WorldWideScience

Sample records for films balloons tubes

  1. Use of CATHENA to model calandria-tube/moderator heat transfer after pressure-tube/calandria-tube ballooning contact

    International Nuclear Information System (INIS)

    Fan, H.Z.; Bilanovic, Z.; Nitheanandan, T.

    2004-01-01

    A study was performed to assess the effect of the calandria-tube/moderator heat transfer after pressure-tube/calandria tube ballooning contact using CATHENA. Results of this study indicated that the analytical tool, CATHENA, can be applied for pool boiling heat transfer on the external surface of a large diameter tube, such as the calandria tube used in CANDU reactors. The methodology in such CANDU-generic study can be used to simulate the tube surface with multiple boiling regimes and to assess the benefits of closely coupling thermalhydraulics modelling and fuel/fuel channel behaviour modelling. CATHENA (Canadian Algorithm for THErmalhydraulic Network Analysis) is a one-dimensional, two-fluid thermalhydraulic simulation code designed by AECL to analyse two-phase flow and heat transfer in piping networks. The detailed heat transfer package in CATHENA allows a connection to be established from the multiple solid surfaces of tubes to the surrounding large amount of moderator water, which acts as a heat sink during a postulated loss of coolant event. The generalized heat transfer package within CATHENA allows the tube walls to be divided into several layers in the radial direction and several sectors in the circumferential direction, to account for heat transfer conditions in these two directions. The CATHENA code with the generalized heat transfer package is capable of capturing key pool-boiling phenomena such as nucleate, transition and film boiling heat transfer as well as an ability to model the rewet phenomenon to some extent. A CATHENA input model was generated and used in simulations of selected contact boiling experiment test cases. The transient wall temperatures have been calculated in different portions of the calandria tube. By using this model an adequate agreement was achieved between CATHENA calculation and experimental measurement The CATHENA code enables one to investigate the transient and local thermal-mechanical behaviour of the calandria tube

  2. Stability of Balloon-Retention Gastrostomy Tubes with Different Concentrations of Contrast Material: In Vitro Study

    International Nuclear Information System (INIS)

    Lopera, Jorge E.; Alvarez, Alex; Trimmer, Clayton; Josephs, Shellie; Anderson, Matthew; Dolmatch, Bart

    2009-01-01

    The purpose of this study was to determine the performance of two balloon-retention-type gastrostomy tubes when the balloons are inflated with two types of contrast materials at different concentrations. Two commonly used balloon-retention-type tubes (MIC and Tri-Funnel) were inflated to the manufacturer's recommended volumes (4 and 20 cm 3 , respectively) with normal saline or normal saline plus different concentrations of contrast material. Five tubes of each brand were inflated with normal saline and 0%, 25%, 50%, 75%, and 100% contrast material dilutions, using either nonionic hyperosmolar contrast, or nonionic iso-osmolar contrast. The tubes were submerged in a glass basin containing a solution with a pH of 4. Every week the tubes were visually inspected to determine the integrity of the balloons, and the diameter of the balloons was measured with a caliper. The tests were repeated every week for a total of 12 weeks. The MIC balloons deflated slightly faster over time than the Tri-Funnel balloons. The Tri-Funnel balloons remained relatively stable over the study period for the different concentrations of contrast materials. The deflation rates of the MIC balloons were proportionally related to the concentration of saline and inversely related to the concentration of the contrast material. At high contrast material concentrations, solidification of the balloons was observed. In conclusion, this in vitro study confirms that the use of diluted amounts of nonionic contrast materials is safe for inflating the balloons of two types of balloon-retention feeding tubes. High concentrations of contrast could result in solidification of the balloons and should be avoided.

  3. Fluoroscopy-guided balloon dilation in patients with Eustachian tube dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun Yung; Tsauo, Jiaywei; Song, Ho-Young [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Park, Hong Ju; Kang, Woo Seok [University of Ulsan College of Medicine, Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, Seoul (Korea, Republic of); Park, Jung-Hoon [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); University of Ulsan College of Medicine, Department of Biomedical Engineering Research Center, Asan Medical Center, Seoul (Korea, Republic of); Wang, Zhe [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Tianjin Medical University General Hospital, Department of Radiology (China)

    2018-03-15

    To prospectively evaluate the technical feasibility and safety of fluoroscopy-guided balloon dilation in patients with Eustachian tube (ET) dysfunction. Patients who could not do a Valsalva manoeuvre for more than 6 months and diagnosed with chronic otitis media or ET dysfunction were prospectively enrolled. A 0.035-in. guide wire and 6-mm long balloon catheter with a diameter of 2 mm were used to dilate the cartilaginous portion of the ET under fluoroscopic guidance. The balloon was inflated by manual injection twice for 1 min each time. Clinical outcomes were assessed by the patient's ability to perform a Valsalva manoeuvre, and symptoms were assessed using the 7-item Eustachian Tube Dysfunction Questionnaire (ETDQ-7) score. Balloon dilation was attempted in a total of ten adult patients from October 2016 to March 2017. Technical success was achieved in all procedures (10/10). Ninety percent (9/10) of the balloons were fully dilated without waist deformity. There were no major complications. All patients were able to perform a Valsalva manoeuvre at the time of their last visit and/or improvement of at least one ETDQ-7 score. Fluoroscopy-guided balloon dilation seems to be technically feasible and safe in the treatment of ET dysfunction. (orig.)

  4. Design of experiments and equipment to test the ballooning characteristics of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Forrest, C.F.; Stern, F.; Hart, R.G.

    1992-01-01

    Experiments have been planned and an apparatus has been designed to enable creep testing of end-of-life pressure tube specimens in a LOCA environment. Effects that could be studied include: annealing of irradiation damage during transient heating; effects of hydride blisters on pressure tube ballooning strains; and, effects of uniformly-distributed hydrogen content on pressure tube ballooning strains. The proposed experimental program will consist of separate effects creep tests on pressure tube sections under transient heating conditions

  5. Mechanistic modeling of pool film-boiling and quench on a Candu calandria tube following a critical break LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J.T.; Luxat, J.C. [McMaster University, A315 JHE Building, 1280 Main St.W. Hamilton, ON, L8S 4L7 (Canada)

    2008-07-01

    Following a postulated critical LBLOCA a pressure tube (PT) can experience creep deformation and balloon uniformly into contact with the calandria tube (CT). The resultant heat flux to CT is high as stored heat is transferred out of the hot PT. This heat flux can cause dryout on the outer surface of the CT and establish film boiling. This paper presents a model of buoyancy-driven natural convection film boiling on the outside of a horizontal tube with diameter relevant to a Candu CT (approximately 13 cm). A second order, non-linear and non-homogeneous ODE for vapour film thickness has been derived. The variation of steady state vapour film thickness prior to quench as a function of subcooling temperature, wall superheat, and incident heat flux is examined. The CT outer surface heatup rate and effective film boiling heat transfer coefficient from the model are in good agreement with available experimental data. (authors)

  6. Mechanistic modeling of pool film-boiling and quench on a Candu calandria tube following a critical break LOCA

    International Nuclear Information System (INIS)

    Jiang, J.T.; Luxat, J.C.

    2008-01-01

    Following a postulated critical LBLOCA a pressure tube (PT) can experience creep deformation and balloon uniformly into contact with the calandria tube (CT). The resultant heat flux to CT is high as stored heat is transferred out of the hot PT. This heat flux can cause dryout on the outer surface of the CT and establish film boiling. This paper presents a model of buoyancy-driven natural convection film boiling on the outside of a horizontal tube with diameter relevant to a Candu CT (approximately 13 cm). A second order, non-linear and non-homogeneous ODE for vapour film thickness has been derived. The variation of steady state vapour film thickness prior to quench as a function of subcooling temperature, wall superheat, and incident heat flux is examined. The CT outer surface heatup rate and effective film boiling heat transfer coefficient from the model are in good agreement with available experimental data. (authors)

  7. Experiments on ballooning in pressurized and transiently heated Zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Markiewicz, M.E.; Erbacher, F.J.

    1988-02-01

    Single-rod burst tests were performed with Atucha I Zircaloy-4 cladding tubes in the REBEKA burst equipment of KfK. The objective was to investigate the ballooning and burst behavior of argentine cladding tubes obtained from NRG, Germany and CONVAR, Argentina. The burst data were compared with those of cladding tubes used in german PWR's. It was found that the burst data e.g. burst temperature, circumferential burst strain and its response to azimuthal temperature differences are identical for the Argentine and German tubing quality. The burst data are in good agreement with those of German PWR-Zircaloy tubes. Thus, the fuel rod behavior codes developed for German PWR's can also be used for the Argentine reactor Atucha I. (orig.) [de

  8. Ballooning of CANDU pressure tube in local thermal transients

    International Nuclear Information System (INIS)

    Mihalache, Maria; Ionescu, Viorel

    2008-01-01

    In certain LOCA scenarios for the CANDU fuel channel, the ballooning of the pressure tube and contact with the calandria tube can occur. After the contact moment, a radial heat transfer from cooling fluid to moderator takes place through the contact area. If the temperature of channel walls increases, the contact area is drying and the heat transfer becomes inefficiently. In INR-Pitesti the DELOCA code was developed to simulate the mechanical behaviour of pressure tube during pre-contact transition, and mechanical and thermal behaviour of pressure tube and calandria tube after occurrence of the contact between the two tubes. The code contains few models: thermal creep of Zr-2.5%Nb alloy, the heat transfer by conduction through the cylindrical walls, channel failure criteria and calculus of heat transfer at the calandria tube - moderator interface. This code evaluates the contact and channel failure moments. This paper gives a DELOCA code description and the fuel channel behaviour analysis, in transient temperature conditions of the pressure tube, using the materials properties, time and temperature dependencies of these properties as obtained in the different laboratories of the world and in the INR - Pitesti in the last years. DELOCA computer code simulated the fuel channel response to the constant heating rates of inside pressure tube surface. The paper presents contact temperature and time dependencies on the heating rate, and the appropriate fitting functions. (authors)

  9. Falling film evaporation on a tube bundle with plain and enhanced tubes

    International Nuclear Information System (INIS)

    Habert, M.

    2009-04-01

    The complexities of two-phase flow and evaporation on a tube bundle present important problems in the design of heat exchangers and the understanding of the physical phenomena taking place. The development of structured surfaces to enhance boiling heat transfer and thus reduce the size of evaporators adds another level of complexity to the modeling of such heat exchangers. Horizontal falling film evaporators have the potential to be widely used in large refrigeration systems and heat pumps, in the petrochemical industry and for sea water desalination units, but there is a need to improve the understanding of falling film evaporation mechanisms to provide accurate thermal design methods. The characterization of the effect of enhanced surfaces on the boiling phenomena occurring in falling film evaporators is thus expected to increase and optimize the performance of a tube bundle. In this work, the existing LTCM falling film facility was modified and instrumented to perform falling film evaporation measurements on single tube row and a small tube bundle. Four types of tubes were tested including: a plain tube, an enhanced condensing tube (Gewa-C+LW) and two enhanced boiling tubes (Turbo-EDE2 and Gewa-B4) to extend the existing database. The current investigation includes results for two refrigerants, R134a and R236fa, at a saturation temperature of T sat = 5 °C, liquid film Reynolds numbers ranging from 0 to 3000, at heat fluxes between 20 and 60 kW/m² in pool boiling and falling film configurations. Measurements of the local heat transfer coefficient were obtained and utilized to improve the current prediction methods. Finally, the understanding of the physical phenomena governing the falling film evaporation of liquid refrigerants has been improved. Furthermore, a method for predicting the onset of dry patch formation has been developed and a local heat transfer prediction method for falling film evaporation based on a large experimental database has been proposed

  10. Analysis of the ballooning deformation of an internally pressurized thin-wall tube during fast thermal transients

    International Nuclear Information System (INIS)

    Lin, E.I.H.

    1977-01-01

    A large-strain time-dependent thermoplastic analysis has been developed for the ballooning deformation of a thin-wall tube subjected to internal pressure, axial loading, and fast thermal transients. This deformation initiates with the onset of plastic instability in the material, the onset being determined by a plastic-instability criterion for strain-rate sensitive materials. The interaction among the local ballooning geometry, the state of stress, and the plastic flow process was considered, and integration of the flow equations yields the local curvature and the states of stress and strain in the vicinity of the maximum ballooning site. The effects of axial constraint and heating rate were also discussed. The analysis was applied to a LWR Zircaloy cladding subjected to a constant heating rate and a range of internal pressures. The results agree very well with experimental strain-time data obtained from tube-burst tests. In most cases, the time of rupture was accurately predicted despite the lack of complete material-property data

  11. Long-term outcome of conventional endotracheal tube balloon dilation of tracheal stenosis in a dog

    OpenAIRE

    Kahane, Nili; Segev, Gilad

    2014-01-01

    This report describes a successful dilation of tracheal stenosis in a 16-year-old dog using a conventional endotracheal tube balloon. This technique should be considered as palliative treatment when owners decline other therapeutic options.

  12. Long-term outcome of conventional endotracheal tube balloon dilation of tracheal stenosis in a dog.

    Science.gov (United States)

    Kahane, Nili; Segev, Gilad

    2014-01-01

    This report describes a successful dilation of tracheal stenosis in a 16-year-old dog using a conventional endotracheal tube balloon. This technique should be considered as palliative treatment when owners decline other therapeutic options.

  13. Falling film flow, heat transfer and breakdown on horizontal tubes

    International Nuclear Information System (INIS)

    Rogers, J.T.

    1980-11-01

    Knowledge of falling film flow and heat transfer characteristics on horizontal tubes is required in the assessment of certain CANDU reactor accident sequences for those CANDU reactors which use moderator dump as one of the shut-down mechanisms. In these reactors, subsequent cooling of the calandria tubes is provided by falling films produced by sprays. This report describes studies of falling film flow and heat transfer characteristics on horizontal tubes. Analyses using integral methods are given for laminar and turbulent flow, ignoring and accounting for momentum effects in the film. Preliminary experiments on film flow stability on horizontal tubes are described and various mechanisms of film breakdown are examined. The work described in this report shows that in LOCA with indefinitely delayed ECI in the NPD or Douglas Point (at 70 percent power) reactors, the falling films on the calandria tubes will not be disrupted by any of the mechanisms considered, provided that the pressure tubes do not sag onto the calandria tubes. However, should the pressure tubes sag onto the calandria tubes, film disruption will probably occur

  14. Plastic instability criteria for necking of bars and ballooning of tubes

    International Nuclear Information System (INIS)

    Lin, E.I.H.

    1977-01-01

    Plastic-instability criteria applicable to the necking of bars under tension and to the ballooning of thin-wall tubes under internal pressure were derived from basic geometrical considerations. In the case of bars under tension, plastic instability prevails if the percentage rate of decrease of the cross-sectional area in the (potential) necking region is greater than that in the bulk of the bar. When the loading characteristics and constitutive equation were taken into account, an instability criterion was deduced in terms of the stress, strain, strain rate, temperature and material properties. This criterion was shown to be reducible to the classical Considere condition for non-rate-sensitive materials. For rate-sensitive materials under isothermal conditions, a simple relationship among the strain, the strain-hardening and strain-rate-sensitivity parameters was also obtained. In the case of thin-wall tubes under internal pressure (with or without imposed axial loading), plastic instability prevails if the percentage rate of increase of the diameter (or equivalently decrease of wall thickness) in the (potential) ballooning region is greater than that in the bulk of the tube. An instability criterion in terms of the axial strain rate and the axial derivatives of the hoop strain and hoop strain rate was first deduced. Then the loading characteristics, the constitutive equation, the thin-wall approximation, and the Prandtl-Reuss flow rules were taken into consideration. This resulted in a further statement of the criterion in terms of the state of strain, the material properties, and a ratio of the imposed axial stress to the circumferential stress. As in the case of necking of bars, the role of the hardening parameter is clear: i.e., a larger hardening parameter implies a more stable material and vice versa

  15. Correlations for developing film boiling effect in tubes

    International Nuclear Information System (INIS)

    Guo, Y.; Leung, L.K.H.

    2005-01-01

    Full text of publication follows: Reducing uncertainties in predicting film-boiling heat transfer can provide improved margins in reactor safety analysis, hence improved operating margins in nuclear power plants. Most reactor safety codes employed the tube-based prediction method for the fully developed film-boiling heat transfer coefficient. This approach tends to underpredict the heat-transfer coefficient and over-predict the sheath temperature at post-dryout conditions close to the CHF point. The under-prediction is due mainly to the droplet impingement on the heated surface and vapour superheating. This heat-transfer regime is referred to as the developing film boiling, which is associated with an enhancement in heat transfer compared to the fully developed film boiling. An improvement in the prediction accuracy is achievable by accounting for the effect of vapour-film development on film boiling heat transfer. In addition to system safety analyses, the prediction of developing film boiling heat transfer is required in subchannel analyses for fuel bundles. A tube-data-based prediction method is particularly relevant for subchannel applications. The objective of this study is to derive a correlation for the developing film boiling effect in tubes. The current CANDU R . system safety and subchannel analyses codes apply the look-up table approach to predict the film boiling heat transfer. The post-dryout look-up table provides the fully developed film boiling heat transfer in an 8-mm vertical tube, and has been extended to other tube sizes using a diameter modification factor. In this study, a modification factor has been developed to account for the developing film-boiling effect, and is expressed in the following non-dimensional form: K = (h FB - h FD )/(h NB - h FD ) = f ((T W - T sat )/T CHF - T sat )) where h FB is the film boiling heat transfer coefficient, h FD is the fully developed film-boiling heat transfer coefficient, which is evaluated using the film

  16. [Balloon dilatation of the cartilaginous portion of the Eustachian tube in the children presenting with relapsing exudative otitis media].

    Science.gov (United States)

    Burova, O V; Bogomil'sky, M R; Polunin, M M; Soldatsky, Yu L

    2016-01-01

    The objective of the present study was to evaluate the effectiveness and the safety of balloon dilatation of the cartilaginous portion of the Eustachian tube in the children presenting with relapsing exudative otitis media. A total of 15 children (22 ears) at the age from 3 to 16 years suffering from relapsing exudative otitis media over 18 months in duration were available for the examination. Neither conservative nor surgical treatment produced any stable beneficial effect in these patients. Acoustic impedancometry yielded type B tympanograms. All the children were treated with the use of balloon dilatation of the cartilaginous portion of the Eustachian tube under endotracheal anesthesia. The follow-up examination carried out within 6--8 weeks after the treatment revealed the complete recovery of the function of the middle ear (type A tympanograms) in 11 (73.3%) children. Partial restoration of this function (as evidenced by type C tympanogram) was documented in 4 children. These patients underwent the second course of conservative therapy that resulted in the complete restoration of the function of the middle ear. It is concluded that balloon dilatation of the cartilaginous portion of the Eustachian tube in the children presenting with relapsing exudative otitis media provides the efficient and safe approach to the management of this condition. Being a minimally invasive method, it has good prospects for the practical application and is worth further investigation.

  17. Transarterial embolization of massive gastric ulcer bleeding in gastrostomy patients caused by a balloon replacement tube: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Byong Jong; Hur, Jin; Lee, Kwang Hun; Won, Jong Yun [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2007-02-15

    We present the case of a 77-year-old woman with massive gastric ulcer bleeding caused by a balloon replacement tube that required emergent transcatheter left gastric arterial embolization in stop the ulcer bleeding.

  18. Laboratory Analysis of Polymer Thin Films for Planetary Balloons and Gossamer Structures

    Science.gov (United States)

    Sterling, Jerry; Fairbrother, Debora A.

    2004-01-01

    Commercially available polymer thin fdms with thickness of 15 microns or less were evaluated for potential application as the gas envelope material of balloons and other inflated vehicles. Films on this thickness scale are of interest for Earth and Mars ballooning as well as many gossamer space structures. Due to the uniqueness of these missions relative to typical uses of these materials, application-specific materials properties measurements were made. We evaluated numerous polymer chemistries, plus a few variations within one chemistry. The data show that there are often trade-offs among the different materials, such as with polyesters and polyimides having greater stiffness (modulus) but lower tear propagation resistance than polyethylene. Sections of polyethylene films can be joined by heat sealing, while adhesives and their accompanying mass penalty must be used with polyesters and polyimides. When the analysis temperature is reduced to 190 K, polyethylenes display dramatically increased stiffness and yield point, while the increase for other materials is more modest. The data also show that manufacturing processes can significantly affect film properties. To emphasize the need for application-specific properties assessment, we discuss two recent applications using these materials.

  19. Balloon dilation of the eustachian tube in a cadaver model: technical considerations, learning curve, and potential barriers.

    Science.gov (United States)

    McCoul, Edward D; Singh, Ameet; Anand, Vijay K; Tabaee, Abtin

    2012-04-01

    The surgical management options for eustachian tube dysfunction have historically been limited. The goal of the current study was to evaluate the technical considerations, learning curve, and potential barriers for balloon dilation of the eustachian tube (BDET) as an alternative treatment modality. Prospective preclinical trial of BDET in a cadaver model. A novel balloon catheter device was used for eustachian tube dilation. Twenty-four BDET procedures were performed by three independent rhinologists with no prior experience with the procedure (eight procedures per surgeon). The duration and number of attempts of the individual steps and overall procedure were recorded. Endoscopic examination of the eustachian tube was performed after each procedure, and the surgeon was asked to rate the subjective difficulty on a five-point scale. Successful completion of the procedure occurred in each case. The overall mean duration of the procedure was 284 seconds, and a mean number of 1.15 attempts were necessary to perform the individual steps. The mean subjective procedure difficulty was noted as somewhat easy. Statistically shorter duration and subjectively easier procedure were noted in the second compared to the first half of the series, indicating a favorable learning curve. Linear fissuring within the eustachian tube lumen without submucosal disruption (nine procedures, 37%) and with submucosal disruption (five procedures, 21%) were noted. The significance of these physical findings is unclear. Preclinical testing of BDET is associated with favorable duration, learning curve, and overall ease of completion. Clinical trials are necessary to evaluate safety and efficacy. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  20. Status of the NASA Balloon Program

    Science.gov (United States)

    Needleman, H. C.; Nock, R. S.; Bawcom, D. W.

    1993-02-01

    In the early 1980's the U.S. National Aeronautics and Space Administration (NASA) Balloon Program was faced with a problem of catastrophic balloon failures. In 1986 a balloon recovery program was initiated. This program included qualification of new balloon films, and investigations into materials, processing, structures and performance of balloons. This recovery program has been very successful. To date, more than 100 balloons manufactured of newly developed films have been flown with unprecedented success. There has been much progress made across the spectrum of balloon related disciplines. A new design philosophy has been developed and is being used for all NASA balloons. An updated balloon reliability and quality assurance program is in effect. The long duration balloon development project has been initiated with the first flight test having been conducted in December 1989 from Antarctica. A comprehensive research and development (R&D) effort has been initiated and is progressing well. The progress, status and future plans for these and other aspects of the NASA program, along with a description of the comprehensive balloon R&D activity, will be presented.

  1. Management of Benign Tracheal Stenosis by Small-diameter Tube-assisted Bronchoscopic Balloon Dilatation

    Directory of Open Access Journals (Sweden)

    Yi-Lin Liang

    2015-01-01

    Full Text Available Background: A limitation of bronchoscopic balloon dilatation (BBD is that airflow must be completely blocked for as long as possible during the operation. However, the patient often cannot hold his or her breath for a long period affecting the efficacy of the procedure. In this study, we used an extra-small-diameter tube to provide assisted ventilation to patients undergoing BBD and assessed the efficacy and safety of this technique. Methods: Bronchoscopic balloon dilatation was performed in 26 patients with benign tracheal stenosis using an extra-small-diameter tube. The tracheal diameter, dyspnea index, blood gas analysis results, and complications were evaluated before and after BBD. Statistical analyses were performed by SPSS version 16.0 for Windows (SPSS, Inc., Chicago, IL, USA. Results: Sixty-three BBD procedures were performed in 26 patients. Dyspnea immediately improved in all patients after BBD. The tracheal diameter significantly increased from 5.5 ± 1.5 mm to 13.0 ± 1.3 mm (P < 0.001, and the dyspnea index significantly decreased from 3.4 ± 0.8 to 0.5 ± 0.6 (P < 0.001. There was no significant change in the partial pressure of oxygen during the operation (before, 102.5 ± 27.5 mmHg; during, 96.9 ± 30.4 mmHg; and after, 97.2 ± 21.5 mmHg; P = 0.364, but there was slight temporary retention of carbon dioxide during the operation (before, 43.5 ± 4.2 mmHg; during, 49.4 ± 6.8 mmHg; and after, 40.1 ± 3.9 mmHg; P < 0.001. Conclusion: Small-diameter tube-assisted BBD is an effective and safe method for the management of benign tracheal stenosis.

  2. Mechanistic modeling of heat transfer process governing pressure tube-to-calandria tube contact and fuel channel failure

    International Nuclear Information System (INIS)

    Luxat, J.C.

    2002-01-01

    Heat transfer behaviour and phenomena associated with ballooning deformation of a pressure tube into contact with a calandria tube have been analyzed and mechanistic models have been developed to describe the heat transfer and thermal-mechanical processes. These mechanistic models are applied to analyze experiments performed in various COG funded Contact Boiling Test series. Particular attention is given in the modeling to characterization of the conditions for which fuel channel failure may occur. Mechanistic models describing the governing heat transfer and thermal-mechanical processes are presented. The technical basis for characterizing parameters of the models from the general heat transfer literature is described. The validity of the models is demonstrated by comparison with experimental data. Fuel channel integrity criteria are proposed which are based upon three necessary and sequential mechanisms: Onset of CHF and local drypatch formation at contact; sustained film boiling in the post-contact period; and creep strain to failure of the calandria tube while in sustained film boiling. (author)

  3. Static and quasi-static analysis of lobed-pumpkin balloon

    Science.gov (United States)

    Nakashino, Kyoichi; Sasaki, Makoto; Hashimoto, Satoshi; Saito, Yoshitaka; Izutsu, Naoki

    The present study is motivated by the need to improve design methodology for super pressure balloon with 3D gore design concept, currently being developed at the Scientific Balloon Center of ISAS/JAXA. The distinctive feature of the 3-D gore design is that the balloon film has excess materials not only in the circumferential direction but also in the meridional direction; the meridional excess is gained by attaching the film boundaries to the corresponding tendons of a shorter length with a controlled shortening rate. The resulting balloon shape is a pumpkin-like shape with large bulges formed between adjacent tendons. The balloon film, when fully inflated, develops wrinkles in the circumferential direction over its entire region, so that the stresses in the film are limited to a small amount of uniaxial tension in the circumferential direction while the high meridional loads are carried by re-enforced tendons. Naturally, the amount of wrinkling in the film is dominated by the shortening rate between the film boundaries and the tendon curve. In the 3-D gore design, as a consequence, the shortening rate becomes a fundamental design parameter along with the geometric parameters of the gore. In view of this, we have carried out a series of numerical study of the lobed-pumpkin balloon with varying gore geometry as well as with varying shortening rate. The numerical simula-tions were carried out with a nonlinear finite element code incorporating the wrinkling effect. Numerical results show that there is a threshold value for the shortening rate beyond which the stresses in the balloon film increases disproportionately. We have also carried out quasi-static simulations of the inflation process of the lobed-pumpkin balloon, and have obtained asymmetric deformations when the balloon films are in uniaxial tension state.

  4. The ballooning of fuel cladding tubes: theory and experiment

    International Nuclear Information System (INIS)

    Shewfelt, R.S.W.

    1988-01-01

    Under some conditions, fuel clad ballooning can result in considerable strain before rupture. If ballooning were to occur during a loss-of-coolant accident (LOCA), the resulting substantial blockage of the sub-channel would restrict emergency core cooling. However, circumferential temperature gradients that would occur during a LOCA may significantly limit the average strain at failure. Understandably, the factors that control ballooning and rupture of fuel clad are required for the analysis of a LOCA. Considerable international effort has been spent on studying the deformation of Zircaloy fuel cladding under conditions that would occur during a LOCA. This effort has established a reasonable understanding of the factors that control the ballooning, failure time, and average failure strain of fuel cladding. In this paper, both the experimental and theoretical studies of the fuel clad ballooning are reviewed. (author)

  5. Film holder for radiographing tubing

    International Nuclear Information System (INIS)

    Davis, E.V.; Foster, B.E.

    1976-01-01

    A film cassette is described which may be easily placed about tubing or piping and readily held in place while radiographic inspection is performed. A pair of precurved light-impervious semi-rigid plastic sheets, hinged at one edge, enclose sheet film together with any metallic foils or screens. Other edges are made light-tight with removable caps, and the entire unit is held securely about the object to be radiographed with a releasable fastener such as a strip of Velcro

  6. Film holder for radiographing tubing

    Science.gov (United States)

    Davis, Earl V.; Foster, Billy E.

    1976-01-01

    A film cassette is provided which may be easily placed about tubing or piping and readily held in place while radiographic inspection is performed. A pair of precurved light-impervious semi-rigid plastic sheets, hinged at one edge, enclose sheet film together with any metallic foils or screens. Other edges are made light-tight with removable caps, and the entire unit is held securely about the object to be radiographed with a releasable fastener such as a strip of Velcro.

  7. NASA balloon design and flight - Philosophy and criteria

    Science.gov (United States)

    Smith, I. S., Jr.

    1993-01-01

    The NASA philosophy and criteria for the design and flight of scientific balloons are set forth and discussed. The thickness of balloon films is standardized at 20.3 microns to isolate potential film problems, and design equations are given for specific balloon parameters. Expressions are given for: flight-stress index, total required thickness, cap length, load-tape rating, and venting-duct area. The balloon design criteria were used in the design of scientific balloons under NASA auspices since 1986, and the resulting designs are shown to be 95 percent effective. These results represent a significant increase in the effectiveness of the balloons and therefore indicate that the design criteria are valuable. The criteria are applicable to four balloon volume classes in combination with seven payload ranges.

  8. Modeling the quenching of a calandria tube following a critical break LOCA in a CANDU reactor

    International Nuclear Information System (INIS)

    Jiang, J.T.; Luxat, J.C.

    2008-01-01

    Following a postulated critical large break LOCA a pressure tube (PT) can experience creep deformation and balloon uniformly into contact with the calandria tube (CT). The resultant heat flux to CT is high as stored heat is transferred out of the hot PT. This heat flux can cause dryout on the outer surface of the CT and establish film boiling. This paper presents a model of buoyancy-driven natural convection film boiling on the outside of a horizontal tube with diameter relevant to a CANDU CT (approximately 130mm). The model has been developed to analyze the variation of steady state vapor film thickness as a function of sub-cooling temperature, wall superheat and incident heat flux. The CT outer surface heat flux and effective film boiling heat transfer coefficient from the model are in good agreement with available experimental data. (author)

  9. Modeling the quenching of a calandria tube following a critical break LOCA in a CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J.T.; Luxat, J.C. [McMaster Univ., Dept. of Engineering Physics, Hamilton, Ontario (Canada)

    2008-07-01

    Following a postulated critical large break LOCA a pressure tube (PT) can experience creep deformation and balloon uniformly into contact with the calandria tube (CT). The resultant heat flux to CT is high as stored heat is transferred out of the hot PT. This heat flux can cause dryout on the outer surface of the CT and establish film boiling. This paper presents a model of buoyancy-driven natural convection film boiling on the outside of a horizontal tube with diameter relevant to a CANDU CT (approximately 130mm). The model has been developed to analyze the variation of steady state vapor film thickness as a function of sub-cooling temperature, wall superheat and incident heat flux. The CT outer surface heat flux and effective film boiling heat transfer coefficient from the model are in good agreement with available experimental data. (author)

  10. [A balloon probe for the treatment of recurrent bloat in calves and young cattle].

    Science.gov (United States)

    Doll, K

    1989-01-01

    For the treatment of recurrent bloat a soft-rubber balloon tube which is inserted through the nose into the rumen and can stay there for several days was developed. The inflated balloon ensures a floating of the tip of the tube in the dorsal gas cap above the rumen contents. The tube can also be used as a prophylactic measure to avoid excessive ruminal gas accumulation in recumbent patients during surgery. This report describes the experiences with this balloon tube gathered in 23 clinical patients.

  11. Viscoelastic behaviour of pumpkin balloons

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    2008-11-01

    The lobes of the NASA ULDB pumpkin-shaped super-pressure balloons are made of a thin polymeric film that shows considerable time-dependent behaviour. A nonlinear viscoelastic model based on experimental measurements has been recently established for this film. This paper presents a simulation of the viscoelastic behaviour of ULDB balloons with the finite element software ABAQUS. First, the standard viscoelastic modelling capabilities available in ABAQUS are examined, but are found of limited accuracy even for the case of simple uniaxial creep tests on ULDB films. Then, a nonlinear viscoelastic constitutive model is implemented by means of a user-defined subroutine. This approach is verified by means of biaxial creep experiments on pressurized cylinders and is found to be accurate provided that the film anisotropy is also included in the model. A preliminary set of predictions for a single lobe of a ULDB is presented at the end of the paper. It indicates that time-dependent effects in a balloon structure can lead to significant stress redistribution and large increases in the transverse strains in the lobes.

  12. Analysis of the ballooning deformation of an internally pressurized thin-wall tube during fast thermal transients

    International Nuclear Information System (INIS)

    Lin, E.I.H.

    1977-01-01

    A large-strain, time-dependent thermoplastic analysis of ballooning deformation was developed. The true (or lagorithmic) strains, the Von Mises yield criterion and Prandtl-Reuss flow rules were used. The constitutive equation was expressed in terms of the temperature, effective stress, strain and strain rate. Material isotropy was assumed as a first approximation; note that at high temperatures even zircaloy tends to lose a substantial amount of its low-temperature anisotropy. The axisymmetry of ballooning was also assumed, which has actually been verified by numerous experiments to be accurate throughout the course of ballooning, except in the final stage when rupture is imminent. The thin-shell approximation was made, which proved to be adequate for the standard fuel claddings and which was advantageous in that the averaged state of stress was rendered determinate. The analysis led to a set of non-linear ordinary differential equations, which was then integrated by a fifth-order Runge-Kutta routine. The general formulation allows for a direct interpretation of the experimentally-observed effects of the heating rate and cladding axial constraints on the ballooning behavior. Its implications on the flow-blockage and cladding-rupture evaluations were discussed. The analysis was applied to zircaloy claddings subjected to simulated thermal transient conditions. Most of the required material properties were taken from the existing uniaxial tensile test data. Analyses were performed at a uniform heating rate of 115 0 C/sec with internal pressures ranging from 100 to 1200 psi. Satisfactory agreement was obtained between the predictions and the diametral strain-time data available from tube-burst tests

  13. Numerical research on the thermal performance of high altitude scientific balloons

    International Nuclear Information System (INIS)

    Dai, Qiumin; Xing, Daoming; Fang, Xiande; Zhao, Yingjie

    2017-01-01

    Highlights: • A model is presented to evaluate the IR radiation between translucent surfaces. • Comprehensive ascent and thermal models of balloons are established. • The effect of IR transmissivity on film temperature distribution is unneglectable. • Atmospheric IR radiation is the primary thermal factor of balloons at night. • Solar radiation is the primary thermal factor of balloons during the day. - Abstract: Internal infrared (IR) radiation is an important factor that affects the thermal performance of high altitude balloons. The internal IR radiation is commonly neglected or treated as the IR radiation between opaque gray bodies. In this paper, a mathematical model which considers the IR transmissivity of the film is proposed to estimate the internal IR radiation. Comprehensive ascent and thermal models for high altitude scientific balloons are established. Based on the models, thermal characteristics of a NASA super pressure balloon are simulated. The effects of film IR property on the thermal behaviors of the balloon are discussed in detail. The results are helpful for the design and operation of high altitude scientific balloons.

  14. Special considerations for qualifying thin films for super pressure pumpkin ultra long duration balloon missions

    Science.gov (United States)

    Said, Magdi A.

    2004-01-01

    The assessment of creep and dynamic response behaviors on materials intended for ultra long duration balloon (ULDB) applications is essential. The first provides needed information for design and fabrication. The second ensures that the film is sufficiently tough to survive the dynamic events during launch and ascent. Characterization and assessment of these two important parameters are discussed in this paper. Visco-elastic behavior of materials in a loaded structure, such as the ULDB film change their geometry significantly over time under load causing possible changes in the load path and the stress distribution. These changes must be held in check to satisfy the functional requirements of the structure over its service life. Typically, the balloon experiences during its service life various environmental conditions each with a different creep response. These are characterized by a simplified load temperature history for the purpose of lifetime response assessment. At mid-latitudes a significant portion of the service life is spent at night, i.e., at low temperature and low load; for the ULDB film this night-time contribution to creep is negligible. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This paper presents the creep behavior of the ULDB film as a function of load, temperature, and time along with an overview of its implementation in the design. In addition, it presents a quantitative assessment on the toughness of the material under dynamic "Snatch" loading.

  15. Film flow analysis for a vertical evaporating tube with inner evaporation and outer condensation

    International Nuclear Information System (INIS)

    Park, Il Seouk

    2008-01-01

    A numerical study for the flow, heat and mass transfer characteristics of the evaporating tube with the films flowing down on both the inside and outside tube walls has been carried out. The condensation occurs along the outside wall while the evaporation occurs at the free surface of the inside film. The transport equations for momentum and energy are parabolized by the boundary-layer approximation and solved by using the marching technique. The calculation domain of 2 film flow regions (evaporating and condensation films at the inside and outside tube wall respectively) and tube wall is solved simultaneously. The coupling technique for the problem with the 3 different regions and the 2 interfaces of them has been developed to calculated the temperature field. The velocity and temperature fields and the amount of the condensed and evaporated mass as well as the position where the evaporating film is completely dried out are successfully predicted for various inside pressures and inside film inlet flow rates

  16. Special Considerations for Qualifying Thin Films for Supper Pressure Pumpkin Ultra Long Duration Balloon (ULDB) Missions

    Science.gov (United States)

    Said, M.

