

    2015-08-07

    Using conductive atomic force microscopy and Kelvin probe force microscopy, we study local electrical transport properties in aluminum-doped zinc oxide (ZnO:Al or AZO) thin films. Current mapping shows a spatial variation in conductivity which corroborates well with the local mapping of donor concentration (∼10{sup 20 }cm{sup −3}). In addition, a strong enhancement in the local current at grains is observed after exposing the film to ultra-violet (UV) light which is attributed to persistent photocurrent. Further, it is shown that UV absorption gives a smooth conduction in AZO film which in turn gives rise to an improvement in the bulk photoresponsivity of an n-AZO/p-Si heterojunction diode. This finding is in contrast to the belief that UV absorption in an AZO layer leads to an optical loss for the underneath absorbing layer of a heterojunction solar cell.

  20. The effects of thermal annealing on the structure and the electrical transport properties of ultrathin gadolinia-doped ceria films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigo, K.; Pryds, N.; Theil Kuhn, L.; Esposito, V.; Linderoth, S. [Technical University of Denmark, Fuel Cells and Solid State Chemistry Division, Risoe DTU, Roskilde (Denmark); Heiroth, S.; Lippert, T. [Paul Scherrer Institute, General Energy Research Department, Villigen PSI (Switzerland); Schou, J. [Technical University of Denmark, Department of Photonics Engineering, Roskilde (Denmark)

    2011-09-15

    Ultrathin crystalline films of 10 mol% gadolinia-doped ceria (CGO10) are grown on MgO (100) substrates by pulsed laser deposition at a moderate temperature of 400 C. As-deposited CGO10 layers of approximately 4 nm, 14 nm, and 22 nm thickness consist of fine grains with dimensions {<=}{proportional_to}11 nm. The films show high density within the thickness probed in the X-ray reflectivity experiments. Thermally activated grain growth, density decrease, and film surface roughening, which may result in the formation of incoherent CGO10 islands by dewetting below a critical film thickness, are observed upon heat treatment at 400 C and 800 C. The effect of the grain coarsening on the electrical characteristics of the layers is investigated and discussed in the context of a variation of the number density of grain boundaries. The results are evaluated with regard to the use of ultrathin CGO10 films as seeding templates for the moderate temperature growth of thick solid electrolyte films with improved oxygen transport properties. (orig.)

  1. Electrical conductivity study on polythiophenes films

    International Nuclear Information System (INIS)

    Youm, I.; Cadene, M.

    1994-10-01

    The electrical conduction mechanism of two classes of polythiophenes: polythiophene (PT) and poly(3-methylthiophene) (PMT) films containing various levels of doping counter-ions was investigated. The temperature dependence of electrical conductivity obeys the Mott equation based on variable range hopping. The dimension of the variable range hopping is correlated with the structure of the conducting polymer. It seems for these polymers that carrier transport via mobile conjugational defects does not play a detectable role. (author). 17 refs, 3 figs, 1 tab

  2. Electrical railway transportation systems

    CERN Document Server

    Brenna, Morris; Zaninelli, Dario

    2018-01-01

    Allows the reader to deepen their understanding of various technologies for both fixed power supply installations of railway systems and for railway rolling stock. This book explores the electric railway systems that play a crucial role in the mitigation of congestion and pollution caused by road traffic. It is divided into two parts: the first covering fixed power supply systems, and the second concerning the systems for railway rolling stock. In particular, after a historical introduction to the framework of technological solutions in current use, the authors investigate electrification systems for the power supply of rail vehicles, trams, and subways. Electrical Railway Transportation Systems explores the direct current systems used throughout the world for urban and suburban transport, which are also used in various countries for regional transport. It provides a study of alternating current systems, whether for power supply frequency or for special railway frequency, that are used around the world for ...

  3. Electrical properties and transport mechanisms in phase change memory thin films of quasi-binary-line GeTe–Sb{sub 2}Te{sub 3} chalcogenide semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sherchenkov, A. A. [National Research University of Electronic Technology (Russian Federation); Kozyukhin, S. A., E-mail: sergkoz@igic.ras.ru [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation); Lazarenko, P. I.; Babich, A. V. [National Research University of Electronic Technology (Russian Federation); Bogoslovskiy, N. A. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Sagunova, I. V.; Redichev, E. N. [National Research University of Electronic Technology (Russian Federation)

    2017-02-15

    The temperature dependences of the resistivity and current–voltage (I–V) characteristics of phase change memory thin films based on quasi-binary-line GeTe–Sb{sub 2}Te{sub 3} chalcogenide semiconductors Ge{sub 2}Sb{sub 2}Te{sub 5}, GeSb{sub 2}Te{sub 5}, and GeSb{sub 4}Te{sub 7} are investigated. The effect of composition variation along the quasibinary line on the electrical properties and transport mechanisms of the thin films is studied. The existence of three ranges with different I–V characteristics is established. The position and concentration of energy levels controlling carrier transport are estimated. The results obtained show that the electrical properties of the thin films can significantly change during a shift along the quasi-binary line GeTe–Sb{sub 2}Te{sub 3}, which is important for targeted optimization of the phase change memory technology.

  4. Electric and magnetic fields effects on the transport properties of La{sub 0.5}Ca{sub 0.5}MnO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Villafuerte, M. E-mail: mvillafeurte@herrera.unt.edu.ar; Duhalde, S. E-mail: sduhald@fi.uba.ar; Rubi, D.; Bridoux, G.; Heluani, S.; Sirena, M.; Steren, L

    2004-05-01

    The insulator to metal transition in manganites can be drastically influenced by internal factors, such as chemical composition, or under a variety of external perturbations, like magnetic or electric fields. In this work, the electrical resistance of La{sub 0.5}Ca{sub 0.5}MnO{sub 3} thin films was investigated using different constant voltages. At low temperature the conductivity of the films is non-Ohmic and moderate electric fields results in resistivity switching to metastable states. Comparisons between the influence of magnetic and electric fields on transport measurements are reported.

  5. Reactively sputtered epitaxial γ′-Fe4N films: Surface morphology, microstructure, magnetic and electrical transport properties

    KAUST Repository

    Mi, Wenbo; Guo, Zaibing; Feng, X. P.; Bai, Haili

    2013-01-01

    Epitaxial γ′-Fe4N films with (1 0 0) and (1 1 0) orientations have been fabricated by reactive sputtering; these films were characterized by X-ray θ-2θ and φ scans, pole figures and high-resolution transmission electron microscopy. The film surface

  6. Electrical initiation of an energetic nanolaminate film

    Science.gov (United States)

    Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  7. Electricity as Transportation ``Fuel''

    Science.gov (United States)

    Tamor, Michael

    2013-04-01

    The personal automobile is a surprisingly efficient device, but its place in a sustainable transportation future hinges on its ability use a sustainable fuel. While electricity is widely expected to be such a ``fuel,'' the viability of electric vehicles rests on the validity of three assumptions. First, that the emissions from generation will be significantly lower than those from competing chemical fuels whether `renewable' or fossil. Second, that advances in battery technology will deliver adequate range and durability at an affordable cost. Third, that most customers will accept any functional limitations intrinsic to electrochemical energy storage. While the first two are subjects of active research and vigorous policy debate, the third is treated virtually as a given. Popular statements to the effect that ``because 70% of all daily travel is accomplished in less than 100 miles, mass deployment of 100 mile EVs will electrify 70% of all travel'' are based on collections of one-day travel reports such as the National Household Travel Survey, and so effectively ignore the complexities of individual needs. We have analyzed the day-to-day variations of individual vehicle usage in multiple regions and draw very different conclusions. Most significant is that limited EV range results in a level of inconvenience that is likely to be unacceptable to the vast majority of vehicle owners, and for those who would accept that inconvenience, battery costs must be absurdly low to achieve any economic payback. In contrast, the plug-in hybrid (PHEV) does not suffer range limitations and delivers economic payback for most users at realistic battery costs. More importantly, these findings appear to be universal in developed nations, with labor market population density being a powerful predictor of personal vehicle usage. This ``scalable city'' hypothesis may prove to a powerful predictor of the evolution of transportation in the large cities of the developing world.

  8. Reactively sputtered epitaxial γ′-Fe4N films: Surface morphology, microstructure, magnetic and electrical transport properties

    KAUST Repository

    Mi, Wenbo

    2013-10-01

    Epitaxial γ′-Fe4N films with (1 0 0) and (1 1 0) orientations have been fabricated by reactive sputtering; these films were characterized by X-ray θ-2θ and φ scans, pole figures and high-resolution transmission electron microscopy. The film surface is very smooth as the film is less than 58 nm thick. The films exhibit soft ferromagnetism, and the saturation magnetization decreases with an increase in temperature, following Bloch\\'s spin wave theory. The films also exhibit a metallic conductance mechanism. Below 30 K, magnetoresistance (MR) is positive and increases linearly with the applied field in the high-field range. In the low-field range, MR increases abruptly. Above 30 K, MR is negative, and its value increases linearly with the applied field.

  9. Electric field-induced hole transport in copper(i) thiocyanate (CuSCN) thin-films processed from solution at room temperature

    KAUST Repository

    Pattanasattayavong, Pichaya; Ndjawa, Guy Olivier Ngongang; Zhao, Kui; Chou, Kang Wei; Yaacobi-Gross, Nir; O'Regan, Brian C.; Amassian, Aram; Anthopoulos, Thomas D.

    2013-01-01

    The optical, structural and charge transport properties of solution-processed films of copper(i) thiocyanate (CuSCN) are investigated in this work. As-processed CuSCN films of ∼20 nm in thickness are found to be nano-crystalline, highly transparent and exhibit intrinsic hole transporting characteristics with a maximum field-effect mobility in the range of 0.01-0.1 cm2 V-1 s-1. © 2013 The Royal Society of Chemistry.

  10. Resistance switching induced by electric fields in manganite thin films

    International Nuclear Information System (INIS)

    Villafuerte, M; Juarez, G; Duhalde, S; Golmar, F; Degreef, C L; Heluani, S P

    2007-01-01

    In this work, we investigate the polarity-dependent Electric Pulses Induced Resistive (EPIR) switching phenomenon in thin films driven by electric pulses. Thin films of 0.5 Ca 0.5 MnO 3 (manganite) were deposited by PLD on Si substrate. The transport properties at the interface between the film and metallic electrode are characterized in order to study the resistance switching. Sample thermal treatment and electrical field history are important to be considered for get reproducible EPIR effect. Carriers trapping at the interfaces are considered as a possible explanation of our results

  11. Morphology dependent electrical transport behavior in gold nanostructures

    International Nuclear Information System (INIS)

    Alkhatib, A.; Souier, T.; Chiesa, M.

    2011-01-01

    The mechanism of electron transport in ultra-thin gold films is investigated and its dependence on the gold islands size is reported. For gold films of thickness below 38 nm, the electrical transport occurs by tunneling within electrically discontinuous islands of gold. Simmons model for metal-insulator-metal junction describes the non-ohmic experimental current-voltage curves obtained by means of conductive atomic force microscopy. Field emission is the predominant transport for thicknesses below 23 nm while direct tunneling occurs in thicker films. The transition between the two regimes is controlled by the gold islands size and their inter-distance.

  12. Magnetic and electrical transport properties of LaBaCo2O(5.5+δ) thin films on vicinal (001) SrTiO3 surfaces.

    Science.gov (United States)

    Ma, Chunrui; Liu, Ming; Collins, Gregory; Wang, Haibin; Bao, Shanyong; Xu, Xing; Enriquez, Erik; Chen, Chonglin; Lin, Yuan; Whangbo, Myung-Hwan

    2013-01-23

    Highly epitaxial LaBaCo(2)O(5.5+δ) thin films were grown on the vicinal (001) SrTiO(3) substrates with miscut angles of 0.5°, 3.0°, and 5.0° to systemically study strain effect on its physical properties. The electronic transport properties and magnetic behaviors of these films are strongly dependent on the miscut angles. With increasing the miscut angle, the transport property of the film changes from semiconducting to semimetallic, which results most probably from the locally strained domains induced by the surface step terraces. In addition, a very large magnetoresistance (34% at 60 K) was achieved for the 0.5°-miscut film, which is ~30% larger than that for the film grown on the regular (001) SrTiO(3) substrates.

  13. Substrate-dependent post-annealing effects on the strain state and electrical transport of epitaxial La{sub 5/8-y}Pr{sub y}Ca{sub 3/8}MnO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Sixia; Wang, Haibo; Dong, Yongqi; Hong, Bing; He, Hao; Bao, Jun [National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huang, Haoliang [CAS Key Laboratory of Materials for Energy Conversion and Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yang, Yuanjun; Luo, Zhenlin, E-mail: zlluo@ustc.edu.cn; Yang, Mengmeng; Gao, Chen, E-mail: cgao@ustc.edu.cn [National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Key Laboratory of Materials for Energy Conversion and Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-06-15

    Large scale electronic phase separation (EPS) between ferromagnetic metallic and charge-ordered insulating phases in La{sub 5/8-y}Pr{sub y}Ca{sub 3/8}MnO{sub 3} (y = 0.3) (LPCMO) is very sensitive to the structural changes. This work investigates the effects of post-annealing on the strain states and electrical transport properties of LPCMO films epitaxially grown on (001){sub pc} SrTiO{sub 3} (tensile strain), LaAlO{sub 3} (compressive strain) and NdGaO{sub 3} (near-zero strain) substrates. Before annealing, all the films are coherent-epitaxial and insulating through the measured temperature range. Obvious change of film lattice is observed during the post-annealing: the in-plane strain in LPCMO/LAO varies from −1.5% to −0.1% while that in LPCMO/STO changes from 1.6% to 1.3%, and the lattice of LPCMO/NGO keeps constant because of the good lattice-match between LPCMO and NGO. Consequently, the varied film strain leads to the emergence of metal-insulator transitions (MIT) and shift of the critical transition temperature in the electrical transport. These results demonstrate that lattice-mismatch combined with post-annealing is an effective approach to tune strain in epitaxial LPCMO films, and thus to control the EPS and MIT in the films.

  14. Substrate-dependent post-annealing effects on the strain state and electrical transport of epitaxial La5/8-yPryCa3/8MnO3 films

    International Nuclear Information System (INIS)

    Hu, Sixia; Wang, Haibo; Dong, Yongqi; Hong, Bing; He, Hao; Bao, Jun; Huang, Haoliang; Yang, Yuanjun; Luo, Zhenlin; Yang, Mengmeng; Gao, Chen

    2014-01-01

    Large scale electronic phase separation (EPS) between ferromagnetic metallic and charge-ordered insulating phases in La 5/8-y Pr y Ca 3/8 MnO 3 (y = 0.3) (LPCMO) is very sensitive to the structural changes. This work investigates the effects of post-annealing on the strain states and electrical transport properties of LPCMO films epitaxially grown on (001) pc SrTiO 3 (tensile strain), LaAlO 3 (compressive strain) and NdGaO 3 (near-zero strain) substrates. Before annealing, all the films are coherent-epitaxial and insulating through the measured temperature range. Obvious change of film lattice is observed during the post-annealing: the in-plane strain in LPCMO/LAO varies from −1.5% to −0.1% while that in LPCMO/STO changes from 1.6% to 1.3%, and the lattice of LPCMO/NGO keeps constant because of the good lattice-match between LPCMO and NGO. Consequently, the varied film strain leads to the emergence of metal-insulator transitions (MIT) and shift of the critical transition temperature in the electrical transport. These results demonstrate that lattice-mismatch combined with post-annealing is an effective approach to tune strain in epitaxial LPCMO films, and thus to control the EPS and MIT in the films

  15. Electricity: an indigenous transport fuel

    Energy Technology Data Exchange (ETDEWEB)

    Byers, D J

    1978-12-25

    Potential reserves of hydro and geothermal power are adequate to power all road-transport vehicles should these be converted to electric drives in the future. Conversion of petrol vehicles to electric drives results in a significant increase in energy-utilization efficiency coupled with a decrease in costs, both to the country in overseas funds and to the driver in operating costs. As yet, however, New Zealand has no plan to use these resources in a transport role and is supporting no feasibility research.

  16. Structural, magnetic and electrical transport properties in electron-doped La{sub 0.85}Hf{sub 0.15}MnO{sub 3} epitaxial film

    Energy Technology Data Exchange (ETDEWEB)

    Han, Li-an; Zhu, Hua-ze; Zhang, Tao [Xi' an University of Science and Technology, Department of Applied Physics, Xi' an (China); Ma, Zi-wei [Yuncheng University, Department of Physics and Electronic Engineering, Yuncheng (China); Chen, Chang-le [Northwestern Polytechnical University, Department of Applied Physics, Xi' an (China)

    2017-03-15

    Using a pulsed laser deposition method, the electron-doped La{sub 0.85}Hf{sub 0.15}MnO{sub 3} (LHMO) film with the thickness of 90 nm was epitaxially grown on LaAlO{sub 3} (001) single crystal substrate. The structural, magnetic and electrical transport properties of the film have been studied comprehensively. The X-ray diffraction patterns confirm that LHMO film is of single phase, good quality and c axis orientation. The film undergoes a ferromagnetic-like ordering to paramagnetic states at T{sub C} =280 K. Moreover, a spin glass behavior observed in the film may be attributed to the strain effects. Using the percolation theory, we have analyzed the resistivity data ρ (T) of the film and given an excellent fit in the whole temperature range. Particularly, large temperature coefficient of resistance of 11.27% K{sup -} {sup 1} has been discovered near sub-room-temperature, indicating that LHMO film could be useful for bolometric applications. (orig.)

  17. Role of low O 2 pressure and growth temperature on electrical transport of PLD grown ZnO thin films on Si substrates

    Science.gov (United States)

    Pandis, Ch.; Brilis, N.; Tsamakis, D.; Ali, H. A.; Krishnamoorthy, S.; Iliadis, A. A.

    2006-06-01

    Undoped ZnO thin films have been grown on (100) Si substrates by pulsed laser deposition. The effect of growth parameters such as temperature, O 2 partial pressure and laser fluence on the structural and electrical properties of the films has been investigated. It is shown that the well-known native n-type conductivity, attributed to the activation of hydrogenic donor states, exhibits a conversion from n-type to p-type when the O 2 partial pressure is reduced from 10 -4 to 10 -7 Torr at growth temperatures lower than 400 °C. The p-type conductivity could be attributed to the dominant role of the acceptor Zn vacancies for ZnO films grown at very low O 2 pressures.

  18. Electrical and optical transport characterizations of electron beam evaporated V doped In{sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Md. Ariful, E-mail: arifapee19@gmail.com [Department of Physics, Rajshahi University of Engineering & Technology (RUET), Rajshahi (Bangladesh); Roy, Ratan Chandra; Hossain, Jaker; Julkarnain, Md.; Khan, Khairul Alam [Department of Applied Physics & Electronic Engineering, University of Rajshahi (Bangladesh)

    2017-01-15

    Vanadium (5 at. %) doped Indium Oxide (V: In{sub 2}O{sub 3}) thin films with different thicknesses (50 nm, 100 nm and 150 nm) were prepared onto glass substrate by electron beam evaporation technique in a vacuum of about 4 x 10{sup -3} Pa. X-ray diffraction (XRD) pattern revealed that the prepared films of thickness 50 nm are amorphous in nature. Temperature dependence of electrical resistivity was studied in the 300 < T < 475 K temperature range. The films exhibit a metallic behavior in the 300 < T < 380 K range with a positive temperature coefficient of the resistivity (TCR), whereas at T > 380 K, the conduction behavior turns into a semiconductor with a negative TCR. Optical studies revealed that the films of thickness 50 nm possess high transmittance of about 86 % in the near-infrared spectral region. The direct optical band gap lies between 3.26 and 3.00 eV depending on the film thickness. (author)

  19. Effect of laser energy on the electrical transport properties of La{sub 0.67}Ca{sub 0.33}MnO{sub 3}:Ag{sub 0.2} films by pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yalin; Chen, Qingming; Jin, Fei; Chen, Xiaohui; Li, Zhiyu; Li, Di; Zhang, Hui [Kunming University of Science and Technology, Faculty of Materials Science and Engineering, Kunming (China)

    2017-09-15

    La{sub 0.67}Ca{sub 0.33}MnO{sub 3} (LCMO):Ag{sub 0.2} films were grown on LaAlO{sub 3} (LAO) substrates (100) by pulsed laser deposition (PLD) technique with various incident laser energies. The surface morphologies and the thicknesses of the films were studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The crystal structures were analyzed by X-ray, diffraction (XRD), and the temperature dependence of the resistivity (ρ-T) of the films was studied by the standard four-probe method. It can be found that the crystal quality, surface morphology, metal-insulator transition temperature (T{sub p}), and temperature coefficient of resistance (TCR) of the LCMO:Ag{sub 0.2} films are changed with various laser energy. The highest T{sub p} 287 K is obtained with 300 mJ laser energy; meanwhile, the optimal TCR 13.5% K{sup -1} is achieved. The results suggest that the electrical transport properties of LCMO:Ag{sub 0.2} films are affected by the interface-induced compressive stress, the oxygen balance, and the double exchange between Mn{sup 3+}-O-Mn{sup 4+}. (orig.)

  20. Electrical transport in crystalline phase change materials

    International Nuclear Information System (INIS)

    Woda, Michael

    2012-01-01

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge 2 Sb 2 Te 5 . The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  1. Electrical transport in crystalline phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Woda, Michael

    2012-01-06

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge{sub 2}Sb{sub 2}Te{sub 5}. The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  2. Tariff structures for the transport of electricity

    International Nuclear Information System (INIS)

    Frenken, R.M.L.; Van de Water, C.J.

    1995-01-01

    Some possible tariff structures for electricity transport are discussed. First, the costs associated with the transport of electricity are explained. The fixed and variable costs of a transport are illustrated with some examples. Furthermore, the most common tariff structures (contract path, megawatt mile, postage stamp) and negotiated Third Party Access are discussed. Finally, the way the tariff structures reflect the costs of electricity transport are reviewed. 3 figs., 1 tab., 7 refs

  3. Study on the electrical transport properties of La{sub 2/3}Ba{sub 1/3}MnO{sub 3}:Ag{sub 0.04}/LaAlO{sub 3} (001) films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: lxjim@126.com; Zhao, Shuang; Zhang, Shao-Chun

    2017-01-01

    La{sub 2/3}Ba{sub 1/3}MnO{sub 3}: wt%Ag{sub x} (LBMO:Ag{sub x}, x=0.04) films were prepared on single crystalline (001)-orientated LaAlO{sub 3} substrates by pulsed laser deposition technique. All the samples show along the (00l) orientation in rhombohedral structure with R3c space group. The surface roughness (Ra), insulator-metal transition temperature (Tp) and resistivity at Tp (ρ{sub Tp}) of the LBMO:Ag{sub 0.04} films reached optimal values of 3.29 nm, 288 K and 0.033 Ω cm at 740 °C, respectively. The improvement of electrical transport properties in the films are attributed to the optimal growth temperature and Ag-doping improve the microstructure of the surfaces, grain boundaries (GBs) in connectivity and better crystallization. In addition, the electrical conduction behaviors can be well fitted with the grain/domain boundary, electron–electron and magnon scattering mechanisms in the ferromagnetic metallic region (TTp).

  4. Electrical resistivity of sputtered molybdenum films

    International Nuclear Information System (INIS)

    Nagano, J.

    1980-01-01

    The electrical resistivity of r.f. sputtered molybdenum films of thickness 5-150 nm deposited on oxidized silicon substrates was resolved into the three electron scattering components: isotropic background scattering, scattering at grain boundaries and scattering at surfaces. It was concluded that the isotropic background scattering is almost equal to that of bulk molybdenum and is not influenced by sputtering and annealing conditions. When the film thickness is sufficient that surface scattering can be ignored, the decrease in film resistivity after annealing is caused by the decrease in scattering at the grain boundaries for zero bias sputtered films, and is caused by an increase of the grain diameter for r.f. bias sputtered films. (Auth.)

  5. Electrical properties of tungsten trioxide films

    International Nuclear Information System (INIS)

    Xu, Z.; Vetelino, J.F.; Lec, R.; Parker, D.C.

    1990-01-01

    Selectively doped semiconducting metal oxide (SMO) films have been shown to have applications as the sensing element in gas microsensors. Critical to the design and operation of these sensors is the SMO film. In the present work, the electrical properties of both intrinsic and extrinsic (doped with gold) tungsten trioxide (WO 3 ) films, which selectively sorb hydrogen sulfide (H 2 S), are investigated. Hall effect measurements are performed as a function of film thickness, temperature, gold-doping concentration, and H 2 S gas concentration. The conductivity was found to be n type and strongly dependent on temperature, gold doping concentration, and H 2 S gas concentration and less dependent on film thickness. The mobility was relatively high while the intrinsic carrier concentration was low when compared to typical semiconductor materials. The conductivity was shown to exhibit anomalous behavior at certain temperatures and H 2 S gas concentrations

  6. Electrical resistivity of ferrimagnetic magnetite thin film

    International Nuclear Information System (INIS)

    Varshney, Dinesh; Yogi, A.; Kaurav, N.; Gupta, R.P.; Phase, D.M.

    2006-01-01

    We have grown Fe 3 O 4 (III) epitaxial film on Al 2 O 3 (0001) substrate by pulsed laser deposition, with thickness of 130 nm. X-ray diffraction studies of magnetite show the spinel cubic structure of film with preferential (III) orientation. The electrical resistivity measurement demonstrates that the properties of thin film of magnetite are basically similar to those of bulk magnetite and clearly shows semiconductor-insulator transition at Verwey transition temperature (≅140 K). We have found higher Verwey transition temperature when compared with earlier reports on similar type of system. Possible causes for increase in transition temperature are discussed. (author)

  7. Railway diagnosis of electric transport

    Directory of Open Access Journals (Sweden)

    Yushkov Vladimir Sergeevich

    2015-01-01

    Full Text Available The increase in noise level at cities is increasing the requirements to functional interaction of road users - pedestrians and drivers - with the parameters of the environment as a leading component of Afferentation synthesis in the complicated complex of locomotive activity. City noise is one of the most widespread factors of unfavorable living and working conditions. The noise of high intensity provokes diseases, lowers labor activity. At present, many large cities pay much attention to electric vehicles. The authors present an analysis of the poor state of tram track in areas of high noise and vibration of car and under-sleeper base design. A negative effect of noise and vibration on the formation of urban areas environment is shown as well as the impact of these conditions on the person. The advantages of the application of electric transport are specified, noise displacement curve of railway and under sleeper base is plotted depending on the frequency of the applied load and the modulus of elasticity, as well as under sleeper base vibroacceleration depending on time. The authors offer a systematic study on the basis of a mathematical model of the sources of noise in the process of a tram motion.

  8. Electrical characterization of thin film ferroelectric capacitors

    NARCIS (Netherlands)

    Tiggelman, M.P.J.; Reimann, K.; Klee, M.; Beelen, D.; Keur, W.; Schmitz, Jurriaan; Hueting, Raymond Josephus Engelbart

    2006-01-01

    Tunable capacitors can be used to facilitate the reduction of components in wireless technologies. The tunability of the capacitors is caused by the sensitivity of the relative dielectric constant to a change in polarization with electric field. Thin film ferroelectric MIM capacitors on silicon

  9. Electric Vehicle Grid Integration | Transportation Research | NREL

    Science.gov (United States)

    Electric Vehicle Grid Integration Electric Vehicle Grid Integration Illustration of a house with a in the garage, is connected via a power cord to a household outlet. A sustainable transportation sustainable transportation technologies to increase the capacity, efficiency, and stability of the grid

  10. Electric current induced forward and anomalous backward mass transport

    International Nuclear Information System (INIS)

    Somaiah, Nalla; Sharma, Deepak; Kumar, Praveen

    2016-01-01

    Multilayered test samples were fabricated in form of standard Blech structure, where W was used as the interlayer between SiO 2 substrate and Cu film. Electromigration test was performed at 250 °C by passing an electric current with a nominal density of 3.9  ×  10 10 A m −2 . In addition to the regular electromigration induced mass transport ensuing from the cathode towards the anode, we also observed anomalous mass transport from the anode to the cathode, depleting Cu from the anode as well. We propose an electromigration-thermomigration coupling based reasoning to explain the observed mass transport. (letter)

  11. Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness

    KAUST Repository

    Jana, Partha Sarathi; Katuri, Krishna; Kavanagh, Paul; Kumar, Amit Ravi Pradeep; Leech, Dó nal

    2014-01-01

    Harnessing, and understanding the mechanisms of growth and activity of, biofilms of electroactive bacteria (EAB) on solid electrodes is of increasing interest, for application to microbial fuel and electrolysis cells. Microbial electrochemical cell technology can be used to generate electricity, or higher value chemicals, from organic waste. The capability of biofilms of electroactive bacteria to transfer electrons to solid anodes is a key feature of this emerging technology, yet the electron transfer mechanism is not fully characterized as yet. Acetate oxidation current generated from biofilms of an EAB, Geobacter sulfurreducens, on graphite electrodes as a function of time does not correlate with film thickness. Values of film thickness, and the number and local concentration of electrically connected redox sites within Geobacter sulfurreducens biofilms as well as a charge transport diffusion co-efficient for the biofilm can be estimated from non-turnover voltammetry. The thicker biofilms, of 50 ± 9 μm, display higher charge transport diffusion co-efficient than that in thinner films, as increased film porosity of these films improves ion transport, required to maintain electro-neutrality upon electrolysis. This journal is © the Partner Organisations 2014.

  12. Effect of thickness on magnetic phase coexistence and electrical transport in Nd0.51Sr0.49MnO3 films

    International Nuclear Information System (INIS)

    Prasad, R.; Singh, M.P.; Fournier, P.; Siwach, P.K.; Singh, H.K.; Kaur, A.

    2010-01-01

    We present the impact of the film thickness on the coexistence of various magnetic phases and its link to the magnetoresistance of Nd 0.51 Sr 0.49 MnO 3 thin films. These epitaxial films are deposited on LaAlO 3 (001) substrates by DC magnetron sputtering. Films with thicknesses of approximately 30 nm are found to be under full compressive strain while those with thicknesses ∝100 nm and beyond exhibit the presence of both strained and relaxed phases, as evidenced from X-ray diffraction studies. Both films exhibit multiple magnetic transitions controlled by strong electron correlations and phase coexistence. These films also display insulator-metal transitions (IMT) and colossal magnetoresistance (CMR) under moderate magnetic fields. Among the two set of films, only the 30-nm films show a weak signature of charge ordering at T∼50 K. Even at temperatures much lower than the IMT, the 30-nm films show huge magnetoresistance (MR) ∝80%. This suggests presence of softened charge-ordered insulating (COI) clusters that are transformed into ferromagnetic metallic (FMM) ones by the external magnetic field. In the 100-nm films, the corresponding MR is suppressed to less than 20%. Our study demonstrates that the softening of the COI phase is induced by the combined effect of the in-plane compressive strain and a slight reduction in Sr concentration. (orig.)

  13. The effects of thermal annealing on the structure and the electrical transport properties of ultrathin gadolinia-doped ceria films grown by pulsed laser deposition

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Heiroth, S.; Pryds, Nini

    2011-01-01

    show high density within the thickness probed in the X-ray reflectivity experiments. Thermally activated grain growth, density decrease, and film surface roughening, which may result in the formation of incoherent CGO10 islands by dewetting below a critical film thickness, are observed upon heat...

  14. Electrical Conductivity of CUXS Thin Film Deposited by Chemical ...

    African Journals Online (AJOL)

    Thin films of CuxS have successfully been deposited on glass substrates using the Chemical Bath Deposition (CBD) technique. The films were then investigated for their electrical properties. The results showed that the electrical conductivities of the CuxS films with different molarities (n) of thiourea (Tu), determined using ...

  15. Electrical and optical properties of zinc oxide: thin films

    International Nuclear Information System (INIS)

    Zuhairusnizam Md Darus; Abdul Jalil Yeop Majlis; Anis Faridah Md Nor; Burhanuddin Kamaluddin

    1992-01-01

    Zinc oxide films have been prepared by high temperature oxidation of thermally evaporated zinc films on glass substrates. The resulting films are characterized using X-ray diffraction, optical absorption and electrical conductivity measurements. These zinc oxide films are very transparent and photoconductive

  16. Spontaneous electric fields in solid films: spontelectrics

    DEFF Research Database (Denmark)

    Field, David; Plekan, Oksana; Cassidy, Andrew

    2013-01-01

    When dipolar gases are condensed at sufficiently low temperature onto a solid surface, they form films that may spontaneously exhibit electric fields in excess of 108V/m. This effect, called the ‘spontelectric effect’, was recently revealed using an instrument designed to measure scattering....... Heterolayers may also be laid down creating potential wells on the nanoscale. A model is put forward based upon competition between dipole alignment and thermal disorder, which is successful in reproducing the variation of the degree of dipole alignment and the spontelectric field with deposition temperature...

  17. Modulation of transport properties of optimally doped La{sub 1.85}Sr{sub 0.15}CuO{sub 4} thin films via electric field modification of the grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Muhammad Umair [Center for Micro and Nano Devices, Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Cavendish Laboratory, Cambridge (United Kingdom); Wimbush, Stuart C. [The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington (New Zealand)

    2015-09-15

    Modulation of the transport properties of a superconducting La{sub 1.85}Sr{sub 0.15}CuO{sub 4}-based ionic-liquid gated transistor has been achieved. For an applied gate bias V{sub g} ≥ 2 V, the characteristic sheet resistivity vs. temperature (R{sub s}-T) curves exhibit a fully reversible foot feature below the superconducting transition temperature (T{sub c}). In contrast to the behaviour expected from the large charge carrier density of this high-T{sub c} superconductor material, the normal state conductance above T{sub c} also exhibits a large modulation, indicating a larger charge screening length than that predicted from a simple Thomas-Fermi model. We regard these changes as due to electrostatic modification of the charge density at structural imperfections such as grain boundaries present within the sample. Such modification alters the coupling between superconducting domains and dictates the overall R{sub s}-T trend of the gated film. To explain our findings, we employ Mannhart's model of electronic band bending at the grain boundaries and propose that this band bending can be modulated by large electric fields resulting in the observed modulation of the transport properties of the device. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. TUNABLE MAGNETIC AND ELECTRICAL PROPERTIES OF Co-DOPED ZnO FILMS BY VARYING OXYGEN PARTIAL PRESSURE

    OpenAIRE

    L. G. WANG; H. W. ZHANG; X. L. TANG; Y. X. LI; Z. Y. ZHONG

    2011-01-01

    High quality Co-doped ZnO films with good reproducibility have been prepared under different oxygen partial pressure by radio-frequency magnetron sputtering. These films were characterized using numerous characterization techniques including X-ray diffraction, electrical transport, and magnetization measurements. The effect of oxygen partial pressure on the structural, magnetic, and electrical properties of Co-doped ZnO films has been systematically studied. It was found that the structural, ...

  19. Methods for producing thin film charge selective transport layers

    Science.gov (United States)

    Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria

    2018-01-02

    Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.

  20. An Electricity-Alcohol Transportation Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Morris, David [Inst. for Local Self-Reliance, Minneapolis (United States)

    2006-07-15

    In the United States, a dual fuel system may be emerging as a consensus strategy for a rapid transition to an oil free transportation system. The energy source for the vehicles will be a combination of electricity and alcohols. The technology will be a plug-in hybrid electric vehicle whose batteries can be charged from the national grid system, and a backup flexible fueled engine, primarily fueled by alcohols.

  1. Subthreshold electrical transport in amorphous phase-change materials

    International Nuclear Information System (INIS)

    Gallo, Manuel Le; Kaes, Matthias; Sebastian, Abu; Krebs, Daniel

    2015-01-01

    Chalcogenide-based phase-change materials play a prominent role in information technology. In spite of decades of research, the details of electrical transport in these materials are still debated. In this article, we present a unified model based on multiple-trapping transport together with 3D Poole–Frenkel emission from a two-center Coulomb potential. With this model, we are able to explain electrical transport both in as-deposited phase-change material thin films, similar to experimental conditions in early work dating back to the 1970s, and in melt-quenched phase-change materials in nanometer-scale phase-change memory devices typically used in recent studies. Experimental measurements on two widely different device platforms show remarkable agreement with the proposed mechanism over a wide range of temperatures and electric fields. In addition, the proposed model is able to seamlessly capture the temporal evolution of the transport properties of the melt-quenched phase upon structural relaxation. (paper)

  2. Electric field induced instabilities in free emulsion films

    Energy Technology Data Exchange (ETDEWEB)

    Tchoukov, P.; Dabros, T. [Natural Resources Canada, Devon, AB (Canada); Mostowfi, F. [Schlumberger DBR Technology Center, Edmonton, AB (Canada); Panchev, N. [Champion Technologies Inc., Houston, TX (United States); Czarnecki, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2009-07-01

    This presentation reported on a study that investigated the mechanism of electric field-induced breakdown of free emulsion films. Instability patterns were observed on the plane of a water-oil-water film following electric polarization. The length-scales of the instabilities were measured by analyzing images immediately after applying the electric field. Linear stability analysis was used to calculate the theoretical dominant wavelengths. The calculated values were found to be in good agreement with measured values. The films were formed in a thin film apparatus modified so that the oil film separated 2 aqueous phase compartments, each in contact with a platinum electrode. This enabled the measurement of disjoining pressure while applying the electric field to the film. It was concluded that breakdown of thin films induced by electric field has many applications, including electrostatic de-emulsification/desalination of crude oil and emulsion stability measurements. It was concluded that electroporation and dielectric breakdown may be responsible for electric field-induced breakdown. This study also presented evidence of an increase in electric field-induced instabilities in emulsion films resulting in rupture. tabs., figs.

  3. Electric field tuning of phase separation in manganite thin films

    KAUST Repository

    Lourembam, James; Wu, Jianchun; Ding, Junfeng; Lin, Weinan; Wu, Tao

    2014-01-01

    In this paper, we investigate the electric field effect on epitaxial Pr0.65(Ca0.75Sr0.25)0.35MnO3 thin films in electric double-layer transistors. Different from the conventional transistors with semiconducting channels, the sub(micrometer)-scale phase separation in the manganite channels is expected to result in inhomogeneous distribution of mobile carriers and local enhancement of electric field. The field effect is much larger in the low-temperature phase separation region compared to that in the high-temperature polaron transport region. Further enhancement of electroresistance is achieved by applying a magnetic field, and a 250% modulation of resistance is observed at 80 K, equivalent to an increase of the ferromagnetic metallic phase fraction by 0.51%, as estimated by the general effective medium model. Our results illustrate the complementary nature of electric and magnetic field effects in phase-separated manganites, providing insights on such novel electronic devices based on complex oxides.

  4. Electric field tuning of phase separation in manganite thin films

    KAUST Repository

    Lourembam, James

    2014-01-29

    In this paper, we investigate the electric field effect on epitaxial Pr0.65(Ca0.75Sr0.25)0.35MnO3 thin films in electric double-layer transistors. Different from the conventional transistors with semiconducting channels, the sub(micrometer)-scale phase separation in the manganite channels is expected to result in inhomogeneous distribution of mobile carriers and local enhancement of electric field. The field effect is much larger in the low-temperature phase separation region compared to that in the high-temperature polaron transport region. Further enhancement of electroresistance is achieved by applying a magnetic field, and a 250% modulation of resistance is observed at 80 K, equivalent to an increase of the ferromagnetic metallic phase fraction by 0.51%, as estimated by the general effective medium model. Our results illustrate the complementary nature of electric and magnetic field effects in phase-separated manganites, providing insights on such novel electronic devices based on complex oxides.

  5. Lattice dynamics and substrate-dependent transport properties of (In, Yb)-doped CoSb3 skutterudite thin films

    KAUST Repository

    Sarath Kumar, S. R.; Cha, Dong Kyu; Alshareef, Husam N.

    2011-01-01

    Lattice dynamics, low-temperature electrical transport, and high-temperature thermoelectric properties of (In, Yb)-doped CoSb3thin films on different substrates are reported. Pulsed laser deposition under optimized conditions yielded single

  6. Synthesis and electrical characterization of Graphene Oxide films

    International Nuclear Information System (INIS)

    Yasin, Muhammad; Tauqeer, T.; Zaidi, Syed M.H.; San, Sait E.; Mahmood, Asad; Köse, Muhammet E.; Canimkurbey, Betul; Okutan, Mustafa

    2015-01-01

    In this work, we have synthesized Graphene Oxide (GO) using modified Hummers method and investigated its electrical properties using parallel plate impedance spectroscopic technique. Graphene Oxide films were prepared using drop casting method on Indium Tin Oxide (ITO) coated glass substrate. Atomic force microscopy was used to characterize the films' microstructure and surface topography. Electrical characterization was carried out using LCR meter in frequency regime (100 Hz to 10 MHz) at different temperatures. AC conductivity σ ac of the films was observed to be varied with angular frequency, ω as ω S , with S < 1. The electrical properties of GO were found to be both frequency and temperature dependent. Analysis showed that GO film contains direct current (DC) and Correlated Barrier Hopping (CBH) conductivity mechanisms at low and high frequency ranges, respectively. Photon absorption and transmittance capability in the visible range and excellent electrical parameters of solution processed Graphene Oxide suggest its suitability for the realization of low cost flexible organic solar cells and organic Thin Film Transistors, respectively. - Highlights: • Synthesize and electrical characterization of Graphene Oxide (GO) Film was undertaken. • Temperature dependent impedance spectroscopy was used for electrical analysis. • AFM was used to characterize films' microstructure and surface topography. • Electrical parameters were found to vary with both temperature and frequency. • GO showed DC and CBH conductivity mechanisms at low and high frequency, respectively

  7. Electrical transport properties and laser-induced voltage effect in La{sub 0.8}Ca{sub 0.2}MnO{sub 3} epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Theingi, Mya [Kunming University of Science and Technology, Faculty of Materials Science and Engineering, Kunming (China); University of Yangon, Department of Chemistry, Yangon (Myanmar); Ma, Ji; Zhang, Hui; Cui, Qi; Yi, Jianhong; Chen, Qingming [Kunming University of Science and Technology, Faculty of Materials Science and Engineering, Kunming (China)

    2014-03-15

    La{sub 0.8}Ca{sub 0.2}MnO{sub 3} (LCMO) thin films about 200 nm thickness were grown on untilted and tilted (5 , 10 and 15 ) LaAlO{sub 3} (100) single crystal substrates by pulsed laser deposition technique. Electrical properties of the epitaxial thin films were studied by conventional four-probe technique and the anisotropic thermoelectric properties of the films grown on the tilted substrates have been investigated by laser-induced voltage (LIV) measurements. X-ray diffraction analysis and atomic force microscopy results show that the prepared LCMO thin films have a single phase and high crystalline quality. The remarkably large temperature coefficient of resistance (TCR) values (above 11 %/K) are observed in the all films. TCR value reaches 18 %/K on the film grown on 10 tilted substrate. The intensity of LIV signals monotonously increases with the tilting angles, and the largest signal is 148 mV with the fast time response 229 ns for the film grown on 15 tilted substrate. (orig.)

  8. Non-ohmic transport behavior in ultra-thin gold films

    International Nuclear Information System (INIS)

    Alkhatib, A.; Souier, T.; Chiesa, M.

    2011-01-01

    Highlights: → C-AFM study on ultra-thin gold films. → Connection between ultra-thin film morphology and lateral electrical transport. → Transition between ohmic and non-ohmic behavior. → Electrical transition correlation to the film structure continuity. → Direct and indirect tunneling regimes related to discontinuous structures. - Abstract: Structure and local lateral electrical properties of Au films of thicknesses ranging from 10 to 140 nm are studied using conductive atomic force microscopy. Comparison of current maps taken at different thicknesses reveals surprising highly resistive regions (10 10 -10 11 Ω), the density of which increases strongly at lower thickness. The high resistivity is shown to be directly related to discontinuities in the metal sheet. Local I-V curves are acquired to show the nature of electrical behavior relative to thickness. Results show that in Au films of higher thickness the electrical behavior is ohmic, while it is non-ohmic in highly discontinuous films of lower thickness, with the transition happening between 34 and 39 nm. The non-ohmic behavior is explained with tunneling occurring between separated Au islands. The results explain the abrupt increase of electrical resistivity at lower thin film thicknesses.

  9. Solar electric propulsion for Mars transport vehicles

    Science.gov (United States)

    Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.

    1990-01-01

    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.

  10. Electrical doping: the impact on interfaces of π-conjugated molecular films

    International Nuclear Information System (INIS)

    Gao Weiying; Kahn, Antoine

    2003-01-01

    Organic-metal and organic-organic interfaces play crucial roles in charge injection in, and transport through, organic thin film devices. Their electronic structure, chemical properties and electrical behaviour must be fully characterized and understood if engineering and control of organic devices are to reach the levels attained for inorganic semiconductor devices. Recent fundamental, as well as device, work has demonstrated that electrical doping provides a very interesting way to improve carrier injection into molecular films and, eventually, control molecular level alignment at their interfaces. This brief review emphasizes the current understanding of the effects of doping on organic interfaces

  11. Hydroxyapatite screen-printed thick films: optical and electrical properties

    International Nuclear Information System (INIS)

    Silva, C.C.; Rocha, H.H.B.; Freire, F.N.A.; Santos, M.R.P.; Saboia, K.D.A.; Goes, J.C.; Sombra, A.S.B.

    2005-01-01

    In this paper, we did a study on the structural and electrical properties of bioceramic hydroxiapatite (HA) thick films. The films were prepared in two layers using the screen-printing technique on Al 2 O 3 substrates. Mechanical alloying has been used successfully to produce nanocrystalline powders of hydroxyapatite to be used in the films. We also look for the effect of the grain size of the HA in the final properties of the film. The samples were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), infrared and Raman scattering spectroscopy and electrical measurements. We did a study of the dielectric permittivity and the loss of the films in the radio-frequency of the spectra. The X-ray diffraction patterns of the films indicate that all the peaks associated to HA phase is present in the films. One can notice that, for all the films there is a decrease of the DC (dielectric constant) with the increase of the frequency. The values of the dielectric constant of the films are in between 4 and 9 (at 1 kHz), as a function of the flux concentration. The loss is decreasing as we increase the frequency for all the films. These results strongly suggest that the screen-printing HA thick films are good candidates for applications in biocompatible coatings of implant materials

  12. Hydroxyapatite screen-printed thick films: optical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C.C. [Laboratorio de Telecomunicaco-tilde es e Ciencia e Engenharia de Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceara (Brazil); Rocha, H.H.B. [Laboratorio de Telecomunicaco-tilde es e Ciencia e Engenharia de Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceara (Brazil); Freire, F.N.A. [Departamento de Quimica Orga-circumflex nica e Inorga-circumflex nica-UFC, Caixa Postal 6030, CEP 60455-760, Fortaleza, Ceara (Brazil); Santos, M.R.P. [Laboratorio de Telecomunicaco-tilde es e Ciencia e Engenharia de Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceara (Brazil); Saboia, K.D.A. [Laboratorio de Telecomunicaco-tilde es e Ciencia e Engenharia de Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceara (Brazil); Goes, J.C. [Laboratorio de Telecomunicaco-tilde es e Ciencia e Engenharia de Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceara (Brazil); Sombra, A.S.B. [Laboratorio de Telecomunicaco-tilde es e Ciencia e Engenharia de Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Caixa Postal 6030, 60455-760 Fortaleza, Ceara (Brazil)]. E-mail: sombra@fisica.ufc.br

    2005-07-15

    In this paper, we did a study on the structural and electrical properties of bioceramic hydroxiapatite (HA) thick films. The films were prepared in two layers using the screen-printing technique on Al{sub 2}O{sub 3} substrates. Mechanical alloying has been used successfully to produce nanocrystalline powders of hydroxyapatite to be used in the films. We also look for the effect of the grain size of the HA in the final properties of the film. The samples were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), infrared and Raman scattering spectroscopy and electrical measurements. We did a study of the dielectric permittivity and the loss of the films in the radio-frequency of the spectra. The X-ray diffraction patterns of the films indicate that all the peaks associated to HA phase is present in the films. One can notice that, for all the films there is a decrease of the DC (dielectric constant) with the increase of the frequency. The values of the dielectric constant of the films are in between 4 and 9 (at 1 kHz), as a function of the flux concentration. The loss is decreasing as we increase the frequency for all the films. These results strongly suggest that the screen-printing HA thick films are good candidates for applications in biocompatible coatings of implant materials.

  13. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    KAUST Repository

    Sarath Kumar, S. R.

    2012-02-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258–133 S cm−1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8–3.2 me ), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  14. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    KAUST Repository

    Sarath Kumar, S. R.; Abutaha, Anas I.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2012-01-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258–133 S cm−1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8–3.2 me ), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  15. Hybrid Electric Propulsion Technologies for Commercial Transports

    Science.gov (United States)

    Bowman, Cheryl; Jansen, Ralph; Jankovsky, Amy

    2016-01-01

    NASA Aeronautics Research Mission Directorate has set strategic research thrusts to address the major drivers of aviation such as growth in demand for high-speed mobility, addressing global climate and capitalizing in the convergence of technological advances. Transitioning aviation to low carbon propulsion is one of the key strategic research thrust and drives the search for alternative and greener propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The Hybrid Gas-Electric Subproject in the Advanced Air Transportation Project is energizing the transport class landscape by accepting the technical challenge of identifying and validating a transport class aircraft with net benefit from hybrid propulsion. This highly integrated aircraft of the future will only happen if airframe expertise from NASA Langley, modeling and simulation expertise from NASA Ames, propulsion expertise from NASA Glenn, and the flight research capabilities from NASA Armstrong are brought together to leverage the rich capabilities of U.S. Industry and Academia.

  16. Thin film coatings for space electrical power system applications

    Science.gov (United States)

    Gulino, Daniel A.

    1988-01-01

    This paper examines some of the ways in which thin film coatings can play a role in aerospace applications. Space systems discussed include photovoltaic and solar dynamic electric power generation systems, including applications in environmental protection, thermal energy storage, and radiator emittance enhancement. Potential applications of diamondlike films to both atmospheric and space based systems are examined. Also, potential uses of thin films of the recently discovered high-temperature superconductive materials are discussed.

  17. Nanostructured ZnO films: A study of molecular influence on transport properties by impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sappia, Luciano D.; Trujillo, Matias R. [Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Chacabuco 461, T4000ILI San Miguel de Tucumán (Argentina); Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, Fac. de Cs. Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 San Miguel de Tucumán (Argentina); Lorite, Israel [Division of Superconductivity and Magnetism, Institute for Experimental Physics II, University of Leipzig, Linnéstrasse 5, 04103 Leipzig (Germany); Madrid, Rossana E., E-mail: rmadrid@herrera.unt.edu.ar [Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Chacabuco 461, T4000ILI San Miguel de Tucumán (Argentina); Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, Fac. de Cs. Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 San Miguel de Tucumán (Argentina); Tirado, Monica [NanoProject and Laboratorio de Nanomateriales y Propiedades Dieléctricas, Departamento de Física, Universidad Nacional de Tucumán, Avenida Independencia 1800, Tucumán (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); and others

    2015-10-15

    Graphical abstract: - Highlights: • We study electrical transport in nanostructured ZnO films by impedance spectroscopy. • Bioaggregates on the surface produce strong changes in film transport properties. • This behavior is explained by modeling data with RC parallel circuits. • Electrical responses of ZnO films to aggregates are promising for biosensing. - Abstract: Nanomaterials based on ZnO have been used to build glucose sensors due to its high isoelectric point, which is important when a protein like Glucose Oxidase (GOx) is attached to a surface. It also creates a biologically friendly environment to preserve the activity of the enzyme. In this work we study the electrical transport properties of ZnO thin films (TFs) and single crystals (SC) in contact with different solutions by using impedance spectroscopy. We have found that the composition of the liquid, by means of the charge of the ions, produces strong changes in the transport properties of the TF. The enzyme GOx and phosphate buffer solutions have the major effect in the conduction through the films, which can be explained by the entrapment of carriers at the grain boundaries of the TFs. These results can help to design a new concept in glucose biosensing.

  18. Optical and transport properties of polyaniline films

    International Nuclear Information System (INIS)

    Tzamalis, Georgios

    2002-01-01

    This thesis presents the results of a comprehensive study on the transport and optical properties of polyaniline (PANI) films. The films are derived by protonation (doping) of the emeraldine base form of polyaniline, as synthesized in Durham, with either 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) or 10-camphorsulfonic acid. Thus, two distinct PANI systems are obtained: PANI-CSA and PANI-AMPSA. The variation of the doping level can affect the metallic properties of the final system, so that samples close to the boundary as well as samples at either side of a disorder induced metal-insulator can be obtained. The relation between the doping level and the degree of disorder, along with the existence of an inherently metallic behaviour in PANI, are investigated through a series of experiments. Temperature dependent dc conductivity measurements ranging from 10-295 K are performed using a closed loop helium cryostat under dynamic vacuum (∼10 -5 mbar). From the conductivity data curves, typical fingerprints of the metallic behaviour are detected for certain samples and an initial estimate of the degree of disorder is implicitly attained. More specific information regarding the microscopic contributions to the transport mechanisms is obtained via low temperature (down to 1.5 K) magnetoconductance measurements on selected samples. The magnetic field dependence of conductivity for fields up to 14 T is measured and the suitability of the localization-interaction model for the understanding of the transport mechanism in PANI is examined. Infrared reflectivity (20-9000 cm -1 ) measurements on samples of both PANI systems are performed. The experimental configuration permits the determination of the sample's absolute reflectivity. The optical constants are deduced from Kramers-Kronig analysis of the reflectivity data. Typical features of metallic behaviour are examined and analysed in the context of the localization modified Drude model. The results are shown to be

  19. Electricity transport regimes: their impact on cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cotard, Erwan [COGEN, Europe (Belgium)

    2000-12-01

    In many cases the main product of cogeneration is heat and the surplus electricity is sold to the grid. However, the economics of cogeneration can be influenced by transport networks (transmission and distribution): the structure of network pricing is relatively new. In a recent note from COGEN Europe it was recommended that cogenerators who use only the local distribution system should not pay for the transmission system and that tariffs should be structured in sufficient detail for the advantages of decentralisation to be realised. The article is presented under the sub-headings of (i) why is this important? (the omission of the transmission element reduces the overall price of cogeneration); (ii) the advantages of decentralised cogeneration; (iv) the theory - the different systems (the European Directive on electricity market liberalization); (v) the options for transport fees; (vi) current regimes in some EU states (vii) the case of transborder transport; impact of each system on cogeneration; recommendations to policymakers; (viii) the Netherlands and (ix) the UK.

  20. Enhancement of electrical conductivity of ion-implanted polymer films

    International Nuclear Information System (INIS)

    Brock, S.

    1985-01-01

    The electrical conductivity of ion-implanted films of Nylon 66, Polypropylene (PP), Poly(tetrafluoroethylene) (Teflon) and mainly Poly (ethylene terephthalate) (PET) was determined by DC measurements at voltages up to 4500 V and compared with the corresponding values of pristine films. Measurements were made at 21 0 C +/- 1 0 C and 65 +/- 2% RH. The electrical conductivity of PET films implanted with F + , Ar + , or As + ions at energies of 50 keV increases by seven orders of magnitude as the fluence increases from 1 x 10 18 to 1 x 10 20 ions/m 2 . The conductivity of films implanted with As + was approximately one order greater than those implanted with Ar + , which in turn was approximately one-half order greater than those implanted with F + . The conductivity of the most conductive film ∼1 S/m) was almost 14 orders of magnitude greater than the pristine PET film. Except for the three PET samples implanted at fluences near 1 x 10 20 ions/m 2 with F + , Ar + , and As + ions, all implanted films were ohmic up to an electric field strength of 600 kV/m. The temperature dependence of the conductivity of the three PET films implanted near a fluence of 1 x 10 20 ions/m 2 was measured over the range of 80 K < T < 300 K

  1. Phonon transport across nano-scale curved thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mansoor, Saad B.; Yilbas, Bekir S., E-mail: bsyilbas@kfupm.edu.sa

    2016-12-15

    Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.

  2. Phonon transport across nano-scale curved thin films

    International Nuclear Information System (INIS)

    Mansoor, Saad B.; Yilbas, Bekir S.

    2016-01-01

    Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.

  3. Acousto-electric transport in MgO/ZnO-covered graphene on SiC

    Science.gov (United States)

    Liou, Y.-T.; Hernández-Mínguez, A.; Herfort, J.; Lopes, J. M. J.; Tahraoui, A.; Santos, P. V.

    2017-11-01

    We investigate the acousto-electric transport induced by surface acoustic waves (SAWs) in epitaxial graphene (EG) coated by a MgO/ZnO film. The deposition of a thin MgO layer protects the EG during the sputtering of a piezoelectric ZnO film for the efficient generation of SAWs. We demonstrate by Raman and electric measurements that the coating does not harm the EG structural and electronic properties. We report the generation of two SAW modes with frequencies around 2 GHz. For both modes, we measure acousto-electric currents in EG devices placed in the SAW propagation path. The currents increase linearly with the SAW power, reaching values up to almost two orders of magnitude higher than in previous reports for acousto-electric transport in EG on SiC. Our results agree with the predictions from the classical relaxation model of the interaction between SAWs and a two dimensional electron gas.