    Pumpkin type super pressure balloons require much less stringent mechanical requirements on the envelope film material when compared to spherical super pressure type balloons. However, since suitable thin films are typically viscoelastic in nature, their creep characteristics must be fully characterized and must not exceed specific and predetermined design limits. Proper assessment of materials limits to meet these design limits requires creep-load-temperature data that characterizes the performance of the material over a time that exceeds the duration of the design service life by some specified margin. Contrary to the behavior of materials with purely elastic response, visco-elastic materials such as these considered for the ULDB design, change their geometry under sustained loading over time. This change is usually reflected by exhibiting a significant visco-elastic component over the service life of the mission. For that regime of large visco-elastic response, where the material is highly nonlinear, a certain load-temperature threshold can be reached where the creep is limited by an asymptote that depends on both the temperature and load level. Such creep is recoverable, although the recovery period may be much longer than the 100 day design service life of the ULDB structure plus the factor of safety required for the design. For a typical flight, the most significant creep occurs at the highest temperature, which also produces the highest internal pressure. At mid- latitudes a significant portion of the service life is spent at night, i.e. at low temperature and low load; for the ULDB film, this nighttime contribution to creep is insignificant in comparison to any daytime contribution. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This response behavior must be sufficiently characterized to serve the needs of the structural design and performance predictions of the vehicle in

  17. Heat transfer analysis and effects of feeding tubes arrangement, falling film behavior and backsplash on ice formation around horizontal tubes bundles

    International Nuclear Information System (INIS)

    Sait, Hani Hussain

    2013-01-01

    Highlights: • Ice shape around the tubes. • Effects of accumulation of ice around the tubes. • Effects of parallel and series tubes arrangements. • Effects of ice accumulated around the tube surfaces. • Effects of backsplash on ice formation. - Abstract: Excessive electrical load has recently get a lot of attention from electric companies specially in hot countries like Saudi Arabia, where air-conditioning load represents about 75% from the total electrical load. Energy storage by freezing is one of the methods that used to tackle this issue. Ice is formed around horizontal cold tubes that are subjected to falling film of water. Ice quantity is measured, photographed and studied. In this studied the coolant inside the tubes flows in series tube arrangement. The results are compared with previous study in which parallel arrangement was used. In addition the falling film behavior and the resulted backsplash are also investigated. A mathematical model to predict ice formation around the tube is proposed. Comparison of the results of the model with that of the experiments showed that the agreement between the two is acceptable. The results also show a quite reasonable quantity of ice is formed in a short time and the series arrangement is more efficient than parallel one. The falling film shapes and its backsplash has also affected the ice formation

  18. Development of indigenous linear low-density polyethylene film and other related techniques for heavy-load balloons in India

    Science.gov (United States)

    Redkar, R. T.

    1993-02-01

    A new grade of balloon film extruded out of LLDPE resin with Butene as comonomer and Cold Brittle Point (CBP) at -88°C was extruded and successfully flight tested with a 25 micron single shell 53,000 Cu.M. balloon carrying 330 Kg. payload to 33 Km. altitude. We have also produced superior LLDPE film out of Dowlex 2045 Dow Chemicals resin with Octene as comonomer, which has the cold brittle point lower than -90°C and superior mechanical properties at low temperatures. A high pressure hydrogen filling system capable of delivering 2200 Cu.Ft. of hydrogen per minute has been commissioned and successfully utilised in 11 flights. With this new filling system, the inflation time is drastically reduced by over 50% thereby reducing the duration of pre-launch stresses on the ground bubble. After the acceptance of our revised design criteria for balloons to be flown from equatorial latitudes by M/s.Winzen International Inc., U.S.A., 41 flights have been made, out of which 36 have been successful giving us a success record of 88%. Out of the 5 failures, 3 have been float failures with gross inflations exceeding 1950 kg, for which launch spool damage is a suspect. To reduce the spool damage, the shell thickness of the subsequent balloon was increased to 20.32 microns from 17.78 microns and the flight was a success. For further reducing the possibility of launch spool damage, a larger diameter spool is being designed.

  19. Plastic instability criteria for necking of bars and ballooning of tubes

    International Nuclear Information System (INIS)

    Lin, E.I.H.

    1977-01-01

    Plastic instability criteria applicable to the necking of bars under tension and to the ballooning of thin-wall tubes under internal pressure were derived from basic geometrical considerations. In the case of bars under tension, plastic instability prevails if the percentage rate of decrease of the cross-sectional area in the (potential) necking region is greater than that in the bulk of the bar. When the loading characteristics and constitutive equation were taken into account, an instability criterion was deduced in terms of the stress, strain, strain rate, temperature and material properties. This criterion was shown to be reducible to the classical Considere condition for non-rate-sensitive materials. For rate-sensitive materials under isothermal conditions, a simple relationship among the strain, the strain-hardening and strain-rate-sensitivity parameters was also obtained. It was found that the uniform elongation decreases with increasing strainrate sensitivity, a conclusion which is in agreement with experimental measurements and some previous investigations. Finally, the relationship between the high strainrate sensitivity and the superplastic ductility of a material was explained without invoking any non-hardening arguments. (Auth.)

  20. Time-dependent strains and stresses in a pumpkin balloon

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    This paper presents a study of pumpkin-shaped superpressure balloons consisting of gores made from a thin polymeric film attached to high stiffness meridional tendons This type of design is being used for the NASA ULDB balloons The gore film shows considerable time-dependent stress relaxation whereas the behaviour of the tendons is essentially time-independent Upon inflation and pressurization the instantaneous i e linear-elastic strain and stress distributions in the film show significantly higher values in the meridional direction However over time and due to the biaxial visco-elastic stress relaxation of the the gore material the em hoop strains increase and the em meridional stresses decrease whereas the em remaining strain and stress components remain substantially unchanged These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission both in terms of the material performance and the overall stability of the shape of the balloon An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter 48 gore pumpkin balloon is presented The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature The results show good correlation with a numerical study using the ABAQUS finite-element package that includes a widely used model of

  1. Initial Experience with Computed Tomography and Fluoroscopically Guided Placement of Push-Type Gastrostomy Tubes Using a Rupture-Free Balloon Catheter

    International Nuclear Information System (INIS)

    Fujita, Takeshi; Tanabe, Masahiro; Yamatogi, Shigenari; Shimizu, Kensaku; Matsunaga, Naofumi

    2011-01-01

    The purpose of this study was to evaluate the safety and feasibility of percutaneous radiologic gastrostomy placement of push-type gastrostomy tubes using a rupture-free balloon (RFB) catheter under computed tomography (CT) and fluoroscopic guidance. A total of 35 patients (23 men and 12 women; age range 57–93 years [mean 71.7]) underwent percutaneous CT and fluoroscopically guided gastrostomy placement of a push-type gastrostomy tube using an RFB catheter between April 2005 and July 2008. Technical success, procedure duration, and complications were analyzed. Percutaneous radiologic gastrostomy placement was considered technically successful in all patients. The median procedure time was 39 ± 13 (SD) min (range 24–78). The average follow-up time interval was 103 days (range 7–812). No major complications related to the procedure were encountered. No tubes failed because of blockage, and neither tube dislodgement nor intraperitoneal leakage occurred during the follow-up period. The investigators conclude that percutaneous CT and fluoroscopically guided gastrostomy placement with push-type tubes using an RFB catheter is a safe and effective means of gastric feeding when performed by radiologists.

  2. Nitinol: Tubing versus sputtered film - microcleanliness and corrosion behavior.

    Science.gov (United States)

    Wohlschlögel, Markus; Lima de Miranda, Rodrigo; Schüßler, Andreas; Quandt, Eckhard

    2016-08-01

    Corrosion behavior and microcleanliness of medical-device grade Nitinol tubing (Nix Ti1- x , x = 0.51; outer diameter 7 mm, wall thickness 0.5 mm), drawn from various ingot qualities, are compared to the characteristics of sputtered Nitinol film material (Nix Ti1- x , x = 0.51; thickness 50 µm). Electropolished tubing half-shell samples are tested versus as-received sputtered film samples. Inclusion size distributions are assessed using quantitative metallography and corrosion behavior is investigated by potentiodynamic polarization testing in phosphate-buffered saline at body temperature. For the sputtered film samples, the surface chemistry is additionally analyzed employing Auger Electron Spectroscopy (AES) composition-depth profiling. Results show that the fraction of breakdowns in the potentiodynamic polarization test correlates with number and size of the inclusions in the material. For the sputtered Nitinol film material no inclusions were detectable by light microscopy on the one hand and no breakdowns were found in the potentiodynamic polarization test on the other hand. As for electropolished Nitinol, the sputtered Nitinol film material reveals Nickel depletion and an Oxygen-to-Titanium intensity ratio of ∼2:1 in the surface oxide layer, as measured by AES. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1176-1181, 2016. © 2015 Wiley Periodicals, Inc.

  3. Stability of the pumpkin balloon

    Science.gov (United States)

    Baginski, Frank

    A large axisymmetric balloon with positive differential pressure, e.g., a sphere, leads to high film stresses. These can be significantly reduced by using a lobed pumpkin-like shape re-enforced with tendons. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin-shape at full inflation, including the constant bulge angle (CBA) design and the constant bulge radius (CBR) design. The authors and others have carried out stability studies of CBA and CBR designs and found instabilities under various conditions. While stability seems to be a good indicator of deployment problems for large balloons under normal ascent conditions, one cannot conclude that a stable design will deploy reliably. Nevertheless, stability analysis allows one to quantify certain deployment characteristics. Ongoing research by NASA's Balloon Program Office utilizes a new design approach developed by Rodger Farley, NASA/GSFC, that takes into account film and tendon strain. We refer to such a balloon as a constant stress (CS) pumpkin design. In June 2006, the Flight 555-NT balloon (based on a hybrid CBR/CBA design) developed an S-cleft and did not deploy. In order to understand the S-cleft phenomena and study a number of aspects related to the CS-design, a series of inflation tests were conducted at TCOM, Elizabeth City, NC in 2007. The test vehicles were 27 meter diameter pumpkins distinguished by their respective equatorial bulge angles (BA). For example, BA98 indicates an equatorial bulge angle of 98° . BA90, BA55, and BA00 are similarly defined. BA98 was essentially a one-third scale version of of the Flight 555 balloon (i.e., 12 micron film instead of 38.1 micron, mini-tendons, etc.). BA90 and BA55 were Farley CS-designs. BA00 was derived from the BA55 design so that a flat chord spanned adjacent tendons. In this paper, we will carry out stability studies of BA98, BA90, BA55, and BA00. We discuss the deployment problem of pumpkin balloons in light of 2007 inflation

  4. Gigantic balloon type artificial lightning generator

    Energy Technology Data Exchange (ETDEWEB)

    Horii; kenji

    1988-09-05

    This paper outlines a hot-air balloon type Van de Graaf 50-MV generator which can generate a 50,000,000 V, 0.2 to 0.3 coulomb artificial lightning comparable to natural lightning discharge and reports the results of investigation on discharging experiments conducted using this apparatus. The subjects covered are as follows: (1) Outline of the hot-air balloon type Van de Graaf 50-MV generator, (2) electric characteristics of the Van de Graaf 50-MV generator, (3) charge transfer with film and balloon charging, (4) the load of the balloon and buoyancy calculation, (5) leakage of charges, (6) study of charging experiments, and (7) evaluation of the apparatus and its method and problems to be solved. (4 figs, 4 tabs, 4 refs)

  5. Scientific Ballooning in India - Recent Developments

    Science.gov (United States)

    Manchanda, R. K.; Srinivasan, S.; Subbarao, J. V.

    Established in 1972, the National Balloon Facility operated by TIFR in Hyderabad, India is is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, Research and Development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is a hallmark of the Hyderabad balloon facility. In the past few years we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to size of 780,000 M^3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.

  6. Structure variations of pumpkin balloon

    Science.gov (United States)

    Yajima, N.; Izutsu, N.; Honda, H.

    2004-01-01

    A lobed pumpkin balloon by 3-D gore design concept is recognized as a basic form for a super-pressure balloon. This paper deals with extensions of this design concept for other large pressurized membrane structures, such as a stratospheric airship and a balloon of which volume is controllable. The structural modifications are performed by means of additional ropes, belts or a strut. When the original pumpkin shape is modified by these systems, the superior characteristics of the 3-D gore design, incorporating large bulges with a small local radius and unidirectional film tension, should be maintained. Improved design methods which are adequate for the above subjects will be discussed in detail. Application for ground structures are also mentioned.

  7. Scientific ballooning in India Recent developments

    Science.gov (United States)

    Manchanda, R. K.

    Established in 1971, the National Balloon Facility operated by TIFR in Hyderabad, India, is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, research and development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is its hallmark. In the past few years, we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to 780,000 m 3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.

  8. Development of a novel endorectal balloon for two-dimensional in-vivo rectal dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Young Kyung; Jeang, Eun Hee; Min, Soon Ki; Cho, Kwan Ho [National Cancer Center, Goyang (Korea, Republic of); Hwang, Ui Jung [National Medical Center, Seoul (Korea, Republic of); Choi, Sang Hyoun [Korea Cancer Center Hospital, Seoul (Korea, Republic of); Kwak, Jung Won [Asan Medical Center, Seoul (Korea, Republic of)

    2016-05-15

    In the present study, a new endorectal balloon equipped with radiochromic film was developed, and its dosimetric property was evaluated. A metal-oxide-semiconductor field-effect transistor (MOSFET) was used in a rectal balloon to measure the rectal dose in 3D-CRT and IMRT. Additionally, a thermoluminescent dosimeter (TLD) was attached directly onto the rectal balloon to measure the rectal dose in IMRT and proton therapy. However, in vivo dosimetry that uses such point dosimeters cannot provide 2D dose distribution in a rectal wall (RW). In order to obtain the 2D dose distribution in the rectal wall, a 2D dosimeter that incorporates radiosensitive film is required. A new endorectal balloon capable of 2D in vivo rectal dosimetry was developed. Unlike conventional ERBs, this 2DD-ERB was equipped with a radiosensitive film on the outside of the balloon to directly measure the 2D dose distribution delivered to the ARW by the treatment beam. The dosimetric properties of the 2DD-ERB were measured, and the results showed that the measured dose distributions agreed well with their respective treatment plans within 4%. The film-equipped endorectal balloon is expected to be used as an in vivo dosimeter for measuring the dose distribution in the rectal wall in the modern radiotherapy techniques, such as IMRT, VMAT, HT, and IMPT.

  9. Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube

    Science.gov (United States)

    2017-06-01

    suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188...the tube to the 110 cm mark. At the 110 cm mark, secure the tube with medical tape and remove the stylet completely allowing enough tube slack ...and it provides slack that allows tube to advance distally by the effect of natural peristalsis on the bolus-sized balloon. Results: Most feeding

  10. Liquid film and interfacial wave behavior in air-water countercurrent flow through vertical short multi-tube geometries

    International Nuclear Information System (INIS)

    Zhang, Jinzhao; Giot, M.

    1992-01-01

    A series of experiments has been performed on air-water countercurrent flow through short multi-tube geometries (tube number n = 3, diameter d = 36mm, length I = 2d, 10d and 20d). The time-varying thicknesses of the liquid films trickling down the individual tubes are measured by means of conductance probes mounted flush at different locations of the inner wall surfaces. Detailed time series analyses of the measured film thicknesses provide some useful information about the film flow behavior as well as the interfacial wave characteristics in individual tubes, which can be used as some guidelines for developing more general predictive flooding models. 18 refs., 18 figs., 1 tabs

  11. The effect of bubble acceleration on the liquid film thickness in micro tubes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Youngbae, E-mail: bhan@feslab.t.u-tokyo.ac.j [Department of Mechanical Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan); Shikazono, Naoki, E-mail: shika@feslab.t.u-tokyo.ac.j [Department of Mechanical Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2010-08-15

    Liquid film thickness is an important parameter for predicting boiling heat transfer in micro tubes. In the previous study (), liquid film thickness under the steady condition was investigated and an empirical correlation for the initial liquid film thickness based on capillary number, Reynolds number and Weber number was proposed. However, under flow boiling conditions, bubble velocity is not constant but accelerated due to evaporation. It is necessary to consider this bubble acceleration effect on the liquid film thickness, since it affects viscous, surface tension and inertia forces in the momentum equation. In addition, viscous boundary layer develops, and it may also affect the liquid film thickness. In the present study, the effect of bubble acceleration is investigated. Laser focus displacement meter is used to measure the liquid film thickness. Ethanol, water and FC-40 are used as working fluids. Circular tubes with three different inner diameters, D = 0.5, 0.7 and 1.0 mm, are used. The increase of liquid film thickness with capillary number is restricted by the bubble acceleration. Finally, an empirical correlation is proposed for the liquid film thickness of accelerated flows in terms of capillary number and Bond number based on the bubble acceleration.

  12. The effect of bubble acceleration on the liquid film thickness in micro tubes

    International Nuclear Information System (INIS)

    Han, Youngbae; Shikazono, Naoki

    2010-01-01

    Liquid film thickness is an important parameter for predicting boiling heat transfer in micro tubes. In the previous study (), liquid film thickness under the steady condition was investigated and an empirical correlation for the initial liquid film thickness based on capillary number, Reynolds number and Weber number was proposed. However, under flow boiling conditions, bubble velocity is not constant but accelerated due to evaporation. It is necessary to consider this bubble acceleration effect on the liquid film thickness, since it affects viscous, surface tension and inertia forces in the momentum equation. In addition, viscous boundary layer develops, and it may also affect the liquid film thickness. In the present study, the effect of bubble acceleration is investigated. Laser focus displacement meter is used to measure the liquid film thickness. Ethanol, water and FC-40 are used as working fluids. Circular tubes with three different inner diameters, D = 0.5, 0.7 and 1.0 mm, are used. The increase of liquid film thickness with capillary number is restricted by the bubble acceleration. Finally, an empirical correlation is proposed for the liquid film thickness of accelerated flows in terms of capillary number and Bond number based on the bubble acceleration.

  13. Effect of Different Tube Potential Settings on Caries Detection using PSP Plate and Conventional Film.

    Science.gov (United States)

    De Melo, Daniela Pita; Cruz, Adriana Dibo; Melo, Saulo Leonardo Sousa; De Farias, Julyanna Filgueiras GonçAlves; Haiter-Neto, Francisco; De Almeida, Solange Maria

    2015-04-01

    To compare intraoral Phosphor Stimulable Plate digital system and intraoral film using different tube settings on incipient proximal caries detection. Five blocks, with five teeth each, were radiographically examined using phosphor plates and F-speed films. The images were acquired in 07 different tube potentials from 50-80 kV. The films were digitized. Three oral radiologists scored the images for the presence of caries using a 5-point rating scale. The areas under ROC curve were calculated. The influence of tube kilovoltage was verified by ANOVA and pair wise comparisons performed using Tukey test. Mean ROC curve areas varied from 0.446-0.628 for digital images and 0.494-0.559 for conventional images. The tube setting of 70 kV presented the best result both for digital and conventional images. Considering the image type separately, 70 kV scored highest followed by 75 and 65 kV for digital images (p=0.084). For conventional image modality, even though 70 kV presented the best result, it did not differ significantly from 80 kV, not differing from 60 and 55 kV, which did not differ from 75, 65 and 50 kV (p=0.53). Phosphor plate digital images seem to be more susceptible to tube setting potential variations then digitized film images.

  14. Effect of Different Tube Potential Settings on Caries Detection using PSP Plate and Conventional Film

    Science.gov (United States)

    Cruz, Adriana Dibo; Melo, Saulo Leonardo Sousa; De Farias, Julyanna Filgueiras GonçAlves; Haiter-Neto, Francisco; De Almeida, Solange Maria

    2015-01-01

    Purpose To compare intraoral Phosphor Stimulable Plate digital system and intraoral film using different tube settings on incipient proximal caries detection. Materials and Methods Five blocks, with five teeth each, were radiographically examined using phosphor plates and F-speed films. The images were acquired in 07 different tube potentials from 50-80 kV. The films were digitized. Three oral radiologists scored the images for the presence of caries using a 5-point rating scale. The areas under ROC curve were calculated. The influence of tube kilovoltage was verified by ANOVA and pair wise comparisons performed using Tukey test. Results Mean ROC curve areas varied from 0.446-0.628 for digital images and 0.494–0.559 for conventional images. The tube setting of 70 kV presented the best result both for digital and conventional images. Considering the image type separately, 70 kV scored highest followed by 75 and 65 kV for digital images (p=0.084). For conventional image modality, even though 70 kV presented the best result, it did not differ significantly from 80 kV, not differing from 60 and 55 kV, which did not differ from 75, 65 and 50 kV (p=0.53). Conclusion Phosphor plate digital images seem to be more susceptible to tube setting potential variations then digitized film images. PMID:26023645

  15. An improved model to predict nonuniform deformation of Zr-2.5 Nb pressure tubes

    International Nuclear Information System (INIS)

    Lei, Q.M.; Fan, H.Z.

    1997-01-01

    Present circular pressure-tube ballooning models in most fuel channel codes assume that the pressure tube remains circular during ballooning. This model provides adequate predictions of pressure-tube ballooning behaviour when the pressure tube (PT) and the calandria tube (CT) are concentric and when a small (<100 degrees C) top-to-bottom circumferential temperature gradient is present on the pressure tube. However, nonconcentric ballooning is expected to occur under certain postulated CANDU (CANada Deuterium Uranium) accident conditions. This circular geometry assumption prevents the model from accurately predicting nonuniform pressure-tube straining and local PT/CT contact when the pressure tube is subjected to a large circumferential temperature gradient and consequently deforms in a noncircular pattern. This paper describes an improved model that predicts noncircular pressure-tube deformation. Use of this model (once fully validated) will reduce uncertainties in the prediction of pressure-tube ballooning during a postulated loss-of-coolant accident (LOCA) in a CANDU reactor. The noncircular deformation model considers a ring or cross-section of a pressure tube with unit axial length to calculate deformation in the radial and circumferential directions. The model keeps track of the thinning of the pressure-tube wall as well as the shape deviation from a reference circle. Such deviation is expressed in a cosine Fourier series for the lateral symmetry case. The coefficients of the series for the first m terms are calculated by solving a set of algebraic equations at each time step. The model also takes into account the effects of pressure-tube sag or bow on ballooning, using an input value of the offset distance between the centre of the calandria tube and the initial centre of the pressure tube for determining the position radius of the pressure tube. One significant improvement realized in using the noncircular deformation model is a more accurate prediction in

  16. Long-Term Follow-up After Embolization of Pulmonary Arteriovenous Malformations with Detachable Silicone Balloons

    DEFF Research Database (Denmark)

    Andersen, Poul Erik; Kjeldsen, Anette D

    2008-01-01

    ) with pulmonary angiography. Fifty-four percent of the balloons were deflated at latest radiographic chest film follow-up, but at pulmonary angiographic follow-up all embolized malformations were without flow irrespective of whether or not the balloons were visible. Detachable silicone balloons are not available...

  17. Tube Inner Coating of Non-Conductive Films by Pulsed Reactive Coaxial Magnetron Plasma with Outer Anode

    Directory of Open Access Journals (Sweden)

    Musab Timan Idriss Gasab

    2018-03-01

    Full Text Available The double-ended coaxial magnetron pulsed plasma (DCMPP method with auxiliary outer anode was introduced in order to achieve the uniform coating of non-conductive thin films on the inner walls of insulator tubes. In this study, titanium (Ti was employed as a cathode (sputtering target, and a glass tube was used as a substrate. In an argon (Ar and oxygen (O2 gas mixture, magnetron plasma was generated. Oxygen gas was introduced to deposit a titanium oxide (TiO2 film. A comparison between films coated with and without an auxiliary outer anode was made. As a result, it was clearly shown that the DCMPP method using an auxiliary outer anode enhanced the uniformity of the deposited non-conductive film compared to the conventional DCMPP method. Moreover, the optimum conditions under which the thin TiO2 film was deposited on the inner wall of the glass tube were revealed. From the results, it was supposed that the auxiliary outer anode contributed to the uniformity of the distributions of deposited negative charge on the non-conductive film and consequently the electric field and the plasma density uniform.

  18. Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity

    Science.gov (United States)

    Rand, J. L.; Wakefield, D. S.

    Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may

  19. Removal of oil films from stainless steel tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, J.F.; Saez, A.E.; Grant, C.S. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Chemical Engineering

    1997-01-01

    The contamination of metal surfaces with oil is a widespread problem in the chemical, metalworking, and automotive industries. The main source of oil fouling comes from the process fluids in various operations. For example, in a heat exchanger, the oil contaminates the equipment surface causing a lower heat-transfer efficiency. The fouled equipment leads to increased costs due to added heat-transfer area, maintenance, energy, and production losses caused by unit downtime. The removal of oil films from the inner surface of a stainless steel tube cell using aqueous cleaning solutions was studied. The two oils used in the cleaning experiments, Sunquench 1042 and heavy mineral oil, contained P{sup 32} labeled tributyl phosphate (TBP) as a radioactive tracer. The {beta}{sup {minus}} particles emitted from the radioactive TBP were detected by a CaF{sub 2} scintillator and used as a measure of the amount of oil remaining in the tube cell. Cleaning experiments performed at different flow rates, surface treatment, and surfactant concentrations indicated that initially the oil films were removed rapidly. At the end of the experiments, the oil removal rate reduced significantly, eventually becoming negligible. The stainless steel morphology affected oil removal significantly, and the rougher tube tended to retard the oil removal. The rate and extent of the decontamination were significantly increased in the presence of sodium dodecyl sulfate, a nonionic surfactant. Experimental data were compared to a hydrodynamic model based on the removal of a liquid contaminant from a solid surface by an immiscible fluid. The model deviated from the experimental data due to the presence of instabilities at the oil-water interface.

  20. Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yi [Department of 702, Beihang University, Beijing (China); Li, Liuhe, E-mail: liliuhe@buaa.edu.cn [Department of 702, Beihang University, Beijing (China); Luo, Sida [Department of 702, Beihang University, Beijing (China); International Research Institute for Multidisciplinary Science, Beihang University, Beijing (China); Lu, Qiuyuan [Dong Feng Commercial Vehicle Technical Center, Dong Feng Commercial Vehicle Co., LTD, Wuhan (China); Gu, Jiabin; Lei, Ning [Department of 702, Beihang University, Beijing (China); Huo, Chunqin [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, Shenzhen University, Guangdong (China)

    2017-01-30

    Highlights: • Effect of inner surface materials of tubes on plasma discharge is examined. • Electron mean free path is used to analyze the films deposition. • Secondary electrons emitted from inner surface of tube enhance plasma discharge. - Abstract: Enhanced glow discharge plasma immersion ion implantation and deposition (EGD-PIII&D) have been proved to be highly effective for depositing diamond-like carbon (DLC) films on the inner surface of the slender quartz tube with a deposition rate of 1.3 μm/min. Such a high-efficiency DLC films deposition was explained previously as the short electrons mean free path to cause large collision frequency between electrons and neutral particles. However, in this paper, we found that the inner surface material of the tube itself play a vital role on the films deposition. To disclose the mechanism of this phenomenon, the effect of different inner surface materials on plasma discharge was experimentally and theoretically investigated. Then a self-enhancing plasma discharge is discovered. It is found that secondary electrons emitted from the inner surface material, whatever it is the tube inner surface or deposited DLC films, can dramatically enhance the plasma discharge to improve the DLC films deposition rate.

  1. Simulating clefts in pumpkin balloons

    Science.gov (United States)

    Baginski, Frank; Brakke, Kenneth

    2010-02-01

    The geometry of a large axisymmetric balloon with positive differential pressure, such as a sphere, leads to very high film stresses. These stresses can be significantly reduced by using a tendon re-enforced lobed pumpkin-like shape. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin shape, including the constant bulge angle (CBA) design, the constant bulge radius (CBR) design, CBA/CBR hybrids, and NASA’s recent constant stress (CS) design. Utilizing a hybrid CBA/CBR pumpkin design, Flight 555-NT in June 2006 formed an S-cleft and was unable to fully deploy. In order to better understand the S-cleft phenomenon, a series of inflation tests involving four 27-m diameter 200-gore pumpkin balloons were conducted in 2007. One of the test vehicles was a 1/3-scale mockup of the Flight 555-NT balloon. Using an inflation procedure intended to mimic ascent, the 1/3-scale mockup developed an S-cleft feature strikingly similar to the one observed in Flight 555-NT. Our analysis of the 1/3-scale mockup found it to be unstable. We compute asymmetric equilibrium configurations of this balloon, including shapes with an S-cleft feature.

  2. Dry-out heat fluxes of falling film and low-mass flux upward-flow in heated tubes

    International Nuclear Information System (INIS)

    Koizumi, Yasuo; Ueda, Tatsuhiro; Matsuo, Teruyuki; Miyota, Yukio

    1998-01-01

    Dry-out heat fluxes were investigated experimentally for a film flow falling down on the inner surface of vertical heated-tubes and for a low mass flux forced-upward flow in the tubes using R 113. This work followed the study on those for a two-phase natural circulation system. For the falling film boiling, flow state observation tests were also performed, where dry-patches appearing and disappearing repeatedly were observed near the exit end of the heated section at the dry-out heat flux conditions. Relation between the dry-out heat flux and the liquid film flow rate is analyzed. The dry-out heat fluxes of the low mass flux upflow are expressed well by the correlation proposed in the previous work. The relation for the falling film boiling shows a similar trend to that for the upflow boiling, however, the dry-out heat fluxes of the falling film are much lower, approximately one third, than those of the upward flow. (author)

  3. Bubble-assisted film evaporation correlation for saline water at sub-atmospheric pressures in horizontal-tube evaporator

    KAUST Repository

    Shahzad, Muhammad Wakil; Myat, Aung; Chun, Won Gee; Ng, Kim Choon

    2013-01-01

    film boiling on horizontal tubes, but working at low pressures of 0.93-3.60 kPa (corresponding solution saturation temperatures of 279-300 K) as well as seawater salinity of 15,000 to 90,000 mg/l or ppm. Owing to a dearth of literature on film

  4. Theoretical analysis of film condensation in horizontal microfin tubes; Microfin tsuki suihei kannai gyoshuku no riron kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Honda, H; Wang, H [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study; Nozu, S [Okamaya Prefectural University, Okayama (Japan). Faculty of Computer Science and System Engineering

    2000-10-25

    A theoretical study has been made of film condensation in helically-grooved, horizontal microfin tubes. The annular flow regime and the stratified flow regime were considered. For the annular flow regime, a previously developed theoretical model was applied. For the stratified flow regime, the height of stratified condensate was estimated by a modified Taitel and Dukler model. For the upper part of the tube exposed to the vapor flow, numerical calculation of Laminar film condensation considering the combined effects of gravity and surface tension forces was conducted. The heat transfer coefficient at the lower part of the tube was estimated by an empirical equation for the internally finned tubes developed by Carnavos. The theoretical predictions of the circumferential average heat transfer coefficient by the two theoretical models were compared with available experimental data for four refrigerants and four tubes. Generally, the annular flow model gave a higher heat transfer coefficient than the stratified flow model in the high quality region, whereas the stratified flow model gave a higher heat transfer coefficient in the low quality region. For tubes with fin heights of 0.16 {approx} 0.24 mm, most of the experimental data agreed within {+-} 20% with the higher of the two theoretical predictions. (author)

  5. Air-driven viscous film flow coating the interior of a vertical tube

    Science.gov (United States)

    Ogrosky, H. Reed; Camassa, Roberto; Olander, Jeffrey

    2017-11-01

    We discuss a model for the flow of a viscous liquid film coating the interior of a vertical tube when the film is driven upwards against gravity by airflow through the center of the tube. The model consists of two components: (i) a nonlinear model, exploiting the slowly-varying liquid-air interface, for the interfacial stresses created by the airflow, and (ii) a long-wave asymptotic model for the air-liquid interface. The stability of small interfacial disturbances is studied analytically, and it is shown that the modeled free surface stresses contribute to both an increased upwards disturbance velocity and a more rapid instability growth than those of a previously developed model. Numerical solutions to the long-wave model exhibit saturated waves whose profiles and velocities show improvement, with respect to the previous model, in matching experiments. The model results are then compared with additional experiments for a slightly modified version of the problem. We gratefully acknowledge funding from NSF DMS-0509423, DMS-0908423, DMS-1009750, DMS-1517879, RTG DMS-0943851, CMG ARC-1025523 and NIEHS 534197-3411.

  6. Fuel assembly and fuel cladding tube

    International Nuclear Information System (INIS)

    Tsutsumi, Shinro; Ito, Ken-ichi; Inagaki, Masatoshi; Nakajima, Junjiro.

    1996-01-01

    A fuel cladding tube is a zirconium liner tube formed by lining a pure zirconium layer on the inner side of a zirconium alloy tube. The fuel cladding tube is formed by extrusion molding of a composite billet formed by inserting a pure zirconium billet into a zirconium alloy billet. Accordingly, the pure zirconium layer and the zirconium alloy tube are strongly joined by metal bond. The fuel cladding tube has an external oxide film on the outer surface of the zirconium alloy tube and an internal oxide film on the inner side of the pure zirconium layer. The external oxide film has a thickness preferably of about 1μm. The internal oxide film has a thickness of not more than 10μm, preferably, from 1 to 5μm. With such a constitution, flaws to be formed on both inner and outer surfaces of the cladding tube upon assembling a fuel assembly can be reduced thereby enabling to reduce the amount of hydrogen absorbed to the cladding tube. (I.N.)

  7. Numerical simulation and experimental results of horizontal tube falling film generator working in a NH3-LiNO3 absorption refrigeration system

    International Nuclear Information System (INIS)

    Herrera, J.V.; Garcia-Valladares, O.; Gomez, V.H.; Best, R.

    2010-01-01

    This paper describes the work made at the Centro de Investigacion en Energia in the development of an absorption refrigeration system for cooling and refrigeration applications with a capacity of 10 kW. The single effect unit utilizes ammonia-lithium nitrate as working pair and it is air cooled. The generator is a falling film type with horizontal tubes where the heating oil flows inside the tube bank and the ammonia-lithium nitrate solution flows as a falling film on the tube outside, where it is heated and ammonia vapor is generated. The generator consists of tree columns and four rows per column of horizontal tubes. The system was tested at controlled conditions with heating oil obtained from an electric resistance heating loop. A numerical model of the horizontal falling film generator was developed that divided the system into three different thermal elements: the flow inside the tube, the heat conduction in the tube wall and the falling film solution flow. The mathematical model was tested and validated with experimental data and a study of the influence of the heat transfer coefficient for ammonia-lithium nitrate solution in the numerical model was carried out. A comparison between experimental and numerical data for the heat flux in the system and the temperature profiles in the oil and solution flows shown a good degree of correlation.

  8. [Obstruction of the nasal passage caused by a balloon catheter in a calf].

    Science.gov (United States)

    Rijkenhuizen, A B

    1993-01-01

    Decompression of the rumen as a supporting symptomatic therapy of recurrent bloat in calves and juvenile cattle is used regularly. The gas should be released for several days. This is facilitated by the use of a balloon stomach tube, which can be left in situ for up to five days. However, the use of this tube is not always without risks, which will be discussed on base of a patient.

  9. Bubble-assisted film evaporation correlation for saline water at sub-atmospheric pressures in horizontal-tube evaporator

    KAUST Repository

    Shahzad, Muhammad Wakil

    2013-01-01

    In falling film evaporators, the overall heat transfer coefficient is controlled by film thickness, velocity, liquid properties and the temperature differential across the film layer. This article presents the heat transfer behavior for evaporative film boiling on horizontal tubes, but working at low pressures of 0.93-3.60 kPa (corresponding solution saturation temperatures of 279-300 K) as well as seawater salinity of 15,000 to 90,000 mg/l or ppm. Owing to a dearth of literature on film-boiling at these conditions, the article is motivated by the importance of evaporative film boiling in the desalination processes such as the multi-effect distillation (MED) or multi-stage flashing (MSF): It is observed that in addition to the above-mentioned parameters, evaporative heat transfer of seawater is affected by the emergence of micro-bubbles within the thin film layer, particularly when the liquid saturation temperatures drop below 298 K (3.1 kPa). Such micro bubbles are generated near to the tube wall surfaces and they enhanced the heat transfer by two or more folds when compared with the predictions of conventional evaporative film boiling. The appearance of micro-bubbles is attributed to the rapid increase in the specific volume of vapor, i.e., dv/dT, at low saturation temperature conditions. A new correlation is thus proposed in this article and it shows good agreement to the measured data with an experimental uncertainty of 8% and regression RMSE of 3.5%. © 2012 Elsevier Ltd. All rights reserved.

  10. Measurement of energetic radiation caused by thunderstorm activities by a sounding balloon and ground observation

    Science.gov (United States)

    Torii, T.

    2015-12-01

    Energetic radiation caused by thunderstorm activity is observed at various places, such as the ground, high mountain areas, and artificial satellites. In order to investigate the radiation source and its energy distribution, we measured energetic radiation by a sounding balloon, and the ground observation. On the measurement inside/above the thundercloud, we conducted a sounding observation using a radiosonde mounted two GM tubes (for gamma-rays, and for beta/gamma-rays), in addition to meteorological instruments. The balloon passed through a region of strong echoes in a thundercloud shown by radar image, at which time an increase in counting rate of the GM tube about 2 orders of magnitude occurred at the altitude from 5 km to 7.5 km. Furthermore, the counting rate of two GM tubes indicated the tendency different depending on movement of a balloon. This result suggests that the ratio for the gamma-rays (energetic photons) of the beta-rays (energetic electrons) varies according to the place in the thundercloud. Furthermore, we carried out a ground observation of the energetic gamma rays during winter thunderstorm at a coastal area facing the Sea of Japan. Two types of the energetic radiation have been observed at this time. We report the outline of these measurements and analysis in the session of the AGU meeting.

  11. Characterization of the flooding in vertical tubes by means of the film thickness measurement

    International Nuclear Information System (INIS)

    Malandrone, M.; Mioliggi, L.; Panella, B.; Scorta, G.

    1992-01-01

    The air-water countercurrent flow up to the flooding transition in a vertical tube has been experimentally investigated by liquid film thickness measurement performed by means of an electrical two-wires conductance probe. The liquid film mean thickness, the probability density function, the spectral power density and the power of the signal have been derived for a wide range of air and water flow rate, and related to the flow pattern with particular attention to the flooding phenomena. (6 figures) (Author)

  12. Evaluation of the Effect of Tube Pitch and Surface Alterations on Temperature Field at Sprinkled Tube Bundle

    Directory of Open Access Journals (Sweden)

    Kracík Petr

    2015-01-01

    Full Text Available Water flowing on a sprinkled tube bundle forms three basic modes: It is the Droplet mode (liquid drips from one tube to another, the Jet mode (with an increasing flow rate droplets merge into a column and the Membrane (Sheet mode (with further increasing of falling film liquid flow rate columns merge and create sheets between the tubes. With sufficient flow rate sheets merge at this state and the tube bundle is completely covered by a thin liquid film. There are several factors influencing the individual mode types as well as heat transfer. Beside the above mentioned falling film liquid flow rate they are for instance tube diameters, tube pitches in a tube bundle or a physical condition of a falling film liquid. This paper presents a summary of data measured at atmospheric pressure at a tube bundle consisting of copper tubes of 12 milimeters diameter and of the studied tube length one meter. The tubes are positioned horizontally one above another with the tested pitches of 15, 20, 25 and 30 mm and there is a distribution tube placed above them with water flowing out. The thermal gradient of 15–40 has been tested with all pitches where the falling film liquid’s temperature at the inlet of the distribution tube was 15 °C. The liquid was heated during the flow through the exchanger and the temperature of the sprinkled (heater liquid at the inlet of the exchanger with a constant flow rate about 7.2 litres per minute was 40 °C. The tested flow of the falling film liquid ranged from 1.0 to 13.0 litres per minute. Sequences of 180 exposures have been recorded in partial flow rate stages by thermographic camera with record frequency of 30 Hz which were consequently assessed using the Matlab programme. This paper presents results achieved at the above mentioned pitches and at three types of tube bundle surfaces.

  13. High-temperature transient creep properties of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Chow, C.K.

    2002-06-01

    During a hypothetical large break loss-of-coolant accident (LOCA), the coolant flow would be reduced in some fuel channels and would stagnate and cause the fuel temperature to rise and overheat the pressure tube. The overheated pressure tube could balloon (creep radially) into contact with its moderator-cooled calandria tube. Upon contact, the stored thermal energy in the pressure tube is transferred to the calandria tube and into the moderator, which acts as a heat sink. For safety analyses, the modelling of fuel channel deformation behaviour during a large LOCA requires a sound knowledge of the high-temperature creep properties of Zr-2.5Nb pressure tubes. To this extent, a ballooning model to predict pressure-tube deformation was developed by Shewfelt et al., based on creep equations derived using uniaxial tensile specimens. It has been recognized, however, that there is an inherent variability in the high-temperature creep properties of CANDU pressure tubes. The variability, can be due to different tube-manufacturing practices, variations in chemical compositions, and changes in microstructure induced by irradiation during service in the reactor. It is important to quantify the variability of high-temperature creep properties so that accurate predictions on pressure-tube creep behaviour can be made. This paper summarizes recent data obtained from high-temperature uniaxial creep tests performed on specimens taken from both unirradiated (offcut) and irradiated pressure tubes, suggesting that the variability is attributed mainly to the initial differences in microstructure (grain size, shape and preferred orientation) and also from tube-to-tube variations in chemical composition, rather than due to irradiation exposure. These data will provide safety analysts with the means to quantify the uncertainties in the prediction of pressure-tube contact temperatures during a postulated large break LOCA. (author)

  14. Cosmopolitan communication online: YouTube responses to the anti-Islam film Fitna.

    Science.gov (United States)

    Mihelj, Sabina; van Zoonen, Liesbet; Vis, Farida

    2011-12-01

    In 2008, a Dutch member of parliament released a short anti-Islamic film entitled Fitna, which stirred a huge public controversy and provoked public condemnations around the world. In response to the film, hundreds of videos were uploaded on YouTube, mostly with the aim to provide a more positive representation of Islam, express support for the author and his views, or defend his freedom of speech. Drawing on interviews with YouTube users who posted the videos, this paper reflects on the capacity of the Internet to sustain cosmopolitan communication and examines how cosmopolitan attitudes and practices on-line differ depending on the participants' cultural and social background, especially their religious affiliations. Particular attention is paid to how the opportunities for cosmopolitan communication are shaped by the unequal distribution of cosmopolitan attitudes and practices among groups, and by global inequalities of power. In addressing these issues, the paper also engages with broader debates about cosmopolitanism, and argues for an understanding of cosmopolitanism as a quest for universalism, which remains anchored in the particular, but involves communication across difference, and requires openness to the possibility that the other is right. © London School of Economics and Political Science 2011.

  15. Growth of carbon fibres, sheets and tubes on diamond films under high power plasma etching conditions

    Energy Technology Data Exchange (ETDEWEB)

    Villalpando, I. [Centro de Investigacion de los Recursos Naturales, Antigua Normal Rural, Salaices, Lopez, Chihuahua (Mexico); John, P.; Wilson, J. I. B., E-mail: isaelav@hotmail.com [School of Engineering and Physical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14-4AS (United Kingdom)

    2017-11-01

    The application of diamond as a plasma facing material for fusion reactors can be limited by unknown reactions between diamond and the chamber materials transported by the plasma. Transformation of diamond to other structures can cause problems such as contamination of the plasma with loose particles or retention of gases. We have seen that diamond thin films are eroded under hydrogen plasma etching, but if silicon is present the growth of various carbon structures on diamond films is observed. We have produced carbon with different morphologies on diamond films including fibres, sheets with flower-like shapes and tubes and proposed growth mechanisms based on the results of scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Sample surfaces contain silicon and are oxidised having COO and CO groups as seen by XP S analysis. Raman analyses revealed a spectrum typical for graphite combined with that from diamond that remains on the surface after hydrogen bombardment. The results of this sturdy show the experimental conditions in which carbon fibres, sheets and tubes are produced under high-power hydrogen etching of diamond films and open the possibility to other applications such as catalysts, sensors and the production of electrodes. (Author)

  16. Growth of carbon fibres, sheets and tubes on diamond films under high power plasma etching conditions

    International Nuclear Information System (INIS)

    Villalpando, I.; John, P.; Wilson, J. I. B.

    2017-01-01

    The application of diamond as a plasma facing material for fusion reactors can be limited by unknown reactions between diamond and the chamber materials transported by the plasma. Transformation of diamond to other structures can cause problems such as contamination of the plasma with loose particles or retention of gases. We have seen that diamond thin films are eroded under hydrogen plasma etching, but if silicon is present the growth of various carbon structures on diamond films is observed. We have produced carbon with different morphologies on diamond films including fibres, sheets with flower-like shapes and tubes and proposed growth mechanisms based on the results of scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Sample surfaces contain silicon and are oxidised having COO and CO groups as seen by XP S analysis. Raman analyses revealed a spectrum typical for graphite combined with that from diamond that remains on the surface after hydrogen bombardment. The results of this sturdy show the experimental conditions in which carbon fibres, sheets and tubes are produced under high-power hydrogen etching of diamond films and open the possibility to other applications such as catalysts, sensors and the production of electrodes. (Author)

  17. Simulation and analysis of the thermal and deformation behaviour of `as-received` and `hydrided` pressure tubes used in the circumferential temperature distribution experiments (end of life/pressure tube behaviour)

    Energy Technology Data Exchange (ETDEWEB)

    Muir, W C; Bayoumi, M H [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    It is postulated that in-reactor pressure tubes may be subjected to radiation damage and dissolved deuterium which could change the pressure tube characteristics and lead to different behaviour than that of as-received pressure tubes under large LOCA (loss of coolant) conditions. A hydrided pressure tube was used to study the effect of dissolved hydrogen on thermal-mechanical behaviour. In the experiment, simulating an in-reactor (hydrided) pressure tube with circumferential differential temperature under boil-off conditions, the pressure tube ballooned into contact with the calandria tube. The pressure tube used in this experiment was hydrided in a furnace to a nominal value of 200 {mu}g/g dissolved hydrogen. This test was a repeat of the first supplementary boil-off test (S-5-1) which used an as-received pressure tube. The objective of this paper is to analyze the results obtained from the simulation of this Boil-Off test using the SMARTT computer code and to examine the effect of hydriding on the thermal and ballooning behaviour of the pressure tube by comparison with the results obtained from test S-5-1. A discussion of the results obtained from this comparison is presented together with an analysis of their application to the analysis of pressure tube behaviour in CANDU reactors. (author). 13 refs., 1 tab., 16 figs.

  18. Simulation and analysis of the thermal and deformation behaviour of 'as-received' and 'hydrided' pressure tubes used in the circumferential temperature distribution experiments (end of life/pressure tube behaviour)

    International Nuclear Information System (INIS)

    Muir, W.C.; Bayoumi, M.H.

    1995-01-01

    It is postulated that in-reactor pressure tubes may be subjected to radiation damage and dissolved deuterium which could change the pressure tube characteristics and lead to different behaviour than that of as-received pressure tubes under large LOCA (loss of coolant) conditions. A hydrided pressure tube was used to study the effect of dissolved hydrogen on thermal-mechanical behaviour. In the experiment, simulating an in-reactor (hydrided) pressure tube with circumferential differential temperature under boil-off conditions, the pressure tube ballooned into contact with the calandria tube. The pressure tube used in this experiment was hydrided in a furnace to a nominal value of 200 μg/g dissolved hydrogen. This test was a repeat of the first supplementary boil-off test (S-5-1) which used an as-received pressure tube. The objective of this paper is to analyze the results obtained from the simulation of this Boil-Off test using the SMARTT computer code and to examine the effect of hydriding on the thermal and ballooning behaviour of the pressure tube by comparison with the results obtained from test S-5-1. A discussion of the results obtained from this comparison is presented together with an analysis of their application to the analysis of pressure tube behaviour in CANDU reactors. (author). 13 refs., 1 tab., 16 figs

  19. Long-Term Follow-up After Embolization of Pulmonary Arteriovenous Malformations with Detachable Silicone Balloons

    International Nuclear Information System (INIS)

    Andersen, Poul Erik; Kjeldsen, Anette D.

    2008-01-01

    Long-term follow-up results after embolization of 13 pulmonary arteriovenous malformations in 10 patients by use of 14 detachable silicone balloons are given. Patients were followed for a mean of 99 months (range, 63-123 months) with chest x-rays and for a mean of 62 months (range, 3-101 months) with pulmonary angiography. Fifty-four percent of the balloons were deflated at latest radiographic chest film follow-up, but at pulmonary angiographic follow-up all embolized malformations were without flow irrespective of whether or not the balloons were visible. Detachable silicone balloons are not available anymore, but use of these balloons for embolization of pulmonary arteriovenous malformations has been shown to be a safe and precise method, with immediate occlusion of the feeding artery and with long-lasting occlusion, even though many balloons deflate with time, leaving a fibrotic scar replacing the pulmonary arteriovenous malformation. No case of recanalization has been discovered, and these results seem to justify a reduced number of controls of these balloon-embolized malformations

  20. 2D modeling of moderator flow and temperature distribution around a single channel after pressure tube/calandria tube contact

    International Nuclear Information System (INIS)

    Behdadi, A.; Luxat, J.C.

    2009-01-01

    A 2D computational fluid dynamics (CFD) model has been developed to calculate the moderator velocity field and temperature distribution around a single channel inside the moderator of a CANDU reactor after a postulated ballooning deformation of the pressure tube (PT) into contact with the calandria tube (CT). Following contact between the hot PT and the relatively cold CT, there is a spike in heat flux to the moderator surrounding the CT which may lead to sustained CT dryout. This can detrimentally affect channel integrity if the CT post-dryout temperature becomes sufficiently high to result in thermal creep strain deformation. The present research is focused on establishing the limits for dryout occurrence on the CTs for the situation in which pressure tube-calandria tube contact occurs. In order to consider different location of the channels inside the calandria, both upward and downward flow directions have been analyzed. The standard κ - ε turbulence model associated with logarithmic wall function is applied to predict the effects of turbulence. The governing equations are solved by the finite element software package COMSOL. The buoyancy driven natural convection on the outer surface of a CT has been analyzed to predict the flow and temperature distribution around the single CT considering the local moderator subcooling, wall temperature and heat flux. The model also shows the effect of high CT temperature on the flow and subcooling around the CTs at higher/lower elevation depending on the flow direction in the domain. According to the flow pattern and temperature distribution, it is predicted that stable film boiling generates in the stagnation region on the cylinder. (author)

  1. A soap film shock tube to study two-dimensional compressible flows

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.Y.; Chen, Y.M.; Chang-Jian, S.K. [Dept. of Mechanical Engineering, Da-Yeh University Chang-Hwa (Taiwan)

    2001-07-01

    A new experimental approach to the study of the two-dimensional compressible flow phenomena is presented. In this technique, a variety of compressible flows were generated by bursting plane vertical soap films. An aureole and a ''shock wave'' preceding the rim of the expanding hole were clearly observed using traditional high-speed flash photography and a fast line-scan charge coupled device (CCD) camera. The moving shock wave images obtained from the line-scan CCD camera were similar to the x-t diagrams in gas dynamics. The moving shock waves cause thickness jumps and induce supersonic flows. Photographs of the supersonic flows over a cylinder and a wedge are presented. The results suggest clearly the feasibility of the ''soap film shock tube''. (orig.)

  2. High temperature deformation behavior of gradually pressurized zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Suzuki, Motoye

    1982-03-01

    In order to obtain preliminary perspectives on fuel cladding deformation behavior under changing temperature and pressure conditions in a hypothetical loss-of-coolant accident of PWR, a Zircaloy-4 tube burst test was conducted in both air and 99.97% Ar atomospheres. The tubes were directly heated by AC-current and maintained at various temperatures, and pressurized gradually until rupture occurred. Rupture circumferential strains were generally larger in Ar gas than in air and attained a maximum around 1100 K in both atmospheres. Some tube tested in air produced axially-extended long balloons, which proved not to be explained by such properties or ideas as effect of cooling on strain rate, superplasticity, geometrical plastic instability and stresses generated by surface oxide layer. A cause of the long balloon may be obtained in the anisotropy of the material structure. But even a qualitative analysis based on this property can not be made due to insufficient data of the anisotropy. (author)

  3. Comparison between traditional and small-diameter tube-assisted bronchoscopic balloon dilatation in the treatment of benign tracheal stenosis.

    Science.gov (United States)

    Li, Li-Hua; Liang, Yi-Lin; Li, Yu; Xu, Ming-Peng; Li, Wen-Tao; Liu, Guang-Nan

    2018-03-01

    To compare the safety and efficacy between using a small-diameter tube-assisted bronchoscopic balloon dilatation (BBD) and the traditional BBD in the treatment of benign tracheal stenosis. A retrospective study included 58 patients with benign tracheal stenosis from August 2009 to December 2014 was made. The patients who underwent traditional BBD were divided into group A, and who underwent a small-diameter tube-assisted BBD were divided into group B. The tracheal diameter, dyspnea index and blood gas analysis results were detected before and after BBD. Efficacy and complications were evaluated after BBD. There were significant differences in oxygen saturation (PaO 2 ) during the operations comparing with before and after operations in group A (P = .005), while there was no significant difference in group B (P = .079). The tracheal diameter obviously increased (in group A, from 4.16 ± 1.43 mm to 12.47 ± 1.41 mm, P = .000; in group B: from 4.94 ± 1.59 mm to 12.61 ± 1.41 mm, P = .000). Dyspnea index obviously decreased (group A: from 3.21 ± 0.93 to 0.50 ± 0.59, P = .000; group B: from 3.24 ± 0.89 to 0.65 ± 0.69, P = .000). The immediately cure rate in both groups was 100%. Long-term effect was significantly better in group B than that in group A (85.3% vs 59.1%, P = .021), at the end of the follow-up period. Small-diameter tube-assisted BBD obtains better safety and long-term efficacy than the traditional BBD in the treatment of benign tracheal stenosis. However, close attention should be given to the risk of the adverse effects caused by carbon dioxide retention. © 2017 John Wiley & Sons Ltd.

  4. Real-time profiling of organic trace gases in the planetary boundary layer by PTR-MS using a tethered balloon

    Directory of Open Access Journals (Sweden)

    R. Schnitzhofer

    2009-12-01

    Full Text Available A method for real-time profiling of volatile organic compounds (VOCs was developed combining the advantages of a tethered balloon as a research platform and of proton transfer reaction mass spectrometry (PTR-MS as an analytical technique for fast and highly sensitive VOC measurements. A 200 m Teflon tube was used to draw sampling air from a tethered aerodynamic balloon to the PTR-MS instrument. Positive and negative artefacts (i.e. formation and loss of VOCs in the tube were characterised in the laboratory and in the field by a set of 11 atmospherically relevant VOCs including both pure and oxygenated hydrocarbons. The only two compounds that increased or decreased when sampled through the tube were acetone (+7% and xylene (-6%. The method was successfully deployed during a winter field campaign to determine the small scale spatial and temporal patterns of air pollutants under winter inversion conditions.

  5. Unusual Complication of Suprapubic Cystostomy in a Male Patient with Tetraplegia: Traction on Foley Catheter Leading to Extrusion of Foley Balloon from Urinary Bladder and Suprapubic Urinary Fistula – Importance of Securely Anchoring Suprapubic Catheter with Adhesive Tape or BioDerm Tube Holder

    Directory of Open Access Journals (Sweden)

    Subramanian Vaidyanathan

    2007-01-01

    Full Text Available Suprapubic cystostomy is recommended to patients with neuropathic bladder to prevent complications of long-term urethral catheter drainage. We present a 50-year-old male patient with tetraplegia who had long-term urethral catheter drainage. Following flexible cystoscopy, he developed a urine leak from the right side of the scrotum. Suprapubic cystostomy was performed. After suprapubic cystostomy, the urinary fistula healed completely. A follow-up cystourethrogram confirmed an intact urethra with no leak of contrast. Six weeks later, this patient presented with a hole below the suprapubic cystostomy through which a small amount of urine was leaking. A keyhole dressing had been applied around the suprapubic catheter and the catheter was hanging loosely, thus permitting traction on the catheter, especially when the urine bag was full. Computerised tomography of the pelvis showed extrusion of the Foley balloon from the urinary bladder, but the tip of the catheter was still located within the bladder. The extruded catheter was removed and a Foley catheter was inserted, ensuring that the balloon was inflated within the urinary bladder. The suprapubic catheter was secured firmly to the anterior abdominal wall with a BioDerm Tube Holder, thus preventing any traction on the catheter or Foley balloon. The urine leak through the hole below the suprapubic cystostomy stopped and the sinus healed. This case illustrates the need to anchor the suprapubic catheter securely to the anterior abdominal wall with adhesive tape or BioDerm Tube Holder to prevent traction and consequent displacement of the catheter or Foley balloon.

  6. Artificial urethral sphincters: Value of plain film radiography in evaluation of prosthesis malfunction

    International Nuclear Information System (INIS)

    Rose, S.C.; Hansen, M.E.; Webster, G.; Dunnick, N.R.

    1987-01-01

    Case records were reviewed to determine the diagnostic efficacy of plain radiographs in the evaluation of inflatable artificial urethral sphincters. Of 84 patients with prostheses, 21 (25%) developed complications. Fluid leaks were found in 16 patients who presented with recurrent incontinence; plain radiographs demonstrated an interval decrease in balloon reservoir diameter. Kinked tubing, which was evident on plain films, caused acute urinary retention in three patients. However, plain radiographs failed to detect evidence of prosthesis erosion into the urethra in either of two patients with this complication. Although urethroscopy is needed to detect urethral erosion, plain radiographs are inexpensive and reliable in the initial evaluation of artifical sphincter malfunction

  7. GHOST balloons around Antarctica

    Science.gov (United States)

    Stearns, Charles R.

    1988-01-01

    The GHOST balloon position as a function of time data shows that the atmospheric circulation around the Antarctic Continent at the 100 mb and 200 mb levels is complex. The GHOST balloons supposedly follow the horizontal trajectory of the air at the balloon level. The position of GHOST balloon 98Q for a three month period in 1968 is shown. The balloon moved to within 2 deg of the South Pole on 1 October 1968 and then by 9 December 1968 was 35 deg from the South Pole and close to its position on 1 September 1968. The balloon generally moved from west to east but on two occasions moved in the opposite direction for a few days. The latitude of GHOST balloons 98Q and 149Z which was at 200 mb is given. Both balloons tended to get closer to the South Pole in September and October. Other GHOST balloons at the same pressure and time period may not indicate similar behavior.

  8. Preparation of Ag-containing diamond-like carbon films on the interior surface of tubes by a combined method of plasma source ion implantation and DC sputtering

    Science.gov (United States)

    Hatada, R.; Flege, S.; Bobrich, A.; Ensinger, W.; Dietz, C.; Baba, K.; Sawase, T.; Watamoto, T.; Matsutani, T.

    2014-08-01

    Adhesive diamond-like carbon (DLC) films can be prepared by plasma source ion implantation (PSII), which is also suitable for the treatment of the inner surface of a tube. Incorporation of a metal into the DLC film provides a possibility to change the characteristics of the DLC film. One source for the metal is DC sputtering. In this study PSII and DC sputtering were combined to prepare DLC films containing low concentrations of Ag on the interior surfaces of stainless steel tubes. A DLC film was deposited using a C2H4 plasma with the help of an auxiliary electrode inside of the tube. This electrode was then used as a target for the DC sputtering. A mixture of the gases Ar and C2H4 was used to sputter the silver. By changing the gas flow ratios and process time, the resulting Ag content of the films could be varied. Sample characterizations were performed by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, atomic force microscopy and Raman spectroscopy. Additionally, a ball-on-disk test was performed to investigate the tribological properties of the films. The antibacterial activity was determined using Staphylococcus aureus bacteria.

  9. Switching process between bistable positons of multiquantum flux tubes in a thin-film type I superconductor

    International Nuclear Information System (INIS)

    Parisi, J.; Huebener, R.P.; Muhlemeier, B.

    1983-01-01

    A superconducting memory device based on a bistable vortex position represents an interesting storage medium for future Josephson computers. In order to study the operational mode of such a single-flux quantum memory cell, we use as a model system multiquantum flux tubes in a thin-film type I superconductor (Pb). By employing high-resolution stroboscopic magnetooptical flux detection, we are able to globally visualize both spatial and temporal behavior of rapidly switching individual flux tubes. All experimental results agree reasonably well with theoretical model considerations of the energy balance during the elementary switching process

  10. Angry Birds realized: water balloon launcher for teaching projectile motion with drag

    International Nuclear Information System (INIS)

    Edwards, Boyd F; Sam, David D; Christiansen, Michael A; Booth, William A; Jessup, Leslie O

    2014-01-01

    A simple, collapsible design for a large water balloon slingshot launcher features a fully adjustable initial velocity vector and a balanced launch platform. The design facilitates quantitative explorations of the dependence of the balloon range and time of flight on the initial speed, launch angle, and projectile mass, in an environment where quadratic air drag is important. Presented are theory and experiments that characterize this drag, and theory and experiments that characterize the nonlinear elastic energy and hysteresis of the latex tubing used in the slingshot. The experiments can be carried out with inexpensive and readily available tools and materials. The launcher provides an engaging way to teach projectile motion and elastic energy to students of a wide variety of ages. (paper)

  11. Energy from solar balloons

    Energy Technology Data Exchange (ETDEWEB)

    Grena, Roberto [C. R. Casaccia, via Anguillarese 301, 00123 Roma (Italy)

    2010-04-15

    Solar balloons are hot air balloons in which the air is heated directly by the sun, by means of a black absorber. The lift force of a tethered solar balloon can be used to produce energy by activating a generator during the ascending motion of the balloon. The hot air is then discharged when the balloon reaches a predefined maximum height. A preliminary study is presented, along with an efficiency estimation and some considerations on possible realistic configurations. (author)

  12. Effect of crystallographic orientation on the anodic formation of nanoscale pores/tubes in TiO 2 films

    Science.gov (United States)

    Kalantar-zadeh, K.; Sadek, A. Z.; Zheng, H.; Partridge, J. G.; McCulloch, D. G.; Li, Y. X.; Yu, X. F.; Wlodarski, W.

    2009-10-01

    Self-organized nanopores and nanotubes have been produced in thin films of titanium (Ti) prepared using filtered cathodic vacuum arc (FCVA), DC- and RF-sputter deposition systems. The anodization process was performed using a neutral electrolyte containing fluoride ions with an applied potential between 2 and 20 V (for clarity the results are only presented for 5 V). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques were used to characterise the films. It was found that the crystallographic orientation of the Ti films played a significant role in determining whether pores or tubes were formed during the anodic etching process.

  13. Tracheal rupture after misplacement of Sengstaken-Blakemore tube ...

    African Journals Online (AJOL)

    The balloon were immediately deflated and a chest X-ray was performed, showing the tube in the right bronchus airway (A), so it was withdrawn. Right pneumothorax appeared and was treated with an intercostal drainage. The patient required orotracheal intubation and a CT scan was performed to show the rupture level ...

  14. Conservatism in methodologies for moderator subcooling sufficiency for fuel channel integrity upon pressure tube and calandria tube contact

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L., E-mail: LSun@nbpower.com [Point Lepreau Generating Station, Lepreau, NB, (Canada)

    2015-07-01

    During a postulated large LOCA event in CANDU reactors, the pressure tube may balloon to contact with its surrounding calandria tube to transfer heat to the moderator. To confirm the integrity of the fuel channel in this case, many experiments have been performed in the last three decades. Based on the extant database of the pressure tube/calandria tube (PT/CT) contact, an analytical methodology was developed by Canadian Nuclear Industry to determine the sufficiency of moderator subcooling for fuel channel integrity. At the same time a semi-empirical methodology with an idea of Equivalent Moderator Subcooling (EMS) was also developed to judge the sufficiency of the moderator. In this work, some discussions were made over the two methodologies on their conservatism and it is demonstrated that the analytical approach is over conservative comparing with the EMS methodology. By using the EMS methodology, it is demonstrated that applying glass-peened calandria tubes, the requirement to moderator subcooling can be reduced by 10{sup o}C from that for smooth calandria tubes. (author)

  15. Fuel-coolant interaction in a shock tube with initially-established film boiling

    International Nuclear Information System (INIS)

    Sharon, A.; Bankoff, S.G.

    1979-01-01

    A new mode of thermal interaction has been employed, in which liquid metal is melted in a crucible within a shock tube; the coolant level is raised to overflow the crucible and establish subcooled film boiling with known bulk metal temperature; and a pressure shock is then initiated. With water and lead-tin alloy an initial splash of metal may be obtained after the vapor film has collapsed, due primarily to thermal interaction, followed by a successive cycle of bubble growth and collapse. To obtain large interactions, the interfacial contact temperature must exceed the spontaneous nucleation temperature of the coolant. Other cutoff behavior is observed with respect to the initial system pressure and temperatures and with the shock pressure and rise time. Experiments with butanol and lead-tin alloy show only relatively mild interactions. Qualitative explanations are proposed for the different behaviors of the two liquids

  16. Failure maps for internally pressurized Zr-2.5% Nb pressure tubes with circumferential temperature variations

    International Nuclear Information System (INIS)

    Shewfelt, R.S.W.

    1986-01-01

    During some postulated loss-of-coolant accidents, the pressure tube temperature may rise before the internal pressure drops, causing the pressure tube to balloon. The temperature around the pressure tube circumference would likely be nonuniform, producing localized deformation that could possibly cause failure. The computer program, GRAD, was used to determine the circumferential temperature distribution required to cause an internally pressurized Zr-2.5% Nb pressure tube to fail before coming into full contact with its calandria tube. These results were used to construct failure maps. 7 refs

  17. A New Type of Captive Balloon for Vertical Meteorological Observation in Urban Area

    Science.gov (United States)

    Nakamura, M.; Sakai, S.; Ono, K.

    2010-12-01

    Many meteorological observations in urban area have been made in recent years in order to investigate the mechanism of heat island. However, there are few data of cooling process in urban area. For this purpose, high density observations in both space and time are required. Generally vertical meteorological observations can be made by towers, radars, balloons. These methods are limited by urban area conditions. Among these methods, a captive balloon is mainly used to about a hundred meter from ground in a vertical meteorological observation. Small airships called kytoons or advertising balloons, for example. Conventional balloons are, however, influenced by the wind and difficult to keep the specified position. Moreover, it can be dangerous to conduct such observations in the highly build-up area. To overcome these difficulties, we are developing a new type of captive balloon. It has a wing form to gain lift and keep its position. It is also designed small to be kept in a carport. It is made of aluminum film and polyester cloth in order to attain lightweight solution. We have tried floating a balloon like NACA4424 for several years. It was difficult to keep a wing form floating up over 100 meters from ground because internal pressure was decreased by different temperature. The design is changed in this year. The balloon that has wing form NACA4415 is similar in composition to an airplane. It has a big gasbag with airship form and two wing form. It is able to keep form of a wing by high internal pressure. We will report a plan for the balloon and instances of some observations.

  18. Experimental study of the reflooding of a constricted tube in the REFLEX rig

    International Nuclear Information System (INIS)

    Denham, M.K.; Elliott, D.F.; Britton-Jones, K.A.

    1982-08-01

    The Winfrith experimental programme in support of the PWR is focussed on fuel thermal and hydraulic performance under hypothetical accident conditions, and includes studies of reflooding heat transfer of single tubes and fuel rod clusters under simulated accident conditions, aimed at improving understanding of the processes involved and providing data for code development and validation. The work described is part of a study of the possible effects of clad ballooning on ECCS effectiveness. During a large loss of coolant accident the primary circuit will depressurise and the core will overheat. The Zircaloy fuel cladding may swell, partially blocking the coolant passages by the formation of local ''balloons''. An experiment was carried out in the REFLEX single tube reflooding rig, to study, in a simple geometry, the effect of the partial blockage of the tube on the fluid flow and heat transfer during reflooding. The blockage consisted of a tapering entrance with a flow area 60 percent less than the unconstricted tube, and a tapering exit. The flow could be viewed through windows. 66 refloods were carried out over a pressure range of 1 to 4 bar. Results of these tests are presented. (U.K.)

  19. Effect of the surface film electric resistance on eddy current detectability of surface cracks in Alloy 600 tubes

    International Nuclear Information System (INIS)

    Saario, T.; Paine, J.P.N.

    1995-01-01

    The most widely used technique for NDE of steam generator tubing is eddy current. This technique can reliably detect cracks grown in sodium hydroxide environment only at depths greater than 50% through wall. However, cracking caused by thiosulphate solutions have been detected and sized at shallower depths. The disparity has been proposed to be caused by the different electric resistance of the crack wall surface films and corrosion products in the cracks formed in different environments. This work was undertaken to clarify the role of surface film electric resistance on the disparity found in eddy current detectability of surface cracks in alloy 600 tubes. The proposed model explaining the above mentioned disparity is the following. The detectability of tightly closed cracks by the eddy current technique depends on the electric resistance of the surface films of the crack walls. The nature and resistance of the films which form on the crack walls during operation depends on the composition of the solution inside the crack and close to the crack location. During cooling down of the steam generator, because of contraction and loss of internal pressurization, the cracks are rather tightly closed so that exchange of electrolyte and thus changes in the film properties become difficult. As a result, the surface condition prevailing at high temperature is preserved. If the environment is such that the films formed on the crack walls under operating conditions have low electric resistance, eddy current technique will fail to indicate these cracks or will underestimate the size of these cracks. However, if the electric resistance of the films is high, a tightly closed crack will resemble an open crack and will be easily indicated and correctly sized by eddy current technique

  20. Clefting in pumpkin balloons

    Science.gov (United States)

    Baginski, F.; Schur, W.

    NASA's effort to develop a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, focuses on a pumpkin shape super-pressure design. It has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired stable state instead. Hoop stress considerations in the pumpkin design leads to choosing the lowest possible bulge radius, while robust deployment is favored by a large bulge radius. Some qualitative understanding of design aspects on undesired equilibria in pumpkin balloons has been obtained via small-scale balloon testing. Poorly deploying balloons have clefts, but most gores away from the cleft deploy uniformly. In this paper, we present models for pumpkin balloons with clefts. Long term success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and means for quantitative assessment of measures that prevent their occurrence. This paper attempts to determine numerical thresholds of design parameters that distinguish between properly deploying designs and improperly deploying designs by analytically investigating designs in the vicinity of criticality. Design elements which may trigger the onset undesired equilibria and remedial measures that ensure deployment are discussed.

  1. High Altitude Balloons as a Platform for Space Radiation Belt Science

    Science.gov (United States)

    Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)

    2011-12-01

    The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana

  2. Neutron image intensifier tubes

    International Nuclear Information System (INIS)

    Verat, M.; Rougeot, H.; Driard, B.

    1983-01-01

    The most frequently used techniques in neutron radiography employ a neutron converter consisting of either a scintillator or a thin metal sheet. The radiation created by the neutrons exposes a photographic film that is in contact with the converter: in the direct method, the film is exposed during the time that the object is irradiated with neutrons; in the transfer method, the film is exposed after the irradiation of the object with neutrons. In industrial non-destructive testing, when many identical objects have to be checked, these techniques have several disadvantages. Non-destructive testing systems without these disadvantages can be constructed around neutron-image intensifier tubes. A description and the operating characteristics of neutron-image intensifier tubes are given. (Auth.)

  3. Balloon sinuplasty

    OpenAIRE

    Ahmad, Zahoor

    2010-01-01

    Balloon sinuplasty is a technique in endoscopic sinus surgery that involves minimally invasive procedures to dilate the obstructed or stenosed anatomical sinus pathways. Procedure is derived from the well-recognized techinique of angioplasty. This article highlights the procedural methods with review of literature and my personal experience in balloon sinupalsty.

  4. Novel texturing method for sputtered zinc oxide films prepared at high deposition rate from ceramic tube targets

    Directory of Open Access Journals (Sweden)

    Hüpkes J.

    2011-10-01

    Full Text Available Sputtered and wet-chemically texture etched zinc oxide (ZnO films on glass substrates are regularly applied as transparent front contact in silicon based thin film solar cells. In this study, chemical wet etching in diluted hydrofluoric acid (HF and subsequently in diluted hydrochloric acid (HCl on aluminum doped zinc oxide (ZnO:Al films deposited by magnetron sputtering from ceramic tube targets at high discharge power (~10 kW/m target length is investigated. Films with thickness of around 800 nm were etched in diluted HCl acid and HF acid to achieve rough surface textures. It is found that the etching of the films in both etchants leads to different surface textures. A two steps etching process, which is especially favorable for films prepared at high deposition rate, was systematically studied. By etching first in diluted hydrofluoric acid (HF and subsequently in diluted hydrochloric acid (HCl these films are furnished with a surface texture which is characterized by craters with typical diameter of around 500 − 1000 nm. The resulting surface structure is comparable to etched films sputtered at low deposition rate, which had been demonstrated to be able to achieve high efficiencies in silicon thin film solar cells.

  5. Breast dosimetry in complementary radiotherapy with sodium pertechnetate-99m-Tc (Na99mTcO4-) balloon at neoplasia

    International Nuclear Information System (INIS)

    Lima, Carla Flavia de; Campos, Tarcisio P. R. de

    2013-01-01

    A dosimetric analyzes was performed at breast tissue in which a sodium pertechnetate- 99m Tc filled balloon was placed. An additional dose booster can be used as a complementary method to the surgical treatment in patients with breast cancer. The methodology involved the development of dosimetry in a physical phantom and a computational voxel model. Radiochromic films were calibrated providing dose versus optical density (OD) response from sample films taken at the surface of the balloon up to 10 cm far with the theoretical dose provided by MCNP modeling in water-equivalent model. A voxel model of the breast, developed at the SISCODES software, with an filled balloon inside was simulated at the MCNP code in order to generate the spatial dose distribution. Spatial dose distributions and the doses at surfaces of the breast, including those received in the chest wall, skin and lung were generated. The dosimetric results allow validating the dose in the tumor bed and adjacent health tissues. The simulations show that the application of sodium pertechnetate- 99m Tc implies high dose in the breast tissue adjacent to the tumor and preserves vital adjacent structures. As conclusion, the balloon presents itself as a viable option for the adjunctive treatment of breast cancer in patients who have appropriate indication. Irradiation with sodium pertechnetate- 99m Tc generates high doses in breast tissue and consequently in the tumor bed. Adjuvant radiation therapy in situ with sodium pertechnetate- 99m Tc balloon has low cost, availability and reduced time of treatment, decreasing the side effects of conventional radiotherapy. In progress, the dose versus OD mathematical representation will be used to identify absorbed doses at planar film placed at a breast phantom in order to generate maps of breast doses. (author)

  6. Gastric Outlet Obstruction Caused by Foley Catheter: A Complication when Substituting for Commercial Gastrostomy Tubes

    Directory of Open Access Journals (Sweden)

    Amanda B. Lewis

    2018-01-01

    Full Text Available The technique of using percutaneous endoscopic gastrostomy (PEG for long-term enteral feeding is well established and commonly used. While the technique is relatively safe and simple, the gastrostomy tube itself may deteriorate or malfunction, requiring a replacement tube. We present a case of a 58-year-old woman who was found to have gastric outlet obstruction from the inflated balloon of a Foley catheter being used as a replacement for her PEG tube. This case illustrates a potential complication of using a Foley catheter in place of commercially available gastrostomy tubes.

  7. Investigation of hot air balloon fatalities.

    Science.gov (United States)

    McConnell, T S; Smialek, J E; Capron, R G

    1985-04-01

    The rising popularity of the sport of hot air ballooning has been accompanied by several recent incidents, both in this country and other parts of the world, where mechanical defects and the improper operation of balloons have resulted in several fatalities. A study was conducted to identify the location and frequency of hot air ballooning accidents. Furthermore, the study attempted to identify those accidents that were the result of improper handling on the part of the balloon operators and those that were related to specific defects in the construction of the balloon. This paper presents a background of the sport of hot air ballooning, together with an analysis of the construction of a typical hot air balloon, pointing out the specific areas where defects may occur that could result in a potential fatal balloon crash. Specific attention is given to the two recent balloon crashes that occurred in Albuquerque, N.M., hot air balloon capital of the world, and that resulted in multiple fatalities.

  8. Cleft formation in pumpkin balloons

    Science.gov (United States)

    Baginski, Frank E.; Brakke, Kenneth A.; Schur, Willi W.

    NASA’s development of a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, centers on a pumpkin shape super-pressure design. Under certain circumstances, it has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired state instead. Success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and developing of means for the quantitative assessment of design measures that prevent the occurrence of undesired equilibrium. In this paper, we will use the concept of stability to classify cyclically symmetric equilibrium states at full inflation and pressurization. Our mathematical model for a strained equilibrium balloon, when applied to a shape that mimics the Phase IV-A balloon of Flight 517, predicts instability at float. Launched in Spring 2003, this pumpkin balloon failed to deploy properly. Observations on pumpkin shape type super-pressure balloons that date back to the 1980s suggest that within a narrowly defined design class of pumpkin shape super-pressure balloons where individual designs are fully described by the number of gores ng and by a single measure of the bulging gore shape, the designs tend to become more vulnerable with the growing number of gores and with the diminishing size of the bulge radius rB Weight efficiency considerations favor a small bulge radius, while robust deployment into the desired cyclically symmetrical configuration becomes more likely with an increased bulge radius. In an effort to quantify this dependency, we will explore the stability of a family of balloon shapes parametrized by (ng, rB) which includes a design that is very similar, but not identical, to the balloon of Flight 517. In addition, we carry out a number of simulations that demonstrate other aspects related to multiple equilibria of pumpkin balloons.

  9. Weather Balloon Ascent Rate

    Science.gov (United States)

    Denny, Mark

    2016-05-01

    The physics of a weather balloon is analyzed. The surprising aspect of the motion of these balloons is that they ascend to great altitudes (typically 35 km) at a more or less constant rate. Such behavior is not surprising near the ground—say for a helium-filled party balloon rising from street level to the top of the Empire State building—but it is unexpected for a balloon that rises to altitudes where the air is rarefied. We show from elementary physical laws why the ascent rate is approximately constant.