  4. Nonlinear Transport in Organic Thin Film Transistors with Soluble Small Molecule Semiconductor.

    Science.gov (United States)

    Kim, Hyeok; Song, Dong-Seok; Kwon, Jin-Hyuk; Jung, Ji-Hoon; Kim, Do-Kyung; Kim, SeonMin; Kang, In Man; Park, Jonghoo; Tae, Heung-Sik; Battaglini, Nicolas; Lang, Philippe; Horowitz, Gilles; Bae, Jin-Hyuk

    2016-03-01

    Nonlinear transport is intensively explained through Poole-Frenkel (PF) transport mechanism in organic thin film transistors with solution-processed small molecules, which is, 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene. We outline a detailed electrical study that identifies the source to drain field dependent mobility. Devices with diverse channel lengths enable the extensive exhibition of field dependent mobility due to thermal activation of carriers among traps.

  5. Transport of electric charge in insulators

    International Nuclear Information System (INIS)

    Lopez C, E.

    1979-01-01

    In this work a review is made of important concepts in the study of the transport of electric charge in insulators. These concepts are: electrical contacts, transport regimes as viewed in the I-V characteristics, and photoinjection processes by internal photemission of holes or electrons from metals or semiconductors into insulators or by a virtual electrode using strongly absorbed light. Experimental results of photoinjection of holes and electrons into sulfur single crystals are analyzed using these concepts. The observation of the Mott-Gurney transition is reported for the first time. This is the transition between the region of space charge limited currents (SCLC) and the region of saturation of the current as a function of the applied voltage. A modified Mott-Gurney theoretical model is presented that is able to explain the whole I-V characteristic for uv and the internal photoemission of hopes and uv photoinjection of electrons. For the case of internal photoemission of electrons the conventional space charge limited current theory for an exponential distribution of traps is able to explain the experimental data. It is found that the crystals are of high purity since the total density of traps, as calculated from their exponential distribution, is Nsub(t) equals 1.8 X 10 14 cm -3 . (author)

  6. High magnetic field quantum transport in Au nanoparticle–cellulose films

    International Nuclear Information System (INIS)

    Turyanska, L; Makarovsky, O; Patanè, A; Kozlova, N V; Liu, Z; Li, M; Mann, S

    2012-01-01

    We report the magneto-transport properties of cellulose films comprising interconnected networks of gold nanoparticles (Au NPs). Cellulose is a biopolymer that can be made electrically conducting by cellulose regeneration in Au NP dispersions. The mechanism of electronic conduction in the Au–cellulose films changes from variable range hopping to metallic-like conduction with decreasing resistivity. Our experiments in high magnetic fields (up to 45 T) reveal negative magnetoresistance in the highly resistive films. This is attributed to the spin polarization of the Au NPs and the magnetic field induced suppression of electron spin flips during spin-polarized tunneling in the NP network. (paper)

  7. Enhanced electrical properties in bilayered ferroelectric thin films

    Science.gov (United States)

    Zhang, Hao; Long, WeiJie; Chen, YaQing; Guo, DongJie

    2013-03-01

    Sr2Bi4Ti5O18 (SBTi) single layered and Sr2Bi4Ti5O18/Pb(Zr0.53Ti0.47)O3 (SBTi/PZT) bilayered thin films have been prepared on Pt/TiO2/SiO2/Si substrates by pulsed-laser deposition (PLD). The related structural characterizations and electrical properties have been comparatively investigated. X-ray diffraction reveals that both films have crystallized into perovskite phases and scanning electron microscopy shows the sharp interfaces. Both films show well-saturated ferroelectric hysteresis loops, however, compared with the single layered SBTi films, the SBTi/PZT bilayered films have significantly increased remnant polarization ( P r) and decreased coercive field ( E c), with the applied field of 260 kV/cm. The measured P r and E c of SBTi and SBTi/PZT films were 7.9 μC/cm2, 88.1 kV/cm and 13.0 μC/cm2, 51.2 kV/cm, respectively. In addition, both films showed good fatigue-free characteristics, the switchable polarization decreased by 9% and 11% of the initial values after 2.2×109 switching cycles for the SBTi single layered films and the SBTi/PZT bilayered films, respectively. Our results may provide some guidelines for further optimization of multilayered ferroelectric thin films.

  8. Electrical conductivity of free-standing mesoporous silicon thin films

    International Nuclear Information System (INIS)

    Khardani, M.; Bouaicha, M.; Dimassi, W.; Zribi, M.; Aouida, S.; Bessais, B.

    2006-01-01

    The effective electrical conductivity of free-standing p + -type porous silicon layers having porosities ranging from 30% to 80% was studied at both experimental and theoretical sides. An Effective Medium Approximation (EMA) model was used as a theoretical support. The porous silicon (PS) films were prepared by the electrochemical etching method for different values of the anodic current density. In order to model the PS electrical conductivity, the free-standing porous layer was assumed to be formed of three phases; vacuum, oxide and Si nanocrystallites. The analytical expression of the electrical conductivity of the Si nanocrystallites was established using the quantum confinement theory. This enables us to correlate the electrical conductivity of the mesoporous film to the value of the effective band gap energy estimated from the absorption coefficient. A perfect agreement between the theoretical and the experimental electrical conductivity values was obtained for all prospected PS porosities

  9. Electrical resistivity of thin metal films

    CERN Document Server

    Wissmann, Peter

    2007-01-01

    The aim of the book is to give an actual survey on the resistivity of thin metal and semiconductor films interacting with gases. We discuss the influence of the substrate material and the annealing treatment of the films, presenting our experimental data as well as theoretical models to calculate the scattering cross section of the conduction electrons in the frame-work of the scattering hypothesis. Main emphasis is laid on the comparison of gold and silver films which exhibit nearly the same lattice structure but differ in their chemical activity. In conclusion, the most important quantity for the interpretation is the surface charging z while the correlation with the optical data or the frustrated IR vibrations seems the show a more material-specific character. Z can be calculated on the basis of the density functional formalism or the self-consistent field approximation using Mulliken’s population analysis.

  10. Droplet manipulation by an external electric field for crystalline film growth.

    Science.gov (United States)

    Komino, Takeshi; Kuwabara, Hirokazu; Ikeda, Masaaki; Yahiro, Masayuki; Takimiya, Kazuo; Adachi, Chihaya

    2013-07-30

    Combining droplet manipulation by the application of an electric field with inkjet printing is proposed as a unique technique to control the surface wettability of substrates for solution-processed organic field-effect transistors (FETs). With the use of this technique, uniform thin films of 2,7-dioctyl[1]benzothieno[2,3,-b][1]benzothiopene (C8-BTBT) could be fabricated on the channels of FET substrates without self-assembled monolayer treatment. High-speed camera observation revealed that the crystals formed at the solid/liquid interface. The coverage of the crystals on the channels depended on the ac frequency of the external electric field applied during film formation, leading to a wide variation in the carrier transport of the films. The highest hole mobility of 0.03 cm(2) V(-1) s(-1) was obtained when the coverage was maximized with an ac frequency of 1 kHz.

  11. Structural, magnetic and transport properties of Co2FeAl Heusler films with varying thickness

    International Nuclear Information System (INIS)

    Wang, Xiaotian; Li, Yueqing; Du, Yin; Dai, Xuefang; Liu, Guodong; Liu, Enke; Liu, Zhongyuan; Wang, Wenhong; Wu, Guangheng

    2014-01-01

    We report on a systematic study of the structural, magnetic properties and the anomalous Hall effect, in the Heusler alloy Co 2 FeAl (CFA) epitaxial films on MgO (001), as a function of film thickness. It was found that the epitaxial CFA films show a highly ordered B2 structure with an in-plane uniaxial magnetic anisotropy. The electrical transport properties reveal that the lattice and magnon scattering contributions to the longitudinal resistivity. Independent on the thickness of films, the anomalous Hall resistivity of CFA films is found to be dominated by skew scattering only. Moreover, the anomalous Hall resistivity shows weakly temperature dependent behavior, and its absolute value increases as the thickness decreases. We attribute this temperature insensitivity in the anomalous Hall resistivity to the weak temperature dependent of tunneling spin-polarization in the CFA films, while the thickness dependence behavior is likely due to the increasing significance of interface or free surface electronic states. - Highlights: ●Highly ordered CFA films with various thicknesses were prepared on MgO substrates. ●The magnon scattering contributions to the longitudinal resistivity in the CFA films. ●The anomalous Hall resistivity of the CFA films shows weakly temperature dependent. ●The CFA films show weak temperature dependent of tunneling spin-polarization

  12. Effect of microstructure on the electronic transport properties of epitaxial CaRuO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Daptary, Gopi Nath; Sow, Chanchal; Sarkar, Suman; Chiniwar, Santosh; Kumar, P.S. Anil [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Sil, Anomitra [Center For Nano Science And Engineering, Indian Institute of Science, Bangalore 560012 (India); Bid, Aveek, E-mail: aveek.bid@physics.iisc.ernet.in [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2017-04-15

    We have carried out extensive comparative studies of the structural and transport properties of CaRuO{sub 3} thin films grown under various oxygen pressure. We find that the preferred orientation and surface roughness of the films are strongly affected by the oxygen partial pressure during growth. This in turn affects the electrical and magnetic properties of the films. Films grown under high oxygen pressure have the least surface roughness and show transport characteristics of a good metal down to the lowest temperature measured. On the other hand, films grown under low oxygen pressures have high degree of surface roughness and show signatures of ferromagnetism. We could verify that the low frequency resistance fluctuations (noise) in these films arise due to thermally activated fluctuations of local defects and that the defect density matches with the level of disorder seen in the films through structural characterizations.

  13. Wireless Battery Management System of Electric Transport

    Science.gov (United States)

    Rahman, Ataur; Rahman, Mizanur; Rashid, Mahbubur

    2017-11-01

    Electric vehicles (EVs) are being developed and considered as the future transportation to reduce emission of toxic gas, cost and weight. The battery pack is one of the main crucial parts of the electric vehicle. The power optimization of the battery pack has been maintained by developing a two phase evaporative thermal management system which operation has been controlled by using a wireless battery management system. A large number of individual cells in a battery pack have many wire terminations that are liable for safety failure. To reduce the wiring problem, a wireless battery management system based on ZigBee communication protocol and point-to-point wireless topology has been presented. Microcontrollers and wireless modules are employed to process the information from several sensors (voltage, temperature and SOC) and transmit to the display devices respectively. The WBMS multistage charge balancing system offering more effective and efficient responses for several numbers of series connected battery cells. The concept of double tier switched capacitor converter and resonant switched capacitor converter is used for reducing the charge balancing time of the cells. The balancing result for 2 cells and 16 cells are improved by 15.12% and 25.3% respectively. The balancing results are poised to become better when the battery cells are increased.

  14. Electric field dependence of excess electrical conductivity below transition temperature in thin superconducting lead films

    Energy Technology Data Exchange (ETDEWEB)

    Ashwini Kumar, P K; Duggal, V P [Delhi Univ. (India). Dept. of Physics and Astrophysics

    1976-01-26

    Results of measurements of the electric field dependence of the excess electrical conductivity are reported in thin superconducting lead films below the transition temperature. It is observed that the normal state sheet resistance has some effect on the nonlinearity but the theory of Yamaji still fits well to the experimental data.

  15. Electric field mapping inside metallized film capacitors

    DEFF Research Database (Denmark)

    Nielsen, Dennis Achton; Popok, Vladimir; Pedersen, Kjeld

    2015-01-01

    (s) they suffered from accelerated testing. We have prepared film capacitors for analysis by micro-sectioning and verified the quality of the preparation procedure using optical and atomic force microscopy. The potential distribution in the layer structure (alternating 7 µm thick dielectric and 50-100 nm thick...... and durability and serves as verification that failure- and degradation mechanisms remain the same at different stress levels during accelerated testing. In this work we have used Kelvin probe force microscopy (KPFM) to analyze metallized film capacitors with the purpose of determining the degradation mechanism...... metal) of a new capacitor was used as reference. KPFM measurements on the degraded capacitors showed a change in contact potential difference from -0.61V on the reference capacitor to 3.2V on the degraded ones, indicating that corrosion of the metallization had happened. Studies also showed that some...

  16. City electric transport preferences and motives of the Russian students

    Science.gov (United States)

    Romanova, Elena

    2017-10-01

    The share of electric transport in Russia is very small. Many cities refuse operation of urban electric passenger transportation. Basic reasons of it are high cost value and expensive operation. In Moscow the emphasis is placed on development of rail electric transport. It provides fast movement and pollutes the city environment less. The Moscow students understand that for an urban transportation ecological compatibility and safety are important but they choose buses and individual cars with the internal combustion engine for daily use. The main criteria of the choice are the speed and comfort. Ecological compatibility of the individual transport costs on one of the last places.

  17. Electricity for Road Transport, Flexible Power Systems and Wind Power

    DEFF Research Database (Denmark)

    Nielsen, Lars Henrik; Ravn, Hans; Meibom, Peter

    The aim of the project is to analyse the potential synergistic interplay that may arise between the power sector and the transport sector, if parts of the road transport energy needs are based on electricity via the utilisation of plug-in hybrid electric vehicles and pure electric vehicles....... The project focuses on the technical elements in the chain that comprises: 1: The electric vehicle status, potentials and expected development. Electric batteries are in focus in this part of the analysis. 2: Analysis of plug-in hybrid electric vehicle interacting with a local grid. 3: Analysis of grid-vehicle...

  18. Optical and electrical properties of nickel xanthate thin films

    Indian Academy of Sciences (India)

    Administrator

    metal-xanthate thin films' production, nor their optical, electrical properties and .... vibration of –CH3 at 894 cm–1, (vii) the symmetric bend- ing vibration of C–O–C at 458 .... vity values are the two most important factors, affecting band width.

  19. Electrical Switching of Perovskite Thin-Film Resistors

    Science.gov (United States)

    Liu, Shangqing; Wu, Juan; Ignatiev, Alex

    2010-01-01

    Electronic devices that exploit electrical switching of physical properties of thin films of perovskite materials (especially colossal magnetoresistive materials) have been invented. Unlike some related prior devices, these devices function at room temperature and do not depend on externally applied magnetic fields. Devices of this type can be designed to function as sensors (exhibiting varying electrical resistance in response to varying temperature, magnetic field, electric field, and/or mechanical pressure) and as elements of electronic memories. The underlying principle is that the application of one or more short electrical pulse(s) can induce a reversible, irreversible, or partly reversible change in the electrical, thermal, mechanical, and magnetic properties of a thin perovskite film. The energy in the pulse must be large enough to induce the desired change but not so large as to destroy the film. Depending on the requirements of a specific application, the pulse(s) can have any of a large variety of waveforms (e.g., square, triangular, or sine) and be of positive, negative, or alternating polarity. In some applications, it could be necessary to use multiple pulses to induce successive incremental physical changes. In one class of applications, electrical pulses of suitable shapes, sizes, and polarities are applied to vary the detection sensitivities of sensors. Another class of applications arises in electronic circuits in which certain resistance values are required to be variable: Incorporating the affected resistors into devices of the present type makes it possible to control their resistances electrically over wide ranges, and the lifetimes of electrically variable resistors exceed those of conventional mechanically variable resistors. Another and potentially the most important class of applications is that of resistance-based nonvolatile-memory devices, such as a resistance random access memory (RRAM) described in the immediately following article

  20. Physical-mechanical and electrical properties of aluminium anodic films

    Energy Technology Data Exchange (ETDEWEB)

    Dima, L. [Research and Design Inst. for Electr. Eng., Bucharest (Romania); Anicai, L. [Research and Design Inst. for Electr. Eng., Bucharest (Romania)

    1995-11-01

    Mechanical, thermal and electrical properties of aluminium anodic films obtained by continuously anodization of Al wires of 4.5 mm diameter and Al sheets of 40 x 0.2 mm (Al min.99.5% purity), using an electrolyte based on oxalic acid, citric acid, boric acid, isopropilic alcohol, were investigated. The thickness of Al anodic oxide layers was 5 {+-} 1{mu}, 10 {+-} 1{mu}, for Al sheet, respectively 5 {+-} 1{mu}, 10 {+-} 1{mu}, 15 {+-} 1{mu}, for Al wire. To establish the influence of anodic film formation on mechanical parameters, measurements of breaking strength and relative elongation at break for anodized and non-anodized Al conductors, were made. In order to electrically characterize the anodic films, the breakdown voltage for different curvature radii of the conductor, between 50 - 12.5 mm, were measured. The influence of the layer thickness, as well as of the cracking during its bending, was established, too. To test the thermal resistance of the insulating anodic films, the Al conductors were subjected to 1 - 5 cyclic thermal shocks at 500 C. After the experimentals were done, it was found that Al anodic films of 5 {+-} 1{mu} may assure a breakdown voltage of minimum 200 V, for coils having a curvature radius greater than 12.5 mm and operating temperatures up to 500 C. From mechanical point of view, anodic oxide film determines a relatively reinforcing of Al conductor, but it doesn`t influence its functional properties. (orig.)

  1. Effects of phosphorus on the electrical characteristics of plasma deposited hydrogenated amorphous silicon carbide thin films

    Science.gov (United States)

    Alcinkaya, Burak; Sel, Kivanc

    2018-01-01

    The properties of phosphorus doped hydrogenated amorphous silicon carbide (a-SiCx:H) thin films, that were deposited by plasma enhanced chemical vapor deposition technique with four different carbon contents (x), were analyzed and compared with those of the intrinsic a-SiCx:H thin films. The carbon contents of the films were determined by X-ray photoelectron spectroscopy. The thickness and optical energies, such as Tauc, E04 and Urbach energies, of the thin films were determined by UV-Visible transmittance spectroscopy. The electrical properties of the films, such as conductivities and activation energies were analyzed by temperature dependent current-voltage measurements. Finally, the conduction mechanisms of the films were investigated by numerical analysis, in which the standard transport mechanism in the extended states and the nearest neighbor hopping mechanism in the band tail states were taken into consideration. It was determined that, by the effect of phosphorus doping the dominant conduction mechanism was the standard transport mechanism for all carbon contents.

  2. Research and development of electric vehicles for clean transportation.

    Science.gov (United States)

    Wada, Masayoshi

    2009-01-01

    This article presents the research and development of an electric vehicle (EV) in Department of Human-Robotics Saitama Institute of Technology, Japan. Electric mobile systems developed in our laboratory include a converted electric automobile, electric wheelchair and personal mobile robot. These mobile systems contribute to realize clean transportation since energy sources and devices from all vehicles, i.e., batteries and electric motors, does not deteriorate the environment. To drive motors for vehicle traveling, robotic technologies were applied.

  3. Structural and morphological changes in P3HT thin film transistors applying an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Deepak Kumar; Grigorian, Souren; Pietsch, Ullrich [University of Siegen (Germany); Flesch, Heinz; Resel, Roland [University of Siegen (Germany); Graz University of Technology (Austria)

    2010-07-01

    We report on electric field dependent crystalline structure and morphological changes of drop casting and spin coated poly(3-hexylthiophene) (P3HT) thin films. In order to probe the morphological changes induced by an applied electric field the samples were covered with thin source/drain electrodes separated by a small channel of 2 mm width. A series of x-ray reflectivity, X-ray grazing incidence out-of-plane and in-plane scans have been performed as function of the applied electric voltage. The (100) peak shows a decrease in intensity with increase of the applied electric field. This might be caused by Joule heating and the creation of current induced defects in the P3HT film. On other hand the (020) peak intensity shows much stronger changes with applied field. Considering the *-* stacking direction the measured effect can be directly related to a change in the electric transport. The observed changes in structure are reversible and the current-voltage cycle can be repeated several times. For X-ray reflectivity major changes have been found close to critical angle of total external reflection indicating the film becomes less dense and increases in surface roughness with increase of the voltage. This change in surface behaviour could be confirmed by in-situ AFM measurements.

  4. Hybrid Electric Vehicle Testing | Transportation Research | NREL

    Science.gov (United States)

    Hybrid Electric Vehicle Evaluations Hybrid Electric Vehicle Evaluations How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an is used to propel the vehicle during normal drive cycles. The batteries supply additional power for

  5. Hybrid Electric Vehicle Publications | Transportation Research | NREL

    Science.gov (United States)

    Hybrid Electric Vehicle Publications Hybrid Electric Vehicle Publications The following technical papers, conference papers, and fact sheets provide information about NREL's hybrid electric fleet vehicle Class 8 Hybrid Electric Delivery Trucks. Mike Lammert. (2011) FedEx Delivery Trucks In-Use and Vehicle

  6. Coupled electric and transport phenomena in porous media

    NARCIS (Netherlands)

    Li, Shuai

    2014-01-01

    The coupled electrical and transport properties of clay-containing porous media are the topics of interest in this study. Both experimental and numerical (pore network modeling) techniques are employed to gain insight into the macro-scale interaction between electrical and solute transport phenomena

  7. Electrical conduction of organic ultrathin films evaluated by an independently driven double-tip scanning tunneling microscope.

    Science.gov (United States)

    Takami, K; Tsuruta, S; Miyake, Y; Akai-Kasaya, M; Saito, A; Aono, M; Kuwahara, Y

    2011-11-02

    The electrical transport properties of organic thin films within the micrometer scale have been evaluated by a laboratory-built independently driven double-tip scanning tunneling microscope, operating under ambient conditions. The two tips were used as point contact electrodes, and current in the range from 0.1 pA to 100 nA flowing between the two tips through the material can be detected. We demonstrated two-dimensional contour mapping of the electrical resistance on a poly(3-octylthiophene) thin films as shown below. The obtained contour map clearly provided an image of two-dimensional electrical conductance between two point electrodes on the poly(3-octylthiophene) thin film. The conductivity of the thin film was estimated to be (1-8) × 10(-6) S cm(-1). Future prospects and the desired development of multiprobe STMs are also discussed.

  8. Electrical and Optical Properties of GeSi−:H Thin Films Prepared by Thermal Evaporation Method

    Directory of Open Access Journals (Sweden)

    A. A. J. Al-Douri

    2010-01-01

    Full Text Available Thin a-GeSi1−:H films were grown successfully by fabrication of designated ingot followed by evaporation onto glass slides. A range of growth conditions, Ge contents, dopant concentration (Al and As, and substrate temperature, were employed. Stoichiometry of the thin films composition was confirmed using standard surface techniques. The structure of all films was amorphous. Film composition and deposition parameters were investigated for their bearing on film electrical and optical properties. More than one transport mechanism is indicated. It was observed that increasing substrate temperature, Ge contents, and dopant concentration lead to a decrease in the optical energy gap of those films. The role of the deposition conditions on values of the optical constants was determined. Accordingly, models of the density of states for the Ge0.5Si0.5:H thin films as pure, doped with 3.5% of Al (p-type and that doped with 3.5% As (n-type, were proposed.

  9. Electronic transport properties of nanostructured MnSi-films

    Science.gov (United States)

    Schroeter, D.; Steinki, N.; Scarioni, A. Fernández; Schumacher, H. W.; Süllow, S.; Menzel, D.

    2018-05-01

    MnSi, which crystallizes in the cubic B20 structure, shows intriguing magnetic properties involving the existence of skyrmions in the magnetic phase diagram. Bulk MnSi has been intensively investigated and thoroughly characterized, in contrast to MnSi thin film, which exhibits widely varying properties in particular with respect to electronic transport. In this situation, we have set out to reinvestigate the transport properties in MnSi thin films by means of studying nanostructure samples. In particular, Hall geometry nanostructures were produced to determine the intrinsic transport properties.

  10. Low-temperature transport in ultra-thin tungsten films

    Energy Technology Data Exchange (ETDEWEB)

    Chiatti, Olivio [Neue Materialien, Institut fuer Physik, Humboldt-Univ. Berlin (Germany); London Centre for Nanotechnology, University College London (United Kingdom); Nash, Christopher; Warburton, Paul [London Centre for Nanotechnology, University College London (United Kingdom)

    2012-07-01

    Tungsten-containing films, fabricated by focused-ion-beam-induced chemical vapour deposition, are known to have an enhanced superconducting transition temperature compared to bulk tungsten, and have been investigated previously for film thickness down to 25 nm. In this work, by using ion-beam doses below 50 pC/{mu}m{sup 2} on a substrate of amorphous silicon, we have grown continuous films with thickness below 20 nm. The electron transport properties were investigated at temperatures down to 350 mK and in magnetic fields up to 3 T, parallel and perpendicular to the films. The films in this work are closer to the limit of two-dimensional systems and are superconducting at low temperatures. Magnetoresistance measurements yield upper critical fields of the order of 1 T, and the resulting coherence length is smaller than the film thickness.

  11. Low temperature electrical transport in modified carbon nanotube fibres

    International Nuclear Information System (INIS)

    Lekawa-Raus, Agnieszka; Walczak, Kamil; Kozlowski, Gregory; Hopkins, Simon C.; Wozniak, Mariusz; Glowacki, Bartek A.; Koziol, Krzysztof

    2015-01-01

    Carbon nanotube fibres are a new class of materials highly promising for many electrical/electronic applications. The range of applications could be extended through the modification of their electrical transport properties by inclusions of foreign materials. However, the changes in electrical transport are often difficult to assess. Here, we propose that the analysis of resistance–temperature dependencies of modified fibres supported by a recently developed theoretical model may aid research in this area and accelerate real life applications of the fibres

  12. Electronic and magneto-transport in chirality sorted carbon nanotube films

    Science.gov (United States)

    Janas, Dawid; Czechowski, Nikodem; Adamus, Zbigniew; GiŻewski, Tomasz

    2018-01-01

    This research details electronic and magneto-transport in unsorted and chirality-enriched carbon nanotube (CNT) films. By measuring the electrical conductivity from 4 K to 297 K, we were able to assign the governing mechanism of electronic transport. Fluctuation-induced tunnelling was in accordance with the obtained data and very well matched the underlying physics. We demonstrated how a change in the type of CNT to make the film affects its electrical performance. As the temperature was decreased down to cryogenic conditions, up to a 56-fold increase in resistance was noted. Moreover, the measurement of magnetoresistance (MR) revealed a non-monotonic dependence on the applied magnetic field. The initial negative component of MR was eventually overpowered by the positive MR component as the field strength was increased beyond a certain threshold.

  13. Correlation of Critical Temperatures and Electrical Properties in Titanium Films

    Science.gov (United States)

    Gandini, C.; Lacquaniti, V.; Monticone, E.; Portesi, C.; Rajteri, M.; Rastello, M. L.; Pasca, E.; Ventura, G.

    Recently transition-edge sensors (TES) have obtained an increasing interest as light detectors due to their high energy resolution and broadband response. Titanium (Ti), with transition temperature up to 0.5 K, is among the suitable materials for TES application. In this work we investigate Ti films obtained from two materials of different purity deposited by e-gun on silicon nitride. Films with different thickness and deposition substrate temperature have been measured. Critical temperatures, electrical resistivities and structural properties obtained from x-ray are related to each other.

  14. Power Electronics and Electric Machines Facilities | Transportation

    Science.gov (United States)

    Research | NREL Facilities Power Electronics and Electric Machines Facilities NREL's power electronics and electric machines thermal management experimentation facilities feature a wide range of four researchers in discussion around a piece of laboratory equipment. Power electronics researchers

  15. Correlation of nanostructure and charge transport properties of oxidized a -SiC:H films

    Energy Technology Data Exchange (ETDEWEB)

    Gordienko, S.O.; Nazarov, A.N.; Vasin, A.V.; Rusavsky, A.V.; Lysenko, V.S. [Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Prospekt Nauki 41, 03028 Kyiv (Ukraine)

    2012-06-15

    This paper considers the influence of low temperature oxidation on structural and electrical properties of amorphous carbon-rich a -Si{sub 1-x}C{sub x}:H thin films fabricated by reactive RF magnetron sputtering. It is shown that oxidation leads to formation of SiO{sub x} matrix with graphite-like carbon inclusions. Such conductive precipitates has a strong effect on charge transport in oxidized a -Si{sub 1-x}C{sub x}:H films (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Transport of organic solutes through amorphous teflon AF films.

    Science.gov (United States)

    Zhao, Hong; Zhang, Jie; Wu, Nianqiang; Zhang, Xu; Crowley, Katie; Weber, Stephen G

    2005-11-02

    Fluorous media have great potential for selective extraction (e.g., as applied to organic synthesis). Fluorous polymer films would have significant advantages in fluorous separations. Stable films of Teflon AF 2400 were cast from solution. Films appear defect-free (SEM; AFM). Rigid aromatic solutes are transported (from chloroform solution to chloroform receiving phase) in a size-dependent manner (log permeability is proportional to -0.0067 times critical volume). Benzene's permeability is about 2 orders of magnitude higher than in comparable gas-phase experiments. The films show selectivity for fluorinated solutes in comparison to the hydrogen-containing control. Transport rates are dependent on the solvent making up the source and receiving phases. The effect of solvent is, interestingly, not due to changes in partition ratio, but rather it is due to changes in the solute diffusion coefficient in the film. Solvents plasticize the films. A less volatile compound, -COOH-terminated poly(hexafluoropropylene oxide) (4), plasticizes the films (T(g) = -40 degrees C). Permeabilities are decreased in comparison to 4-free films apparently because of decreased diffusivity of solutes. The slope of dependence of log permeability on critical volume is not changed, however.

  17. An international perspective on electric transportation. Survey on electric road transport 2012

    Energy Technology Data Exchange (ETDEWEB)

    Weeda, M; Kroon, P [ECN Policy Studies, Petten (Netherlands); Appels, D [Agentschap NL, Utrecht (Netherlands)

    2012-09-15

    To compare the Dutch governmental efforts and developments in the field of electric road transport, the Ministry of Economic Affairs, Agriculture and Innovation has asked ECN Policy Studies and NL Agency to conduct an international assessment on electric mobility. The countries that have been considered are: Austria, Belgium, Denmark, France, Germany, the Netherlands, Norway, Portugal, Spain, UK, China, USA and South Korea. The Netherlands has a high ambition level with regard to the number of electric vehicles and is one of the leaders as for the envisaged number of charging points. In the field of R and D, Germany, South Korea and China take the lead, followed by France, the UK, the USA and Austria. However, the assessment has only looked at specific funds for electric mobility, and has not looked at general R and D and innovation funds. The Netherlands has several electro-mobility field tests, but is not leading in number. Norway and Austria are leading countries when it comes to implementation of public charging infrastructure.

  18. Power Electronics and Electric Machines Publications | Transportation

    Science.gov (United States)

    Research | NREL and Electric Machines Publications Power Electronics and Electric Machines Publications NREL and its partners have produced many papers and presentations related to power electronics and from power electronics and electric machines research are available to the public. Photo by Pat Corkery

  19. Electrical transport through single-wall carbon nanotube-anodic aluminum oxide-aluminum heterostructures

    International Nuclear Information System (INIS)

    Kukkola, Jarmo; Rautio, Aatto; Sala, Giovanni; Pino, Flavio; Toth, Geza; Leino, Anne-Riikka; Maeklin, Jani; Jantunen, Heli; Uusimaeki, Antti; Kordas, Krisztian; Gracia, Eduardo; Terrones, Mauricio; Shchukarev, Andrey; Mikkola, Jyri-Pekka

    2010-01-01

    Aluminum foils were anodized in sulfuric acid solution to form thick porous anodic aluminum oxide (AAO) films of thickness ∼6 μm. Electrodes of carboxyl-functionalized single-wall carbon nanotube (SWCNT) thin films were inkjet printed on the anodic oxide layer and the electrical characteristics of the as-obtained SWCNT-AAO-Al structures were studied. Nonlinear current-voltage transport and strong temperature dependence of conduction through the structure was measured. The microstructure and chemical composition of the anodic oxide layer was analyzed using transmission and scanning electron microscopy as well as x-ray photoelectron spectroscopy. Schottky emission at the SWCNT-AAO and AAO-Al interfaces allowed by impurity states in the anodic aluminum oxide film together with ionic surface conduction on the pore walls of AAO gives a reasonable explanation for the measured electrical conduction. Calcined AAO is proposed as a dielectric material for SWCNT-field effect transistors.

  20. Structural and electrical properties of CZTS thin films by electrodeposition

    Science.gov (United States)

    Rao, M. C.; Basha, Sk. Shahenoor

    2018-06-01

    CZTS (Cu2ZnSnS4) thin films were coated on ITO glass substrates by single bath electrodeposition technique. The prepared films were subsequently characterized by XRD, SEM, FTIR, UV-visible spectroscopy and Raman studies. The thickness of the thin films was measured by wedge method. X-ray diffraction studies revealed the formation of polycrystalline phase. The morphological surface of the prepared thin films was examined by SEM and AFM and showed the presence of microcrystals on the surface of the samples. The elemental analysis and their compositional ratios present in the samples were confirmed by the energy dispersive X-ray analysis. Functional groups and the position of band structure involved in the materials were confirmed by FTIR. Optical absorption studies were performed on the prepared thin films in the wavelength ranging from 300 to 1000 nm and the energy bandgap values were found to be in the range from 1.39 to 1.60 eV. Raman spectral peak which was observed at 360 cm-1 correspond to kesterite phase, was formed due to the vibration of the molecules. Electrical measurements confirmed the nature of the thin film depending on the charge concentration present in the samples.

  1. Morphological and electrical study of gold ultrathin films on mica

    Energy Technology Data Exchange (ETDEWEB)

    Bahamondes, S.; Donoso, S. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); Henríquez, R. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Flores, M., E-mail: mflorescarra@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile)

    2013-12-02

    We present a topographical study of the formation of thin films of gold on muscovite mica. The characterization of the samples was done with scanning tunneling microscopy, atomic force microscopy as well as electric measurements. We performed our study on two groups of samples: first group of samples, evaporated at room temperature for thickness ranging from 1.5 up to 97 nm; second group of samples, for two different thicknesses of 3 nm and 50 nm evaporated at different substrate temperatures, between 110 and 530 K. The gold films show a Volmer–Weber growth. The complete films are obtained from samples with a nominal thickness of 8 nm deposited. The average grain diameter is constant, with nominal thicknesses of 18.5 nm, up to 8 nm and increases with the thickness for higher deposition. The average grain diameter is similar regardless of the temperature of the substrate for samples of 3 nm thickness, but changes for samples of 50 nm thickness. The resistivity is inversely dependent on nominal thickness and the mean free path is lineally dependent on nominal thickness. - Highlights: • We have grown thin gold films onto mica at different substrate temperatures. • We identified a continuous film at nominal thickness of 8 nm. • The grain size shows a direct dependence on the nominal film thickness. • The electron mean free path, at 4 K, is linearly dependent on nominal thickness.

  2. Asymmetry of neoclassical transport by dipole electric field

    International Nuclear Information System (INIS)

    Wang Zhongtian; Wang Long

    2004-01-01

    Effects of dipole electric fields on neoclassical transport are studied. Large asymmetry in transport is created. The dipole fields, which are in a negative R-direction, reduce the ion drift, increase electron drift, and change the steps of excursion due to collisions. It is found that different levels of dipole field intensities have different types of transport. For the lowest level of the dipole field, the transport returns to the neoclassical one. For the highest level of the dipole field, the transport is turned to be the turbulence transport similar to the pseudo-classical transport. Experimental data may be corresponded to a large level of the dipole field intensity. (authors)

  3. Challenges and Opportunities of Grid Modernization and Electric Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Robert L. [Dept. of Energy (DOE), Washington DC (United States); Francis, Julieta [Allegheny Science and Technology, Bridgeport, WV (United States); Bogacz, Richard J. [Allegheny Science and Technology, Bridgeport, WV (United States)

    2017-03-31

    Grid investments that support electric vehicle deployments as a part of planned modernization efforts can enable a more efficient and cost-effective transition to electric transportation and allow investor-owned electric companies and public power companies to realize new revenue resources in times of flat or declining loads. This paper discusses the challenges and opportunities associated with an increase in plug-in electric vehicle (PEV) adoption and how working together both sectors stand to benefit from closer integration.

  4. Electricity for road transport, flexible power systems and wind power

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Lars Henrik; Ravn, H.; Meibom, P. (and others)

    2011-12-15

    The aim of the project is to analyse the potential synergistic interplay that may arise between the power sector and the transport sector, if parts of the road transport energy needs are based on electricity via the utilisation of plug-in hybrid electric vehicles and pure electric vehicles. The project focuses on the technical elements in the chain that comprises: 1: The electric vehicle status, potentials and expected development. Electric batteries are in focus in this part of the analysis. 2: Analysis of plug-in hybrid electric vehicle interacting with a local grid. 3: Analysis of grid-vehicle connection systems including technical regulation options and analysis of needs for standardisation. 4: Setting up scenarios covering potential developments for utilizing electric drive trains in road transport. Period: Up to year 2030. 5: Analysis of capacity constraints in the electricity grid (transmission and distribution) as consequence of increasing electricity demand, and new flexible consumption patterns from segments in the transport sector, and as consequence of increasing capacity on wind power in the system. 6: Setting up and analysis of combined scenarios covering both the heat and power system and the transport sector. (Author)

  5. Research on structure and electrical parameters of indium antimonide films

    International Nuclear Information System (INIS)

    Mukhametniyazova, A.; Konyaeva, V.F.; Sukhanov, S.; Ashirov, A.; Aleksanyan, S.N.

    1980-01-01

    Results of investigations into the effect of conditions of formation of indium antimonide films prepared by thermal vacuum spraying on their structure, phase composition and electric parameters, are presented. The method of studying the synthesized semiconductor layers on the DRON-0.5 X-ray device with CoKsub(α)-radiation is tested. The dependence of structure, phase composition and electric properties of InSb layers 1+3 μm thick sprayed on ferrite substrates on condensation temperature, is established. Hexagonal InSb modification is found

  6. Research on structure and electrical parameters of indium antimonide films

    Energy Technology Data Exchange (ETDEWEB)

    Mukhametniyazova, A; Konyaeva, V F; Sukhanov, S; Ashirov, A; Aleksanyan, S N [AN Turkmenskoj SSR, Ashkhabad. Fiziko-Tekhnicheskii Inst.

    1980-01-01

    Results of investigations into the effect of conditions of formation of indium antimonide films prepared by thermal vacuum spraying on their structure, phase composition and electric parameters, are presented. The method of studying the synthesized semiconductor layers on the DRON-0.5 X-ray device with CoKsub(..cap alpha..)-radiation is tested. The dependence of structure, phase composition and electric properties of InSb layers 1+3 ..mu..m thick sprayed on ferrite substrates on condensation temperature, is established. Hexagonal InSb modification is found.

  7. Electrical properties of thermally evaporated nickel-dimethylglyoxime thin films

    Science.gov (United States)

    Dakhel, A. A.; Ali-Mohamed Ahmed, Y.

    2005-06-01

    Thin Bis-(dimethylglyoximato)nickel(II) [Ni(DMG)2] films of amorphous and crystalline structures were prepared by vacuum deposition on Si (P) substrates. The films were characterised by X-ray fluorescence and X-ray diffraction. The constructed Al/Ni(DMG)2/Si(P) metal-insulator-semiconductor devices were characterised by the measurement of the gate-voltage dependence of their capacitance and ac conductance, from which the surface states density Dit of insulator/semiconductor interface and the density of the fixed charges in the oxide were determined. The ac electrical conduction and dielectric properties of the Ni(DMG)2-Silicon structure were studied at room temperature. The data of the ac measurements of the annealed films follow the correlated barrier-hopping CBH mode, from which the fundamental absorption bandgap, the minimum hopping distance, and other parameters of the model were determined.

  8. Soap-film flow induced by electric fields in asymmetric frames

    Science.gov (United States)

    Mollaei, S.; Nasiri, M.; Soltanmohammadi, N.; Shirsavar, R.; Ramos, A.; Amjadi, A.

    2018-04-01

    Net fluid flow of soap films induced by (ac or dc) electric fields in asymmetric frames is presented. Previous experiments of controllable soap film flow required the simultaneous use of an electrical current passing through the film and an external electric field or the use of nonuniform ac electric fields. Here a single voltage difference generates both the electrical current going through the film and the electric field that actuates on the charge induced on the film. The film is set into global motion due to the broken symmetry that appears by the use of asymmetric frames. If symmetric frames are used, the film flow is not steady but time dependent and irregular. Finally, we study numerically these film flows by employing the model of charge induction in ohmic liquids.

  9. The Electrical Properties of Plasma-Deposited Thin Films Derived from Pelargonium graveolens

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Jumaili

    2017-10-01

    Full Text Available Inherently volatile at atmospheric pressure and room temperature, plant-derived precursors present an interesting human-health-friendly precursor for the chemical vapour deposition of thin films. The electrical properties of films derived from Pelargonium graveolens (geranium were investigated in metal–insulator–metal (MIM structures. Thin polymer-like films were deposited using plasma-enhanced synthesis under various plasma input power. The J–V characteristics of thus-fabricated MIM were then studied in order to determine the direct current (DC conduction mechanism of the plasma polymer layers. It was found that the capacitance of the plasma-deposited films decreases at low frequencies (C ≈ 10−11 and remains at a relatively constant value (C ≈ 10−10 at high frequencies. These films also have a low dielectric constant across a wide range of frequencies that decreases as the input RF power increases. The conductivity was determined to be around 10−16–10−17 Ω−1 m−1, which is typical for insulating materials. The Richardson–Schottky mechanism might dominate charge transport in the higher field region for geranium thin films.

  10. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    OpenAIRE

    Deepak Kumar Kaushik; K. Uday Kumar; A. Subrahmanyam

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl∼1; kF is the Fermi wave vector and l ...

  11. Electron transport determines the electrochemical properties of tetrahedral amorphous carbon (ta-C) thin films

    International Nuclear Information System (INIS)

    Palomäki, Tommi; Wester, Niklas; Caro, Miguel A.; Sainio, Sami; Protopopova, Vera; Koskinen, Jari; Laurila, Tomi

    2017-01-01

    Amorphous carbon based electrodes are very promising for electrochemical sensing applications. In order to better understand their structure-function relationship, the effect of film thickness on the electrochemical properties of tetrahedral amorphous carbon (ta-C) electrodes was investigated. ta-C thin films of 7, 15, 30, 50 and 100 nm were characterized in detail with Raman spectroscopy, transmission electron microscopy (TEM), conductive atomic force microscopy (c-AFM), scanning tunneling spectroscopy (STS) and X-ray absorption spectroscopy (XAS) to assess (i) the surface properties of the films, (ii) the effect of film thickness on their structure and electrical properties and (iii) the subsequent correlation with their electrochemistry. The electrochemical properties were investigated by cyclic voltammetry (CV) using two different outer-sphere redox probes, Ru(NH 3 ) 6 3+/2+ and FcMeOH, and by electrochemical impedance spectroscopy (EIS). Computational simulations using density functional theory (DFT) were carried out to rationalize the experimental findings. The characterization results showed that the sp 2 /sp 3 ratio increased with decreasing ta-C film thickness. This correlated with a decrease in mobility gap value and an increase in the average current through the films, which was also consistent with the computational results. XAS indicated that the surface of the ta-C films was always identical and composed of a sp 2 -rich layer. The CV measurements indicated reversible reaction kinetics for both outer-sphere redox probes at 7 and 15 nm ta-C films with a change to quasi-reversible behavior at a thickness of around 30 nm. The charge transfer resistance, obtained from EIS measurements, decreased with decreasing film thickness in accordance with the CV results. Based on the characterization and electrochemical results, we conclude that the reaction kinetics in the case of outer-sphere redox systems is determined mainly by the electron transport through the

  12. Coefficient of electrical transport vacuum arc for metals and alloys

    International Nuclear Information System (INIS)

    Markov, G.V.; Ehjzner, B.A.

    1998-01-01

    In this article the authors propose formulas for estimation coefficient of electrical transport vacuum arc for metals and alloys. They also represent results of analysis principal physical processes which take place in cathode spot vacuum arc

  13. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-07-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  14. Evolution of structural and electrical properties of carbon films from amorphous carbon to nanocrystalline graphene on quartz glass by HFCVD.

    Science.gov (United States)

    Zhai, Zihao; Shen, Honglie; Chen, Jieyi; Li, Xuemei; Jiang, Ye

    2018-04-25

    Direct growth of graphene films on glass is of great importance but has so far met with limited success. The non-catalytic property of glass results in the low decomposition ability of hydrocarbon precursors, especially at reduced temperatures (structural and electrical properties of carbon films deposited on quartz glass at 850 °C by hot-filament chemical vapor deposition (HFCVD). The results revealed that the obtained a-C films were all graphite-like carbon films. Structural transition of the deposited films from a-C to nanocrystalline graphene was achieved by raising the hydrogen dilution ratios from 10 % to over 80 %. Based on systematically structural and chemical characterizations, a schematic process with three steps including sp2 chains aggregation, aromatic rings formation and sp3 bonds etch was proposed to interpret the structural evolution. The nanocrystalline graphene films grown on glass by HFCVD exhibited good electrical performance with a carrier mobility of 36.76 cm2/(V·s) and a resistivity of 5.24×10-3 Ω·cm over an area of 1 cm2. Temperature-dependent electrical characterizations revealed that the electronic transport in carbon films was dominated by defect, localised and extended states respectively when increasing the temperature from 75 K to 292 K. The nanocrystalline graphene films presented higher carrier mobility and lower carrier concentration than a-C films, which was mainly attributed to their smaller conductive activation energy. The present investigation provides an effective way for direct growth of graphene films on glass at reduced temperatures and also offers useful insights into the understanding of structural and electrical relationship between a-C and graphene.

  15. Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys

    Energy Technology Data Exchange (ETDEWEB)

    Calderón, Jorge A. [Universidad Nacional de Colombia – Bogotá, Dpto. de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Cra. 30 No. 45-03 Edificio 404 Lab. 121C Ciudad Universitaria, Bogotá (Colombia); Mesa, F., E-mail: fredy.mesa@urosario.edu.co [Grupo NanoTech, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Cra. 24 No. 63C-69, Bogotá (Colombia); Dussan, A. [Universidad Nacional de Colombia – Bogotá, Dpto. de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Cra. 30 No. 45-03 Edificio 404 Lab. 121C Ciudad Universitaria, Bogotá (Colombia)

    2017-02-28

    Highlights: • (GaMn)Sb thin films were fabricated using the direct current (DC) magnetron co-sputtering. • Presence of ferrimagnetic (Mn{sub 2}Sb) and ferromagnetic (Mn{sub 2}Sb{sub 2}) phases. • A minor difference of 1% was found with respect to percolation theory, which confirmed the validity of the diffusional model in semiconductor alloys with magnetic properties. • Increase in the localized states density (N{sub F}) with increasing substrate temperature. - Abstract: We studied the electrical, magnetic, and transport properties of (GaMn)Sb thin films fabricated by the direct current magnetron co-sputtering method. Using X-ray powder diffraction measurements, we identified the presence of ferrimagnetic (Mn{sub 2}Sb) and ferromagnetic (Mn{sub 2}Sb{sub 2}) phases within the films. We also measured the magnetization of the films versus an applied magnetic field as well as their hysteresis curves at room temperature. We determined the electrical and transport properties of the films through temperature-dependent resistivity measurements using the Van Der Pauw method. The main contribution to the transport process was variable range hopping. Hopping parameters were calculated using percolation theory and refined using the diffusional model. In addition, we determined that all samples had p type semiconductor behavior, that there was an increase in the density of localized states near the Fermi level, and that the binary magnetic phases influenced the electrical properties and transport mechanisms.

  16. Spin transport, magnetoresistance, and electrically detected magnetic resonance in amorphous hydrogenated silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Mutch, Michael J. [Intercollege Program of Materials, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Lenahan, Patrick M. [Intercollege Program of Materials, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); King, Sean W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States)

    2016-08-08

    We report on a study of spin transport via electrically detected magnetic resonance (EDMR) and near-zero field magnetoresistance (MR) in silicon nitride films. Silicon nitrides have long been important materials in solid state electronics. Although electronic transport in these materials is not well understood, electron paramagnetic resonance studies have identified a single dominating paramagnetic defect and have also provided physical and chemical descriptions of the defects, called K centers. Our EDMR and MR measurements clearly link the near-zero field MR response to the K centers and also indicate that K center energy levels are approximately 3.1 eV above the a-SiN:H valence band edge. In addition, our results suggest an approach for the study of defect mediated spin-transport in inorganic amorphous insulators via variable electric field and variable frequency EDMR and MR which may be widely applicable.

  17. Electrical transport properties of calcium and barium aluminates

    NARCIS (Netherlands)

    Metselaar, R.; Hoefsloot, A.M.

    1987-01-01

    Electrical conductivity and ionic transport numbers have been measured of barium and calcium aluminates with composition CaO·nAl2O3 (n=7/12, 1, 2, 6) and 0.82 BaO·6Al2O3. At room temperatures these compounds are insulators, but at high temperatures mixed conductivity is observed. Ionic transport

  18. Curvature effects on the electronic and transport properties of semiconductor films

    Science.gov (United States)

    Batista, F. F.; Chaves, Andrey; da Costa, D. R.; Farias, G. A.

    2018-05-01

    Within the effective mass approximation, we study the curvature effects on the electronic and transport properties of semiconductor films. We investigate how the geometry-induced potential resulting exclusively from periodic ripples in the film induces electronic confinement and a superlattice band structure. For fixed curvature parameters, such a confinement can be easily tuned by an external electric field, hence features of the superlattice band structure such as its energy gaps and band curvature can be controlled by an external parameter. We also show that, for some values of curvature and electric field, it is possible to obtain massless Dirac bands for a smooth curved structure. Moreover, we use a wave packet propagation method to demonstrate that the ripples are responsible for a significant inter-sub-band transition, specially for moderate values of the ripple height.

  19. An analytical expression of electric potential and field of organic thin film transistors

    International Nuclear Information System (INIS)

    Pankalla, S; Glesner, M

    2012-01-01

    The two-dimensional electric potential and field of an organic thin-film transistor (OTFT) is derived by conformal mapping using the Schwarz-Christoffel-transformation of the Poisson equation. In this paper we compare this analytical closed-form solution to field simulation results from Silvaco TCAD. Inter alia the potential close to the surface is calculated and we found excellent accordance to the numerical simulations and thus proofed its usability for charge transport calculations. Thus, it is used for calculation of the drain-source-current in the channel.

  20. Thin films of molecular materials synthesized from fisher's carbene ferrocenyl: Film formation and electrical properties

    International Nuclear Information System (INIS)

    Sanchez-Vergara, M.E.; Ortiz, A.; Alvarez-Toledano, C.; Moreno, A.; Alvarez, J.R.

    2008-01-01

    The synthesis of materials from Fisher's carbene ferrocenyl of the elements chromium, molybdenum and tungsten was carried out. The Fisher's compounds that were synthesized included the following combinations of two different metallic atoms: iron with chromium, iron with molybdenum and iron with tungsten. The molecular solids' preparation was done in electro-synthesis cells with platinum electrodes. Thin films were prepared by vacuum thermal evaporation on quartz substrates and crystalline silicon wafers. Pellets and thin films from these compounds were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive spectroscopy, atomic force microscopy and ellipsometry. The powder and thin films synthesized from these materials show the same intra-molecular bonds shown by infrared spectroscopy results, suggesting that thermal evaporation does not alter these bonds in spite of the thin films being amorphous, in contrast with other bimetallic complexes where material decomposition occurs. The differences in the conductivity values of the prepared films are very small, so they may be attributed to the different metallic ions employed in each case. The tungsten complex exhibits a higher conductivity than the molybdenum and chromium complexes at room temperature. Electrical conductivity values found for thin films are higher than for pellets made of the same molecular materials

  1. Neoclassical transport and radial electric fields in TJ-K

    International Nuclear Information System (INIS)

    Rahbarnia, K.; Greiner, F.; Ramisch, M.; Stroth, U.; Greiner, F.

    2003-01-01

    The neoclassical transport is investigated in the torsatron TJ-K, which is operated with a low-temperature plasma. In the low-collisionality regime neoclassical losses are not intrinsically ambipolar, leading to the formation of a radial electric field which acts on both neoclassical and turbulent transport. This electric field is measured with a combination of Langmuir and emissive probes. The data are compared with the ambipolar electric field calculated with an analytic model. The experimental fields are positive and larger than the calculated ones. Direct losses of the fast electrons might explain this discrepancy. (orig.)

  2. Electroresistance Effect in Gold Thin Film Induced by Ionic-Liquid-Gated Electric Double Layer

    NARCIS (Netherlands)

    Nakayama, Hiroyasu; Ye, Jianting; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Iwasa, Yoshihiro; Saitoh, Eiji

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with

  3. Electrical and magneto transport properties of

    Indian Academy of Sciences (India)

    samples. The morphology of crystal grains shows that the grains are nearly uniform in size and spherical. Electrical .... 1.5406 Å) in angular steps of 0.02 .... table to scattering by impurities, defects, grain boundaries .... because of different orientations of opposite spins, an energy ... 2000 Colossal magneto resistance oxides.

  4. Electrical properties and conduction mechanisms of Ru-based thick-film (cermet) resistors

    International Nuclear Information System (INIS)

    Pike, G.E.; Seager, C.H.

    1977-01-01

    This paper presents an experimental study of the electrical conduction mechanisms in thick-film (cermet) resistor. The resistors were made from one custom and three commercially formulated inks with sheet resistivities ranging from 10 2 to 10 6 Ω/D 7 Alembertian in decade increments. Their microstructure and composition have been examined using optical and scanning electron microscopy, electron microprobe analysis, x-ray diffraction, and various chemical analyses. This portion of our study shows that the resistors are heterogeneous mixtures of metallic metal oxide particles (approx.4 x 10 -5 cm in diameter) and a lead silicate glass. The metal oxide particles are ruthenium containing pyrochlores, and are joined to form a continuous three-dimensional network of chain segments. The principal experimental work reported here is an extensive study of the electrical transport properties of the resistors. The temperature dependence of conductance has been measured from 1.2 to 400 K, and two features common to all resistors are found. There is a pronounced decrease in conductance at low temperatures and a shallow maximum at several hundred Kelvin. Within the same range of temperatures the reversible conductance as a function of electric field from 0 to 28 kV/cm has been studied. The resistors are non-Ohmic at all temperatures, but particularly at cryogenic temperatures for low fields. At higher fields the conductance shows a linear variation with electric field. The thick-film resistors are found to have a small dielectric constant and a (nearly) frequency-independent conductance from dc to 50 MHz. The magnetoresistance to 100 kG, the Hall mobility, and the Seebeck coefficient of most of the resistors have been measured and discovered to be quite small. Many of the electrical transport properties have also been determined for the metal oxide particles which were extracted from the fired resistors

  5. Preparation, electrical and optical properties of evaporated thin films of CuPbI3

    International Nuclear Information System (INIS)

    Kuku, T.A.; Azi, S.O.

    1995-10-01

    Thin films of CuPbl 3 have been prepared by a vacuum evaporation process. X-ray analysis gives structural parameters in consonance with the bulk powder form of the material. The film however preferring a growth in the [002] direction. Electrical conductivity indicates an activated process with two activation energies being 0.45 eV for T ≤ 373 K, and 0.6 eV for T ≥ 373 K. Both are interpreted to be due to the transport of anionic carriers in the phases existing below and beyond 373 K respectively. Optical characterization reveals a material with high absorption coefficient, with α ≥ 10 4 cm -1 . The material is characterized by a direct absorption with the direct edge at 1.64 eV. (author). 13 refs, 5 figs

  6. Electric-field effects in optically generated spin transport

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.

  7. Electric-field effects in optically generated spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2009-05-25

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.

  8. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    International Nuclear Information System (INIS)

    Deb, K.; Bera, A.; Saha, B.; Bhowmik, K. L.; Chattopadhyay, K. K.

    2016-01-01

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  9. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Deb, K.; Bera, A.; Saha, B., E-mail: biswajit.physics@gmail.com [Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura 799046 (India); Bhowmik, K. L. [Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura 799046 (India); Department of Chemistry, Bir Bikram Memorial College, Agartala, West Tripura 799004 (India); Chattopadhyay, K. K. [Department of Physics, Jadavpur University, Kolkata 700 032 (India)

    2016-05-23

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  10. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    Science.gov (United States)

    Deb, K.; Bhowmik, K. L.; Bera, A.; Chattopadhyay, K. K.; Saha, B.

    2016-05-01

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  11. Electrical resistivity of thin metal films and multilayers

    International Nuclear Information System (INIS)

    Fenn, M.

    1999-01-01

    The electrical resistivity and temperature coefficient of resistivity (TCR) of thin films and multilayers of Cu, Nb and Zr have been measured over a wide range of layer thicknesses. The structure of the films has been characterised using transmission electron microscopy (TEM) and x-ray reflectivity. The experimental results have been compared with the semiclassical theory due to Dimmich. The values of the grain boundary reflectivity, R, in the single films has been found to be approximately 0.35 for Cu in agreement with the literature. The value of R for Nb and Zr has been found to vary with grain size, although it is approximately 0.55 for Nb and 0.925 for Zr over a wide range of grain sizes, and this is believed to be presented for the first time. The value of the interfacial specularity parameter, p, is not found to have a significant effect compared to R in the single films. Dimmich's theoretical expression for the TCR does not match experiment, but by adapting the resistivity expression of the theory to different temperatures a satisfactory fit has been obtained. It has been concluded that the assumption of the free electron model in the presence of grain boundary scattering is in error. The adapted theory predicts negative TCR in sufficiently thin films with experimentally plausible values of the input parameters, and this is believed to be demonstrated for the first time. The experimental resistivity of the multilayers was much lower than expected from the resistivity of the single films. A theoretical fit to the experimental resistivity and TCR of the multilayers was obtained by adjusting the parameter values obtained from single films, and the value of p was found to be significant. This procedure leads to a contradiction in the value of R for Nb. With a view to extending the above work to magnetic multilayers, an AC susceptometer has been designed, built and tested. The results indicate that this instrument would be suitable for work on magnetic

  12. Lattice dynamics and substrate-dependent transport properties of (In, Yb)-doped CoSb3 skutterudite thin films

    KAUST Repository

    Sarath Kumar, S. R.