  10. Success of single-balloon enteroscopy in patients with surgically altered anatomy.

    Science.gov (United States)

    Kurzynske, Frank C; Romagnuolo, Joseph; Brock, Andrew S

    2015-08-01

    Single-balloon enteroscopy (SBE) was introduced in 2007 to diagnose and treat small-bowel disorders. No study to date has evaluated SBE in patients with surgically altered anatomy outside of ERCP. To evaluate the efficacy, yield, and safety of SBE in patients with surgically altered anatomy. Retrospective study. Tertiary-care academic medical center. All patients with altered surgical anatomy who underwent SBE at the Medical University of South Carolina from July 2007 to September 2013. SBE. Diagnostic yield, therapeutic yield, technical success, and adverse events. A total of 48 patients met inclusion criteria. Mean age was 56 years (77% female). Eleven patients underwent single-balloon PEG placement, 8 single-balloon ERCP, 22 non-PEG/non-ERCP anterograde SBE, and 7 retrograde SBE. Previous surgeries included Roux-en-Y gastric bypass (n=26), small-intestine resection (n=6), colon resection (n=5), Whipple procedure (n=4), choledochojejunostomy (n=3), hepaticojejunostomy (n=1), Billroth I (n=1), Billroth II (n=1), and Puestow procedure (n=1). Procedural indications were PEG tube placement (n=11), choledocholithiasis (n=2), biliary stricture (n=2), obstructive jaundice (n=1), cholangitis (n=1), ampullary mass (n=1), sphincter of Oddi dysfunction (n=1), anemia and/or bleeding (n=15), abdominal pain (n=9), radiologic evidence of obstruction (n=3), and Peutz-Jeghers syndrome (n=2). The technical success rate was 73% in single-balloon PEG placement, 88% in single-balloon ERCP, 82% in other anterograde SBEs, and 86% in retrograde SBEs. No intraprocedural or postprocedural adverse events were observed. Single center, retrospective study. SBE is safe and effective in patients with surgically altered anatomy. Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  11. Treatment of multiple-level tracheobronchial stenosis secondary to endobronchial tuberculosis using bronchoscopic balloon dilatation with topical mitomycin-C.

    Science.gov (United States)

    Faisal, Mohamed; Harun, Hafaruzi; Hassan, Tidi M; Ban, Andrea Y L; Chotirmall, Sanjay H; Abdul Rahaman, Jamalul Azizi

    2016-04-14

    Tracheobronchial stenosis is a known complication of endobronchial tuberculosis. Despite antituberculous and steroid therapy, the development of bronchial stenosis is usually irreversible and requires airway patency to be restored by either bronchoscopic or surgical interventions. We report the use of balloon dilatation and topical mitomycin-C to successful restore airway patency. We present a 24-year old lady with previous pulmonary tuberculosis and laryngeal tuberculosis in 2007 and 2013 respectively who presented with worsening dyspnoea and stridor. She had total left lung collapse with stenosis of both the upper trachea and left main bronchus. She underwent successful bronchoscopic balloon and manual rigid tube dilatation with topical mitomycin-C application over the stenotic tracheal segment. A second bronchoscopic intervention was performed after 20 weeks for the left main bronchus stenosis with serial balloon dilatation and topical mitomycin-C application. These interventions led to significant clinical and radiographic improvements. This case highlights that balloon dilatation and topical mitomycin-C application should be considered in selected patients with tracheobronchial stenosis following endobronchial tuberculosis, avoiding airway stenting and invasive surgical intervention.

  12. Anisotropic deformation of Zr–2.5Nb pressure tube material at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fong, R.W.L., E-mail: fongr@aecl.ca [Fuel and Fuel Channel Safety Branch, Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario (Canada)

    2013-09-15

    Zr–2.5Nb alloy is used for the pressure tubes in CANDU® reactor fuel channels. In reactor, the pressure tube normally operates at 300 °C and experiences a primary coolant fluid internal pressure of approximately 10 MPa. Manufacturing and processing procedures generate an anisotropic state in the pressure tube which makes the tube stronger in the hoop (transverse) direction than in the axial (longitudinal) direction. This anisotropy condition is present for temperatures less than 500 °C. During postulated accident conditions where the material temperature could reach 1000 °C, it might be assumed that the high temperature and subsequent phase change would reduce the inherent anisotropy, and thus affect the deformation behaviour (ballooning) of the pressure tube. From constant-load, rapid-temperature-ramp, uniaxial deformation tests, the deformation rate in the longitudinal direction of the tube behaves differently than the deformation rate in the transverse direction of the tube. This anisotropic mechanical behaviour appears to persist at temperatures up to 1000 °C. This paper presents the results of high-temperature deformation tests using longitudinal and transverse specimens taken from as-received Zr–2.5Nb pressure tubes. It is shown that the anisotropic deformation behaviour observed at high temperatures is largely due to the stable crystallographic texture of the α-Zr phase constituent in the material that was previously observed by neutron diffraction measurements during heating at temperatures up to 1050 °C. The deformation behaviour is also influenced by the phase transformation occurring at high temperatures during heating. The effects of texture and phase transformation on the anisotropic deformation of as-received Zr–2.5Nb pressure tube material are discussed in the context of the tube ballooning behaviour. Because of the high temperatures in postulated accident scenarios, any irradiation damage will be annealed from the pressure tube material

  13. Measuring a ballooning gap size of irradiated fuels by the indirect method of neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Cheul Muu; Lee, Seung Wook; Lim, In Cheol; Hong, Kwang Pyo; Kim, Young Jin

    2003-11-01

    An indirect method of a neutron radiography is mobilized for inspecting post irradiated nuclear fuel pins, UO{sub 2}Si clad with Al, which swallowing, crack, ballooning, plug gap, thinning and so on, occurred. The system of an indirect method consists of a cask of carrying fuel pins, Dy converter, linear controller of converter, camera of monitoring fuel cassette. The nuclear sample pins of RISO and KAERI are exposed for 25 min. at the first exposure room, 10{sup 7} cm{sup 2}/sec flux. An activation image formed in the Dy foil is subsequently transferred in a dark room for a more than 8 hours to SR film using the decay radiation. Due to L/D ratio an unsharpness of 9.82{approx}14{mu}m and a magnification of 1.0003 are given. After digitizing an image of SR film, the ballooning gap of plug is discernible by H/V filter of image processing.

  14. Measuring a ballooning gap size of irradiated fuels by the indirect method of neutron radiography

    International Nuclear Information System (INIS)

    Sim, Cheul Muu; Lee, Seung Wook; Lim, In Cheol; Hong, Kwang Pyo; Kim, Young Jin

    2003-11-01

    An indirect method of a neutron radiography is mobilized for inspecting post irradiated nuclear fuel pins, UO 2 Si clad with Al, which swallowing, crack, ballooning, plug gap, thinning and so on, occurred. The system of an indirect method consists of a cask of carrying fuel pins, Dy converter, linear controller of converter, camera of monitoring fuel cassette. The nuclear sample pins of RISO and KAERI are exposed for 25 min. at the first exposure room, 10 7 cm 2 /sec flux. An activation image formed in the Dy foil is subsequently transferred in a dark room for a more than 8 hours to SR film using the decay radiation. Due to L/D ratio an unsharpness of 9.82∼14μm and a magnification of 1.0003 are given. After digitizing an image of SR film, the ballooning gap of plug is discernible by H/V filter of image processing

  15. Analytical solution of velocity for ammonia-water horizontal falling-film flow

    International Nuclear Information System (INIS)

    Zhang, Qiang; Gao, Yide

    2016-01-01

    Highlights: • We built a new falling-film flow model that analyzed the film flow characteristics. • We have obtained a new formula of film thickness over the horizontal tube. • We derived analysis solution to analyze the effect of inertial force to velocity in the entrance region of liquid film. • It described the characters of the ammonia-waterfalling-film film over the horizontal tube. • It is good for falling-film absorption, generation and evaporation to optimizing the design parameters and further improving the capabilities. - Abstract: A new horizontal tube falling film velocity model was built and calculated to analyze the problem of film flow conditions. This model also analyzed the film thickness distribution in horizontal tube falling film flow and considered the effect of the inertial force on velocity. The film thickness and velocity profile can be obtained based on the principle of linear superposition, a method of separation of variables that introduces the effect of variable inertial force on the velocity profile in the process of falling-film absorption. The film flow condition and the film thickness distribution at different fluid Reynolds numbers (Re) and tube diameters were calculated and compared with the results of the Crank–Nicolson numerical solution under the same conditions. The results show that the film flow condition out of a horizontal tube and that the film thickness increases with the fluid Re. At a specific Re and suitable tube diameter, the horizontal tube reaches a more uniform film. Finally, the analysis results have similar trend with the experimental and numerical predicted data in literature.

  16. Phys FilmMakers: teaching science students how to make YouTube-style videos

    Science.gov (United States)

    Coates, Rebecca L.; Kuhai, Alvina; Turlej, Laurence Z. J.; Rivlin, Tom; McKemmish, Laura K.

    2018-01-01

    Phys FilmMakers (PFM) is a new type of course in which a science expert and science communicator partner teach physics students how to make YouTube-style videos on cutting-edge scientific research within the university department. Here, we describe this new course, outline its key components and provide recommendations for others considering implementing a similar FilmMakers-style course using feedback from course tutors and students. We discuss successful and less successful teaching techniques as well as use our experience to identify areas that science students in particular often have difficulties: finding an interesting ‘hook’ for the video, imagining creative B-roll and making a succinct video by removing extraneous (though usually correct and often interesting) material. The course has two major components: workshop sessions in which students learn the key elements of film-making and independent video production where PFM students partner with senior PhD or post-doc researchers to produce a video on their research. This partnership with the department means that the videos produced serve not only as interesting ‘edutainment’ to encourage teenagers and young adults into Science, Technology, Engineering and Maths subjects, but also provide valuable outreach for the academic department.

  17. Study on the influence of X-ray tube spectral distribution on the analysis of bulk samples and thin films: Fundamental parameters method and theoretical coefficient algorithms

    International Nuclear Information System (INIS)

    Sitko, Rafal

    2008-01-01

    Knowledge of X-ray tube spectral distribution is necessary in theoretical methods of matrix correction, i.e. in both fundamental parameter (FP) methods and theoretical influence coefficient algorithms. Thus, the influence of X-ray tube distribution on the accuracy of the analysis of thin films and bulk samples is presented. The calculations are performed using experimental X-ray tube spectra taken from the literature and theoretical X-ray tube spectra evaluated by three different algorithms proposed by Pella et al. (X-Ray Spectrom. 14 (1985) 125-135), Ebel (X-Ray Spectrom. 28 (1999) 255-266), and Finkelshtein and Pavlova (X-Ray Spectrom. 28 (1999) 27-32). In this study, Fe-Cr-Ni system is selected as an example and the calculations are performed for X-ray tubes commonly applied in X-ray fluorescence analysis (XRF), i.e., Cr, Mo, Rh and W. The influence of X-ray tube spectra on FP analysis is evaluated when quantification is performed using various types of calibration samples. FP analysis of bulk samples is performed using pure-element bulk standards and multielement bulk standards similar to the analyzed material, whereas for FP analysis of thin films, the bulk and thin pure-element standards are used. For the evaluation of the influence of X-ray tube spectra on XRF analysis performed by theoretical influence coefficient methods, two algorithms for bulk samples are selected, i.e. Claisse-Quintin (Can. Spectrosc. 12 (1967) 129-134) and COLA algorithms (G.R. Lachance, Paper Presented at the International Conference on Industrial Inorganic Elemental Analysis, Metz, France, June 3, 1981) and two algorithms (constant and linear coefficients) for thin films recently proposed by Sitko (X-Ray Spectrom. 37 (2008) 265-272)

  18. Ballooning for Biologists: Mission Essentials for Flying Experiments on Large NASA Balloons

    Science.gov (United States)

    Smith, David J.; Sowa, Marianne

    2017-01-01

    Despite centuries of scientific balloon flights, only a handful of experiments have produced biologically-relevant results. Yet unlike orbital spaceflight, it is much faster and cheaper to conduct biology research with balloons, sending specimens to the near space environment of Earths stratosphere. Samples can be loaded the morning of a launch and sometimes returned to the laboratory within one day after flying. The National Aeronautics and Space Administration (NASA) flies large, unmanned scientific balloons from all over the globe, with missions ranging from hours to weeks in duration. A payload in the middle portion of the stratosphere (approx. 35 km above sea level) will be exposed to an environment similar to the surface of Mars: temperatures generally around -36 C, atmospheric pressure at a thin 1 kPa, relative humidity levels <1%, and a harsh illumination of ultraviolet (UV) and cosmic radiation levels (about 100 W/sq m and 0.1 mGy/d, respectively) that can be obtained nowhere else on the surface of the Earth, including environmental chambers and particle accelerator facilities attempting to simulate space radiation effects. Considering the operational advantages of ballooning and the fidelity of space-like stressors in the stratosphere, researchers in aerobiology, astrobiology, and space biology can benefit from balloon flight experiments as an intermediary step on the extraterrestrial continuum (ground, low Earth orbit, and deep space studies). Our presentation targets biologists with no background or experience in scientific ballooning. We will provide an overview of large balloon operations, biology topics that can be uniquely addressed in the stratosphere, and a roadmap for developing payloads to fly with NASA.

  19. 21 CFR 874.4100 - Epistaxis balloon.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Epistaxis balloon. 874.4100 Section 874.4100 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4100 Epistaxis balloon. (a) Identification. An epistaxis balloon is a device consisting of an inflatable balloon intended to control internal...

  20. Petrous internal carotid aneurysm causing epistaxis: Balloon embolization with preservation of the parent vessel

    Energy Technology Data Exchange (ETDEWEB)

    Willinsky, R.; Lasjaunias, P.; Pruvost, P.; Boucherat, M.

    1987-11-01

    A patient with severe, recurrent posterior epistaxis was shown at angiography to have an aneurysm of the petrous portion of the internal carotid artery (ICA). Since childhood, she had had pain related to eustachian tube blockage by the aneurysm. An endovascular balloon embolization of the aneurysm was successful with preservation of the parent artery. The treatment resulted in resolution of the symptoms. The report confirms the usefulness of an angiographic protocol in evaluating vascular problems.

  1. Nonlinear optical properties of polyaniline and poly (o-toluidine) composite thin films with multi walled carbon nano tubes

    Energy Technology Data Exchange (ETDEWEB)

    Nagaraja, K.K. [National University of Science and Technology “MISiS”, Leninskii pr. 4, Moscow 119049 (Russian Federation); Pramodini, S. [Department of Physics, School of Engineering and Technology, Jain University, Jakkasandra Post, Bengaluru 5621112, Karnataka (India); Poornesh, P., E-mail: poorneshp@gmail.com [Nonlinear Optics Research Laboratory, Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576 104, Karnataka (India); Telenkov, M.P. [National University of Science and Technology “MISiS”, Leninskii pr. 4, Moscow 119049 (Russian Federation); Kityk, I.V. [Electrical Engineering Department, Czestochowa University Technology, Czestochowa (Poland)

    2017-05-01

    We report the improved third-order nonlinear optical properties of polyaniline and poly (o-toluidine) with different doping concentrations of multi walled carbon nano tube (MWCNTs) composite thin films investigated using z-scan technique and continuous wave He–Ne laser at 633 nm wavelength was used as source of excitation. Thin films were prepared by spin coating technique on glass substrate. The structural properties of the composite films were analysed by X-ray diffraction studies and the characteristic peaks corresponding to MWCNTs and polymers have been observed. The surface morphology of the deposited films was analysed using scanning electron microscopy and it confirms that the polymer in the composites has been coated on the MWCNTs homogeneously. The z-scan results reveal that the films exhibit reverse saturable absorption and self-defocusing nonlinearity. The third-order nonlinear optical susceptibility χ{sup (3)} is found to be of the order of 10{sup −3} esu. Also, optical power limiting and clamping experiment was performed. The clamping values increases with increase in concentration and the lowest clamping observed for composite films are 1 mW and 0.7 mW.

  2. Launching Garbage-Bag Balloons.

    Science.gov (United States)

    Kim, Hy

    1997-01-01

    Presents a modification of a procedure for making and launching hot air balloons made out of garbage bags. Student instructions for balloon construction, launching instructions, and scale diagrams are included. (DDR)

  3. Numerical and experimental simulation of the mechanical behavior of super-pressure balloon subsystems

    Science.gov (United States)

    Siguier, J.-M.; Guigue, P.; Karama, M.; Mistou, S.; Dalverny, O.; Granier, S.

    2004-01-01

    Long duration super-pressure balloons constitute a great challenge in scientific ballooning. For any type of balloons (spherical, pumpkin, …), it is necessary to have a good knowledge of the mechanical behavior of envelopes regarding the level and the lifetime of the flight. For this reason CNES, ONERA and ENIT are carrying out a research program of modelization and experimentation in order to predict the envelope shape of a balloon in different conditions of temperature and differential pressure. This study was conducted in two parts. During the first one, we defined, with parameters obtained from unidirectional tests, the mechanical laws (elasticity, plasticity and viscosity properties of polymers) of materials involved in the envelope. These laws are introduced in a finite element code, which predicts the stress and strain status of a complex envelope structure. During the second one, we developed an experimental set-up to measure the 3D strain on a balloon subsystem, which includes envelope, assemblies and apex parts, in real flight conditions. This facility, called NIRVANA, is a 1 m 3 vacuum chamber with cooled screens equipped with a stereoscopic CCD measurement system. A 1.5 m diameter sample can be tested under differential pressure, regulated temperature (from +20 to -120 °C) and a load (up to 6 tonnes) applied on tendons. This paper presents the first results obtained from the modelizations and measurements done on an envelope sample submitted to axisymmetrical stress due to the differential pressure. This sample consists of a 50 μm multilayer polymer film with an assembly, used in 10 m diameter STRATEOLE super-pressure balloons. The modelization gives results in good accordance with the experiments and will enable us to follow this work with cold conditions, time dependence (creeping) and more complex structures.

  4. JACEE long duration balloon flights

    International Nuclear Information System (INIS)

    Burnett, T.; Iwai, J.; Lord, J.J.; Strausz, S.; Wilkes, R.J.; Dake, S.; Oda, H.; Miyamura, O.; Fuki, M.; Jones, W.V.; Gregory, J.; Hayashi, T.; Takahashi, U.; Tominaga, Y.; Wefel, J.P.; Fountain, W.; Derrickson, J.; Parnell, T.A.; Roberts, E.; Tabuki, T.; Watts, J.W.

    1989-01-01

    JACEE balloon-borne emulsion chamber detectors are used to observe the spectra and interactions of cosmic ray protons and nuclei in the energy range 1-100A TeV. Experience with long duration mid-latitude balloon flights and characteristics of the detector system that make it ideal for planned Antarctic balloon flights are discussed. 5 refs., 2 figs

  5. Fasting and meal-suppressed ghrelin levels before and after intragastric balloons and balloon-induced weight loss

    NARCIS (Netherlands)

    Mathus-Vliegen, E. M. H.; Eichenberger, R. I.

    2014-01-01

    Intragastric balloons may be an option for obese patients with weight loss failure. Its mode of action remains enigmatic. We hypothesised depressed fasting ghrelin concentrations and enhanced meal suppression of ghrelin secretion by the gastric fundus through balloon contact and balloon-induced

  6. Technologies developed by CNES balloon team

    Science.gov (United States)

    Sosa-Sesma, Sergio; Charbonnier, Jean-Marc; Deramecourt, Arnaud

    CNES balloon team develops and operates all the components of this kind of vehicle: it means envelope and gondola. This abstract will point out only developments done for envelope. Nowadays CNES offers to scientists four types of envelops that cover a large range of mission demands. These envelops are: 1. Zero pressure balloons: Size going from 3,000m3 to 600,000m3, this kind of envelop is ideal for short duration flights (a few hours) but if we use an intelligent management of ballast consumption and if we chose the best launch site, it is possible to perform medium duration flights (10/20 days depending on the ballast on board). Flight train mass starts at 50kg for small balloons and reach 1000kg for larger ones. Zero pressure balloons are inflated with helium gas. 2. Super pressure balloons: Diameter going from 2.5m to 12m, this kind of envelop is ideal for long duration flights (1 to 6 months). Flight train is inside the envelop for small balloons, it means 2.5 diameter meters which is usually called BPCL (Super pressure balloon for Earth boundary layer) and it is about 3kg of mass. Larger ones could lift external flight trains about 50kg of mass. Super pressure balloons are inflated with helium gas. 3. MIR balloons: Size going from 36,000m3 to 46,000m3. Ceiling is reach with helium gas but after three days helium is no longer present inside and lift force is produced by difference of temperature between air inside and air of atmosphere. Flight trains must not be over 50kg. 4. Aero Clipper balloons: A concept to correlate measurements done in oceans and in nearest layers of atmosphere simultaneously. Flight train is made by a "fish" that drags inside water and an atmospheric gondola few meters above "fish", both pushed by a balloon which profits of the wind force. Materials used for construction and assembling depend on balloon type; they are usually made of polyester or polyethylene. Thickness varies from 12 micrometers to 120 micrometers. Balloon assembling

  7. Method for decontaminating stainless cladding tubes

    International Nuclear Information System (INIS)

    Komatsu, Fumiaki.

    1986-01-01

    Purpose: To form an oxide film over the surface of stainless cladding tubes and to efficiently remove radioactive materials from the steel surface together with the oxide layer by the use of an acid water solution. Method: After the removal of water from cladding tubes that have passed through the re-processing process, an oxide film is formed on the surface of the cladding tubes by heating over 400 deg C in an oxidizing atmosphere and thereafter washed again in an acid water solution. When the cladding tubes are thus oxidized once, the stainless base metal itself is oxidized, an oxide layer of several 10 μm or more being formed thereon. In consequence, since the oxide layer is far inferior in corrosion resistance to stainless metals, a pickling liquid easily penetrates into the stainless metal through the oxide layer, thereby remarkably promoting the peeling of the layer from the base metal surface and also improving the residual radioactive material removing efficiency together. (Takahashi, M.)

  8. Characterization of a pneumatic balloon actuator for use in refreshable Braille displays.

    Science.gov (United States)

    Fan, Richard E; Feinman, Adam M; Wottawa, Christopher; King, Chih-Hung; Franco, Miguel L; Dutson, Erik P; Grundfest, Warren S; Culjat, Martin O

    2009-01-01

    Many existing refreshable Braille display technologies are costly or lack robust performance. A process has been developed to fabricate consistent and reliable pneumatic balloon actuators at low material cost, using a novel manufacturing process. This technique has been adapted for use in refreshable Braille displays that feature low power consumption, ease of manufacture and small form factor. A prototype refreshable cell, conforming to American Braille standards, was developed and tested. The cell was fabricated from molded PDMS to form balloon actuators with a spin-coated silicone film, and fast pneumatic driving elements and an electronic control system were developed to drive the Braille dots. Perceptual testing was performed to determine the feasibility of the approach using a single blind human subject. The subject was able to detect randomized Braille letters rapidly generated by the actuator with 100% character detection accuracy.

  9. Petrous internal carotid aneurysm causing epistaxis: Balloon embolization with preservation of the parent vessel

    International Nuclear Information System (INIS)

    Willinsky, R.; Lasjaunias, P.; Pruvost, P.

    1987-01-01

    A patient with severe, recurrent posterior epistaxis was shown at angiography to have an aneurysm of the petrous portion of the internal carotid artery (ICA). Since childhood, she had had pain related to eustachian tube blockage by the aneurysm. An endovascular balloon embolization of the aneurysm was successful with preservation of the parent artery. The treatment resulted in resolution of the symptoms. The report confirms the usefulness of an angiographic protocol in evaluating vascular problems. (orig.)

  10. Two Tethered Balloon Systems

    Science.gov (United States)

    Youngbluth, Otto; Owens, Thomas L.; Storey, Richard W.

    1990-01-01

    Systems take meteorological measurements for variety of research projects. Report describes work done by NASA Langley Research Center in atmospheric research using tethered balloon systems composed of commercially available equipment. Two separate tethered balloon systems described in report have payloads and configurations tailored to requirements of specific projects. Each system capable of measuring atmospheric parameter or species in situ and then telemetering this data in real time to ground station. Meteorological data and concentration of ozone typically measured. Indicates instrumented tethered balloon systems have distinct advantages over other systems for gathering data on troposphere.

  11. Recent Developments in Scientific Research Ballooning

    International Nuclear Information System (INIS)

    Jones, W. Vernon

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Balloon Program is committed to meeting the need for extended duration scientific investigations by providing advanced balloon vehicles and support systems. A sea change in ballooning capability occurred with the inauguration of 8 - 20 day flights around Antarctica in the early 1990's. The attainment of 28-31 day flights and a record-breaking 42-day flight in, respectively, two and three circumnavigations of the continent has greatly increased the expectations of the scientific users. A new super-pressure balloon is currently under development for future flights of 60-100 days at any latitude, which would bring another sea change in scientific research ballooning

  12. Pioneering Space Research with Balloons

    Science.gov (United States)

    Jones, W. V.

    NASA s Scientific Ballooning Planning Team has concluded that ballooning enables significant scientific discoveries while providing test beds for space instruments and training for young scientists Circumpolar flights around Antarctica have been spectacularly successful with fight durations up to 42 days Demand for participation in this Long-Duration Balloon LDB program a partnership with the U S National Science Foundation Office of Polar Programs is greater than the current capacity of two flights per campaign Given appropriate international agreements LDB flights in the Northern Hemisphere would be competitive with Antarctic flights and super-pressure balloons would allow comparable flights at any latitude The Balloon Planning Team made several recommendations for LDB flights provide a reliable funding source for sophisticated payloads extend the Antarctic capability to three flights per year and develop a comparable capability in the Arctic provide aircraft for intact-payload recovery develop a modest trajectory modification capability to enable longer flights and enhance super-pressure balloons to carry 1-ton payloads to 38 km Implementation of these recommendations would facilitate frequent access to near-space for cutting-edge research and technology development for a wide range of investigations

  13. Development of a New Coaxial Balloon Catheter System for Balloon-Occluded Retrograde Transvenous Obliteration (B-RTO)

    International Nuclear Information System (INIS)

    Tanoue, Shuichi; Kiyosue, Hiro; Matsumoto, Shunro; Hori, Yuzo; Okahara, Mika; Kashiwagi, Junji; Mori, Hiromu

    2006-01-01

    Purpose. To develop a new coaxial balloon catheter system and evaluate its clinical feasibility for balloon-occluded retrograde transvenous obliteration (B-RTO). Methods. A coaxial balloon catheter system was constructed with 9 Fr guiding balloon catheter and 5 Fr balloon catheter. A 5 Fr catheter has a high flexibility and can be coaxially inserted into the guiding catheter in advance. The catheter balloons are made of natural rubber and can be inflated to 2 cm (guiding) and 1 cm (5 Fr) maximum diameter. Between July 2003 and April 2005, 8 consecutive patients (6 men, 2 women; age range 33-72 years, mean age 55.5 years) underwent B-RTO using the balloon catheter system. Five percent ethanolamine oleate iopamidol (EOI) was used as sclerosing agent. The procedures, including maneuverability of the catheter, amount of injected sclerosing agent, necessity for coil embolization of collateral draining veins, and initial clinical results, were evaluated retrospectively. The occlusion rate was assessed by postcontrast CT within 2 weeks after B-RTO. Results. The balloon catheter could be advanced into the proximal potion of the gastrorenal shunt beyond the collateral draining vein in all cases. The amount of injected EOI ranged from 3 to 34 ml. Coil embolization of the collateral draining vein was required in 2 cases. Complete obliteration of gastric varices on initial follow-up CT was obtained in 7 cases. The remaining case required re-treatment that resulted in complete obstruction of the varices after the second B-RTO. No procedure-related complications were observed. Conclusion. B-RTO using the new coaxial balloon catheter is feasible. Gastric varices can be treated more simply by using this catheter system

  14. Complications of balloon packing in epistaxis

    NARCIS (Netherlands)

    Vermeeren, Lenka; Derks, Wynia; Fokkens, Wytske; Menger, Dirk Jan

    2015-01-01

    Although balloon packing appears to be efficient to control epistaxis, severe local complications can occur. We describe four patients with local lesions after balloon packing. Prolonged balloon packing can cause damage to nasal mucosa, septum and alar skin (nasal mucosa, the cartilaginous skeleton

  15. Prediction of liquid film dryout in two-phase annular-mist flow in a uniformly heated narrow tube development of analytical method under BWR conditions

    International Nuclear Information System (INIS)

    Utsuno, Hideaki; Kaminaga, Fumito

    1998-01-01

    A method was developed based on the conservation lows to predict critical heat flux (CHF) causing liquid film dryout in two-phase annular-mist flow in a uniformly heated narrow tube under BWR conditions. The applicable range of the method is within the pressure of 3-9 MPa, mass flux of 500-2,000 kg/m 2 ·s, heat flux of 0.33-2.0 MW/m 2 and boiling length-to-tube diameter ratio of 200-800. The two-phase annular-mist flow was modeled with the three-fluid streams with liquid film, entrained droplets and gas flow. Governing equations of the method are mass continuity and energy conservation on the three-fluid streams. Constitutive equations on the mass transfer which consist of the entrainment fraction at equilibrium and the mass transfer coefficient were newly proposed in this study. Confirmation of the present method were performed in comparison with the available film flow measurements and various CHF data from experiments in uniformly heated narrow tubes under high pressure steam-water conditions. In the heat flux range (q'' 2 ) practical for a BWR, agreement of the present method with CHF data was obtained as, (Averaged ratio) ± (Standard deviation) = 0.984 ± 0.077, which was shown to be the same or better agreement than the widely-used CHF correlations. (author)

  16. Superior corrosion resistance properties of TiN-based coatings on Zircaloy tubes in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Khatkhatay, Fauzia [Department of Electrical and Computer Engineering, Texas A and M University, College Station, TX 77843-3128 (United States); Jiao, Liang [Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843-3003 (United States); Jian, Jie [Department of Electrical and Computer Engineering, Texas A and M University, College Station, TX 77843-3128 (United States); Zhang, Wenrui [Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843-3003 (United States); Jiao, Zhijie [Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104 (United States); Gan, Jian; Zhang, Hongbin [Idaho National Laboratory, Idaho Falls, ID 83415-6188 (United States); Zhang, Xinghang [Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843-3003 (United States); Department of Mechanical Engineering, Texas A and M University, College Station, TX 77843-3123 (United States); Wang, Haiyan, E-mail: wangh@ece.tamu.edu [Department of Electrical and Computer Engineering, Texas A and M University, College Station, TX 77843-3128 (United States); Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843-3003 (United States)

    2014-08-01

    Thin films of TiN and Ti{sub 0.35}Al{sub 0.65}N nanocomposite were deposited on polished Zircaloy-4 tubes. After exposure to supercritical water for 48 h, the coated tubes are remarkably intact, while the bare uncoated tube shows severe oxidation and breakaway corrosion. X-ray diffraction patterns, secondary electron images, backscattered electron images, and energy dispersive X-ray spectroscopy data from the tube surfaces and cross-sections show that a protective oxide, formed on the film surface, effectively prevents further oxidation and corrosion to the Zircaloy-4 tubes. This result demonstrates the effectiveness of thin film ceramics as protective coatings under extreme environments.

  17. Modelling Hot Air Balloons.

    Science.gov (United States)

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  18. Solar research with stratospheric balloons

    Science.gov (United States)

    Vázquez, Manuel; Wittmann, Axel D.

    Balloons, driven by hot air or some gas lighter than air, were the first artificial machines able to lift payloads (including humans) from the ground. After some pioneering flights the study of the physical properties of the terrestrial atmosphere constituted the first scientific target. A bit later astronomers realized that the turbulence of the atmospheric layers above their ground-based telescopes deteriorated the image quality, and that balloons were an appropriate means to overcome, total or partially, this problem. Some of the most highly-resolved photographs and spectrograms of the sun during the 20th century were actually obtained by balloon-borne telescopes from the stratosphere. Some more recent projects of solar balloon astronomy will also be described.

  19. Abdominal cavity balloon for preventing a patient's bleeding

    OpenAIRE

    Naber, E.E.H.; Rutten, H.J.T.; Jakimowicz, J.J.; Goossens, R.H.M.; Moes, C.C.M.; Buzink, S.N.

    2007-01-01

    The invention relates to an abdominal cavity balloon for preventing a haemorrhage in a patient's pelvic region, comprising an inflatable balloon, wherein the balloon is pro vided with a smooth surface and with a strip that is flex- urally stiff and formed to follow the balloon's shape for po sitioning the balloon.

  20. Calculating Payload for a Tethered Balloon System

    Science.gov (United States)

    Charles D. Tangren

    1980-01-01

    A graph method to calculate payload for a tethered balloon system, with the supporting helium lift and payload equations. is described. The balloon system is designed to collect emissions data during the convective-lift and no-convective-lift phases of a forest fire. A description of the balloon system and a list of factors affecting balloon selection are included....

  1. Room for Women : YouTube film

    NARCIS (Netherlands)

    CWI CWI

    2010-01-01

    htmlabstractThe Centrum Wiskunde & Informatica (CWI) signed the "Talent to the Top" Charter. CWI is highlighting the objective of this national task force to enable more women to flow to senior talent positions. To illustrate this CWI created the short film 'Room for Women'. In this film four female

  2. Wear behavior of 2-1/4 Cr-1Mo tubing against alloy 718 tube-support material in sodium-cooled steam generators

    International Nuclear Information System (INIS)

    Wilson, W.L.

    1983-05-01

    A series of prototypic steam generator 2-1/4 Cr-1 Mo tube/alloy 718 tube support plate wear tests were conducted in direct support of the Westinghouse Nuclear Components Division -- Breeder Reactor Components Project Large Scale steam Generator design. The initial objective was to verify the acceptable wear behavior of softer, ''over-aged'' alloy 718 support plate material. For all interfaces under all test conditions, resultant wear damage was adhesive in nature with varying amounts of 2-1/4 Cr-1 Mo tube material being adhesively transferred to the alloy 718 tube supports. Maximum tube wear depths exceeded the initially established design allowable limit of 127 μm (.005 in.) at 17 of the 18 interfaces tested. A decrease in contact stresses produced acceptable tube wear depths below a readjusted maximum design allowable value of 381 μm (.015 in.). Additional conservatisms associated with the simulation of a 40-year lifetime of rubbing in a one-week laboratory test provided further confidence that the 381 μm maximum tube wear allowance would not be exceeded in service. Softer, ''over-aged'' alloy 718 material was found to produce slightly less wear damage on 2-1/4 Cr-1 Mo tubing than fully age hardened material. Also, air formed oxide films on the alloy 718 reduced initial tube wear and delayed the onset of adhesive surface damage. However, at high surface stress levels, these films were not sufficiently stable to provide adequate long term protection from adhesive wear. The results of the present work and those of previous test programs suggest that the successful in-sodium tribological performance of 2-1/4 Cr-1 Mo/alloy 718 rubbing couples is dependent upon the presence of lubricative surface films, such as oxides and/or surface reaction or deposition products. 11 refs., 13 figs., 4 tabs

  3. On-line correction of beam portals in the treatment of prostate cancer using an endorectal balloon device

    International Nuclear Information System (INIS)

    Ciernik, Ilja F.; Baumert, Brigitta G.; Egli, Peter; Glanzmann, Christoph; Luetolf, Urs M.

    2002-01-01

    Background: Reproducible target volume assessment is required in order to optimize portal field margins in the treatment of prostate cancer. The benefits of an endorectal balloon on target volume assessment remain unclear. Material and methods: Nine patients were treated with a daily placed air filled rectal balloon. Portal films and computer-associated tomography during the treatment were used to determine the position of the structures of interest. Comparative planning with or without a balloon was performed in order to determine rectal wall exposure to radiation. Results: The range of movements during treatment predicting the position of the prostate in relation to the symphysis was 0.05-0.59 cm in the lateral direction, 0.27-2.2 cm in the antero-posterior direction, and 0.33-1.8 cm in the crano-caudal direction, as compared to the position of the prostate predicted by the balloon ranging from 0.18 to 0.76 cm in the lateral direction, 0.22-1.68 cm in the antero-posterior direction, and 0.58-2.99 cm in the crano-caudal direction. Planning target volumes (PTV) margins as defined by the position of the balloon were 10 mm in the antero-posterior direction, 6 mm in the lateral direction, and 16 mm in the crano-caudal direction. The volume of rectal wall exposed to radiation was reduced from 40 (±12%) to 25% (±19%) with an endorectal balloon (P<0.05). Conclusions: Daily online correction with portal vision for external beam set-up is improved by an endorectal balloon device, leading to improved PTV margins and reduced radiation exposure of the rectal wall

  4. Ballooning stable high beta tokamak equilibria

    International Nuclear Information System (INIS)

    Tuda, Takashi; Azumi, Masafumi; Kurita, Gen-ichi; Takizuka, Tomonori; Takeda, Tatsuoki

    1981-04-01

    The second stable regime of ballooning modes is numerically studied by using the two-dimensional tokamak transport code with the ballooning stability code. Using the simple FCT heating scheme, we find that the plasma can locally enter this second stable regime. And we obtained equilibria with fairly high beta (β -- 23%) stable against ballooning modes in a whole plasma region, by taking into account of finite thermal diffusion due to unstable ballooning modes. These results show that a tokamak fusion reactor can operate in a high beta state, which is economically favourable. (author)

  5. Scientific ballooning. Proceedings of the symposium on the scientific use of balloons and related technical problems, Innsbruck, Austria, May 29-June 10, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Riedler, W

    1979-01-01

    The book includes works on operational and technical aspects of balloon launching I and II, cooperative balloon campaigns, and new developments in scientific use of balloons. The specific topics discussed are coordinated balloon and rocket measurements of stratospheric wind shears and turbulence, ballooning in Japan and India, magnetospheric processes investigated with data taken from balloon flights, and remote sensing of middle atmosphere winds from balloon platforms.

  6. In vitro analysis of balloon cuffing phenomenon: inherent biophysical properties of catheter material or mechanics of catheter balloon deflation?

    Science.gov (United States)

    Chung, Eric; So, Karina

    2012-06-01

    To investigates the different methods of balloon deflation, types of urinary catheters and exposure to urine media in catheter balloon cuffing. Bardex®, Bard-Lubri-Sil®, Argyle®, Releen® and Biocath® were tested in sterile and E.Coli inoculated urine at 0, 14 and 28 days. Catheter deflation was performed with active deflation; passive deflation; passive auto-deflation; and excision of the balloon inflow channel. Balloon cuffing was assessed objectively by running the deflated balloon over a plate of agar and subjectively by 3 independent observers. Bardex®, Argyle® and Biocath® showed greater degree of catheter balloon cuffing (p deflation was the worst method (p 0.05). Linear regression model analysis confirmed time as the most significant factor. The duration of catheters exposure, different deflation methods and types of catheters tested contributed significantly to catheter balloon cuffing (p < 0.01).

  7. Flight Qualification of the NASA's Super Pressure Balloon

    Science.gov (United States)

    Cathey, Henry; Said, Magdi; Fairbrother, Debora

    Designs of new balloons to support space science require a number of actual flights under various flight conditions to qualify them to as standard balloon flight offerings to the science community. Development of the new Super Pressure Balloon for the National Aeronautics and Space Administration’s Balloon Program Office has entailed employing new design, analysis, and production techniques to advance the state of the art. Some of these advances have been evolutionary steps and some have been revolutionary steps requiring a maturing understanding of the materials, designs, and manufacturing approaches. The NASA Super Pressure Balloon development end goal is to produce a flight vehicle that is qualified to carry a ton of science instrumentation, at an altitude greater than 33 km while maintaining a near constant pressure altitude for extended periods of up to 100 days, and at any latitude on the globe. The NASA’s Balloon Program Office has pursued this development in a carefully executed incremental approach by gradually increasing payload carrying capability and increasing balloon volume to reach these end goal. A very successful test flight of a ~200,700 m3 balloon was launch in late 2008 from Antarctica. This balloon flew for over 54 days at a constant altitude and circled the Antarctic continent almost three times. A larger balloon was flown from Antarctica in early 2011. This ~422,400 m3 flew at a constant altitude for 22 days making one circuit around Antarctica. Although the performance was nominal, the flight was terminated via command to recover high valued assets from the payload. The balloon designed to reach the program goals is a ~532,200 m3 pumpkin shaped Super Pressure Balloon. A test flight of this balloon was launched from the Swedish Space Corporation’s Esrange Balloon Launch Facilities near Kiruna, Sweden on 14 August, 2012. This flight was another success for this development program. Valuable information was gained from this short test

  8. Esophageal achalasia : results of balloon dilation

    Energy Technology Data Exchange (ETDEWEB)

    Ki, Won Woo; Kang, Sung Gwon; Yoon, Kwon Ha; Kim, Nam Hyeon; Lee, Hyo Jeong; Yoon, Hyun Ki; Sung, Kyu Bo; Song, Ho Young [Ulsan Univ. College of Medicine, Seoul (Korea, Republic of)

    1996-08-01

    To evaluate the clinical effectiveness of fluoroscopically guided balloon dilation in the treatment of esophageal achalasia. Under fluoroscopic guidance, 21 balloon dilation procedures were performed in 14 patients with achalasia. A balloon with a diameter of 20 mm was used for the initial attempt.If the patient tolerated this well, the procedure was repeated with a 10-20 mm balloon, placed alongside at the same session. If, however the patient complained of severe chest pain and/or a postprocedural esophagogram showed an improvement,the additional balloon was not used. For patients whose results were unsatisfactory, the dilation procedure was repeated at sessions three to seven days apart. Succesful dilation was achieved in 13 of 14 patients(92.9%), who needed a total of 20 sessions of balloon dilation, ranging from one to three sessions per patient(mean, 1.54 sessions). Esophageal rupture occured in one of 14 patients(7.1%) ; of the 13 patients who underwent a successful dilation procedure, 12(92.3%) were free of recurrent symptoms during the follow-up period of 1-56(mean, 18.5) months. The remaning patient(7.7%) had a recurrence seven months after dilation. Fluoroscopically guided balloon dilation seems to be safe and effective in the treatment of esophageal achalasia.

  9. Esophageal achalasia : results of balloon dilation

    International Nuclear Information System (INIS)

    Ki, Won Woo; Kang, Sung Gwon; Yoon, Kwon Ha; Kim, Nam Hyeon; Lee, Hyo Jeong; Yoon, Hyun Ki; Sung, Kyu Bo; Song, Ho Young

    1996-01-01

    To evaluate the clinical effectiveness of fluoroscopically guided balloon dilation in the treatment of esophageal achalasia. Under fluoroscopic guidance, 21 balloon dilation procedures were performed in 14 patients with achalasia. A balloon with a diameter of 20 mm was used for the initial attempt.If the patient tolerated this well, the procedure was repeated with a 10-20 mm balloon, placed alongside at the same session. If, however the patient complained of severe chest pain and/or a postprocedural esophagogram showed an improvement,the additional balloon was not used. For patients whose results were unsatisfactory, the dilation procedure was repeated at sessions three to seven days apart. Succesful dilation was achieved in 13 of 14 patients(92.9%), who needed a total of 20 sessions of balloon dilation, ranging from one to three sessions per patient(mean, 1.54 sessions). Esophageal rupture occured in one of 14 patients(7.1%) ; of the 13 patients who underwent a successful dilation procedure, 12(92.3%) were free of recurrent symptoms during the follow-up period of 1-56(mean, 18.5) months. The remaning patient(7.7%) had a recurrence seven months after dilation. Fluoroscopically guided balloon dilation seems to be safe and effective in the treatment of esophageal achalasia

  10. Panel type X-ray image intensifier tube

    International Nuclear Information System (INIS)

    Wang, S.P.

    1977-01-01

    A panel shaped, proximity type, X-ray image intensifier tube for medical X-ray diagnostic is disclosed. It has all linear components and yet a high brightness gain, in the range of 500 to 20,000 cd-sec/m 2 -R, the tube being comprised of a rugged metallic tube envelope, an inwardly concave metallic input window of full size output display screen, an alkaline-halide scintillator photocathode screen suspended on insulators within the envelope and in between the input window and the output screen, and a high Z glass output window to reduce X-ray backscatter inside and outside of the tube. An X-ray sensitive photographic camera for medical diagnostic use is also disclosed which includes an X-ray sensitive image intensifier means of the proximity type and a reduction type optical system having an effective foral length in excess of 100mm for focusing the emage generated on the output display screen of the image intensifier tube onto a small size but directly viewable photographic film. The parameters of the image intensifier, the optics and the film are specified and linked to each other in a manner which maximizes the image quality for a camera system of this type and at the same time restricts the system speed of the camera to a range of 500 to 5,000 R -1 for the film to achieve a net density of 1.0. (Auth.)

  11. Early Cosmic Ray Research with Balloons

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Michael, E-mail: michael.walter@desy.de

    2013-06-15

    The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster.

  12. Early Cosmic Ray Research with Balloons

    Science.gov (United States)

    Walter, Michael

    2013-06-01

    The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster.

  13. Early Cosmic Ray Research with Balloons

    International Nuclear Information System (INIS)

    Walter, Michael

    2013-01-01

    The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster

  14. Severe complications caused by dissolution of latex with consequent self-disintegration of esophageal plastic tubes.

    Science.gov (United States)

    Löser, C

    2000-09-01

    A case of decisive material degeneration of an esophageal Celestin tube is described: a 50-year-old man with adenocarcinoma of the distal esophagus received a Celestin tube for palliative endoscopic treatment and 8 months later presented with suddenly occurring complete dysphagia. Dissolution of the latex layer in the proximal as well as the distal part of the tube had caused self-disintegration of the Celestin tube and had liberated the monofilament nylon coil which completely obstructed the lumen of the tube. Endoscopic tube removal was only possible by careful attachment of a balloon catheter and peroral extraction after insufflation with contrast medium up to 5 atm. A Medline-based review of the literature revealed different but predominantly severe complications (perforation, hemorrhage, obstruction, and peritonitis) based on material fatigue of the latex layer in esophageal Celestin tubes. At least 6 months after placement of a Celestin tube, regular fluoroscopic controls should be performed to detect early disintegration of the tube. Indication for the placement of Celestin tubes in patients with benign esophageal strictures and longer life expectancy should be assessed very critically.

  15. Measuring a film flowing down a tube inner wall using a laser focus displacement meter and an image-processing method

    International Nuclear Information System (INIS)

    Takamasa, Tomoji; Kobayashi, Kenji

    1999-01-01

    To elucidate details of the fascinating nonlinear phenomena of waves on a film, spatial temporal knowledge of the interfacial waves is essential. This paper presents an experimental study on waves on a film flowing down a vertical tube inner wall measured with a laser focus displacement meter (LFD) and an image-processing method. As a result, the film thickness was measured within a 1% margin of error by LFD, and the wave velocity was measured within a 10% margin of error by the image-processing. The experimental results are summarized as follows: At entry length L = 900 mm, the wave becomes a two-wave system. In the entry region, L = 216 mm, and 400 mm, the wave amplitude decreases as the flow rate increases, in the same manner as that in a film flowing down a plate wall. The velocity measured by the image processing agreed well with that calculated using Nusselt's theoretical equation and the Ito-Sasaki empirical equation for Reynolds numbers < 250. (author)

  16. Effect of intra-aortic balloon pump on coronary blood flow during different balloon cycles support: A computer study.

    Science.gov (United States)

    Aye, Thin Pa Pa; Htet, Zwe Lin; Singhavilai, Thamvarit; Naiyanetr, Phornphop

    2015-01-01

    Intra-aortic balloon pump (IABP) has been used in clinical treatment as a mechanical circulatory support device for patients with heart failure. A computer model is used to study the effect on coronary blood flow (CBF) with different balloon cycles under both normal and pathological conditions. The model of cardiovascular and IABP is developed by using MATLAB SIMULINK. The effect on coronary blood flow has been studied under both normal and pathological conditions using different balloon cycles (balloon off; 1:4; 1:2; 1:1). A pathological heart is implemented by reducing the left ventricular contractility. The result of this study shows that the rate of balloon cycles is related to the level of coronary blood flow.

  17. DETECTION OF VORTEX TUBES IN SOLAR GRANULATION FROM OBSERVATIONS WITH SUNRISE

    International Nuclear Information System (INIS)

    Steiner, O.; Franz, M.; Bello Gonzalez, N.; Nutto, Ch.; Rezaei, R.; Schmidt, W.; Martinez Pillet, V.; Bonet Navarro, J. A.; Del Toro Iniesta, J. C.; Domingo, V.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Knoelker, M.

    2010-01-01

    We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory SUNRISE. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. From cross sections through the computational domain of the simulation, we conclude that these granular lanes are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. We propose that the observed vortex tubes may represent only the large-scale end of a hierarchy of vortex tubes existing near the solar surface.

  18. Percutaneous treatment of extrahepatic bile duct stones assisted by balloon sphincteroplasty and occlusion balloon

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Sung; Kim, Ji Hyung; Choi, Young Woo; Lee, Tae Hee; Hwang, Cheol Mog; Cho, Young Jun; Kim, Keum Won [Konyang University Hospital, Daejeon (Korea, Republic of)

    2005-12-15

    To describe the technical feasibility and usefulness of extrahepatic biliary stone removal by balloon sphincteroplasty and occlusion balloon pushing. Fifteen patients with extrahepatic bile duct stones were included in this study. Endoscopic stone removal was not successful in 13 patients, and two patients refused the procedure due to endoscopy phobia. At first, all patients underwent percutaneous transhepatic biliary drainage (PTBD). A few days later, through the PTBD route, balloon assisted dilatation for common bile duct (CBD) sphincter was performed, and then the stones were pushed into the duodenum using an 11.5 mm occlusion balloon. Success rate, reason for failure, and complications associated with the procedure were evaluated. Eight patients had one stone, five patients had two stones, and two patients had more than five stones. The procedure was successful in 13 patients (13/15). In 12 of the patients, all stones were removed in the first trial. In one patients, residual stones were discovered on follow-up cholangiography, and were subsequently removed in the second trial. Technical failure occurred in two patients. Both of these patients had severely dilated CBD and multiple stones with various sizes. Ten patients complained of pain in the right upper quadrant and epigastrium of the abdomen immediately following the procedure, but there were no significant procedure-related complications such as bleeding or pancreatitis. Percutaneous extrahepatic biliary stone removal by balloon sphincteroplasty and subsequent stone pushing with occlusion balloon is an effective, safe, and technically feasible procedure which can be used as an alternative method in patients when endoscopic extrahepatic biliary stone removal was not successful.

  19. Percutaneous treatment of extrahepatic bile duct stones assisted by balloon sphincteroplasty and occlusion balloon

    International Nuclear Information System (INIS)

    Park, Yong Sung; Kim, Ji Hyung; Choi, Young Woo; Lee, Tae Hee; Hwang, Cheol Mog; Cho, Young Jun; Kim, Keum Won

    2005-01-01

    To describe the technical feasibility and usefulness of extrahepatic biliary stone removal by balloon sphincteroplasty and occlusion balloon pushing. Fifteen patients with extrahepatic bile duct stones were included in this study. Endoscopic stone removal was not successful in 13 patients, and two patients refused the procedure due to endoscopy phobia. At first, all patients underwent percutaneous transhepatic biliary drainage (PTBD). A few days later, through the PTBD route, balloon assisted dilatation for common bile duct (CBD) sphincter was performed, and then the stones were pushed into the duodenum using an 11.5 mm occlusion balloon. Success rate, reason for failure, and complications associated with the procedure were evaluated. Eight patients had one stone, five patients had two stones, and two patients had more than five stones. The procedure was successful in 13 patients (13/15). In 12 of the patients, all stones were removed in the first trial. In one patients, residual stones were discovered on follow-up cholangiography, and were subsequently removed in the second trial. Technical failure occurred in two patients. Both of these patients had severely dilated CBD and multiple stones with various sizes. Ten patients complained of pain in the right upper quadrant and epigastrium of the abdomen immediately following the procedure, but there were no significant procedure-related complications such as bleeding or pancreatitis. Percutaneous extrahepatic biliary stone removal by balloon sphincteroplasty and subsequent stone pushing with occlusion balloon is an effective, safe, and technically feasible procedure which can be used as an alternative method in patients when endoscopic extrahepatic biliary stone removal was not successful

  20. Gondola development for CNES stratospheric balloons

    Science.gov (United States)

    Vargas, A.; Audoubert, J.; Cau, M.; Evrard, J.; Verdier, N.

    The CNES has been supporting scientific ballooning since its establishment in 1962. The two main parts of the balloon system or aerostat are the balloon itself and the flight train, comprising the house-keeping gondola, for the control of balloon flight (localization and operational telemetry & telecommand - TM/TC), and the scientific gondola with its dedicated telecommunication system. For zero pressure balloon, the development of new TM/TC system for the housekeeping and science data transmission are going on from 1999. The main concepts are : - for balloon house-keeping and low rate scientific telemetry, the ELITE system, which is based on single I2C bus standardizing communication between the different components of the system : trajectography, balloon control, power supply, scientific TM/TC, .... In this concept, Radio Frequency links are developed between the house keeping gondola and the components of the aerostat (balloon valve, ballast machine, balloon gas temperature measurements, ...). The main objectives are to simplify the flight train preparation in term of gondola testing before flight, and also by reducing the number of long electrical cables integrated in the balloon and the flight train; - for high rate scientific telemetry, the use of functional interconnection Internet Protocol (IP) in interface with the Radio Frequency link. The main idea is to use off-the-shelf IP hardware products (routers, industrial PC, ...) and IP software (Telnet, FTP, Web-HTTP, ...) to reduce the development costs; - for safety increase, the adding, in the flight train, of a totally independent house keeping gondola based on the satellite Inmarsat M and Iridium telecommunication systems, which permits to get real time communications between the on-board data mobile and the ground station, reduced to a PC computer with modem connected to the phone network. These GEO and LEO telecommunication systems give also the capability to operate balloon flights over longer distance

  1. Simultaneous stent expansion/balloon deflation technique to salvage failed balloon remodeling.

    Science.gov (United States)

    Ladner, Travis R; He, Lucy; Davis, Brandon J; Froehler, Michael T; Mocco, J

    2016-04-01

    Herniation, with possible embolization, of coils into the parent vessel following aneurysm coiling remains a frequent challenge. For this reason, balloon or stent assisted embolization remains an important technique. Despite the use of balloon remodeling, there are occasions where, on deflation of the balloon, some coils, or even the entire coil mass, may migrate. We report the successful use of a simultaneous adjacent stent deployment bailout technique in order to salvage coil prolapse during balloon remodeling in three patients. Case No 1 was a wide neck left internal carotid artery bifurcation aneurysm, measuring 9 mm×7.9 mm×6 mm with a 5 mm neck. Case No 2 was a complex left superior hypophyseal artery aneurysm, measuring 5.3 mm×4 mm×5 mm with a 2.9 mm neck. Case No 3 was a ruptured right posterior communicating artery aneurysm, measuring 4 mm×4 mm×4.5 mm with a 4 mm neck. This technique successfully returned the prolapsed coil mass into the aneurysm sac in all cases without procedural complications. The closed cell design of the Enterprise VRD (Codman and Shurtleff Inc, Raynham, Massachusetts, USA) makes it ideal for this bailout technique, by allowing the use of an 0.021 inch delivery catheter (necessary for simultaneous access) and by avoiding the possibility of an open cell strut getting caught on the deflated balloon. We hope this technique will prove useful to readers who may find themselves in a similar predicament. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. Are drug-coated balloons cost effective for femoropopliteal occlusive disease? A comparison of bare metal stents and uncoated balloons.

    Science.gov (United States)

    Poder, Thomas G; Fisette, Jean-François

    2016-07-01

    To perform a cost-effectiveness analysis to help hospital decision-makers with regard to the use of drug-coated balloons compared with bare metal stents and uncoated balloons for femoropopliteal occlusive disease. Clinical outcomes were extracted from the results of meta-analyses already published, and cost units are those used in the Quebec healthcare network. The literature review was limited to the last four years to obtain the most recent data. The cost-effectiveness analysis was based on a 2-year perspective, and risk factors of reintervention were considered. The cost-effectiveness analysis indicated that drug-coated balloons were generally more efficient than bare metal stents, particularly for patients with higher risk of reintervention (up to CAD$1686 per patient TASC II C or D). Compared with uncoated balloons, results indicated that drug-coated balloons were more efficient if the reintervention rate associated with uncoated balloons is very high and for patients with higher risk of reintervention (up to CAD$3301 per patient). The higher a patient's risk of reintervention, the higher the savings associated with the use of a drug-coated balloon will be. For patients at lower risk, the uncoated balloon strategy is still recommended as a first choice for endovascular intervention.

  3. Anderson localization and ballooning eigenfunctions

    International Nuclear Information System (INIS)

    Dewar, R.L.; Cuthbert, P.

    1999-01-01

    In solving the ballooning eigenvalue for a low-aspect-ratio stellarator equilibrium it is found that the quasiperiodic behaviour of the equilibrium quantities along a typical magnetic field line can lead to localization of the ballooning eigenfunction (Anderson localization) even in the limit of zero shear. This localization leads to strong field-line dependence of the ballooning eigenvalue, with different branches attaining their maximum growth rates on different field lines. A method is presented of estimating the field-line dependence of various eigenvalue branches by using toroidal and poloidal symmetry operations on the shear-free ballooning equation to generate an approximate set of eigenfunctions. These zero-shear predictions are compared with accurate numerical solutions for the H-1 Heliac and are shown to give a qualitatively correct picture, but finite shear corrections will be needed to give quantitative predictions

  4. Making Molecular Balloons in Laser-Induced Explosive Boiling of Polymer Solutions

    International Nuclear Information System (INIS)

    Leveugle, Elodie; Sellinger, Aaron; Fitz-Gerald, James M.; Zhigilei, Leonid V.

    2007-01-01

    The effect of the dynamic molecular rearrangements leading to compositional segregation is revealed in coarse-grained molecular dynamics simulations of short pulse laser interaction with a polymer solution in a volatile matrix. An internal release of matrix vapor at the onset of the explosive boiling of the overheated liquid is capable of pushing polymer molecules to the outskirts of a transient bubble, forming a polymer-rich surface layer enclosing the volatile matrix material. The results explain unexpected 'deflated balloon' structures observed in films deposited by the matrix-assisted pulsed laser evaporation technique

  5. Application of Electrocautery Needle Knife Combined with Balloon Dilatation versus Balloon Dilatation in the Treatment of Tracheal Fibrotic Scar Stenosis.

    Science.gov (United States)

    Bo, Liyan; Li, Congcong; Chen, Min; Mu, Deguang; Jin, Faguang

    Electrocautery needle knives can largely reduce scar and granulation tissue hyperplasia and play an important role in treating patients with benign stricture. The aim of this retrospective study was to evaluate the efficacy and safety of electrocautery needle knife combined with balloon dilatation versus balloon dilatation alone in the treatment of tracheal stenosis caused by tracheal intubation or tracheotomy. We retrospectively analysed the clinical data of 43 patients with tracheal stenosis caused by tracheotomy or tracheal intubation in our department from January 2013 to January 2016. Among these 43 patients, 23 had simple web-like stenosis and 20 had complex steno sis. All patients were treated under general anaesthesia, and the treatment methods were (1) balloon dilatation alone, (2) needle knife excision of fibrotic tissue combined with balloon dilatation, and (3) needle knife radial incision of fibrotic tissue combined with balloon dilatation. After treatment the symptoms, such as shortness of breath, were markedly improved immediately in all cases. The stenosis degree of patients who were treated with the elec-trocautery needle knife combined with balloon dilatation had better improvement compared with that of those treated with balloon dilatation treatment alone after 3 months (0.45 ± 0.04 vs. 0.67 ± 0.05, p knife combined with balloon dilatation is an effective and safe treatment for tracheal fibrotic stenosis compared with balloon dilatation alone. © 2017 S. Karger AG, Basel.

  6. Recent activities on the scientific ballooning in Japan

    International Nuclear Information System (INIS)

    Nisimura, J.; Hirosawa, H.

    1984-01-01

    Scientific ballooning is Japan has been organized by the Institute of Space and Astronautical Science, and about 15 balloons have been launched each year from Sanriku Balloon Center that belongs to this Institute. The balloon center is located in the northern part of Japan. The observations cover the field of X-ray, gamma-ray, infrared astronomy, cosmic rays, and atmospheric science. Systems of lon duration flights such as 'Boomerang Balloons', and fine attitude control systems were developed and widely applied to the scientific observations. International collaborative works were performed in Australia and Indonesia last year. Some details of these activities are reported and possible future collaborations with Braziian balloon group are also discussed. (Author) [pt

  7. The French balloon and sounding rocket space program

    Science.gov (United States)

    Coutin/Faye, S.; Sadourny, I.

    1987-08-01

    Stratospheric and long duration flight balloon programs are outlined. Open stratospheric balloons up to 1 million cu m volume are used to carry astronomy, solar system, aeronomy, stratosphere, biology, space physics, and geophysics experiments. The long duration balloons can carry 50 kg payloads at 20 to 30 km altitude for 10 days to several weeks. Pressurized stratospheric balloons, and infrared hot air balloons are used. They are used to study the dynamics of stratospheric waves and atmospheric water vapor. Laboratories participating in sounding rocket programs are listed.

  8. TMBM: Tethered Micro-Balloons on Mars

    Science.gov (United States)

    Sims, M. H.; Greeley, R.; Cutts, J. A.; Yavrouian, A. H.; Murbach, M.

    2000-01-01

    The use of balloons/aerobots on Mars has been under consideration for many years. Concepts include deployment during entry into the atmosphere from a carrier spacecraft, deployment from a lander, use of super-pressurized systems for long duration flights, 'hot-air' systems, etc. Principal advantages include the ability to obtain high-resolution data of the surface because balloons provide a low-altitude platform which moves relatively slowly. Work conducted within the last few years has removed many of the technical difficulties encountered in deployment and operation of balloons/aerobots on Mars. The concept proposed here (a tethered balloon released from a lander) uses a relatively simple approach which would enable aspects of Martian balloons to be tested while providing useful and potentially unique science results. Tethered Micro-Balloons on Mars (TMBM) would be carried to Mars on board a future lander as a stand-alone experiment having a total mass of one to two kilograms. It would consist of a helium balloon of up to 50 cubic meters that is inflated after landing and initially tethered to the lander. Its primary instrumentation would be a camera that would be carried to an altitude of up to tens of meters above the surface. Imaging data would be transmitted to the lander for inclusion in the mission data stream. The tether would be released in stages allowing different resolutions and coverage. In addition during this staged release a lander camera system may observe the motion of the balloon at various heights above he lander. Under some scenarios upon completion of the primary phase of TMBM operations, the tether would be cut, allowing TMBM to drift away from the landing site, during which images would be taken along the ground.

  9. Overview of the NASA balloon R&D program

    Science.gov (United States)

    Smith, I. Steve, Jr.

    1994-01-01

    The catastrophic balloon failure during the first half of the 1980's identified the need for a comprehensive and continuing balloon research and development (R&D) commitment by NASA. Technical understanding was lacking in many of the disciplines and processes associated with scientific ballooning. A comprehensive balloon R&D plan was developed in 1986 and implemented in 1987. The objectives were to develop the understanding of balloon system performance, limitations, and failure mechanisms. The program consisted of five major technical areas: structures, performance and analysis, materials, chemistry and processing, and quality control. Research activitites have been conducted at NASA/Goddard Space Flight Center (GSFC)-Wallops Flight Facility (WFF), other NASA centers and government facilities, universities, and the balloon manufacturers. Several new and increased capabilities and resources have resulted from this activity. The findings, capabilities, and plan of the balloon R&D program are presented.

  10. Balloon pulmonary valvotomy – Not just a simple balloon dilatation

    Directory of Open Access Journals (Sweden)

    Subhendu Mohanty

    2014-07-01

    Full Text Available Balloon pulmonary valvotomy is the preferred mode of treatment in patients with isolated pulmonary valvar stenosis and has shown good long term results. It is generally considered a safe procedure with few complications. There have been however, case reports of potentially fatal acute severe pulmonary edema occurring after the procedure in some patients. The cause of this complication and its pathophysiology is still not clear. Its occurrence is also infrequent with less than 5 cases reported till now. We report a case of pulmonary valvar stenosis which developed acute severe refractory pulmonary edema immediately after balloon pulmonary valvotomy.

  11. Particle Astrophysics in NASA's Long Duration Balloon Program

    International Nuclear Information System (INIS)

    Gorham, Peter W.

    2013-01-01

    A century after Viktor Hess' discovery of cosmic rays, balloon flights still play a central role in the investigation of cosmic rays over nearly their entire spectrum. We report on the current status of NASA balloon program for particle astrophysics, with particular emphasis on the very successful Antarctic long-duration balloon program, and new developments in the progress toward ultra-long duration balloons

  12. Laser welding of balloon catheters

    Science.gov (United States)

    Flanagan, Aidan J.

    2003-03-01

    The balloon catheter is one of the principal instruments of non-invasive vascular surgery. It is used most commonly for angioplasty (and in recent years for delivering stents) at a multitude of different sites in the body from small arteries in the heart to the bilary duct. It is composed of a polymer balloon that is attached to a polymer shaft at two points called the distal and proximal bonds. The diverse utility of balloon catheters means a large range of component sizes and materials are used during production; this leads to a complexity of bonding methods and technology. The proximal and distal bonds have been conventionally made using cyanoacrylate or UV curing glue, however with performance requirements of bond strength, flexibility, profile, and manufacturing costs these bonds are increasingly being made by welding using laser, RF, and Hot Jaw methods. This paper describes laser welding of distal and proximal balloon bonds and details beam delivery, bonding mechanisms, bond shaping, laser types, and wavelength choice.

  13. NASA Langley Research Center tethered balloon systems

    Science.gov (United States)

    Owens, Thomas L.; Storey, Richard W.; Youngbluth, Otto

    1987-01-01

    The NASA Langley Research Center tethered balloon system operations are covered in this report for the period of 1979 through 1983. Meteorological data, ozone concentrations, and other data were obtained from in situ measurements. The large tethered balloon had a lifting capability of 30 kilograms to 2500 meters. The report includes descriptions of the various components of the balloon systems such as the balloons, the sensors, the electronics, and the hardware. Several photographs of the system are included as well as a list of projects including the types of data gathered.

  14. Heat Transfer Model for Hot Air Balloons

    Science.gov (United States)

    Llado-Gambin, Adriana

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.

  15. Deployment Instabilities of Lobed-Pumpkin Balloon

    Science.gov (United States)

    Nakashino, Kyoichi

    A lobed-pumpkin balloon, currently being developed in ISAS/JAXA as well as in NASA, is a promising vehicle for long duration scientific observations in the stratosphere. Recent ground and flight experiments, however, have revealed that the balloon has deployment instabilities under certain conditions. In order to overcome the instability problems, a next generation SPB called 'tawara' type balloon has been proposed, in which an additional cylindrical part is appended to the standard lobed-pumpkin balloon. The present study investigates the deployment stability of tawara type SPB in comparison to that of standard lobed-pumpkin SPB through eigenvalue analysis on the basis of finite element methods. Our numerical results show that tawara type SPB enjoys excellent deployment performance over the standard lobed-pumpkin SPBs.

  16. Balloon cell nevus of the iris.

    Science.gov (United States)

    Morcos, Mohib W; Odashiro, Alexandre; Bazin, Richard; Pereira, Patricia Rusa; O'Meara, Aisling; Burnier, Miguel N

    2014-12-01

    Balloon cell nevus is a rare histopathological lesion characterized by a predominance of large, vesicular and clear cells, called balloon cells. There is only 1 case of balloon cell nevus of the iris reported in the literature. A 55 year-old man presented a pigmented elevated lesion in the right iris since the age of 12 years old. The lesion had been growing for the past 2 years and excision was performed. Histopathological examination showed a balloon cell nevus composed of clear and vacuolated cells without atypia. A typical spindle cell nevus of the iris was also observed. The differential diagnosis included xanthomatous lesions, brown adipocyte or other adipocytic lesions, clear cell hidradenoma, metastatic clear cell carcinoma of the kidney and clear cell sarcoma. The tumor was positive for Melan A, S100 protein and HMB45. Balloon cell nevus of the iris is rare but should be considered in the differential diagnosis of melanocytic lesions of the iris. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Mars Solar Balloon Lander, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Solar Balloon Lander (MSBL) is a novel concept which utilizes the capability of solar-heated hot air balloons to perform soft landings of scientific...

  18. Vertical sounding balloons for stratospheric photochemistry

    Science.gov (United States)

    Pommereau, J. P.

    The use of vertical sounding balloons for stratospheric photochemistry studies is illustrated by the use of a vertical piloted gas balloon for the search of NO2 diurnal variations. It is shown that the use of montgolfieres (hot air balloons) can enhance the vertical sounding technique. Particular attention is given to a sun-heated montgolfiere and to the more sophisticated infrared montgolfiere that is able to perform three to four vertical excursions per day and to remain aloft for weeks or months.

  19. Burn Injury Arise From Flying Balloon Toys

    Directory of Open Access Journals (Sweden)

    Yalcin Kulahci

    2007-08-01

    Full Text Available Many of peoples are faced minor or major burn injuries in their life. Even the most widespread burn cause is flame injuries, too different burn cause pointed out in literature like Acetylen burns. The cases which imply in literature, mostly causes from explosion of high pressure acetylene tube, metal oxygene patch flame or carbide lamp using from cave explorers. An interesting acetylene burn cause in Turkey was publised by the authors. This cases was to come into being from flying toy balloons flame. 80 person was injured from flying toy ballons flame in a meeting in 2002. Although this potential risks of acetylene, helium have not any of some risk. But helium was provided from other countries and have more price. The injuries which caused from acetylene burns like 1st -2nd degree burns. Consequently that was known helium is more avaliable for using in toy sector, and never cause burn injuries like this. [TAF Prev Med Bull. 2007; 6(4: 291-296

  20. Inner surface modification of a tube by magnetic glow-arc plasma source ion implantation

    International Nuclear Information System (INIS)

    Zhang Guling; Chinese Academy of Sciences, Beijing; Wang Jiuli; Feng Wenran; Chen Guangliang; Gu Weichao; Niu Erwu; Fan Songhua; Liu Chizi; Yang Size; Wu Xingfang

    2006-01-01

    A new method named the magnetic glow-arc plasma source ion implantation (MGA-PSII) is proposed for inner surface modification of tubes. In MGA-PSII, under the control of an axial magnetic field, which is generated by an electric coil around the tube sample, glow arc plasma moves spirally into the tube from its two ends. A negative voltage applied on the tube realized its inner surface implantation. Titanium nitride (TiN) films are prepared on the inner surface of a stainless steel tube in diameter 90 mm and length 600 mm. Hardness tests show that the hardness at the tube centre is up to 20 GPa. XRD, XPS and AES analyses demonstrate that good quality of TiN films can be achieved. (authors)

  1. Inner Surface Modification of a Tube by Magnetic Glow-Arc Plasma Source Ion Implantation

    Science.gov (United States)

    Zhang, Gu-Ling; Wang, Jiu-Li; Wu, Xing-Fang; Feng, Wen-Ran; Chen, Guang-Liang; Gu, Wei-Chao; Niu, Er-Wu; Fan, Song-Hua; Liu, Chi-Zi; Yang, Si-Ze

    2006-05-01

    A new method named the magnetic glow-arc plasma source ion implantation (MGA-PSII) is proposed for inner surface modification of tubes. In MGA-PSII, under the control of an axial magnetic field, which is generated by an electric coil around the tube sample, glow arc plasma moves spirally into the tube from its two ends. A negative voltage applied on the tube realized its inner surface implantation. Titanium nitride (TiN) films are prepared on the inner surface of a stainless steel tube in diameter 90 mm and length 600 mm. Hardness tests show that the hardness at the tube centre is up to 20 GPa. XRD, XPS and AES analyses demonstrate that good quality of TiN films can be achieved.

  2. Boston's balloon dilatation for treatment of cardiac achalasia

    International Nuclear Information System (INIS)

    Yin Jianguo; Song Jinwen; Yang Yan; Liu Xiaohong; Fu Zhiming; Zhang Yaqin

    2001-01-01

    Objective: To review and summarize effectiveness and method of the Boston's balloon dilation in cardiac achalasia. Methods: The intensified guide wire was inserted into stomach through mouth cavity under TV control. The Boston's balloon was inserted to the cardiac stricture through the guide wire and dilatated with 15% contrast medium with to a maximum diameter for five minutes and then the balloon was dilatated again for 3-5 minutes, all together for 3-4 times. The severe stricture must be pre-dilatated with 20-25 mm diameter balloon. Results: The balloon insertion was technically successful in all 26 patients. The once success of balloon dilation was achieved in 24 patients and twice in other 2. Follow-up time was from 2 weeks to 31 months (mean 10.6 months). Recurrent stenosis had not occurred in all patients. Remission rate of dysphagia was 100%. Esophageal reflux occurred in 3 patients. Conclusions: The Boston's balloon dilatation is simple and effective for treatment of cardiac achalasia. The method sometimes may replace surgical procedure

  3. Clinical experience with the Monorail balloon catheter for coronary angioplasty.

    Science.gov (United States)

    Finci, L; Meier, B; Roy, P; Steffenino, G; Rutishauser, W

    1988-01-01

    The Monorail balloon catheter is distinctly different from other current balloon catheters: the guidewire passes through the balloon itself, exits the catheter proximal to the balloon, and runs alongside its small shaft (3 French) through the guiding catheter. Monorail coronary angioplasty was attempted in 61 patients on 73 lesions with balloons from 2.0 to 3.7 mm. Angiographic success was obtained in 66 lesions (90%). For 15 lesions, balloon exchanges were needed. In three lesions, the Monorail balloon failed to cross the lesion, while a standard balloon succeeded; two lesions could not be crossed with any balloon. Vessel occlusion occurred in four patients: two had emergency surgery without infarct (one died suddenly 4 days later and one had a stroke 1 day later), one was recanalized with a standard balloon, and one had a myocardial infarct. Continuous infusion of urokinase was used until patient 3 in whom problems with the delivery system led to cardiocerebral air embolization (with complete recovery). No thrombotic complications were observed in the subsequent 58 patients with only a bolus of 10,000 U of heparin. The Monorail balloon facilitates contrast injections and balloon exchanges but appears more difficult to pass through tight lesions. Omission of the previously recommended infusion with a thrombolytic agent proved safe.

  4. Use of monorail PTCA balloon catheter for local drug delivery.

    Science.gov (United States)

    Trehan, Vijay; Nair, Girish M; Gupta, Mohit D

    2007-01-01

    We report the use of monorail coronary balloon as an infusion catheter to give bailout abciximab selectively into the site of stent thrombosis as an adjunct to plain old balloon angioplasty (POBA) in a patient of subacute stent thrombosis of the left anterior descending coronary artery. The balloon component (polyamide material) of the monorail balloon catheter was shaved off the catheter so that abciximab injected through the balloon port of the catheter exited out the shaft of the balloon catheter at the site from where the balloon material was shaved off. We believe that selective infusion with abciximab along with POBA established antegrade flow and relieved the patient's ischemia. In the absence of essential hardware to give intracoronary drugs in an emergency situation, one may employ our technique of infusion through a monorail balloon catheter after shaving the balloon component from the catheter.

  5. Development of a Super-Pressure Balloon with an Improved Design

    Science.gov (United States)

    Izutsu, Naoki; Akita, Daisuke; Fuke, Hideyuki; Iijima, Issei; Kato, Yoichi; Kawada, Jiro; Matsushima, Kiyoho; Matsuzaka, Yukihiko; Mizuta, Eiichi; Nakada, Takashi; Nonaka, Naoki; Saito, Yoshitaka; Takada, Atsushi; Tamura, Keisuke; Yamada, Kazuhiko; Yoshida, Tetsuya

    A zero-pressure balloon used for scientific observation in the stratosphere has an unmanageable limitation that its floating altitude decreases during a nighttime because of temperature drop of the lifting gas. Since a super-pressure balloon may not change its volume, the lifetime can extend very long. We had introduced so called the ‘lobed-pumpkin’ type of super-pressure balloon that can realize a full-scale long-duration balloon and it will be in practical use in the very near future. As for larger super-pressure balloons, however, we still have some potential difficulties to be resolved. We here propose a new design suitable for a larger super-pressure balloon, which is roughly ‘lobed pumpkin with lobed cylinder’ and can adapt a single design for balloons of a wide range of volumes. Indoor inflation tests were successfully carried out with balloons designed and made by the method. It has been shown that the limit of the resisting pressure differential for a new designed balloon is same as that of a normal lobed-pumpkin balloon.

  6. Ballooning behavior in the golden orbweb spider Nephilapilipes (Araneae: Nephilidae

    Directory of Open Access Journals (Sweden)

    Vanessa M.J. Lee

    2015-01-01

    Full Text Available Ballooning, a mode of aerial dispersal in spiders, is an innate behavior that requires appropriate physiological and meteorological conditions. Although only rarely reported in the golden orbweb spiders, family Nephilidae, the large geographic distributions of most nephilids—in particular of Nephila species—would imply that these spiders likely routinely disperse by ballooning in spite of giant female sizes. Here we study ballooning behavior in the golden orbweb spider Nephila pilipes (Fabricius, 1793. Specifically, we test for the propensity of spiderlings to deploy ballooning as a dispersal mechanism. We subjected a total of 59 first-instar spiderlings to a wind experiment at two wind speeds (2.17 ± 0.02 m s-1 and 3.17 ± 0.02 m s-1 under laboratory conditions. Under an average wind speed of 3.17 m s-1, none of the spiderlings exhibited pre-ballooning or ballooning behavior. However, at an average wind speed of 2.17 m s-1, 53 (89.8% spiderlings showed pre-ballooning behavior, and 17 (32.1% of the pre-ballooners ultimately ballooned. Our results concur with prior reports on spiderlings of other families that pre-ballooning behavior is a requirement for ballooning to occur. Furthermore, although we cannot rule out other dispersal mechanisms such as synanthropic spread, our findings suggest that the widespread N. pilipes uses ballooning to colonize remote oceanic islands.

  7. Optimizing logistics for balloon-occluded retrograde transvenous obliteration (BRTO) of gastric varices by doing away with the indwelling balloon: concept and techniques.