    2011-10-24

    Lattice dynamics, low-temperature electrical transport, and high-temperature thermoelectric properties of (In, Yb)-doped CoSb3thin films on different substrates are reported. Pulsed laser deposition under optimized conditions yielded single-phase polycrystalline skutterudite films. Raman spectroscopy studies suggested that In and Yb dopants occupy the cage sites in the skutterudite lattice. Low-temperature electrical transport studies revealed the n-type semiconducting nature of the films with extrinsic and intrinsic conduction mechanisms, in sharp contrast to the degenerate nature reported for identical bulk samples. Calculations yielded a direct bandgap close to 50 meV with no evidence of an indirect gap. The carrier concentration of the films was identical to that reported for the bulk and increased with temperature beyond 250 K. The higher resistivity exhibited is attributed to the enhanced grain boundary scattering in films with a high concentration of grains. The maximum power factor of ∼0.68 W m−1 K−1 obtained at 660 K for the film on glass is found to be nearly four times smaller compared to that reported for the bulk. The observed difference in the power factors of the films on different substrates is explained on the basis of the diffusion of oxygen from the substrates and the formation of highly conducting CoSb2 phase upon the oxidation of CoSb3.

  13. Transport analysis of radial electric field in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2004-01-01

    A set of transport equations is analyzed which induces the radial transition of the electric field. A temperature profile which is related with the transport barrier is obtained by use of the theoretical model for the anomalous transport diffusivities. A dependence on the different initial condition is found even if the same values of the control parameters are used in calculations. A study of the temporal evolution of E r is done. We examine the test of the adopted theoretical model for the anomalous transport diffusivities compared with the experimental result in Large Helical Device (LHD). (authors)

  14. Optical and electrical properties of negatively charged aluminium oxynitride films

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Kyungsoo; Jung, Sungwook; Lee, Jeoungin; Lee, Kwangsoo; Kim, Jaehong; Son, Hyukjoo [School of information and communication Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, 440-746 (Korea, Republic of); Yi, Junsin [School of information and communication Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, 440-746 (Korea, Republic of)], E-mail: yi@yurim.ac.kr

    2008-11-03

    Aluminium oxynitride (AlON) thin films were deposited by Radio Frequency (RF) magnetron sputtering on n-type silicon (Si) substrate of (100) orientation using argon (Ar) and oxygen (O{sub 2}) gases at substrate temperature of 450 {sup o}C. To know the change in electrical properties with gases ratio, a deposition was carried out for 140 s with Ar:O{sub 2} ratio changed from 1:3 to 4:3. After that, electrical properties of Metal-Insulator-Semiconductor (MIS) structure with AlON was analyzed. For Ar:O{sub 2} ratios from 1:3 to 4:3, all samples showed characteristics of negative charge. In particular, when Ar:O{sub 2} were 2:3 and 3:3, the value of flatband voltage in normal C-V curve showed above 14 V. The composition of the AlON in the film was investigated using X-ray Photoelectron Spectroscopy (XPS). The flatband voltages (V{sub FB}) in C-V curves were found to depend on compositions. The characteristics of photon energy band gap were obtained by UV/VIS spectrum.

  15. Content on Film Evaporation Rate, Morphology, and Electrical Resistance

    Directory of Open Access Journals (Sweden)

    F. Soriano-Corral

    2012-01-01

    Full Text Available Nanocomposites of poly(methyl methacrylate-b-butyl acrylate/multiwalled carbon nanotubes were prepared from different copolymers synthesized by RITP technique using iodine functionalized poly(methyl methacrylate as macrochain transfer agent to obtain block copolymers with butyl acrylate as comonomer in a sequential copolymerization. Poly(butyl acrylate contents of 7, 20, and 30 wt% were attained in each copolymer. These copolymers were used to prepare nanostructured films by casting process, using chloroform as solvent, and carboxyl functionalized MWCNT at 0.4, 0.6, 0.8, 1.0, and 1.2 wt%. During the film preparation, the absolute drying rate (N was calculated with respect to the poly(butyl acrylate and MWCNT composition. For copolymers containing 7 and 20 wt% of poly(butyl acrylate the N values slightly decrease with the MWCNT concentration, while for the suspension prepared with the copolymer at 30 wt% of poly(butyl acrylate the N values decrease drastically down to 50% approximately. The MWCNT content at the percolation threshold point was found to be 0.8 wt%, for all nanostructured films. The dispersion of MWCNT within the polymer matrix decreased with increasing the poly(butyl acrylate composition, but it did not affect the electrical properties, which is assumed to be due to induction of the bridging effect and the MWCNT preference to locate into the poly(methyl methacrylate phase.

  16. Metallic transport and large anomalous Hall effect at room temperature in ferrimagnetic Mn{sub 4}N epitaxial thin film

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xi; Shigematsu, Kei [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); Chikamatsu, Akira, E-mail: chikamatsu@chem.s.u-tokyo.ac.jp; Fukumura, Tomoteru [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Hirose, Yasushi; Hasegawa, Tetsuya [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)

    2014-08-18

    We report the electrical transport properties of ferrimagnetic Mn{sub 4}N (001) epitaxial thin films grown by pulsed laser deposition on MgO (001) substrates. The Mn{sub 4}N thin films were tetragonally distorted with a ratio of out-of-plane to in-plane lattice constants of 0.987 and showed perpendicular magnetic anisotropy with an effective magnetic anisotropy constant of 0.16 MJ/m{sup 3}, which is comparable with that of a recently reported molecular-beam-epitaxy-grown film. The thin films exhibited metallic transport with a room temperature resistivity of 125 μΩ cm in addition to a large anomalous Hall effect with a Hall angle tangent of 0.023.

  17. Metallic transport and large anomalous Hall effect at room temperature in ferrimagnetic Mn4N epitaxial thin film

    International Nuclear Information System (INIS)

    Shen, Xi; Shigematsu, Kei; Chikamatsu, Akira; Fukumura, Tomoteru; Hirose, Yasushi; Hasegawa, Tetsuya

    2014-01-01

    We report the electrical transport properties of ferrimagnetic Mn 4 N (001) epitaxial thin films grown by pulsed laser deposition on MgO (001) substrates. The Mn 4 N thin films were tetragonally distorted with a ratio of out-of-plane to in-plane lattice constants of 0.987 and showed perpendicular magnetic anisotropy with an effective magnetic anisotropy constant of 0.16 MJ/m 3 , which is comparable with that of a recently reported molecular-beam-epitaxy-grown film. The thin films exhibited metallic transport with a room temperature resistivity of 125 μΩ cm in addition to a large anomalous Hall effect with a Hall angle tangent of 0.023.

  18. Memory and Electrical Properties of (100-Oriented AlN Thin Films Prepared by Radio Frequency Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Maw-Shung Lee

    2014-01-01

    Full Text Available The (100-oriented aluminum nitride (AlN thin films were well deposited onto p-type Si substrate by radio frequency (RF magnetron sputtering method. The optimal deposition parameters were the RF power of 350 W, chamber pressure of 9 mTorr, and nitrogen concentration of 50%. Regarding the physical properties, the microstructure of as-deposited (002- and (100-oriented AlN thin films were obtained and compared by XRD patterns and TEM images. For electrical properties analysis, we found that the memory windows of (100-oriented AlN thin films are better than those of (002-oriented thin films. Besides, the interface and interaction between the silicon and (100-oriented AlN thin films was serious important problem. Finally, the current transport models of the as-deposited and annealed (100-oriented AlN thin films were also discussed. From the results, we suggested and investigated that large memory window of the annealed (100-oriented AlN thin films was induced by many dipoles and large electric field applied.

  19. Temperature dependence of electronic transport property in ferroelectric polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.L.; Wang, J.L., E-mail: jlwang@mail.sitp.ac.cn; Tian, B.B.; Liu, B.L.; Zou, Y.H.; Wang, X.D.; Sun, S.; Sun, J.L., E-mail: jlsun@mail.sitp.ac.cn; Meng, X.J.; Chu, J.H.

    2014-10-15

    Highlights: • The ferroelectric polymer was fabricated by Langmuir–Blodgett method. • The electrons as the dominant injected carrier were conformed in the ferroelectric polymer films. • The leakage current conduction mechanisms in ferroelectric polymer were investigated. - Abstract: The leakage current mechanism of ferroelectric copolymer of polyvinylidene fluoride with trifluoroethylene prepared by Langmuir–Blodgett was investigated in the temperature range from 100 K to 350 K. The electron as the dominant injected carrier was observed in the ferroelectric copolymer films. The transport mechanisms in copolymer strongly depend on the temperature and applied voltage. From 100 K to 200 K, Schottky emission dominates the conduction. With temperature increasing, the Frenkel–Poole emission instead of the Schottky emission to conduct the carrier transport. When the temperature gets to 260 K, the leakage current becomes independent of temperature, and the space charge limited current conduction was observed.

  20. Annealing temperature effect on structure and electrical properties of films formed of Ge nanoparticles in SiO2

    International Nuclear Information System (INIS)

    Stavarache, Ionel; Lepadatu, Ana-Maria; Stoica, Toma; Ciurea, Magdalena Lidia

    2013-01-01

    Ge–SiO 2 films with high Ge/Si atomic ratio of about 1.86 were obtained by co-sputtering of Ge and SiO 2 targets and subsequently annealed at different temperatures between 600 and 1000 °C in a conventional furnace in order to show how the annealing process influences the film morphology concerning the Ge nanocrystal and/or amorphous nanoparticle formation and to study their electrical behaviour. Atomic force microscopy (AFM) imaging, Raman spectroscopy and electrical conductance measurements were performed in order to find out the annealing effect on the film surface morphology, as well as the Ge nanoparticle formation in correlation with the hopping conductivity of the films. AFM images show that the films annealed at 600 and 700 °C present a granular surface with particle height of about 15 nm, while those annealed at higher temperatures have smoother surface. The Raman investigations evidence Ge nanocrystals (including small ones) coexisting with amorphous Ge in the films annealed at 600 °C and show that almost all Ge is crystallized in the films annealed at 700 °C. The annealing at 800 °C disadvantages the Ge nanocrystal formation due to the strong Ge diffusion. This transition in Ge nanocrystals formation process by annealing temperature increase from 700 to 800 °C revealed by AFM and Raman spectroscopy measurements corresponds to a change in the electrical transport mechanism. Thus, in the 700 °C annealed films, the current depends on temperature according to a T −1/2 law which is typical for a tunnelling mechanism between neighbour Ge nanocrystals. In the 800 °C annealed films, the current–temperature characteristic has a T −1/4 dependence showing a hopping mechanism within an electronic band of localized states related to diffused Ge in SiO 2 .

  1. Metal-insulator transition in tin doped indium oxide (ITO thin films: Quantum correction to the electrical conductivity

    Directory of Open Access Journals (Sweden)

    Deepak Kumar Kaushik

    2017-01-01

    Full Text Available Tin doped indium oxide (ITO thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes in low temperatures (25-300 K. The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl∼1; kF is the Fermi wave vector and l is the electron mean free path and degenerate semiconductors. The transport of charge carriers (electrons in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known ‘metal-insulator transition’ (MIT which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC; this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann’s expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  2. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    Science.gov (United States)

    Kaushik, Deepak Kumar; Kumar, K. Uday; Subrahmanyam, A.

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl˜1; kF is the Fermi wave vector and l is the electron mean free path) and degenerate semiconductors. The transport of charge carriers (electrons) in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known `metal-insulator transition' (MIT) which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC); this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann's expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  3. Semiclassical electronic transport in MnAs thin films

    International Nuclear Information System (INIS)

    Helman, C.; Milano, J.; Steren, L.; Llois, A.M.

    2008-01-01

    Magneto-transport experiments have been recently performed on MnAs thin films. Hall effect and transverse magnetoresistance measurements have shown interesting and, until now, unknown results. For instance, the transverse magnetoresistance shows no saturation in the presence of very high magnetic fields. In order to understand the contribution of the electronic band structure to the non-saturating magnetoresistance, we perform ab initio calculations, using the Wien2K code and analyze the magneto-transport properties within the semiclassical approximation. We show that non-saturation may be due to the presence of open orbits on the majority Fermi surface

  4. Semiclassical electronic transport in MnAs thin films

    Energy Technology Data Exchange (ETDEWEB)

    Helman, C. [Dpto de Fisica, ' Juan Jose Giambiagi' , Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Unidad de Actividad Fisica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Buenos Aires (Argentina)], E-mail: helman@tandar.cnea.gov.ar; Milano, J.; Steren, L. [Departamento de Fisica, Centro Atomico Bariloche, Comision Nacional de Energia Atomica, S.C. Bariloche (Argentina); Llois, A.M. [Dpto de Fisica, ' Juan Jose Giambiagi' , Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Unidad de Actividad Fisica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    2008-07-15

    Magneto-transport experiments have been recently performed on MnAs thin films. Hall effect and transverse magnetoresistance measurements have shown interesting and, until now, unknown results. For instance, the transverse magnetoresistance shows no saturation in the presence of very high magnetic fields. In order to understand the contribution of the electronic band structure to the non-saturating magnetoresistance, we perform ab initio calculations, using the Wien2K code and analyze the magneto-transport properties within the semiclassical approximation. We show that non-saturation may be due to the presence of open orbits on the majority Fermi surface.

  5. Thermal Transport in Diamond Films for Electronics Thermal Management

    Science.gov (United States)

    2018-03-01

    AFRL-RY-WP-TR-2017-0219 THERMAL TRANSPORT IN DIAMOND FILMS FOR ELECTRONICS THERMAL MANAGEMENT Samuel Graham Georgia Institute of Technology MARCH... ELECTRONICS THERMAL MANAGEMENT 5a. CONTRACT NUMBER FA8650-15-C-7517 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61101E 6. AUTHOR(S) Samuel...seeded sample (NRL 010516, Die A5). The NCD membrane and Al layer thicknesses, tNCD, were measured via transmission electron microscopy (TEM). The

  6. High-electric-field quantum transport theory for semiconductor superlattices

    International Nuclear Information System (INIS)

    Nguyen Hong Shon; Nazareno, H.N.

    1995-12-01

    Based on the Baym-Kadanoff-Keldysh nonequilibrium Green's functions technique, a quantum transport theory for semiconductor superlattices under high-electric field is developed. This theory is capable of considering collisional broadening, intra-collisional field effects and band transport and hopping regimes simultaneously. Numerical calculations for narrow-miniband superlattices in high electric field, when the hopping regime dominates are in reasonable agreement with experimental results and show a significant deviation from the Boltzmann theory. A semiphenomenological formula for current density in hopping regime is proposed. (author). 60 refs, 4 figs

  7. Structural, magnetic and transport properties of Co{sub 2}FeAl Heusler films with varying thickness

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaotian [School of Material Sciences and Engineering, Hebei University Technology, Tianjin 300130 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Yueqing [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); State Key Laboratory of Metastable Material Sciences and Technology, Yanshan University, Qinhuangdao 066004 (China); Du, Yin [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Dai, Xuefang; Liu, Guodong [School of Material Sciences and Engineering, Hebei University Technology, Tianjin 300130 (China); Liu, Enke [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Zhongyuan [State Key Laboratory of Metastable Material Sciences and Technology, Yanshan University, Qinhuangdao 066004 (China); Wang, Wenhong, E-mail: wenhong.wang@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Guangheng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-08-01

    We report on a systematic study of the structural, magnetic properties and the anomalous Hall effect, in the Heusler alloy Co{sub 2}FeAl (CFA) epitaxial films on MgO (001), as a function of film thickness. It was found that the epitaxial CFA films show a highly ordered B2 structure with an in-plane uniaxial magnetic anisotropy. The electrical transport properties reveal that the lattice and magnon scattering contributions to the longitudinal resistivity. Independent on the thickness of films, the anomalous Hall resistivity of CFA films is found to be dominated by skew scattering only. Moreover, the anomalous Hall resistivity shows weakly temperature dependent behavior, and its absolute value increases as the thickness decreases. We attribute this temperature insensitivity in the anomalous Hall resistivity to the weak temperature dependent of tunneling spin-polarization in the CFA films, while the thickness dependence behavior is likely due to the increasing significance of interface or free surface electronic states. - Highlights: ●Highly ordered CFA films with various thicknesses were prepared on MgO substrates. ●The magnon scattering contributions to the longitudinal resistivity in the CFA films. ●The anomalous Hall resistivity of the CFA films shows weakly temperature dependent. ●The CFA films show weak temperature dependent of tunneling spin-polarization.

  8. Thermoelectric Transport by Surface States in Bi2Se3-Based Topological Insulator Thin Films

    International Nuclear Information System (INIS)

    Li Long-Long; Xu Wen

    2015-01-01

    We develop a tractable theoretical model to investigate the thermoelectric (TE) transport properties of surface states in topological insulator thin films (TITFs) of Bi 2 Se 3 at room temperature. The hybridization between top and bottom surface states in the TITF plays a significant role. With the increasing hybridization-induced surface gap, the electrical conductivity and electron thermal conductivity decrease while the Seebeck coefficient increases. This is due to the metal-semiconductor transition induced by the surface-state hybridization. Based on these TE transport coefficients, the TE figure-of-merit ZT is evaluated. It is shown that ZT can be greatly improved by the surface-state hybridization. Our theoretical results are pertinent to the exploration of the TE transport properties of surface states in TITFs and to the potential application of Bi 2 Se 3 -based TITFs as high-performance TE materials and devices. (paper)

  9. Photodiode Based on CdO Thin Films as Electron Transport Layer

    Science.gov (United States)

    Soylu, M.; Kader, H. S.

    2016-11-01

    Cadmium oxide (CdO) thin films were synthesized by the sol-gel method. The films were analyzed by means of XRD, AFM, and UV/Vis spectrophotometry. X-ray diffraction patterns confirm that the films are formed from CdO with cubic crystal structure and consist of nano-particles. The energy gap of the prepared film was found to be 2.29 eV. The current-voltage ( I- V) characteristics of the CdO/ p-Si heterojunction were examined in the dark and under different illumination intensities. The heterojunction showed high rectifying behavior and a strong photoresponse. Main electrical parameters of the photodiode such as series and shunt resistances ( R s and R sh), saturation current I 0, and photocurrent I ph, were extracted considering a single diode equivalent circuit of a photovoltaic cell. Results indicate that the application of CdO thin films as an electron transport layer on p-Si acts as a photodetector in the field of the UV/visible.

  10. Film growth kinetics and electric field patterning during electrospray deposition of block copolymer thin films

    Science.gov (United States)

    Toth, Kristof; Hu, Hanqiong; Choo, Youngwoo; Loewenberg, Michael; Osuji, Chinedum

    The delivery of sub-micron droplets of dilute polymer solutions to a heated substrate by electrospray deposition (ESD) enables precisely controlled and continuous growth of block copolymer (BCP) thin films. Here we explore patterned deposition of BCP films by spatially varying the electric field at the substrate using an underlying charged grid, as well as film growth kinetics. Numerical analysis was performed to examine pattern fidelity by considering the trajectories of charged droplets during flight through imposed periodic field variations in the vicinity of the substrate. Our work uncovered an unexpected modality for improving the resolution of the patterning process via stronger field focusing through the use of a second oppositely charged grid beneath a primary focusing array, with an increase in highly localized droplet deposition on the intersecting nodes of the grid. Substrate coverage kinetics are considered for homopolymer deposition in the context of simple kinetic models incorporating temperature and molecular weight dependence of diffusivity. By contrast, film coverage kinetics for block copolymer depositions are additionally convoluted with preferential wetting and thickness-periodicity commensurability effects. NSF GRFP.

  11. Solution processable semiconductor thin films: Correlation between morphological, structural, optical and charge transport properties

    Science.gov (United States)

    Isik, Dilek

    This Ph.D. thesis is a result of multidisciplinary research bringing together fundamental concepts in thin film engineering, materials science, materials processing and characterization, electrochemistry, microfabrication, and device physics. Experiments were conducted by tackling scientific problems in the field of thin films and interfaces, with the aim to correlate the morphology, crystalline structure, electronic structure of thin films with the functional properties of the films and the performances of electronic devices based thereon. Furthermore, novel strategies based on interfacial phenomena at electrolyte/thin film interfaces were explored and exploited to control the electrical conductivity of the thin films. Three main chemical systems were the object of the studies performed during this Ph.D., two types of organic semiconductors (azomethine-based oligomers and polymers and soluble pentacene derivatives) and one metal oxide semiconductor (tungsten trioxide, WO3). To explore the morphological properties of the thin films, atomic force microscopy was employed. The morphological properties were further investigated by hyperspectral fluorescence microscopy and tentatively correlated to the charge transport properties of the films. X-ray diffraction (Grazing incidence XRD, GIXRD) was used to investigate the crystallinity of the film and the effect of the heat treatment on such crystallinity, as well as to understand the molecular arrangement of the organic molecules in the thin film. The charge transport properties of the films were evaluated in thin film transistor configuration. For electrolyte gated thin film transistors, time dependent transient measurements were conducted, in parallel to more conventional transistor characterizations, to explore the specific effects played on the gating by the anion and cation constituting the electrolyte. The capacitances of the electrical double layers at the electrolyte/WO3 interface were obtained from

  12. Transport modelling including radial electric field and plasma rotation

    International Nuclear Information System (INIS)

    Fukuyama, A.; Fuji, Y.; Itoh, S.-I.

    1994-01-01

    Using a simple turbulent transport model with a constant diffusion coefficient and a fixed temperature profile, the density profile in a steady state and the transient behaviour during the co and counter neutral beam injection are studied. More consistent analysis has been initiated with a turbulent transport model based on the current diffusive high-n ballooning mode. The enhancement of the radial electric field due to ion orbit losses and the reduction of the transport due to the poloidal rotation shear are demonstrated. The preliminary calculation indicates a sensitive temperature dependence of the density profile. (author)

  13. The Predominance of Electric Transport in Synaptic Transmission

    OpenAIRE

    Hamid Reza Noori

    2008-01-01

    The quantitative description of the motion of neurotransmitters in the synaptic cleft appears to be one of the most difficult problems in the modeling of synapses. Here we show in contradiction to the common view, that this process is merely governed by electric transport than diffusion forces.

  14. Charge transport across bulk heterojunction organic thin film

    Energy Technology Data Exchange (ETDEWEB)

    Tessema, Genene [University of Kwazulu-Natal, School of Physics, Scottsville (South Africa); Addis Ababa University, Department of Physics, Addis Ababa (Ethiopia)

    2012-01-15

    The transport of charges in organic photo-active film has been the focus of tremendous research in the past few decades with the view to understand the physics of the polymers. Bulk heterojunction type devices are particularly more interesting because of their high power conversion efficiency. We have fabricated organic PV cell based on sandwich type ITO/PEDOT:PSS/APFO green-6:PCBM/LiF/Al device structure. The space charge limited currents were investigated to be able to derive important transport parameters of the devices. The measured current agrees very well with trap free space charge limited transport theory. The zero field mobility and field activation factor found from the data were {mu} {sub 0}=(3.39{+-}0.2) x 10{sup -6} m{sup 2}/V sec and {gamma}=(8.3{+-}0.3) x 10{sup -4} (m/V){sup 1/2}, respectively. (orig.)

  15. Recovery of electrical resistance in copper films on polyethylene terephthalate subjected to a tensile strain

    International Nuclear Information System (INIS)

    Glushko, O.; Marx, V.M.; Kirchlechner, C.; Zizak, I.; Cordill, M.J.

    2014-01-01

    Substantial recovery (decrease) of electrical resistance during and after unloading is demonstrated for copper films on polyethylene terephthalate substrates subjected to a tensile strain with different peak values. Particularly, the films strained to 5% exhibit full resistance recovery after unloading despite clearly visible plastic deformation of the film. The recovery of electrical resistance in connection with the mechanical behavior of film/substrate couple is discussed with the help of in situ scanning electron microscopy and X-ray diffraction analysis. - Highlights: • Tensile tests on 200 nm Cu films on PET substrate are performed. • Electrical resistance is recorded in-situ during loading and unloading. • Significant recovery (decrease) of resistance is observed during and after unloading. • Films strained to 5% demonstrate full resistance recovery. • Viscoelastic relaxation of PET is responsible for recovery of Cu film resistance

  16. Electrical and optical performance of transparent conducting oxide films deposited by electrostatic spray assisted vapour deposition.

    Science.gov (United States)

    Hou, Xianghui; Choy, Kwang-Leong; Liu, Jun-Peng

    2011-09-01

    Transparent conducting oxide (TCO) films have the remarkable combination of high electrical conductivity and optical transparency. There is always a strong motivation to produce TCO films with good performance at low cost. Electrostatic Spray Assisted Vapor Deposition (ESAVD), as a variant of chemical vapour deposition (CVD), is a non-vacuum and low-cost deposition method. Several types of TCO films have been deposited using ESAVD process, including indium tin oxide (ITO), antimony-doped tin oxide (ATO), and fluorine doped tin oxide (FTO). This paper reports the electrical and optical properties of TCO films produced by ESAVD methods, as well as the effects of post treatment by plasma hydrogenation on these TCO films. The possible mechanisms involved during plasma hydrogenation of TCO films are also discussed. Reduction and etching effect during plasma hydrogenation are the most important factors which determine the optical and electrical performance of TCO films.

  17. Electrical characterization of InAs thin films

    Energy Technology Data Exchange (ETDEWEB)

    Botha, L.; Shamba, P.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2008-07-01

    It is known that parallel conduction as a result of surface and /or interface charge accumulation significantly shields the bulk electrical properties of InAs thin films when characterized using Hall measurements. This parallel conduction in InAs can be modeled by using the two-layer model of Nedoluha and Koch [Zeitschrift fuer Physik 132, 608 (1952)]; where an InAs epilayer is treated as consisting of two conductors connected in parallel viz. a bulk and a surface layer. Here, this two-layer model is used to simulate Hall coefficient and conductivity data of InAs thin films ranging from strongly n-doped (n=10{sup 18} cm{sup -3}) to strongly p-doped (p{proportional_to}10{sup 19} cm{sup -3}) material. Conventional Hall approximations, i.e. those that assume uniform conduction from a single band, are then used to predict the apparent carrier concentration and mobility that will be determined from conventional Hall measurements, with the aim of illustrating the error of such a simplified analysis of InAs Hall data. Results show that, in addition to ignoring parallel conduction, the approximations of conventional Hall data analysis have a further inadequacy for p-type InAs, in that the high electron to hole mobility ratio in InAs is not taken into account. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Electrical characterization of InAs thin films

    International Nuclear Information System (INIS)

    Botha, L.; Shamba, P.; Botha, J.R.

    2008-01-01

    It is known that parallel conduction as a result of surface and /or interface charge accumulation significantly shields the bulk electrical properties of InAs thin films when characterized using Hall measurements. This parallel conduction in InAs can be modeled by using the two-layer model of Nedoluha and Koch [Zeitschrift fuer Physik 132, 608 (1952)]; where an InAs epilayer is treated as consisting of two conductors connected in parallel viz. a bulk and a surface layer. Here, this two-layer model is used to simulate Hall coefficient and conductivity data of InAs thin films ranging from strongly n-doped (n=10 18 cm -3 ) to strongly p-doped (p∝10 19 cm -3 ) material. Conventional Hall approximations, i.e. those that assume uniform conduction from a single band, are then used to predict the apparent carrier concentration and mobility that will be determined from conventional Hall measurements, with the aim of illustrating the error of such a simplified analysis of InAs Hall data. Results show that, in addition to ignoring parallel conduction, the approximations of conventional Hall data analysis have a further inadequacy for p-type InAs, in that the high electron to hole mobility ratio in InAs is not taken into account. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Electric and electrochemical properties of surface films formed on copper in the presence of bicarbonate anions

    International Nuclear Information System (INIS)

    Sirkiae, P.; Saario, T.; Maekelae, K.; Laitinen, T.; Bojinov, M.

    1999-01-01

    Copper is used as an outer shield of cast iron canisters planned for storage of spent nuclear fuel. The copper shield is responsible for the corrosion protection of the canister. The aim of the present work was to study the influence of bicarbonate (HCO 3 - ) anions on the stability of the copper oxide film. The work consists of a brief literature survey and an experimental part, in which voltammetry, electrochemical impedance spectroscopy and dc resistance measurements via the Contact Electric Resistance (CER) technique were used. The studies reported in the literature indicated that HCO 3 - ions increase the solubility of copper in the stability region of Cu(II). Thus they render the oxide film formed on copper susceptible to local damage and to localised corrosion at high potentials. Unfortunately, despite the great importance of bicarbonates in copper corrosion, most of the environments used in the electrochemical and corrosion studies are not comparable with repository conditions. In the existing studies either the bicarbonate concentrations or pH of the solutions were too high. In addition, no such studies were available, in which not only the effect of carbonate ions, but also possible synergetic effects of them with other aggressive ions would have been clarified. The voltammetric results of the experimental part of this work point to a bilayer structure of the anodic film on copper in neutral solutions containing HCO 3 - ions. The transport of ionic defects through a thin continuous p-type semiconductor layer was concluded to be the rate limiting step of the anodic oxidation of copper in the stability region of monovalent copper and in the mixed oxide (Cu(I)/Cu(II) oxide) region. Films formed in the divalent copper region did not show well-pronounced semiconductor behaviour. Substantial evidence was found in the voltammetric, CER and impedance results for the increased defectiveness of the anodic film in the Cu(II) region. The oxidation rate of copper in

  20. Electric and electrochemical properties of surface films formed on copper in the presence of bicarbonate anions

    Energy Technology Data Exchange (ETDEWEB)

    Sirkiae, P.; Saario, T.; Maekelae, K.; Laitinen, T.; Bojinov, M. [VTT Manufacturing Technology, Espoo (Finland)

    1999-11-01

    Copper is used as an outer shield of cast iron canisters planned for storage of spent nuclear fuel. The copper shield is responsible for the corrosion protection of the canister. The aim of the present work was to study the influence of bicarbonate (HCO{sub 3}{sup -}) anions on the stability of the copper oxide film. The work consists of a brief literature survey and an experimental part, in which voltammetry, electrochemical impedance spectroscopy and dc resistance measurements via the Contact Electric Resistance (CER) technique were used. The studies reported in the literature indicated that HCO{sub 3}{sup -} ions increase the solubility of copper in the stability region of Cu(II). Thus they render the oxide film formed on copper susceptible to local damage and to localised corrosion at high potentials. Unfortunately, despite the great importance of bicarbonates in copper corrosion, most of the environments used in the electrochemical and corrosion studies are not comparable with repository conditions. In the existing studies either the bicarbonate concentrations or pH of the solutions were too high. In addition, no such studies were available, in which not only the effect of carbonate ions, but also possible synergetic effects of them with other aggressive ions would have been clarified. The voltammetric results of the experimental part of this work point to a bilayer structure of the anodic film on copper in neutral solutions containing HCO{sub 3}{sup -}ions. The transport of ionic defects through a thin continuous p-type semiconductor layer was concluded to be the rate limiting step of the anodic oxidation of copper in the stability region of monovalent copper and in the mixed oxide (Cu(I)/Cu(II) oxide) region. Films formed in the divalent copper region did not show well-pronounced semiconductor behaviour. Substantial evidence was found in the voltammetric, CER and impedance results for the increased defectiveness of the anodic film in the Cu(II) region. The

  1. Electrical Power Systems for NASA's Space Transportation Program

    Science.gov (United States)

    Lollar, Louis F.; Maus, Louis C.

    1998-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration's (NASA) lead center for space transportation systems development. These systems include earth to orbit launch vehicles, as well as vehicles for orbital transfer and deep space missions. The tasks for these systems include research, technology maturation, design, development, and integration of space transportation and propulsion systems. One of the key elements in any transportation system is the electrical power system (EPS). Every transportation system has to have some form of electrical power and the EPS for each of these systems tends to be as varied and unique as the missions they are supporting. The Preliminary Design Office (PD) at MSFC is tasked to perform feasibility analyses and preliminary design studies for new projects, particularly in the space transportation systems area. All major subsystems, including electrical power, are included in each of these studies. Three example systems being evaluated in PD at this time are the Liquid Fly Back Booster (LFBB) system, the Human Mission to Mars (HMM) study, and a tether based flight experiment called the Propulsive Small Expendable Deployer System (ProSEDS). These three systems are in various stages of definition in the study phase.

  2. Optical, electrical and sensing properties of β-ketoimine calix[4]arene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Echabaane, M., E-mail: mosaab.echabaane@yahoo.fr [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Rouis, A. [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Bonnamour, I. [Institut de Chimie and Biochimie Moléculaires and Supramoléculaires (ICBMS), UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, Université Claude Bernard Lyon 1, 69100 Villeurbanne (France); Ben Ouada, H. [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia)

    2013-09-16

    Optical, electrical and ion sensing properties of β-ketoimine calix[4]arene thin films have been investigated. These calix[4]arene derivative films exhibit absorption spectra with a resolved electronic structure in the UV–vis and the energy gap was found to be 3.65 eV. Electrical properties of ITO/β-ketoimine calix[4]arene/Al devices have been investigated by I–V characteristics and impedance spectroscopy measurements. The conduction is governed by space-charge-limited current (SCLC) mechanism. The impedance spectroscopy study showed a hopping transport process, a typical behavior of disordered materials. The device was modeled by a single parallel resistor and capacitor network in series with a resistance. The β-ketoimine calix[4]arene was used for the conception of the novel optical chemical sensor and the detection of Cu{sup 2+} ions was monitored by UV–visible spectroscopy. The linear dynamic range for the determination of Cu{sup 2+} has been 10{sup −5}–10{sup −3.7} M with a detection limit of 10{sup −5} M. The characteristics of this optode such as regeneration, repeatability, reproducibility, short-term stability, life time and ion selectivity have been discussed. - Highlights: • We examine optical properties of β-ketoimine calix[4]arene ligand. • We investigate the electric properties of ITO/β-ketoimine calix[4]arene/Al device. • We study the sensing properties of optode films for the detection of copper (II)

  3. Impact of the Topological Surface State on the Thermoelectric Transport in Sb2Te3 Thin Films.

    Science.gov (United States)

    Hinsche, Nicki F; Zastrow, Sebastian; Gooth, Johannes; Pudewill, Laurens; Zierold, Robert; Rittweger, Florian; Rauch, Tomáš; Henk, Jürgen; Nielsch, Kornelius; Mertig, Ingrid

    2015-04-28

    Ab initio electronic structure calculations based on density functional theory and tight-binding methods for the thermoelectric properties of p-type Sb2Te3 films are presented. The thickness-dependent electrical conductivity and the thermopower are computed in the diffusive limit of transport based on the Boltzmann equation. Contributions of the bulk and the surface to the transport coefficients are separated, which enables to identify a clear impact of the topological surface state on the thermoelectric properties. When the charge carrier concentration is tuned, a crossover between a surface-state-dominant and a Fuchs-Sondheimer transport regime is achieved. The calculations are corroborated by thermoelectric transport measurements on Sb2Te3 films grown by atomic layer deposition.

  4. Decarbonising the Finnish Transport Sector by 2050: Electricity or Biofuels?

    DEFF Research Database (Denmark)

    Skytte, Klaus; Bramstoft Pedersen, Rasmus

    2018-01-01

    for the transport sector by 2050—one with a high percentage of electric vehicles (EV) and another with a high percentage of biofuels (BIO), and compares the scenario results with a known Carbon-Neutral Scenario (CNS) which is adopted from the Nordic Energy Technology Perspective (IEA in Nordic energy technology...... perspective—pathways to a carbon-neutral energy future, 2013a). The socio-economic value of the total system cost is computed and the system integration of the transport sector with the electricity and heating sectors is simulated with an hourly time resolution. This study finds that a Finnish transport...... of the results is tested through a sensitivity analysis which shows that the costs (investment and maintenance) of biodiesel cars and EV are the most sensitive parameters in the comparative analysis of the scenarios....

  5. Decarbonising the Swedish transport sector with electricity or biofuels

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Bo Bramstoft; Skytte, Klaus

    2016-01-01

    Sweden has set long-term energy policy targets which aim at eliminating net greenhouse gas (GHG) emissions by 2050 [1]. Since the production of power and district heating in Sweden is already close to be carbon neutral, a further reduction of GHG emissions have to be seeked in other sectors......, if the ambitious targets of a carbon neutral transport system by 2050 and of being independent from fossil fuels in the vehicle fleet by 2030 have to be achieved [1]. To meet the energy policy targets, radical restructuring of the fuel use and vehicle stock in the transport sector is required. In this context......, this paper develops two alternative scenarios for the transport sector by 2050 – an Electric Vehicles Scenario (EVS) which include a high percentage of electric vehicles and a BIOfuel Scenario (BIOS) with a high percentage of biofuels. The scenario results are compared to the Carbon Neutral Scenario (CNS...

  6. Morphological Influence of Solution-Processed Zinc Oxide Films on Electrical Characteristics of Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Hyeonju Lee

    2016-10-01

    Full Text Available We report on the morphological influence of solution-processed zinc oxide (ZnO semiconductor films on the electrical characteristics of ZnO thin-film transistors (TFTs. Different film morphologies were produced by controlling the spin-coating condition of a precursor solution, and the ZnO films were analyzed using atomic force microscopy, X-ray diffraction, X-ray photoemission spectroscopy, and Hall measurement. It is shown that ZnO TFTs have a superior performance in terms of the threshold voltage and field-effect mobility, when ZnO crystallites are more densely packed in the film. This is attributed to lower electrical resistivity and higher Hall mobility in a densely packed ZnO film. In the results of consecutive TFT operations, a positive shift in the threshold voltage occurred irrespective of the film morphology, but the morphological influence on the variation in the field-effect mobility was evident. The field-effect mobility in TFTs having a densely packed ZnO film increased continuously during consecutive TFT operations, which is in contrast to the mobility decrease observed in the less packed case. An analysis of the field-effect conductivities ascribes these results to the difference in energetic traps, which originate from structural defects in the ZnO films. Consequently, the morphological influence of solution-processed ZnO films on the TFT performance can be understood through the packing property of ZnO crystallites.

  7. Effects of ZnO addition on electrical and structural properties of amorphous SnO2 thin films

    International Nuclear Information System (INIS)

    Ko, J.H.; Kim, I.H.; Kim, D.; Lee, K.S.; Lee, T.S.; Jeong, J.-H.; Cheong, B.; Baik, Y.J.; Kim, W.M.

    2006-01-01

    Amorphous Zn-Sn-O (ZTO) thin films with relative Zn contents (= [at.% Zn]/([at.% Zn] + [at.% Sn])) of 0, 0.08 and 0.27 were fabricated by co-sputtering of SnO 2 and ZnO targets at room temperature. Changes in structural, electrical and optical properties together with electron transport properties were examined upon post-annealing treatment in the temperature range from 200 to 600 deg. C in vacuum and in air. Characterization by XRD showed that an amorphous ZTO thin film crystallized at higher temperatures with increasing Zn content. Crystallized ZTO films with a relative Zn content of 0.27 might not contain a single SnO 2 phase which is observed in the films of the other compositions. Amorphous ZTO films showed decreasing electrical resistivities with increasing annealing temperature, having a minimum value of 1 x 10 - 3 Ω cm. Upon crystallization, the resistivities increased drastically, which was attributed to poor crystallinity of the crystallized films. All the ZTO films were found to be degenerate semiconductors with non-parabolic conduction bands having effective masses varying from 0.15 to 0.3 in the carrier concentration range of 6 x 10 18 to 2 x 10 2 cm - 3 . As for a ZTO film with a relative Zn content of 0.27, the degree of non-parabolicity was much lower compared with films of the other compositions, leading to a relatively stable mobility over a wide range of carrier concentration

  8. Electrical and optical properties of amorphous indium zinc oxide films

    International Nuclear Information System (INIS)

    Ito, N.; Sato, Y.; Song, P.K.; Kaijio, A.; Inoue, K.; Shigesato, Y.

    2006-01-01

    Valence electron control and electron transport mechanisms on the amorphous indium zinc oxide (IZO) films were investigated. The amorphous IZO films were deposited by dc magnetron sputtering using an oxide ceramic IZO target (89.3 wt.% In 2 O 3 and 10.7 wt.% ZnO). N-type impurity dopings, such as Sn, Al or F, could not lead to the increase in carrier density in the IZO. Whereas, H 2 introduction into the IZO deposition process was confirmed to be effective to increase carrier density. By 30% H 2 introduction into the deposition process, carrier density increased from 3.08 x 10 2 to 7.65 x 10 2 cm -3 , which must be originated in generations of oxygen vacancies or interstitial Zn 2+ ions. Decrease in the transmittance in the near infrared region and increase in the optical band gap were observed with the H 2 introduction, which corresponded to the increase in carrier density. The lowest resistivity of 3.39 x 10 -4 Ω cm was obtained by 10% H 2 introduction without substrate heating during the deposition

  9. Microstructure and opto-electric properties of Cu/ITO thin films

    International Nuclear Information System (INIS)

    Wang Xian; Li Junlei; Shi Shiwei; Song Xueping; Cui Jingbiao; Sun Zhaoqi

    2012-01-01

    Highlights: ► We prepared Cu/ITO films with different Cu layer thickness. ► We analyzed the relation between opto-electric properties and roughness of the films. ► The Cu-16.1 nm/ITO film shows excellent optical and electric properties. ► Cu/ITO films have great application prospects in new-type transflective displays. - Abstract: Cu/ITO thin films were deposited on glass and silicon substrates by DC and RF magnetron sputtering at room temperature. X-ray diffraction results showed that the films were amorphous. Both of SEM images and 3D Profilometer images indicated that the surface morphology of the ITO films had been affected by the Cu layer. The optical and electric properties of the Cu/ITO films changed significantly with the variation of Cu layer thickness. Cu-5.4 nm/ITO film exhibited the highest optical transmittance of 62.9% at 550 nm and the lowest sheet resistance of 96 Ω/□, whereas Cu-16.1 nm/ITO film showed the highest average reflectance of 24.0% and the lowest resistance of 27.4 Ω/□. Based on our analysis, it was evaluated that Cu layer had an important effect on the electrical and optical properties of ITO thin films.

  10. Temperature-dependent charge injection and transport in pentacene thin-film transistors

    International Nuclear Information System (INIS)

    Kim, Dong Wook; Shin, Hyunji; Choi, Jong Sun; Park, Ji-Ho; Park, Jaehoon

    2015-01-01

    The electrical characteristics of p-channel pentacene thin-film transistors (TFTs) were analyzed at different operating temperatures ranging from 253 to 353 K. An improvement in the drain current and field-effect mobility of the pentacene TFTs is observed with increasing temperature. From the Arrhenius plots of field-effect mobility extracted at various temperatures, a lower activation energy of 99.34 meV was obtained when the device is operating in the saturation region. Such observation is ascribed to the thermally activated hole transport through the pentacene grain boundaries. On the other hand, it was found that the Au/pentacene contact significantly affects the TFTs electrical characteristics in the linear region, which resulted in a higher activation energy. The activation energy based on the linear field-effect mobility, which increased from 344.61 to 444.70 meV with decreasing temperature, implies the charge-injection-limited electrical behavior of pentacene TFTs at low temperatures. The thermally induced electrical characteristic variations in pentacene TFTs can thus be studied through the temperature dependence of the charge injection and transport processes. (paper)

  11. Electricity resonance-induced fast transport of water through nanochannels.

    Science.gov (United States)

    Kou, Jianlong; Lu, Hangjun; Wu, Fengmin; Fan, Jintu; Yao, Jun

    2014-09-10

    We performed molecular dynamics simulations to study water permeation through a single-walled carbon nanotube with electrical interference. It was found that the water net flux across the nanochannel is greatly affected by the external electrical interference, with the maximal net flux occurred at an electrical interference frequency of 16670 GHz being about nine times as high as the net flux at the low or high frequency range of (80,000 GHz). The above phenomena can be attributed to the breakage of hydrogen bonds as the electrical interference frequency approaches to the inherent resonant frequency of hydrogen bonds. The new mechanism of regulating water flux across nanochannels revealed in this study provides an insight into the water transportation through biological water channels and has tremendous potential in the design of high-flux nanofluidic systems.

  12. Modification of C60/C70+Pd film structure under electric field influence during electron emission

    International Nuclear Information System (INIS)

    Czerwosz, E.; Dluzewski, P.; Kozlowski, M.

    2001-01-01

    We investigated the modification of structure of C 60 /C 70 +Pd films during cold electron emission from these films. Films were obtained by vacuum thermal deposition from two sources and were characterised before and after electron emission measurements by transmission electron microscopy and electron diffraction. Films were composed of nanocrystalline Pd objects dispersed in carbon/fullerenes matrix. I-V characteristics for electron emission were obtained in diode geometry with additionally applied voltage along the film surface. The modification of film structure occurred under applied electric field and the grouping of Pd nano crystals into bigger objects was observed

  13. Analysis of Electrical Characteristics of Thin Film Photovoltaic Cells

    Science.gov (United States)

    Kasick, Michael P.

    2004-01-01

    Solar energy is the most abundant form of energy in many terrestrial and extraterrestrial environments. Often in extraterrestrial environments sunlight is the only readily available form of energy. Thus the ability to efficiently harness solar energy is one of the ultimate goals in the design of space power systems. The essential component that converts solar energy into electrical energy in a solar energy based power system is the photovoltaic cell. Traditionally, photovoltaic cells are based on a single crystal silicon absorber. While silicon is a well understood technology and yields high efficiency, there are inherent disadvantages to using single crystal materials. The requirements of weight, large planar surfaces, and high manufacturing costs make large silicon cells prohibitively expensive for use in certain applications. Because of silicon s disadvantages, there is considerable ongoing research into alternative photovoltaic technologies. In particular, thin film photovoltaic technologies exhibit a promising future in space power systems. While they are less mature than silicon, the better radiation hardness, reduced weight, ease of manufacturing, low material cost, and the ability to use virtually any exposed surface as a substrate makes thin film technologies very attractive for space applications. The research group lead by Dr. Hepp has spent several years researching copper indium disulfide as an absorber material for use in thin film photovoltaic cells. While the group has succeeded in developing a single source precursor for CuInS2 as well as a unique method of aerosol assisted chemical vapor deposition, the resulting cells have not achieved adequate efficiencies. While efficiencies of 11 % have been demonstrated with CuInS2 based cells, the cells produced by this group have shown efficiencies of approximately 1 %. Thus, current research efforts are turning towards the analysis of the individual layers of these cells, as well as the junctions between

  14. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Science.gov (United States)

    Nagao, Yuki; Kubo, Takahiro

    2014-12-01

    Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120-670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  15. Study of the charge transport characteristics of dendrimer molecular thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.C., E-mail: jcli@mail.neu.edu.cn; Han, N.; Wang, S.S.; Ba, D.C.

    2011-05-31

    In this work, we systematically studied the electrical characteristics of two types of dendritic arylamine thin film devices. We observed that, for devices with different interfacial structures, their charge injection barriers and transport properties are obviously different. The smallest charge injection barrier is observed in dendrimer devices without charge-transfer interfacial layers. The Richardson-Schottky thermionic emission model can be well used to fit the experimental current-voltage characteristics at a lower voltage region. The charge injection barrier increases about 0.4 eV and 0.5 eV when a 1-decanethiol self-assembly layer and -CN terminated dendrimer thin films are inserted as the interfacial layer, respectively. It is shown that the molecule/electrode charge-transfer interfaces can largely affect the device charge injection/transport process and consequently change the device performance. In this case, the space charge limited conduction theory is more applicable to simulate the device conduction mechanism. Owing to its ultra-thin thickness, the self-assembly monolayer technique is proved to be an efficient approach in engineering the interfacial electronic structures of dendrimer thin film devices.

  16. Study of the charge transport characteristics of dendrimer molecular thin films

    International Nuclear Information System (INIS)

    Li, J.C.; Han, N.; Wang, S.S.; Ba, D.C.

    2011-01-01

    In this work, we systematically studied the electrical characteristics of two types of dendritic arylamine thin film devices. We observed that, for devices with different interfacial structures, their charge injection barriers and transport properties are obviously different. The smallest charge injection barrier is observed in dendrimer devices without charge-transfer interfacial layers. The Richardson-Schottky thermionic emission model can be well used to fit the experimental current-voltage characteristics at a lower voltage region. The charge injection barrier increases about 0.4 eV and 0.5 eV when a 1-decanethiol self-assembly layer and -CN terminated dendrimer thin films are inserted as the interfacial layer, respectively. It is shown that the molecule/electrode charge-transfer interfaces can largely affect the device charge injection/transport process and consequently change the device performance. In this case, the space charge limited conduction theory is more applicable to simulate the device conduction mechanism. Owing to its ultra-thin thickness, the self-assembly monolayer technique is proved to be an efficient approach in engineering the interfacial electronic structures of dendrimer thin film devices.

  17. Effect of External Electric Field on Substrate Transport of a Secondary Active Transporter.

    Science.gov (United States)

    Zhang, Ji-Long; Zheng, Qing-Chuan; Yu, Li-Ying; Li, Zheng-Qiang; Zhang, Hong-Xing

    2016-08-22

    Substrate transport across a membrane accomplished by a secondary active transporter (SAT) is essential to the normal physiological function of living cells. In the present research, a series of all-atom molecular dynamics (MD) simulations under different electric field (EF) strengths was performed to investigate the effect of an external EF on the substrate transport of an SAT. The results show that EF both affects the interaction between substrate and related protein's residues by changing their conformations and tunes the timeline of the transport event, which collectively reduces the height of energy barrier for substrate transport and results in the appearance of two intermediate conformations under the existence of an external EF. Our work spotlights the crucial influence of external EFs on the substrate transport of SATs and could provide a more penetrating understanding of the substrate transport mechanism of SATs.

  18. Electron transport in disordered films of metal nanoparticles linked by organic molecules

    International Nuclear Information System (INIS)

    Mueller, K.H.; Wei, G.; Herrmann, J.; Raguse, B.; Baxter, G.

    2004-01-01

    Full text: We have investigated theoretically and experimentally the mechanism of electron transport in films made of ∼10 nm sized gold nanoparticles linked by alkanedithiol molecules. Conduction in these films is due to linker-molecule assisted single-electron tunnelling between neighbouring nanoparticles where electrons have to overcome the Coulomb blockade energy. Strong disorder in our films in the form of separation gap fluctuations between adjacent nanoparticles and variations in Coulomb blockade energies cause electron current percolation. We have found that the dependence of the conduction on the length of the alkanedithiol molecules is affected by the degree of disorder. In addition, we have observed that percolation leads to a non-Arrhenius-like temperature dependence of the conduction and to a film-thickness dependent conductivity. I-V characteristics at low temperatures reveal Coulomb blockade effects. The strong dependence of the electrical conduction on the separation gaps between adjacent nanoparticles can be utilized in strain gauge and gas sensor applications

  19. Effects of radial electrical field on neoclassical transport in tokamaks

    International Nuclear Information System (INIS)

    Wang Zhongtian; Le Clair, G.

    1996-07-01

    Neoclassical transport theory for tokamaks in presence of a radial electrical field with shear is developed using Hamiltonian formalism. Diffusion coefficients are derived in both plateau regime including a large electric field and banana regime including the squeezing factor which can greatly affect diffusion at the plasma edge. The scaling on squeezing factor is different from the one given by Shaing and Hazeltine. Rotation speeds are calculated in the scrape-off region. They are in good agreement with measurements on TdeV Tokamak. (2 figs.)

  20. Beyond sustainable transport. Electric car features and services

    Energy Technology Data Exchange (ETDEWEB)

    Malinen, P.; Pirhonen, V.; Giesecke, R. [Aalto Univ. School of Science, Espoo (Finland). BIT Research Centre

    2011-07-01

    The overall aim of the Finnish SIMBe project (www.SIMBe.fi) is to significantly accelerate the introduction of sustainable electric mobility in Finland. SIMBe stands for Smart Infrastructures for Electric Mobility in Built Environments. The fundamental assumption of the project is that electric (e-) mobility is inherently more sustainable than mobility based on fossil fuels. However, as has been widely recognized in the e-mobility field, the currently used batteries are expensive, often more expensive than the rest of the particular electric vehicle (EV) that they propel. There are two opposite schools of thought how to address this problem, which can be summarized as follows: a) Leave the battery in peace, as it is precious. Use it only to propel the EV of which it is an integral part. Use it instead of fuel, and do not use it for any other applications. The EV's sole purpose is that of a transportation device. b) Make as much use of the battery as possible, as it is precious. Involve vehicle to grid (V2G) or vehicle to house charging. Additionally, invent new features, meanings and services for the battery driven EV, which go distinctively beyond transport. The SIMBe project decided to opt for school (b), based on the smart energy production and distribution scenario, in which electric and hybrid vehicles' batteries will deliver energy on demand to the grid. SIMBe aims to prepare key Finnish industrial players and consumers for the transition to this new energy-transportation paradigm. But how can we replace the conservative understanding of the 'transport only' school by a holistic view of what features, meanings and services are actually possible by using a large scale fleet of 'batteries on wheels'? The Nordic Climate Festival (at) Aalto provided the unique opportunity to tap into the knowledge and creativity of students within the Nordic countries. Being properly prepared and facilitated, a workshop may provide some insights and

  1. Beyond sustainable transport. Electric car features and services

    Energy Technology Data Exchange (ETDEWEB)

    Malinen, P; Pirhonen, V; Giesecke, R [Aalto Univ. School of Science, Espoo (Finland). BIT Research Centre

    2011-07-01

    The overall aim of the Finnish SIMBe project (www.SIMBe.fi) is to significantly accelerate the introduction of sustainable electric mobility in Finland. SIMBe stands for Smart Infrastructures for Electric Mobility in Built Environments. The fundamental assumption of the project is that electric (e-) mobility is inherently more sustainable than mobility based on fossil fuels. However, as has been widely recognized in the e-mobility field, the currently used batteries are expensive, often more expensive than the rest of the particular electric vehicle (EV) that they propel. There are two opposite schools of thought how to address this problem, which can be summarized as follows: a) Leave the battery in peace, as it is precious. Use it only to propel the EV of which it is an integral part. Use it instead of fuel, and do not use it for any other applications. The EV's sole purpose is that of a transportation device. b) Make as much use of the battery as possible, as it is precious. Involve vehicle to grid (V2G) or vehicle to house charging. Additionally, invent new features, meanings and services for the battery driven EV, which go distinctively beyond transport. The SIMBe project decided to opt for school (b), based on the smart energy production and distribution scenario, in which electric and hybrid vehicles' batteries will deliver energy on demand to the grid. SIMBe aims to prepare key Finnish industrial players and consumers for the transition to this new energy-transportation paradigm. But how can we replace the conservative understanding of the 'transport only' school by a holistic view of what features, meanings and services are actually possible by using a large scale fleet of 'batteries on wheels'? The Nordic Climate Festival (at) Aalto provided the unique opportunity to tap into the knowledge and creativity of students within the Nordic countries. Being properly prepared and facilitated, a workshop may provide some insights and ideas. In scope of the

  2. The influence of Ga{sup +} irradiation on the transport properties of mesoscopic conducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Barzola-Quiquia, J; Dusari, S; Bridoux, G; Bern, F; Molle, A; Esquinazi, P, E-mail: j.barzola@physik.uni-leipzig.de, E-mail: esquin@physik.uni-leipzig.de [Division of Superconductivity and Magnetism, Universitaet Leipzig, Linnestrasse 5, D-04103 Leipzig (Germany)

    2010-04-09

    We studied the influence of 30 keV Ga{sup +}-ions-commonly used in focused-ion-beam (FIB) devices-on the transport properties of thin crystalline graphite flakes, and La{sub 0.7}Ca{sub 0.3}MnO{sub 3} and Co thin films. The changes in electrical resistance were measured in situ during irradiation and also the temperature and magnetic field dependence before and after irradiation. Our results show that the transport properties of these materials strongly change at Ga{sup +} fluences much below those used for patterning and ion-beam-induced deposition (IBID), seriously limiting the use of FIB when the intrinsic properties of the materials of interest are of importance. We present a method that can be used to protect the sample as well as to produce selectively irradiation-induced changes.

  3. Local electrical properties of thermally grown oxide films formed on duplex stainless steel surfaces

    Science.gov (United States)

    Guo, L. Q.; Yang, B. J.; He, J. Y.; Qiao, L. J.

    2018-06-01

    The local electrical properties of thermally grown oxide films formed on ferrite and austenite surfaces of duplex stainless steel at different temperatures were investigated by Current sensing atomic force microscopy, X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The current maps and XPS/AES analyses show that the oxide films covering austenite and ferrite surfaces formed at different temperatures exhibit different local electrical characteristics, thickness and composition. The dependence of electrical conductivity of oxide films covering austenite and ferrite surface on the formation temperature is attributed to the film thickness and semiconducting structures, which is intrinsically related to thermodynamics and kinetics process of film grown at different temperature. This is well elucidated by corresponding semiconductor band structures of oxide films formed on austenite and ferrite phases at different temperature.