    Science.gov (United States)

    Saad, Wael E; Nicholson, David B

    2013-06-01

    Since the conception of balloon-occluded retrograde transvenous obliteration (BRTO) of gastric varices 25 years ago, the placement of an indwelling balloon for hours has been central to the BRTO procedure. Numerous variables and variations of the BRTO procedure have been described, including methods to reduce sclerosant, combining percutaneous transhepatic obliteration, varying sclerosant, and using multiple sclerosants within the same procedure. However, the consistent feature of BRTO has always remained the indwelling balloon. Placing an indwelling balloon over hours for the BRTO procedure is a logistical burden that taxes the interventional radiology team and hospital resources. Substituting the balloon with hardware (coils or Amplatzer vascular plugs [AVPs] or both) is technically feasible and its risks most likely correlate with gastrorenal shunt (GRS) size. The current authors use packed 0.018- or 0.035-in coils or both for small gastric variceal systems (GRS size A and B) and AVPs for GRS sizes up to size E (from size A-E). The current authors recommend an indwelling balloon (no hardware substitute) for very large gastric variceal system (GRS size F). Substituting the indwelling balloon for hardware in size F and potentially size E GRS can also be risky. The current article describes the techniques of placing up to 16-mm AVPs through balloon occlusion guide catheters and then deflating the balloon once it has been substituted with the AVPs. In addition, 22-mm AVPs can be placed through sheaths once the balloon occlusion catheters are removed to further augment the 16-mm Amplatzer occlusion. To date, there are no studies describing, let alone evaluating, the clinical feasibility of performing BRTO without indwelling balloons. The described techniques have been successfully performed by the current authors. However, the long-term safety and effectiveness of these techniques is yet to be determined. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Speaking "Out of Place": YouTube Documentaries and Viewers' Comment Culture as Political Education

    Science.gov (United States)

    Piotrowski, Marcelina

    2015-01-01

    This article examines the comment culture that accompanies documentary films on YouTube as a site of (geo) political education. It considers how viewers try to teach each other about the proper "place" of critique in response to the global, national, and local rhetoric featured in one environmental documentary film. YouTube viewers use…

  9. How to perform combined cutting balloon and high pressure balloon valvuloplasty for dogs with subaortic stenosis.

    Science.gov (United States)

    Kleman, Mandi E; Estrada, Amara H; Maisenbacher, Herbert W; Prošek, Robert; Pogue, Brandon; Shih, Andre; Paolillo, Joseph A

    2012-01-01

    Subvalvular aortic stenosis (SAS) is one of the most common congenital cardiac malformations in dogs. Unfortunately, the long term success rate and survival data following either open heart surgery or catheter based intervention has been disappointing in dogs with severe subaortic stenosis. Medical therapy is currently the only standard recommended treatment option. A cutting balloon dilation catheter has been used successfully for resistant coronary artery and peripheral pulmonary arterial stenoses in humans. This catheter is unique in that it has the ability to cut, or score, the stenotic region prior to balloon dilatation of the stenosis. The use of cutting balloon valvuloplasty combined with high pressure valvuloplasty for dogs with severe subaortic stenosis has recently been reported to be a safe and feasible alternative therapeutic option. The following report describes this technique, outlines the materials required, and provides some 'tips' for successful percutaneous subaortic balloon valvuloplasty. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Microscopic alterations in silicone tubes surface after application of ophthalmological lubricants

    Directory of Open Access Journals (Sweden)

    Jacqueline Sousa

    2015-02-01

    Full Text Available Objective: To identify microscopic morphological alterations in the surface of silicone tubes used for intubation of the lachrymal system after exposure to ophthalmological lubricants. Methods: Experimental, descriptive and longitudinal study consisted of the application of ophthalmological lubricants in silicone tubes. The tubes were divided in: Group 1 (Cylocort®, 2 (Epitezan®, 3 (Labcaína®, 4 (Liposic®, 5 (Maxinom® and 6 (Vista Gel®. One tube was not exposed to any lubricant, used as control. The tubes were observed and photographed after 2 hours, 30 days, 45 days before and after cleaning the surface and lumen. The following aspects were observed: surface (regularity, transparency, quantity, size and shape of the substances and lumen (obstruction. Results: Control: irregular surface with pores after 2 hours: Group 1 – irregular surface with presence of film; Groups 2, 3 and 5 – abundant and irregular quantity of ointment at the surface; Group 4 – discrete modification at the surface; Group 6 – growth of pigmented (brownish structures with filaments in the lumen, with discrete film in the surface. 30 Days: Groups 1, 4 and 5 – increase of the irregular superficial film; Group 2 – crust with notorious horizontal lines; Group 3 – diminution of the superficial film; Group 4 – crust less evident. Group 6 – increase of the structure seen with 2 hours of exposition, arboriform aspect. Forty-five days pre cleaning: Group 4 – diminution of the surface crust; Group 6 – expansion of the arboriform structure; unaltered findings in other groups. 45 days after cleaning: Groups 1 and 5 – light diminution of the surface crust; Groups 2, 3 and 4 – kept the modifications; Group 6 – the structure inside the lumen was not identified, clear surface, without evidence of film. Conclusions: Microscopic morphological alterations in the surface and lumen of silicone tubes can occur when those remain in contact with determined

  11. 21 CFR 884.5050 - Metreurynter-balloon abortion system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Metreurynter-balloon abortion system. 884.5050... Devices § 884.5050 Metreurynter-balloon abortion system. (a) Identification. A metreurynter-balloon abortion system is a device used to induce abortion. The device is inserted into the uterine cavity...

  12. Balloon launching station, Mildura, Victoria

    International Nuclear Information System (INIS)

    The Mildura Balloon Launching Station was established in 1960 by the Department of Supply (now the Department of Manufacturing Industry) on behalf of the United States Atomic Energy Commission (USAEC) to determine the content of radioactive material in the upper atmosphere over Australia. The Station location and layout, staffing, balloon launching equipment, launching, tracking and recovery are described. (R.L.)

  13. Effect of sponge ball cleaning on removing vernacles in condenser tubes

    International Nuclear Information System (INIS)

    Mimura, Keisuke; Minamoto, Kenju; Kyohara, Shigeru

    1977-01-01

    Usually aluminum brass material is adopted for the condenser tubes in thermal and nuclear power stations today, and sea water is treated with chlorine for the purpose of smooth operation and maintenance, but recently, this treatment tends to be avoided in view of environment preservation. When the chlorine treatment is not carried out, vernacles and other marine living things adhere to the internal surfaces of condenser tubes, and the corrosion of the tubes and the lowering of heat transfer rate occur. In this study, sponge ball cleaning was selected as the method of mechanically removing the adhering living things in tubes. When the balls are used too frequently, the formation of protective film is hindered, and the corrosion of tubes is accelerated, therefore it is important to determine the optimal frequency. The model condenser test and the immersion test of aluminum brass and titanium tubes were carried out. The testing method, the operation record and the test results are reported. Vernacles are apt to adhere to titanium tubes rather than aluminum brass tubes, and in case of aluminum brass tubes, they adhere to those with iron hydroxide film rather than those as manufactured. Vernacles adhere more as the flow speed in tubes is lower and the number of larvae in water is more. It was confirmed that the sponge ball cleaning was extremely effective for removing vernacles. (Kako, I.)

  14. Effect of sponge ball cleaning on removing vernacles in condenser tubes

    Energy Technology Data Exchange (ETDEWEB)

    Mimura, K; Minamoto, K; Kyohara, S [Kobe Steel Ltd. (Japan)

    1977-01-01

    Usually aluminum brass material is adopted for the condenser tubes in thermal and nuclear power stations today, and sea water is treated with chlorine for the purpose of smooth operation and maintenance, but recently, this treatment tends to be avoided in view of environment preservation. When the chlorine treatment is not carried out, vernacles and other marine living things adhere to the internal surfaces of condenser tubes, and the corrosion of the tubes and the lowering of heat transfer rate occur. In this study, sponge ball cleaning was selected as the method of mechanically removing the adhering living things in tubes. When the balls are used too frequently, the formation of protective film is hindered, and the corrosion of tubes is accelerated, therefore it is important to determine the optimal frequency. The model condenser test and the immersion test of aluminum brass and titanium tubes were carried out. The testing method, the operation record and the test results are reported. Vernacles are apt to adhere to titanium tubes rather than aluminum brass tubes, and in case of aluminum brass tubes, they adhere to those with iron hydroxide film rather than those as manufactured. Vernacles adhere more as the flow speed in tubes is lower and the number of larvae in water is more. It was confirmed that the sponge ball cleaning was extremely effective for removing vernacles.

  15. Theoretical modeling of steam condensation in the presence of a noncondensable gas in horizontal tubes

    International Nuclear Information System (INIS)

    Lee, Kwon-Yeong; Kim, Moo Hwan; Kim, Moo Hwan

    2008-01-01

    A theoretical model was developed to investigate a steam condensation with a noncondensable gas in a horizontal tube. The heat transfer through the vapor/noncondensable gas mixture boundary layer consists of the sensible heat transfer and the latent heat transfer given up by the condensing vapor, and it must equal that from the condensate film to the tube wall. Therefore, the total heat transfer coefficient is given by the film, condensation and sensible heat transfer coefficients. The film heat transfer coefficients of the upper and lower portions of the tube were calculated separately from Rosson and Meyers (1965) correlation. The heat and mass transfer analogy was used to analyze the steam/noncondensable gas mixture boundary layer. Here, the Nusselt and Sherwood numbers in the gas phase were modified to incorporate the effects of condensate film roughness, suction, and developing flow. The predictions of the theoretical model for the experimental heat transfer coefficients at the top and bottom of the tube were reasonable. The calculated heat transfer coefficients at the top of the tube were higher than those at the bottom of it, as experimental results. As the temperature potential at the top of tube was lower than that at the bottom of it, the heat fluxes at the upper and lower portions of the tube were similar to each other. Generally speaking, however, the model predictions showed a good agreement with experimental data. The new empirical correlation proposed by Lee and Kim (2008) for the vertical tube was applied to the condensation of steam/noncondensable mixture in a horizontal tube. Nusselt theory and Chato correlation were used to calculate the heat transfer coefficients at top and bottom of the horizontal tube, respectively. The predictions of the new empirical correlation were good and very similar with the theoretical model. (author)

  16. [Balloon cell nevi of the conjunctiva (author's transl)].

    Science.gov (United States)

    Schlageter, P E; Daicker, B

    1975-06-01

    The clinical and histological features of three cases of conjunctival balloon cell nevi are described. This peculiar form of nevus is very rare in the conjunctiva. The findings are compared with the descriptions in the literature of dermal balloon cell nevi. They demonstrate, that the conjunctival and dermal tumours are of idential histological structure. The proliferations of the conjunctival epithelium often found in conjunctival nevi do not modify the balloon cell nevi. These can not be diagnosed clinically. The problems of the pathogenesis of the balloon cell nevi are discussed.

  17. Cathode readout with stripped resistive drift tubes

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Kekelidze, G.D.; Novikov, E.A.; Peshekhonov, V.D.; Shafranov, M.D.; Zhiltsov, V.E.

    1995-01-01

    A straw tube drift chamber prototype has been constructed and tested. The straw tube material is mylar film covered with a carbon layer with a resistivity of 0.5, 30 and 70 kΩ/□. Both the anode wire and the cathode strip signals were detected to study the behaviour of the chamber in the presence of X-ray ionization. The construction and the results of the study are presented. (orig.)

  18. Cathode readout with stripped resistive drift tubes

    Science.gov (United States)

    Bychkov, V. N.; Kekelidze, G. D.; Novikov, E. A.; Peshekhonov, V. D.; Shafranov, M. D.; Zhiltsov, V. E.

    1995-12-01

    A straw tube drift chamber prototype has been constructed and tested. The straw tube material is mylar film covered with a carbon layer with a resistivity of 0.5, 30 and 70 kΩ/□. Both the anode wire and the cathode strip signals were detected to study the behaviour of the chamber in the presence of X-ray ionization. The construction and the results of the study are presented.

  19. Retained intraaortic balloon. Case report and review of the literature.

    Science.gov (United States)

    Grande, A M; Martinelli, L; Graffigna, A; Viganò, M

    1995-01-01

    We report a case of intraaortic balloon entrapment in a 70-year-old man who underwent emergency triple coronary bypass. Intraaortic balloon rupture caused the formation of a clot inside the balloon that eventually was responsible for the balloon's entrapment at the aortic bifurcation. The patient had severe atherosclerosis of the aorta and iliac arteries. Balloon removal required aorto-iliac exposure and aorto-bifemoral bypass. After 16 months, he is symptom free and at home.

  20. Upper gastrointestinal strictures: The results of balloon dilatation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kil Woo; Lim, Hyo Keun; Choo, In Wook; Bae, Sang Hoon; Yoon, Jong Sup [Hallym University College of Medicine, Seoul (Korea, Republic of); Yoo, Hyung Sik [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1990-12-15

    Balloon catheter dilatation of upper gastrointestinal strictures is an accepted mode of therapy. The authors report the balloon dilatation in 11 consecutive patients. The lesions treated included 10 benign strictures, and 1 esophageal cancer. Esophageal balloon were ranged from 2 mm in diameter, 4 cm in length, to 30 mm in diameter, 8 cm in length. Inflation was held for from 30 to 60 seconds and then repeated two or three times during each session. The balloons were inflated to pressure of from 2 to 12 atmospheres. There were from 1 to 13 dilatations. Two esophageal perforations were occurred in one esophagitis patient and other lye stricture patient. Two perforations were not required any surgical repair. All dilatation were performed without anesthesia. All strictures were responded immediately to dilatation. Prolonged course of treatment were needed with chronic severe esophagitis, lye stricture, gastrojejunostomy with chemotherapy, as a result, all patients, except esophageal cancer, could take regular diet after balloon catheter dilatation. Balloon catheter dilatation of upper gastrointestinal stenosis was effective and safe. It should be considered before other methods of treatment applicable.

  1. Percutaneous balloon dilation of pulmonary stenosis

    International Nuclear Information System (INIS)

    Hua Yangde; Huang Ming; Li Jinkang; Qian Jinqing; Chen Xiuyu; Yang Siyuan

    2003-01-01

    Objective: Review our experience of balloon dilation of valvular pulmonary stenosis in 32 cases. Methods: Totally 32 cases of pulmonary stenosis admitted from 1995-2001 with age of 1.5-13 yrs mean 6.8. Diagnosis was made by clinical manifestations, EKG, ECHO and angiocardiography. Results: Before dilation, the mean systolic pressure of right ventricle was (93.5 ± 28.5) mmHg, after the procedure it reduced to (42 ± 9.0) mmHg. The pressure gradient between right ventricle and pulmonary artery before dilation was (76 ± 30) mmHg and become (24.5 ± 8.5) mmHg after dilation. The gradient pressure after dilation was less than 25 mmHg in 90.6% cases. A case of Noonan syndrome showed no response to balloon dilation and died during valvulectomy from accompanying left ventricular cardiomyopathy. Conclusions: Balloon dilation of valvular pulmonary stenosis is effective and safe. The selection of proper diameter of pulmonary valvular rings and sized of the balloon are the major factors

  2. Balloon dilatation of ureteric strictures.

    Directory of Open Access Journals (Sweden)

    Punekar S

    2000-01-01

    Full Text Available AIMS: Evaluation of dilatation as a minimally invasive technique for the treatment of ureteric strictures. MATERIAL AND METHODS: We evaluated this technique in 16 patients with ureteric and secondary pelviureteric junction strictures from June 1998. Of these, 7 were men and 9 were women. The age range was from 14 to 40 years. RESULTS: Balloon dilatation was successful in 69% of patients. Strictures secondary to previous surgery had nearly 100% success. Of the 8 cases diagnosed as genitourinary tuberculosis, success rate was 50%. CONCLUSIONS: Factors affecting success of balloon dilatation are: a age of the stricture b length of the stricture and c etiology of the stricture. In a select group of patients with fresh post-operative or post-inflammatory strictures, balloon dilatation may be an attractive alternative to surgery.

  3. Solar advanced internal film receiver

    International Nuclear Information System (INIS)

    Torre Cabezas, M. de la

    1990-01-01

    In a Solar Central Internal Film Receiver, the heat absorbing fluid (a molten nitrate salt) flows in a thin film down over the non illuminated side of an absorber panel. Since the molten salt working fluid is not contained in complicated tube manifolds, the receiver design is simples than a conventional tube type-receiver resulting in a lower cost and a more reliable receiver. The Internal Film Receiver can be considered as an alternative to the Direct Absorption Receiver, in the event that the current problems of the last one can not be solved. It also describes here the test facility which will be used for its solar test, and the test plans foreseen. (Author) 17 refs

  4. Drift chambers on the basis of Mylar tube blocks

    Science.gov (United States)

    Budagov, Yu.; Chirikov-Zorin, I.; Golovanov, L.; Khazins, D.; Kuritsin, A.; Pukhov, O.; Zhukov, V.

    1993-06-01

    Prototypes of drift chambers constructed of Mylar tube blocks were tested. The purpose of developing tube blocks technology was to create long chambers (up to 3-4 m). Counting and drift characteristics of the chambers for different values of the gas pressure and different diameters of sense wires are presented. The lifetime of the chambers is determined. A photoeffect in the visible spectrum on the surface of the thin film aluminium cathode, which covers the Mylar tubes was observed.

  5. Drift chambers on the basis of Mylar tube blocks

    International Nuclear Information System (INIS)

    Budagov, Yu.; Chirikov-Zorin, I.; Golovanov, L.; Khazins, D.; Kuritsin, A.; Pukhov, U.; Zhukov, V.

    1993-01-01

    Prototypes of drift chambers constructed of Mylar tube blocks were tested. The purpose of developing tube blocks technology was to create chambers (up to 3-4 m). Counting and drift chracteristics of the chambers for different values of the gas pressure and different diameters of sense wires are presented. The lifetime of the chambers is determined. A photoeffect in the visible spectrum on the surface of the thin film aluminium cathode, which covers the Mylar tubes was observed. (orig.)

  6. Brachytherapy model with sodium pertechnetate-"9"9"mTc balloon (Na"9"9"mTcO_4"-) for breast cancer: evaluation of dosimetry and cell response

    International Nuclear Information System (INIS)

    Lima, Carla Flavia de

    2016-01-01

    Breast cancer is the most common type of cancer that affects more women worldwide. Among various treatment options, radiotherapy which is often used as a treatment for locoregional recurrences control or to decrease tumor size. In patients with breast cancer at an early stage, a booster dose (boost) in the primary tumor area can be applied after conventional radiation therapy. There are several drawbacks to applying this technique. In this work we aimed to perform a dosimetric analysis in a breast model, where it put a balloon filled with sodium pertechnetate-"9"9"mTc (Na"9"9"mTcO_4"-) which in future could be used in preference to other possible therapies. The methodology involved the development of dosimetry in water based on radiochromic films and in a computational voxel thorax model. Calibration protocol achieved a mathematical relation between absorbed dose versus optical density (OD) measured at a set of radiochromic sample films placed at the surface of the balloon plus 1 cm up to 10 cm far, in which theoretical dose values were provided by MCNP modeling, reproducing the water equivalent physical simulator. A voxel model of a female thorax, developed at the SISCODES/MCNP codes, received a filled balloon inside. Spatial dose distribution was generated, illustrating the dose received in the chest wall, glandular tissue, breast skin and lung. The dosimetric findings contribute to present the Na"9"9"mTcO_4"- balloon modality which provides a suitable spatial dose distribution in the tumor bed preserving adjacent health tissues. We also studied the radiobiological response radio resistant mammary adenocarcinoma cells (MDAMB231) by exposure of these cells to Na"9"9"mTcO_4"- balloon. The findings include the presence of apoptotic cells in the balloon around point out a favorable response. In conclusion, the balloon may represent a viable option in the supplementary therapy of breast cancer in patients who have appropriate indication. Irradiation with Na"9"9"mTcO_4

  7. Properties of ballooning modes in the Heliotron configurations

    International Nuclear Information System (INIS)

    Nakajima, N.; Hudson, S.R.; Hegna, C.C.

    2005-01-01

    The stability of ballooning modes is influenced by the local and global magnetic shear and local and global magnetic curvature so significantly that it is fairly difficult to get those general properties in the three dimensional configurations with strong flexibility due to the external coil system. In the case of the planar axis heliotron configurations allowing a large Shafranov shift, like LHD, properties of the high-mode-number ballooning modes have been intensively investigated. It has been analytically shown that the local magnetic shear comes to disappear in the stellarator-like global magnetic shear region, as the Shafranov shift becomes large. Based on this mechanism and the characteristics of the local and global magnetic curvature, it is numerically shown that the destabilized ballooning modes have strong three-dimensional properties (both poloidal and toroidal mode couplings) in the Mercier stable region, and that those are fairly similar to ballooning modes in the axisymmetric system in the Mercier unstable region. As is well known, however, no quantization condition is applicable to the ballooning modes in the three-dimensional system without symmetry, and so the results of the high-mode-number ballooning modes in the covering space had to be confirmed in the real space. Such a confirmation has been done in the Mercier stable region and also in the Mercier unstable region by using three dimensional linearized ideal MHD stability code cas3d. Confirming the relation between high-mode-number ballooning analyses by the global mode analyses, the method of the equilibrium profile variations has been developed in the tree dimensional system, giving dt/dψ - dP/dψ stability diagram corresponding to the s - α diagram in tokamaks. This method of profile variation are very powerful to investigate the second stability of high-mode-number ballooning modes and has been more developed. Recently it has been applied to the plasma in the inward-shifted LHD

  8. Use of buffy coat thick films in detecting malaria parasites in patients with negative conventional thick films.

    Science.gov (United States)

    Duangdee, Chatnapa; Tangpukdee, Noppadon; Krudsood, Srivicha; Wilairatana, Polrat

    2012-04-01

    To determine the frequency of malaria parasite detection from the buffy coat blood films by using capillary tube in falciparum malaria patients with negative conventional thick films. Thirty six uncomplicated falciparum malaria patients confirmed by conventional thick and thin films were included in the study. The patients were treated with artemisinin combination therapy at Hospital for Tropical Diseases, Bangkok, Thailand for 28 day. Fingerpricks for conventional blood films were conducted every 6 hours until negative parasitemia, then daily fingerpricks for parasite checks were conducted until the patients were discharged from hospital. Blood samples were also concurrently collected in 3 heparinized capillary tubes at the same time of fingerpricks for conventional blood films when the prior parasitemia was negative on thin films and parasitemia was lower than 50 parasites/200 white blood cells by thick film. The first negative conventional thick films were compared with buffy coat thick films for parasite identification. Out of 36 patients with thick films showing negative for asexual forms of parasites, buffy coat films could detect remaining 10 patients (27.8%) with asexual forms of Plasmodium falciparum. The study shows that buffy coat thick films are useful and can detect malarial parasites in 27.8% of patients whose conventional thick films show negative parasitemia.

  9. Dose distributions in electron irradiated plastic tubing

    International Nuclear Information System (INIS)

    Miller, A.; Pederson, W.B.

    1981-01-01

    Plastic tubes have been crosslinked by irradiation at a 10 MeV linear electron accelerator and at a 400 keV DC electron accelerator at different irradiation geometries. The diameter of the different tubes was 20, 33 and 110 millimeters. Dose distributions have been measured with thin radiochromic dye films, indicating that in all cases irradiation from two sides is a necessary and sufficient condition for obtaining a satisfactory dose distribution. (author)

  10. Tracking chamber made of 15-mm mylar drift tubes

    Science.gov (United States)

    Kozhin, A.; Borisov, A.; Bozhko, N.; Fakhrutdinov, R.; Plotnikov, I.

    2017-05-01

    We are presenting a drift chamber composed from three layers of mylar drift tubes with outer diameter 15 mm. The pipe is made of strip of mylar film 125 micrometers thick covered with aluminium from the both sides. A strip of mylar is wrapped around the mandrel. Pipe is created by ultrasonic welding. A single drift tube is self-supported structure withstanding 350 g wire tension without supports and internal overpressure. About 400 such tubes were assembled. Design, quality control procedures of the drift tubes are described. Seven chambers were glued from these tubes of 560 mm length. Each chamber consists of 3 layers, 16 tubes per layer. Several chambers were tested with cosmic rays. Results of the tests, counting rate plateau and coordinate resolution are presented.

  11. Tracking chamber made of 15-mm mylar drift tubes

    International Nuclear Information System (INIS)

    Kozhin, A.; Borisov, A.; Bozhko, N.; Fakhrutdinov, R.; Plotnikov, I.

    2017-01-01

    We are presenting a drift chamber composed from three layers of mylar drift tubes with outer diameter 15 mm. The pipe is made of strip of mylar film 125 micrometers thick covered with aluminium from the both sides. A strip of mylar is wrapped around the mandrel. Pipe is created by ultrasonic welding. A single drift tube is self-supported structure withstanding 350 g wire tension without supports and internal overpressure. About 400 such tubes were assembled. Design, quality control procedures of the drift tubes are described. Seven chambers were glued from these tubes of 560 mm length. Each chamber consists of 3 layers, 16 tubes per layer. Several chambers were tested with cosmic rays. Results of the tests, counting rate plateau and coordinate resolution are presented.

  12. Analysis of Flight of Near-Space Balloon

    Science.gov (United States)

    Miller, Zech; Evans, Austin; Seyfert, James; Leadlove, Kyle; Gumina, Kaitlyn; Martell, Eric

    2015-04-01

    In December 2014, the Electronics class at Millikin University launched a balloon designed to travel into the near-space region of the atmosphere. The balloon was equipped with an instrumentation package including a camera, accelerometer, barometric pressure sensor, temperature probes, as well as a system for tracking using an Automatic Packet Reporting System (APRS). The balloon was launched from Decatur, IL, and landed in Marysville, OH, nearly 320 miles away. The students then analyzed the data from the flight and compared results to expectations.

  13. Heat Transfer Model for Hot Air Balloons

    OpenAIRE

    Lladó Gambín, Adriana

    2016-01-01

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the mod...

  14. Accurate Determination of the Volume of an Irregular Helium Balloon

    Science.gov (United States)

    Blumenthal, Jack; Bradvica, Rafaela; Karl, Katherine

    2013-01-01

    In a recent paper, Zable described an experiment with a near-spherical balloon filled with impure helium. Measuring the temperature and the pressure inside and outside the balloon, the lift of the balloon, and the mass of the balloon materials, he described how to use the ideal gas laws and Archimedes' principal to compute the average molecular…

  15. A clinical study of fallopian tube recanalization by comptesswely injecting contrast medunm into the uterus

    International Nuclear Information System (INIS)

    Xi Jiayuan; Jiang Yong; Zhu Ying; Gong Hiafeng; Lv Liang; Zhao Xinxiang; Fang Min; Wei Dingying; Hua Jian

    2006-01-01

    Objective: To search for a new, simple, rapid, safe and effective method with combination of hystero. Salingography and fallopian tube recanalization. Methods: After the double-lumen balloon catheter was inserted into the uterine cavity and then followed by saline or air injection into to the saccule. The internal os of cervix was thus blocked by the filled saccule. Iohexol was injected into uterine cavity and fallopian tubes to undertake hystero-salingography and selective radiography under the television observation. In case of obstruction the fallopian tube recanalization could be obtained by manual increasing the contrast injection pressure into the uterine cavity. Results: 2698 cases including 811 primary infertile women and 1887 cases of secondary infertilities were examed by this method. The number of obstructed fallopian tube was 3082 including 1561 right fallopian tubes and 1521 left ones. The rate of tube obstruction was 77.77% and that of tube recanalization was 88.96% including 2397 branches recanalized completely and 322 partially recanalizd. The venous reflux was found in 27 cases and light complications included slight vagina bleeding, mild transient spastic pain without mortality. Conclusion: This method of combining hystero-salinography and fallopian tube recanalization, is safe, effective, economic and practical for infertile women with quick procedure process; and worthy to be recommended. (authors)

  16. In Situ Balloon-Borne Ice Particle Imaging in High-Latitude Cirrus

    Science.gov (United States)

    Kuhn, Thomas; Heymsfield, Andrew J.

    2016-09-01

    Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time, these clouds absorb the infrared radiation from the Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions and particle shapes. Knowledge of these cloud properties is also needed for calibrating and validating passive and active remote sensors. Ice particles of sizes below 100 µm are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. Furthermore, artefacts are produced by shattering of particles on the leading surfaces of the aircraft probes when particles several hundred microns or larger are present. Here, we report on a series of balloon-borne in situ measurements that were carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The method used here avoids these issues experienced with the aircraft probes. Furthermore, with a balloon-borne instrument, data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always unused section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 µm together with a pixel resolution of 1.65 µm allows particle detection at sizes of 10 µm and larger. For particles that are 20 µm (12 pixel) in size or larger, the shape can be recognized. The sampling volume, 130 cm3 s-1, is well defined and independent of particle size. With the encountered number concentrations of between 4 and 400 L-1, this required about 90- to 4-s sampling times to

  17. Meshed-Pumpkin Super-Pressure Balloon Design

    Science.gov (United States)

    Jones, Jack; Yavrouian, Andre

    2003-01-01

    An improved, lightweight design has been proposed for super-pressure balloons used to carry scientific instruments at high altitudes in the atmosphere of Earth for times as long as 100 days. [A super-pressure balloon is one in which the pressure of the buoyant gas (typically, helium) is kept somewhat above ambient pressure in order to maintain approximately constant density and thereby regulate the altitude.] The proposed design, called "meshed pumpkin," incorporates the basic concept of the pumpkin design, which is so named because of its appearance. The pumpkin design entails less weight than does a spherical design, and the meshed-pumpkin design would reduce weight further. The basic idea of the meshed-pumpkin design is to reinforce the membrane of a pumpkin balloon by attaching a strong, lightweight fabric mesh to its outer surface. The reinforcement would make it possible to reduce the membrane mass to one-third or less of that of the basic pumpkin design while retaining sufficient strength to enable the balloon to remain at approximately constant altitude for months.

  18. Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

    International Nuclear Information System (INIS)

    Blanford, R.

    2005-01-01

    We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (25-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO will detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter technology used in balloon-borne experiments (Welcome-1) and AstroE2 Hard X-ray Detector. PoGO consists of close-packed array of 397 hexagonal well-type phoswich counters. Each unit is composed of a long thin tube (well) of slow plastic scintillator, a solid rod of fast plastic scintillator, and a short BGO at the base. A photomultiplier coupled to the end of the BGO detects light from all 3 scintillators. The rods with decay times 2 ) strike a fast scintillator, some are Compton scattered. A fraction of the scattered photons are absorbed in another rod (or undergo a second scatter). A valid event requires one clean fast signal of pulse-height compatible with photo-absorption (> 20keV) and one or more compatible with Compton scattering (< 10keV). Studies based on EGS4 (with polarization features) and Geant4 predict excellent background rejection and high sensitivity

  19. Cryo-balloon catheter localization in fluoroscopic images

    Science.gov (United States)

    Kurzendorfer, Tanja; Brost, Alexander; Jakob, Carolin; Mewes, Philip W.; Bourier, Felix; Koch, Martin; Kurzidim, Klaus; Hornegger, Joachim; Strobel, Norbert

    2013-03-01

    Minimally invasive catheter ablation has become the preferred treatment option for atrial fibrillation. Although the standard ablation procedure involves ablation points set by radio-frequency catheters, cryo-balloon catheters have even been reported to be more advantageous in certain cases. As electro-anatomical mapping systems do not support cryo-balloon ablation procedures, X-ray guidance is needed. However, current methods to provide support for cryo-balloon catheters in fluoroscopically guided ablation procedures rely heavily on manual user interaction. To improve this, we propose a first method for automatic cryo-balloon catheter localization in fluoroscopic images based on a blob detection algorithm. Our method is evaluated on 24 clinical images from 17 patients. The method successfully detected the cryoballoon in 22 out of 24 images, yielding a success rate of 91.6 %. The successful localization achieved an accuracy of 1.00 mm +/- 0.44 mm. Even though our methods currently fails in 8.4 % of the images available, it still offers a significant improvement over manual methods. Furthermore, detecting a landmark point along the cryo-balloon catheter can be a very important step for additional post-processing operations.

  20. Introduction (Special Issue on Scientific Balloon Capabilities and Instrumentation)

    Science.gov (United States)

    Gaskin, Jessica A.; Smith, I. S.; Jones, W. V.

    2014-01-01

    In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of 2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3,000 kg. Long-duration balloons can currently support mission durations lasting 55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science.) Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.

  1. Looners: Inside the world of balloon fetishism

    OpenAIRE

    McIntyre, Karen E

    2011-01-01

    In the spring of 1997, Shaun had just broken up with a boyfriend, and his roommate had moved out. Living alone for the first time and relieved of the fear that someone might walk in the door, he was finally able to indulge his fantasy. The young man sat on his couch and started blowing up balloons. Shaun had loved playing with balloons since he was a child. When he hit puberty, he felt his first orgasm rubbing against a balloon. It was then that his relationship with the object took ...

  2. Taking the Hot Air Out of Balloons.

    Science.gov (United States)

    Brinks, Virgil L.; Brinks, Robyn L.

    1994-01-01

    Describes how a teacher can give their students the challenge of designing and building model balloons or blimps. The project helps students learn the basics of balloon flight and what it really means to be "lighter than air." (PR)

  3. Tungsten anode tubes with K-edge filters for mammography

    Energy Technology Data Exchange (ETDEWEB)

    Beaman, S.; Lillicrap, S.C. (Wessex Regional Medical Physics Service, Bath (UK)); Price, J.L. (Jarvis Screening Centre, Guildford (UK))

    1983-10-01

    Optimum X-ray energies for mammography have previously been calculated using the maximum signal to noise ratio (SNR) per unit dose to the breast, or the minimum exposure for constant SNR. Filters having absorption edges at appropriate energy positions have been used to modify the shape of tungsten anode spectra towards the calculated optimum. The suitability of such spectra for practical use has been assessed by comparing the film image quality and the incident breast dose obtained using a K-edge filtered tungsten anode tube with that obtained using a molybdenum anode. Image quality has been assessed by using a 'random' phantom and by comparing mammograms where one breast was radiographed using a filtered tungsten anode tube and the other using a standard molybdenum anode unit. Relative breast doses were estimated from both ionisation chamber measurements with a phantom and thermoluminescent dosimetry measurements on the breast. Film image quality assessment indicated that the filtered tungsten anode tube gave results not significantly different from those obtained with a molybdenum anode tube for a tissue thickness of about 4 cm and which were better for larger breast thicknesses. Doses could be reduced to between one-half and one-third with the filtered tungsten anode tube.

  4. Tungsten anode tubes with K-edge filters for mammography

    International Nuclear Information System (INIS)

    Beaman, S.; Lillicrap, S.C.; Price, J.L.

    1983-01-01

    Optimum X-ray energies for mammography have previously been calculated using the maximum signal to noise ratio (SNR) per unit dose to the breast, or the minimum exposure for constant SNR. Filters having absorption edges at appropriate energy positions have been used to modify the shape of tungsten anode spectra towards the calculated optimum. The suitability of such spectra for practical use has been assessed by comparing the film image quality and the incident breast dose obtained using a K-edge filtered tungsten anode tube with that obtained using a molybdenum anode. Image quality has been assessed by using a 'random' phantom and by comparing mammograms where one breast was radiographed using a filtered tungsten anode tube and the other using a standard molybdenum anode unit. Relative breast doses were estimated from both ionisation chamber measurements with a phantom and thermoluminescent dosimetry measurements on the breast. Film image quality assessment indicated that the filtered tungsten anode tube gave results not significantly different from those obtained with a molybdenum anode tube for a tissue thickness of abut 4 cm and which were better for larger breast thicknesses. Doses could be reduced to between one-half and one-third with the filtered tungsten anode tube. (U.K.)

  5. Paraplegia following intraaortic balloon circulatory assistance

    Directory of Open Access Journals (Sweden)

    Benício Anderson

    1999-01-01

    Full Text Available Intraaortic balloon counterpulsation is frequently used in patients experiencing severe ventricular dysfunction following maximal drug therapy. However, even with the improvement of percutaneous insertion techniques, the procedure has always been followed by vascular, infectious, and neurological complications. This article describes a case of paraplegia due to intraaortic balloon counterpulsation in the postoperative period of cardiac surgery.

  6. Deflation of gastric band balloon in pregnancy for improving outcomes.

    Science.gov (United States)

    Jefferys, Amanda E; Siassakos, Dimitrios; Draycott, Tim; Akande, Valentine A; Fox, Robert

    2013-04-30

    In line with the rise in the prevalence of obesity, an increasing number of women of childbearing age are undergoing laparoscopic adjustable gastric banding (LAGB), resulting in an increasing number of pregnancies with a band in place. Currently, there is no consensus on optimal band management in pregnancy. Some clinicians advocate leaving the band balloon inflated to reduce gestational weight gain and associated adverse perinatal outcomes. However, there are concerns that maintaining balloon inflation during pregnancy might increase the risk of band complications and adversely affect fetal development and/or growth as a result of reduced nutritional intake. To compare maternal and perinatal outcomes for elective gastric band balloon deflation versus intention to maintain balloon inflation during pregnancy. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 September 2012) and the Web of Science database (1940 to September 2012). Randomised-controlled trials comparing elective deflation of the gastric band balloon with intention to maintain balloon inflation in pregnant women who have undergone LAGB. Two review authors independently assessed studies for inclusion. No studies met the criteria for inclusion in the review. To date no randomised controlled trials exist that compare elective deflation of the gastric band balloon in pregnancy versus intention to maintain balloon inflation. Further research is needed to define the optimum management of the gastric band balloon in pregnancy.

  7. Reduction of prostate intrafraction motion using gas-release rectal balloons

    International Nuclear Information System (INIS)

    Su Zhong; Zhao Tianyu; Li Zuofeng; Hoppe, Brad; Henderson, Randy; Mendenhall, William; Nichols, R. Charles; Marcus, Robert; Mendenhall, Nancy

    2012-01-01

    Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated with the van Herk formula of 2.5Σ+ 0.7σ to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior–inferior (SI) and anterior–posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left–right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.

  8. Reduction of prostate intrafraction motion using gas-release rectal balloons

    Energy Technology Data Exchange (ETDEWEB)

    Su Zhong; Zhao Tianyu; Li Zuofeng; Hoppe, Brad; Henderson, Randy; Mendenhall, William; Nichols, R. Charles; Marcus, Robert; Mendenhall, Nancy [Department of Radiation Oncology, University of Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States)

    2012-10-15

    Purpose: To analyze prostate intrafraction motion using both non-gas-release (NGR) and gas-release (GR) rectal balloons and to evaluate the ability of GR rectal balloons to reduce prostate intrafraction motion. Methods: Twenty-nine patients with NGR rectal balloons and 29 patients with GR balloons were randomly selected from prostate patients treated with proton therapy at University of Florida Proton Therapy Institute (Jacksonville, FL). Their pretreatment and post-treatment orthogonal radiographs were analyzed, and both pretreatment setup residual error and intrafraction-motion data were obtained. Population histograms of intrafraction motion were plotted for both types of balloons. Population planning target-volume (PTV) margins were calculated with the van Herk formula of 2.5{Sigma}+ 0.7{sigma} to account for setup residual errors and intrafraction motion errors. Results: Pretreatment and post-treatment radiographs indicated that the use of gas-release rectal balloons reduced prostate intrafraction motion along superior-inferior (SI) and anterior-posterior (AP) directions. Similar patient setup residual errors were exhibited for both types of balloons. Gas-release rectal balloons resulted in PTV margin reductions from 3.9 to 2.8 mm in the SI direction, 3.1 to 1.8 mm in the AP direction, and an increase from 1.9 to 2.1 mm in the left-right direction. Conclusions: Prostate intrafraction motion is an important uncertainty source in radiotherapy after image-guided patient setup with online corrections. Compared to non-gas-release rectal balloons, gas-release balloons can reduce prostate intrafraction motion in the SI and AP directions caused by gas buildup.

  9. New concepts for interplanetary balloons and blimps, particularly for Titan

    Science.gov (United States)

    Nott, J.

    This paper proposes novel approaches for balloons for planets Titan BALLUTE A balloon or blimp arriving at a planet or moon with an atmosphere might inflate falling under a parachute or after landing Neither is ideal In both cases the envelope must include qualities needed for inflation as well as those for flight A ballute BALLoon parachUTE could be used thus a ballute is like a hot air balloon with a large mouth Initially it fills by ram pressure descending through an atmosphere As proposed it would then be heated by solid propellant It would stop descending and float level with hot air lift It is now a perfect location for inflation without wind or movement through the atmosphere and away from the uncertainties of the surface A ballute could be used over several bodies in the solar system BALLOONS FOR LOW TEMPERATURES Flight in very low temperatures is also discussed Conditions are so different that it is useful to examine basic factors These apply for any planet with low temperature and weather calm enough for balloons or blimps First for terrestrial hot air balloons thermal radiation is usually the dominant way heat is lost But radiation rises with the 4th power of absolute temperature At Titan radiation will be one or two orders of magnitude smaller Also the dense atmosphere allows small balloons small temperature differences So convection is small It appears a hot air balloon can easily be heated by a radioactive source likely carried to make electricity Pinholes are not important in such a balloon

  10. Multicentre survey of radiologically inserted gastrostomy feeding tube (RIG) in the UK

    International Nuclear Information System (INIS)

    Lowe, A.S.; Laasch, H.U.; Stephenson, S.; Butterfield, C.; Goodwin, M.; Kay, C.L.; Glancy, S.; Jackson, S.; Brown, D.; McLean, P.; Keanie, J.; Thrower, A.; Briggs, R.; Punekar, S.; Krishnan, S.; Thomas, B.; Yap, K.; Mullan, D.; Maskell, G.; Hancock, J.

    2012-01-01

    Aims: To evaluate the variance in current UK clinical practice and clinical outcomes for direct percutaneous radiologically inserted gastrostomy (RIG). Materials and methods: A prospective UK multicentre survey of RIG performed between October 2008 and August 2010 was performed through the British Society of Gastrointestinal and Abdominal Radiology (BSGAR). Results: Data from 684 patients were provided by 45 radiologists working at 17 UK centres. Two hundred and sixty-three cases (40%) were performed with loop-retained catheters, and 346 (53%) with balloon-retained devices. Sixty percent of all patients experienced pain in the first 24 h, but settled in the majority thereafter. Early complications, defined as occurring in the first 24 h, included minor bleeding (1%), wound infection (3%), peritonism (2%), and tube misplacement (1%). Late complications, defined as occurring between day 2 and day 30 post-procedure, included mild pain (30%), persisting peritonism (2%), and 30 day mortality of 1% (5/665). Pre-procedural antibiotics or anti-methicillin-resistant Staphylococcus aureus (MRSA) prophylaxis did not affect the rate of wound infection, peritonitis, post-procedural pain, or mortality. Ninety-three percent of cases were performed using gastropexy. Gastropexy decreased post-procedural pain (p < 0.001), but gastropexy-related complications occurred in 5% of patients. However, post-procedure pain increased with the number of gastropexy sutures used (p < 0.001). The use of gastropexy did not affect the overall complication rate or mortality. Post-procedure pain increased significantly as tube size increased (p < 0.001). The use of balloon-retention feeding tubes was associated with more pain than the deployment of loop-retention devices (p < 0.001). Conclusion: RIG is a relatively safe procedure with a mortality of 1%, with or without gastropexy. Pain is the commonest complication. The use of gastropexy, fixation dressing or skin sutures, smaller tube sizes, and

  11. Ballooning modes or Fourier modes in a toroidal plasma?

    International Nuclear Information System (INIS)

    Connor, J.W.; Taylor, J.B.

    1987-01-01

    The relationship between two different descriptions of eigenmodes in a torus is investigated. In one the eigenmodes are similar to Fourier modes in a cylinder and are highly localized near a particular rational surface. In the other they are the so-called ballooning modes that extend over many rational surfaces. Using a model that represents both drift waves and resistive interchanges the transition from one of these structures to the other is investigated. In this simplified model the transition depends on a single parameter which embodies the competition between toroidal coupling of Fourier modes (which enhances ballooning) and variation in frequency of Fourier modes from one rational surface to another (which diminishes ballooning). As the coupling is increased each Fourier mode acquires a sideband on an adjacent rational surface and these sidebands then expand across the radius to form the extended mode described by the conventional ballooning mode approximation. This analysis shows that the ballooning approximation is appropriate for drift waves in a tokamak but not for resistive interchanges in a pinch. In the latter the conventional ballooning effect is negligible but they may nevertheless show a ballooning feature. This is localized near the same rational surface as the primary Fourier mode and so does not lead to a radially extended structure

  12. Aviation investigation report : hard landing : fuel leak and fire[Sundance Balloons International Firefly 12B (hot air balloon) C-FNVM, Winnipeg, Manitoba, 15 nm NE, 11 August 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-08-15

    This investigation report discussed an incident in Winnipeg in which a hot air balloon attempting to land during strong winds was dragged on its side for approximately 700 feet. The balloon's burners struck the ground as the balloon came to a stop, after which a propane leak occurred. An intense, uncontrolled fire ensued as balloon passengers were exiting from the partially-inverted basket. The pilot and 2 passengers suffered serious injuries, while another 4 passengers suffered minor injuries. The balloon's 2 propane tanks and a fire extinguisher canister exploded during the fire, which destroyed the balloon's basket. The rigging of the balloon was examined and no failures were discovered. Pressure tests showed that the balloon's hoses started leaking at the crimped sleeve fittings at 150 psi. While the pilot had been informed of potentially heavy winds and thunderstorms, changes in wind speed and direction occurred earlier than the forecasted time of 10:00. It was concluded that standards are needed to ensure balloon cabin safety. Balloon operators do not currently require the use of protective helmets or gloves in case of dragged landings. A review will be conducted to address the issue of proposed emergency fuel shut-offs for balloons carrying fare-paying passengers. 2 figs.

  13. Optical characteristics of the thin-film scintillator detector

    International Nuclear Information System (INIS)

    Muga, L.; Burnsed, D.

    1976-01-01

    A study of the thin-film detector (TFD) was made in which various light guide and scintillator film support configurations were tested for efficiency of light coupling. Masking of selected portions of the photomultiplier (PM) tube face revealed the extent to which emitted light was received at the exposed PM surfaces. By blocking off selected areas of the scintillator film surface from direct view of the PM tube faces, a measure of the light-guiding efficiency of the film and its support could be estimated. The picture that emerges is that, as the light which is initially trapped in the thin film spreads radially outward from the ion entrance/exit point, it is scattered out of the film by minute imperfections. Optimum signals were obtained by a configuration in which the thin scintillator film was supported on a thin rectangular Celluloid frame inserted within a highly polished metal cylindrical sleeve

  14. Balloon dilatation of iatrogenic urethral strictures

    International Nuclear Information System (INIS)

    Acunas, B.; Acunas, G.; Gokmen, E.; Celik, L.

    1988-01-01

    Balloon dilatation of the urethra was performed in five patients with iatrogenic urethral strictures. The urethral strictures were successfully negotiated and dilated in all patients. Redilatation became necessary in a period ranging from 3 to 10 months. The authors believe that balloon dilatation of the urethra can be safely and successfully performed; the procedure produces minimal trauma and immediate relief of symptoms. (orig.)

  15. Balloon catheter dilation of benign esophageal stenosis in children

    International Nuclear Information System (INIS)

    Fan Guoping; Yu Juming; Zhong Weixing; Zhu Ming; Wu Yeming; Shi Chengren

    2001-01-01

    Objective: To evaluate the methods and effect of balloon catheter dilation of benign esophageal stenosis in children. Methods: 9 cases had an anastomotic stenosis after surgical correction of esophageal atresia; 11 cases of esophageal stenosis due to ingestion of caustics; one case had an lower esophageal stenosis after Nissen surgery and one case after gastro-esophagoplasty. Age ranged from 17 days to 7 years. Each case had a barium esophagram before balloon dilation. The balloon size varied from 3 to 10 mm in diameter. Results: 21 cases were successful after dilation of balloon catheter. There were no esophageal perforation and complications. The satisfactory results maintained from six months to thirty months. Conclusions: Balloon catheter dilation is a simple, safe and reliable method for the treatment of benign esophageal strictures in children as the first choice

  16. Digital Radiography Qualification of Tube Welding

    Science.gov (United States)

    Carl, Chad

    2012-01-01

    The Orion Project will be directing Lockheed Martin to perform orbital arc welding on commodities metallic tubing as part of the Multi Purpose Crew Vehicle assembly and integration process in the Operations and Checkout High bay at Kennedy Space Center. The current method of nondestructive evaluation is utilizing traditional film based x-rays. Due to the high number of welds that are necessary to join the commodities tubing (approx 470), a more efficient and expeditious method of nondestructive evaluation is desired. Digital radiography will be qualified as part of a broader NNWG project scope.

  17. An Overview of Current and Future Stratospheric Balloon Mission Capabilities

    Science.gov (United States)

    Smith, Michael

    The modern stratospheric balloon has been used for a variety of missions since the late 1940's. Capabilities of these vehicles to carry larger payloads, fly to higher altitudes, and fly for longer periods of time have increased dramatically over this time. In addition to these basic performance metrics, reliability statistics for balloons have reached unprecedented levels in recent years. Balloon technology developed in the United States in the last decade has the potential to open a new era in economical space science using balloons. As always, the advantage of the balloon platform is the fact that missions can be carried out at a fraction of the cost and schedule of orbital missions. A secondary advantage is the fact that instruments can be re-flown numerous times while upgrading sensor and data processing technologies from year to year. New mission capabilities now have the potential for enabling ground breaking observations using balloons as the primary platform as opposed to a stepping stone to eventual orbital observatories. The limit of very high altitude balloon missions will be explored with respect to the current state of the art of balloon materials and fabrication. The same technological enablers will also be applied to possibilities for long duration missions at mid latitudes with payloads of several tons. The balloon types and their corresponding mission profiles will be presented in a performance matrix that will be useful for potential scientific users in planning future research programs.

  18. An analysis of the deployment of a pumpkin balloon at Mars

    Science.gov (United States)

    Rand, J. L.; Phillips, M. L.

    2004-01-01

    The design of large superpressure balloons has received significant attention in recent years due to the successful demonstration of various enabling technologies and materials. Of particular note is the "pumpkin" shaped balloon concept, which allows the stress in the envelope to be limited by the surface geometry. Unlike a sphere, where the radius used to determine the stress is determined by the volume of the balloon, the pumpkin utilizes a system of meridional tendons to react the loading in one direction, and form a number of lobes, which limit the stress in the circumferential direction. A suitable superpressure balloon has been designed using this technology which will carry 2 kg in the atmosphere of Mars. The deployment of this balloon is assumed to occur while falling on a decelerator suitably designed for the Mars atmosphere. The inflation is accomplished by a 10 kg system suspended at the nadir of the balloon. As the system falls toward the surface of the planet, helium gas is transferred into the balloon, forming a partially inflated system very similar to an ascending zero pressure balloon. This analysis incorporates the flow of the planetary gas around the inflating balloon which alters the pressure distribution and shape. As a result, stresses are seen to increase beyond the design values which will require the balloon to be redesigned to accommodate this type of dynamic deployment.

  19. False coronary dissection with the new Monorail angioplasty balloon catheter.

    Science.gov (United States)

    Esplugas, E; Cequier, A R; Sabaté, X; Jara, F

    1990-01-01

    During percutaneous transluminal coronary angioplasty, the appearance of persistent staining in the vessel by contrast media suggests coronary dissection. We report seven patients in whom a false image of severe coronary dissection was observed during angioplasty performed with the new Monorail balloon catheter. This image emerges at the moment of balloon inflation, is distally located to the balloon, and disappears with balloon catheter deflation. No complications were associated with the appearance of this image.

  20. Cathode Readout with Stripped Resistive Drift Tubes

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Kekelidze, G.D.; Novikov, E.A.; Peshekhonov, V.D.; Shafranov, M.D.; Zhil'tsov, V.E.

    1994-01-01

    A straw tube drift chamber prototype has been constructed and tested. The straw tube material is mylar film covered with carbon layer of resistivity 0.5, 30 and 70 k Ohm/sq. The gas mixture used was Ar/CH 4 . Both the anode wire and cathode signals were detected in order to study the behaviour of the chamber in the presence of X-ray ionization. The construction and the results of the study are presented. 7 refs., 11 figs., 1 tab

  1. Adjustable continence balloons

    DEFF Research Database (Denmark)

    Kjær, Line; Fode, Mikkel; Nørgaard, Nis

    2012-01-01

    Abstract Objective. This study aimed to evaluate the results of the Danish experience with the ProACT urinary continence device inserted in men with stress urinary incontinence. Material and methods. The ProACT was inserted in 114 patients. Data were registered prospectively. The main endpoints...... in urinary leakage > 50% was seen in 72 patients (80%). Complications were seen in 23 patients. All of these were treated successfully by removal of the device in the outpatient setting followed by replacement of the device. Another eight patients had a third balloon inserted to improve continence further....... Fourteen patients (12%) ended up with an artificial sphincter or a urethral sling. Sixty patients (63%) experienced no discomfort and 58 (61%) reported being dry or markedly improved. Overall, 50 patients (53%) reported being very or predominantly satisfied. Conclusions. Adjustable continence balloons seem...

  2. Thromboembolic events associated with single balloon-, double balloon-, and stent-assisted coil embolization of asymptomatic unruptured cerebral aneurysms: evaluation with diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Takigawa, Tomoji; Suzuki, Kensuke; Sugiura, Yoshiki; Suzuki, Ryotaro; Takano, Issei; Shimizu, Nobuyuki; Tanaka, Yoshihiro; Hyodo, Akio

    2014-01-01

    The introduction of the balloon remodeling and stent-assisted technique has revolutionized the approach to coil embolization for wide-neck aneurysms. The purpose of this study was to determine the frequency of thromboembolic events associated with single balloon-assisted, double balloon-assisted, and stent-assisted coil embolization for asymptomatic unruptured aneurysms. A retrospective review was undertaken by 119 patients undergoing coiling with an adjunctive technique for unruptured saccular aneurysms (64 single balloon, 12 double balloon, 43 stent assisted). All underwent diffusion-weighted imaging (DWI) within 24 h after the procedure. DWI showed hyperintense lesions in 48 (40 %) patients, and ten (21 %) of these patients incurred neurological deterioration (permanent, two; transient, eight). Hyperintense lesions were detected significantly more often in procedures with the double balloon-assisted technique (7/12, 58 %) than with the single balloon-assisted technique (16/64, 25 %, p = 0.05). Occurrence of new lesions was significantly higher with the use of stent-assisted technique (25/43, 58 %) than with the single balloon-assisted technique (p = 0.001). Symptomatic ischemic rates were similar between the three groups. The increased number of microcatheters was significantly related to the DWI abnormalities (two microcatheters, 15/63 (23.8 %); three microcatheters, 20/41 (48.8 %) (p = 0.008); four microcatheters, 12/15 (80 %) (p = 0.001)). Thromboembolic events detected on DWI related to coil embolization for unruptured aneurysms are relatively common, especially in association with the double balloon-assisted and stent-assisted techniques. Furthermore, the number of microcatheters is highly correlated with DWI abnormalities. The high rate of thromboembolic events suggests the need for evaluation of platelet reactivity and the addition or change of antiplatelet agents. (orig.)

  3. Analysis of current diffusive ballooning mode

    International Nuclear Information System (INIS)

    Yagi, M.; Azumi, M.; Itoh, K.; Itoh, S.; Fukuyama, A.

    1993-04-01

    The current diffusive ballooning mode is analysed in the tokamak plasma. This mode is destabilized by the current diffusivity (i.e., the electron viscosity) and stabilized by the thermal conductivity and ion viscosity. By use of the ballooning transformation, the eigenmode equation is solved. Analytic solution is obtained by the strong ballooning limit. Numerical calculation is also performed to confirm the analytic theory. The growth rate of the mode and the mode structure are analysed. The stability boundary is derived in terms of the current diffusivity, thermal conductivity, ion viscosity and the pressure gradient for the given shear parameter. This result is applied to express the thermal conductivity in terms of the pressure gradient, magnetic configurational parameters (such as the safety factor, shear and aspect ratio) and the Prandtl numbers. (author)

  4. Design and evaluation of a continuum robot with extendable balloons

    Directory of Open Access Journals (Sweden)

    E. Y. Yarbasi

    2018-02-01

    Full Text Available This article presents the design and preliminary evaluation of a novel continuum robot actuated by two extendable balloons. Extendable balloons are utilized as the actuation mechanism of the robot, and they are attached to the tip from their slack sections. These balloons can extend very much in length without having a significant change in diameter. Employing two balloons in an axially extendable, radially rigid flexible shaft, radial strain becomes constricted, allowing high elongation. As inflated, the balloons apply a force on the wall of the tip, pushing it forward. This force enables the robot to move forward. The air is supplied to the balloons by an air compressor and its flow rate to each balloon can be independently controlled. Changing the air volumes differently in each balloon, when they are radially constricted, orients the robot, allowing navigation. Elongation and force generation capabilities and pressure data are measured for different balloons during inflation and deflation. Afterward, the robot is subjected to open field and maze-like environment navigation tests. The contribution of this study is the introduction of a novel actuation mechanism for soft robots to have extreme elongation (2000 % in order to be navigated in substantially long and narrow environments.

  5. Generating Carbon Tubes and Films from Lead and Cadmium Wires During Underwater Spark Discharges

    International Nuclear Information System (INIS)

    Taka-aki Matsumoto

    2000-01-01

    In general, no nuclear reactions between charged particles would be possible in a low-energy region. However, many experimental data of nuclear transmutation with low energy were recently reported related to so-called cold fusion. This paper describes some kinds of low-energy nuclear reactions (LENRs), which could be induced during an underwater spark discharge (USD) with only(approx)120 V. The mechanisms of the extraordinary nuclear transmutation can be explained by the Nattoh model. The electron bonding of sparks, which was a special state of atomic clusters, was so strong that multibody nuclear reactions such as nuclear collapse[called electro-nuclear collapse (ENC)] could take place in the spark. Because of ENC, completely broken materials could be again regenerated as conventional elements. The film product was considered to be made by a spherical explosion of a small black hole and the tube by a rotational eruption of a small white hole, both of which resulted from ENC

  6. Removal of retained biliary concretions through the T-tube track

    International Nuclear Information System (INIS)

    Daehnert, W.; Guenther, R.; Schmidt, H.D.; Staritz, M.; Thelen, M.; Mainz Univ.

    1984-01-01

    Within seven years 23 patients were treated postoperatively by percutaneous bile stone extraction. This procedure was successful in 18 patients. Although an interval of 5-7 weeks between choledochotomy and percutaneous extraction is recommended, the procedure was done 11 to 31 days after surgery with no negative effects. In six cases the stones had to be dislodged into a more favorable position with a Fogarty-type balloon catheter. The papilla of Vater was dilated in two cases. With the development of newer techniques trans-T-tube extraction remains the treatment of choice in retained intra- and extrahepatic bile duct stones. (orig.) [de

  7. Innovations in Balloon Catheter Technology in Rhinology.

    Science.gov (United States)

    D'Anza, Brian; Sindwani, Raj; Woodard, Troy D

    2017-06-01

    Since being introduced more than 10 years ago, balloon catheter technology (BCT) has undergone several generations of innovations. From construction to utilization, there has been a myriad of advancements in balloon technology. The ergonomics of the balloon dilation systems have improved with a focus on limiting the extra assembly. "Hybrid" BCT procedures have shown promise in mucosal preservation, including treating isolated complex frontal disease. Multiple randomized clinical trials report improved long-term outcomes in stand-alone BCT, including in-office use. The ever-expanding technological innovations ensure BCT will be a key component in the armamentarium of the modern sinus surgeon. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A model for correlating burnout in round tubes

    International Nuclear Information System (INIS)

    Kirby, G.J.

    1966-09-01

    A model is presented which represents the film flow rate in the climbing film regime of boiling two phase flow. By calculating the dryout point burnout heat fluxes for round tubes both uniformly and non-uniformly heated axially have been predicted with accuracies as good as the best empirical correlations. The model is used to investigate the effect of varying flux profile as well as the other system describing parameters. (author)

  9. Fluorescence Lyman-Alpha Stratospheric Hygrometer (FLASH): application on meteorological balloons, long duration balloons and unmanned aerial vehicles.

    Science.gov (United States)

    Lykov, Alexey; Khaykin, Sergey; Yushkov, Vladimir; Efremov, Denis; Formanyuk, Ivan; Astakhov, Valeriy

    The FLASH instrument is based on the fluorescent method, which uses H2O molecules photodissociation at a wavelength lambda=121.6 nm (Lalpha - hydrogen emission) followed by the measurement of the fluorescence of excited OH radicals. The source of Lyman-alpha radiation is a hydrogen discharge lamp while the detector of OH fluorescence at 308 -316 nm is a photomultiplier run in photon counting mode. The intensity of the fluorescent light as well as the instrument readings is directly proportional to the water vapor mixing ratio under stratospheric conditions with negligible oxygen absorption. Initially designed for rocket-borne application, FLASH has evolved into a light-weight balloon sonde (FLASH-B) for measurements in the upper troposphere and stratosphere on board meteorological and small plastic balloons. This configuration has been used in over 100 soundings at numerous tropical mid-latitude and polar locations within various international field campaigns. An airborne version of FLASH instrument is successfully utilized onboard stratospheric M55-Geophysica aircraft and tropospheric airborne laboratory YAK42-Roshydromet. The hygrometer was modified for application onboard stratospheric long-duration balloons (FLASH-LDB version). This version was successfully used onboard CNES super-pressure balloon launched from SSC Esrange in March 2007 and flown during 10 days. Special design for polar long duration balloon PoGOLite was created for testing work during polar day in June 2013. Installation and measurement peculiarities as well as observational results are presented. Observations of water vapour using FLASH-B instrument, being of high quality are rather costly as the payload recovery is often complicated and most of the time impossible. Following the goal to find a cost-efficient solution, FLASH was adapted for use onboard Unmanned Aerial Vehicles (UAV). This solution was only possible thanks to compactness and light-weight (0.5 kg) of FLASH instrument. The

  10. Rectal Balloon for the Immobilization of the Prostate Internal Motion

    International Nuclear Information System (INIS)

    Lee, Sang Kyu; Beak, Jong Geal; Kim, Joo Ho; Jeon, Byong Chul; Cho, Jeong Hee; Kim, Dong Wook; Song, Tae Soo; Cho, Jae Ho; Na, Soo Kyong

    2005-01-01

    The using of endo-rectal balloon has proposed as optimal method that minimized the motion of prostate and the dose of rectum wall volume for treated prostate cancer patients, so we make the customized rectal balloon device. In this study, we analyzed the efficiency of the Self-customized rectal balloon in the aspects of its reproducibility. In 5 patients, for treatment planning, each patient was acquired CT slice images in state of with and without rectal balloon. Also they had CT scanning same repeated third times in during radiation treatment (IMRT). In each case, we analyzed the deviation of rectal balloon position and verified the isodose distribution of rectum wall at closed prostate. Using the rectal balloon, we minimized the planning target volume (PTV) by decreased the internal motion of prostate and overcome the dose limit of radiation therapy in prostate cancer by increased the gap between the rectum wall and high dose region. The using of rectal balloon, although, was reluctant to treat by patients. View a point of immobilization of prostate internal motion and dose escalation of GTV (gross tumor volume), its using consider large efficient for treated prostate cancer patients.

  11. Development of radioactive 166Ho-coated balloon and its dose estimation

    International Nuclear Information System (INIS)

    Park, K. B.; Kim, K. H.; Hong, Y. D.; Park, E. W.

    2000-01-01

    The use of balloon with radioisotope is a promising method to prevent restenosis after transluminal coronary arterial angioplasty or stent implantation. In this study, we have developed a new radioactive coated balloon, which is prepared by coating the surface of existing balloon with 166 Ho instead of being filled with beta sources which emit high energy beta-particles for the purpose of the delivery of sufficient radiation to the vessel wall. To estimate the safety of 166 Ho-coated balloon, leaching test and radiation resistance test of the balloon were performed. The absorbed dose distributions around the 166 Ho-coated balloon were estimated by means of Monte Carlo simulation and the initial activities for optimal therapeutic regimen were determined on the basis of this results

  12. Slit Tubes for Semisoft Pneumatic Actuators.

    Science.gov (United States)

    Belding, Lee; Baytekin, Bilge; Baytekin, Hasan Tarik; Rothemund, Philipp; Verma, Mohit S; Nemiroski, Alex; Sameoto, Dan; Grzybowski, Bartosz A; Whitesides, George M

    2018-03-01

    This article describes a new principle for designing soft or 'semisoft' pneumatic actuators: SLiT (for SLit-in-Tube) actuators. Inflating an elastomeric balloon, when enclosed by an external shell (a material with higher Young's modulus) containing slits of different directions and lengths, produces a variety of motions, including bending, twisting, contraction, and elongation. The requisite pressure for actuation depends on the length of the slits, and this dependence allows sequential actuation by controlling the applied pressure. Different actuators can also be controlled using external "sliders" that act as reprogrammable "on-off" switches. A pneumatic arm and a walker constructed from SLiT actuators demonstrate their ease of fabrication and the range of motions they can achieve. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Gastric emptying and intragastric balloon in obese patients.

    Science.gov (United States)

    Bonazzi, P; Petrelli, M D; Lorenzini, I; Peruzzi, E; Nicolai, A; Galeazzi, R

    2005-01-01

    Intragastric balloons have been proposed to induce weight loss in obese subjects. The consequences of the balloon on gastric physiology remain poorly studied. We studied the influence of an intragastric balloon on gastric emptying in obese patients. 12 patients were included in the study, with BMI (mean +/- SD) of 38.51 +/- 4.32 kg/m2. The balloon was inserted under light anaesthesia and endoscopic control, inflated with 700 ml saline, and removed 6 months later. Body weight and gastric emptying (T1/2 and T lag) using 13C-octanoic acid breath test were monitored before balloon placement, during its permanence and 2 months after removal. Mean weight loss was: 6.2 +/- 2.3 kg after one month; 12.4 +/- 5.8 kg after 3 months; 14.4 +/- 6.6 kg after 6 months and 10.1 +/- 4.3 kg two months after BIB removal. Gastric emptying rates were significantly decreased in the first periods with balloon in place, and returned to pre-implantation values after balloon removal. T1/2 was: 87 +/- 32 min before BIB positioning, 181 +/- 91 min after 1 month, 145 +/- 99 min after 3 months, 104 +/- 50 min after 6 months and 90 +/- 43 min 2 months after removal. T lag was 36 +/- 18 min before BIB positioning, 102 +/- 82 min after 1 month, 77 +/- 53 min after 3 months, 59 +/- 28 min after 6 months and 40 +/- 21 min. 2 months after removal. BIB in obese patients seems to be a good help in following the hypo caloric diet, especially during the first three months when the gastric emptying is slower and the sense of repletion is higher. After this period gastric emptying starts to return to normal and the stomach adapts to BIB loosing efficacy in weight loss.

  14. Balloon catheter dilatation in esophageal achalasia: long term follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Cheol Yong; Park, Hyun Mee; Kim, So Eun; Lee, Shin Hyung; Kim, Seung Hyeon; Lee, Chang Joon [National Medical Center, Seoul (Korea, Republic of)

    1994-12-15

    To evaluate the clinical efficacy of balloon catheter dilatation in the treatment of esophageal achalasia. Seven patients(three males and four females) with esopha-geal achalasia were treated with balloon catheter dilatation. Balloon catheters of variable sizes were used depending on patient's conditions. The patients were followed up over a period of 12-39 months. Balloon catheter dilatation in esophageal achalasia was successful in all patients without esophageal perforation. All patients were relieved from dysphagia. Recurrence was not found in 5 patients on long term follow-up study, but was seen in 2 patients after 18 and 21 months, respectively. Balloon catheter dilatation was a safe and effective method in the treatment of esophageal achalasia with low recurrence rate of 29% on follow-up study.

  15. Balloon catheter dilatation in esophageal achalasia: long term follow-up

    International Nuclear Information System (INIS)

    Shin, Cheol Yong; Park, Hyun Mee; Kim, So Eun; Lee, Shin Hyung; Kim, Seung Hyeon; Lee, Chang Joon

    1994-01-01

    To evaluate the clinical efficacy of balloon catheter dilatation in the treatment of esophageal achalasia. Seven patients(three males and four females) with esopha-geal achalasia were treated with balloon catheter dilatation. Balloon catheters of variable sizes were used depending on patient's conditions. The patients were followed up over a period of 12-39 months. Balloon catheter dilatation in esophageal achalasia was successful in all patients without esophageal perforation. All patients were relieved from dysphagia. Recurrence was not found in 5 patients on long term follow-up study, but was seen in 2 patients after 18 and 21 months, respectively. Balloon catheter dilatation was a safe and effective method in the treatment of esophageal achalasia with low recurrence rate of 29% on follow-up study

  16. Ballooning Stability of the Compact Quasiaxially Symmetric Stellarator

    International Nuclear Information System (INIS)

    Redi, M.H.; Canik, J.; Dewar, R.L.; Johnson, J.L.; Klasky, S.; Cooper, W.A.; Kerbichler, W.

    2001-01-01

    The magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), expected to achieve good stability and particle confinement is examined with a method that can lead to estimates of global stability. Making use of fully 3D, ideal-MHD stability codes, the QAS beta is predicted to be limited above 4% by ballooning and high-n kink modes. Here MHD stability is analyzed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space [s, alpha, theta(subscript ''k'')]; s is the edge normalized toroidal flux, alpha is the field line variable, and theta(subscript ''k'') is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, with new types of nonsymmetric, eigenvalue isosurfaces in both the stable and unstable spectrum. The isosurfaces around the most unstable points i n parameter space (well above marginal) are topologically spherical. In such cases, attempts to use ray tracing to construct global ballooning modes lead to a k-space runaway. Introduction of a reflecting cutoff in k(perpendicular) to model numerical truncation or finite Larmor radius (FLR) yields chaotic ray paths ergodically filling the allowed phase space, indicating that the global spectrum must be described using the language of quantum chaos theory. However, the isosurface for marginal stability in the cases studied are found to have a more complex topology, making estimation of FLR stabilization more difficult

  17. Evolution of gettering technologies for vacuum tubes to getters for MEMS

    Science.gov (United States)

    Amiotti, M.

    2008-05-01

    Getter materials are technically proven and industrially accepted practical ways to maintain vacuum inside hermetically sealed tubes or devices to assure high reliability and long lifetime of the operating devices. The most industrially proven vacuum tube is the cathode rays tubes (CRTs), where large surfaces are available for the deposition of an evaporated barium film by a radio frequency inductive heating of a stainless steel container filled with a BaAl4 powder mixed to Ni powder. The evolution of the CRTs manufacturing technologies required also new types of barium getters able to withstand some thermal process in air without any deterioration of the evaporation characteristics. In other vacuum tubes such as traveling waves tubes, the space available for the evaporation of a barium film and the sorption capacity required to assure the vacuum for the lifetime of the devices did not allow the use of the barium film, prompting the development of sintered non evaporable getter pills that can be activated during the manufacturing process or by flowing current through an embedded resistance. The same sintered non evaporable getter pills could find usage also in evacuated parts to thermally isolate the infrared sensors for different final applications. In high energy physics particle accelerators, the getter technology moved from localized vacuum getter pumps or getter strips to a getter coating over the surface of vacuum chambers in order to guarantee a more uniform pumping speed. With the advent of solid state electronics, new challenges faced the getter technology to assure long life to vacuum or inert gas filled hermetical packages containing microelectronic devices, especially in the telecommunication and military applications. A well known problem of GaAs devices with Pd or Pt metalization is the H2 poisoning of the metal gate: to prevent this degradation a two layer getter film has been develop to absorb a large quantity of H2 per unit of getter surface. The

  18. Balloon dilatation of the prostatic urethra

    International Nuclear Information System (INIS)

    Lee, Yeon Soo; Shim, Hyung Jin; Cha, Kyung Soo; Hong, Ju Hee; Lim, Myung Ah; Kim, Cheol Soo

    1991-01-01

    We analyzed the result of transurethral balloon dilatation in 11 patients with benign prostatic hypertrophy. The procedures were performed under intravenous sedation and local anesthesia with double lumen balloon catheter at 4 atmosphere for 10 minutes. After dilatation, the prostatism symptom scores improved in 10 out of 11 patients and the mean diameter of the prostatic urethra significantly increased form 4.3 mm to 10.2 mm (ρ < 0.005). The procedures were successful not only in lateral lobe hypertrophy but also in median lobe hypertrophy of the prostate. Postdilatation MRI of 1 patient showed an intact prostatic capsule and no periprostatic hematoma. Complications did not develop except in 1 patient with mild hematuria and incontinence. These preliminary results suggest that transurethral balloon dilatation can be an effective and safe treatment modality for benign prostatic hypertrophy

  19. Wind-Driven Montgolfiere Balloons for Mars

    Science.gov (United States)

    Jones, Jack A.; Fairbrother, Debora; Lemieux, Aimee; Lachenmeier, Tim; Zubrin, Robert

    2005-01-01

    Solar Montgolfiere balloons, or solar-heated hot air balloons have been evaluated by use on Mars for about 5 years. In the past, JPL has developed thermal models that have been confirmed, as well as developed altitude control systems to allow the balloons to float over the landscape or carry ground sampling instrumentation. Pioneer Astronautics has developed and tested a landing system for Montgolfieres. JPL, together with GSSL. have successfully deployed small Montgolfieres (<15-m diameter) in the earth's stratosphere, where conditions are similar to a Mars deployment. Two larger Montgolfieres failed, however, and a series of larger scale Montgolfieres is now planned using stronger, more uniform polyethylene bilaminate, combined with stress-reducing ripstitch and reduced parachute deceleration velocities. This program, which is presently under way, is a joint effort between JPL, WFF, and GSSL, and is planned for completion in three years.

  20. Theoretical study of evaporation heat transfer in horizontal microfin tubes: stratified flow model

    Energy Technology Data Exchange (ETDEWEB)

    Honda, H; Wang, Y S [Kyushu Univ., Inst. for Materials Chemistry and Engineering, Kasuga, Fukuoka (Japan)

    2004-08-01

    The stratified flow model of evaporation heat transfer in helically grooved, horizontal microfin tubes has been developed. The profile of stratified liquid was determined by a theoretical model previously developed for condensation in horizontal microfin tubes. For the region above the stratified liquid, the meniscus profile in the groove between adjacent fins was determined by a force balance between the gravity and surface tension forces. The thin film evaporation model was applied to predict heat transfer in the thin film region of the meniscus. Heat transfer through the stratified liquid was estimated by using an empirical correlation proposed by Mori et al. The theoretical predictions of the circumferential average heat transfer coefficient were compared with available experimental data for four tubes and three refrigerants. A good agreement was obtained for the region of Fr{sub 0}<2.5 as long as partial dry out of tube surface did not occur. (Author)

  1. Aerial Deployment and Inflation System for Mars Helium Balloons

    Science.gov (United States)

    Lachenmeler, Tim; Fairbrother, Debora; Shreves, Chris; Hall, Jeffery, L.; Kerzhanovich, Viktor V.; Pauken, Michael T.; Walsh, Gerald J.; White, Christopher V.

    2009-01-01

    A method is examined for safely deploying and inflating helium balloons for missions at Mars. The key for making it possible to deploy balloons that are light enough to be buoyant in the thin, Martian atmosphere is to mitigate the transient forces on the balloon that might tear it. A fully inflated Mars balloon has a diameter of 10 m, so it must be folded up for the trip to Mars, unfolded upon arrival, and then inflated with helium gas in the atmosphere. Safe entry into the Martian atmosphere requires the use of an aeroshell vehicle, which protects against severe heating and pressure loads associated with the hypersonic entry flight. Drag decelerates the aeroshell to supersonic speeds, then two parachutes deploy to slow the vehicle down to the needed safe speed of 25 to 35 m/s for balloon deployment. The parachute system descent dynamic pressure must be approximately 5 Pa or lower at an altitude of 4 km or more above the surface.

  2. Spectrum of ballooning instabilities in a stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W A [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Singleton, D B [Australian National Univ., ANU Supercomputing Facility, Canberra (Australia); Dewar, R L [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1995-08-01

    The recent revival of interest in the application of the `ballooning formalism` to low-frequency plasma instabilities has prompted a comparison of the Wentzel-Brillouin-Kramers (WKB) ballooning approximation with an (in principle) exact normal mode calculation for a three-dimensional plasma equilibrium. Semiclassical quantization, using the ideal magnetohydrodynamic (MHD) ballooning eigenvalue to provide a local dispersion relation, is applied to a ten-field period stellarator test case. Excellent qualitative agreement, and good quantitative agreement is found with predictions from the TERPSICHORE code for toroidal mode numbers from 1 to 14 and radial mode numbers from 0 to 2. The continuum bands predicted from three-dimensional WKB theory are too narrow to resolve. (author) 3 figs., 24 refs.

  3. Spectrum of ballooning instabilities in a stellarator

    International Nuclear Information System (INIS)

    Cooper, W.A.; Singleton, D.B.; Dewar, R.L.