  4. Polarization of electron-beam irradiated LDPE films: contribution to charge generation and transport

    Science.gov (United States)

    Banda, M. E.; Griseri, V.; Teyssèdre, G.; Le Roy, S.

    2018-04-01

    Electron-beam irradiation is an alternative way to generate charges in insulating materials, at controlled position and quantity, in order to monitor their behaviour in regard to transport phenomena under the space charge induced electric field or external field applied. In this study, low density polyethylene (LDPE) films were irradiated by a 80 keV electron-beam with a flux of 1 nA cm‑2 during 10 min in an irradiation chamber under vacuum conditions, and were then characterized outside the chamber using three experimental methods. The electrical behaviour of the irradiated material was assessed by space charge measurements using the pulsed electro-acoustic (PEA) method under dc stress. The influence of the applied electric field polarity and amplitude has been tested in order to better understand the charge behaviour after electron-beam irradiation. Fourier transform infra-red spectroscopy (FTIR) and photoluminescence (PL) measurements were performed to evaluate the impact of the electron beam irradiation, i.e. deposited charges and energy, on the chemical structure of the irradiated samples. The present results show that the electrical behaviour in LDPE after irradiation is mostly driven by charges, i.e. by physical process functions of the electric field, and that changes in the chemical structure seems to be mild.

  5. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yuki, E-mail: ynagao@jaist.ac.jp; Kubo, Takahiro

    2014-12-30

    Graphical abstract: - Highlights: • Proton transport of fully protonated poly(aspartic acid) thin film was investigated. • The thin film structure differed greatly from the partially protonated one. • Proton transport occurs on the surface, not inside of the thin film. • This result contributes to biological transport systems such as bacteriorhodopsin. - Abstract: Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120–670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  6. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    International Nuclear Information System (INIS)

    Nagao, Yuki; Kubo, Takahiro

    2014-01-01

    Graphical abstract: - Highlights: • Proton transport of fully protonated poly(aspartic acid) thin film was investigated. • The thin film structure differed greatly from the partially protonated one. • Proton transport occurs on the surface, not inside of the thin film. • This result contributes to biological transport systems such as bacteriorhodopsin. - Abstract: Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120–670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system

  7. COMPLEX EVALUATION OF ELECTRIC RAIL TRANSPORT IMPLEMENTATION IN VILNIUS CITY

    Directory of Open Access Journals (Sweden)

    Gintautas BUREIKA

    2016-03-01

    Full Text Available The article analyses the current problems of Vilnius city public transportation. The possible solutions (options and the technical means to improve the attractiveness of public transportation and accessibility are considered. Two main alternatives of means of electric transport (underground and tram have been singled out for Vilnius city. The suitability of these rail transport means have been substantiated. The nature and density of the work and residence places (areas of Vilnius city residents have been analysed. The scheme of tram and underground lines projected in Vilnius city are evaluated, which have been composed according to the current and forecasted flows of passengers, the nature of their changes and critical points. The technical economic indicators of the tram routes and underground lines in Vilnius city are analysed: average driving speed, average distance between the stations, the duration of the trip, the capacity of a single means of transport, the costs of line support and the size of investment. The accident rate of urban rail transportation is estimated. Comparative criteria of tram and underground lines are selected. The effectiveness of both rail means of transport in Vilnius city are compared according to three multi-criteria evaluation methods: the sum of ratings, simple additive weighting and geometrical means. The final conclusions and recommendations are provided.

  8. Structural, optical and electrical peculiarities of r.f. plasma sputtered indium tin oxide films

    International Nuclear Information System (INIS)

    Boycheva, Sylvia; Sytchkova, Anna Krasilnikova; Grilli, Maria Luisa; Piegari, Angela

    2007-01-01

    In this work the influence of the deposition conditions on the structural, electrical and optical properties of the ITO films was studied. Films were deposited by r.f. plasma sputtering technique in Ar and varying Ar + O 2 gas mixtures, with and without substrate heating. Transmittance and reflectance of the films were measured in the range 350-2500 nm; the refractive index (n) and the extinction coefficient (k) were calculated by the spectral data simulation. The sheet resistance of the films was measured by four-point probe method. X-ray diffraction analysis was performed to study the texture of the films. Threshold behaviour was observed in the optical and electrical properties of ITO films deposited in Ar + O 2 atmosphere at a certain oxygen concentration determined by a fix combination of all other deposition conditions. A schematic diagram for the change of the film properties versus composition was suggested, which explains the obtained results

  9. The effect of laser irradiation on electrical and structural properties of ZnO thin films

    Directory of Open Access Journals (Sweden)

    P Kameli

    2013-03-01

    Full Text Available  In this paper, ZnO thin film was prepared by sol-gel process on glass substrates. The deposited films were dried at 100 and 240 ˚C and then annealed at 300, 400 and 500 ˚C. The two-probe measurement showed that resistance of as-prepared films is very high. The KrF excimer (λ=248 nm laser irradiation with 1000 pulses, frequency of 1 Hz and 90 mJ/cm2 energy on surface of film resulted in the reduction of the films electrical resistance. X-ray diffraction (XRD patterns confirmed the improved hexagonal wurtzite structure of film, and AFM and FE-SEM analyses showed regular and spherical grain was formed on the surface. The particle size was increased from ~10 to ~30 nm after leaser irradiation. Generally, it was showed that electrical, structural and morphological properties of films improve considerably by laser irradiation.

  10. Conductivity behavior of very thin gold films ruptured by mass transport in photosensitive polymer film

    Energy Technology Data Exchange (ETDEWEB)

    Linde, Felix; Sekhar Yadavalli, Nataraja; Santer, Svetlana [Department of Experimental Physics, Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam (Germany)

    2013-12-16

    We report on conductivity behavior of very thin gold layer deposited on a photosensitive polymer film. Under irradiation with light interference pattern, the azobenzene containing photosensitive polymer film undergoes deformation at which topography follows a distribution of intensity, resulting in the formation of a surface relief grating. This process is accompanied by a change in the shape of the polymer surface from flat to sinusoidal together with a corresponding increase in surface area. The gold layer placed above deforms along with the polymer and ruptures at a strain of 4%. The rupturing is spatially well defined, occurring at the topographic maxima and minima resulting in periodic cracks across the whole irradiated area. We have shown that this periodic micro-rupturing of a thin metal film has no significant impact on the electrical conductivity of the films. We suggest a model to explain this phenomenon and support this by additional experiments where the conductivity is measured in a process when a single nanoscopic scratch is formed with an AFM tip. Our results indicate that in flexible electronic materials consisting of a polymer support and an integrated metal circuit, nano- and micro cracks do not alter significantly the behavior of the conductivity unless the metal is disrupted completely.

  11. Semiconductor thin films directly from minerals—study of structural, optical, and transport characteristics of Cu2O thin films from malachite mineral and synthetic CuO

    International Nuclear Information System (INIS)

    Balasubramaniam, K.R.; Kao, V.M.; Ravichandran, J.; Rossen, P.B.; Siemons, W.; Ager, J.W.

    2012-01-01

    We demonstrate the proof-of-concept of using an abundantly occurring natural ore, malachite (Cu 2 CO 3 (OH) 2 ) to directly yield the semiconductor Cu 2 O to be used as an active component of a functional thin film based device. Cu 2 O is an archetype hole-conducting semiconductor that possesses several interesting characteristics particularly useful for solar cell applications, including low cost, non-toxicity, good hole mobility, large minority carrier diffusion length, and a direct energy gap ideal for efficient absorption. In this article, we compare the structural, optical, and electrical transport characteristics of Cu 2 O thin films grown from the natural mineral malachite and synthetic CuO targets. Growth from either source material results in single-phase, fully epitaxial cuprous oxide thin films as determined by x-ray diffraction. The films grown from malachite have strong absorption coefficients ( 10 4 cm −1 ), a direct allowed optical bandgap ( 2.4 eV), and majority carrier hole mobilities ( 35 cm 2 V −1 s −1 at room temperature) that compare well with films grown from the synthetic target as well as with previously reported values. Our work demonstrates that minerals could be useful to directly yield the active components in functional devices and suggests a route for the exploration of low cost energy conversion and storage technologies. - Highlights: ► Semiconductor thin films directly from minerals ► Chemistry and structure evolution of the films obtained from mineral target is very similar to that films obtained from high-purity synthetic targets. ► Quite interestingly, transport and optical characteristics are also found to be similar.

  12. Drag reduction and improvement of material transport in creeping films

    Energy Technology Data Exchange (ETDEWEB)

    Scholle, M.; Rund, A.; Aksel, N. [University of Bayreuth, Department of Applied Mechanics and Fluid Dynamics, Bayreuth (Germany)

    2006-01-01

    It is widely accepted that for bodies in turbulent flows a reduction of skin friction can be reached if the surface of the body is provided with small ridges aligned in the local flow direction. This surprising and counterintuitive phenomenon is called the shark-skin effect, motivated from the dermal surface morphology of sharks. In the present article we examine the possibility of resistance reduction due to a rippled surface topography in Stokes flow. We especially analyse the influence of wall riblets perpendicular to the flow direction on the mean transport velocity in gravity-driven creeping film flows following the idea that eddies generated in the valleys of the riblets act like fluid roller bearings and hence may reduce drag. Using a theoretical treatment of the Stokes equations with complex function theory, parameter studies with varying flow rate, bottom amplitude and bottom shape are presented. For the given bottom shapes the maximum enhancement of transport velocity is found by optimising the film thickness. (orig.)

  13. The effect of the Grain-Boundary and surface scattering of charge carriers on electrical conductance of thin V and Re films

    International Nuclear Information System (INIS)

    Lakh, Kh.G.; Stasyuk, Z.V.

    1994-01-01

    Size effects in electrical conductivity and the Hall coefficient of thin V and Re films have been investigated. An analysis of experimental data was made within the framework of modified Mayadas -Shatzkes and Tellier - Tosser - Pichard models. The parameters of charge transport for V and Re have been found

  14. All-metallic electrically gated 2H-TaSe2 thin-film switches and logic circuits

    International Nuclear Information System (INIS)

    Renteria, J.; Jiang, C.; Yan, Z.; Samnakay, R.; Goli, P.; Pope, T. R.; Salguero, T. T.; Wickramaratne, D.; Lake, R. K.; Khitun, A. G.; Balandin, A. A.

    2014-01-01

    We report the fabrication and performance of all-metallic three-terminal devices with tantalum diselenide thin-film conducting channels. For this proof-of-concept demonstration, the layers of 2H-TaSe 2 were exfoliated mechanically from single crystals grown by the chemical vapor transport method. Devices with nanometer-scale thicknesses exhibit strongly non-linear current-voltage characteristics, unusual optical response, and electrical gating at room temperature. We have found that the drain-source current in thin-film 2H-TaSe 2 –Ti/Au devices reproducibly shows an abrupt transition from a highly resistive to a conductive state, with the threshold tunable via the gate voltage. Such current-voltage characteristics can be used, in principle, for implementing radiation-hard all-metallic logic circuits. These results may open new application space for thin films of van der Waals materials

  15. All-metallic electrically gated 2H-TaSe2 thin-film switches and logic circuits

    Science.gov (United States)

    Renteria, J.; Samnakay, R.; Jiang, C.; Pope, T. R.; Goli, P.; Yan, Z.; Wickramaratne, D.; Salguero, T. T.; Khitun, A. G.; Lake, R. K.; Balandin, A. A.

    2014-01-01

    We report the fabrication and performance of all-metallic three-terminal devices with tantalum diselenide thin-film conducting channels. For this proof-of-concept demonstration, the layers of 2H-TaSe2 were exfoliated mechanically from single crystals grown by the chemical vapor transport method. Devices with nanometer-scale thicknesses exhibit strongly non-linear current-voltage characteristics, unusual optical response, and electrical gating at room temperature. We have found that the drain-source current in thin-film 2H-TaSe2-Ti/Au devices reproducibly shows an abrupt transition from a highly resistive to a conductive state, with the threshold tunable via the gate voltage. Such current-voltage characteristics can be used, in principle, for implementing radiation-hard all-metallic logic circuits. These results may open new application space for thin films of van der Waals materials.

  16. All-metallic electrically gated 2H-TaSe{sub 2} thin-film switches and logic circuits

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, J.; Jiang, C.; Yan, Z. [Nano-Device Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Samnakay, R.; Goli, P. [Materials Science and Engineering Program, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Pope, T. R.; Salguero, T. T. [Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States); Wickramaratne, D.; Lake, R. K. [Laboratory for Terascale and Terahertz Electronics, Department of Electrical Engineering, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Khitun, A. G. [Nano-Device Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Materials Science and Engineering Program, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Balandin, A. A., E-mail: balandin@ee.ucr.edu [Nano-Device Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States)

    2014-01-21

    We report the fabrication and performance of all-metallic three-terminal devices with tantalum diselenide thin-film conducting channels. For this proof-of-concept demonstration, the layers of 2H-TaSe{sub 2} were exfoliated mechanically from single crystals grown by the chemical vapor transport method. Devices with nanometer-scale thicknesses exhibit strongly non-linear current-voltage characteristics, unusual optical response, and electrical gating at room temperature. We have found that the drain-source current in thin-film 2H-TaSe{sub 2}–Ti/Au devices reproducibly shows an abrupt transition from a highly resistive to a conductive state, with the threshold tunable via the gate voltage. Such current-voltage characteristics can be used, in principle, for implementing radiation-hard all-metallic logic circuits. These results may open new application space for thin films of van der Waals materials.

  17. Polycrystalline Mg2Si thin films: A theoretical investigation of their electronic transport properties

    International Nuclear Information System (INIS)

    Balout, H.; Boulet, P.; Record, M.-C.

    2015-01-01

    The electronic structures and thermoelectric properties of a polycrystalline Mg 2 Si thin film have been investigated by first-principle density-functional theory (DFT) and Boltzmann transport theory calculations within the constant-relaxation time approximation. The polycrystalline thin film has been simulated by assembling three types of slabs each having the orientation (001), (110) or (111) with a thickness of about 18 Å. The effect of applying the relaxation procedure to the thin film induces disorder in the structure that has been ascertained by calculating radial distribution functions. For the calculations of the thermoelectric properties, the energy gap has been fixed at the experimental value of 0.74 eV. The thermoelectric properties, namely the Seebeck coefficient, the electrical conductivity and the power factor, have been determined at three temperatures of 350 K, 600 K and 900 K with respect to both the energy levels and the p-type and n-type doping levels. The best Seebeck coefficient is obtained at 350 K: the S yy component of the tensor amounts to about ±1000 μV K −1 , depending on the type of charge carriers. However, the electrical conductivity is much too small which results in low values of the figure of merit ZT. Structure–property relationship correlations based on directional radial distribution functions allow us to tentatively draw some explanations regarding the anisotropy of the electrical conductivity. Finally, the low ZT values obtained for the polycrystalline Mg 2 Si thin film are paralleled with those recently reported in the literature for bulk chalcogenide glasses. - Graphical abstract: Structure of the polycrystalline thin film of Mg 2 Si. - Author-Highlights: • Polycrystalline Mg 2 Si film has been modelled by DFT approach. • Thermoelectric properties have been evaluated by semi-classical Boltzmann theory. • The structure was found to be slightly disordered after relaxation. • The highest value of Seebeck

  18. The Effect of Deposition Rate on Electrical, Optical and Structural Properties of ITO Thin Films

    Directory of Open Access Journals (Sweden)

    P. S. Raghupathi

    2005-01-01

    Full Text Available Indium tin oxide (ITO thin films have been prepared using the reactive evaporation technique on glass substrates in an oxygen atmosphere. It is found that the deposition rate plays prominent role in controlling the electrical and optical properties of the ITO thin films. Resistivity, electrical conductivity, activation energy, optical transmission and band gap energy were investigated. A transmittance value of more than 90% in the visible region of the spectrum and an electrical conductivity of 3x10–6 Ωm has been obtained with a deposition rate of 2 nm/min. XRD studies showed that the films are polycrystalline.

  19. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    Science.gov (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  20. Transport properties of olivine grain boundaries from electrical conductivity experiments

    Science.gov (United States)

    Pommier, Anne; Kohlstedt, David L.; Hansen, Lars N.; Mackwell, Stephen; Tasaka, Miki; Heidelbach, Florian; Leinenweber, Kurt

    2018-05-01

    Grain boundary processes contribute significantly to electronic and ionic transports in materials within Earth's interior. We report a novel experimental study of grain boundary conductivity in highly strained olivine aggregates that demonstrates the importance of misorientation angle between adjacent grains on aggregate transport properties. We performed electrical conductivity measurements of melt-free polycrystalline olivine (Fo90) samples that had been previously deformed at 1200 °C and 0.3 GPa to shear strains up to γ = 7.3. The electrical conductivity and anisotropy were measured at 2.8 GPa over the temperature range 700-1400 °C. We observed that (1) the electrical conductivity of samples with a small grain size (3-6 µm) and strong crystallographic preferred orientation produced by dynamic recrystallization during large-strain shear deformation is a factor of 10 or more larger than that measured on coarse-grained samples, (2) the sample deformed to the highest strain is the most conductive even though it does not have the smallest grain size, and (3) conductivity is up to a factor of 4 larger in the direction of shear than normal to the shear plane. Based on these results combined with electrical conductivity data for coarse-grained, polycrystalline olivine and for single crystals, we propose that the electrical conductivity of our fine-grained samples is dominated by grain boundary paths. In addition, the electrical anisotropy results from preferential alignment of higher-conductivity grain boundaries associated with the development of a strong crystallographic preferred orientation of the grains.

  1. Electron transport properties of some new 4-tert-butylcalix[4]arene derivatives in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Leontie, Liviu, E-mail: lleontie@uaic.ro [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, B-dul Carol I, Nr. 11, 700506 Iasi (Romania); Danac, Ramona [Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, B-dul Carol I, Nr. 11, 700506 Iasi (Romania); Girtan, Mihaela [Laboratoire LPhiA, Angers University, 2, Bd. Lavoisier, 49045, Angers (France); Carlescu, Aurelian; Rambu, Alicia Petronela; Rusu, Gheorghe I. [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, B-dul Carol I, Nr. 11, 700506 Iasi (Romania)

    2012-07-16

    Temperature dependences of electric conductivity and thermoelectric power of some recently synthesized organic compounds, 4-tert-butylcalix[4]arene derivatives, are studied. Thin-film samples (d = 0.10-0.40 {mu}m) spin-coated from chloroform solutions onto glass substrates were used. Organic films with reproducible electron transport properties can be obtained if, after deposition, they are submitted to a heat treatment within temperature range of 295-575 K. The studied polycrystalline compounds show typical p-type semiconductor behavior. The activation energy of the electric conduction ranges between 0.82 and 1.12 eV, while the ratio of charge carrier mobilities was found in the range of 0.83-0.94. Some correlations between semiconducting parameters and molecular structure of the organic compounds have been discussed. In the higher temperature ranges (T > 420 K), the electron transport in examined compounds can be interpreted in terms of the band gap representation model, while in the lower temperature range, the Mott's variable-range hopping conduction model was found to be appropriate. The investigated compounds hold promise for thermistor applications. - Highlights: Black-Right-Pointing-Pointer 4-tert-butylcalix(4)arene derivatives in thin films are p-type semiconductors. Black-Right-Pointing-Pointer The electron transfer is favored by their extended conjugation and packing capacity. Black-Right-Pointing-Pointer The band gap representation is suitable in the higher temperature range. Black-Right-Pointing-Pointer The Mott's VRH conduction model may be applied in the lower temperature range. Black-Right-Pointing-Pointer As-prepared organic compounds are promising for thermistor applications.

  2. Electron transport properties of some new 4-tert-butylcalix[4]arene derivatives in thin films

    International Nuclear Information System (INIS)

    Leontie, Liviu; Danac, Ramona; Girtan, Mihaela; Carlescu, Aurelian; Rambu, Alicia Petronela; Rusu, Gheorghe I.

    2012-01-01

    Temperature dependences of electric conductivity and thermoelectric power of some recently synthesized organic compounds, 4-tert-butylcalix[4]arene derivatives, are studied. Thin-film samples (d = 0.10–0.40 μm) spin-coated from chloroform solutions onto glass substrates were used. Organic films with reproducible electron transport properties can be obtained if, after deposition, they are submitted to a heat treatment within temperature range of 295–575 K. The studied polycrystalline compounds show typical p-type semiconductor behavior. The activation energy of the electric conduction ranges between 0.82 and 1.12 eV, while the ratio of charge carrier mobilities was found in the range of 0.83–0.94. Some correlations between semiconducting parameters and molecular structure of the organic compounds have been discussed. In the higher temperature ranges (T > 420 K), the electron transport in examined compounds can be interpreted in terms of the band gap representation model, while in the lower temperature range, the Mott's variable-range hopping conduction model was found to be appropriate. The investigated compounds hold promise for thermistor applications. - Highlights: ► 4-tert-butylcalix(4)arene derivatives in thin films are p-type semiconductors. ► The electron transfer is favored by their extended conjugation and packing capacity. ► The band gap representation is suitable in the higher temperature range. ► The Mott's VRH conduction model may be applied in the lower temperature range. ► As-prepared organic compounds are promising for thermistor applications.

  3. Electric generation and ratcheted transport of contact-charged drops

    Science.gov (United States)

    Cartier, Charles A.; Graybill, Jason R.; Bishop, Kyle J. M.

    2017-10-01

    We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.

  4. Interface effects on the electronic transport properties in highly epitaxial LaBaCo2O(5.5+δ) films.

    Science.gov (United States)

    Ma, C R; Liu, M; Liu, J; Collins, G; Zhang, Y M; Wang, H B; Chen, C L; Lin, Y; He, J; Jiang, J C; Meletis, E I; Jacobson, A J

    2014-02-26

    Single-crystalline perovskite LaBaCo2O5.5+δ thin films were grown on a (110) NdGaO3 single-crystal substrate in order to systematically investigate the effect of lattice mismatch on the electrical transport properties in comparison to the films on LaAlO3, SrTiO3, and MgO substrates. Microstructure studies reveal that all of the LaBaCo2O5.5+δ films are of excellent quality with atomically sharp interface structures. The electrical and magnetic transport property studies indicate that the resistivity, magnetoresistance, and magnetic moment of the film are very sensitive to the substrate materials because of the lattice mismatch/interface strain. The Curie temperature, however, is almost independent of the strain imposed by the substrate, probably because of the strong coupling between the nanodomain boundary and interface strain.

  5. Electrically aligned cellulose film for electro-active paper and its piezoelectricity

    International Nuclear Information System (INIS)

    Yun, Sungryul; Jang, Sangdong; Yun, Gyu-Young; Kim, Jaehwan

    2009-01-01

    Electrically aligned regenerated cellulose films were fabricated and the effect of applied electric field was investigated for the piezoelectricity of electro-active paper (EAPap). The EAPap was fabricated by coating gold electrodes on both sides of regenerated cellulose film. The cellulose film was prepared by dissolving cotton pulp in LiCl/N,N-dimethylacetamide solution followed by a cellulose chain regeneration process. During the regeneration process an external electric field was applied in the direction of mechanical stretching. Alignment of cellulose fiber chains was investigated as a function of applied electric field. The material characteristics of the cellulose films were analyzed by using an x-ray diffractometer, a field emission scanning electron microscope and a high voltage electron microscope. The application of external electric fields was found to induce formation of nanofibers in the cellulose, resulting in an increase in the crystallinity index (CI) values. It was also found that samples with higher CI values showed higher in-plane piezoelectric constant, d 31 , values. The piezoelectricity of the current EAPap films was measured to be equivalent or better than that of ordinary PVDF films. Therefore, an external electric field applied to a cellulose film along with a mechanical stretching during the regeneration process can enhance the piezoelectricity. (technical note)

  6. The role of electric field during spray deposition on fluorine doped tin oxide film

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Anuj, E-mail: anujkumarom@gmail.com; Swami, Sanjay Kumar; Dutta, Viresh

    2014-03-05

    Highlights: • Fluorine doped tin oxide deposition by spray technique. • The growth reaction of tin oxide, controlled by the electric field on the substrate surface. • Deposit on large scale substrate 10 cm × 10 cm by single nozzle. • Obtained good quality of thin film. -- Abstract: The fluorine doped tin oxide film has been deposited on 10 cm × 10 cm glass substrate by using spray technique with a voltage applied between the nozzle and an annular electrode placed 2 mm below the nozzle. The effect of the electric field thus created during the spray deposition on structural, optical and electrical properties of SnO{sub 2}:F (FTO) film was studied. X-ray diffraction pattern revealed the presence of cassiterite structure with (2 0 0) orientation for all the FTO film. SEM study revealed the formation of smooth and uniform surface FTO film under the electric field over the entire substrate area. The electrical measurements show that the film prepared under the electric field (for an applied voltage of 2000 V) had a resistivity ∼1.2 × 10{sup −3} Ω cm, carrier concentration ∼4.21 × 10{sup 20} cm{sup −3} and mobility ∼14.48 cm{sup 2} V{sup −1} s{sup −1}. The sprayed FTO film have the average transmission in the visible region of more than about 80%.

  7. Effect of Target Density on Microstructural, Electrical, and Optical Properties of Indium Tin Oxide Thin Films

    Science.gov (United States)

    Zhu, Guisheng; Zhi, Li; Yang, Huijuan; Xu, Huarui; Yu, Aibing

    2012-09-01

    In this paper, indium tin oxide (ITO) targets with different densities were used to deposit ITO thin films. The thin films were deposited from these targets at room temperature and annealed at 750°C. Microstructural, electrical, and optical properties of the as-prepared films were studied. It was found that the target density had no effect on the properties or deposition rate of radiofrequency (RF)-sputtered ITO thin films, different from the findings for direct current (DC)-sputtered films. Therefore, when using RF sputtering, the target does not require a high density and may be reused.

  8. Influence of Liquid Petroleum Gas on the Electrical Parameters of the WO3 Thick Film

    Directory of Open Access Journals (Sweden)

    R. S. KHADAYATE

    2007-02-01

    Full Text Available In this work, the WO3 thick films were prepared by standard screen-printing technology. These films were characterized by x-ray diffraction (XRD measurements and scanning electron microscopy (SEM. Influence of LPG on the electrical properties of the prepared WO3 thick film is reported. It was observed that the slope of the Arrhenius curves of the WO3 thick film decreased as the medium changed from pure air to 100 ppm LPG in air. From I-V characteristics, it was observed that the WO3 thick film exhibit highest sensitivity to 50 ppm LPG in air at 400oC.

  9. Electroresistance effect in gold thin film induced by ionic-liquid-gated electric double layer

    International Nuclear Information System (INIS)

    Nakayama, Hiroyasu; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Saitoh, Eiji; Ye, Jianting; Iwasa, Yoshihiro

    2012-01-01

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with 27 (-25) MV cm -1 of electric field by applying only 1.7 V of positive (negative) gate voltage. The experimental results indicate that the ionic-liquid-gated EDLT technique can be used for controlling the surface electronic states on metallic systems. (author)

  10. Imaging of electric transport mechanisms in a ferromagnetic Ga{sub 0.96}Mn{sub 0.04}As thin film by low-temperature scanning laser microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschko, Jochen; Guenon, Stefan; Kleiner, Reinhold; Koelle, Dieter [Physikalisches Institut - Experimentalphysik II, Universitaet Tuebingen (Germany); Goennenwein, Sebastian T.B.; Brandlmaier, Andreas; Althammer, Matthias [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Schoch, Wladimir; Limmer, Wolfgang [Institut fuer Halbleiterphysik, Universitaet Ulm (Germany)

    2008-07-01

    Due to its possible applications in spintronic devices the diluted magnetic semiconductor (DMS) Ga{sub 1-x}Mn{sub x}As has been the subject of intense research. Integral measurements revealed an anisotropic magnetoresistance (AMR) and magnetothermopower (AMTP). Thus, both resistivity and thermopower depend on the orientation of magnetization. By examining a 250 nm thick epitaxially grown Ga{sub 0.96}Mn{sub 0.04}As Hall-bar with scanning laser microscopy these two quantities (more precisely the bolometric signal dR/dT and the Seebeck-coefficient S{sub xx}) could be imaged at temperatures down to 3 K with a spatial resolution of {proportional_to}1 {mu}m. We developed simple models to describe these signals and identified them as electric dipole and monopole plus quadrupole signals, respectively. Efforts to image ferromagnetic domains have been made. Furthermore, we discovered inhomogeneities, not visible with conventional optical microscopy and observed a signal possibly due to the diffusion of electron-hole-pairs created by the laser spot.

  11. The effects of film thickness on the electrical, optical, and structural properties of cylindrical, rotating, magnetron-sputtered ITO films

    Science.gov (United States)

    Kim, Jae-Ho; Seong, Tae-Yeon; Ahn, Kyung-Jun; Chung, Kwun-Bum; Seok, Hae-Jun; Seo, Hyeong-Jin; Kim, Han-Ki

    2018-05-01

    We report the characteristics of Sn-doped In2O3 (ITO) films intended for use as transparent conducting electrodes; the films were prepared via a five-generation, in-line type, cylindrical, rotating magnetron sputtering (CRMS) system as a function of film thickness. By using a rotating cylindrical ITO target with high usage (∼80%), we prepared high conductivity, transparent ITO films on five-generation size glass. The effects of film thickness on the electrical, optical, morphological, and structural properties of CRMS-grown ITO films are investigated in detail to correlate the thickness and performance of ITO films. The preferred orientation changed from the (2 2 2) to the (4 0 0) plane with increasing thickness of ITO is attributed to the stability of the (4 0 0) plane against resputtering during the CRMS process. Based on X-ray diffraction, surface field emission scanning electron microscopy, and cross-sectional transmission electron microscopy, we suggest a possible mechanism to explain the preferred orientation and effects of film thickness on the performance of CRMS-grown ITO films.

  12. Charge transport in dye-sensibilized porous zinc oxide films; Ladungstransport in farbstoffsensibilisierten poroesen Zinkoxidfilmen

    Energy Technology Data Exchange (ETDEWEB)

    Reemts, J.

    2006-05-18

    During the last decades, zinc oxide has attracted a lot of attention as an important material in various electrical, chemical, and optical applications. In the present work results are discussed gained from investigations of highly porous electrochemically deposited zinc oxide, which is a promising electrode material both in the area of solar energy conversion and sensor technology. The films were prepared by adding detergents during the electrodeposition process. The detergents have a structure-directing influence during the film deposition and, therefore, on the morphology of the films. The obtained electrodes can easily be sensitized for light or different chemicals by a simple adsorption of different molecules. In the present work I discuss the fundamental charge transport properties of electrochemically deposited zinc oxide films. Temperature-dependent measurements of the current-voltage characteristics are carried out and the spectral response of the photoconductivity is investigated. In order to understand the charge transport properties of this highly porous material, it is necessary to get a deeper insight in the electrode morphology. Therefore, different optical and scanning probe microscopy methods are used to characterize the inner structure of the electrodes. The electrical conductivity of the zinc oxide films can be seen as a thermally activated process, which can be explained by electronic transitions from the valence band of the zinc oxide to two shallow impurity levels. The current-voltage characteristic unveils a nonlinear behavior which can be explained by a space-charge-limited current model with traps distributed in energy. Upon excitation with different wavelengths, the conductivity of the zinc oxide increases already under sub-band gap illumination due to widely distributed trap states within the band gap. The transients of the photoconductivity follow a stretched exponential law with time scales in the range of several hours, either if the

  13. Electrical resistivity due to electron-phonon scattering in thin gadolinium films

    International Nuclear Information System (INIS)

    Urbaniak-Kucharczyk, A.

    1988-01-01

    The contribution to the electrical resistivity due to the electron-phonon scattering for the special case of h.c.p. structure is derived. The numerical results obtained for the case of polycrystalline gadolinum films show the resistivity dependence on the film thickness and the surface properties. (author)

  14. On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films

    NARCIS (Netherlands)

    Van Hao, B.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.

    2013-01-01

    This work reports on the determination and comparison of the resistivity of ultra-thin atomic layer deposited titanium nitride films in the thickness range 0.65–20 nm using spectroscopic ellipsometry and electrical test structures. We found that for films thicker than 4 nm, the resistivity values

  15. The Effects of Strain on the Electrical Properties of Thin Evaporated Films of Semiconductor Compounds

    Science.gov (United States)

    Steel, G. G.

    1970-01-01

    Reports on project intended to establish how electrical resistance, Hall voltage, and magnetoresistance change when a thin film specimen is subjected to mechanical strain. Found resistance of semiconducting film of indium arsenide and indium antimonide decreases with tension and increases with compression. (LS)

  16. The effect of ZnS thin film's electrical conductivity on electromagnetic ...

    African Journals Online (AJOL)

    The effect of electrical conductivity on an electromagnetic wave propagating through ZnS thin film is analyzed using electromagnetic wave equation with relevant boundary condition. The solution of this equation enabled us to obtain a parameter known as the skin depth that relates to the conductivity of the thin film. This was ...

  17. Interpretation of transport measurements in ZnO-thin films

    Energy Technology Data Exchange (ETDEWEB)

    Petukhov, Vladimir; Stoemenos, John; Rothman, Johan; Bakin, Andrey; Waag, Andreas [Technical University of Braunschweig, Institute of High Frequency Technology, Braunschweig (Germany)

    2011-01-15

    In order to interpret results of temperature dependent Hall measurements in heteroepitaxial ZnO-thin films, we adopted a multilayer conductivity model considering carrier-transport through the interfacial layer with degenerate electron gas as well as the upper part of ZnO layers with lower conductivity. This model was applied to the temperature dependence of the carrier concentration and mobility measured by Hall effect in a ZnO-layer grown on c-sapphire with conventional high-temperature MgO and low-temperature ZnO buffer. We also compared our results with the results of maximum entropy mobility-spectrum analysis (MEMSA). The formation of the highly conductive interfacial layer was explained by analysis of transmission electron microscopy (TEM) images taken from similar layers. (orig.)

  18. Interpretation of transport measurements in ZnO-thin films

    Science.gov (United States)

    Petukhov, Vladimir; Stoemenos, John; Rothman, Johan; Bakin, Andrey; Waag, Andreas

    2011-01-01

    In order to interpret results of temperature dependent Hall measurements in heteroepitaxial ZnO-thin films, we adopted a multilayer conductivity model considering carrier-transport through the interfacial layer with degenerate electron gas as well as the upper part of ZnO layers with lower conductivity. This model was applied to the temperature dependence of the carrier concentration and mobility measured by Hall effect in a ZnO-layer grown on c-sapphire with conventional high-temperature MgO and low-temperature ZnO buffer. We also compared our results with the results of maximum entropy mobility-spectrum analysis (MEMSA). The formation of the highly conductive interfacial layer was explained by analysis of transmission electron microscopy (TEM) images taken from similar layers.

  19. In situ characterization of the film coverage and the charge transport in the alkylated-organic thin film transistor

    Science.gov (United States)

    Watanabe, Takeshi; Koganezawa, Tomoyuki; Kikuchi, Mamoru; Muraoka, Hiroki; Ogawa, Satoshi; Yoshimoto, Noriyuki; Hirosawa, Ichiro

    2018-03-01

    We propose an in situ experimental method of investigating the correlations of the film coverage of the organic semiconductor layers and charge transport properties of organic thin film transistors during vacuum deposition. The coverage of each monolayer was estimated using the intensity of off-specular diffuse scattering and diffraction. Experimental data were obtained from the in situ measurements of two-dimensional grazing incidence X-ray scattering and charge transport. The source-drain current increased over the film coverage of the first monolayer (= 0.48). This is in agreement with the critical percolation coverage, indicating that the conductivities of the first and second monolayers are different.

  20. Ion transport and phase transformation in thin film intercalation electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wunde, Fabian; Nowak, Susann; Muerter, Juliane; Hadjixenophontos, Efi; Berkemeier, Frank; Schmitz, Guido [Stuttgart Univ. (Germany). Inst. fuer Materialwissenschaft

    2017-11-15

    Thin film battery electrodes of the olivine structure LiFePO{sub 4} and the spinel phase LiMn{sub 2}O{sub 4} are deposited through ion-beam sputtering. The intercalation kinetics is studied by cyclo-voltammetry using variation of the cycling rate over 4 to 5 orders of magnitude. The well-defined layer geometry allows a detailed quantitative analysis. It is shown that LiFePO{sub 4} clearly undergoes phase separation during intercalation, although the material is nano-confined and very high charging rates are applied. We present a modified Randles-Sevcik evaluation adapted to phase-separating systems. Both the charging current and the overpotential depend on the film thickness in a systematic way. The analysis yields evidence that the grain boundaries are important short circuit paths for fast transport. They increase the electrochemical active area with increasing layer thickness. Evidence is obtained that the grain boundaries in LiFePO{sub 4} have the character of an ion-conductor of vanishing electronic conductivity.

  1. Effects of iron content on electrical resistivity of oxide films on Zr-base alloys

    International Nuclear Information System (INIS)

    Kubo, Toshio; Uno, Masayoshi

    1991-01-01

    Measurements of electrical resistivity were made for oxide films formed by anodic oxidation and steam oxidation (400degC/12 h) on Zr plates with different Fe contents. When the Fe content was higher than about 1,000 ppm the electrical resistivity of the steam oxide films was almost equivalent to that of the anodic oxide films, while at lower Fe content the former exhibited lower electrical resistivity than the latter by about 1∼3 orders of magnitude. The anodic oxide film was an almost homogeneous single oxide layer. The steam oxide films, on the other hand, were composed of duplex oxide layers. The oxide layer formed in the vicinity of the oxide/metal interface had higher electrical resistivity than the near-surface oxide layer by about 1∼4 orders of magnitude. The oxide layer in the vicinity of the interface could act as a protective film against corrosion and its electrical resistivity is one important factor controlling the layer protectiveness. The electrical resistivity of the oxide/metal interfacial layer was strongly dependent on the Fe content. One possible reason for Fe to improve the corrosion resistance is that Fe ions would tend to stabilize the tetragonal (or cubic) phase and consequently suppress the formation of open pores and cracks in the interfacial layer. (author)

  2. Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Md Taibur; McCloy, John; Panat, Rahul, E-mail: rahul.panat@wsu.edu, E-mail: rvchintalapalle@utep.edu [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99163 (United States); Ramana, C. V., E-mail: rahul.panat@wsu.edu, E-mail: rvchintalapalle@utep.edu [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States)

    2016-08-21

    Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24–500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasing trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.

  3. Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films

    International Nuclear Information System (INIS)

    Rahman, Md Taibur; McCloy, John; Panat, Rahul; Ramana, C. V.

    2016-01-01

    Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24–500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasing trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.

  4. Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films

    Science.gov (United States)

    Rahman, Md Taibur; McCloy, John; Ramana, C. V.; Panat, Rahul

    2016-08-01

    Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24-500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasing trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.

  5. Electrical contacts on polyimide substrates for flexible thin film photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, C.; Herrero, J

    2003-05-01

    Both frontal and back electrical contacts have been developed onto polyimide sheets (Kapton KJ[reg]) as alternative substrates to the conventional glasses, for application in lightweight and flexible thin film photovoltaic devices. Transparent and conductive indium tin oxide (ITO) thin films have been deposited by r.f.-magnetron sputtering as the frontal electrical contact. On the other hand, Mo, Cr and Ni layers have been prepared by e-gun evaporation for the back electrical connections. ITO films deposited onto polyimide have shown similar optical transmittance and higher electrical conductivity than onto glass substrates. The transmittance decreases and the conductivity increases after heating at 400 sign C in vacuum atmosphere. Mo, Cr and Ni layers deposited onto polyimide showed similar structure and electrical conductivity than onto conventional glasses. The properties of Mo and Cr layers remained unchanged after heating at 400 sign C in selenium atmosphere.

  6. Electrical and thermal transport properties of uranium and plutonium carbides

    International Nuclear Information System (INIS)

    Lewis, H.D.; Kerrisk, J.F.

    1976-09-01

    Contributions of many authors are outlined with respect to the experimental measurement methods used and characteristics of the sample materials. Discussions treat the qualitative effects of sample material composition; oxygen, nitrogen, and nickel concentrations; porosity; microstructural variations; and the variability in transport property values obtained by the various investigators. Temperature-dependent values are suggested for the electrical resistivities and thermal conductivities of selected carbide compositions based on a comparative evaluation of the available data and the effects of variation in the characteristics of sample materials

  7. The influence of Ac parameters in the process of micro-arc oxidation film electric breakdown

    Directory of Open Access Journals (Sweden)

    Ma Jin

    2016-01-01

    Full Text Available This paper studies the electric breakdown discharge process of micro-arc oxidation film on the surface of aluminum alloy. Based on the analysis of the AC parameters variation in the micro-arc oxidation process, the following conclusions can be drawn: The growth of oxide film can be divided into three stages, and Oxide film breakdown discharge occurs twice in the micro-arc oxidation process. The first stage is the formation and disruptive discharge of amorphous oxide film, producing the ceramic oxide granules, which belong to solid dielectric breakdown. In this stage the membrane voltage of the oxide film plays a key role; the second stage is the formation of ceramic oxide film, the ceramic oxide granules turns into porous structure oxide film in this stage; the third stage is the growth of ceramic oxide film, the gas film that forms in the oxide film’s porous structure is electric broken-down, which is the second breakdown discharge process, the current density on the oxide film surface could affect the breakdown process significantly.

  8. Structural, optical and electrical characteristics of nickel oxide thin films synthesised through chemical processing method

    Science.gov (United States)

    Akinkuade, Shadrach; Mwankemwa, Benanrd; Nel, Jacqueline; Meyer, Walter

    2018-04-01

    A simple and cheap chemical deposition method was used to produce a nickel oxide (NiO) thin film on glass substrates from a solution that contained Ni2+ and monoethanolamine. Thermal treatment of the film at temperatures above 350 °C for 1 h caused decomposition of the nickel hydroxide into nickel oxide. Structural, optical and electrical properties of the film were studied using X-ray diffraction (XRD), spectrophotometry, current-voltage measurements and scanning electron microscopy (SEM). The film was found to be polycrystalline with interplanar spacing of 0.241 nm, 0.208 nm and 0.148 nm for (111), (200) and (220) planes respectively, the lattice constant a was found to be 0.417 nm. The film had a porous surface morphology, formed from a network of nanowalls of average thickness of 66.67 nm and 52.00 nm for as-deposited and annealed films respectively. Transmittance of visible light by the as-deposited film was higher and the absorption edge of the film blue-shifted after annealing. The optical band gap of the annealed film was 3.8 eV. Electrical resistivity of the film was 378 Ωm.

  9. Correlation between structural and electrical properties of ZnO thin films

    International Nuclear Information System (INIS)

    Asadov, A.; Gao, W.; Li, Z.; Lee, J.; Hodgson, M.

    2005-01-01

    Thin ZnO films were deposited by radio frequency (r.f.) and direct current (d.c.) magnetron sputtering techniques onto glass substrates. Microstructural and electrical properties of ZnO films were studied using X-ray diffractometer (XRD), scanning electron microscope (SEM) and resistivity measurements. It was found that the size of the crystallites in the d.c. deposited films increased with increasing film thickness, while the crystallite size of r.f. deposited films remained unchanged. The d.c. deposited grains also had much stronger orientation related to the substrate than the r.f. films. XRD data indicated that the thin films with d<350 nm for r.f. and <750 nm for d.c. films have a very high degree of ZnO nonstoichiometry. This agreed well with the conductivity measurements and R(T) behaviour of the films with different resistance R. It was also found that the electrical resistivity of the samples increased exponentially with the thickness of films

  10. Electric-field-induced monoclinic phase in (Ba,Sr)TiO3 thin film

    International Nuclear Information System (INIS)

    Anokhin, A. S.; Yuzyuk, Yu. I.; Golovko, Yu. I.; Mukhortov, V. M.; El Marssi, M.

    2011-01-01

    We have studied electric-field-induced symmetry lowering in the tetragonal (001)-oriented heteroepitaxial (Ba 0.8 Sr 0.2 )TiO 3 thin film deposited on (001)MgO substrate. Polarized micro-Raman spectra were recorded from the film area in between two planar electrodes deposited on the film surface. Presence of c domains with polarization normal to the substrate was confirmed from polarized Raman study under zero field, while splitting and hardening of the E(TO) soft mode and polarization changes in the Raman spectra suggest monoclinic symmetry under external electric field.

  11. Influence of substrate temperature on the optical and electrical properties magnetron sputtering ITO films

    International Nuclear Information System (INIS)

    Khripunov, G.S.; Yurchenko, G.V.

    1999-01-01

    Electrical and optical properties of ITO films obtained at substrate temperature from 200 degree C to 500 degree C by magnetron sputtering of target 95% In 2 O 3 - 5% SnO 2 were studied. It was shown that the ITO film obtained at the substrate temperature 300 i N have optimum combination of the optical and electrical characteristics: resistivity 2.1 centre dot 10 -4 Ω cm, transmittance in visible spectral range about 88% at the thickness film 0.61 μ, factor of quality reaches 8.2 centre dot 10 -2 Ω 1

  12. Transport in reversibly laser-modified YBa2Cu3O/sub 7-//sub x/ superconducting thin films

    International Nuclear Information System (INIS)

    Krchnavek, R.R.; Chan, S.; Rogers, C.T.; De Rosa, F.; Kelly, M.K.; Miceli, P.F.; Allen, S.J.

    1989-01-01

    A focused argon ion laser beam in a controlled ambient is used to modify the transport properties of superconducting YBa 2 Cu 3 O/sub 7-//sub x/ thin films. The laser-modified region shows a sharp transition temperature (T/sub c/≅76 K) that is reduced from the unmodified regions of the film (T/sub c/≅87 K). In situ monitoring of the room-temperature electrical resistance is used to control the laser processing and prevent formation of the semiconducting phase. The original properties of the superconducting film can be recovered by plasma oxidation indicating that the laser-induced phase is oxygen deficient

  13. An investigation on high-temperature electrical transport properties of graphene-oxide nano-thinfilms

    International Nuclear Information System (INIS)

    Venugopal, Gunasekaran; Krishnamoorthy, Karthikeyan; Kim, Sang-Jae

    2013-01-01

    High-temperature electrical transport properties are investigated for graphene-oxide nano thinfilms. The graphene-oxide nanoparticles are synthesized by modified Hummers method and characterized by UV–vis, Raman and X-ray diffraction techniques. The surface morphology of graphene-oxide film is analyzed using scanning electron and atomic force microscopy. The experimental results on high-temperature electrical studies of thinfilms exhibit metallic behavior followed by three-dimensional variable range hopping mechanism. The current–voltage characteristics at various temperatures (from 293 K to 573 K) were investigated. The effect of high-temperature on the functional groups of graphene-oxide film is evidently examined using X-ray photoelectron, thermal gravimetric analysis and Fourier transform infra-red spectroscopy. Transistor characteristics were performed after heat treatment resulting ambipolar behavior with holes and electron mobility of 127 and 66.9 cm 2 V −1 s −1 respectively. Our results are comparable to reduced graphene-oxide, indicating the advantage of our approach requires no further reduction to develop graphene-based transparent and conductive electrodes for dye-sensitized solar cells and ultra-capacitor applications.

  14. Nature of Dielectric Properties, Electric Modulus and AC Electrical Conductivity of Nanocrystalline ZnIn2Se4 Thin Films

    Science.gov (United States)

    El-Nahass, M. M.; Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.

    2018-02-01

    The structural characteristics of thermally deposited ZnIn2Se4 thin films were indexed utilizing x-ray diffraction as well as scanning electron microscopy techniques. Dielectric properties, electric modulus and AC electrical conductivity of ZnIn2Se4 thin films were examined in the frequency range from 42 Hz to 106 Hz. The capacitance, conductance and impedance were measured at different temperatures. The dielectric constant and dielectric loss decrease with an increase in frequency. The maximum barrier height was determined from the analysis of the dielectric loss depending on the Giuntini model. The real part of the electric modulus revealed a constant maximum value at higher frequencies and the imaginary part of the electric modulus was characterized by the appearance of dielectric relaxation peaks. The AC electrical conductivity obeyed the Jonscher universal power law. Correlated barrier hopping model was the appropriate mechanism for AC conduction in ZnIn2Se4 thin films. Estimation of the density of states at the Fermi level and activation energy, for AC conduction, was carried out based on the temperature dependence of AC electrical conductivity.

  15. Probing electrical transport in individual carbon nanotubes and junctions

    International Nuclear Information System (INIS)

    Kim, Tae-Hwan; Wendelken, John F; Li Anping; Du Gaohui; Li Wenzhi

    2008-01-01

    The electrical transport properties of individual carbon nanotubes (CNTs) and multi-terminal junctions of CNTs are investigated with a quadraprobe scanning tunneling microscope. The CNTs used in this study are made of stacked herringbone-type conical graphite sheets with a cone angle of ∼20 deg. to the tube axis, and the CNT junctions have no catalytic particles in the junction areas. The CNTs have a significantly higher resistivity than conventional CNTs with concentric walls. The straight CNTs display linear current-voltage (I-V) characteristics, indicating diffusive transport rather than ballistic transport. The structural deformation in CNTs with bends substantially increases the resistivity in comparison with that for the straight segments on the same CNTs, and the I-V curve departs slightly from linearity in curved segments. The junction area of the CNT junctions behaves like an ohmic-type scattering center with linear I-V characteristics. In addition, a gating effect has not been observed, in contrast to the case for conventional multi-walled CNT junctions. These unusual transport properties can be attributed to the enhanced inter-layer interaction in the herringbone-type CNTs.

  16. Electrical and optical properties of Zn–In–Sn–O transparent conducting thin films

    International Nuclear Information System (INIS)

    Carreras, Paz; Antony, Aldrin; Rojas, Fredy; Bertomeu, Joan

    2011-01-01

    Indium tin oxide (ITO) is one of the widely used transparent conductive oxides (TCO) for application as transparent electrode in thin film silicon solar cells or thin film transistors owing to its low resistivity and high transparency. Nevertheless, indium is a scarce and expensive element and ITO films require high deposition temperature to achieve good electrical and optical properties. On the other hand, although not competing as ITO, doped Zinc Oxide (ZnO) is a promising and cheaper alternative. Therefore, our strategy has been to deposit ITO and ZnO multicomponent thin films at room temperature by radiofrequency (RF) magnetron co-sputtering in order to achieve TCOs with reduced indium content. Thin films of the quaternary system Zn–In–Sn–O (ZITO) with improved electrical and optical properties have been achieved. The samples were deposited by applying different RF powers to ZnO target while keeping a constant RF power to ITO target. This led to ZITO films with zinc content ratio varying between 0 and 67%. The optical, electrical and morphological properties have been thoroughly studied. The film composition was analysed by X-ray Photoelectron Spectroscopy. The films with 17% zinc content ratio showed the lowest resistivity (6.6 × 10 −4 Ω cm) and the highest transmittance (above 80% in the visible range). Though X-ray Diffraction studies showed amorphous nature for the films, using High Resolution Transmission Electron Microscopy we found that the microstructure of the films consisted of nanometric crystals embedded in a compact amorphous matrix. The effect of post deposition annealing on the films in both reducing and oxidizing atmospheres were studied. The changes were found to strongly depend on the zinc content ratio in the films.

  17. Optical transparency and electrical conductivity of nonstoichiometric ultrathin InxOy films

    International Nuclear Information System (INIS)

    Joseph, Shay; Berger, Shlomo

    2011-01-01

    The effect of thickness and composition on the electrical conductivity and optical transparency, mainly in the infrared, of ultrathin In x O y films was studied. In x O y films 35-470 A thick with oxygen atomic fractions of ∼0.3 and ∼0.5 were prepared via dc magnetron sputtering. All films were polycrystalline, consisting of only the cubic bixbiyte phase of In 2 O 3 . The average grain size of the films increased from 30 to 95 nm as the film thickness increased. The weak dependence of the electrical conductivity on the frequency and the low activation energies for conduction, a few hundredths of an eV, provided an indication that free band conduction was the primary electrical conduction mechanism in the case of all ultrathin In x O y films. It was found that introducing a high degree of nonstoichiometry in the form of oxygen deficiency did not help improve the electrical conductivity, since not all vacancies contributed two free electrons for conduction and due to impurity scattering. The optical nature of these films, studied mainly by ellipsometry, was found to be dependent on the film's composition and thickness. In the infrared, the dielectric function of all In x O y films was consistent with the Drude model, inferring that the transparency loss in this region was a result of free charge carriers. In the visible however, In x O y films under 170 A, which had an oxygen atomic fraction of ∼0.5, were modeled by extending the Drude model to the shorter wavelengths. Films over 170 A, with the same composition, were modeled using the Cauchy dispersion model, meaning that no absorption was measured. These results indicate that, optically, under specific compositions, ultrathin In x O y films undergo a transition from metalliclike behavior to dielectric behavior with increasing film thickness. Using a figure of merit approach, it was determined that a nonstoichiometric 230 A thick In x O y film, with an oxygen atomic fraction of ∼0.3, had the best combination

  18. Electrical properties of epitaxially grown VOx thin films

    NARCIS (Netherlands)

    Rata, A.D.; Chezan, A.R; Presura, C.N.; Hibma, T

    2003-01-01

    High quality VOx thin films on MgO(100) substrates were prepared and studied from the structural and electronic point of view. Epitaxial growth was confirmed by RHEED and XRD techniques. The oxygen content of VOx thin films as a function of oxygen flux was determined using RBS. The upper and lower

  19. Structural evolution, electrical and optical properties of AZO films ...

    Indian Academy of Sciences (India)

    Administrator

    Aluminum-doped zinc oxide (AZO) target was fabricated using AZO ... All AZO films show c-axis preferred orientation and hexagonal structure. With increasing film thick- ness from 153 to 1404 nm, the crystallinity was improved and the angle of (002) peak was close to ... For observing grain boundary and size, the target was.

  20. Opto-electrical energy conversion by thin electrolytic CdSe films on Ni substrates

    International Nuclear Information System (INIS)

    Glenis, G X; Athanassopoulou, M D; Argyropoulos, Th G; Dervos, C T

    2015-01-01

    Thin-films (300 nm) of zinc-blende (cubic structure) CdSe (111) electrolytically deposited on nickel substrates had their surface characteristics investigated by XRD, SEM, and profilometry scans. A metal-CdSe-metal structure was formed by positioning a Au electrode on top of CdSe and the I–V characteristics of the resulting device were investigated in the dark and under low intensities (≤0.2 mW cm −2 ) of diffused solar radiation. The experimental results show that the illuminated structure is an active device that produces electric power in the 2nd quadrant of the I–V curve. This response may be related to the Ni-to-CdSe interface, where carriers are effectively generated as a result of deep energy level formations, spatially confined in the interfacial region of the depletion layer width of the Ni-CdSe junction. A potential energy diagram is proposed to present the spatially and energetically confined deep-level parameters, the operation principles (carrier generation and transport processes) across the structure and link them to the obtained I–V response. A mathematical modeling based on the Schokley-Read-Hall recombination theory confirms the experimentally obtained current profiles of illuminated junctions. Such opto-electrical tranducers might be implemented in multilayer photovoltaic hetero-structures to enhance their conversion efficiencies and reduce their operating temperatures. (paper)

  1. Opto-electrical energy conversion by thin electrolytic CdSe films on Ni substrates

    Science.gov (United States)

    Glenis, G. X.; Athanassopoulou, M. D.; Argyropoulos, Th G.; Dervos, C. T.

    2015-02-01

    Thin-films (300 nm) of zinc-blende (cubic structure) CdSe (111) electrolytically deposited on nickel substrates had their surface characteristics investigated by XRD, SEM, and profilometry scans. A metal-CdSe-metal structure was formed by positioning a Au electrode on top of CdSe and the I-V characteristics of the resulting device were investigated in the dark and under low intensities (≤0.2 mW cm-2) of diffused solar radiation. The experimental results show that the illuminated structure is an active device that produces electric power in the 2nd quadrant of the I-V curve. This response may be related to the Ni-to-CdSe interface, where carriers are effectively generated as a result of deep energy level formations, spatially confined in the interfacial region of the depletion layer width of the Ni-CdSe junction. A potential energy diagram is proposed to present the spatially and energetically confined deep-level parameters, the operation principles (carrier generation and transport processes) across the structure and link them to the obtained I-V response. A mathematical modeling based on the Schokley-Read-Hall recombination theory confirms the experimentally obtained current profiles of illuminated junctions. Such opto-electrical tranducers might be implemented in multilayer photovoltaic hetero-structures to enhance their conversion efficiencies and reduce their operating temperatures.

  2. Influence of iodine on the electrical and photoelectrical properties of zinc phthalocyanine thin film devices

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.D. [Jodhpur Univ. (India). Dept. of Physics; Sangodkar, S.G. [Jodhpur Univ. (India). Dept. of Physics; Roy, M.S. [Camouflage Division, Defence Laboratory, Jodhpur (Raj.) (India)

    1996-11-01

    The electrical and photovoltaic properties of the zinc phthalocyanine (ZnPc) and I{sub 2} doped ZnPc thin films, sandwiched between indium tin oxide (ITO) and Al electrodes, were investigated. Doping with iodine brings adequate changes in the characteristics of the device. The devices constitute a metal-insulator-semiconductor (MIS) structure, in which depletion layer is formed in ZnPc, near Al-Al{sub 2}O{sub 3}/ZnPc. The depletion layer width and potential barrier height decrease with I{sub 2} doping. The charge transport phenomenon at higher voltage range appears to be space charge limited conduction (SCLC), in the presence of the discrete trapping level. The position of Fermi level shifts toward the valence band edge, which indicates that I{sub 2} doping increases the P-type conductivity. Various electrical and photovoltaic parameters were determined from the J-V and C-V analysis. The influence of the I{sub 2} doping has been discussed in detail. (orig.)

  3. Evaluation of all-electric secondary power for transport aircraft

    Science.gov (United States)

    Murray, W. E.; Feiner, L. J.; Flores, R. R.

    1992-01-01

    This report covers a study by Douglas Aircraft Company (DAC) of electrical power systems for advanced transport aircraft based upon an all-electric design concept. The concept would eliminate distributed hydraulic and pneumatic secondary power systems, and feature an expanded secondary electrical power system redesigned to supply power to the loads customarily supplied by hydraulic or pneumatic power. The initial study was based on an advanced 20-kHz electrical power transmission and distribution system, using a system architecture supplied by NASA-Lewis Research Center for twin-engine aircraft with many advanced power conversion concepts. NASA-LeRC later requested DAC to refocus the study on 400-Hz secondary power distribution. Subsequent work was based on a three-engine MD-11 aircraft, selected by DAC as a baseline system design that would provide data for the comparative cost/benefit analysis. The study concluded that the 20-kHz concept produced many expected benefits, and that the all-electric trijet weight savings on hardware redesign would be 2,304 pounds plus a 2.1-percent fuel reduction and resized for a total weight reduction of 11,000 pounds. Cost reductions for a fleet of 800 aircraft in a 15-year production program were estimated at $76.71 million for RDT&E; $2.74 million per aircrat for production; $9.84 million for nonrecurring expenses; $120,000 per aircraft for product support; and $300,000 per aircraft per year for operating and maintenance costs, giving a present value of $1.914 billion saved or a future value of $10.496 billion saved.

  4. Charge transport in electrically doped amorphous organic semiconductors.

    Science.gov (United States)

    Yoo, Seung-Jun; Kim, Jang-Joo

    2015-06-01

    This article reviews recent progress on charge generation by doping and its influence on the carrier mobility in organic semiconductors (OSs). The doping induced charge generation efficiency is generally low in OSs which was explained by the integer charge transfer model and the hybrid charge transfer model. The ionized dopants formed by charge transfer between hosts and dopants can act as Coulomb traps for mobile charges, and the presence of Coulomb traps in OSs broadens the density of states (DOS) in doped organic films. The Coulomb traps strongly reduce the carrier hopping rate and thereby change the carrier mobility, which was confirmed by experiments in recent years. In order to fully understand the doping mechanism in OSs, further quantitative and systematic analyses of charge transport characteristics must be accomplished. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Optical and electrical properties of chemical bath deposited cobalt sulphide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Govindasamy, Geetha [R& D Centre, Bharathiar University, Coimbatore (India); Murugasen, Priya, E-mail: priyamurugasen15@gmail.com [Department of Physics, Saveetha Engineering, Chennai, Tamil Nadu (India); Sagadevan, Suresh [Department of Physics, AMET University, Chennai, Tamil Nadu (India)

    2017-01-15

    Cobalt sulphide (CoS) thin films were synthesized using the Chemical Bath Deposition (CBD) technique. X-ray diffraction (XRD) analysis was used to study the structure and the crystallite size of CoS thin film. Scanning Electron Microscope (SEM) studies reveal the surface morphology of these films. The optical properties of the CoS thin films were determined using UV-Visible absorption spectrum. The optical band gap of the thin films was found to be 1.6 eV. Optical constants such as the refractive index, the extinction coefficient and the electric susceptibility were determined. The dielectric studies were carried out at different frequencies and at different temperatures for the prepared CoS thin films. In addition, the plasma energy of the valence electron, Penn gap or average energy gap, the Fermi energy and electronic polarizability of the thin films were determined. The AC electrical conductivity measurement was also carried out for the thin films. The activation energy was determined by using DC electrical conductivity measurement. (author)

  6. Effect of thickness on structural and electrical properties of Al-doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Garcés, F.A., E-mail: felipe.garces@santafe-conicet.gov.ar [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, Santa Fe S3000GLN (Argentina); Budini, N. [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, Santa Fe S3000GLN (Argentina); Arce, R.D.; Schmidt, J.A. [Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, Santa Fe S3000GLN (Argentina); Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, Santa Fe S3000AOM (Argentina)

    2015-01-01

    In this work, we have investigated the influence of thickness on structural and electrical properties of Al-doped ZnO films. Transparent conducting oxide films were grown by the spray pyrolysis technique from precursors prepared via the sol–gel method. We determined the structural properties of the films by performing X-ray diffraction and mosaicity measurements, which evidenced an increase of disorder and inhomogeneity between crystalline domains as the films thickened. This behavior was contrasted with results obtained from electrical measurements and was attributed to plastic deformation of the films as their thickness increased. As a result, the carrier mobility, the optical gap and the activation energy are affected due to emerging grain boundaries and a higher degree of disorder. - Highlights: • Al-doped ZnO thin films on glass with different thicknesses • Film thickness affects the morphological and electrical properties. • Increasing time deposition allows modification of resistivity and Hall mobility. • Mosaicity between crystalline domains increases with film thickness.

  7. Effect of thickness on structural and electrical properties of Al-doped ZnO films

    International Nuclear Information System (INIS)

    Garcés, F.A.; Budini, N.; Arce, R.D.; Schmidt, J.A.

    2015-01-01

    In this work, we have investigated the influence of thickness on structural and electrical properties of Al-doped ZnO films. Transparent conducting oxide films were grown by the spray pyrolysis technique from precursors prepared via the sol–gel method. We determined the structural properties of the films by performing X-ray diffraction and mosaicity measurements, which evidenced an increase of disorder and inhomogeneity between crystalline domains as the films thickened. This behavior was contrasted with results obtained from electrical measurements and was attributed to plastic deformation of the films as their thickness increased. As a result, the carrier mobility, the optical gap and the activation energy are affected due to emerging grain boundaries and a higher degree of disorder. - Highlights: • Al-doped ZnO thin films on glass with different thicknesses • Film thickness affects the morphological and electrical properties. • Increasing time deposition allows modification of resistivity and Hall mobility. • Mosaicity between crystalline domains increases with film thickness

  8. Electrical, optical and etching properties of Zn-Sn-O thin films deposited by combinatorial sputtering

    International Nuclear Information System (INIS)

    Kim, J. S.; Park, J. K.; Baik, Y. J.; Kim, W. M.; Jeong, J.; Seong, T. Y.

    2012-01-01

    Zn-Sn-O (ZTO) films are known to be able to form an amorphous phase, which provides a smooth surface morphology as well as etched side wall, when deposited by using the conventional sputtering technique and, therefore, to have a potential to be applied as transparent thin film transistors. In this study, ZTO thin films were prepared by using combined sputtering of ZnO and SnO 2 targets, and the dependences of their electrical and optical properties on the composition and the deposition parameters were examined. The Sn content in the films was varied in the range of 35 ∼ 85 at .%. The deposition was carried out at room temperature, 150 and 300 .deg. C, and the oxygen content in sputtering gas was varied from 0 to 1 vol.%. Sn-rich films had better electrical properties, but showed large oxygen deficiency when deposited at low oxygen partial pressures. ZTO films with Sn contents lower than 55 at.% had good optical transmission, but the electrical properties were poor due to very low carrier concentrations. A high Hall mobility of larger than 10 cm 2 /Vs could be obtained in the carrier density range 10 17 ∼ 10 20 cm -3 , and the etching rate was measurable for films with Sn content up to 70 at.% when using a dilute HCl solution, indicating a good possibility of utilizing ZTO films for device applications.

  9. Optical, electrical, structural and microstructural characteristics of rf sputtered ITO films developed for art protection coatings

    International Nuclear Information System (INIS)

    Krasilnikova Sytchkova, A.; Grilli, M.L.; Piegari, A.; Boycheva, S.

    2007-01-01

    Transparent and conductive tin-doped indium oxide (ITO) films have been prepared by rf sputtering in an Ar and Ar+O 2 gas mixture, both with and without additional substrate heating. The influence of both deposition conditions and post-annealing treatment on optical, electrical, structural and microstructural properties of the ITO films has been investigated. The optical constants have been calculated in the range 320-2500 nm using a combination of several theoretical models. A schematic diagram for the film properties change versus composition has been proposed in terms of a generalized parameter characterising the energy efficiency of the film formation. The deposition conditions and the optical and electrical properties of the films have been optimized with respect to the requirements for their application in art protection coatings. (orig.)

  10. Crystalline, Optical and Electrical Properties of NiZnO Thin Films Fabricated by MOCVD

    International Nuclear Information System (INIS)

    Wang Jin; Wang Hui; Zhao Wang; Ma Yan; Li Wan-Cheng; Shi Zhi-Feng; Zhao Long; Zhang Bao-Lin; Dong Xin; Du Guo-Tong; Xia Xiao-Chuan

    2011-01-01

    NiZnO thin films are grown on c-plane sapphire substrates by using a photo-assisted metal organic chemical vapor deposition (MOCVD) system. The effect of the Ni content on the crystalline, optical and electrical properties of the films are researched in detail. The NiZnO films could retain a basic wurtzite structure when the Ni content is less than 0.18. As Ni content increases, crystal quality degradation could be observed in the x-ray diffraction patterns and a clear red shift of the absorption edge can be observed in the transmittance spectrum. Furthermore, the donor defects in the NiZnO film can be compensated for effectively by increasing the Ni content. The change of Ni content has an important effect on the properties of NiZnO films. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Optical and electrical characteristics of zirconium oxide thin films deposited on silicon substrates by spray pyrolysis

    International Nuclear Information System (INIS)

    Aguilar-Frutis, M.; Araiza, J.J.; Falcony, C.; Garcia, M.

    2002-01-01

    The optical and electrical characteristics of zirconium oxide thin films deposited by spray pyrolysis on silicon substrates are reported. The films were deposited from a spraying solution of zirconium acetylacetonate in N,N-dimethylformamide using an ultrasonic mist generator on (100) Si substrates. The substrate temperature during deposition was in the range of 400 to 600 grad C. Deposition rates up to 16 A/sec were obtained depending on the spraying solution concentration and on the substrate temperature. A refraction index of the order of 2.0 was measured on these films by ellipsometry. The electrical characteristics of the films were determined from the capacitance and current versus voltage measurements. The addition of water mist during the spraying deposition process was also studied in the characteristics of the films. (Authors)

  12. Structural and electrical properties of sputter deposited ZnO thin films

    Science.gov (United States)

    Muhammed Shameem P., V.; Mekala, Laxman; Kumar, M. Senthil

    2018-05-01

    The growth of zinc oxide thin films having different oxygen content was achieved at ambient temperature by reactive dc magnetron sputtering technique and their structural and electrical properties are studied. The structural studies show that the films are polycrystalline with a preferential orientation of the grains along the c-axis [002], which increases with increase in oxygen partial pressure. The grain size and the surface roughness of the zinc oxide films are found to decrease with increasing oxygen partial pressure. It is observed that the resistivity of the zinc oxide films can be tuned from semiconducting to insulating regime by varying the oxygen content.

  13. Effect of thickness on electrical properties of SILAR deposited SnS thin films

    Science.gov (United States)

    Akaltun, Yunus; Astam, Aykut; Cerhan, Asena; ćayir, Tuba

    2016-03-01

    Tin sulfide (SnS) thin films of different thickness were prepared on glass substrates by successive ionic layer adsorption and reaction (SILAR) method at room temperature using tin (II) chloride and sodium sulfide aqueous solutions. The thicknesses of the films were determined using spectroscopic ellipsometry measurements and found to be 47.2, 65.8, 111.0, and 128.7nm for 20, 25, 30 and 35 deposition cycles respectively. The electrical properties of the films were investigated using d.c. two-point probe method at room temperature and the results showed that the resistivity was found to decrease with increasing film thickness.

  14. Effect of annealing atmosphere on optic-electric properties of Zn O thin films

    International Nuclear Information System (INIS)

    Bueno, C.; Pacio, M.; Juarez, H.; Osorio, E.; Perez, R.

    2017-01-01

    In this work the study of structural, morphologic characteristics, optical and electrical properties of the thin films of Zn O in temperatures and annealing atmospheres different was realized. The films were obtained by the sol-gel method, utilizing zinc acetate dihydrate as the precursor, monoethanolamine (Mea) as a stabilizing agent and 2-methoxyethanol as a solvent and deposited by spin-coating. The films were crystallized at 600, 800 and 1000 degrees Celsius in oxygen and nitrogen atmospheres. The results obtained by XRD, Sem, photoluminescence and Hall effects of the Zn O films were related and depend strongly on the temperature and atmosphere annealing. (Author)

  15. Optical and electrical characterizations of nanocomposite film of titania adsorbed onto oxidized multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Feng Wei; Feng Yiyu; Wu Zigang; Fujii, Akihiko; Ozaki, Masanori; Yoshino, Katsumi

    2005-01-01

    Composite film containing titania electrostatically linked to oxidized multiwalled carbon nanotubes (TiO 2 -s-MWNTs) was prepared from a suspension of TiO 2 nanoparticles in soluble carbon nanotubes. The structure of the film was analysed principally by Fourier transform infrared spectroscopy, scanning electron micrography and x-ray diffraction. The optical and electrical characterizations of the film were investigated by UV-vis spectrum, photoluminescence and photoconductivity. The enhancement of photocurrent in the TiO 2 -s-MWNT film is discussed by taking the photoinduced charge transfer between the MWNT and TiO 2 into consideration

  16. Effect of annealing atmosphere on optic-electric properties of Zn O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, C. [Benemerita Universidad Autonoma de Puebla, Facultad de Ingenieria, Blvd. Valsequillo y Av. San Claudio s/n, 72570 Puebla (Mexico); Pacio, M.; Juarez, H. [Benemerita Universidad Autonoma de Puebla, Posgrado en Dispositivos Semiconductores, Av. San Claudio y 14 Sur, 72450 Puebla (Mexico); Osorio, E. [Universidad de Quinta Roo, Blvd. Bahia s/n, esquina Ignacio Comonfort, El Bosque, 77019 Chetumal, Quintana Roo (Mexico); Perez, R., E-mail: cba3009@gmail.com [Benemerita Universidad Autonoma de Puebla, Facultad de Ingenieria Quimica, Av. San Claudio y 18 Sur, 72570 Puebla (Mexico)

    2017-11-01

    In this work the study of structural, morphologic characteristics, optical and electrical properties of the thin films of Zn O in temperatures and annealing atmospheres different was realized. The films were obtained by the sol-gel method, utilizing zinc acetate dihydrate as the precursor, monoethanolamine (Mea) as a stabilizing agent and 2-methoxyethanol as a solvent and deposited by spin-coating. The films were crystallized at 600, 800 and 1000 degrees Celsius in oxygen and nitrogen atmospheres. The results obtained by XRD, Sem, photoluminescence and Hall effects of the Zn O films were related and depend strongly on the temperature and atmosphere annealing. (Author)

  17. Influence of air flow rate on structural and electrical properties of undoped indium oxide thin films

    International Nuclear Information System (INIS)

    Mirzapour, S.; Rozati, S.M.; Takwale, M.G.; Marathe, B.R.; Bhide, V.G.

    1993-01-01

    Using the spray pyrolysis technique thin films of indium oxide were prepared on Corning glass (7059) at a substrate temperature of 425 C at different flow rates. The electrical and structural properties of these films were studied. The Hall measurements at room temperature showed that the films prepared in an air flow rate of 7 litre min -1 have the highest mobility of 47 cm 2 V -1 s -1 and a minimum resistivity of 1.125 x 10 -3 Ω cm. The X-ray diffraction patterns showed that the films have a preferred orientation of [400] which peaks at the air flow rate of 7 litre min -1 . (orig.)

  18. Growth and quantum transport properties of vertical Bi2Se3 nanoplate films on Si substrates.

    Science.gov (United States)

    Li, M Z; Wang, Z H; Yang, L; Pan, D S; Li, Da; Gao, Xuan; Zhang, Zhi-Dong

    2018-05-14

    Controlling the growth direction (planar vs. vertical) and surface-to-bulk ratio can lead to lots of unique properties for two-dimensional (2D) layered materials. We report a simple method to fabricate continuous films of vertical Bi2Se3 nanoplates on Si substrate and investigate the quantum transport properties of such films. In contrast to (001) oriented planar Bi2Se3 nanoplate film, vertical Bi2Se3 nanoplate films are enclosed by (015) facets, which possess high surface-to-bulk ratio that can enhance the quantum transport property of topological surface states. And by controlling the compactness of vertical Bi2Se3 nanoplates, we realized an effective tuning of the weak antilocalization (WAL) effect from topological surface states in Bi2Se3 films. Our work paves a way for exploring the unique transport properties of this unconventional structure topological insulator film. © 2018 IOP Publishing Ltd.

  19. Electrical properties of single crystal Yttrium Iron Garnet ultra-thin films at high temperatures

    OpenAIRE

    Thiery, Nicolas; Naletov, Vladimir V.; Vila, Laurent; Marty, Alain; Brenac, Ariel; Jacquot, Jean-François; de Loubens, Grégoire; Viret, Michel; Anane, Abdelmadjid; Cros, Vincent; Youssef, Jamal Ben; Demidov, Vladislav E.; Demokritov, Sergej O.; Klein, Olivier

    2017-01-01

    We report a study on the electrical properties of 19 nm thick Yttrium Iron Garnet (YIG) films grown by liquid phase epitaxy. The electrical conductivity and Hall coefficient are measured in the high temperature range [300,400]~K using a Van der Pauw four-point probe technique. We find that the electrical resistivity decreases exponentially with increasing temperature following an activated behavior corresponding to a band-gap of $E_g\\approx 2$ eV, indicating that epitaxial YIG ultra-thin film...

  20. Mechanical and electrical properties of diamond-like carbon films deposited by plasma source ion implantation

    International Nuclear Information System (INIS)

    Baba, K.; Hatada, R.; Flege, S.; Ensinger, W.

    2009-01-01

    Diamond-like carbon (DLC) films were prepared by a plasma source ion implantation method with superposed negative pulse and negative DC voltage. Acetylene gas was used as working gas for plasma formation. A negative DC voltage and a negative pulse voltage were superposed and applied to the substrate holder. The DC voltage was changed in the range from 0 to -4.8 kV and the pulse voltage was changed from -18 to -13.2 kV. The films were annealed in the range of 200-450 deg. C for 1 h. The surface morphology of the films and the film thickness were observed by atomic force microscopy and scanning electron microscopy. The film structure was characterized by Raman spectroscopy. The hardness of DLC films was evaluated by an indentation method. Measurement of the electrical resistivity was performed using a four-point probe station. Furthermore, a ball-on-disc test with 2 N load was employed to obtain information about the friction properties and sliding wear resistance of the films. The surface of the DLC films was very smooth and featureless. The deposition rate was changed with the DC voltage and pulse conditions. Integrated intensity ratios I D /I G of Raman spectroscopy and electrical resistivity of the DLC films changed with DC voltage. The electrical resistivity decreased with increasing I D /I G ratio. The I D /I G ratio was increased and the electrical resistivity was decreased with annealing temperature owing to graphitization. Very low friction coefficients around 0.05 were obtained for as-deposited films.

  1. Effects of lithium doping on microstructure, electrical properties, and chemical bonds of sol-gel derived NKN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Cheng [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Mathematic and Physical Sciences, R.O.C. Air Force Academy, Kaohsiung 820, Taiwan (China); Chen, Chan-Ching; Weng, Chung-Ming [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Chu, Sheng-Yuan, E-mail: chusy@mail.ncku.edu.tw [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hong, Cheng-Shong [Department of Electronic Engineering, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Tsai, Cheng-Che [Department of Digital Game and Animation Design, Tung-Fang Design University, Kaohsiung 829, Taiwan (China)

    2015-02-28

    Highly (100/110) oriented lead-free Li{sub x}(Na{sub 0.5}K{sub 0.5}){sub 1−x}NbO{sub 3} (LNKN, x = 0, 0.02, 0.04, and 0.06) thin films are fabricated on Pt/Ti/SiO{sub 2}/Si substrates via a sol-gel processing method. The lithium (Li) dopants modify the microstructure and chemical bonds of the LNKN films, and therefore improve their electrical properties. The optimal values of the remnant polarization (P{sub r} = 14.3 μC/cm{sup 2}), piezoelectric coefficient (d{sub 33} = 48.1 pm/V), and leakage current (<10{sup −5} A/cm{sup 2}) are obtained for a lithium addition of x = 0.04 (i.e., 4 at. %). The observation results suggest that the superior electrical properties are the result of an improved crystallization, a larger grain size, and a smoother surface morphology. It is shown that the ion transport mechanism is dominated by an Ohmic behavior under low electric fields and the Poole-Frenkel emission effect under high electric fields.

  2. Effects of lithium doping on microstructure, electrical properties, and chemical bonds of sol-gel derived NKN thin films

    International Nuclear Information System (INIS)

    Lin, Chun-Cheng; Chen, Chan-Ching; Weng, Chung-Ming; Chu, Sheng-Yuan; Hong, Cheng-Shong; Tsai, Cheng-Che

    2015-01-01

    Highly (100/110) oriented lead-free Li x (Na 0.5 K 0.5 ) 1−x NbO 3 (LNKN, x = 0, 0.02, 0.04, and 0.06) thin films are fabricated on Pt/Ti/SiO 2 /Si substrates via a sol-gel processing method. The lithium (Li) dopants modify the microstructure and chemical bonds of the LNKN films, and therefore improve their electrical properties. The optimal values of the remnant polarization (P r  = 14.3 μC/cm 2 ), piezoelectric coefficient (d 33  = 48.1 pm/V), and leakage current (<10 −5 A/cm 2 ) are obtained for a lithium addition of x = 0.04 (i.e., 4 at. %). The observation results suggest that the superior electrical properties are the result of an improved crystallization, a larger grain size, and a smoother surface morphology. It is shown that the ion transport mechanism is dominated by an Ohmic behavior under low electric fields and the Poole-Frenkel emission effect under high electric fields

  3. An easily accessible carbon material derived from carbonization of polyacrylonitrile ultrathin films: ambipolar transport properties and application in a CMOS-like inverter.

    Science.gov (United States)

    Jiao, Fei; Zhang, Fengjiao; Zang, Yaping; Zou, Ye; Di, Chong'an; Xu, Wei; Zhu, Daoben

    2014-03-04

    Ultrathin carbon films were prepared by carbonization of a solution processed polyacrylonitrile (PAN) film in a moderate temperature range (500-700 °C). The films displayed balanced hole (0.50 cm(2) V(-1) s(-1)) and electron mobilities (0.20 cm(2) V(-1) s(-1)) under ambient conditions. Spectral characterization revealed that the electrical transport is due to the formation of sp(2) hybridized carbon during the carbonization process. A CMOS-like inverter demonstrated the potential application of this material in the area of carbon electronics, considering its processability and low-cost.

  4. Physical and electrical characteristics of silicon oxynitride films with various refractive indices

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Jeng-Hwa; Hsieh, Jung-Yu; Lin, Hsing-Ju; Tang, Wei-Yao; Chiang, Chun-Ling; Yang, Ling-Wu; Yang, Tahone; Chen, Kuang-Chao; Lu, Chih-Yuan [Macronix International Co. Ltd, No 16, Li-Hsin Road, Hsinchu Science Park, Hsinchu 300, Taiwan (China); Lo, Yun-Shan; Wu, Tai-Bor, E-mail: jhliao@mxic.com.t [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China)

    2009-09-07

    This study explores the relationship between both the physical and the electrical characteristics of silicon oxynitride (SiON) films and the refractive index. The single wafer rapid thermal process modules were used for low pressure chemical vapour deposition of SiON films. A series of SiON films with refractive index between 1.50 and 1.83 were fabricated. Fourier transform infrared absorption spectroscopy and x-ray photoelectron spectroscopy identified the chemical bonding configurations of different SiON films: the Si-N bonds are replaced by Si-O bonds as the refractive index of the SiON films declines. Moreover, the Si atomic ratio is kept between 35% and 40% while the oxygen atomic ratio increases and the nitrogen atomic ratio decreases as the refractive index of the SiON film declines. The electrical characteristics of different SiON-based silicon-oxide-nitride-oxide-silicon (SONOS) devices suggest that (1) the dielectric constant increases with increasing refractive index of the SiON film and (2) the charge-trap density is inversely proportional to the oxygen concentration in the SiON film. Based on these results, the SiON films with various refractive indices can provide a wider application for silicon-based devices, such as SONOS and MOS devices.

  5. Physical and electrical characteristics of silicon oxynitride films with various refractive indices

    International Nuclear Information System (INIS)

    Liao, Jeng-Hwa; Hsieh, Jung-Yu; Lin, Hsing-Ju; Tang, Wei-Yao; Chiang, Chun-Ling; Yang, Ling-Wu; Yang, Tahone; Chen, Kuang-Chao; Lu, Chih-Yuan; Lo, Yun-Shan; Wu, Tai-Bor

    2009-01-01

    This study explores the relationship between both the physical and the electrical characteristics of silicon oxynitride (SiON) films and the refractive index. The single wafer rapid thermal process modules were used for low pressure chemical vapour deposition of SiON films. A series of SiON films with refractive index between 1.50 and 1.83 were fabricated. Fourier transform infrared absorption spectroscopy and x-ray photoelectron spectroscopy identified the chemical bonding configurations of different SiON films: the Si-N bonds are replaced by Si-O bonds as the refractive index of the SiON films declines. Moreover, the Si atomic ratio is kept between 35% and 40% while the oxygen atomic ratio increases and the nitrogen atomic ratio decreases as the refractive index of the SiON film declines. The electrical characteristics of different SiON-based silicon-oxide-nitride-oxide-silicon (SONOS) devices suggest that (1) the dielectric constant increases with increasing refractive index of the SiON film and (2) the charge-trap density is inversely proportional to the oxygen concentration in the SiON film. Based on these results, the SiON films with various refractive indices can provide a wider application for silicon-based devices, such as SONOS and MOS devices.

  6. Influence of Microstructure on the Electrical Properties of Heteroepitaxial TiN Films

    Science.gov (United States)

    Xiang, Wenfeng; Liu, Yuan; Zhang, Jiaqi

    2018-03-01

    Heteroepitaxial TiN films were deposited on Si substrates by pulse laser deposition at different substrate temperature. The microstructure and surface morphology of the films were investigated by X-ray diffraction (θ-2θ scan, ω-scan, and ϕ-scan) and atomic force microscopy. The electrical properties of the prepared TiN films were studied using a physical property measurement system. The experimental results showed that the crystallinity and surface morphology of the TiN films were improved gradually with increasing substrate temperature below 700 °C. Specially, single crystal TiN films were prepared when substrate temperature is above 700 °C; However, the quality of TiN films gradually worsened when the substrate temperature was increased further. The electrical properties of the films were directly correlated to their crystalline quality. At the optimal substrate temperature of 700 °C, the TiN films exhibited the lowest resistivity and highest mobility of 25.7 μΩ cm and 36.1 cm2/V s, respectively. In addition, the mechanism concerning the influence of substrate temperature on the microstructure of TiN films is discussed in detail.

  7. Electrical and optical transport properties of single layer WSe2

    Science.gov (United States)

    Tahir, M.

    2018-03-01

    The electronic properties of single layer WSe2 are distinct from the famous graphene due to strong spin orbit coupling, a huge band gap and an anisotropic lifting of the degeneracy of the valley degree of freedom under Zeeman field. In this work, band structure of the monolayer WSe2 is evaluated in the presence of spin and valley Zeeman fields to study the electrical and optical transport properties. Using Kubo formalism, an explicit expression for the electrical Hall conductivity is examined at finite temperatures. The electrical longitudinal conductivity is also evaluated. Further, the longitudinal and Hall optical conductivities are analyzed. It is observed that the contributions of the spin-up and spin-down states to the power absorption spectrum depend on the valley index. The numerical results exhibit absorption peaks as a function of photon energy, ℏ ω, in the range ∼ 1.5 -2 eV. Also, the optical response lies in the visible frequency range in contrast to the conventional two-dimensional electron gas or graphene where the response is limited to terahertz regime. This ability to isolate carriers in spin-valley coupled structures may make WSe2 a promising candidate for future spintronics, valleytronics and optical devices.

  8. Conceptual design of hybrid-electric transport aircraft

    Science.gov (United States)

    Pornet, C.; Isikveren, A. T.

    2015-11-01

    The European Flightpath 2050 and corresponding Strategic Research and Innovation Agenda (SRIA) as well as the NASA Environmentally Responsible Aviation N+ series have elaborated aggressive emissions and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low or even zero in-flight emissions levels, there exists an increasing amount of international research and development emphasis on electrification of the propulsion and power systems of aircraft. Since the late 1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone for more ambitious transport aircraft design and integration technical approaches. The introduction of hybrid-electric technology has dramatically expanded the design space and the full-potential of these technologies will be drawn through synergetic, tightly-coupled morphological and systems integration emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions. With the aim of expanding upon the current repository of knowledge associated with hybrid-electric propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in this technical article. The assessment and implications of an increasing Degree-of-Hybridization for Useful Power (HP,USE) on the overall sizing, performance as well as flight technique optimization of fuel-battery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results showed that by increasing HP,USE, significant

  9. Study of post annealing influence on structural, chemical and electrical properties of ZTO thin films

    International Nuclear Information System (INIS)

    Jain, Vipin Kumar; Kumar, Praveen; Kumar, Mahesh; Jain, Praveen; Bhandari, Deepika; Vijay, Y.K.

    2011-01-01

    Research highlights: → Structural, chemical and electrical properties of cost effective ZTO thin films with varying concentrations. → Effect of annealing of ZTO films. - Abstract: Zinc-Tin-Oxide (ZTO) thin films were deposited on glass substrate with varying concentrations (ZnO:SnO 2 ; 100:0, 90:10, 70:30 and 50:50 wt.%) at room temperature by flash evaporation technique. These deposited ZTO films were annealed at 450 deg. C in vacuum. These films were characterized to study the effect of annealing and addition of SnO 2 concentration on the structural, chemical and electrical properties. The XRD analysis indicates that crystallization of the ZTO films strongly depends on the concentration of SnO 2 and post annealing where annealed films showed polycrystalline nature. Atomic force microscopy (AFM) images manifest the surface morphology of these ZTO thin films. The XPS core level spectra of Zn(2p), O(1s) and Sn(3d) have been deconvoluted into their Gaussian component to evaluate the chemical changes, while valence band spectra reveal the electronic structures of these films. A small shift in Zn(2p) and Sn(3d) core level towards higher binding energy and O(1s) core level towards lower binding energy have been observed. The minimum electrical resistivity (ρ ∼ 3.69 x 10 -2 Ω-cm), maximum carrier concentration (n ∼ 3.26 x 10 19 cm -3 ) and Hall mobility (μ ∼ 5.2 cm 2 v -1 s -1 ) were obtained for as-prepared ZTO (50:50) film thereafter move towards lowest resistivity (ρ ∼ 1.12 x 10 -3 Ω-cm), highest carrier concentration (n ∼ 2.96 x 10 20 cm -3 ) and mobility (μ ∼ 18.8 cm 2 v -1 s -1 ) for annealed ZTO (50:50) thin film.

  10. Interactions between Radial Electric Field, Transport and Structure in Helical Plasmas

    International Nuclear Information System (INIS)

    Ida, Katsumi and others

    2006-01-01

    Control of the radial electric field is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. Particle and heat transport, that determines the radial structure of density and electron profiles, sensitive to the structure of radial electric field. On the other hand, the radial electric field itself is determined by the plasma parameters. In general, the sign of the radial electric field is determined by the plasma collisionality, while the magnitude of the radial electric field is determined by the temperature and/or density gradients. Therefore the structure of radial electric field and temperature and density are strongly coupled through the particle and heat transport and formation mechanism of radial electric field. Interactions between radial electric field, transport and structure in helical plasmas is discussed based on the experiments on Large Helical Device

  11. Electrical and thermal transport in the quasiatomic limit of coupled Luttinger liquids

    Science.gov (United States)

    Szasz, Aaron; Ilan, Roni; Moore, Joel E.

    2017-02-01

    We introduce a new model for quasi-one-dimensional materials, motivated by intriguing but not yet well-understood experiments that have shown two-dimensional polymer films to be promising materials for thermoelectric devices. We consider a two-dimensional material consisting of many one-dimensional systems, each treated as a Luttinger liquid, with weak (incoherent) coupling between them. This approximation of strong interactions within each one-dimensional chain and weak coupling between them is the "quasiatomic limit." We find integral expressions for the (interchain) transport coefficients, including the electrical and thermal conductivities and the thermopower, and we extract their power law dependencies on temperature. Luttinger liquid physics is manifested in a violation of the Wiedemann-Franz law; the Lorenz number is larger than the Fermi liquid value by a factor between γ2 and γ4, where γ ≥1 is a measure of the electron-electron interaction strength in the system.

  12. Electric field and transport in W7-AS

    International Nuclear Information System (INIS)

    Kick, M.; Maassberg, H.; Anton, M.; Baldzuhn, J.; Endler, M.; Goerner, C.; Hirsch, M.; Weller, A.; Zoletnik, S.

    1999-01-01

    At W7-AS, confinement properties are analysed and compared mainly with neoclassical predictions for quite different conditions. Low-density electron cyclotron resonance heating (ECRH) discharges allow access to the very-long-mean-free-path regime for electrons (T e up to 6 keV) whereas pure neutral beam injections (NBI) and combined NBI/ECRH discharges at high density (T i approx. T e ≥ 1 keV at n e approx. 10 20 m -3 ) lead to high performance (τ B up to 50 ms). Depending on the achieved temperatures, the experimental transport analysis in the plasma core is consistent with the neoclassical predictions. The experimentally observed 'electron root' feature with strong E r >0 is driven by the convective flux of ripple-trapped suprathermal electrons generated by the ECRH absorption. 'Optimum' confinement is obtained in discharges with narrow density, but broad temperature profiles with steep gradients in the region of low densities and strong E r <0 close to the plasma edge. The large radial electric fields, both positive and negative, strongly reduce neoclassical transport. The achieved temperatures, however, are limited by the strong temperature dependence of the neoclassical transport. (author)

  13. Opto-electrical properties of amorphous carbon thin film deposited from natural precursor camphor

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Debabrata [Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076 (India)]. E-mail: dpradhan@sciborg.uwaterloo.ca; Sharon, Maheshwar [Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2007-06-30

    A simple thermal chemical vapor deposition technique is employed for the pyrolysis of a natural precursor 'camphor' and deposition of carbon films on alumina substrate at higher temperatures (600-900 deg. C). X-ray diffraction measurement reveals the amorphous structure of these films. The carbon films properties are found to significantly vary with the deposition temperatures. At higher deposition temperature, films have shown predominately sp{sup 2}-bonded carbon and therefore, higher conductivity and lower optical band gap (Tauc gap). These amorphous carbon (a-C) films are also characterized with Raman and X-ray photoelectron spectroscopy. In addition, electrical and optical properties are measured. The thermoelectric measurement shows these as-grown a-C films are p-type in nature.

  14. Increase of the electrical resistance of thin aluminium film due to 14 MeV neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, S K; Kumar, U; Singh, S P; Bhattacharya, S; Nigam, A K [Banaras Hindu Univ. (India). Dept. of Physics

    1978-01-01

    The effect of 14 MeV neutron bombardment on the electrical resistance of 500 A thick vacuum-coated Al film is investigated. In the beginning, a slow, then sharp and finally again slow increase is observed in the electrical resistance of the film. Transmission electron micrographs of the film after the same dose of neutron irradiation show a large number of defects produced in the film due to neutron irradiation, which seems to be the cause of this increase.

  15. Electric transport in the Netherlands in an international perspective. Benchmark electric driving 2012

    International Nuclear Information System (INIS)

    Kroon, P.; Weeda, M.; Appels, D.

    2012-07-01

    This international benchmark on electric mobility has been conducted to compare the Dutch governmental efforts and developments in the field of electric road transport. The countries that have been considered in this benchmark are: Austria, Belgium, Denmark, France, Germany, the Netherlands, Norway, Portugal, Spain, UK, China, USA and South Korea. The Netherlands has a high ambition level with regard to the number of electric vehicles compared to other countries without a large car industry. As for the envisaged number of charging points, the Netherlands is one of the prominent leaders. In the field of R and D, Germany, South Korea and China take the lead, followed by France, the UK, the USA and Austria. However, the benchmark has only looked at specific funds for electric mobility, and has not looked at general R and D and innovation funds. The Netherlands has several electro-mobility field tests, but is not leading in number. However, regarding general market penetration, the Netherlands is one of the leading countries, next to Norway, based on the relative number of passenger cars and commercial vehicles on the road. Norway and Austria are leading countries when it comes to implementation of public charging infrastructure, but also in this field the Netherlands has a prominent position in the group of countries that follow. In the current pre-commercial phase, the introduction of electric transportation in the Netherlands is supported by a high-level advisory group, the so-called Formula E-Team. This group consists of representatives and experts from industry and (scientific) society, and acts as a figurehead for electric transport. The group advises on coordination of actions to stimulate not only electro- mobility, but also innovation which should lead to new economic activities. Currently, about two hundred companies are already active in the field of electro-mobility in the Netherlands, including some top players and many SMEs (Small Medium Enterprises). The

  16. Enhanced dielectric and electrical properties of annealed PVDF thin film

    Science.gov (United States)

    Arshad, A. N.; Rozana, M. D.; Wahid, M. H. M.; Mahmood, M. K. A.; Sarip, M. N.; Habibah, Z.; Rusop, M.

    2018-05-01

    Poly (vinylideneflouride) (PVDF) thin films were annealed at various annealing temperatures ranging from 70°C to 170°C. This study demonstrates that PVDF thin films annealed at temperature of 70°C (AN70) showed significant enhancement in their dielectric constant (14) at frequency of 1 kHz in comparison to un-annealed PVDF (UN-PVDF), dielectric constant (10) at the same measured frequency. As the annealing temperature was increased from 90°C (AN90) to 150°C (AN150), the dielectric constant value of PVDF thin films was observed to decrease gradually to 11. AN70 also revealed low tangent loss (tan δ) value at similar frequency. With respect to its resistivity properties, the values were found to increase from 1.98×104 Ω.cm to 3.24×104 Ω.cm for AN70 and UN-PVDF films respectively. The improved in dielectric constant, with low tangent loss and high resistivity value suggests that 70°C is the favorable annealing temperature for PVDF thin films. Hence, AN70 is a promising film to be utilized for application in electronic devices such as low frequency capacitor.

  17. Convective transport and stability in films of binary mixtures

    OpenAIRE

    Madruga Sánchez, Santiago; Bribesh, Fathi; Uwe, Thiele

    2011-01-01

    Thin polymer films are increasingly used in advanced technological applications. The use of these films as coatings is often limited by their lack of stability due to their wettability properties on the substrates

  18. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films

    Science.gov (United States)

    Hassanien, A. S.; Akl, Alaa A.

    2016-01-01

    Compositional dependence of optical and electrical properties of chalcogenide CdSxSe1-x (0.4 ≥ x ≥ 0.0 at. %) thin films was studied. Cadmium sulphoselenide films were deposited by thermal evaporation technique at vacuum (8.2 × 10-4 Pa) onto preheated glass substrates (523 K). The evaporation rate and film thickness were kept constant at 2.50 nm/s and 375 ± 5 nm, respectively. X-ray diffractograms showed that, the deposited films have the low crystalline nature. Energy dispersive analysis by X-ray (EDAX) was used to check the compositional elements of deposited films. The absorption coefficient was determined from transmission and reflection measurements at room temperature in the wavelength range 300-2500 nm. Optical density, skin depth, optical energy gap and Urbach's parameters of CdSSe thin films have also been estimated. The direct optical energy gap decreased from 2.248 eV to 1.749 eV when the ratio of Se-content was increased from 0.60 to 1.00 . Conduction band and valance band positions were evaluated. The temperature dependence of dc-electrical resistivity in the temperature range (293-450 K) has been reported. Three conduction regions due to different conduction mechanisms were detected. Electrical sheet resistance, activation energy and pre-exponential parameters were discussed. The estimated values of optical and electrical parameters were strongly dependent upon the Se-content in CdSSe matrix.

  19. Structural and electrical properties of CuAlMo thin films prepared by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Birkett, Martin, E-mail: martin.birkett@northumbria.ac.uk; Penlington, Roger; Wan, Chaoying; Zoppi, Guillaume

    2013-07-01

    The structural and electrical properties of a low resistivity CuAlMo thin film resistor material were investigated. The thin films were grown on Al{sub 2}O{sub 3} and glass substrates by direct current (dc) magnetron sputtering. The key electrical properties of sheet resistance, temperature coefficient of resistance (TCR) and resistance stability were investigated as a function of sputtering pressure and post-deposition heat treatment time and temperature. A low sputtering pressure range of 0.13 to 0.40 Pa produced CuAlMo films with sheet resistance in the range 0.1 to 0.2 Ω/□ and resistance stability of 0.45 to 0.65% with a TCR of − 90 ppm/°C which could be shifted to zero following annealing in air at 425 °C. Films grown at higher sputtering pressures of 0.53 to 0.80 Pa had increased sheet resistance in the range 0.4 to 0.6 Ω/□ and inferior stability of 0.8 to 1.7% with a more negative TCR of − 110 to − 180 ppm/°C which could not be shifted to zero following annealing. The stability of the films grown at 0.13 and 0.40 Pa could be further improved to < 0.25% with heat treatment, due to the formation of a protective aluminium oxide layer. A minimum dwell time of 3 h at 425 °C was required to stabilise the films and set the electrical properties. - Highlights: • Thin films of copper–aluminium–molybdenum were sputtered on alumina substrates. • Film properties were investigated with variation in process conditions. • Low sputtering pressure gave improved electrical performance. • Post deposition annealing in air further improved electrical performance.

  20. Structural and electrical properties of CuAlMo thin films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Birkett, Martin; Penlington, Roger; Wan, Chaoying; Zoppi, Guillaume

    2013-01-01

    The structural and electrical properties of a low resistivity CuAlMo thin film resistor material were investigated. The thin films were grown on Al 2 O 3 and glass substrates by direct current (dc) magnetron sputtering. The key electrical properties of sheet resistance, temperature coefficient of resistance (TCR) and resistance stability were investigated as a function of sputtering pressure and post-deposition heat treatment time and temperature. A low sputtering pressure range of 0.13 to 0.40 Pa produced CuAlMo films with sheet resistance in the range 0.1 to 0.2 Ω/□ and resistance stability of 0.45 to 0.65% with a TCR of − 90 ppm/°C which could be shifted to zero following annealing in air at 425 °C. Films grown at higher sputtering pressures of 0.53 to 0.80 Pa had increased sheet resistance in the range 0.4 to 0.6 Ω/□ and inferior stability of 0.8 to 1.7% with a more negative TCR of − 110 to − 180 ppm/°C which could not be shifted to zero following annealing. The stability of the films grown at 0.13 and 0.40 Pa could be further improved to < 0.25% with heat treatment, due to the formation of a protective aluminium oxide layer. A minimum dwell time of 3 h at 425 °C was required to stabilise the films and set the electrical properties. - Highlights: • Thin films of copper–aluminium–molybdenum were sputtered on alumina substrates. • Film properties were investigated with variation in process conditions. • Low sputtering pressure gave improved electrical performance. • Post deposition annealing in air further improved electrical performance

  1. Electrical properties of multilayer (DLC-TiC) films produced by pulsed laser deposition

    Science.gov (United States)

    Alawajji, Raad A.; Kannarpady, Ganesh K.; Nima, Zeid A.; Kelly, Nigel; Watanabe, Fumiya; Biris, Alexandru S.

    2018-04-01

    In this work, pulsed laser deposition was used to produce a multilayer diamond like carbon (ML (DLC-TiC)) thin film. The ML (DLC-TiC) films were deposited on Si (100) and glass substrates at various substrate temperatures in the range of 20-450 °C. Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and atomic force microscopy were utilized to characterize the prepared films. Raman analysis revealed that as the substrate temperature increased, the G-peak position shifted to a higher raman shift and the full width at half maximum of the G and D bands decreased. XPS analysis indicated a decrease in sp3/sp2 ratio and an increase in Ti-C bond intensity when the substrate temperature was increased. Additionally, the surface roughness of ML (DLC-TiC) filmswas affected by the type and temperature of the substrate. The electrical measurement results indicated that the electrical resistivity of the ML (DLC-TiC) film deposited on Si and glass substrates showed the same behavior-the resistivity decreased when substrate temperature increased. Furthermore, the ML (DLC-TiC) films deposited on silicon showed lower electrical resistivity, dropping from 8.39E-4 Ω-cm to 5.00E-4 Ω-cm, and, similarly, the films on the glass substrate displayed a drop in electrical resistivity from 1.8E-2 Ω-cm to 1.2E-3 Ω-cm. These enhanced electrical properties indicate that the ML (DLC-TiC) films have widespread potential as transducers for biosensors in biological research; electrochemical electrodes, because these films can be chemically modified; biocompatible coatings for medicals tools; and more.

  2. Structural, chemical and electrical characterisation of conductive graphene-polymer composite films

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Barry; Spencer, Steve J.; Belsey, Natalie A. [National Physical Laboratory, Teddington, TW11 0LW (United Kingdom); Faris, Tsegie [DZP Technologies Ltd., Future Business Centre, Cambridge, CB4 2HY (United Kingdom); Cronin, Harry [DZP Technologies Ltd., Future Business Centre, Cambridge, CB4 2HY (United Kingdom); Advanced Technology Institute (ATI), University of Surrey, Guildford, GU2 7XH (United Kingdom); Silva, S. Ravi P. [Advanced Technology Institute (ATI), University of Surrey, Guildford, GU2 7XH (United Kingdom); Sainsbury, Toby; Gilmore, Ian S. [National Physical Laboratory, Teddington, TW11 0LW (United Kingdom); Stoeva, Zlatka [DZP Technologies Ltd., Future Business Centre, Cambridge, CB4 2HY (United Kingdom); Pollard, Andrew J., E-mail: andrew.pollard@npl.co.uk [National Physical Laboratory, Teddington, TW11 0LW (United Kingdom)

    2017-05-01

    Graphical abstract: Secondary Ion Mass Spectrometry (SIMS) imaging of the dispersion of graphene within graphene-polymer composites using the Na{sup +} signal. - Highlights: • Relation of properties of graphene flakes with electrical properties of composite. • Standardised characterisation method for structural properties of graphene flakes. • Structural and chemical characterisation of commercial graphene flakes. • ToF-SIMS used to determine dispersion of graphene in polymer. - Abstract: Graphene poly-acrylic and PEDOT:PSS nanocomposite films were produced using two alternative commercial graphene powders to explore how the graphene flake dimensions and chemical composition affected the electrical performance of the film. A range of analytical techniques, including scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), were employed to systematically analyse the initial graphene materials as well as the nanocomposite films. Electrical measurements indicated that the sheet resistance of the films was affected by the properties of the graphene flakes used. To further explore the composition of the films, ToF-SIMS mapping was employed and provided a direct means to elucidate the nature of the graphene dispersion in the films and to correlate this with the electrical analysis. These results reveal important implications for how the dispersion of the graphene material in films produced from printable inks can be affected by the type of graphene powder used and the corresponding effect on electrical performance of the nanocomposites. This work provides direct evidence for how accurate and comparable characterisation of the graphene material is required for real-world graphene materials to develop graphene enabled films and proposes a measurement protocol for comparing graphene materials that can be used for international

  3. Comparison on electrically pumped random laser actions of hydrothermal and sputtered ZnO films

    International Nuclear Information System (INIS)

    Wang, Canxing; Jiang, Haotian; Li, Yunpeng; Ma, Xiangyang; Yang, Deren

    2013-01-01

    Random lasing (RL) in polycrystalline ZnO films is an intriguing research subject. Here, we have comparatively investigated electrically pumped RL behaviors of two metal-insulator-semiconductor structured devices using the hydrothermal and sputtered ZnO films as the semiconductor components, i.e., the light-emitting layers, respectively. It is demonstrated that the device using the hydrothermal ZnO film exhibits smaller threshold current and larger output optical power of the electrically pumped RL. The morphological characterization shows that the hydrothermal ZnO film is somewhat porous and is much rougher than the sputtered one, suggesting that in the former stronger multiple light scattering can occur. Moreover, the photoluminescence characterization indicates that there are fewer defects in the hydrothermal ZnO film than in the sputtered one, which means that the photons can pick up larger optical gain through stimulated emission in the hydrothermal ZnO film. Therefore, it is believed that the stronger multiple light scattering and larger optical gain contribute to the improved performance of the electrically pumped RL from the device using the hydrothermal ZnO film

  4. The Optical and Electrical Properties of ZnO/Ag/ZnO Films on Flexible Substrate

    Science.gov (United States)

    Yu, Xiaojing; Zhang, Dongyan; Wang, Pangpang; Murakami, Ri-Ichi; Ding, Bingjun; Song, Xiaoping

    The deposition of ZnO/Ag/ZnO film on polyethylene terephthalate (PET) substrate was fabricated by DC magnetron sputtering method. The thicknesses of ZnO layers were 30 nm and Ag films' thicknesses were changed from 1 nm to 6 nm by controlled the sputtering time. This kind of film can be used as transparent conductive oxide (TCO) materials. The electrical and optical properties of composite layers were determined by Ag films. The optimum sputtering time of Ag thin films was found to be 20 s for the high optical transmittance with good electrical conductivity. The ZnO/Ag(20 s)/ZnO layer, which has high optical transmittance of 73% at 550 nm, shows sheet resistance as low as 6.7 ohm/sq. These multilayer transparent films had low electrical resistance as the widely used transparent conductive oxide electrodes. SEM, XRD, the UV-Vis-NIR and Hall Effect measurement system were used to characterize properties of fabricated films. The reasons for the change of transmittance and resistance will also be interpreted.

  5. Electrically insulating films deposited on V-4%Cr-4%Ti by reactive CVD

    International Nuclear Information System (INIS)

    Park, J.H.

    1998-04-01

    In the design of liquid-metal blankets for magnetic fusion reactors, corrosion resistance of structural materials and the magnetohydrodynamic forces and their influence on thermal hydraulics and corrosion are major concerns. Electrically insulating CaO films deposited on V-4%Cr-4%Ti exhibit high-ohmic insulator behavior even though a small amount of vanadium from the alloy become incorporated into the film. However, when vanadium concentration in the film is > 15 wt.%, the film becomes conductive. When the vanadium concentration is high in localized areas, a calcium vanadate phase that exhibits semiconductor behavior can form. The objective of this study is to evaluate electrically insulating films that were deposited on V-4%Cr-4%Ti by a reactive chemical vapor deposition (CVD) method. To this end, CaO and Ca-V-O coatings were produced on vanadium alloys by CVD and by a metallic-vapor process to investigate the electrical resistance of the coatings. The authors found that the Ca-V-O films exhibited insulator behavior when the ratio of calcium concentration to vanadium concentration R in the film > 0.9, and semiconductor or conductor behavior when R 0.98 were exposed in liquid lithium. Based on these studies, they conclude that semiconductor behavior occurs if a conductive calcium vanadate phase is present in localized regions in the CaO coating

  6. Electrical resistivity of CuAlMo thin films grown at room temperature by dc magnetron sputtering

    OpenAIRE

    Birkett, Martin; Penlington, Roger

    2016-01-01

    We report on the thickness dependence of electrical resistivity of CuAlMo films grown by dc magnetron sputtering on glass substrates at room temperature. The electrical resistance of the films was monitored in situ during their growth in the thickness range 10–1000 nm. By theoretically modelling the evolution of resistivity during growth we were able to gain an insight into the dominant electrical conduction mechanisms with increasing film thickness. For thicknesses in the range 10–25 nm the ...

  7. Improved lifetime of chitosan film in converting water vapor to electrical power by adding carboxymethyl cellulose

    Science.gov (United States)

    Nasution, T. I.; Balyan, M.; Nainggolan, I.

    2018-02-01

    A Water vapor cell based on chitosan film has been successfully fabricated in film form to convert water vapor to electrical power. In order to improve the lifetime of water vapor cell, Carboxymethyl Cellulose (CMC) was added into 1% chitosan solution within concentration variations of 0.01, 0.05, 0.1 and 0.5%. The result showed that the lifetime of water vapor cell increased higher by adding the higher concentration of Carboxymethyl cellulose. The highest lifetime was evidenced by adding 0.5%CMC which maintained for 48 weeks. However, the average electrical power became lower to 4.621 µW. This electrical power lower than the addition of 0.1%CMC which maintained for 5.167 µW. While, the lifetime of chitosan-0.1%CMC film of 44 weeks is shorter compared to chitosan-0.5%CMC film. Based on FTIR characterization, it was founded that the chitosan structure did not change until the addition of 0.1%CMC. This caused the electrical power of water vapor cell degenerated. Therefore, chitosan-0.5%CMC film has excellent lifetime in converting water vapor to electrical power.

  8. A Boltzmann-weighted hopping model of charge transport in organic semicrystalline films

    KAUST Repository

    Kwiatkowski, Joe J.; Jimison, Leslie H.; Salleo, Alberto; Spakowitz, Andrew J.

    2011-01-01

    We present a model of charge transport in polycrystalline electronic films, which considers details of the microscopic scale while simultaneously allowing realistically sized films to be simulated. We discuss the approximations and assumptions made by the model, and rationalize its application to thin films of directionally crystallized poly(3-hexylthiophene). In conjunction with experimental data, we use the model to characterize the effects of defects in these films. Our findings support the hypothesis that it is the directional crystallization of these films, rather than their defects, which causes anisotropic mobilities. © 2011 American Institute of Physics.

  9. Optical and electrical properties of thermally evaporated In49Se48Sn3 films

    International Nuclear Information System (INIS)

    Salem, A.M.; El-Gendy, Y.A.; El-Sayad, E.A.

    2009-01-01

    Nearly stoichiometric thin films of In 49 Se 48 Sn 3 were deposited at room temperature, by conventional thermal evaporation of the presynthesized materials, onto precleaned glass substrates. The microstructural studies on the as-deposited and annealed films, using transmission electron microscopy and diffraction (TEMD), revealed that the as-deposited films are amorphous in nature, while those annealed at 498 K are crystalline. The optical properties of the investigated films were determined from the transmittance and reflectance data, in the spectral range 650-2500 nm. An analysis of the optical absorption spectra revealed a non-direct energy gap characterizing the amorphous films, while both allowed and forbidden direct energy gaps characterized the crystalline films. The electrical resistance of the deposited films was carried out during heating and cooling cycles in the temperature range 300-600 K. The results show an irreproducible behavior, while after crystallization the results become reproducible. The analysis of the temperature dependence of the resistance (ln(R) vs. 1000/T) for crystalline films shows two straight lines corresponding to both extrinsic and intrinsic conduction. The room temperature I-V characteristics of the as-deposited films sandwiched between similar Ag metal electrodes shows an ohmic behavior, while non-ohmic behavior attributed to space charge limited conduction has been observed when the films are sandwiched between dissimilar Ag/Al metal electrodes.

  10. Electron and hole transport in ambipolar, thin film pentacene transistors

    International Nuclear Information System (INIS)

    Saudari, Sangameshwar R.; Kagan, Cherie R.

    2015-01-01

    Solution-processed, ambipolar, thin-film pentacene field-effect transistors were employed to study both electron and hole transport simultaneously in a single, organic solid-state device. Electron and hole mobilities were extracted from the respective unipolar saturation regimes and show thermally activated behavior and gate voltage dependence. We fit the gate voltage dependent saturation mobility to a power law to extract the characteristic Meyer-Neldel (MN) energy, a measure of the width of the exponential distribution of localized states extending into the energy gap of the organic semiconductor. The MN energy is ∼78 and ∼28 meV for electrons and holes, respectively, which reflects a greater density of localized tail states for electrons than holes. This is consistent with the lower measured electron than hole mobility. For holes, the well-behaved linear regime allows for four-point probe measurement of the contact resistance independent mobility and separate characterization of the width of the localized density of states, yielding a consistent MN energy of 28 meV

  11. Electron and hole transport in ambipolar, thin film pentacene transistors

    Energy Technology Data Exchange (ETDEWEB)

    Saudari, Sangameshwar R. [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Kagan, Cherie R. [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-01-21

    Solution-processed, ambipolar, thin-film pentacene field-effect transistors were employed to study both electron and hole transport simultaneously in a single, organic solid-state device. Electron and hole mobilities were extracted from the respective unipolar saturation regimes and show thermally activated behavior and gate voltage dependence. We fit the gate voltage dependent saturation mobility to a power law to extract the characteristic Meyer-Neldel (MN) energy, a measure of the width of the exponential distribution of localized states extending into the energy gap of the organic semiconductor. The MN energy is ∼78 and ∼28 meV for electrons and holes, respectively, which reflects a greater density of localized tail states for electrons than holes. This is consistent with the lower measured electron than hole mobility. For holes, the well-behaved linear regime allows for four-point probe measurement of the contact resistance independent mobility and separate characterization of the width of the localized density of states, yielding a consistent MN energy of 28 meV.

  12. Environmental effects on electrical properties of Cr-Si-Ni resistive films deposited by magnetron sputtering

    International Nuclear Information System (INIS)

    Zhang Yuqin; Dong Xianping; Wu Jiansheng

    2005-01-01

    The present paper investigated the environmental effects on electrical properties stability and long-term reliability of magnetron sputtered Cr-Si-Ni resistive films in 3.5% NaCl, 0.5 M Na 2 SO 4 and 0.5 M HCl solutions at 25 deg. C, which simulated marine, industrial and acidic environments. The relative resistance change (ΔR/R) for the annealed films revealed that the films had the best electrical properties stability and long-term reliability in industrial environments at 25 deg. C. After immersion in corrosion solutions for 480 h, the value of ΔR/R for the films was only 0.41% in industrial environments, and the values were 0.56 and 1.96% in marine and acidic environments, respectively. The polarization measurements and AES results indicated that the films presented a spontaneous trend to passivation, and could form a dense and stable protective oxide layer (Si oxide) on its surface rapidly that protected the films from further corrosion in three different environments. Furthermore, the formed passive film in industrial environments exhibited much more protective effects on the films than in marine and acidic environments

  13. Recrystallization behaviour and electrical properties of germanium ion implanted polycrystalline silicon films

    International Nuclear Information System (INIS)

    Kang, Myeon-Koo; Matsui, Takayuki; Kuwano, Hiroshi

    1996-01-01

    The recrystallization behaviour of undoped and phosphorus-doped polycrystalline silicon films amorphized by germanium ion implantation at doses ranging from 1 x 10 15 to 1 x 10 16 cm -2 are investigated, and the electrical properties of phosphorus-doped films after recrystallization are studied. The phosphorus doping concentration ranges from 3 x 10 18 to 1 x 10 20 cm -3 . It is found that the nucleation rate decreases for undoped films and increases for phosphorus-doped films with increasing germanium dose; the growth rates decrease for both doped and undoped films. The decrease in nucleation rate is caused by the increase in implantation damage. The decrease in growth rate is considered to be due to the increase in lattice strain. The grain size increases with germanium dose for undoped films, but decreases for phosphorus-doped films. The dependence of the electrical properties of the recrystallized films as a function of phosphorus doping concentration with different germanium doses can be explained in terms of the grain size, crystallinity and grain boundary barrier height. (Author)

  14. Optical and Electrical Performance of ZnO Films Textured by Chemical Etching

    Directory of Open Access Journals (Sweden)

    Shiuh-Chuan HER

    2015-11-01

    Full Text Available Zinc oxide (ZnO films were prepared by radio frequency (RF magnetron sputtering on the glass substrate as transparent conductive oxide films. For silicon solar cells, a proper surface texture is essential to introduce light scattering and subsequent light trapping to enhance the current generation. In this study, the magnetron-sputtered ZnO films were textured by wet-chemical etching in diluted hydrochloric acid (HCl for better light scattering. The diffuse transmittance of the surface textured ZnO films was measured to evaluate the light scattering. The influence of hydrochloric acid concentration on the morphology, optical and electrical properties of the surface-textured ZnO film was investigated. The ZnO film etched in 0.05M HCl solution for 30 s exhibited average diffuse transmittance in the visible wavelength range of 9.52 % and good resistivity of 1.10 x 10-3 W×cm while the as-deposited ZnO film had average diffuse transmittance of 0.51 % and relatively high resistivity of 5.84 x 10-2 W×cm. Experimental results illustrated that the optical and electrical performance of ZnO films can be significantly improved by introducing the surface texture through the wet-chemical etching process.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9624

  15. The on-line electric vehicle wireless electric ground transportation systems

    CERN Document Server

    Cho, Dong

    2017-01-01

    This book details the design and technology of the on-line electric vehicle (OLEV) system and its enabling wireless power-transfer technology, the “shaped magnetic field in resonance” (SMFIR). The text shows how OLEV systems can achieve their three linked important goals: reduction of CO2 produced by ground transportation; improved energy efficiency of ground transportation; and contribution to the amelioration or prevention of climate change and global warming. SMFIR provides power to the OLEV by wireless transmission from underground cables using an alternating magnetic field and the reader learns how this is done. This cable network will in future be part of any local smart grid for energy supply and use thereby exploiting local and renewable energy generation to further its aims. In addition to the technical details involved with design and realization of a fleet of vehicles combined with extensive subsurface charging infrastructure, practical issues such as those involved with pedestrian safety are c...

  16. Resilient design of recharging station networks for electric transportation vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

    2011-08-01

    As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

  17. Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement.

    Science.gov (United States)

    Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua; Jia, Jin-Feng

    2015-05-01

    Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO3 surface.

  18. Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua, E-mail: canhualiu@sjtu.edu.cn, E-mail: jfjia@sjtu.edu.cn; Jia, Jin-Feng, E-mail: canhualiu@sjtu.edu.cn, E-mail: jfjia@sjtu.edu.cn [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2015-05-15

    Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO{sub 3} surface.

  19. Modeling transport and reaction in an electric DC field

    Energy Technology Data Exchange (ETDEWEB)

    Arnerdal, K.; Neretnieks, I. [Dept. of Chemical Engineering and Technology, Royal Inst. of Tech. (Sweden)

    2001-07-01

    Remediation of contaminated soils from heavy metals can be accomplished by subjecting the soil to an electric DC field. In an electric field dissolved metals will move to either the cathode or the anode depending on their charges. During the course of remediation, precipitated and sorbed species will dissolve as the solute is depleted. Our previous remediation experiments on kaolinite soil and sandy loam show high remediation efficiency. In new experiments we studied the reaction and transport of copper in sand and sand/bentonite mixtures with a constant applied potential. For clays with high pH buffer capacity and cation exchange capacity the results were not satisfying, because of insufficient desorption of the metals from the clay. The parameters measured at different time intervals were potential gradient, current density, pH and metal concentration. We present a mathematical and numerical model that is used for interpretation of the results from the remediation experiments. The model uses electromigration and diffusion to describe the transport of heavy metals and other ions. The remediation experiments are supplemented by batch experiments used to assess the acid neutralisation capacity and sorption distribution coefficients at different pH's for the heavy metal ions. These are essential data needed for the modelling and can be used to assess if a remediation could be accomplished within reasonable time. The results show that the reaction data used to explain acid neutralisation capacity estimated in batch experiments can be used to model the main trends of the development of the current density and the potential profile. However the pH profile and the free copper concentration can not be modelled with this equilibrium description. (orig.)

  20. Thin films of molecular materials synthesized from fisher's carbene ferrocenyl: Film formation and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Vergara, M.E. [Coordinacion de Ingenieria Mecatronica. Escuela de Ingenieria, Universidad Anahuac del Norte. Avenida Lomas de la Anahuac s/n, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico)], E-mail: elena.sanchez@anahuac.mx; Ortiz, A. [Instituto de Investigaciones en Materiales. Universidad Nacional Autonoma de Mexico. A. P. 70-360, 04510, Mexico, DF (Mexico); Alvarez-Toledano, C.; Moreno, A. [Instituto de Quimica, Universidad Nacional Autonoma de Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Mexico, DF (Mexico); Alvarez, J.R. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Ciudad de Mexico. Calle del Puente 222, Col. Ejidos de Huipulco, 14380, Mexico, DF (Mexico)

    2008-07-31

    The synthesis of materials from Fisher's carbene ferrocenyl of the elements chromium, molybdenum and tungsten was carried out. The Fisher's compounds that were synthesized included the following combinations of two different metallic atoms: iron with chromium, iron with molybdenum and iron with tungsten. The molecular solids' preparation was done in electro-synthesis cells with platinum electrodes. Thin films were prepared by vacuum thermal evaporation on quartz substrates and crystalline silicon wafers. Pellets and thin films from these compounds were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive spectroscopy, atomic force microscopy and ellipsometry. The powder and thin films synthesized from these materials show the same intra-molecular bonds shown by infrared spectroscopy results, suggesting that thermal evaporation does not alter these bonds in spite of the thin films being amorphous, in contrast with other bimetallic complexes where material decomposition occurs. The differences in the conductivity values of the prepared films are very small, so they may be attributed to the different metallic ions employed in each case. The tungsten complex exhibits a higher conductivity than the molybdenum and chromium complexes at room temperature. Electrical conductivity values found for thin films are higher than for pellets made of the same molecular materials.

  1. Measurement of full-field deformation induced by a dc electrical field in organic insulator films

    Directory of Open Access Journals (Sweden)

    Boudou L.

    2010-06-01

    Full Text Available Digital image correlation method (DIC using the correlation coefficient curve-fitting for full-field surface deformation measurements of organic insulator films is investigated in this work. First the validation of the technique was undertaken. The computer-generated speckle images and the measurement of coefficient of thermal expansion (CTE of aluminium are used to evaluate the measurement accuracy of the technique. In a second part the technique is applied to measure the mechanical deformation induced by electrical field application to organic insulators. For that Poly(ethylene naphthalene 2,6-dicarboxylate (PEN thin films were subjected to DC voltage stress and DIC provides the full-field induced deformations of the test films. The obtained results show that the DIC is a practical and robust tool for better comprehension of mechanical behaviour of the organic insulator films under electrical stress.

  2. Electrical, optical, and electronic properties of Al:ZnO films in a wide doping range

    International Nuclear Information System (INIS)

    Valenti, Ilaria; Valeri, Sergio; Benedetti, Stefania; Bona, Alessandro di; Lollobrigida, Valerio; Perucchi, Andrea; Di Pietro, Paola; Lupi, Stefano; Torelli, Piero

    2015-01-01

    The combination of photoemission spectroscopies, infrared and UV-VIS absorption, and electric measurements has allowed to clarify the mechanisms governing the conductivity and the electronic properties of Al-doped ZnO (AZO) films in a wide doping range. The contribution of defect-related in-gap states to conduction has been excluded in optimally doped films (around 4 at. %). The appearance of gap states at high doping, the disappearance of occupied DOS at Fermi level, and the bands evolution complete the picture of electronic structure in AZO when doped above 4 at. %. In this situation, compensating defects deplete the conduction band and increase the electronic bandgap of the material. Electrical measurements and figure of merit determination confirm the high quality of the films obtained by magnetron sputtering, and thus allow to extend their properties to AZO films in general

  3. Electrical, optical, and electronic properties of Al:ZnO films in a wide doping range

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, Ilaria; Valeri, Sergio [CNR, Istituto Nanoscienze, S3, Via G. Campi 213/a, 41125 Modena (Italy); Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, Via G. Campi 213/a, 41125 Modena (Italy); Benedetti, Stefania, E-mail: stefania.benedetti@unimore.it; Bona, Alessandro di [CNR, Istituto Nanoscienze, S3, Via G. Campi 213/a, 41125 Modena (Italy); Lollobrigida, Valerio [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome, Italy and Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Perucchi, Andrea; Di Pietro, Paola [INSTM Udr Trieste-ST and Elettra-Sincrotrone Trieste S.C.p.A., Area Science Park, I-34012 Trieste (Italy); Lupi, Stefano [CNR-IOM and Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 2, I-00185 Roma (Italy); Torelli, Piero [Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, I-34149 Trieste (Italy)

    2015-10-28

    The combination of photoemission spectroscopies, infrared and UV-VIS absorption, and electric measurements has allowed to clarify the mechanisms governing the conductivity and the electronic properties of Al-doped ZnO (AZO) films in a wide doping range. The contribution of defect-related in-gap states to conduction has been excluded in optimally doped films (around 4 at. %). The appearance of gap states at high doping, the disappearance of occupied DOS at Fermi level, and the bands evolution complete the picture of electronic structure in AZO when doped above 4 at. %. In this situation, compensating defects deplete the conduction band and increase the electronic bandgap of the material. Electrical measurements and figure of merit determination confirm the high quality of the films obtained by magnetron sputtering, and thus allow to extend their properties to AZO films in general.

  4. Logistic characteristics of phonon transport in silicon thin film: the S-curve

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa; Mansoor, S. Bin

    2013-10-01

    The logistic characteristics of the averaged heat flux are investigated across the thin film incorporating the S-curve. Temporal behaviour of the heat flux vector is computed using the Boltzmann transport equation. The dispersion relations are introduced to account for the frequency dependent phonon transport across the film. The influence of film width on the characteristics of the averaged heat flux is also examined. It is found that temporal behaviour of the averaged heat flux follows the S-curve. The S-curve characteristics change for different film widths. The time to reach 95% steady value of the averaged heat flux is short for the film with small widths, which is attributed to the ballistic behaviour of phonons in the film.

  5. Logistic characteristics of phonon transport in silicon thin film: the S-curve

    International Nuclear Information System (INIS)

    Yilbas, B.S.; Mansoor, S. Bin

    2013-01-01

    The logistic characteristics of the averaged heat flux are investigated across the thin film incorporating the S-curve. Temporal behaviour of the heat flux vector is computed using the Boltzmann transport equation. The dispersion relations are introduced to account for the frequency dependent phonon transport across the film. The influence of film width on the characteristics of the averaged heat flux is also examined. It is found that temporal behaviour of the averaged heat flux follows the S-curve. The S-curve characteristics change for different film widths. The time to reach 95% steady value of the averaged heat flux is short for the film with small widths, which is attributed to the ballistic behaviour of phonons in the film

  6. Electrical energy conversion and transport an interactive computer-based approach

    CERN Document Server

    Karady, George G

    2013-01-01

    Provides relevant material for engineering students and practicing engineers who want to learn the basics of electrical power transmission, generation, and usage This Second Edition of Electrical Energy Conversion and Transport is thoroughly updated to address the recent environmental effects of electric power generation and transmission, which have become more important in conjunction with the deregulation of the industry. The maintenance and development of the electrical energy generation and transport industry requires well-trained engineers who are able to use mode

  7. ITO films with enhanced electrical properties deposited on unheated ZnO-coated polymer substrates

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Lavareda, G.; Fortunato, E.; Alves, H.; Goncalves, A.; Varela, J.; Nascimento, R.; Amaral, A.

    2005-01-01

    Indium tin oxide (ITO) films were deposited by radio frequency (rf)-plasma enhanced reactive thermal evaporation (rf-PERTE) at room temperature on intrinsic ZnO/polymer substrates to enhance their electrical and structural properties. The polymer substrate used is polyethylene terephthalate (PET). The thickness of the ZnO films varied in the range 50-150 nm. The average thickness of the ITO films is of about 170 nm. Results show that ITO deposited on bare PET substrates exhibit: an average visible transmittance of about 85% and an electrical resistivity of 5.6 x 10 -2 Ω cm. ITO on ZnO/PET substrates show the optical quality practically preserved and the resistivity decreased to a minimum value of 1.9x10 -3 Ω cm for ZnO layers 125 nm thick. The electrical properties of ITO on ZnO/PET are largely improved by the increase in carrier mobility

  8. Electrical properties of BiSrCaCuO films (2223)

    International Nuclear Information System (INIS)

    Okunev, V.D.; Pafomov, N.N.; Perekrestov, B.I.; Svistunov, V.M.

    1996-01-01

    The mechanisms of electrical conductivity of BiSrCaCuO films (2223) of different structural states are investigated. The films of an amorphous state (ρ = 10 3 - 10 10 Ohm centre dot cm) display a hopping conductivity with a variable hop length. Since the formation of a crystal structure (ρ = 10 - 10 3 Ohm centre dot cm) and up to the transition to a metal conductivity state (ρ ≅ 10 -2 Ohm centre dot cm) their electrical properties are similar to those of granular films featuring the exponential relation between specific resistance and separation between granules of metallic conductivity. In the vicinity of insulators-metal transition they feature the electrical conductivity-temperature relation with exponents 1/2 and 1/3. The transition to the metallic state is of a percolation nature and realized for a metal phase concentration of c m ≅ 0.2

  9. Electric field effect on exchange interaction in ultrathin Co films with ionic liquids

    Science.gov (United States)

    Ishibashi, Mio; Yamada, Kihiro T.; Shiota, Yoichi; Ando, Fuyuki; Koyama, Tomohiro; Kakizakai, Haruka; Mizuno, Hayato; Miwa, Kazumoto; Ono, Shimpei; Moriyama, Takahiro; Chiba, Daichi; Ono, Teruo

    2018-06-01

    Electric-field modulations of magnetic properties have been extensively studied not only for practical applications but also for fundamental interest. In this study, we investigated the electric field effect on the exchange interaction in ultrathin Co films with ionic liquids. The exchange coupling J was characterized from the direct magnetization measurement as a function of temperature using Pt/ultrathin Co/MgO structures. The trend of the electric field effect on J is in good agreement with that of the theoretical prediction, and a large change in J by applying a gate voltage was observed by forming an electric double layer using ionic liquids.

  10. Light tuning DC and AC electrical properties of ZnO-rGO based hybrid nanocomposite film

    Science.gov (United States)

    Nath, Debarati; Mandal, S. K.; Deb, Debajit; Rakshit, J. K.; Dey, P.; Roy, J. N.

    2018-03-01

    We have investigated the electrical and optoelectrical properties of a zinc oxide (ZnO):reduced graphene oxide (rGO) nanocomposite film prepared through the sol gel process on a glass substrate under dark and illumination conditions of light. The bandgap of the composite film is decreased from the pure ZnO nanofilm due to the formation of a Zn-O-C bond in the composite film. The linear behavior in the Current-Voltage curve is attributed to Ohmic contact between ZnO and rGO grains. The photocurrent of the composite film is found to increase with an increase in light intensity having two different slopes, indicating an enhancement of the mobility of carriers and dissociation rate of excitons. The observed decrement of the impedance value with the intensity of light may be due to the flow of charge carriers and the presence of the light dependent relaxation process in the system. Nyquist plots have been fitted using a parallel combination of grain boundary resistances and grain boundary capacitance at different intensities of light. The relaxation frequency is observed to shift towards the high frequency regime. Carrier transit time has been calculated from relaxation frequency showing opposite behavior with the intensity of light. These results indicate the higher generations of photogenerated carriers at the interface between rGO and ZnO grains and an enhancement of the charge transport process due to the increment of the mobility of charge carriers in the system.

  11. Quantum-confined nanowires as vehicles for enhanced electrical transport

    International Nuclear Information System (INIS)

    Mohammad, S Noor

    2012-01-01

    Electrical transport in semiconductor nanowires taking quantum confinement and dielectric confinement into account has been studied. A distinctly new route has been employed for the study. The fundamental science underlying the model is based on a relationship between the quantum confinement and the structural disorder of the nanowire surface. The role of surface energy and thermodynamic imbalance in nanowire structural disorder has been described. A model for the diameter dependence of energy bandgap of nanowires has been developed. Ionized impurity scattering, dislocation scattering and acoustic phonon scattering have been taken into account to study carrier mobility. A series of calculations on silicon nanowires show that carrier mobility in nanowires can be greatly enhanced by quantum confinement and dielectric confinement. The electron mobility can, for example, be a factor of 2–10 higher at room temperature than the mobility in a free-standing silicon nanowire. The calculated results agree well with almost all experimental and theoretical results available in the literature. They successfully explain experimental observations not understood before. The model is general and applicable to nanowires from all possible semiconductors. It is perhaps the first physical model highlighting the impact of both quantum confinement and dielectric confinement on carrier transport. It underscores the basic causes of thin, lowly doped nanowires in the temperature range 200 K ≤ T ≤ 500 K yielding very high carrier mobility. It suggests that the scattering by dislocations (stacking faults) can be very detrimental for carrier mobility. (paper)

  12. Computing and the electrical transport properties of coupled quantum networks

    Science.gov (United States)

    Cain, Casey Andrew

    In this dissertation a number of investigations were conducted on ballistic quantum networks in the mesoscopic range. In this regime, the wave nature of electron transport under the influence of transverse magnetic fields leads to interesting applications for digital logic and computing circuits. The work specifically looks at characterizing a few main areas that would be of interest to experimentalists who are working in nanostructure devices, and is organized as a series of papers. The first paper analyzes scaling relations and normal mode charge distributions for such circuits in both isolated and open (terminals attached) form. The second paper compares the flux-qubit nature of quantum networks to the well-established spintronics theory. The results found exactly contradict the conventional school of thought for what is required for quantum computation. The third paper investigates the requirements and limitations of extending the Thevenin theorem in classic electric circuits to ballistic quantum transport. The fourth paper outlines the optimal functionally complete set of quantum circuits that can completely satisfy all sixteen Boolean logic operations for two variables.

  13. Enhancement of charge-transport characteristics in polymeric films using polymer brushes

    DEFF Research Database (Denmark)

    Whiting, G.L.; Snaith, H.J.; Khodabakhsh, S.

    2006-01-01

    We show that charge-transporting polymer chains in the brush conformation can be synthesized from a variety of substrates of interest, displaying a high degree of stretching and showing up to a 3 orders of magnitude increase in current density normal to the substrate as compared with a spin......-coated film. These nanostructured polymeric films may prove to be suitable for electronic devices based on molecular semiconductors as current fabrication techniques often provide little control over film structure....

  14. In situ study of electric field controlled ion transport in the Fe/BaTiO3 interface

    DEFF Research Database (Denmark)

    Merkel, D. G.; Bessas, D.; Bazso, G.

    2018-01-01

    Electric field controlled ion transport and interface formation of iron thin films on a BaTiO3 substrate have been investigated by in situ nuclear resonance scattering and x-ray reflectometry techniques. At early stage of deposition, an iron-II oxide interface layer was observed. The hyperfine...... parameters of the interface layer were found insensitive to the evaporated layer thickness. When an electric field was applied during growth, a 10 angstrom increase of the nonmagnetic/magnetic thickness threshold and an extended magnetic transition region was measured compared to the case where no field...... was applied. The interface layer was found stable under this threshold when further evaporation occurred, contrary to the magnetic layer where the magnitude and orientation of the hyperfine magnetic field vary continuously. The obtained results of the growth mechanism and of the electric field effect...

  15. Electric Field Structures in Thin Films: Formation and Properties

    DEFF Research Database (Denmark)

    Cassidy, Andrew; Plekan, Oksana; Balog, Richard

    2014-01-01

    A newly discovered class of molecular materials, so-called “spontelectrics”, display spontaneous electric fields. Here we show that the novel properties of spontelectrics can be used to create composite spontelectrics, illustrating how electric fields in solid films may be structured on the nanoscale...... by combining layers of different spontelectric materials. This is demonstrated using the spontelectric materials nitrous oxide, toluene, isoprene, isopentane, and CF2Cl2. These yield a variety of tailored electric field structures, with individual layers harboring fields between 107 and 108 V/m. Fields may...

  16. Graphene derivatives/Fe_3O_4/polymer nanocomposite films: Optical and electrical properties

    International Nuclear Information System (INIS)

    Hatel, Rhizlane; Goumri, Meryem; Ratier, Bernard; Baitoul, Mimouna

    2017-01-01

    This paper reports a simple solution casting method for the preparation of nanocomposite films in which graphene oxide (GO)/Fe_3O_4 nanocomposites are incorporated into poly (vinyl alcohol) (PVA) matrix. The films obtained with different weight percent of GO/Fe_3O_4 (0.5, 0.7 and 1 wt%) are subjected an in situ chemical and thermal reduction in order to explore the evolution and interactions between these components under different treatments and get an insight into on how this can affects the optical and electrical properties of these nanocomposites. Characterization was carried out using, UV–Vis absorption, Photoluminescence, electrical conductivity measurements, Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. Strong covalent functionalization occurs between the polymer and graphene derivatives (GD)/Fe_3O_4 hybrids. The experimental results obtained for our nanocomposites films exhibit significant enhancement in properties highlighted the efficiency of the in situ thermal reduction. The high absorption with strong photoluminescence and electrical conductivity achieved might promote these nanocomposites for opto-electronic devices in near future. - Highlights: • Novel inorganic-organic hybrid flexible films were successfully prepared. • Good interfacial interaction between the graphene/Fe_3O_4 and the hydroxyl-rich PVA. • Optical and electrical properties of Graphene Derivatives/Fe_3O_4/PVA were investigated. • Thermally reduced GO/Fe_3O_4/PVA films show high absorption and strong photoluminescence.

  17. Reinforced carbon nanotubes as electrically conducting and flexible films for space applications.

    Science.gov (United States)

    Atar, Nurit; Grossman, Eitan; Gouzman, Irina; Bolker, Asaf; Hanein, Yael

    2014-11-26

    Chemical vapor deposition (CVD)-grown entangled carbon nanotube (CNT) sheets are characterized by high electrical conductivity and durability to bending and folding. However, since freestanding CNT sheets are mechanically weak, they cannot be used as stand-alone flexible films. In this work, polyimide (PI) infiltration into entangled cup-stacked CNT (CSCNT) sheets was studied to form electrically conducting, robust, and flexible films for space applications. The infiltration process preserved CNTs' advantageous properties (i.e., conductivity and flexibility), prevented CNT agglomeration, and enabled CNT patterning. In particular, the CNT-PI films exhibited ohmic electrical conductance in both the lateral and vertical directions, with a sheet resistivity as low as 122 Ω/□, similar to that of as-grown CNT sheets, with minimal effect of the insulating matrix. Moreover, this high conductivity was preserved under mechanical and thermal manipulations. These properties make the reported CNT-PI films excellent candidates for applications where flexibility, thermal stability, and electrical conductivity are required. Particularly, the developed CNT-PI films were found to be durable in space environment hazards such as high vacuum, thermal cycling, and ionizing radiation, and hence they are suggested as an alternative for the electrostatic discharge (ESD) protection layer in spacecraft thermal blankets.

  18. Electrical characteristics of top contact pentacene organic thin film

    Indian Academy of Sciences (India)

    Organic thin film transistors (OTFTs) were fabricated using pentacene as the active layer with two different gate dielectrics, namely SiO2 and poly(methyl methacrylate) (PMMA), in top contact geometry for comparative studies. OTFTs with SiO2 as dielectric and gold deposited on the rough side of highly doped silicon (n+ -Si) ...

  19. Pattern Formation in PMMA Film Induced by Electric Field

    Czech Academy of Sciences Publication Activity Database

    Lyutakov, O.; Huttel, I.; Prajzler, V.; Jerabek, V.; Jančarek, A.; Hnatowicz, Vladimír; Švorčík, V.

    2009-01-01

    Roč. 47, č. 12 (2009), s. 1131-1135 ISSN 0887-6266 R&D Projects: GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : optics * spin coating * thin films Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.586, year: 2009

  20. URBAN PUBLIC TRANSPORT WITH THE USE OF ELECTRIC BUSES – DEVELOPMENT TENDENCIES

    Directory of Open Access Journals (Sweden)

    Stanisław KRAWIEC

    2016-12-01

    Full Text Available The programing documents of the European Union determine the direction of transport systems development, including large cities and agglomerations. The context of these actions which aim to transform into ecologically clean and sustainable transport system is a significant reduction of greenhouse gas emissions. Assuming that public transport will significantly reduce the use of combustion-powered buses, studies on urban logistic enabling the use of electric buses for public transport are needed. The article presents the variants and scenarios for electric buses implementation in urban public transport, as well as the decision algorithm to support electric bus implementation based on technological, organisational, economic and ecological variables.

  1. First-principles-based study of transport properties of Fe thin films on Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Tomoya [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Kasai, Hideaki [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Nakanishi, Hiroshi [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Dino, Wilson Agerico [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Komori, Fumio [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8587 (Japan)

    2004-12-08

    We investigate the transport properties of Fe thin films on Cu(111) based on first principles calculation. We calculate the electron current through these Fe thin films, which can be observed by using a double-tipped scanning tunnelling microscope. We find that the conductance is majority spin polarized. On the basis of the band structures for this system, we discuss the origin of these interesting transport properties.

  2. First-principles-based study of transport properties of Fe thin films on Cu surfaces

    International Nuclear Information System (INIS)

    Kishi, Tomoya; Kasai, Hideaki; Nakanishi, Hiroshi; Dino, Wilson Agerico; Komori, Fumio

    2004-01-01

    We investigate the transport properties of Fe thin films on Cu(111) based on first principles calculation. We calculate the electron current through these Fe thin films, which can be observed by using a double-tipped scanning tunnelling microscope. We find that the conductance is majority spin polarized. On the basis of the band structures for this system, we discuss the origin of these interesting transport properties

  3. Related electrical, superconducting and structural characteristics of low temperature indium films

    International Nuclear Information System (INIS)

    Belevtsev, B.I.; Pilipenko, V.V.; Yatsuk, L.Ya.

    1981-01-01

    Reported are results of a complex study of electrical, superconducting and structural properties of indium films vacuum evaporated onto a liquid helium-cooled substrate. Structural electron diffraction investigations gave a better insight into the general features of the annealing during the warming-up of cold-deposited films. It is found that the annealing of indium films to about 80 to 100 K entails an irreversible growth of interplanar separations due to decreasing inhomogeneous microstresses. As the films are warmed from 100 to 300 K, the principal annealing processes are determined by crystallite growth and development of dominating orientation. The changes in the residual resistance and in Tsub(c) with warming the cold-deported films are explained on the base of structural data obtained. In particular, a direct relationship is revealed between the crystallite size and Tsub(c) [ru

  4. Thermal Effusivity Determination of Metallic Films of Nanometric Thickness by the Electrical Micropulse Method

    Science.gov (United States)

    Lugo, J. M.; Oliva, A. I.

    2017-02-01

    The thermal effusivity of gold, aluminum, and copper thin films of nanometric thickness (20 nm to 200 nm) was investigated in terms of the films' thickness. The metallic thin films were deposited onto glass substrates by thermal evaporation, and the thermal effusivity was estimated by using experimental parameters such as the specific heat, thermal conductivity, and thermal diffusivity values obtained at room conditions. The specific heat, thermal conductivity, and thermal diffusivity values of the metallic thin films are determined with a methodology based on the behavior of the thermal profiles of the films when electrical pulses of few microseconds are applied at room conditions. For all the investigated materials, the thermal effusivity decreases with decreased thickness. The thermal effusivity values estimated by the presented methodology are consistent with other reported values obtained under vacuum conditions and more elaborated methodologies.

  5. Implanted ZnO thin films: Microstructure, electrical and electronic properties

    International Nuclear Information System (INIS)

    Lee, J.; Metson, J.; Evans, P.J.; Kinsey, R.; Bhattacharyya, D.

    2007-01-01

    Magnetron sputtered polycrystalline ZnO thin films were implanted using Al, Ag, Sn, Sb and codoped with TiN in order to improve the conductivity and to attempt to achieve p-type behaviour. Structural and electrical properties of the implanted ZnO thin films were examined with X-ray diffractometry (XRD), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), atomic force microscopy (AFM) and conductivity measurements. Depth profiles of the implanted elements varied with the implant species. Implantation causes a partial amorphisation of the crystalline structure and decreases the effective grain size of the films. One of the findings is the improvement, as a consequence of implantation, in the conductivity of initially poorly conductive samples. Heavy doping may help for the conversion of conduction type of ZnO thin films. Annealing in vacuum mitigated structural damage and stress caused by implantation, and improved the conductivity of the implanted ZnO thin films

  6. Role of hydrogen in altering the electrical properties of gold, titanium, and tungsten films

    International Nuclear Information System (INIS)

    Rodbell, K.P.; Ficalora, P.J.

    1989-01-01

    Hydrogen was found to alter the electrical properties of gold (Au), titanium (Ti), and tungsten (W) thin films deposited on SiO 2 /Si substrates. Specifically, the addition of H 2 was found to reduce both hillock growth and the rate of electromigration in Au and Ti films. The resistance and 1/f noise of unpassivated Au, Ti, and W films was also found to decrease in H 2 . The influence of H 2 adsorption, absorption, compound formation, and film crystal structure [Au (fcc), Ti (hcp), and W (bcc)] on the rate of electromigration is explored. The data suggest that a modification of the stress state at the metal film/substrate interface is responsible for the decreased resistance, 1/f noise, and electromigration rates observed in H 2

  7. Local Electrical Response in Alkaline-Doped Electrodeposited CuInSe2/Cu Films

    Directory of Open Access Journals (Sweden)

    Javier A. Barón-Miranda

    2016-12-01

    Full Text Available The local electrical response in alkaline-doped CuInSe2 films prepared by single-step electrodeposition onto Cu substrates was studied by current-sensing atomic force microscopy. The CuInSe2 (CIS films were prepared from single baths containing the dopant ions (Li, Na, K or Cs and were studied by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and photocurrent response. Increased crystallinity and surface texturing as the ion size increased were observed, as well as an enhanced photocurrent response in Cs-doped CIS. Li- and Na-doped films had larger conductivity than the undoped film while the K- and Cs-doped samples displayed shorter currents and the current images indicated strong charge accumulation in the K- and Cs-doped films, forming surface capacitors. Corrected current-sensing AFM IV curves were adjusted with the Shockley equation.

  8. Electrical properties of ZnO thin films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Pagni, O. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Somhlahlo, N.N. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Weichsel, C. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Leitch, A.W.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)]. E-mail: andrew.leitch@nmmu.ac.za

    2006-04-01

    We report on the electrical characterization of ZnO films grown by MOCVD on glass and sapphire substrates. After correcting our temperature variable Hall measurements by applying the standard two-layer model, which takes into account an interfacial layer, scattering mechanisms in the ZnO films were studied as well as donor activation energies determined. ZnO films grown at different oxygen partial pressures indicated the importance of growth conditions on the defect structure by means of their conductivities and conductivity activation energies.

  9. Electrical properties of ZnO thin films grown by MOCVD

    International Nuclear Information System (INIS)

    Pagni, O.; Somhlahlo, N.N.; Weichsel, C.; Leitch, A.W.R.

    2006-01-01

    We report on the electrical characterization of ZnO films grown by MOCVD on glass and sapphire substrates. After correcting our temperature variable Hall measurements by applying the standard two-layer model, which takes into account an interfacial layer, scattering mechanisms in the ZnO films were studied as well as donor activation energies determined. ZnO films grown at different oxygen partial pressures indicated the importance of growth conditions on the defect structure by means of their conductivities and conductivity activation energies

  10. Weibull Analysis of Electrical Breakdown Strength as an Effective Means of Evaluating Elastomer Thin Film Quality

    DEFF Research Database (Denmark)

    Silau, Harald; Stabell, Nicolai Bogø; Petersen, Frederik Riddersholm

    2018-01-01

    To realize the commercial potential of dielectric elastomers, reliable, large-scale film production is required. Ensuring proper mixing and subsequently avoiding demixing after, for example, pumping and coating of elastomer premix in an online process is not facile. Weibull analysis...... of the electrical breakdown strength of dielectric elastomer films is shown to be an effective means of evaluating the film quality. The analysis is shown to be capable of distinguishing between proper and improper mixing schemes where similar analysis of ultimate mechanical properties fails to distinguish....

  11. Characteristics of the electrical response of YBCO films with different morphologies to optical irradiation

    International Nuclear Information System (INIS)

    Frack, E.K.; Madhavrao, L.; Patl, R.; Drake, R.E.; Radparvar, M.

    1991-01-01

    The authors have fabricated YBCO films of varying thicknesses (300 Angstrom - 3000 Angstrom) and morphologies, and measured their electrical response to optical radiation. This paper reports on these measurements, emphasizing the dependence on temperature, light chopping frequency, and cryogenic environment. The temperature dependence of the film resistance is determined in part by the film morphology. This morphology may be represented by a simple model consisting of a two-dimensional array of coupled grains. The magnitude of the bolometric response correlates as expected with the sharpness of the superconducting transition. The increased response observed at lower temperatures (non-equilibrium) correlates with the temperature dependence of the resistance above the transition

  12. Quantum transport in new two-dimensional heterostructures: Thin films of topological insulators, phosphorene

    Science.gov (United States)

    Majidi, Leyla; Zare, Moslem; Asgari, Reza

    2018-06-01

    The unusual features of the charge and spin transport characteristics are investigated in new two-dimensional heterostructures. Intraband specular Andreev reflection is realized in a topological insulator thin film normal/superconducting junction in the presence of a gate electric field. Perfect specular electron-hole conversion is shown for different excitation energy values in a wide experimentally available range of the electric field and also for all angles of incidence when the excitation energy has a particular value. It is further demonstrated that the transmission probabilities of the incoming electrons from different spin subbands to the monolayer phosphorene ferromagnetic/normal/ferromagnetic (F/N/F) hybrid structure have different behavior with the angle of incidence and perfect transmission occurs at defined angles of incidence to the proposed structure with different length of the N region, and different alignments of magnetization vectors. Moreover, the sign change of the spin-current density is demonstrated by tuning the chemical potential and exchange field of the F region.

  13. Effects of static electricity and fabrication parameters on PVDF film ...

    Indian Academy of Sciences (India)

    2018-03-28

    Mar 28, 2018 ... Degree of crystallinity and β-phase fraction are important factors in ... performance. In the present work, effects of intrinsic static electricity, substrate type, PVDF ... the best electroactive properties among all polymers [1] and.

  14. Electrical properties of silver selenide thin films prepared by reactive ...

    Indian Academy of Sciences (India)

    Unknown

    2001-07-29

    Jul 29, 2001 ... tion of a given vapour at a given rate takes place only if the temperature of ... temperature for evaporation of compound and subsequent decomposition ... Electrical conductivity and Hall effect measurements were carried out ...

  15. Electrical Conductivity of CUXS Thin Film Deposited by Chemical ...

    African Journals Online (AJOL)

    acer

    Nigerian Journal of Basic and Applied Science (2009), 17(2): 161-165. ISSN 0794-5698. Electrical ... Department of Physics, University of Abuja, P. M. B. 117, Abuja, Nigeria. [*Correspondence ... ease of handling and ease of application to.

  16. Electric and Plug-In Hybrid Electric Fleet Vehicle Testing | Transportation

    Science.gov (United States)

    Research | NREL Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations How Electric and Plug-In Hybrid Electric Vehicles plugging the vehicle into an electric power source. PHEVs are powered by an internal combustion engine that

  17. Optical and electrical characterization of r.f. sputtered ITO films developed as art protection coatings

    International Nuclear Information System (INIS)

    Boycheva, Sylvia; Sytchkova, Anna Krasilnikova; Piegari, Angela

    2007-01-01

    Transparent and conductive tin-doped indium oxide (ITO) films have been prepared by r.f. plasma sputtering technique in Ar and Ar + O 2 gas mixture. The influence of the deposition conditions, film thickness, and substrate heating, as well as the post-annealing treatment on the optical and electrical properties of the ITO films has been investigated. The present study has extended the optical behaviour characterization of the ITO films in a wide UV-VIS-IR spectral region in addition to the comprehensive optical studies of this material at shorter wavelengths. The optical constants: refractive index (n), extinction (k) and absorption (α) coefficient, and the optical band gap (E go ) have been calculated for the ITO films in the spectral range between 350 and 2500 nm. A combination of several well-known theoretical models has been applied to describe precisely the complex optical behaviour of ITO films in separate spectral parts. In this approach, a good overlapping between the experimental and the simulated spectra in the whole investigated spectral region has been achieved. The deposition conditions and the optical and electrical properties of the ITO films have been optimized with respect to the requirements for their applications in art protection coatings

  18. Spectroelectrochemical properties of ultra-thin indium tin oxide films under electric potential modulation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xue, E-mail: x0han004@louisville.edu; Mendes, Sergio B., E-mail: sbmend01@louisville.edu

    2016-03-31

    In this work, the spectroscopic properties of ultra-thin ITO films are characterized under an applied electric potential modulation. To detect minute spectroscopic features, the ultra-thin ITO film was coated over an extremely sensitive single-mode integrated optical waveguide, which provided a long pathlength with more than adequate sensitivity for optical interrogation of the ultra-thin film. Experimental configurations with broadband light and several laser lines at different modulation schemes of an applied electric potential were utilized to elucidate the nature of intrinsic changes. The imaginary component of the refractive index (absorption coefficient) of the ultra-thin ITO film is unequivocally shown to have a dependence on the applied potential and the profile of this dependence changes substantially even for wavelengths inside a small spectral window (500–600 nm). The characterization technique and the data reported here can be crucial to several applications of the ITO material as a transparent conductive electrode, as for example in spectroelectrochemical investigations of surface-confined redox species. - Highlights: • Optical waveguides are applied for spectroscopic investigations of ultra-thin films. • Ultra-thin ITO films in aqueous environment are studied under potential modulation. • Unique spectroscopic features of ultra-thin ITO films are unambiguously observed.

  19. Optical and Electrical Properties of Copper Oxide Thin Films Synthesized by Spray Pyrolysis Technique

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2015-08-01

    Full Text Available Copper oxide (CuO thin films have been synthesized on to glass substrates at different temperatures in the range 250-450 °C by spray pyrolysis technique from aqueous solution using cupric acetate Cu(CH3COO2·H2O as a precursor. The structure of the deposited CuO thin films characterized by X-ray diffraction, the surface morphology was observed by a scanning electron microscope, the presence of elements was detected by energy dispersive X-ray analysis, the optical transmission spectra was recorded by ultraviolet-visible spectroscopy and electrical resistivity was studied by Van-der Pauw method. All the CuO thin films, irrespective of growth temperature, showed a monoclinic structure with the main CuO (111 orientation, and the crystallite size was about 8.4784 Å for the thin film synthesized at 350 °C. The optical transmission of the as-deposited film is found to decrease with the increase of substrate temperature, the optical band gap of the thin films varies from 1.90 to 1.60 eV and the room temperature electrical resistivity varies from 30 to18 Ohm·cm for the films grown at different substrate temperatures.

  20. Electrical Field Effect Dependence of Hall Constant in Bi-films

    International Nuclear Information System (INIS)

    Butenko, A. V.; Sandomirsky, V.; Schlesinger, Y.; Shvarts, Dm.

    1998-01-01

    The Electrical Field Effect (EFE) was investigated on the capacitive structure Aumica (ns 10 μm ) - Bi films (L ∼ 350≥≥500 angstrem) in the temperature region 15 - 100 K. The thicknesses of Bi films lay in the region of the Quantum Size Effect (QSE). The transverse electric fields reach the value of 106 V/cm. The corresponding surface carrier concentrations are ns ∼ 10 13 [e]/cm 2 , i.e. the average change of carrier concentration in the 500 angstrem film is n s /L ∼ 10 17 cm -3 . The latter value is comparable with the original carrier concentration in Bi film, 3 f 1017 cm-3. However, EEE, the film resistance change Δ R is 0.5 %. On the other hand EFE change of Hall constant (2ΔR H ), that was observed for the first time in this work, is 5 - 30 % (depending on the film thickness). These results point to a small carrier mobility and to an essential change of carrier concentration in the EEE influence region (of the order of the screening length). The interpretation takes into account both classical and quantum versions of Bi film behavior under EFE conditions. A procedure to determine the surface charge carrier mobilities and concentrations from EFE-data (both ΔR and ORE) is propose

  1. Optical and electrical properties of polycrystalline and amorphous Al-Ti thin films

    DEFF Research Database (Denmark)

    Canulescu, Stela; Borca, C. N.; Rechendorff, Kristian

    2016-01-01

    The structural, optical, and transport properties of sputter-deposited Al-Ti thin films have been investigated as a function of Ti alloying with a concentration ranging from 2% to 46%. The optical reflectivity of Al-Ti films at visible and near-infrared wavelengths decreases with increasing Ti...... content. Xray absorption fine structure measurements reveal that the atomic ordering around Ti atoms increases with increasing Ti content up to 20% and then decreases as a result of a transition from a polycrystalline to amorphous structure. The transport properties of the Al-Ti films are influenced...... by electron scattering at the grain boundaries in the case of polycrystalline films and static defects, such as antisite effects and vacancies in the case of the amorphous alloys. The combination of Ti having a real refractive index (n) comparable with the extinction coefficient (k) and Al with n much smaller...

  2. Electrical properties of SmB6 thin films prepared by pulsed laser deposition from a stoichiometric SmB6 target

    Czech Academy of Sciences Publication Activity Database

    Baťková, M.; Baťko, I.; Stobiecki, F.; Szymański, B.; Kuswik, P.; Macková, Anna; Malinský, Petr

    2018-01-01

    Roč. 744, č. 5 (2018), s. 821-827 ISSN 0925-8388 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : rare earth alloys and compounds * thin films * vapor deposition * electrical transport * valence fluctuations Subject RIV: JP - Industrial Processing OBOR OECD: Materials engineering Impact factor: 3.133, year: 2016

  3. Uniaxial stress influence on electrical conductivity of thin epitaxial lanthanum-strontium manganite films

    Energy Technology Data Exchange (ETDEWEB)

    Stankevič, V., E-mail: wstan@pfi.lt [Center for Physical Sciences and Technology, Semiconductor Physics Institute, A.Gostauto 11, Vilnius (Lithuania); Vilnius Gediminas Technical University, Sauletekio 11, Vilnius (Lithuania); Šimkevičius, Č.; Balevičius, S.; Žurauskienė, N. [Center for Physical Sciences and Technology, Semiconductor Physics Institute, A.Gostauto 11, Vilnius (Lithuania); Vilnius Gediminas Technical University, Sauletekio 11, Vilnius (Lithuania); Cimmperman, P. [Center for Physical Sciences and Technology, Semiconductor Physics Institute, A.Gostauto 11, Vilnius (Lithuania); Abrutis, A. [Vilnius University, Dept. of General and Inorganic Chemistry, Naugarduko 24, Vilnius (Lithuania); Plaušinaitienė, V. [Center for Physical Sciences and Technology, Semiconductor Physics Institute, A.Gostauto 11, Vilnius (Lithuania); Vilnius University, Dept. of General and Inorganic Chemistry, Naugarduko 24, Vilnius (Lithuania)

    2013-07-01

    This is a study of the influence of external uniaxial mechanical strains on the transport properties of thin epitaxial La{sub 0.83}Sr{sub 0.17}MnO{sub 3} (LSMO) films. Our measurements were carried out using standard isosceles triangle-shaped cantilever. Films which were tensed in-plane or compressed or were subjected to both tension and compression strains were grown onto SrTiO{sub 3} (STO), LaAlO{sub 3} (LAO) and (001) NdGaO{sub 3} (NGO) substrates, respectively. It was found that for thin films (less than 100 nm), the uniaxial compression of such films which were initially tensed in-plane (grown onto STO substrates) produces a decrease of their resistance, whereas the compression of initially compressed films (on LAO substrates) produces an increase of the films' resistance. The same results were obtained for LSMO films grown onto (001) NGO substrates when they were compressed along the [010] and [100] directions, respectively. For thicker films (more than 100 nm), the resistance behavior after uniaxial compression was found to be identical to that produced by hydrostatic compression, namely, the resistance decreases irrespective of the substrate. These experiments also reveal an increase of resistance and a shift of metal–insulator transition temperature T{sub m} to lower temperatures corresponding to a decrease of the film thickness. The occurrence of this effect is also independent of the kind of substrate used. Thus it was concluded that the influence of film thickness on its resistance as well as on the behavior of such films while under external uniaxial compression cannot be explained fully by only the presence of residual stress in these films. A possible reason is that the inhomogeneous distribution of the mechanical stresses in the films can lead to the appearance of two conductivity phases, each having a different mechanism. The results which were obtained when these films were subjected to hydrostatic compression were also explained by this

  4. A model of film boiling in the presence of electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Carrica, P.M.; Masson, V.; Clausse, A. [Centro Atomico Bariloche and Instituto Balseiro, Barilochi (Argentina)

    1995-09-01

    Recently it was found that, when a strong electric field is applied around a heated wire, two distinct film boiling heat transfer regimes are observed. In this paper, a semi-empirical model is derived to analyze the pool boiling process in the presence of non uniform electric field. The model takes into account the dielectrophoretic force acting on the bubbles as they grow and the effect of the electric field on the most dangerous wavelength. It is shown how the transition between the two film boiling regimes is possible for high strength electric fields. The threshold voltage for transition, transition heat fluxes and hysteresis values are compared with experimental outcomes showing a satisfactory agreement.

  5. Doping dependence of electrical and thermal conductivity of nanoscale polyaniline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jin Jiezhu; Wang Qing [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Haque, M A [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-05-26

    We performed simultaneous characterization of electrical and thermal conductivity of 55 nm thick polyaniline (PANI) thin films doped with different levels of camphor sulfonic acids (CSAs). The effect of the doping level is more pronounced on electrical conductivity than on thermal conductivity of PANIs, thereby greatly affecting their ratio that determines the thermoelectric efficiency. At the 60% (the molar ratio of CSA to phenyl-N repeat unit of PANI) doping level, PANI exhibited the maximum electrical and thermal conductivity due to the formation of mostly delocalized structures. Whereas polarons are the charge carriers responsible for the electrical conduction, phonons are believed to play a dominant role in the heat conduction in nanoscale doped PANI thin films.

  6. Infrared transparency and electrical conductivity of non-stoichiometric InxOy films

    International Nuclear Information System (INIS)

    Joseph, Shay; Berger, Shlomo

    2010-01-01

    In an effort to achieve both high infrared transparency and electrical conductivity, In x O y films having different oxygen atomic fractions, ranging from 0.27 to 0.6 were prepared. From AC electrical measurements it was determined that conductivity of In x O y films, having oxygen atomic fraction near 0.6, is governed by the hopping conduction mechanism via energy states located in the band gap. Conductivity of In x O y films having non-stoichiometric compositions was found to be governed by the free band conduction mechanism. The conduction activation energy was decreased from about 0.47 eV to about 0.02 eV as the deviation of the oxygen atomic fraction from the stoichiometric value of 0.6 was increased. The dielectric function of the films was determined by applying the Drude-Lorentz model to ellipsometric measurements in the infrared and visible wavelengths. In the visible range, the major source for optical transmission loss is interband absorption, which was modeled by the Lorentz model. In the infrared range, optical absorption was measured and attributed to the presence of free charge carriers according to the Drude model. Fitting the model to the optical measurements required a correction factor, which was correlated with the films polarizability. In order to determine the optimal tradeoff between optical transparency in the infrared and electrical conductivity, which were found to be affected mainly by the oxygen concentration in the films, a figure of merit parameter was established. It was found that by introducing non-stoichiometry in the form of oxygen deficiency, the electrical conductivity was improved by as much as two orders of magnitude while the infrared transparency was decreased by no more than 30% with respect to stoichiometric In 2 O 3 films.

  7. AC electrical conductivity in amorphous indium selenide thin films

    International Nuclear Information System (INIS)

    Di Giulio, H.; Rella, R.; Tepore, A.

    1987-01-01

    In order to obtain additional information about the nature of the conduction mechanism in amorphous InSe films results of an experimental study concerning the frequency and temperature dependence of the ac conductivity are reported. The measurements were performed on specimens of different thickness and different electrode contact areas. The results can be explained assuming that conduction occurs by phonon-assisted hopping between localized states near the Fermi level

  8. Strongly nonlinear electronic transport in Cr-Si composite films

    International Nuclear Information System (INIS)

    Burkov, A.T.; Vinzelberg, H.; Schumann, J.; Nakama, T.; Yagasaki, K.

    2004-01-01

    The phase formation, the resistivity and the thermopower of amorphous Cr 0.15 Si 0.85 , and nanocrystalline CrSi 2 -Si thin film composites have been studied. The films were produced by a magnetron sputtering of a composite target onto unheated substrates with subsequent crystallization of the film at high temperatures. As the film composite develops under the heat treatment from the initial amorphous state into the final polycrystalline material, two percolation thresholds were found. At first, the percolating cluster of nanocrystalline CrSi 2 is formed. However, this cluster is destroyed with further annealing due to crystallization and redistribution of Si. The composite films which are close to this insulating threshold reveal a strongly nonlinear conductivity. The conductivity increases with the current by two orders of magnitude

  9. Film models for transport phenomena with fog formation: The classical film model

    NARCIS (Netherlands)

    Brouwers, Jos; Chesters, A.K.

    1992-01-01

    In the present analysis the classical film model (or film theory) is reviewed and extended. First, on the basis of a thorough analysis, the governing equations of diffusion, energy and momentum of a stagnant film are derived and solved. Subsequently, the well-known correction factors for the effect

  10. Film models for transport phenomena with fog formation: the classical film model

    NARCIS (Netherlands)

    Brouwers, H.J.H.; Chesters, A.K.

    1992-01-01

    In the present analysis the classical film model (or film theory) is reviewed and extended. First, on the basis of a thorough analysis, the governing equations of diffusion, energy and momentum of a stagnant film are derived and solved. Subsequently, the well-known correction factors for the effect

  11. TiFeCoNi oxide thin film - A new composition with extremely low electrical resistivity at room temperature

    International Nuclear Information System (INIS)

    Yang, Ya-Chu; Tsau, Chun-Huei; Yeh, Jien-Wei

    2011-01-01

    We show the electrical resistivity of a TiFeCoNi oxide thin film. The electrical resistivity of the TiFeCoNi thin film decreased sharply after a suitable period of oxidation at high temperature. The lowest resistivity of the TiFeCoNi oxide film was 35 ± 3 μΩ-cm. The low electrical resistivity of the TiFeCoNi oxide thin film was attributed to Ti, which is more reactive than the other elements, reacting with oxygen at the initial stage of annealing. The low resistivity is caused by the remaining electrons.

  12. Electrical transport in strained silicon quantum wells on vicinal substrates

    International Nuclear Information System (INIS)

    Kaya, S.

    1999-01-01

    This thesis deals with the electrical transport studies of strained Si quantum wells grown on tilted Si substrates. Magnetotransport measurements at very low temperatures are used to investigate the high electron mobility, scattering processes and modified band structure for four different substrate orientations (2, 4, 6 and 10 deg.) and in two different directions of transport. We first discuss the morphology of the tilted system with the aid of, atomic force and optical microscopy. A clear change of surface morphology of tilted layers in comparison with the (001) type surfaces is explained by the degree of tilt in the system. The electron mobility and in-plane effective mass becomes anisotropic, which scale roughly with the tilt angle. The mobility anisotropy is shown to be the result of extra scattering when electrons travel across the steps common to vicinal surfaces. The extra scattering has characteristics similar to interface roughness scattering, as inferred from the trend that the transport (τ t ) and quantum scattering (τ q ) times follow. As the tilt angle grows, it is found that τ t /τ q →1 in the direction perpendicular to the steps. Electrons in tilted channels of multivalley semiconductors can involve a new interband scattering mechanism due to a one dimensional minigap opening in the conduction band. This effect, known from bulk Si MOSFETs, is investigated in strained Si for the first time in this thesis. First, the effect of applied electric fields on electron conduction is considered. Shubnikov-de Haas oscillations in the magnetoresistance data indicate a remarkably different electron scattering behaviour in tilted samples with increasing fields in directions parallel and perpendicular to the tilt direction. An FFT analysis of the data produces extra peaks in the electron density spectra. By clear contrast, flat samples grown under similar conditions do not show any unusual features. The difference is attributed to the existence of a minigap

  13. Correlation of electrical transport and magnetism in amorphous Mn-B alloys

    Science.gov (United States)

    Bryden, W. A.; Morgan, J. S.; Kistenmacher, T. J.; Moorjani, K.

    1987-04-01

    X-ray scattering, magnetism, and electrical transport studies on amorphous thin films of MnxB100-x alloys with x=52 and 48 are reported. Each alloy exhibits a low-field (5 G) static susceptibility peak (10 K, x=52; 16 K, x=48) associated with a spin-glass transition. Isothermal magnetization data (6 K) are analyzed within the random anisotropy model of Chudnovsky, Saslow, and Serota. The magnetization isotherm for the x=52 alloy is dominated at high fields (>24 kG) by field-induced moments, while for x=48 a term (αH-1/2) arising from a ferromagnet with a wandering axis prevails to the highest field strength (44 kG). Initially the electrical resistance for these Mn-B alloys decreases monotonically with decreasing temperature, reaching a minimum (Tm) at 22 K (x=52) and 45 K (x=48). For T>Tm, a quadratic form can be effectively employed, with a negative T2 coefficient and a positive linear coefficient. The rise in resistivity for T

  14. Electrical properties of cadmium telluride films doped with antimony

    International Nuclear Information System (INIS)

    Atdaev, B.S.; Garyagdyev, G.; Grin', V.F.; Noskov, A.I.

    1989-01-01

    Effect of cadmium telluride doping with antimony on electric and photoelectric properties is investigated. Temperature dependence of dark (σ d ) and photoconductivity (σ p ) during excitation from the range of proper absorption in the temperature range 77-300 K and spectral distribution of photoconductivity at 300 K are investigated. It is shown that in the process of doping antimony diffusses intensively over CdTe grain boundaries, decreasing potential barriers between them and due to diffusion into CdTe grains it changes their electrical properties. The acceptor character of antimony impurity can be caused by antimony diffusion into tellurium sublattice owing to proximity of their ionic and covalent radii

  15. Tunability of the Quantum Spin Hall Effect in Bi(110) Films: Effects of Electric Field and Strain Engineering.

    Science.gov (United States)

    Li, Sheng-Shi; Ji, Wei-Xiao; Li, Ping; Hu, Shu-Jun; Cai, Li; Zhang, Chang-Wen; Yan, Shi-Shen

    2017-06-28

    The quantum spin Hall (QSH) effect is promising for achieving dissipationless transport devices due to their robust gapless edge states inside insulating bulk gap. However, the currently discussed QSH insulators usually suffer from ultrahigh vacuum or low temperature due to the small bulk gap, which limits their practical applications. Searching for large-gap QSH insulators is highly desirable. Here, the tunable QSH state of a Bi(110) films with a black phosphorus (BP) structure, which is robust against structural deformation and electric field, is explored by first-principles calculations. It is found that the two-monolayer BP-Bi(110) film obtains a tunable large bulk gap by strain engineering and its QSH effect shows a favorable robustness within a wide range of combinations of in-plane and out-of-plane strains, although a single in-plane compression or out-of-plane extension may restrict the topological phase due to the self-doping effect. More interestingly, in view of biaxial strain, two competing physics on band topology induced by bonding-antibonding and p x,y -p z band inversions are obtained. Meanwhile, the QSH effect can be persevered under an electric field of up to 0.9 V/Å. Moreover, with appropriate in-plane strain engineering, a nontrivial topological phase in a four-monolayer BP-Bi(110) film is identified. Our findings suggest that these two-dimensional BP-Bi(110) films are ideal platforms of the QSH effect for low-power dissipation devices.

  16. Optical and electrical characterization of AgInS2 thin films deposited by spray pyrolysis

    International Nuclear Information System (INIS)

    Calixto-Rodriguez, M.; Martinez, H.; Calixto, M.E.; Pena, Y.; Martinez-Escobar, Dalia; Tiburcio-Silver, A.; Sanchez-Juarez, A.

    2010-01-01

    Silver indium sulfide (AgInS 2 ) thin films have been prepared by spray pyrolysis (SP) technique using silver acetate, indium acetate, and N, N-dimethylthiourea as precursor compounds. Films were deposited onto glass substrates at different substrate temperatures (T s ) and Ag:In:S ratios in the starting solutions. Optical transmission and reflection as well as electrical measurements were performed in order to study the effect of deposition parameters on the optical and electrical properties of AgInS 2 thin films. X-ray diffraction measurements were used to identify the deposited compounds. It was found that different compounds such as AgInS 2 , Ag 2 S, In 2 O 3 , and In 2 S 3 can be grown only by changing the Ag:In:S ratio in the starting solution and T s . So that, by carefully selecting the deposition parameters, single phase AgInS 2 thin films can be easily grown. Thin films obtained using a molar ratio of Ag:In:S = 1:1:2 and T s = 400 o C, have an optical band gap of 1.9 eV and n-type electrical conductivity with a value of 0.3 Ω -1 cm -1 in the dark.

  17. Microstructural and electrical characteristics of rare earth oxides doped ZnO varistor films

    Science.gov (United States)

    Jiao, Lei; Mei, Yunzhu; Xu, Dong; Zhong, Sujuan; Ma, Jia; Zhang, Lei; Bao, Li

    2018-02-01

    ZnO-Bi2O3 varistor films doped with two kinds of rare earth element oxides (Lu2O3 and Yb2O3) were prepared by the sol-gel method. The effects of Lu2O3/Yb2O3 doping on the microstructure and electrical characteristics of ZnO-Bi2O3 varistor films were investigated. All samples show a homogenized morphology and an improved nonlinear relationship between the electric field (E) and current density (I). Both Yb2O3 and Lu2O3 doping can decrease the grain size of ZnO-Bi2O3 varistor films and improve the electrical properties, which have a positive effect on the development of ZnO varistor ceramics. Yb2O3 doping significantly increases the dielectric constant at low frequency. 0.2 mol. % Yb2O3 doped ZnO-Bi2O3 varistor films exhibit the highest nonlinear coefficient (2.5) and the lowest leakage current (328 μA) among Lu2O3/Yb2O3 doped ZnO-Bi2O3 varistor films. Similarly, 0.1 mol. % Lu2O3 doping increases the nonlinear coefficient to 1.9 and decrease the leakage current to 462 μA.

  18. Vision on Scarcity of Transportation. Policy with regard to scarcity of transportation capacity in the electricity grid

    International Nuclear Information System (INIS)

    Bruin, K.; Fransen, M.; Kranenburg, J.

    2009-01-01

    The Dutch Competitive Authority NMa established increasing problems that are related to the (possible future) scarcity in transportation capacity in the electricity grid. This vision document aims to inform market parties about the general vision of NMa in relation to the scarcity issue. This document first addresses the problems related to scarcity in transport capacity in the electricity grid. Next policy developments in this area are discussed and NMa's vision is elaborated and explained [nl

  19. Spin dependent transport of hot electrons through ultrathin epitaxial metallic films

    Energy Technology Data Exchange (ETDEWEB)

    Heindl, Emanuel

    2010-06-23

    In this work relaxation and transport of hot electrons in thin single crystalline metallic films is investigated by Ballistic Electron Emission Microscopy. The electron mean free paths are determined in an energy interval of 1 to 2 eV above the Fermi level. While fcc Au-films appear to be quite transmissive for hot electrons, the scattering lengths are much shorter for the ferromagnetic alloy FeCo revealing, furthermore, a strong spin asymmetry in hot electron transport. Additional information is gained from temperature dependent studies in combination with golden rule approaches in order to disentangle the impact of several relaxation and transport properties. It is found that bcc Fe-films are much less effective in spin filtering than films made of the FeCo-alloy. (orig.)

  20. Adherent diamond film deposited on Cu substrate by carbon transport from nanodiamond buried under Pt interlayer

    International Nuclear Information System (INIS)

    Liu Xuezhang; Wei Qiuping; Yu Zhiming; Yang Taiming; Zhai Hao

    2013-01-01

    Highlights: ► Adherent polycrystalline diamond films were grown on copper substrate by carbon transport. ► The nucleation density was increased to 10 11 cm −2 . ► Diamond films were a composite structure of nano-crystalline diamond layer and micro-crystalline diamond layer. ► Diamond nucleation was based by carbon dissolving from UDDs to Pt interlayer and formation of sp 3 -bonded diamond clusters at the Pt surface. - Abstract: Diamond film deposited on Cu suffered from poor adhesion mainly due to the large mismatch of thermal expansion coefficients and the lack of affinity between carbon and Cu. Enhancing diamond nucleation by carbon transport from buried nanodiamond through a Pt ultrathin interlayer, adherent diamond film was then deposited on Cu substrate without distinctly metallic interlayer. This novel nucleation mechanism increased diamond nucleation density to 10 11 cm −2 , and developed diamond film with a composite structure of nano-crystalline diamond (NCD) layer and micro-crystalline diamond layer. Diamond film was characterized by the scanning electron microscope (SEM) and Raman spectroscope, respectively. The composition of diamond film/Cu substrate interface was examined by electron probe microanalysis (EPMA). The adhesion of diamond film was evaluated by indentation test. Those results show that a Pt ultrathin interlayer provides stronger chemically bonded interfaces and improve film adhesion.

  1. Adherent diamond film deposited on Cu substrate by carbon transport from nanodiamond buried under Pt interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuezhang [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Wei Qiuping, E-mail: qiupwei@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Yu Zhiming, E-mail: zhiming@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Yang Taiming; Zhai Hao [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Adherent polycrystalline diamond films were grown on copper substrate by carbon transport. Black-Right-Pointing-Pointer The nucleation density was increased to 10{sup 11} cm{sup -2}. Black-Right-Pointing-Pointer Diamond films were a composite structure of nano-crystalline diamond layer and micro-crystalline diamond layer. Black-Right-Pointing-Pointer Diamond nucleation was based by carbon dissolving from UDDs to Pt interlayer and formation of sp{sup 3}-bonded diamond clusters at the Pt surface. - Abstract: Diamond film deposited on Cu suffered from poor adhesion mainly due to the large mismatch of thermal expansion coefficients and the lack of affinity between carbon and Cu. Enhancing diamond nucleation by carbon transport from buried nanodiamond through a Pt ultrathin interlayer, adherent diamond film was then deposited on Cu substrate without distinctly metallic interlayer. This novel nucleation mechanism increased diamond nucleation density to 10{sup 11} cm{sup -2}, and developed diamond film with a composite structure of nano-crystalline diamond (NCD) layer and micro-crystalline diamond layer. Diamond film was characterized by the scanning electron microscope (SEM) and Raman spectroscope, respectively. The composition of diamond film/Cu substrate interface was examined by electron probe microanalysis (EPMA). The adhesion of diamond film was evaluated by indentation test. Those results show that a Pt ultrathin interlayer provides stronger chemically bonded interfaces and improve film adhesion.

  2. Aquatic biofouling prevention by electrically charged nanocomposite polymer thin film membranes.

    Science.gov (United States)

    de Lannoy, Charles-François; Jassby, David; Gloe, Katie; Gordon, Alexander D; Wiesner, Mark R

    2013-03-19

    Electrically conductive polymer-nanocomposite (ECPNC) tight nanofiltration (NF) thin film membranes were demonstrated to have biofilm-preventing capabilities under extreme bacteria and organic material loadings. A simple route to the creation and application of these polyamide-carbon nanotube thin films is also reported. These thin films were characterized with SEM and TEM as well as FTIR to demonstrate that the carbon nanotubes are embedded within the polyamide and form ester bonds with trimesoyl chloride, one of the monomers of polyamide. These polymer nanocomposite thin film materials boast high electrical conductivity (∼400 S/m), good NaCl rejection (>95%), and high water permeability. To demonstrate these membranes' biofouling capabilities, we designed a cross-flow water filtration vessel with insulated electrical leads connecting the ECPNC membranes to an arbitrary waveform generator. In all experiments, conducted in highly bacterially contaminated LB media, flux tests were run until fluxes decreased by 45 ± 3% over initial flux. Biofilm-induced, nonreversible flux decline was observed in all control experiments and a cross-flow rinse with the feed solution failed to induce flux recovery. In contrast, flux decrease for the ECPNC membranes with an electric potential applied to their surface was only caused by deposition of bacteria rather than bacterial attachment, and flux was fully recoverable following a short rinse with the feed solution and no added cleaning agents. The prevention of biofilm formation on the ECPNC membranes was a long-term effect, did not decrease with use, and was highly reproducible.

  3. Electrical and optical properties of Cu–Cr–O thin films fabricated by chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lunca Popa, P., E-mail: petru.luncapopa@list.lu; Crêpellière, J.; Leturcq, R.; Lenoble, D.

    2016-08-01

    We present electrical and optical properties of CuCrO{sub 2} thin films deposited by chemical vapour deposition, as well as the influence of depositions' parameters on these properties. Oxygen partial pressure and precursor's concentrations have the greatest influence on optical and electrical properties of the films. Values of conductivities ranging from 10{sup −4} to 10 S/cm were obtained using different deposition conditions. The conductivity is thermally activated with an activation energy ranging from 57 to 283 meV. Thermoelectric measurements confirm the p-type conduction, and demonstrate high carrier concentration typical for a degenerate semiconductor. The as-deposited films show a medium degree of crystallinity, a maximum optical transmission up to 80% in the visible range with a corresponding band gap around 3.2 eV. - Highlights: • CuCrO{sub 2} thin films deposited via a new innovative method - DLICVD. • Band gap and electrical conductivity can be tuned by controlling deposition parameters • Key process parameter is the metallic/oxygen atomic ratio involved in the process • Electrical conductivities values spanning 5 orders of magnitudes were obtained using different deposition parameters.

  4. Conductive plastic film electrodes for Pulsed Electric Field (PEF) treatment : A proof of principle

    NARCIS (Netherlands)

    Roodenburg, B.; Haan, S.W.H. de; Boxtel, L.B.J. van; Hatt, V.; Wouters, P.C.; Coronel, P.; Ferreira, J.A.

    2010-01-01

    Nowadays Pulsed Electric Field (PEF) treatment of food needs to be performed prior to packaging, either hygienic or aseptic packaging is necessary. New techniques for PEF treatment after packaging can be considered when plastic conductive (film) electrodes can be integrated within the package, so

  5. High electrical conductivity in out of plane direction of electrodeposited Bi2Te3 films

    Directory of Open Access Journals (Sweden)

    Miguel Muñoz Rojo

    2015-08-01

    Full Text Available The out of plane electrical conductivity of highly anisotropic Bi2Te3 films grown via electro-deposition process was determined using four probe current-voltage measurements performed on 4.6 - 7.2 μm thickness Bi2Te3 mesa structures with 80 - 120 μm diameters sandwiched between metallic film electrodes. A three-dimensional finite element model was used to predict the electric field distribution in the measured structures and take into account the non-uniform distribution of the current in the electrodes in the vicinity of the probes. The finite-element modeling shows that significant errors could arise in the measured film electrical conductivity if simpler one-dimensional models are employed. A high electrical conductivity of (3.2 ± 0.4 ⋅ 105 S/m is reported along the out of plane direction for Bi2Te3 films highly oriented in the [1 1 0] direction.

  6. Structural and electrical properties of Ta2O5 thin films prepared by ...

    Indian Academy of Sciences (India)

    The dielectric constant and leakage current density of the Ta2O5 thin films increase with increasing powers of the UV- lamps. Effects of UV- lamp powers on the structural and electrical properties were discussed. Keywords. Chemical vapour deposition processes; oxides; dielectric material; MOS capacitor. 1. Introduction.

  7. Electrical and optical properties of ITO and ITO/Cr-doped ITO films

    International Nuclear Information System (INIS)

    Caricato, A.P.; Cesaria, M.; Luches, A.; Martino, M.; Valerini, D.; Maruccio, G.; Catalano, M.; Cola, A.; Manera, M.G.; Lomascolo, M.; Taurino, A.; Rella, R.

    2010-01-01

    In this paper we report on the effects of the insertion of Cr atoms on the electrical and optical properties of indium tin oxide (ITO) films to be used as electrodes in spin-polarized light-emitting devices. ITO films and ITO(80 nm)/Cr-doped ITO(20 nm) bilayers and Cr-doped ITO films with a thickness of 20 nm were grown by pulsed ArF excimer laser deposition. The optical, structural, morphological and electrical properties of ITO films and ITO/Cr-doped structures were characterized by UV-Visible transmission and reflection spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Hall-effect analysis. For the different investigations, the samples were deposited on different substrates like silica and carbon coated Cu grids. ITO films with a thickness of 100 nm, a resistivity as low as ∝4 x 10 -4 Ω cm, an energy gap of ∝4.3 eV and an atomic scale roughness were deposited at room temperature without any post-deposition process. The insertion of Cr into the ITO matrix in the upper 20 nm of the ITO matrix induced variations in the physical properties of the structure like an increase of average roughness (∝0.4-0.5 nm) and resistivity (up to ∝8 x 10 -4 Ω cm). These variations were correlated to the microstructure of the Cr-doped ITO films with particular attention to the upper 20 nm. (orig.)

  8. Thickness and microstructure effects in the optical and electrical properties of silver thin films

    Directory of Open Access Journals (Sweden)

    Guowen Ding

    2015-11-01

    Full Text Available The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C, with a value of 59 ± 2 μΩ cm ⋅ fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.

  9. Thickness and microstructure effects in the optical and electrical properties of silver thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Guowen, E-mail: gding@intermolecular.com; Clavero, César; Schweigert, Daniel; Le, Minh [Intermolecular, Inc., 3011 North First Street, San Jose, CA 95134 (United States)

    2015-11-15

    The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C), with a value of 59 ± 2 μΩ cm ⋅ fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.

  10. Electrical and optical properties of ITO and ITO/Cr-doped ITO films

    Science.gov (United States)

    Caricato, A. P.; Cesaria, M.; Luches, A.; Martino, M.; Maruccio, G.; Valerini, D.; Catalano, M.; Cola, A.; Manera, M. G.; Lomascolo, M.; Taurino, A.; Rella, R.

    2010-12-01

    In this paper we report on the effects of the insertion of Cr atoms on the electrical and optical properties of indium tin oxide (ITO) films to be used as electrodes in spin-polarized light-emitting devices. ITO films and ITO(80 nm)/Cr-doped ITO(20 nm) bilayers and Cr-doped ITO films with a thickness of 20 nm were grown by pulsed ArF excimer laser deposition. The optical, structural, morphological and electrical properties of ITO films and ITO/Cr-doped structures were characterized by UV-Visible transmission and reflection spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Hall-effect analysis. For the different investigations, the samples were deposited on different substrates like silica and carbon coated Cu grids. ITO films with a thickness of 100 nm, a resistivity as low as ˜4×10-4 Ω cm, an energy gap of ˜4.3 eV and an atomic scale roughness were deposited at room temperature without any post-deposition process. The insertion of Cr into the ITO matrix in the upper 20 nm of the ITO matrix induced variations in the physical properties of the structure like an increase of average roughness (˜0.4-0.5 nm) and resistivity (up to ˜8×10-4 Ω cm). These variations were correlated to the microstructure of the Cr-doped ITO films with particular attention to the upper 20 nm.

  11. Graphene-based LbL deposited films: further study of electrical and gas sensing properties

    Directory of Open Access Journals (Sweden)

    Nabok A.

    2017-01-01

    Full Text Available Graphene-surfactant composite materials obtained by the ultrasonic exfoliation of graphite powder in the presence of ionic surfactants (either CTAB or SDS were utilised to construct thin films using layer-by-layer (LbL electrostatic deposition technique. A series of graphene-based thin films were made by alternating layers of either graphene-SDS with polycations (PEI or PAH or graphene-CTAB with polyanions (PSS. Also, graphene-phthalocyanine composite films were produced by alternating layers of graphene-CTAB with tetrasulfonated nickel phthalocyanine. Graphene-surfactant LbL films exhibited good electric conductivity (about 0.1 S/cm of semiconductor type with a band gap of about 20 meV. Judging from UV-vis spectra measurements, graphene-phthalocyanine LbL films appeared to form joint π-electron system. Gas sensing testing of such composite films combining high conductivity of graphene with the gas sensing abilities of phthalocyanines showed substantial changes (up to 10% in electrical conductivity upon exposure to electro-active gases such as HCl and NH3.

  12. Strain and Defect Engineering for Tailored Electrical Properties in Perovskite Oxide Thin Films and Superlattices

    Science.gov (United States)

    Hsing, Greg Hsiang-Chun

    Functional complex-oxides display a wide spectrum of physical properties, including ferromagnetism, piezoelectricity, ferroelectricity, photocatalytic and metal-insulating transition (MIT) behavior. Within this family, oxides with a perovskite structure have been widely studied, especially in the form of thin films and superlattices (heterostructures), which are strategically and industrially important because they offer a wide range of opportunities for electronic, piezoelectric and sensor applications. The first part of my thesis focuses on understanding and tuning of the built-in electric field found in PbTiO3/SrTiO3 (PTO/STO) ferroelectric superlattices and other ferroelectric films. The artificial layering in ferroelectric superlattices is a potential source of polarization asymmetry, where one polarization state is preferred over another. One manifestation of this asymmetry is a built-in electric field associated with shifted polarization hysteresis. Using off-axis RF-magnetron sputtering, we prepared several compositions of PTO/STO superlattice thin films; and for comparison PbTiO3/SrRuO 3 (PTO/SRO) superlattices, which have an additional intrinsic compositional asymmetry at the interface. Both theoretical modeling and experiments indicate that the layer-by-layer superlattice structure aligns the Pb-O vacancy defect dipoles in the c direction which contributes significantly to the built-in electric field; however the preferred polarization direction is different between the PTO/STO and PTO/SRO interface. By designing a hybrid superlattice that combines PTO/STO and PTO/SRO superlattices, we show the built-in electric field can be tuned to zero by changing the composition of the combo-superlattice. The second part of my thesis focuses on the epitaxial growth of SrCrO 3 (SCO) films. The inconsistent reports regarding its electrical and magnetic properties through the years stem from the compositionally and structurally ill-defined polycrystalline samples, but

  13. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    Science.gov (United States)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  14. Structural, optical and electrical characteristics of ITO thin films deposited by sputtering on different polyester substrates

    International Nuclear Information System (INIS)

    Guillen, C.; Herrero, J.

    2008-01-01

    Indium tin oxide (ITO) thin films were deposited by sputtering at room temperature on glass and different polyester substrates; namely polyarylate (PA), polycarbonate (PC) and polyethylene terephtalate (PET). The influence of the substrate on the structural, optical and electrical characteristics of the ITO layers was investigated. The sputtered films exhibited crystallization in the (2 2 2) orientation, with higher mean crystallite size and lower structural distortion onto PET than onto PA, PC or glass substrates. ITO films deposited onto PET showed also higher band gap energy, higher carrier concentration and lower resistivity than the ITO layers onto the other tested substrates. These optical and electrical characteristics have been related to the structural distortion that was found dependent on the specific polyester substrate

  15. Optical Absorption and Electric Resistivity of an l-Cysteine Film

    Science.gov (United States)

    Kamada, Masao; Hideshima, Takuya; Azuma, Junpei; Yamamoto, Isamu; Imamura, Masaki; Takahashi, Kazutoshi

    2016-12-01

    The optical and electric properties of an l-cysteine film have been investigated to understand its applicability to bioelectronics. The fundamental absorption is the allowed transition having the threshold at 5.8 eV and the absorption is due to the charge-transfer type transition from sulfur-3sp to oxygen-2p and/or carbon-2p states, while absorptions more than 9 eV can be explained with intra-atomic transitions in the functional groups. The electric resistivity is 2.0 × 104 Ω m at room temperature and increases as the sample temperature decreases. The results indicate that the l-cysteine film is a p-type semiconductor showing the hole conduction caused by the sulfur-3sp occupied states and unknown impurity or defect states as acceptors. The electron affinity of the l-cysteine film is derived as ≦-0.3 eV.

  16. Electrical four-point probing of spherical metallic thin films coated onto micron sized polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Sigurd R., E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang; He, Jianying, E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Kristiansen, Helge [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway); Njagi, John; Goia, Dan V. [Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5814 (United States); Redford, Keith [Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway)

    2016-07-25

    Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental results with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.

  17. Enhanced and tunable electric dipole-dipole interactions near a planar metal film

    Science.gov (United States)

    Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen

    2017-08-01

    We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.

  18. Electrical and optical properties of ultrasonically sprayed Al-doped zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Babu, B.J., E-mail: jbabu@cinvestav.mx [Department of Electrical Engineering-SEES, CINVESTAV-IPN, Zacatenco, D.F., C.P. 07360 (Mexico); Maldonado, A.; Velumani, S.; Asomoza, R. [Department of Electrical Engineering-SEES, CINVESTAV-IPN, Zacatenco, D.F., C.P. 07360 (Mexico)

    2010-10-25

    Aluminium-doped ZnO (AZO) films were deposited by ultrasonic spray pyrolysis (USP) technique to investigate its potential application as antireflection coating and top contact layer for copper indium gallium diselenide (CIGS) based photovoltaic cells. The solution used to prepare AZO thin films contained 0.2 M of zinc acetate and 0.2 M of aluminium pentanedionate solutions in the order of 2, 3 and 4 at.% of Al/Zn. AZO films were deposited onto glass substrates at different substrate temperatures starting from 450 deg. C to 500 deg. C. XRD and FESEM analysis revealed the structural properties of the films and almost all the films possessed crystalline structure with a preferred (0 0 2) orientation except for the 4 at.% of Al. Grain size of AZO films varied from 29.7 to 37 nm for different substrate temperatures and atomic percentage of aluminium. The average optical transmittance of all films with the variation of doping concentration and substrate temperature was 75-90% in the visible range of wavelength 600-700 nm. Optical direct band gap value of 2, 3 and 4 at.% Al-doped films sprayed at different temperatures varied from 3.32 to 3.46 eV. Hall studies were carried out to analyze resistivity, mobility and carrier concentration of the films. AZO films deposited at different substrate temperatures and at various Al/Zn ratios showed resistivity ranging from 0.12 to 1.0 x 10{sup -2} {Omega} cm. Mobility value was {approx}5 cm{sup 2}/V s and carrier concentration value was {approx}7.7 x 10{sup 19} cm{sup -3}. Minimum electrical resistivity was obtained for the 3 at.% Al-doped film sprayed at 475 deg. C and its value was 1.0 x 10{sup -2} {Omega} cm with film thickness of 602 nm. The electrical conductivity of ZnO films was improved by aluminium doping.

  19. Li ion transport in sputter deposited LiCoO{sub 2} thin films and glassy borate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Stockhoff, Tobias; Gallasch, Tobias; Schmitz, Guido [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Materialphysik, Muenster (Germany)

    2010-07-01

    LiCoO{sub 2} membranes are key components of current battery technology. We investigate sputter-deposited thin films of these materials aiming at the application in all-solid-state thin film batteries. For this, LiCoO{sub 2} films (10-200 nm) were deposited onto ITO-coated glass substrates by ion beam sputtering. In addition, a part of these films are coated by an ion-conductive membrane of Li{sub 2}O-B{sub 2}O{sub 3} glasses in the thickness range of 50 to 300 nm. Structural, chemical and electrical properties of the layers are studied by means of TEM(EELS) and various electrical methods (cyclic voltammetry, chrono-amperometry/-potentiometry). Since the color of the LiCoO{sub 2} films changes from red-brown to grey during de-intercalation of Li and the substrate as well as the glassy membrane deposited on top are optical transparent, reversible Li de- and intercalation can be directly demonstrated and quantified by a measurement of light transmission through the layered system. Samples coated with an ion-conductive membrane reveal a characteristic delay in switching optical transparency which is due to the slower transport across the membrane. Varying the thickness of the glassy membrane, the d.c. ion-conductivity and permeation through the membrane is determined quantitatively. Using thin membranes in the range of a few tens of nanometers the critical current densities are way sufficient for battery applications.

  20. Development of thin film oxygen transport membranes on metallic supports

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Ye

    2012-04-25

    Asymmetric membrane structure has an attractive potential in the application of O{sub 2}/N{sub 2} gas separation membrane for the future membrane-based fossil fuel power plant using oxyfuel technology, which will reduce the carbon dioxide emission. The aim of this study is the development of a metal supported multi-layer membrane structure with a thin film top membrane layer and porous ceramic interlayers. Four perovskite materials were studied as candidate membrane materials. Material properties of these perovskite materials were investigated and compared. La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58428) showed sufficient oxygen permeability, an acceptable thermal expansion coefficient and a moderate sintering temperature. Alternatively, Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF5582) is considered obtaining very high oxygen permeability but a higher thermal expansion and a lower thermal stability than LSCF58428. Four different Ni-based alloys were studied as candidate substrate materials in the asymmetric membrane structure. The chromia-scale alloys (Hastelloy X, Inconel 600 and Haynes 214) caused Cr poisoning of the membrane layer material LSCF58428 during high-temperature co-firing in air. NiCoCrAlY with a high Al content (12.7 wt%) was found to be the most promising substrate material. It showed a good chemical compatibility with perovskite materials at high temperatures. In order to bridge the highly porous substrate and the thin top membrane layer interlayers were developed. Two interlayers were coated by screen printing on the porous NiCoCrAlY substrate which was sintered at 1225 C in flowing H{sub 2} atmosphere. Screen printing pastes were optimized by investigating various solvent and binder combinations and various ceramic powder contents. The first interlayer significantly improved the surface quality and the surface pore size has been reduced from 30-50{mu}m on the substrate to few {mu}m on the first

  1. Effect of substrate temperature on structural, optical and electrical properties of pulsed laser ablated nanostructured indium oxide films

    International Nuclear Information System (INIS)

    Beena, D.; Lethy, K.J.; Vinodkumar, R.; Mahadevan Pillai, V.P.; Ganesan, V.; Phase, D.M.; Sudheer, S.K.

    2009-01-01

    Nanocrystalline indium oxide (INO) films are deposited in a back ground oxygen pressure at 0.02 mbar on quartz substrates at different substrate temperatures (T s ) ranging from 300 to 573 K using pulsed laser deposition technique. The films are characterized using GIXRD, XPS, AFM and UV-visible spectroscopy to study the effect of substrate temperature on the structural and optical properties of films. The XRD patterns suggest that the films deposited at room temperature are amorphous in nature and the crystalline nature of the films increases with increase in substrate temperature. Films prepared at T s ≥ 473 K are polycrystalline in nature (cubic phase). Crystalline grain size calculation based on Debye Scherrer formula indicates that the particle size enhances with the increase in substrate temperature. Lattice constant of the films are calculated from the XRD data. XPS studies suggest that all the INO films consist of both crystalline and amorphous phases. XPS results show an increase in oxygen content with increase in substrate temperature and reveals that the films deposited at higher substrate temperatures exhibit better stoichiometry. The thickness measurements using interferometric techniques show that the film thickness decreases with increase in substrate temperature. Analysis of the optical transmittance data of the films shows a blue shift in the values of optical band gap energy for the films compared to that of the bulk material owing to the quantum confinement effect due to the presence of quantum dots in the films. Refractive index and porosity of the films are also investigated. Room temperature DC electrical measurements shows that the INO films investigated are having relatively high electrical resistivity in the range of 0.80-1.90 Ωm. Low temperature electrical conductivity measurements in the temperature range of 50-300 K for the film deposited at 300 K give a linear Arrhenius plot suggesting thermally activated conduction. Surface

  2. ELECTROMAGNETIC SAFETY OF ELECTRIC TRANSPORT SYSTEMS: MAIN SOURCES AND PARAMETERS OF MAGNETIC FIELDS

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-03-01

    Full Text Available Magnetic fields produced by electric drive vehicles may break electromagnetic safety. For electromagnetic safety and electromagnetic compatibility knowledge about characteristics and sources of magnetic fields in the electric transport is necessary. The article deals with analysis of available data about magnetic fields in electric cars and comparison with results of our measurements carried out in the other types of electrified transport systems.

  3. Electrifying Australian transport: Hybrid life cycle analysis of a transition to electric light-duty vehicles and renewable electricity

    International Nuclear Information System (INIS)

    Wolfram, Paul; Wiedmann, Thomas

    2017-01-01

    Highlights: •This research assesses life-cycle carbon impacts of different powertrains. •We illustrate a transition to low-carbon vehicles in a hybrid IO-LCA model. •Different electricity and transport scenarios are integrated in the model. •With Australia’s current grid-mix, electric vehicles offer no mitigation potential. •Using renewable energy, electric vehicle carbon footprints can be cut by 66%. -- Abstract: Recent life cycle assessments confirmed the greenhouse gas emission reduction potential of renewable electricity and electric vehicle technologies. However, each technology is usually assessed separately and not within a consistent macro-economic, multi-sectoral framework. Here we present a multi-regional input-output based hybrid approach with integrated scenarios to facilitate the carbon footprint assessment of all direct and indirect effects of a transition to low-emission transportation and electricity generation technologies in Australia. The work takes into account on-road energy consumption values that are more realistic than official drive-cycle energy consumption figures used in previous work. Accounting for these factors as well as for Australia’s grid electricity, which heavily relies on coal power, electric vehicles are found to have a higher carbon footprint than conventional vehicles, whereas hybrid electric vehicles have the lowest. This means that – from a carbon footprint perspective – powertrain electrification is beneficial only to a certain degree at the current stage. This situation can be changed by increasing shares of renewable electricity in the grid. In our best-case scenario, where renewable energy accounts for 96% of the electricity mix in 2050, electric vehicle carbon footprints can be cut by 66% by 2050 relative to 2009. In the business-as-usual scenario (36% renewable electricity share by 2050), electric vehicles can reach a 56% reduction if fossil fuel power plants significantly increase their efficiencies

  4. Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Machida, Emi [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192 (Japan); Research Fellowships of the Japan Society for the Promotion of Science, Japan Society for the Promotion of Science, 1-8 Chiyoda, Tokyo 102-8472 (Japan); Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192 (Japan); Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ikenoue, Hiroshi [Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan)

    2012-12-17

    We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 {mu}m, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

  5. Investigations of electrical and optical properties of functional TCO thin films

    Directory of Open Access Journals (Sweden)

    Domaradzki Jarosław

    2015-06-01

    Full Text Available Transparent conducting oxide (TCO films of indium-tin-oxide were evaporated on the surface of silicon wafers after phosphorous diffusion and on the reference glass substrates. The influence of deposition process parameters (electron beam current, oxygen flow and the substrate temperature on optical and electrical properties of evaporated thin films were investigated by means of resistivity measurements and optical spectrophotometry. The performance of prepared thin films was judged by calculated figure of merit and the best result was obtained for the sample deposited on the substrate heated to the 100 °C and then removed from the deposition chamber and annealed in an air for 5 minutes at 400 °C. Refractive index and extinction coefficient were evaluated based on measured transmission spectra and used for designing of antireflection coating for solar cell. The obtained results showed that prepared TCO thin films are promising as a part of counter electrode in crystalline silicon solar cell construction.

  6. Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity.

    Science.gov (United States)

    Ding, Jiheng; Ur Rahman, Obaid; Zhao, Hongran; Peng, Wanjun; Dou, Huimin; Chen, Hao; Yu, Haibin

    2017-09-29

    Graphene-based films are widely used in the electronics industry. Here, surface hydroxylated graphene sheets (HGS) have been synthesized from natural graphite (NG) by a rapid and efficient molten hydroxide-assisted exfoliation technique. This method enables preparation of aqueous dispersible graphene sheets with a high dispersed concentration (∼10.0 mg ml -1 ) and an extraordinary production yield (∼100%). The HGS dispersion was processed into graphene flexible film (HGCF) through fast filtration, annealing treatment and mechanical compression. The HGS endows graphene flexible film with a high electrical conductivity of 11.5 × 10 4 S m -1 and a superior thermal conductivity of 1842 W m -1 K -1 . Simultaneously, the superflexible HGCF could endure 3000 repeated cycles of bending or folding. As a result, this graphene flexible film is expected to be integrated into electronic packaging and high-power electronics applications.

  7. Structural and electrical studies on nanostructured InSe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, A.A.A., E-mail: aaadarwish@gmail.com [Physics Department, Faculty of Science, University of Tabuk, Tabuk (Saudi Arabia); Physics Department, Faculty of Education at Al-Mahweet, Sana’a University, Al-Mahweet (Yemen); El-Nahass, M.M. [Physics Department, Faculty of Education, Ain Shams University, Rorxy, Cairo 11757 (Egypt); Bahlol, M.H. [Physics Department, Faculty of Education, Science and Arts at Sada’a, Amran University, Sada’a (Yemen)

    2013-07-01

    InSe powder was found to be polycrystalline with hexagonal system. X-ray diffraction and scanning electron microscopy results confirmed that the InSe films have nanostructure nature. The heat treatment enhance the crystallite size. The dark electrical conductivity of InSe films showed that the dominant conduction is through the extended states in the temperature range 293–473 K. Thermoelectric properties show a negative sign exhibiting n-type semiconductig nature of films. Current density–voltage characteristics of InSe films showed Ohmic conduction in the lower voltage range, and space charge limited conductivity (SCLC) in the relatively high-voltage range. The SCLC was controlled by an exponential distribution of traps below the conduction band. The temperature dependence of the current density allowed the calculation of some essential parameters.

  8. Use of an electric field in an electrostatic liquid film radiator.

    Science.gov (United States)

    Bankoff, S G; Griffing, E M; Schluter, R A

    2002-10-01

    Experimental and numerical work was performed to further the understanding of an electrostatic liquid film radiator (ELFR) that was originally proposed by Kim et al.(1) The ELFR design utilizes an electric field that exerts a normal force on the interface of a flowing film. The field lowers the pressure under the film in a space radiator and, thereby, prevents leakage through a puncture in the radiator wall. The flowing film is subject to the Taylor cone instability, whereby a cone of fluid forms underneath an electrode and sharpens until a jet of fluid is pulled toward the electrode and disintegrates into droplets. The critical potential for the instability is shown to be as much as an order of magnitude higher than that used in previous designs.(2) Furthermore, leak stoppage experiments indicate that the critical field is adequate to stop leaks in a working radiator.

  9. Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films

    International Nuclear Information System (INIS)

    Park, Myounggu; Kim, Hyonny; Youngblood, Jeffrey P

    2008-01-01

    The strain-dependent electrical resistance characteristics of multi-walled carbon nanotube (MWCNT)/polymer composite films were investigated. In this research, polyethylene oxide (PEO) is used as the polymer matrix. Two representative volume fractions of MWCNT/PEO composite films were selected: 0.56 vol% (near the percolation threshold) and 1.44 vol% (away from the percolation threshold) of MWCNT. An experimental setup which can measure electrical resistance and strain simultaneously and continuously has been developed. Unique and repeatable relationships in resistance versus strain were obtained for multiple specimens with different volume fractions of MWCNT. The overall pattern of electrical resistance change versus strain for the specimens tested consists of linear and nonlinear regions. A resistance change model to describe the combination of linear and nonlinear modes of electrical resistance change as a function of strain is suggested. The unique characteristics in electrical resistance change for different volume fractions imply that MWCNT/PEO composite films can be used as tunable strain sensors and for application into embedded sensor systems in structures

  10. Morphology effects on spin-dependent transport and recombination in polyfluorene thin films

    Science.gov (United States)

    Miller, Richards; van Schooten, K. J.; Malissa, H.; Joshi, G.; Jamali, S.; Lupton, J. M.; Boehme, C.

    2016-12-01

    We have studied the role of spin-dependent processes on conductivity in polyfluorene (PFO) thin films by preforming continuous wave (cw) electrically detected magnetic resonance (EDMR) spectroscopy at temperatures between 10 K and room temperature using microwave frequencies between about 1 GHz and 20 GHz, as well as pulsed EDMR at the X band (10 GHz). Variable frequency EDMR allows us to establish the role of spin-orbit coupling in spin-dependent processes whereas pulsed EDMR allows for the observation of coherent spin motion effects. We used PFO for this study in order to allow for the investigation of the effects of microscopic morphological ordering since this material can adopt two distinct intrachain morphologies: an amorphous (glassy) phase, in which monomer units are twisted with respect to each other, and an ordered (β) phase, where all monomers lie within one plane. In thin films of organic light-emitting diodes, the appearance of a particular phase can be controlled by deposition parameters and solvent vapor annealing, and is verified by electroluminescence spectroscopy. Under bipolar charge-carrier injection conditions, we conducted multifrequency cw EDMR, electrically detected Rabi spin-beat experiments, and Hahn echo and inversion-recovery measurements. Coherent echo spectroscopy reveals electrically detected electron-spin-echo envelope modulation due to the coupling of the carrier spins to nearby nuclear spins. Our results demonstrate that, while conformational disorder can influence the observed EDMR signals, including the sign of the current changes on resonance as well as the magnitudes of local hyperfine fields and charge-carrier spin-orbit interactions, it does not qualitatively affect the nature of spin-dependent transitions in this material. In both morphologies, we observe the presence of at least two different spin-dependent recombination processes. At room temperature and 10 K, polaron-pair recombination through weakly spin-spin coupled

  11. Spin Seebeck effect and ballistic transport of quasi-acoustic magnons in room-temperature yttrium iron garnet films

    Science.gov (United States)

    Noack, Timo B.; Musiienko-Shmarova, Halyna Yu; Langner, Thomas; Heussner, Frank; Lauer, Viktor; Heinz, Björn; Bozhko, Dmytro A.; Vasyuchka, Vitaliy I.; Pomyalov, Anna; L’vov, Victor S.; Hillebrands, Burkard; Serga, Alexander A.

    2018-06-01

    We studied the transient behavior of the spin current generated by the longitudinal spin Seebeck effect (LSSE) in a set of platinum-coated yttrium iron garnet (YIG) films of different thicknesses. The LSSE was induced by means of pulsed microwave heating of the Pt layer and the spin currents were measured electrically using the inverse spin Hall effect in the same layer. We demonstrate that the time evolution of the LSSE is determined by the evolution of the thermal gradient triggering the flux of thermal magnons in the vicinity of the YIG/Pt interface. These magnons move ballistically within the YIG film with a constant group velocity, while their number decays exponentially within an effective propagation length. The ballistic flight of the magnons with energies above 20 K is a result of their almost linear dispersion law, similar to that of acoustic phonons. By fitting the time-dependent LSSE signal for different film thicknesses varying by almost an order of magnitude, we found that the effective propagation length is practically independent of the YIG film thickness. We consider this fact as strong support of a ballistic transport scenario—the ballistic propagation of quasi-acoustic magnons in room temperature YIG.

  12. Effect of sputtering parameters on optical and electrical properties of ITO films on PET substrates

    International Nuclear Information System (INIS)

    Tseng, Kun-San; Lo, Yu-Lung

    2013-01-01

    The optical and electrical properties of indium tin oxide (ITO) thin films deposited on flexible polyethylene terephthalate (PET) substrates using a DC magnetron sputtering technique are investigated as a function of the deposition time, the argon flow rate and the target–substrate distance. It is found that all of the ITO films contain a high fraction of amorphous phase. The volume fraction of crystallite precipitates in the amorphous host increases with an increasing deposition time or a reducing argon flow rate. The deposition time and argon flow rate have higher effects on the optical transparency of the ITO films than the target–substrate distance has. Increasing film thickness is not the only reason for the transmittance reduced. It is found that an increase of the extinction coefficient by increasing deposition time or an increase of the refractive index by decreasing argon flow rate also reduces the transmittance of thin film. For a constant deposition time, the resistivity of the ITO films reduces with a reducing argon flow rate or a reducing target–substrate distance. For a constant argon flow rate, a critical value of the deposition time exists at which both the resistivity and the effect of the target–substrate distance are minimized. Finally, it is concluded that the film resistivity has low sensitivity to the target–substrate distance if the best deposition conditions which mostly attain the lowest resistivity are matched.

  13. Effect of sputtering parameters on optical and electrical properties of ITO films on PET substrates

    Science.gov (United States)

    Tseng, Kun-San; Lo, Yu-Lung

    2013-11-01

    The optical and electrical properties of indium tin oxide (ITO) thin films deposited on flexible polyethylene terephthalate (PET) substrates using a DC magnetron sputtering technique are investigated as a function of the deposition time, the argon flow rate and the target-substrate distance. It is found that all of the ITO films contain a high fraction of amorphous phase. The volume fraction of crystallite precipitates in the amorphous host increases with an increasing deposition time or a reducing argon flow rate. The deposition time and argon flow rate have higher effects on the optical transparency of the ITO films than the target-substrate distance has. Increasing film thickness is not the only reason for the transmittance reduced. It is found that an increase of the extinction coefficient by increasing deposition time or an increase of the refractive index by decreasing argon flow rate also reduces the transmittance of thin film. For a constant deposition time, the resistivity of the ITO films reduces with a reducing argon flow rate or a reducing target-substrate distance. For a constant argon flow rate, a critical value of the deposition time exists at which both the resistivity and the effect of the target-substrate distance are minimized. Finally, it is concluded that the film resistivity has low sensitivity to the target-substrate distance if the best deposition conditions which mostly attain the lowest resistivity are matched.

  14. Effect of sputtering parameters on optical and electrical properties of ITO films on PET substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Kun-San [Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lo, Yu-Lung, E-mail: loyl@mail.ncku.edu.tw [Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan (China)

    2013-11-15

    The optical and electrical properties of indium tin oxide (ITO) thin films deposited on flexible polyethylene terephthalate (PET) substrates using a DC magnetron sputtering technique are investigated as a function of the deposition time, the argon flow rate and the target–substrate distance. It is found that all of the ITO films contain a high fraction of amorphous phase. The volume fraction of crystallite precipitates in the amorphous host increases with an increasing deposition time or a reducing argon flow rate. The deposition time and argon flow rate have higher effects on the optical transparency of the ITO films than the target–substrate distance has. Increasing film thickness is not the only reason for the transmittance reduced. It is found that an increase of the extinction coefficient by increasing deposition time or an increase of the refractive index by decreasing argon flow rate also reduces the transmittance of thin film. For a constant deposition time, the resistivity of the ITO films reduces with a reducing argon flow rate or a reducing target–substrate distance. For a constant argon flow rate, a critical value of the deposition time exists at which both the resistivity and the effect of the target–substrate distance are minimized. Finally, it is concluded that the film resistivity has low sensitivity to the target–substrate distance if the best deposition conditions which mostly attain the lowest resistivity are matched.

  15. Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Barik, Ullash; Srinivasan, S; Nagendra, C L; Subrahmanyam, A

    2003-04-01

    Silver oxide thin films have been prepared on soda lime glass substrates at room temperature (300 K) by reactive DC Magnetron sputtering technique using pure silver metal target; the oxygen flow rates have been varied in the range 0.00-2.01 sccm. The X-ray diffraction data on these films show a systematic change from metallic silver to silver (sub) oxides. The electrical resistivity increases with increasing oxygen flow. The films show a p-type behavior (by both Hall and Seebeck measurements) for the oxygen flow rates of 0.54, 1.09 and 1.43 sccm. The refractive index of the films (at 632.8 nm) decreases with increasing oxygen content and is in the range 1.167-1.145, whereas the p-type films show a higher refractive index (1.186-1.204). The work function of these silver oxide films has been measured by Kelvin Probe technique. The results, in specific, the p-type conductivity in the silver oxide films, have been explained on the basis of the theory of partial ionic charge proposed by Sanderson.

  16. Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen

    International Nuclear Information System (INIS)

    Kumar Barik, Ullash; Srinivasan, S.; Nagendra, C.L.; Subrahmanyam, A.

    2003-01-01

    Silver oxide thin films have been prepared on soda lime glass substrates at room temperature (300 K) by reactive DC Magnetron sputtering technique using pure silver metal target; the oxygen flow rates have been varied in the range 0.00-2.01 sccm. The X-ray diffraction data on these films show a systematic change from metallic silver to silver (sub) oxides. The electrical resistivity increases with increasing oxygen flow. The films show a p-type behavior (by both Hall and Seebeck measurements) for the oxygen flow rates of 0.54, 1.09 and 1.43 sccm. The refractive index of the films (at 632.8 nm) decreases with increasing oxygen content and is in the range 1.167-1.145, whereas the p-type films show a higher refractive index (1.186-1.204). The work function of these silver oxide films has been measured by Kelvin Probe technique. The results, in specific, the p-type conductivity in the silver oxide films, have been explained on the basis of the theory of partial ionic charge proposed by Sanderson

  17. Magnetic, structural and electrical properties of ordered and disordered Co50Fe50 films

    International Nuclear Information System (INIS)

    Chen, Y.T.; Jen, S.U.; Yao, Y.D.; Wu, J.M.; Hwang, G.H.; Tsai, T.L.; Chang, Y.C.; Sun, A.C.

    2006-01-01

    Co 50 Fe 50 films with thickness varying from 100 to 500 A were deposited on a glass substrate by sputtering process, respectively. Two kinds of CoFe films were studied: one was the as-deposited film, and the other the annealed film. The annealing procedure was to keep the films at 400 deg. C for 5 h in a vacuum of 5x10 -6 mbar. From the X-ray study, we find that the as-deposited film prefers the CoFe(1 1 0) orientation. Moreover, the body-centered cubic (bcc) CoFe(1 1 0) line is split into two peaks: one corresponding to the ordered body-centered tetragonal (bct) phase, and the other, the disordered bcc phase. After annealing, the peak intensity of the ordered bct phase becomes much stronger, while that of the disordered bcc phase disappears. The annealing has also caused the ordered CoFe(2 0 0) line to appear. When the amount of the ordered bct phase in Co 50 Fe 50 is increased, the saturation magnetization (M s ) and coercivity (H c ) become larger, but the electrical resistivity (ρ) decreases. From the temperature coefficient of resistance (TCR) measurement, we learn that the bct grains in the CoFe film start to grow at temperature 82 deg. C

  18. Electric conduction mechanism of some heterocyclic compounds, 4,4′-bipyridine and indolizine derivatives in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Danac, Ramona, E-mail: rdanac@uaic.ro [Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi (Romania); Leontie, Liviu, E-mail: lleontie@uaic.ro [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi (Romania); Carlescu, Aurelian, E-mail: carlescu_aurelian@yahoo.com [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi (Romania); Shova, Sergiu, E-mail: shova@icmpp.ro [Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, Nr. 41A, 700487 Iasi (Romania); Tiron, Vasile, E-mail: vasile.tiron@uaic.ro [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi (Romania); Rusu, George G., E-mail: rusugxg@uaic.ro [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi (Romania); Iacomi, Felicia, E-mail: iacomi@uaic.ro [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi (Romania); Gurlui, Silviu, E-mail: sgurlui@uaic.ro [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi (Romania); Șușu, Oana, E-mail: oasusu@gmail.com [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi (Romania); Rusu, Gheorghe I., E-mail: girusu@uaic.ro [Faculty of Physics, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I, Nr. 11, 700506 Iasi (Romania)

    2016-08-01

    Temperature dependence of d. c. electric conductivity of some recently synthesized heterocyclic compounds, 4,4′-bipyridine and indolizine derivatives, in thin films (d = 0.27–0.51 μm) spin-coated from chloroform solutions onto glass, is studied. The investigated compounds are polycrystalline (as shown by X-ray Diffraction analysis) and show typical n-type semiconductor behavior. The activation energy of d. c. electric conduction ranges between 1.55 and 2.33 eV. Some correlations between semiconducting characteristics and essential features of molecular structure of organic compounds have been established. In the higher temperature range (400–520 K), the electronic transport properties in present compounds can be explained in the frame of band gap representation model, while in the lower temperature range (300–350 K), the Mott's variable-range hopping conduction model can be conveniently used. - Highlights: • 4,4′-bipyridine and indolizine derivatives in thin films behave as n-type semiconductors. • The electron transfer is favored by extended conjugation and packing capacity. • The band gap representation is suitable in the higher temperature range. • The Mott's VRH conduction model may be used in the lower temperature range.

  19. The local structure, magnetic, and transport properties of Cr-doped In2O3 films

    International Nuclear Information System (INIS)

    Wang Shiqi; An Yukai; Feng Deqiang; Liu Jiwen; Wu Zhonghua

    2013-01-01

    Cr-doped In 2 O 3 films were deposited on Si (100) substrates by RF-magnetron sputtering technique. The local structure, magnetic, and transport properties of films are investigated by X-ray diffraction, X-ray photoelectron spectroscopy, X-ray absorption fine structure, Hall effect, R-T, and magnetic measurements. Structural analysis clearly indicates that Cr ions substitute for In 3+ sites of the In 2 O 3 lattice in the valence of +2 states and Cr-related secondary phases or clusters as the source of ferromagnetism is safely ruled out. The films with low Cr concentration show a crossover from semiconducting to metallic transport behavior, whereas only semiconducting behavior is observed in high Cr concentration films. The transport property of all films is governed by Mott variable range hopping behavior, suggesting that the carriers are strongly localized. Magnetic characterizations show that the saturated magnetization of films increases first, and then decreases with Cr doping, while carrier concentration n c decreases monotonically, implying that the ferromagnetism is not directly induced by the mediated carriers. It can be concluded the ferromagnetism of films is intrinsic and originates from electrons bound in defect states associated with oxygen vacancies.

  20. Structural, optical and electrical characterization of vacuum-evaporated nanocrystalline CdSe thin films for photosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vipin; Sharma, D.K.; Sharma, Kapil [Krishna Institute of Engineering and Technology, Department of Physics, Ghaziabad (India); Dwivedi, D.K. [M.M.M University of Technology, Department of Physics, Gorakhpur (India)

    2016-11-15

    II-VI nanocrystalline semiconductors offer a wide range of applications in electronics, optoelectronics and photonics. Thin films of CdSe were deposited onto ultra-clean glass substrates by vacuum evaporation method. The as-deposited films were annealed in vacuum at 350 K. The structural, elemental, morphological, optical and electrical investigations of annealed films were carried out. The X-ray diffraction pattern of the films shows that films were polycrystalline in nature having hexagonal structure with preferential orientation of grains along (002) plane. SEM image indicates that the films were uniform and well covered to the glass substrate. EDAX analysis confirms the stoichiometric composition of the film. Raman spectra were used to observe the characteristic vibrational modes of CdSe. The energy band gap of these films was obtained by absorption spectra. The films were found to have a direct type of transition of band gap occurring at 1.75 eV. The dark electrical conductivity and photoconductivity reveals that the films were semiconducting in nature indicating the suitability of these films for photosensor applications. The Hall effect measurement reveals that the films have n-type electrical conductivity. (orig.)

  1. Transport, mechanical and global migration data of multilayer copolyamide nanocomposite films with different layouts.

    Science.gov (United States)

    Scarfato, P; Garofalo, E; Di Maio, L; Incarnato, L

    2017-06-01

    Transport, mechanical and global migration data concern multilayer food packaging films with different layouts, all incorporating a layered silicate/polyamide nanocomposite as oxygen barrier layer, and a low-density polyethylene (LDPE) as moisture resistant layer in direct contact with food. The data are related to "Tuning of co-extrusion processing conditions and film layout to optimize the performances of PA/PE multilayer nanocomposite films for food packaging" by Garofalo et al. (2017) [1]. Nanocomposite multilayer films, with different relative layer thicknesses and clay types, were produced using a laboratory scale co-extrusion blown-film equipment and were analyzed in terms of transport to oxygen and water vapor, mechanical properties and overall migration. The results have shown that all the multilayer hybrid films, based on the copolyamide layer filled with Cloisite 30B, displayed the most significant oxygen barrier improvements and the best mechanical properties compared to the unfilled films. No significant alteration of the overall migration values was observed, as expectable [2], [3], [4]. The performance improvement was more relevant in the case of the film with the thinner nanocomposite layer.

  2. Structural, electrical and optical studies of SILAR deposited cadmium oxide thin films: Annealing effect

    International Nuclear Information System (INIS)

    Salunkhe, R.R.; Dhawale, D.S.; Gujar, T.P.; Lokhande, C.D.

    2009-01-01

    Successive ionic layer adsorption and reaction (SILAR) method has been successfully employed for the deposition of cadmium oxide (CdO) thin films. The films were annealed at 623 K for 2 h in an air and changes in the structural, electrical and optical properties were studied. From the X-ray diffraction patterns, it was found that after annealing, H 2 O vapors from as-deposited Cd(O 2 ) 0.88 (OH) 0.24 were removed and pure cubic cadmium oxide was obtained. The as-deposited film consists of nanocrystalline grains of average diameter about 20-30 nm with uniform coverage of the substrate surface, whereas for the annealed film randomly oriented morphology with slight increase in the crystallite size has been observed. The electrical resistivity showed the semiconducting nature with room temperature electrical resistivity decreased from 10 -2 to 10 -3 Ω cm after annealing. The decrease in the band gap energy from 3.3 to 2.7 eV was observed after the annealing

  3. Electric-field induced spin accumulation in the Landau level states of topological insulator thin films

    Science.gov (United States)

    Siu, Zhuo Bin; Chowdhury, Debashree; Basu, Banasri; Jalil, Mansoor B. A.

    2017-08-01

    A topological insulator (TI) thin film differs from the more typically studied thick TI system in that the former has both a top and a bottom surface where the states localized at both surfaces can couple to one other across the finite thickness. An out-of-plane magnetic field leads to the formation of discrete Landau level states in the system, whereas an in-plane magnetization breaks the angular momentum symmetry of the system. In this work, we study the spin accumulation induced by the application of an in-plane electric field to the TI thin film system where the Landau level states and inter-surface coupling are simultaneously present. We show, via Kubo formula calculations, that the in-plane spin accumulation perpendicular to the magnetization due to the electric field vanishes for a TI thin film with symmetric top and bottom surfaces. A finite in-plane spin accumulation perpendicular to both the electric field and magnetization emerges upon applying either a differential magnetization coupling or a potential difference between the two film surfaces. This spin accumulation results from the breaking of the antisymmetry of the spin accumulation around the k-space equal-energy contours.

  4. Study on the electrical properties of ITO films deposited by facing target sputter deposition

    International Nuclear Information System (INIS)

    Kim, Youn J; Jin, Su B; Kim, Sung I; Choi, Yoon S; Choi, In S; Han, Jeon G

    2009-01-01

    This study examined the mechanism for the change in the electrical properties (carrier concentration (n) and mobility (μ)) of tin-doped indium oxide (ITO) films deposited by magnetron sputtering in a confined facing magnetic field. The relationship between the carrier concentration and the mobility was significantly different from the results reported for ITO films deposited by other magnetron sputtering processes. The lowest resistivity obtained for ITO films deposited in a confined facing magnetic field at low substrate temperatures (approximately 120 0 C) was 4.26 x 10 -4 Ω cm at a power density of 3 W cm -2 . Crystalline ITO films were obtained at a low power density range from 3 to 5 W cm -2 due to the increase in the substrate temperature from 120 to 162 0 C. This contributed to the increased carrier concentration and decreased electrical resistivity. X-ray photoelectron spectroscopy revealed an increase in the concentration of the Sn 4+ states. This was attributed to the formation of a crystalline ITO film, which effectively enhanced the carrier concentration and reduced the carrier mobility.

  5. Electrical and optical properties of CZTS thin films prepared by SILAR method

    Directory of Open Access Journals (Sweden)

    J. Henry

    2016-03-01

    Full Text Available In the present work, Cu2ZnSnS4 (CZTS thin film was deposited onto the glass substrate by simple and economic SILAR method and its structural, morphological, optical and electrical properties were analyzed. X-ray diffraction (XRD analysis confirms the formation of CZTS with kesterite structure and the average crystallite size is found to be 142 nm. Scanning electron microscope (SEM image shows that the film has homogeneous, agglomerated surface without any cracks. The prepared CZTS film shows good optical absorption (104 cm−1 in the visible region and the optical band gap energy is found to be quite close to the optimum value of about 1.54 eV for solar cell application. The refractive index of the prepared film is found to be 2.85. The electrical resistivity of the film is found to be ∼10−2 Ω cm at room temperature.

  6. Impact of Argon gas on optical and electrical properties of Carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Usman, Arslan, E-mail: arslan.usman@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore (Pakistan); Rafique, M.S. [Department of Physics, University of Engineering & Technology, Lahore 54890 (Pakistan); Shaukat, S.F. [Department of Physics, COMSATS Institute of Information Technology, Lahore (Pakistan); Siraj, Khurram [Department of Physics, University of Engineering & Technology, Lahore 54890 (Pakistan); Ashfaq, Afshan [Institute of Nuclear Medicine and Oncology Lahore (INMOL), 54000 Pakistan (Pakistan); Anjum, Safia [Department of Physics, Lahore College for Women University (Pakistan); Imran, Muhammad; Sattar, Abdul [Department of Physics, COMSATS Institute of Information Technology, Lahore (Pakistan)

    2016-12-15

    Nanostructured thin films of carbon were synthesized and investigated for their electrical, optical, structural and surface properties. Pulsed Laser Deposition (PLD) technique was used for the preparation of these films under Argon gas environment. A KrF Laser (λ=248 nm) was used as source of ablation and plasma formation. It was observed that the carbon ions and the background gas environment has deep impact on the morphology as well as on the microstructure of the films. Time of Flight (TOF) method was used to determine the energies of the ablated carbon ions. The morphology of film surfaces deposited at various argon pressure was analysed using an atomic force microscope. The Raman spectroscopic measurement reveal that there is shift in phase from sp{sup 3} to sp{sup 2} and a decrease in FWHM of G band, which is a clear indication of enhanced graphitic clusters. The electrical resistivity was also reduced from 85.3×10{sup −1} to 2.57×10{sup −1} Ω-cm. There is an exponential decrease in band gap E{sub g} of the deposited films from 1.99 to 1.37 eV as a function of argon gas pressure.

  7. A study on electric properties for pulse laser annealing of ITO film after wet etching

    International Nuclear Information System (INIS)

    Lee, C.J.; Lin, H.K.; Li, C.H.; Chen, L.X.; Lee, C.C.; Wu, C.W.; Huang, J.C.

    2012-01-01

    The electric properties of ITO thin film after UV or IR laser annealing and wet etching was analyzed via grazing incidence in-plane X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectra and residual stress measurement. The laser annealing process readily induced microcracks or quasi-microcracks on the ITO thin film due to the residual tension stress of crystalline phase transformation between irradiated and non-irradiated areas, and these defects then became the preferred sites for a higher etching rate, resulting in discontinuities in the ITO thin film after the wet etching process. The discontinuities in the residual ITO thin film obstruct carrier transmission and further result in electric failure. - Highlights: ► The laser annealing process induces microcracks in InSnO 2 thin films. ► The defects result in higher local etching rate during wet etching. ► These process defects originate from residual tension stress. ► Decreasing the thermal shock is suggested in order to reduce these process defects.

  8. Effect of annealing on electrical properties of plasmatron deposited ZnO films

    International Nuclear Information System (INIS)

    Joa, Sang Beom; Penkov, Oteksiy V.; Plaksin, Vadim Yu; Mansur, Rakib; Kim, Ji Hun; Lee, Heon Ju

    2009-01-01

    Transparent conductive zinc oxide (ZnO) has been extensively studied in recent several years because they have very interesting properties. Besides this, zinc oxide is non-poisonous, abundant and cheap material. ZnO films are employed in different applications like transparent conductive layers in solar cells, protective coatings and so on. Wide industrial application of the ZnO films requires of development of cheap, effective and scalable technology. Typically used technology like RF sputtering, pyrolysis and metal-organic CVD don't completely satisfy the industrial requirements. In our previous publications the new perspective ZnO deposition technology based DC Arc Plasmatron was described. This technology has several advantages (low cost, high deposition rate, low substrate temperature). Currently, films deposited using this technology has can be used only as protective or insulation coatings because of very high resistance. Applying of plasmatron technology in the microelectronics or solar cell production requires the improvement of electrical properties of the films. This can be achieved by optimization of deposition parameters, using of doping, or by post-deposition treatment such as annealing, or by combination of mentioned. It was shown that proposed technology can be used for the deposition of pure ZnO film with good electrical and optical properties. Proposed technology has several disadvantages which can be overcome in the near-term outlook

  9. Preparation of Nb3Ge films by chemical transport reaction and their critical properties

    International Nuclear Information System (INIS)

    Oya, G.; Saur, E.J.

    1979-01-01

    Niobium-germanium films have been deposited on sapphire substrates at 900 0 C by a chemical transport reaction method. The highest superconducting transition onset temperature T/sub C,on/ of 22.4K is observed for a nearly stoichiometric Nb 3 Ge film with the A15-type structure (thickness approx.93.5 μm). Lattice constants for the Nb 3 Ge phase formed in the Nb-Ge films with both T/sub C,on/ above 22 K and T/sub C,midpoint/ above 21 K are found to extend from 5.143 to 5.153 A. Deposition rates for the obtained films are in the range of 2-10 μm/min. Critical current densities for the Nb 3 Ge film with the highest T/sub C,on/ value are observed to be relatively low (approx.10 3 A/cm 2 at 19 K at self-field). This is due to the coarse grain structure of the film or the low density of effectual pinning centers in the film. Field variations of the pinning forces operating in this film in magnetic fields both parallel to the film surface and perpendicular to the film surface are found to follow closely b/sup 1/2/ (1-b) 2 , to which the pinning force for flux pinning at the surface of normal regions, such as grain boundaries, film surfaces, etc., is proportional, and where b is the reduced magnetic induction (B/B/sub C2/). A small increase in J/sub C/ at low fields is caused by the presence of a small amount of the Nb 5 Ge 3 phase in a Nb 3 Ge film, and seems attributable to additional flux pinning on Nb 5 Ge 3 -phase particles in the film

  10. Transport charge of gallium arsenide films synthesized on polycrystalline silicon by ion ablation

    International Nuclear Information System (INIS)

    Kabyshev, A V; Konusov, F V; Remnev, G E; Pavlov, S K

    2014-01-01

    Electrophysical and photoelectric properties of thin GaAs films deposited on polysilicon by pulse ion ablation using high-power ion beams have been investigated. The predominant charge carriers transfer mechanism in films and the type of dark and photoconductivity have been established. A vacuum annealing effect (10 −2 Pa, 300-1000 K) on energetic and kinetic characteristics of dark and photoconductivity, the transfer mechanism and the type of charge carriers have been determined. The most probable causes of changes in the film electric and photoelectric characteristics have been discussed

  11. Formation of electrically conducting, transparent films using silver nanoparticles connected by carbon nanotubes

    International Nuclear Information System (INIS)

    Hwang, Sunna; Noh, Sun Young; Kim, Heesuk; Park, Min; Lee, Hyunjung

    2014-01-01

    To achieve both optical transparency and electrical conductivity simultaneously, we fabricated a single-walled carbon nanotube (SWNT)/silver fiber-based transparent conductive film using silver fibers produced by the electrospinning method. Electrospun silver fibers provided a segregated structure with the silver nanoparticles within the fibrous microstructures as a framework. Additional deposition of SWNT/poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) layers resulted in a remarkable decrease in the surface resistance from very high value (> 3000 kΩ/sq) for the films of electrospun silver fibers, without affecting the optical transmittance at 550 nm. The surface resistance of the SWNT/silver film after the deposition of three layers decreased to 17 Ω/sq with 80% transmittance. Successive depositions of SWNT/PEDOT:PSS layers reduced the surface resistance to 2 Ω/sq without severe loss in optical transmittance (ca. 65%). The transparent conductive films exhibited a performance comparable to that of commercial indium tin oxide films. The individual silver nanoparticles within the electrospun fibers on the substrate were interconnected with SWNTs, which resulted in the efficient activation of a conductive network by bridging the gaps among separate silver nanoparticles. Such a construction of microscopically conductive networks with the minimum use of electrically conductive nanomaterials produced superior electrical conductivity, while maintaining the optical transparency. - Highlights: • Silver fibrous structures were produced by electrospinning method. • SWNTs/PEDOT:PSS was deposited on silver fibrous structures. • These films exhibited a low sheet resistance (∼ 17 Ω/sq) at ∼ 80% optical transparency. • Successive depositions of SWNT/PEDOT:PSS layers reduced the surface resistance to 2 Ω/sq

  12. Investigation of mass transport properties of microfibrillated cellulose (MFC) films

    DEFF Research Database (Denmark)

    Minelli, Matteo; Baschetti, Marco Giacinti; Doghieri, Ferruccio

    2010-01-01

    , confirming the existence of complex structures below the film surface. In contrast, the diffusion coefficient was definitely affected by plasticization, being higher for glycerol-containing samples and showing in all cases an exponential increase when water was added to the system. Similar behavior...... the existence of complex structures in the different samples. A porous, closely packed fiber network, more homogeneous in the samples containing glycerol, was characteristic of the surface of MFC films; while film cross-sections presented a dense layered structure with no evidence of porosity. Water vapor...... sorption experiments confirmed the hydrophilic character of these cellulosic materials and showed a dual effect of glycerol which reduced the water uptake at low water activity while enhancing it at high relative humidity. The water diffusion in dry samples was remarkably slow for a porous material...

  13. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency.

    Science.gov (United States)

    Wen, Xixing; Chen, Chao; Lu, Shuaicheng; Li, Kanghua; Kondrotas, Rokas; Zhao, Yang; Chen, Wenhao; Gao, Liang; Wang, Chong; Zhang, Jun; Niu, Guangda; Tang, Jiang

    2018-06-05

    Antimony selenide is an emerging promising thin film photovoltaic material thanks to its binary composition, suitable bandgap, high absorption coefficient, inert grain boundaries and earth-abundant constituents. However, current devices produced from rapid thermal evaporation strategy suffer from low-quality film and unsatisfactory performance. Herein, we develop a vapor transport deposition technique to fabricate antimony selenide films, a technique that enables continuous and low-cost manufacturing of cadmium telluride solar cells. We improve the crystallinity of antimony selenide films and then successfully produce superstrate cadmium sulfide/antimony selenide solar cells with a certified power conversion efficiency of 7.6%, a net 2% improvement over previous 5.6% record of the same device configuration. We analyze the deep defects in antimony selenide solar cells, and find that the density of the dominant deep defects is reduced by one order of magnitude using vapor transport deposition process.

  14. Sputter Deposited TiOx Thin-Films as Electron Transport Layers in Organic Solar Cells

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Bomholt Jensen, Pia; Lakhotiya, Harish

    transparency and favorable energy-level alignment with many commonly used electron-acceptor materials. There are several methods available for fabricating compact TiOx thin-films for use in organic solar cells, including sol-gel solution processing, spray pyrolysis and atomic-layer deposition; however...... of around 7%, by incorporating sputter deposited TiOx thin-films as electron-transport and exciton-blocking layers. In the work, we report on the effect of different TiOx deposition temperatures and thicknesses on the organic-solar-cell device performance. Besides optical characterization, AFM and XRD...... analyses are performed to characterize the morphology and crystal structure of the films, and external quantum efficiency measurements are employed to shed further light on the device performance. Our study presents a novel method for implementation of TiOx thin-films as electron-transport layer in organic...

  15. Effect of annealing on structural, optical and electrical properties of SILAR synthesized CuO thin film

    Science.gov (United States)

    Das, M. R.; Mukherjee, A.; Mitra, P.

    2017-05-01

    Nano crystalline CuO thin films were synthesize on glass substrate using SILAR technique. The structural, optical and electrical properties of the films were carried out for as deposited as well as for films post annealed in the temperature range 300 - 500° C. The X-ray diffraction pattern shows all the films are polycrystalline in nature with monoclinic phase. The crystallite size increase and lattice strain decreases with increase of annealing temperature indicating high quality of the films for annealed films. The value of band gap decreases with increases of annealing temperature of the film. The effect of annealing temperature on ionic conductivity and activation energy to electrical conduction process are discussed.

  16. Electrical conduction of polyimide films prepared from polyamic acid (PAA and pre-imidized polyimide (PI solution

    Directory of Open Access Journals (Sweden)

    2007-07-01

    Full Text Available Electrical conduction characteristics in two different polyimide films prepared by the imidization of polyamic acid (PAA and pre-imidized polyimide (PI solution were investigated. It is found that the current density of the polyimide film from PAA was higher than that of the polyimide film from PI at the same electric field, even though the conduction mechanism in both polyimide films follows the ionic hopping model. The hopping distance was calculated to be 2.8 nm for PAA type and 3.2 nm for PI type polyimide film. It is also found that the decay rate of the residual electrostatic charges on the polyimide films becomes faster in the PAA type than in the PI type polyimide film.

  17. Pulsed laser deposition of semiconductor-ITO composite films on electric-field-applied substrates

    International Nuclear Information System (INIS)

    Narazaki, Aiko; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki; Yabe, Akira; Sasaki, Takeshi; Koshizaki, Naoto

    2002-01-01

    The DC electric-field effect on the crystallinity of II-VI semiconductor in composite systems has been investigated for CdS-ITO films fabricated via alternative pulsed laser deposition (PLD) of CdS and indium tin oxide (ITO) on electric-field-applied substrates. The alternative laser ablation was performed under irradiation of ArF excimer laser in mixture gas of helium and oxygen. The application of electric-field facilitated the preferential crystal-growth of CdS in nanometer scale at low pressure, whereas all the films grown without the field were amorphous. There is a large difference in the crystallization between the films grown on field-applied and heated substrates; the latter showed the crystal-growth with random orientations. This difference indicates that the existence of electric-field has an influence on the transformation from amorphous to crystalline phase of CdS. The driving force for the field-induced crystallization is also discussed in the light of the Joule heat

  18. Electrical current at micro-/macro-scale of undoped and nitrogen-doped MWPECVD diamond films

    Science.gov (United States)

    Cicala, G.; Velardi, L.; Senesi, G. S.; Picca, R. A.; Cioffi, N.

    2017-12-01

    Chemical, structural, morphological and micro-/macro-electrical properties of undoped and nitrogen-(N-)doped diamond films are determined by X-ray photoelectron spectroscopy, Raman and photoluminescence spectroscopies, field emission scanning electron microscopy, atomic force microscopy, scanning capacitance microscopy (SCM) and two points technique for I-V characteristics, respectively. The characterization results are very useful to examine and understand the relationship among these properties. The effect of the nitrogen incorporation in diamond films is investigated through the evolution of the chemical, structural, morphological and topographical features and of the electrical behavior. The distribution of the electrical current is first assessed at millimeter scale on the surface of diamond films and then at micrometer scale on small regions in order to establish the sites where the carriers preferentially move. Specifically, the SCM images indicate a non-uniform distribution of carriers on the morphological structures mainly located along the grain boundaries. A good agreement is found by comparing the electrical currents at the micro- and macro-scale. This work aims to highlight phenomena such as photo- and thermionic emission from N-doped diamond useful for microelectronic engineering.

  19. Influence of lithium doping on the structural and electrical characteristics of ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Johny, T. Anto [Centre for Materials for Electronics Technology (C-MET), (Department of Information Technology, Scientific Society, Ministry of Communication and Information Technology, Govt. of India), Athani - PO, Thrissur, 680 581 Kerala (India); Kumar, Viswanathan, E-mail: vkumar10@yahoo.com [Centre for Materials for Electronics Technology (C-MET), (Department of Information Technology, Scientific Society, Ministry of Communication and Information Technology, Govt. of India), Athani - PO, Thrissur, 680 581 Kerala (India); Imai, Hideyuki; Kanno, Isaku [Micro Engineering, Kyoto University, Kyoto 606-8501 (Japan)

    2012-06-30

    Thin films of undoped and lithium-doped Zinc oxide, (Zn{sub 1-x}Li{sub x})O; x = 0, 0.05, 0.10 and 0.20 were prepared by sol-gel method using spin-coating technique on silicon substrates [(111)Pt/Ti/SiO{sub 2}/Si)]. The influence of lithium doping on the structural, electrical and microstructural characteristics have been investigated by means of X-ray diffraction, leakage current, piezoelectric measurements and scanning electron microscopy. The resistivity of the ZnO film is found to increase markedly with low levels (x {<=} 0.05) of lithium doping thereby enhancing their piezoelectric applications. The transverse piezoelectric coefficient, e{sub 31}{sup Low-Asterisk} has been determined for the thin films having the composition (Zn{sub 0.95}Li{sub 0.05})O, to study their suitability for piezoelectric applications. - Highlights: Black-Right-Pointing-Pointer Preferentially c-axis oriented (Zn{sub 1-x}Li{sub x})O films were spin-coated on glass. Black-Right-Pointing-Pointer (Zn{sub 1-x}Li{sub x})O thin films exhibit dense columnar microstructure. Black-Right-Pointing-Pointer Low levels of lithium doping, increases the electrical resistivity of ZnO thin films. Black-Right-Pointing-Pointer (Zn{sub 1-x}Li{sub x})O thin films show high values of transverse piezoelectric coefficient, e{sup Low-Asterisk }{sub 31}.

  20. Suitability of commercial transport for a shift to electric mobility

    DEFF Research Database (Denmark)

    Christensen, Linda; Kveiborg, Ole; Klauenberg, Jens

    2016-01-01

    the travel range of large vans is an important barrier for electrification due to the battery weight and the limitation of 3.5 tonnes gross vehicle weight for driving with a normal driving licence. The rule needs amendments for electric vehicles, as has been done in Germany. The paper recommends EU countries......This paper identifies commercial sectors suitable for a shift to electric mobility. The paper concludes that the construction and the health care service sectors are the most suitable for electric mobility because many vehicles are registered in these sectors and daily mileage is reasonably low....... They should be primary target groups of specific policy measures to promote the use of electric vehicles. Denmark has only had a few incentives to promote the use of commercial electric vehicles. Until now electric vehicles do generally not show economic benefits unless travel distance is high. However, today...

  1. Tuning of Transport and Magnetic Properties in Epitaxial LaMnO3+δ Thin Films

    Directory of Open Access Journals (Sweden)

    J. Chen

    2014-01-01

    Full Text Available The effect of compressive strain on the transport and magnetic properties of epitaxial LaMnO3+δ thin films has been investigated. It is found that the transport and magnetic properties of the LaMnO3+δ thin films grown on the LaAlO3 substrates can be tuned by the compressive strain through varying film thickness. And the insulator-metal transition, charge/orbital ordering transition, and paramagnetic-ferromagnetic transition are suppressed by the compressive strain. Consequently, the related electronic and magnetic transition temperatures decrease with an increase in the compressive strain. The present results can be explained by the strain-controlled lattice deformation and the consequent orbital occupation. It indicates that the lattice degree of freedom is crucial for understanding the transport and magnetic properties of the strongly correlated LaMnO3+δ.

  2. Electronic transport properties of nano-scale Si films: an ab initio study

    Science.gov (United States)

    Maassen, Jesse; Ke, Youqi; Zahid, Ferdows; Guo, Hong

    2010-03-01

    Using a recently developed first principles transport package, we study the electronic transport properties of Si films contacted to heavily doped n-type Si leads. The quantum transport analysis is carried out using density functional theory (DFT) combined with nonequilibrium Green's functions (NEGF). This particular combination of NEGF-DFT allows the investigation of Si films with thicknesses in the range of a few nanometers and lengths up to tens of nanometers. We calculate the conductance, the momentum resolved transmission, the potential profile and the screening length as a function of length, thickness, orientation and surface structure. Moreover, we compare the properties of Si films with and without a top surface passivation by hydrogen.

  3. Increasing the electrical anisotropy of solution-grown PbI2 thin films by addition of CdI2

    International Nuclear Information System (INIS)

    Ponpon, J.P.; Amann, M.

    2010-01-01

    In the present study up to 20% CdI 2 has been added to a lead iodide-water solution, which is used to grow PbI 2 polycrystalline thin films. As a result, a significant increase in the anisotropy of the lead iodide film's electrical properties has been observed: the resistivity in the direction parallel to the c-axis reached 10 15 Ω cm but did not change significantly in the orthogonal direction. This behavior can be explained by the modification of the transport properties related to the crystallographic structure of the films along the c-axis. As suggested by thermally stimulated current measurements, only a small number of the Cd atoms incorporated into the PbI 2 lattice could behave as dopants.

  4. Temperature Dependence on Structural, Tribological, and Electrical Properties of Sputtered Conductive Carbon Thin Films

    International Nuclear Information System (INIS)

    Park, Yong Seob; Hong, Byung You; Cho, Sang Jin; Boo, Jin Hyo

    2011-01-01

    Conductive carbon films were prepared at room temperature by unbalanced magnetron sputtering (UBMS) on silicon substrates using argon (Ar) gas, and the effects of post-annealing temperature on the structural, tribological, and electrical properties of carbon films were investigated. Films were annealed at temperatures ranging from 400 .deg. C to 700 .deg. C in increments of 100 .deg. C using a rapid thermal annealing method by vacuum furnace in vacuum ambient. The increase of annealing temperature contributed to the increase of the ordering and formation of aromatic rings in the carbon film. Consequently, with increasing annealing temperature the tribological properties of sputtered carbon films are deteriorated while the resistivity of carbon films significantly decreased from 4.5 x 10 -3 to 1.0 x 10 -6 Ω-cm and carrier concentration as well as mobility increased, respectively. This behavior can be explained by the increase of sp 2 bonding fraction and ordering sp 2 clusters in the carbon networks caused by increasing annealing temperature

  5. Electrical and optical properties of spray - deposited CdSe thin films

    International Nuclear Information System (INIS)

    Bedir, M.; Oeztas, M.; Bakkaloglu, O. F.

    2002-01-01

    The CdSe thin films were developed by using spray-deposition technique at different substrate temperatures of 380C, 400C and, 420C on the glass substrate. All spraying processes involved CdCI 2 (0.05 moles/liter) and SeO 2 (0.05 moles/liter ) and were carried out in atmospheric condition. The CdSe thin film samples were characterized using x-ray diffractometer and optical absorption measurements. The electrical properties of the thin film samples were investigated via Wander Pauw method. XRD patterns indicated that the CdSe thin film samples have a hexagonal structure. The direct band gap of the CdSe thin film samples were determined from optical absorption and spectral response measurements of 1.76 eV. The resistivity of the CdSe thin film samples were found to vary in the range from 5.8x10''5 to 7.32x10''5 Ωcm depending to the substrate temperature

  6. Grain-size effect on the electrical properties of nanocrystalline indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hoon [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of); Kim, Young Heon, E-mail: young.h.kim@kriss.re.kr [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of); University of Science & Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon 305-350 (Korea, Republic of); Ahn, Sang Jung [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of); University of Science & Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon 305-350 (Korea, Republic of); Ha, Tae Hwan [University of Science & Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon 305-350 (Korea, Republic of); Future Biotechnology Research Division, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Kim, Hong Seung [Department of Nano Semiconductor Engineering, Korea Maritime and Ocean University, 727 Taejong-Ro, Busan 606-791 (Korea, Republic of)

    2015-09-15

    Highlights: • Nanometer-sized small grains were observed in the ITO thin films. • The grain size increased as the post-thermal annealing temperature increased. • The mobility of ITO thin films increased with increasing grain size. • The ITO film annealed at 300 °C was an amorphous phase, while the others were polycrystalline structure. - Abstract: In this paper, we demonstrate the electrical properties, depending on grain size, of nanocrystalline indium tin oxide (ITO) thin films prepared with a solution process. The size distributions of nanometer-sized ITO film grains increased as the post-annealing temperature increased after deposition; the grain sizes were comparable with the calculated electron mean free path. The mobility of ITO thin films increased with increasing grain size; this phenomenon was explained by adopting the charge-trapping model for grain boundary scattering. These findings suggest that it is possible to improve mobility by reducing the number of trapping sites at the grain boundary.

  7. Preparation of Nd-doped BiFeO{sub 3} films and their electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Meng [Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education of China, Shaanxi University of Science and Technology, Weiyang District, Xi' an 710021 (China); Tan Guoqiang, E-mail: tan3114@163.com [Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education of China, Shaanxi University of Science and Technology, Weiyang District, Xi' an 710021 (China); Xue Xu; Xia Ao; Ren Huijun [Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education of China, Shaanxi University of Science and Technology, Weiyang District, Xi' an 710021 (China)

    2012-09-01

    The Nd-doped BiFeO{sub 3} thin films were prepared on SnO{sub 2}(FTO) substrates spin-coated by the sol-gel method using Nd(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O, Fe(NO{sub 3}){sub 3}{center_dot}9H{sub 2}O and Bi(NO{sub 3}){sub 3}{center_dot}5H{sub 2}O as raw materials. The microstructure and electric properties of the BiFeO{sub 3} thin films were characterized and tested. The results indicate that the diffraction peak of the Nd-doped BiFeO{sub 3} films is shifted towards right as the doping amounts are increased. The structure is transformed from the rhombohedral to pseudotetragonal phase. The crystal grain is changed from an elliptical to irregular polyhedron. Structure transition occurring in the Bi{sub 0.85}Nd{sub 0.15}FeO{sub 3} films gives rise to the largest Pr of 64 {mu}C/cm{sup 2}. The leakage conductance of the Nd doped thin films is reduced. The dielectric constant and dielectric loss of Bi{sub 0.85}Nd{sub 0.15}FeO{sub 3} thin film at 10 kHz are 190 and 0.017 respectively.

  8. Enhanced quantum interference transport in gold films with random antidot arrays

    Directory of Open Access Journals (Sweden)

    Zhaoguo Li

    2016-09-01

    Full Text Available We report on the quantum interference transport of randomly distributed antidot arrays, which were prepared on gold films via the focused ion beam direct writing method. The temperature dependence of the gold films’ resistances with and without random antidot arrays were described via electron–phonon interaction theory. Compared with the pristine gold films, we observed an unexpected enhancement of the weak localization signature in the random antidot array films. The physical mechanism behind this enhancement may originate from the enhancement of electron–electron interactions or the suppression of electron–phonon interactions; further evidence is required to determine the exact mechanism.

  9. Exponential temperature dependence of the critical transport current in Y-Ba-Cu-O thin films

    International Nuclear Information System (INIS)

    Yom, S.S.; Hahn, T.S.; Kim, Y.H.; Chu, H.; Choi, S.S.

    1989-01-01

    We have measured the critical currents in rf-sputtered YBa 2 Cu 3 O/sub 7-x/ thin films deposited on polycrystalline yttria-stabilized zirconia substrates as a function of temperature down to 10 K. The dependence of the granular films at low temperature indicated exponential behavior which is similar to the superconductor-normal metal-superconductor (S-N-S) type tunneling junctions. For the films with a grain size of approximately 1 μm, we observed two exponential decay constants, which suggest that Josephson junctions limiting the transport critical current are possible both at the grain boundaries and at twin boundaries

  10. Influence of film thickness on structural, optical, and electrical properties of spray deposited antimony doped SnO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Abhijit A., E-mail: aay_physics@yahoo.co.in

    2015-09-30

    Transparent conducting antimony doped SnO{sub 2} thin films with varying thickness were deposited by chemical spray pyrolysis technique from non-aqueous solvent Propan-2-ol. The effect of film thickness on the properties of antimony doped SnO{sub 2} thin films have been studied. X-ray diffraction measurements showed tetragonal crystal structure of as-deposited antimony doped SnO{sub 2} films irrespective of film thickness. The surface morphology of antimony doped SnO{sub 2} thin film is spherical with the continuous distribution of grains. Electrical and optical properties were investigated by Hall Effect and optical measurements. The average optical transmittance of films decreased from 89% to 73% within the visible range (350–850 nm) with increase in film thickness. The minimum value of sheet resistance observed is 4.81 Ω/cm{sup 2}. The lowest resistivity found is 3.76 × 10{sup −4} Ω cm at 660 nm film thickness. - Highlights: • Effect of film thickness on the properties of antimony doped SnO{sub 2} thin films • Crystalline size in the range of 34–37 nm • Average transmittance decreased from 89% to 73% in the visible region. • Minimum sheet resistance of 4.81 Ω/cm{sup 2} • Lowest resistivity is found to be 3.76 × 10{sup −4} Ω cm at 660 nm film thickness.

  11. Electrical and magnetic transport in Strontium doped Europium Ferrimanganites

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Latif, I.A. [Physics Department, College of Science & Arts, Najran University, P. O. 1988, Najran (Saudi Arabia); Reactor Physics Department, NRC, Atomic Energy Authority, Abou Zabaal P.O. 13759, Cairo (Egypt); Ahmed, Mahrous R. [Physics Department, Faculty of Science, Sohag University, Sohag 82524 (Egypt); Physics Department, Aljamoum University College, Um-Elqura University, Makka (Saudi Arabia); Al-Omari, I.A.; Sellai, A. [Physics Department, Faculty of Science, Soltan Qaboos University, P.O. Box 36, PC 123, Muscatt (Oman)

    2016-12-15

    Eu{sub 0.65}Sr{sub 0.35}Fe{sub x}Mn{sub 1−x}O{sub 3} (x=0.1, 0.3 and 0.5) has been prepared using a standard solid state reaction method. The under-investigation compounds is found to crystallize in a single-phase orthorhombic structure in the P{sub bnm} space group (62). The adiabatic polaron electronic transfer was obtained for all samples and the activation energy of x=0.1 sample is equal to 1.013 meV and slightly increase at x=0.3 (1.289 meV) while is doubled for x=0.5 to be 2.1065 meV. The magnetization–temperature dependence measurements of Eu{sub 0.65}Sr{sub 0.35}Fe{sub x}Mn{sub 1−x}O{sub 3} show the ferromagnetic ordering at low iron concentration x=0.1 and when iron concentration increase to x=0.5 the noncollinear magnetic ordering (the canted antiferromagnetic) is obtained. The magnetic phase transition (paramagnetic-ferromagnetic transition) in the Eu{sub 0.65}Sr{sub 0.35}Fe{sub 0.1}Mn{sub 0.9}O{sub 3} is observed at T{sub c} of 150 K. For Eu{sub 0.65}Sr{sub 0.35}Fe{sub 0.5}Mn{sub 0.5}O{sub 3} the multi-magnetic phase transition is observed at T{sub c} of 200K and T{sub N} of 430 K. The resistivity at low temperature is measured. Theoretical Calculations using Monte Carlo code have been done. The magnetization as function of temperature has been calculated using Monte Carlo simulations for Eu{sub 0.65}Sr{sub 0.35}Fe{sub x}Mn{sub 1−x}O{sub 3} (x=0.0, 0.1, 0,2, 0.3, 0.4 and 0.5). Ising model is a suitable model to study the magnetization for our compounds. The internal energy for x=0 is the highest value compared with the other x values which have nearly a ground state value equal to 2.7 J. - Highlights: • The distortion parameter in the crystal structure of Eu{sub 0.65}Sr{sub 0.35}Fe{sub x}Mn{sub 1−x}O{sub 3} increase with increasing concentration of iron and affected both electrical and magnetic transport. • The density of electrons over the unit cell decrease with increasing the iron concentration and thus give rise to the decrease in

  12. The electrical properties of thin films of TiNsub(x) and TiCsub(x)

    International Nuclear Information System (INIS)

    Maayer, P.J.P. De; Mackenzie, J.D.

    1975-01-01

    Thin films of metallically conductive titanium mononitride and carbide were prepared by means of electron beam evaporation. The composition of the samples could be changed over appreciable ranges by introducing nitrogen in the system or adding carbon to the pure starting material, respectively. The transport properties of the resulting compounds were studied as a function of nonstoichiometry and defect structure. A plausible explanation for the different behaviour of the films compared to corresponding bulk samples is given and a correlation between the change in electron concentration and the electron transfer theory is presented. (orig.) [de

  13. The effect of hydrogen absorption on the electrical resistivities of SmCo5 and LaNi5 films

    International Nuclear Information System (INIS)

    Sakaguchi, H.; Nagai, H.; Adachi, G.; Shiokawa, J.

    1985-01-01

    Many studies have been carried out to clarify the absorption mechanism of hydrogen with a bulk of hexagonal CaCu 5 -type intermetallic compounds, such as LaNi 5 . The studies on films, however, have been scarcely carried out because of the difficulty in preparing an intermetallic compound film owing to the difference in the vapour pressure of the component metals. Some homogeneous LaNi 5 films were obtained by the authors using the technique of flash evaporation. Then it was found that they do not pulverize during the hydrogen absorption-desorption cycle. Therefore, it has been possible to measure the electrical resistivity using such films. The objects of our study were to reveal the mechanism of hydrogen absorption through the electrical property, and to apply the film to the functional materials, for instance, a hydrogen separation film. The hydrogen separation was attempted by the authors using the LaNi 5 film. A SmCo 5 film was a suitable candidate because the mass of hydrogen contained in this film should be smaller than that in the LaNi 5 film. In this paper we present a study on the properties of SmCo 5 films under a hydrogen atmosphere, as well as on LaNi 5 films. (author)

  14. On the carrier transport in metal-insulator-metal structures for CdTe thin film

    International Nuclear Information System (INIS)

    Choi, K.W.; Choi, C.K.

    1982-01-01

    According to the energy band model for the Al-CdTe-Ag sandwich structure, we have investigate to the mechanism of the current limited transport(CLT). As the bias voltage applied to the Alsup(+) and Agsup(+) electrode, the potential barrier difference for this structure was found 0.2eV. From what this results, we conclude that the mechanism of the current limited transport due to the potential barrier of the contact limited current. Not only this phenomena but also the annealing effect of thin film was shown that the distingushable for virgin film. (Author)

  15. Influence of the linear magneto-electric effect on the lateral shift of light reflected from a magneto-electric film

    International Nuclear Information System (INIS)

    Dadoenkova, Yu S; Petrov, R V; Bichurin, M I; Bentivegna, F F L; Dadoenkova, N N; Lyubchanskii, I L

    2016-01-01

    We present a theoretical investigation of the lateral shift of an infrared light beam reflected from a magnetic film deposited on a non-magnetic dielectric substrate, taking into account the linear magneto-electric interaction in the magnetic film. We use the stationary phase method to evaluate the lateral shift. It is shown that the magneto-electric coupling leads to a six-fold enhancement of the lateral shift amplitude of a p-(s-) polarized incident beam reflected into a s-(p-) polarized beam. A reversal of the magnetization in the film leads to a nonreciprocal sign change of the lateral shift. (paper)

  16. The role of fluctuation-induced transport in a toroidal plasma with strong radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J. Y.; Kim, Y. C.

    1981-01-01

    Previous work employing digitally implemented spectral analysis techniques is extended to demonstrate that radial fluctuation-induced transport is the dominant ion transport mechanism in an electric field dominated toroidal plasma. Such transport can be made to occur against a density gradient, and hence may have a very beneficial effect on confinement in toroidal plasmas of fusion interest. It is shown that Bohm or classical diffusion down a density gradient, the collisional Pedersen-current mechanism, and the collisionless electric field gradient mechanism described by Cole (1976) all played a minor role, if any, in the radial transport of this plasma.

  17. Effect of B doping on optical, electrical properties and defects of ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Caiying [State Key Laboratory of Mechanical Transmission, College of Physics, Chongqing University, Chongqing, 400044 (China); Fang, Liang, E-mail: lfang@cqu.edu.cn [State Key Laboratory of Mechanical Transmission, College of Physics, Chongqing University, Chongqing, 400044 (China); Zhang, Hong; Li, Wanjun [Key Laboratory of Optoelectronic Functional Materials of Chongqing, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Wu, Fang, E-mail: fang01234@163.com [State Key Laboratory of Mechanical Transmission, College of Physics, Chongqing University, Chongqing, 400044 (China); Qin, Guoping [Key Laboratory of Optoelectronic Functional Materials of Chongqing, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Ruan, Haibo, E-mail: rhbcqu@aliyun.com [Chongqing Key Laboratory of Micro/Nano Materials Engineering and Technology, Research Center for Materials Interdisciplinary Sciences, Chongqing University of Arts and Sciences, Chongqing, 402160 (China); Kong, Chunyang, E-mail: kchy@163.com [Key Laboratory of Optoelectronic Functional Materials of Chongqing, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China)

    2016-08-15

    Boron doped ZnO (BZO) films with B content in the range of 0–6 at.% were deposited on quartz glass substrates by RF magnetron sputtering technique. The effects of B doping content on microstructure, optical and electrical properties of BZO films were systematically investigated by XRD, SEM, AFM, XPS, PL, UV–vis–near infrared spectrophotometer and Hall-effect measurement, respectively. It is found that the crystal quality of ZnO films can be improved as B doping content increases to no larger than 4 at.% and will be deteriorated at higher B doping content. The grain size and surface roughness of the films reduce with the increase of B doping content. The BZO films exhibit tensile stress and the stress increases with B content. The transmittance of the BZO films is revealed to be 90% in the visible region. As the B doping content increases from 0 to 6 at.%, the optical band gap of BZO films enhances from 3.28 to 3.57 eV, which is found to increase linearly with the tensile stress in the films. The lowest resistivity of 1.58 × 10{sup −3} (Ω cm) is obtained at 2 at.% B doping content. XPS and PL analyses demonstrated that B doping can promote the formation of defects of zinc interstitials (Zn{sub i}) and oxygen vacancies (V{sub O}). - Highlights: • The relationship of band gap (E{sub g}) and stress (σ) in BZO is deduced. • XPS and PL illustrate B doping can promote the formation of Zn{sub i} and V{sub O} in BZO. • The lowest resistivity (1.58 × 10{sup −3} Ω cm) is obtained at 2 at.% B content.

  18. Power Electronics and Electric Machines | Transportation Research | NREL

    Science.gov (United States)

    Power Electronics and Electric Machines NREL's power electronics and electric machines research helping boost the performance of power electronics components and systems, while driving down size, weight technical barriers to EDV commercialization. EDVs rely heavily on power electronics to distribute the proper

  19. Modeling the electrical resistance of gold film conductors on uniaxially stretched elastomeric substrates

    Science.gov (United States)

    Cao, Wenzhe; Görrn, Patrick; Wagner, Sigurd

    2011-05-01

    The electrical resistance of gold film conductors on polydimethyl siloxane substrates at stages of uniaxial stretching is measured and modeled. The surface area of a gold conductor is assumed constant during stretching so that the exposed substrate takes up all strain. Sheet resistances are calculated from frames of scanning electron micrographs by numerically solving for the electrical potentials of all pixels in a frame. These sheet resistances agree sufficiently well with values measured on the same conductors to give credence to the model of a stretchable network of gold links defined by microcracks.

  20. Significant electrical control of amorphous oxide thin film transistors by an ultrathin Ti surface polarity modifier

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byungsu [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741 (Korea, Republic of); Choi, Yonghyuk; Shin, Seokyoon [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeon, Heeyoung [Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Seo, Hyungtak, E-mail: hseo@ajou.ac.kr [Department of Materials Science and Engineering and Energy Systems Research, Ajou University, Suwon 443-739 (Korea, Republic of); Jeon, Hyeongtag, E-mail: hjeon@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2014-01-27

    We demonstrate an enhanced electrical stability through a Ti oxide (TiO{sub x}) layer on the amorphous InGaZnO (a-IGZO) back-channel; this layer acts as a surface polarity modifier. Ultrathin Ti deposited on the a-IGZO existed as a TiO{sub x} thin film, resulting in oxygen cross-binding with a-IGZO surface. The electrical properties of a-IGZO thin film transistors (TFTs) with TiO{sub x} depend on the surface polarity change and electronic band structure evolution. This result indicates that TiO{sub x} on the back-channel serves as not only a passivation layer protecting the channel from ambient molecules or process variables but also a control layer of TFT device parameters.

  1. Studies on the Electrical and Optical Properties of Magnesium Phthalocyanine Thin Films

    Directory of Open Access Journals (Sweden)

    T. G. Gopinathan

    2004-01-01

    Full Text Available Thin films of Magnesium Phthalocyanine (MgPc are prepared by thermal evaporation technique at a base pressure of 10-5 m.bar on thoroughly cleaned glass substrates kept at different constant temperatures. Films of thickness 2400 A.U. coated at room temperature are subjected to post deposition annealing in air by keeping them in a furnace at different constant temperatures, for one hour. The electrical conductivity studies are conducted in the temperature range 300 K to 525 K. The electrical conductivity is plotted as a function of absolute temperature. The conduction mechanism is observed to be hopping. The thermal activation energy is calculated in different cases and is observed to vary with substrate temperature and annealing temperature. A phase change is observed due to post-deposition annealing at around 523 K. The optical absorption studies are done in the UV-Visible region. The optical band gap energies of the samples are calculated.

  2. Excimer-laser-induced permanent electrical conductivity in solid C60 films

    International Nuclear Information System (INIS)

    Ning, D.; Lou, Q.H.; Dong, J.X.; Wei, Y.R.

    1996-01-01

    After being irradiated in air by a XeCl (308 nm) excimer laser, the electrical conductivity of solid thin-film C 60 has been improved by more than six orders of magnitudes. The products resulting from laser irradiation of C 60 films have been investigated by Raman scattering and the onset of conductivity can be attributed to laser-induced oxygenation and disintegration of the fullerene. Irradiated by ∼40 ns laser pulses with different fluence, products with different microstructure were observed. At lower fluence, the Raman features of microcrystalline graphite and fullerene polymer were observed. At a fluence just below the ablation threshold (36 mJ/cm 2 ), the fullerene molecules in the film were disintegrated completely and transformed to amorphous graphite. (orig.). With 5 figs

  3. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films

    Science.gov (United States)

    Huo, Wenyi; Liu, Xiaodong; Tan, Shuyong; Fang, Feng; Xie, Zonghan; Shang, Jianku; Jiang, Jianqing

    2018-05-01

    Nano-twinned, nanocrystalline CoCrFeNi high-entropy alloy films were produced by magnetron sputtering. The films exhibit a high hardness of 8.5 GPa, the elastic modulus of 161.9 GPa and the resistivity as high as 135.1 μΩ·cm. The outstanding mechanical properties were found to result from the resistance of deformation created by nanocrystalline grains and nano-twins, while the electrical resistivity was attributed to the strong blockage effect induced by grain boundaries and lattice distortions. The results lay a solid foundation for the development of advanced films with structural and functional properties combined in micro-/nano-electronic devices.

  4. Electric properties and fabrication of IMI-O LB films containing the imidazole group

    CERN Document Server

    Yoo, S Y; Kwon, Y S; Park, J C

    1999-01-01

    We fabricated an IMI-O polymer containing an imidazole group that could form a complex structure between the monolayer and the metal ions at the air-water interface. Also, the monolayer behavior at the air-water interface and the electrical properties of metal-complexed Langmuir-Blodgett (LB) films were investigated by using Brewster angle microscopy (BAM) and current-voltage(I-V) measurements. The difference in the BAM images between the pure water and the aqueous metal ions is attributed to the interactions of the copolymers with the metal ions at the interface and the consequent change of the monolayer organization. In the I-V characteristics, the current for LB films with different metal ion depended on the quantity of the metal-ion complexed with the LB film due to the interaction between the metal ion and the IMI-O polymer.

  5. Post Deposition Annealing Effects on Optical, Electrical and Morphological Studies of ZnTTBPc Thin Films

    Directory of Open Access Journals (Sweden)

    B. R. Rejitha

    2012-01-01

    Full Text Available Phthalocyanines (Pcs act as efficient absorbants of photons in the visible region, specifically between 600 and 700 nm. It will produce an excited triplet state. In this paper we report the annealing effects of optical, electrical and surface morphological properties of thermal evaporated Zinc-tetra-tert-butyl-29H, 31H phthalocyanine (ZnTTBPc thin films. The optical transmittance measurements were done in the visible region (400-800 nm and, films were found to be absorbing in nature. From spectral data the absorption coefficient α, dielectric constant ε and the extinction coefficient k were evaluated and, results discussed. Also the optical band gap of the material was estimated. The activation energies were measured. Scanning electron microscopic studies was carried out to determine surface uniformity of films.

  6. Thermal pulse measurements of space charge distributions under an applied electric field in thin films

    International Nuclear Information System (INIS)

    Zheng, Feihu; An, Zhenlian; Zhang, Yewen; Liu, Chuandong; Lin, Chen; Lei, Qingquan

    2013-01-01

    The thermal pulse method is a powerful method to measure space charge and polarization distributions in thin dielectric films, but a complicated calibration procedure is necessary to obtain the real distribution. In addition, charge dynamic behaviour under an applied electric field cannot be observed by the classical thermal pulse method. In this work, an improved thermal pulse measuring system with a supplemental circuit for applying high voltage is proposed to realize the mapping of charge distribution in thin dielectric films under an applied field. The influence of the modified measuring system on the amplitude and phase of the thermal pulse response current are evaluated. Based on the new measuring system, an easy calibration approach is presented with some practical examples. The newly developed system can observe space charge evolution under an applied field, which would be very helpful in understanding space charge behaviour in thin films. (paper)

  7. Experimental Study of the Cooling of Electrical Components Using Water Film Evaporation

    Directory of Open Access Journals (Sweden)

    S. Harmand

    2012-01-01

    Full Text Available Heat and mass transfer, which occur in the evaporation of a falling film of water, are studied experimentally. This evaporation allows the dissipation of the heat flux produced by twelve resistors, which simulate electrical components on the back side of an aluminium plate. On the front side of the plate, a falling film of water flows by the action of gravity. An inverse heat conduction model, associated with a spatial regularisation, was developed and produces the local heat fluxes on the plate using the measured temperatures. The efficiency of this evaporative process has been studied with respect to several parameters: imposed heat flux, inlet mass flow rate, and geometry. A comparison of the latent and sensible fluxes used to dissipate the imposed heat flux was studied in the case of a plexiglass sheet in front of the falling film at different distances from the aluminium plate.

  8. Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films

    Directory of Open Access Journals (Sweden)

    2010-05-01

    Full Text Available Electrical conductivity of 150–200 µm thick polysulfone films loaded with 0.05–0.75% w/w multiwall carbon nanotubes was systematically investigated for two types of dispersion states, uniformly dispersed and agglomerated at the micro-scale. The percolation threshold was found at 0.11% and 0.068% w/w for the uniformly dispersed and agglomerated films, respectively. Overall, the conductivity of the films with agglomerated nanotubes was higher than that of the uniformly dispersed ones, with marked differences of 2 to 4 orders of magnitude for carbon nanotubes loadings in the upper vicinity of the percolation threshold (0.1–0.3% w/w. The increased conductivity of the agglomerated state is explained by the increased nanotube-to-nanotube contact after the percolating network has formed, which facilitates electron transfer.

  9. Importance of Electricity Transport Pricing in Liberalised Energy Markets

    International Nuclear Information System (INIS)

    Wohlgemuth, N.

    2001-01-01

    Electricity has traditionally been supplied by vertically integrated companies providing generation, transmission and distribution services. Consumers have purchased a bundled commodity - delivered electricity - and there has been no need to price the components individually. This is no longer the case in competitive and unbundled electricity markets. One of the outstanding issues in the restructuring of the electricity markets is the way in which transmission costs are translated into tariffs. The efforts to create a single European electricity market are difficult to reconcile due to different national network pricing approaches. The European Commission's draft regulation on conditions for access to the network for cross-border exchanges of electricity sets general principles for the pricing of international electricity exchanges. Nodal pricing provides incentives for an efficient use of generation and transmission assets. Experience shows that nodal pricing is workable, and its use may be expected to increase progressively. Postage stamp pricing does not generally provide adequate incentives for efficiency. However, inefficiencies may be small under certain conditions, and postage stamp pricing has the advantage of being relatively transparent and easy to implement. This paper presents an overview of objectives related to an effective design of transmission pricing approaches, of transmission pricing models and presents recent developments in Europe in this respect. Due to the great number of institutional designs of electricity market organisations, it will be difficult to design and implement a model of cross-border transmission pricing that results in a high degree of non-discriminatory international competition in electricity markets, a key objective of the Electricity Directive.(author)

  10. Effect of residual gas on structural, electrical and mechanical properties of niobium films deposited by magnetron sputtering deposition

    Science.gov (United States)

    Wang, Lanruo; Zhong, Yuan; Li, Jinjin; Cao, Wenhui; Zhong, Qing; Wang, Xueshen; Li, Xu

    2018-04-01

    Magnetron sputtering is an important method in the superconducting thin films deposition. The residual gas inside the vacuum chamber will directly affect the quality of the superconducting films. In this paper, niobium films are deposited by magnetron sputtering under different chamber residual gas conditions. The influence of baking and sputtering process on residual gas are studied as well. Surface morphology, electrical and mechanical properties of the films are analysed. The residual gas analysis result before the sputtering process could be regarded as a reference condition to achieve high quality superconducting thin films.

  11. Spin-Hall conductivity and electric polarization in metallic thin films

    KAUST Repository

    Wang, Xuhui

    2013-02-21

    We predict theoretically that when a normal metallic thin film (without bulk spin-orbit coupling, such as Cu or Al) is sandwiched by two insulators, two prominent effects arise due to the interfacial spin-orbit coupling: a giant spin-Hall conductivity due to the surface scattering and a transverse electric polarization due to the spin-dependent phase shift in the spinor wave functions.

  12. Properties of epitaxial films of indium phosphides alloyed with erbium in strong electric fields

    International Nuclear Information System (INIS)

    Borisov, V.I.; Dvoryankin, V.F.; Korobkin, V.A.; Kudryashov, A.A.; Lopatin, V.V.; Lyubchenko, V.E.; Telegin, A.A.

    1986-01-01

    Temperature dependences of specific resistance and free charge-carrier mobility at low temperatures for indium phosphide films grown by liquid-phase epitaxial method with erbium additions (0.01-0.1 mass%). The main mechanisms of scattering for different temperature regions: scattering on ionized impurities in the rage from 20 to 40 K and lattice scattering at the temperature above 90 K are determined. The current density dependences on applied electric field strength are presented

  13. Spin-Hall conductivity and electric polarization in metallic thin films

    KAUST Repository

    Wang, Xuhui; Xiao, Jiang; Manchon, Aurelien; Maekawa, Sadamichi

    2013-01-01

    We predict theoretically that when a normal metallic thin film (without bulk spin-orbit coupling, such as Cu or Al) is sandwiched by two insulators, two prominent effects arise due to the interfacial spin-orbit coupling: a giant spin-Hall conductivity due to the surface scattering and a transverse electric polarization due to the spin-dependent phase shift in the spinor wave functions.

  14. Electrical and Structural Origin of Self-Healing Phenomena in Pentacene Thin Films.

    Science.gov (United States)

    Kang, Evan S H; Zhang, Hongbin; Donner, Wolfgang; von Seggern, Heinz

    2017-04-01

    Self-healing induced by structural phase transformation is demonstrated using pentacene field-effect transistors. During the self-healing process, the electrical properties at the pentacene interfaces improve due to the phase transformation from monolayer phase to thin-film phase. Enhanced mobility is confirmed by first-principles calculations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electrical and optical properties of ITO and ITO/Cr-doped ITO films

    Energy Technology Data Exchange (ETDEWEB)

    Caricato, A.P.; Cesaria, M.; Luches, A.; Martino, M.; Valerini, D. [University of Salento, Physics Department, Lecce (Italy); Maruccio, G. [University of Salento, Scuola Superiore Isufi, Lecce (Italy); Catalano, M.; Cola, A.; Manera, M.G.; Lomascolo, M.; Taurino, A.; Rella, R. [IMM-CNR, Institute for Microelectronics and Microsystems, Lecce (Italy)

    2010-12-15

    In this paper we report on the effects of the insertion of Cr atoms on the electrical and optical properties of indium tin oxide (ITO) films to be used as electrodes in spin-polarized light-emitting devices. ITO films and ITO(80 nm)/Cr-doped ITO(20 nm) bilayers and Cr-doped ITO films with a thickness of 20 nm were grown by pulsed ArF excimer laser deposition. The optical, structural, morphological and electrical properties of ITO films and ITO/Cr-doped structures were characterized by UV-Visible transmission and reflection spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Hall-effect analysis. For the different investigations, the samples were deposited on different substrates like silica and carbon coated Cu grids. ITO films with a thickness of 100 nm, a resistivity as low as {proportional_to}4 x 10{sup -4} {omega} cm, an energy gap of {proportional_to}4.3 eV and an atomic scale roughness were deposited at room temperature without any post-deposition process. The insertion of Cr into the ITO matrix in the upper 20 nm of the ITO matrix induced variations in the physical properties of the structure like an increase of average roughness ({proportional_to}0.4-0.5 nm) and resistivity (up to {proportional_to}8 x 10{sup -4}{omega} cm). These variations were correlated to the microstructure of the Cr-doped ITO films with particular attention to the upper 20 nm. (orig.)

  16. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.

    1977-01-01

    The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.

  17. Structural determinants of electric vehicle market growth : a National Center for Sustainable Transportation research report.

    Science.gov (United States)

    2017-02-01

    Zero emission vehicles (ZEV) and plug-in electric vehicles (PEV) are critical technologies to attain deep reductions in greenhouse gases from transportation. PEV markets, however, have grown more slowly than anticipated by many observers. In this stu...

  18. The influence of the electrical asymmetry effect on deposition uniformity of thin silicon film

    Energy Technology Data Exchange (ETDEWEB)

    Hrunski, D., E-mail: Dzmitry.Hrunski@leyboldoptics.com; Janssen, A.; Fritz, T.; Hegemann, T.; Clark, C.; Schreiber, U.; Grabosch, G.

    2013-04-01

    The deposition of amorphous and microcrystalline silicon is an important step in the production of thin silicon film solar panels. Deposition rate, layer uniformity and material quality are key attributes for achieving high efficiency in such panels. Due to the multilayer structure of tandem solar cells (more than 6 thin silicon layers), it is becoming increasingly important to improve the uniformity of deposition without sacrificing deposition rate and material quality. This paper reports the results of an investigation into the influence of the electrical asymmetry effect (EAE) on the uniformity of deposited layers. 13.56 MHz + 27.12 MHz excitation frequencies were used for thin silicon film deposition in a Gen5 reactor (1100 × 1400 mm). To change the plasma properties, the DC self bias voltage on the RF electrode was varied by adjustment of the phase angle between the two frequencies applied. It was found that the layers deposited by EAE method have better uniformity than layers deposited in single frequency 27.12 MHz discharge. The EAE provides additional opportunities for improvement of uniformity, deposition rate and material quality. - Highlights: ► The electrical asymmetry effect technique tested for thin silicon film deposition ► Bias voltage has an influence on film uniformity. ► Minimized the deterioration of layer uniformity while increasing discharge frequency.

  19. Optical and electrical properties of TiOPc doped Alq{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ramar, M.; Suman, C. K., E-mail: sumanck@nplindia.org; Tyagi, Priyanka; Srivastava, R. [CSIR-Network of Institutes for Solar Energy CSIR - National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi -110012 (India)

    2015-06-24

    The Titanyl phthalocyanine (TiOPc) was doped in Tris (8-hydroxyquinolinato) aluminum (Alq3) with different concentration. The thin film of optimized doping concentration was studied extensively for optical and electrical properties. The optical properties, studied using ellipsometry, absorption and photoluminescence. The absorption peak of Alq{sub 3} and TiOPc was observed at 387 nm and 707 nm and the photo-luminescence intensity (PL) peak of doped thin film was observed at 517 nm. The DC and AC electrical properties of the thin film were studied by current density-voltage (J-V) characteristics and impedance over a frequency range of 100 Hz - 1 MHz. The electron mobility calculated from trap-free space-charge limited region (SCLC) is 0.17×10{sup −5} cm{sup 2}/Vs. The Cole-Cole plots shows that the TiOPc doped Alq{sub 3} thin film can be represented by a single parallel resistance R{sub P} and capacitance C{sub P} network with a series resistance R{sub S} (10 Ω). The value of R{sub P} and C{sub P} at zero bias was 1587 Ω and 2.568 nF respectively. The resistance R{sub P} decreases with applied bias whereas the capacitance C{sub P} remains almost constant.

  20. Electric buses - An energy efficient urban transportation means

    Energy Technology Data Exchange (ETDEWEB)

    Kuehne, Reinhart [German Aerospace Center (DLR), Transportation Studies, Rutherfordstr. 2, 12489 Berlin (Germany)

    2010-12-15

    Bus transit systems with electric traction are an important contribution to the post fossil fuel mobility. Most renewable energy sources provide energy in the form of electricity. Electric motors thus have promise in the development of the way ''beyond oil''. The reactivation of trolley bus systems - grid bounded but also catenary free for short distances - paves this way. The design of modern trolley bus operations overcomes the existing disadvantages of conventional buses using fossil fuel. Germany has an efficient industry in this field, that offers braking energy recovery and energy storage in modern supercapacitors as well as technical and organisational innovations for a local emission free and a low noise transit system. Gentle but powerful when starting and braking, the trolley bus is cost effective and easy to integrate into an existing infrastructure. Such an electric bus system is ecological, customer-friendly and suitable for cities. It has a high economic efficiency and it also expands the traffic planning field towards an ecological future technology. This paper shows examples at home and abroad how electric buses achieve an energy solving modern urban traffic. It gives insights into technical developments of electric vehicle equipment, cateneries with fast driving handling characteristics and the use of plain electric and hybrid powertrains. (author)