    1995-08-01

    The recent revival of interest in the application of the 'ballooning formalism' to low-frequency plasma instabilities has prompted a comparison of the Wentzel-Brillouin-Kramers (WKB) ballooning approximation with an (in principle) exact normal mode calculation for a three-dimensional plasma equilibrium. Semiclassical quantization, using the ideal magnetohydrodynamic (MHD) ballooning eigenvalue to provide a local dispersion relation, is applied to a ten-field period stellarator test case. Excellent qualitative agreement, and good quantitative agreement is found with predictions from the TERPSICHORE code for toroidal mode numbers from 1 to 14 and radial mode numbers from 0 to 2. The continuum bands predicted from three-dimensional WKB theory are too narrow to resolve. (author) 3 figs., 24 refs

  4. A balloon-borne experiment to investigate the Martian magnetic field

    Science.gov (United States)

    Schwingenschuh, K.; Feldhofer, H.; Koren, W.; Jernej, I.; Stachel, M.; Riedler, W.; Slamanig, H.; Auster, H.-U.; Rustenbach, J.; Fornacon, H. K.; Schenk, H. J.; Hillenmaier, O.; Haerendel, G.; Yeroshenko, Ye.; Styashkin, V.; Zaroutzky, A.; Best, A.; Scholz, G.; Russell, C. T.; Means, J.; Pierce, D.; Luhmann, J. G.

    1996-03-01

    The Space Research Institute of the Austrian Academy, of Sciences (Graz, Austria) in cooperation with MPE (Berlin, Germany), GFZ Potsdam (Obs. Niemegk, Germany) IZMIRAN/IOFAN (Moscow, Russian) and IGPP/UCLA (Los Angeles, USA) is designing the magnetic field experiment MAGIBAL (MAGnetic field experiment aboard a martian BALloon) to investigate the magnetic field on the surface of Mars. The dual sensor fluxgate magnetometer is part of the MARS-98/MARS-TOGETHER balloon payload. During a ten days period the balloon will float over a distance of about 2000 km at altitudes between 0 and 4 km. Due to the limited power and telemetry allocation the magnetometer can transmit only one vector per ten seconds and spectral information in the frequency range from 2 - 25 Hz. The dynamic range is +/- 2000 nT. The main scientific objectives of the experiment are: • Determination of the magnetism of the Martian rocks • Investigation of the leakage of the solar wind induced magnetosphere using the correlation between orbiter and balloon observations • Measurement of the magnetic field profile between the orbiter and the surface of Mars during the descent phase of the balloon. Terrestrial test flights with a hot air balloon were performed in order to test the original MAGIBAL equipment under balloon flight conditions.

  5. Usefulness of cutting balloon angioplasty for the treatment of congenital heart defects.

    Science.gov (United States)

    Kusa, Jacek; Mazurak, Magdalena; Skierska, Agnieszka; Szydlowski, Leslaw; Czesniewicz, Pawel; Manka, Lukasz

    2018-01-01

    Patients with complex congenital heart defects may have different hemodynamic prob-lems which require a variety of interventional procedures including angioplasty which involves using high-pressure balloons. After failure of conventional balloon angioplasty, cutting balloon angioplasty is the next treatment option available. The purpose of this study was to evaluate the safety and efficacy of cutting balloon angioplasty in children with different types of congenital heart defects. Cutting balloon angioplasty was performed in 28 children with different congenital heart defects. The indication for cutting balloon angioplasty was: pulmonary artery stenosis in 17 patients, creating or dilatation of interatrial communication in 10 patients, and stenosis of left subclavian artery in 1 patient. In the pulmonary arteries group there was a significant decrease in systolic blood pressure (SBP) in the proximal part of the artery from the average 74.33 ± 20.4 mm Hg to 55 ± 16.7 mm Hg (p cutting balloon angioplasty was performed after an unsuccessful classic Rashkind procedure. After cutting balloon angioplasty there was a significant widening of the interatrial communication. Cutting balloon angioplasty is a feasible and effective treatment option in different con-genital heart defects.

  6. Heat transfer with geometric shape of micro-fin tubes (I) - Condensing heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, K M; Chang, J S; Bai, C H; Chung, M [Yeungnam University, Kyungsan (Korea)

    1999-11-01

    To examine the enhancement mechanism of condensing heat transfer through microfin tube, the condensation experiments with refrigerant HCFC 22 are performed using 4 and 6 kinds of microfin tubes with outer diameter of 9.52 mm and 7.0 mm, respectively. Used microfin tubes have different shape and number of fins with each other. The main heat transfer enhancement mechanism is known to be the enlargement of heat transfer area and turbulence promotion. Together with these main factors, we can find other enhancement factors by the experimental data, which are the overflow of the refrigerant over the microfin and microfin arrangement. The overflow of the refrigerant over the microfin can be analyzed by the geometric shape of the microfin. microfin tubes having a shape which can give much overflow over the microfin show large condensing heat transfer coefficients. The effect of microfin arrangement is related to the heat transfer resistance of liquid film of refrigerant. The condensing heat transfer coefficients are high for the microfin tube with even distribution of liquid film. 17 refs., 14 figs., 3 tabs.

  7. Balloon-Assisted Chemoembolization Using a Micro-Balloon Catheter Alongside a Microcatheter for a Hepatocellular Carcinoma with a Prominent Arterioportal Shunt: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Hoshiai, Sodai, E-mail: hoshiai@sb4.so-net.ne.jp; Mori, Kensaku; Ishiguro, Toshitaka; Konishi, Takahiro; Uchikawa, Yoko [University of Tsukuba Hospital, Department of Diagnostic and Interventional Radiology (Japan); Fukuda, Kuniaki [University of Tsukuba Hospital, Department of Gastroenterology (Japan); Minami, Manabu [University of Tsukuba Hospital, Department of Diagnostic and Interventional Radiology (Japan)

    2017-04-15

    Although transcatheter arterial chemoembolization is one of the established treatments for hepatocellular carcinoma (HCC), it is difficult to treat HCCs with prominent arterioportal (AP) shunts because anticancer drugs and embolic materials migrate into the non-tumorous liver through the AP shunts and may cause liver infarction. We developed a novel method of balloon-assisted chemoembolization using a micro-balloon catheter alongside a microcatheter simultaneously inserted through a single 4.5-Fr guiding sheath, comprising proximal chemoembolization with distal arterial balloon occlusion. We applied this method to treat an HCC with a prominent distal AP shunt induced by previous proton beam therapy and achieved successful chemoembolization without non-tumorous liver infarction under temporal balloon occlusion of a distal AP shunt.

  8. A thin-lip rupture of carbon steel superheater boiler tube

    International Nuclear Information System (INIS)

    Khalil, E.O.; Alzoye, K.S.; Elwaer, A.M.

    1993-01-01

    A ruptured A 42 medium carbon steel tube was collected by the engineering department in one of our steam power stations. Inspection of ruptured tube revealed a thin - lip fracture with brownish thin layer of oxide film on inner tube surfaces. There was no evidence of pitting, the outer surfaces of the tube exhibited a general oxidized conditions. A micro section taken near the fracture surface consists of ferrite and martensite, the amount of martensite decreased as we away from the fracture surface. Presence of martensite phase in the microstructure indicates that the tube material has been overheated. An erosion corrosion mechanism in conjunction with overheated. An erosion corrosion mechanism in conjunction with overheating resulted in strength deterioration with consequent premature failure. 4 fig., 1 tab

  9. Balloon sheaths for gastrointestinal guidance and access: a preliminary phantom study

    International Nuclear Information System (INIS)

    He, Xu; Shin, Ji Hoon; Kim, Hyo Cheol; Woo, Cheol Woong; Woo, Sung Ha; Choi, Won Chan; Kim, Jong Gyu; Lim, Jin Oh; Kim, Tae Hyung; Yoon, Chang Jin; Song, Ho Young; Kang, Wee Chang

    2005-01-01

    We wanted to evaluate the feasibility and usefulness of a newly designed balloon sheath for gastrointestinal guidance and access by conducting a phantom study. The newly designed balloon sheath consisted of an introducer sheath and a supporting balloon. A coil catheter was advanced over a guide wire into two gastroduodenal phantoms (one was with stricture and one was without stricture); group I was without a balloon sheath, group II was with a deflated balloon sheath, and groups III and IV were with an inflated balloon and with the balloon in the fundus and body, respectively. Each test was performed for 2 minutes and it was repeated 10 times in each group by two researchers, and the positions reached by the catheter tip were recorded. Both researchers had better performances with both phantoms in order of group IV, III, II and I. In group IV, both researchers advanced the catheter tip through the fourth duodenal segment in both the phantoms. In group I, however, the catheter tip never reached the third duodenal segment in both the phantoms by both the researchers. The numeric values for the four study groups were significantly different for both the phantoms (ρ < 0.001). A significant difference was also found between group III and IV for both phantoms (ρ < 0.001). The balloon sheath seems to be feasible for clinical use, and it has good clinical potential for gastrointestinal guidance and access, particularly when the inflated balloon is placed in the gastric body

  10. Stabilization of ballooning modes with sheared toroidal rotation

    International Nuclear Information System (INIS)

    Miller, R.L.; Waelbroeck, F.L.; Hassam, A.B.; Waltz, R.E.

    1995-01-01

    Stabilization of magnetohydrodynamic ballooning modes by sheared toroidal rotation is demonstrated using a shifted circle equilibrium model. A generalized ballooning mode representation is used to eliminate the fast Alfven wave, and an initial value code solves the resulting equations. The s-α diagram (magnetic shear versus pressure gradient) of ballooning mode theory is extended to include rotational shear. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency (dΩ/dq, where Ω is the angular toroidal velocity and q is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and direct stable access to the second stability regime occurs when this frequency is approximately one-quarter to one-half the Alfven frequency, ω A =V A /qR. copyright 1995 American Institute of Physics

  11. Thermal behaviour of pressure tube under fully and partially voided heating conditions using 19 pin fuel element simulator

    International Nuclear Information System (INIS)

    Yadav, Ashwini K.; Kumar, Ravi; Gupta, Akhilesh; Chatterjee, B.; Mukhopadhya, D.; Lele, H.G.

    2011-01-01

    In a nuclear reactor temperature can rise drastically during LOCA due to failure of heat transportation system and subsequently leads to mechanical deformations like sagging, ballooning and breaching of pressure tube. To understand the phenomenon an experiment has been carried out using 19 pin fuel element simulator. Main purpose of the experiment was to trace temperature profiles over the pressure tube, calandria tube and clad tubes of 220 MWe Indian Pressurised Heavy Water Reactor (IPHWR). The symmetrical heating of pressure tube of 1 m length was done through resistance heating of 19 pins under 13.5 kW power using a rectifier and the variation of temperatures over the circumference of pressure tube (PT), calandria tube (CT) and clad tubes were measured. The sagging of pressure tube was initiated at 460 deg C temperature and highest temperature attained was 650 deg C. The highest temperature attained by clad tubes was 680 deg C (over outer ring) and heat is dissipated to calandria vessel mainly due to radiation and natural convection. Again to simulate partially voided conditions, asymmetrical heating of pressure was carried out by injecting 8 kW power to upper 8 pins of fuel simulator. A maximum temperature difference of 295 deg C was observed over the circumference of pressure tube which highlights the magnitude of thermal stresses and its role in breaching of pressure tube under partially voided conditions. Integrity of pressure tube was retained during both symmetrical and asymmetrical heatup conditions. (author)

  12. Ozone profiles from tethered balloon measurements in an urban plume experiment

    Science.gov (United States)

    Youngbluth, O., Jr.; Storey, R. W.; Clendenin, C. G.; Jones, S.; Leighty, B.

    1981-01-01

    NASA Langley Research Center used two tethered balloon systems to measure ozone in the general area of Norfolk, Va. The large balloon system which has an altitude range of 1,500 meters was located at Wallops Island, Va., and the smaller balloon which has an altitude range of 900 meters was located at Chesapeake, Va. Each balloon system measured ozone, temperature, humidity, wind speed, and wind direction from ground to its maximum altitude. From these measurements and from the location of the balloon sites, areas of ozone generation and ozone transport may be inferred. The measurements which were taken during August 1979 are discussed as well as the measurement techniques.

  13. Complex Coronary Interventions with the Novel Mozec™ CTO Balloon: The MOZART Registry.

    Science.gov (United States)

    Lupi, Alessandro; Rognoni, Andrea; Schaffer, Alon; Secco, Gioel G; Bongo, Angelo S

    2015-01-01

    Mozec™ CTO is a novel semicompliant rapid-exchange PTCA balloon catheter with specific features dedicated to treat complex coronary lesions like chronic total occlusions (CTOs). However, no data have been reported about the performance of this device in an all-comers population with complex coronary lesions. We evaluated the safety and success rate of Mozec™ CTO balloon in 41 consecutive patients with chronic stable angina and complex coronary lesions (15 severe calcified coronary stenoses, 15 bifurcation lesions with planned two-stent intervention, and 11 CTOs). Safety was assessed reporting the balloon burst rate after inflation exceeding the rated burst pressure (RBP) according to the manufacturer's reference table. Success was defined as the possibility to advance the device further the target lesion. The Mozec™ CTO balloon showed an excellent performance with a 93.3% success in crossing tight and severely calcified lesions (14/15 pts), a 93.3% success in engaging jailed side branches after stent deployment across bifurcations (14/15 pts), and a 90.9% success in crossing CTO lesions (10/11 pts). The burst rate at RBP of the Mozec™ CTO balloon was 6.7% (1/15 balloons) in the tight and severely calcified lesions, 6.7% (1/15 balloons) when dilating jailed vessels, and 9.1% (1/11 balloons) in CTOs. The novel Mozec™ CTO balloon dilatation catheter showed promising results when employed to treat complex lesions in an all-comers population. Further studies should clarify if this kind of balloon might reduce the need of more costly devices like over-the-wire balloons and microcatheters for complex lesions treatment.

  14. X-ray phase imaging using a X-ray tube with a small focal spot. Improvement of image quality in mammography

    International Nuclear Information System (INIS)

    Honda, Chika; Ohara, Hiromu; Ishisaka, Akira; Shimada, Fumio

    2002-01-01

    Phase contrast X-ray imaging has been studied intensively using X-rays from synchrotron radiation and micro-focus X-ray tubes. However, these studies have revealed the difficulty of this technique's application to practical medical imaging. We have created a phase contrast imaging technique using a molybdenum X-ray tube with a small focal spot size for mammography. We identified the radiographic conditions in phase contrast magnification mammography with a screen-film system, where edge effect due to phase contrast overcomes geometrical unsharpness caused by the 0.1 mm-focal spot of a molybdenum X-ray tube. The edge enhancement due to phase imaging was observed in an image of a plastic tube, and then geometrical configuration of the X-ray tube, the object and the screen-film system was determined for phase imaging of mammography. In order to investigate a potential for medical application of this method, we conducted evaluation of the images of the American Collage of Radiology (ACR) 156 mammography phantom. We obtained higher scores for phase imaging using high speed screen-film systems without any increase of X-ray dose than the score for contract imaging using a standard speed screen-film system. (author)

  15. Balloon-Borne Infrasound Detection of Energetic Bolide Events

    Science.gov (United States)

    Young, Eliot F.; Ballard, Courtney; Klein, Viliam; Bowman, Daniel; Boslough, Mark

    2016-10-01

    Infrasound is usually defined as sound waves below 20 Hz, the nominal limit of human hearing. Infrasound waves propagate over vast distances through the Earth's atmosphere: the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization) has 48 installed infrasound-sensing stations around the world to detect nuclear detonations and other disturbances. In February 2013, several CTBTO infrasound stations detected infrasound signals from a large bolide that exploded over Chelyabinsk, Russia. Some stations recorded signals that had circumnavigated the Earth, over a day after the original event. The goal of this project is to improve upon the sensitivity of the CTBTO network by putting microphones on small, long-duration super-pressure balloons, with the overarching goal of studying the small end of the NEO population by using the Earth's atmosphere as a witness plate.A balloon-borne infrasound sensor is expected to have two advantages over ground-based stations: a lack of wind noise and a concentration of infrasound energy in the "stratospheric duct" between roughly 5 - 50 km altitude. To test these advantages, we have built a small balloon payload with five calibrated microphones. We plan to fly this payload on a NASA high-altitude balloon from Ft Sumner, NM in August 2016. We have arranged for three large explosions to take place in Socorro, NM while the balloon is aloft to assess the sensitivity of balloon-borne vs. ground-based infrasound sensors. We will report on the results from this test flight and the prospects for detecting/characterizing small bolides in the stratosphere.

  16. Sound and vision: visualization of music with a soap film

    Science.gov (United States)

    Gaulon, C.; Derec, C.; Combriat, T.; Marmottant, P.; Elias, F.

    2017-07-01

    A vertical soap film, freely suspended at the end of a tube, is vibrated by a sound wave that propagates in the tube. If the sound wave is a piece of music, the soap film ‘comes alive’: colours, due to iridescences in the soap film, swirl, split and merge in time with the music (see the snapshots in figure 1 below). In this article, we analyse the rich physics behind these fascinating dynamical patterns: it combines the acoustic propagation in a tube, the light interferences, and the static and dynamic properties of soap films. The interaction between the acoustic wave and the liquid membrane results in capillary waves on the soap film, as well as non-linear effects leading to a non-oscillatory flow of liquid in the plane of the film, which induces several spectacular effects: generation of vortices, diphasic dynamical patterns inside the film, and swelling of the soap film under certain conditions. Each of these effects is associated with a characteristic time scale, which interacts with the characteristic time of the music play. This article shows the richness of those characteristic times that lead to dynamical patterns. Through its artistic interest, the experiments presented in this article provide a tool for popularizing and demonstrating science in the classroom or to a broader audience.

  17. Design Evolution and Methodology for Pumpkin Super-Pressure Balloons

    Science.gov (United States)

    Farley, Rodger

    The NASA Ultra Long Duration Balloon (ULDB) program has had many technical development issues discovered and solved along its road to success as a new vehicle. It has the promise of being a sub-satellite, a means to launch up to 2700 kg to 33.5 km altitude for 100 days from a comfortable mid-latitude launch point. Current high-lift long duration ballooning is accomplished out of Antarctica with zero-pressure balloons, which cannot cope with the rigors of diurnal cycles. The ULDB design is still evolving, the product of intense analytical effort, scaled testing, improved manufacturing, and engineering intuition. The past technical problems, in particular the s-cleft deformation, their solutions, future challenges, and the methodology of pumpkin balloon design will generally be described.

  18. The role of scientific ballooning for exploration of the magnetosphere

    International Nuclear Information System (INIS)

    Block, L.P.; Lazutin, L.L.; Riedler, W.

    1984-11-01

    The magnetosphere is explored in situ by satellites, but measurements near the low altitude magnetospheric boundary by rockets, balloons and groundbased instruments play a very significant role. The geomagnetic field provides a frame with anisotropic wave and particle propagation effects, enabling remote sensing of the distant magnetosphere by means of balloon-borne and groundbased instruments. Examples will be given of successful studies, with coordinated satellite and balloon observations, of substorm, pulsation and other phenomena propagating both along and across the geomagnetic field. Continued efforts with sophisticated balloon-borne instrumentations should contribute substantially to our understanding of magnetospheric physics. (Author)

  19. Montgolfiere balloon missions from Mars and Titan

    Science.gov (United States)

    Jones, Jack A.

    2005-01-01

    Montgolfieres, which are balloons that are filled with heated ambient atmospheric gas, appear promising for the exploration of Mars as well as of Saturn's moon, Titan. On Earth, Montgolfieres are also known as 'hot air balloons'. Commercial versions are typically heated by burning propane, although a number of radiant and solar-heated Montgolfieres have been flown on earth by CNES.

  20. Location and data collection for long stratospheric balloon flights

    Science.gov (United States)

    Malaterre, P.

    Stratospheric balloons capable of taking a 30 kg scientific payload to an altitude of 22 to 30 km for 1 month or more were developed. In-flight experiments were used to qualify the designs of a pumpkin shaped superpressure balloon and an infrared hot air balloon. Tracking of the flights (location and transmission of the parameters measured on board) was achieved using a telemetry gondola including an ARGOS beacon adapted for operation in the low temperatures encountered.

  1. Euso-Balloon: A pathfinder mission for the JEM-EUSO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Osteria, Giuseppe, E-mail: osteria@na.infn.it [Istituto Nazionale di Fisica Nucleare Sezione di Napoli, Naples (Italy); Scotti, Valentina [Istituto Nazionale di Fisica Nucleare Sezione di Napoli, Naples (Italy); Università di Napoli Federico II, Dipartimento di Fisica, Naples (Italy)

    2013-12-21

    EUSO-Balloon is a pathfinder mission for JEM-EUSO, the near-UV telescope proposed to be installed on board the ISS in 2017. The main objective of this pathfinder mission is to perform a full scale end-to-end test of all the key technologies and instrumentation of JEM-EUSO detectors and to prove the entire detection chain. EUSO-Balloon will measure the atmospheric and terrestrial UV background components, in different observational modes, fundamental for the development of the simulations. Through a series of flights performed by the French Space Agency CNES, EUSO-Balloon also has the potential to detect Extensive Air Showers (EAS) from above. EUSO-Balloon will be mounted in an unpressurized gondola of a stratospheric balloon. We will describe the instrument and the electronic system which performs instrument control and data management in such a critical environment.

  2. 78 FR 18533 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Science.gov (United States)

    2013-03-27

    ... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... Hot Air Balloons Ltd female ACME threaded hose connectors, part numbers HS6139 and HS6144, installed... follows: * * * * * (c) Applicability This AD applies to Lindstrand Hot Air Balloons Ltd female ACME...

  3. 77 FR 64763 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Science.gov (United States)

    2012-10-23

    ... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... propose to adopt a new airworthiness directive (AD) for certain Lindstrand Hot Air Balloons Ltd female... identified in this proposed AD, contact Lindstrand Hot Air Balloons Ltd., Maesbury Road, Oswestry, Shropshire...

  4. 78 FR 9785 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Science.gov (United States)

    2013-02-12

    ... Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration... airworthiness directive (AD) for certain Lindstrand Hot Air Balloons Ltd female ACME threaded hose connectors...., Washington, DC 20590. For service information identified in this AD, contact Lindstrand Hot Air Balloons Ltd...

  5. Intrarectal pressures and balloon expulsion related to evacuation proctography.

    Science.gov (United States)

    Halligan, S; Thomas, J; Bartram, C

    1995-01-01

    Seventy four patients with constipation were examined by standard evacuation proctography and then attempted to expel a small, non-deformable rectal balloon, connected to a pressure transducer to measure intrarectal pressure. Simultaneous imaging related the intrarectal position of the balloon to rectal deformity. Inability to expel the balloon was associated proctographically with prolonged evacuation, incomplete evacuation, reduced anal canal diameter, and acute anorectal angulation during evacuation. The presence and size of rectocoele or intussusception was unrelated to voiding of paste or balloon. An independent linear combination of pelvic floor descent and evacuation time on proctography correctly predicted maximum intrarectal pressure in 74% of cases. No patient with both prolonged evacuation and reduced pelvic floor descent on proctography could void the balloon, as maximum intrarectal pressure was reduced in this group. A prolonged evacuation time on proctography, in combination with reduced pelvic floor descent, suggests defecatory disorder may be caused by inability to raise intrarectal pressure. A diagnosis of anismus should not be made on proctography solely on the basis of incomplete/prolonged evacuation, as this may simply reflect inadequate straining. PMID:7672656

  6. Ballooning stability analysis of JET H-mode discharges

    International Nuclear Information System (INIS)

    O'Brien, D.P.; Galvao, R.; Keilhacker, M.; Lazzaro, E.; Watkins, M.L.

    1989-01-01

    Previous studies of the stability of a large aspect ratio model equilibrium to ideal MHD ballooning modes have shown that across the bulk of the plasma there exist two marginally stable values of the pressure gradient parameter α. These define an unstable zone which separates the first (small α) stable region from the second (large α) stable region. Close to the separatrix, however, the first and second regions can coalesce when the surface averaged current density, Λ, exceeds a critical value. The plasma in this region is then stable to ballooning modes at all values of the pressure gradient. In this paper we extend these results to JET H-mode equilibria using a finite aspect ratio ballooning formalism, and assess the relevance of ideal ballooning stability in these discharges. In particular we analyse shot 15894 at time 56 sec. which is 1.3 s into the H-phase. (author) 4 refs., 4 figs

  7. Effect of tube potential and image receptor on the detection of natural proximal caries in primary teeth.

    Science.gov (United States)

    Sogur, Elif; Baksı, B Güniz; Orhan, Kaan; Paksoy, S Candan; Dogan, Salih; Erdal, Yılmaz S; Mert, Ali

    2011-12-01

    The aim of this study was to assess the detection of proximal caries in primary teeth at three different tube potentials using Ektaspeed films, storage phosphor plates (SPPs), and a charge-coupled device (CCD). Fifty-three extracted human primary molars with natural proximal caries were radiographed with three different imaging modalities--Digora Optime SPP system, RVGui CCD system, and Ektaspeed films--at 50-, 65-, and 70-kV tube potentials. Three observers scored the resultant images for the presence or absence of caries. The definitive diagnosis was determined by stereomicroscopic assessment. The diagnostic accuracy for each imaging modality was expressed as the area under the receiver operating characteristic curves (A(z)). Differences among the A(z) values were assessed using two-way ANOVA and t tests. Kappa was used to measure inter- and intra-observer agreement. Higher accuracy was found for SPPs compared to film and CCD images at all tube potentials. Accuracy was significantly different only at 50-kV tube setting in favor of SPPs (p tube potential for the diagnosis of proximal caries since further advantages include the elimination of chemical processing, image enhancement, and a better low-contrast detectability performance.

  8. Measurement of liquid film in microchannels using a laser focus displacement meter

    Science.gov (United States)

    Hazuku, Tatsuya; Fukamachi, Norihiro; Takamasa, Tomoji; Hibiki, Takashi; Ishii, Mamoru

    2005-06-01

    This paper presents a new method for measuring the interfacial displacement of a liquid film in microchannels using a laser focus displacement meter (LFD). The purpose of the study is to clarify the effectiveness of the new method for obtaining detailed information concerning interfacial displacement, especially in the case of a thin liquid film, in microchannels and minichannels. To prevent the tube wall signal from disturbing that of the gas liquid interface, a fluorocarbon tube with a water box was used; the refraction index of this device is the same as that for water. With this method, accurate instantaneous measurements of the interfacial displacement of the liquid film were achieved. The error caused by refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated analytically and experimentally. The formulated analytical equation can estimate the real interface displacement by using the measured displacement in a fluorocarbon tube of 25 μm to 2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 mm and 2 mm I.D. showed that the corrected interface displacement calculated by the equation agreed with the real displacement to within a 1% margin of error. It was also confirmed that the LFD in the system could measure a liquid film of 0.25 μm at the thinnest. We made simultaneous measurements of the interface in fluorocarbon tubes of 0.5 mm and 1 mm I.D. using the LFD and a high-speed video camera with a microscope. These showed that the LFD could measure the interface of a liquid film with high spatial and temporal resolution during annular, slug, and piston flow regimes. The data also clarified the existence of a thin liquid film of less than 1 μm in thickness in the slug and annular flow regimes.

  9. Measurement of liquid film in microchannels using a laser focus displacement meter

    Energy Technology Data Exchange (ETDEWEB)

    Hazuku, Tatsuya; Fukamachi, Norihiro; Takamasa, Tomoji [Tokyo University of Marine Science and Technology, Faculty of Marine Technology, Etchujima, Koto, Tokyo (Japan); Hibiki, Takashi [Kyoto University, Research Reactor Institute, Kumatori, Sennan, Osaka (Japan); Ishii, Mamoru [Purdue University, School of Nuclear Engineering, West Lafayette, IN (United States)

    2005-06-01

    This paper presents a new method for measuring the interfacial displacement of a liquid film in microchannels using a laser focus displacement meter (LFD). The purpose of the study is to clarify the effectiveness of the new method for obtaining detailed information concerning interfacial displacement, especially in the case of a thin liquid film, in microchannels and minichannels. To prevent the tube wall signal from disturbing that of the gas-liquid interface, a fluorocarbon tube with a water box was used; the refraction index of this device is the same as that for water. With this method, accurate instantaneous measurements of the interfacial displacement of the liquid film were achieved. The error caused by refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated analytically and experimentally. The formulated analytical equation can estimate the real interface displacement by using the measured displacement in a fluorocarbon tube of 25 {mu}m to 2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 mm and 2 mm I.D. showed that the corrected interface displacement calculated by the equation agreed with the real displacement to within a 1% margin of error. It was also confirmed that the LFD in the system could measure a liquid film of 0.25 {mu}m at the thinnest. We made simultaneous measurements of the interface in fluorocarbon tubes of 0.5 mm and 1 mm I.D. using the LFD and a high-speed video camera with a microscope. These showed that the LFD could measure the interface of a liquid film with high spatial and temporal resolution during annular, slug, and piston flow regimes. The data also clarified the existence of a thin liquid film of less than 1 {mu}m in thickness in the slug and annular flow regimes. (orig.)

  10. Immediate balloon deflation for prevention of persistent phrenic nerve palsy during pulmonary vein isolation by balloon cryoablation.

    Science.gov (United States)

    Ghosh, Justin; Sepahpour, Ali; Chan, Kim H; Singarayar, Suresh; McGuire, Mark A

    2013-05-01

    Persistent phrenic nerve palsy is the most frequent complication of cryoballoon ablation for atrial fibrillation and can be disabling. To describe a technique-immediate balloon deflation (IBD)-for the prevention of persistent phrenic nerve palsy, provide data for its use, and describe in vitro simulations performed to investigate the effect of IBD on the atrium and pulmonary vein. Cryoballoon procedures for atrial fibrillation were analyzed retrospectively (n = 130). IBD was performed in patients developing phrenic nerve dysfunction (n = 22). In vitro simulations were performed by using phantoms. No adverse events occurred, and all patients recovered normal phrenic nerve function before leaving the procedure room. No patient developed persistent phrenic nerve palsy. The mean cryoablation time to onset of phrenic nerve dysfunction was 144 ± 64 seconds. Transient phrenic nerve dysfunction was seen more frequently with the 23-mm balloon than with the 28-mm balloon (11 of 39 cases vs 11 of 81 cases; P = .036). Balloon rewarming was faster following IBD. The time to return to 0 and 20° C was shorter in the IBD group (6.7 vs 8.9 seconds; P = .007 and 16.7 vs 37.6 seconds; Pphrenic nerve palsy. Simulations suggest that IBD is unlikely to damage the atrium or pulmonary vein. Copyright © 2013 Heart Rhythm Society. All rights reserved.

  11. Effects of roll waves on annular flow heat transfer at horizontal condenser tube

    International Nuclear Information System (INIS)

    Kondo, Masaya; Nakamura, Hideo; Anoda, Yoshinari; Sakashita, Akihiro

    2002-01-01

    Heat removal characteristic of a horizontal in-tube condensation heat exchanger is under investigation to be used for a passive containment cooling system (PCCS) of a next generation-type BWR. Flow regime observed at the inlet of the condenser tube was annular flow, and the local heat transfer rate was ∼20% larger than the prediction by the Dobson-Chato correlation. Roll waves were found to appear on the liquid film in the annular flow. The measured local condensation heat transfer rate was being closely related to the roll waves frequency. Based on these observations, a model is proposed which predicts the condensation heat transfer coefficient for annular flows around the tube inlet. The proposed model predicts well the influences of pressure, local gas-phase velocity and film thickness. (author)

  12. Hot air balloon engine

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, Ian [Solartran Pty Ltd, 12 Lentara Street, Kenmore, Brisbane 4069 (Australia)

    2009-04-15

    This paper describes a solar powered reciprocating engine based on the use of a tethered hot air balloon fuelled by hot air from a glazed collector. The basic theory of the balloon engine is derived and used to predict the performance of engines in the 10 kW to 1 MW range. The engine can operate over several thousand metres altitude with thermal efficiencies higher than 5%. The engine thermal efficiency compares favorably with the efficiency of other engines, such as solar updraft towers, that also utilize the atmospheric temperature gradient but are limited by technical constraints to operate over a much lower altitude range. The increased efficiency allows the use of smaller area glazed collectors. Preliminary cost estimates suggest a lower $/W installation cost than equivalent power output tower engines. (author)

  13. Advanced Onboard Energy Storage Solution for Balloons, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Balloon Programs at NASA are looking for a potential 100 day missions at mid-altitudes. These balloons would be powered by solar panels to take advantage of...

  14. Film thickness in gas-liquid two-phase flow, (2)

    International Nuclear Information System (INIS)

    Sekoguchi, Kotohiko; Fukano, Toru; Kawakami, Yasushi; Shimizu, Hideo.

    1977-01-01

    The effect of four rectangular obstacles inserted into a circular tube has been studied in gas-liquid two-phase flow. The obstacles are set on the inner wall of the tube, and the ratio of the opening is 0.6. The water film flows partially through the obstacles. The minimum thickness of water film was measured in relation to flow speed. The serious effect of the obstacles was seen against the formation of water film, and drainage under the obstacles and backward flow play important roles. Since water film can flow partially through the obstacles, the film in case of the rectangular obstacles in thicker than that in case of an orifice when the gas flow speed was slower than 5 m/s. However, when the gas flow speed is over 5 m/s, the film thickness was thinner. The minimum film thickness of downstream of the obstacles was almost same as that in case of no obstacle. The minimum film thickness of up stream depends on the location of measurement due to the effect of drainage. (Kato, T.)

  15. A Rare and Serious Unforeseen Complication of Cutting Balloon Angioplasty

    Directory of Open Access Journals (Sweden)

    Praveen Vemula

    2014-01-01

    Full Text Available Cutting balloon angioplasty (CBA is one of the adept ways of treating “in-stent restenosis.” Various complications related to cutting balloon angioplasty have been reported including arterial rupture, delayed perforation and fracture of microsurgical blades. Here we report a very unusual and inadvertent extraction of a stent previously deployed in the ramus intermedius coronary branch by a cutting balloon catheter. This required repeat stenting of the same site for an underlying dissection. Even though stent extraction is a rare complication it can be serious due to dissection, perforation, and closure of the artery. Physicians performing coronary artery interventions would need to be aware of this rare and serious complication especially if any difficulty is encountered while withdrawing the cutting balloon. Therefore, after removal, cutting balloon should be examined thoroughly for possible stent dislodgment or extraction when used for “in-stent restenosis.”

  16. MHD simulation of high wavenumber ballooning-like modes in LHD

    International Nuclear Information System (INIS)

    Miura, H.; Nakajima, N.

    2008-10-01

    Dynamical growths of high-wavenumber ballooning modes are studied through full-3D nonlinear MHD simulations of the Large Helical Device. The growths of the ballooning modes are identified by studying the growth rates and the radial profiles of the Fourier coefficients of fluctuation variables. The mechanisms to weaken the growth of instability, such as the local fattening of the pressure and the energy release to the parallel kinetic energy, are found being insufficient to suppress the high-wavenumber ballooning modes. Consequently, the mean pressure profile is totally modified when the evolutions of the ballooning modes are saturated. The numerical results reveal that we need some mechanisms which do not originate from an ideal MHD to achieve a mild, saturated behaviors beyond the growths of unstable high ballooning modes in the helical device. The parallel heat conductivity is proposed as one of possible non-ideal mechanisms. (author)

  17. Ballooning Interest in Science.

    Science.gov (United States)

    Kim, Hy

    1992-01-01

    Presents an activity in which students construct model hot air balloons to introduce the concepts of convection current, the principles of Charles' gas law, and three-dimensional geometric shapes. Provides construction and launching instructions. (MDH)

  18. The mathematics of soap films

    CERN Document Server

    Oprea, John

    2000-01-01

    Nature tries to minimize the surface area of a soap film through the action of surface tension. The process can be understood mathematically by using differential geometry, complex analysis, and the calculus of variations. This book employs ingredients from each of these subjects to tell the mathematical story of soap films. The text is fully self-contained, bringing together a mixture of types of mathematics along with a bit of the physics that underlies the subject. The development is primarily from first principles, requiring no advanced background material from either mathematics or physics. Through the Maple® applications, the reader is given tools for creating the shapes that are being studied. Thus, you can "see" a fluid rising up an inclined plane, create minimal surfaces from complex variables data, and investigate the "true" shape of a balloon. Oprea also includes descriptions of experiments and photographs that let you see real soap films on wire frames. The theory of minimal surfaces is a beautif...

  19. Exponential Growth of Nonlinear Ballooning Instability

    International Nuclear Information System (INIS)

    Zhu, P.; Hegna, C. C.; Sovinec, C. R.

    2009-01-01

    Recent ideal magnetohydrodynamic (MHD) theory predicts that a perturbation evolving from a linear ballooning instability will continue to grow exponentially in the intermediate nonlinear phase at the same linear growth rate. This prediction is confirmed in ideal MHD simulations. When the Lagrangian compression, a measure of the ballooning nonlinearity, becomes of the order of unity, the intermediate nonlinear phase is entered, during which the maximum plasma displacement amplitude as well as the total kinetic energy continues to grow exponentially at the rate of the corresponding linear phase.

  20. Refrigerant falling film evaporation review: Description, fluid dynamics and heat transfer

    International Nuclear Information System (INIS)

    Fernández-Seara, José; Pardiñas, Ángel Á.

    2014-01-01

    Falling film horizontal tube evaporators for refrigeration equipment are an interesting alternative to pool boiling evaporators concerning operation costs, safety, thermodynamic efficiency, charge of refrigerant or size. Plenty of literature works studied falling film evaporation, but for its application in fields such as desalination and petrochemical industry or OTEC. This review focuses mainly on those works from the literature that analysed the main issues of falling film evaporation of refrigerants, to better understand heat transfer and fluid dynamics in such evaporators. First, falling film evaporation is described and compared to pool boiling, to define its main advantages and inconveniences. Then, the literature concerning film around the tubes and between them is analysed, as well as the phenomenon of film breakdown, which sharply deteriorates the heat transfer performance of falling film evaporators. After it, the results from those works that studied analytically and experimentally the heat transfer coefficients (HTCs) with different types of tubes and refrigerants are discussed. The review finishes with a brief summary of important parameters of falling film evaporation, which might be useful for the design of such equipment. - Highlights: •We defined falling film evaporation and compared it with pool boiling. •We reviewed works from the literature concerning refrigerant falling film evaporation. •We classified the ideas from the works attending to crucial aspects of the process. •We developed a summary of the main ideas which could be useful for design purpose

  1. An investigation of electrostatically deposited radionuclides on latex balloons

    International Nuclear Information System (INIS)

    Price, T.; Caly, A.

    2012-01-01

    Use of Canadian Nuclear Society (CNS) education material for a community science education event to promote science awareness, science culture and literacy (Science Rendezvous 2011) lead to investigation of observed phenomena. Experiments are done on balloons that are electrostatically charged then left to collect particulate. Alpha spectroscopy was performed to identify alpha emitting radioisotopes present on the balloons. The time dependent behaviour of the activity was investigated. Additionally, the Alpha activity of the balloon was compared to Beta activity. The grounds for further investigations are proposed. (author)

  2. An investigation of electrostatically deposited radionuclides on latex balloons

    Energy Technology Data Exchange (ETDEWEB)

    Price, T.; Caly, A., E-mail: Terry.Price@gmail.com [Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)

    2012-07-01

    Use of Canadian Nuclear Society (CNS) education material for a community science education event to promote science awareness, science culture and literacy (Science Rendezvous 2011) lead to investigation of observed phenomena. Experiments are done on balloons that are electrostatically charged then left to collect particulate. Alpha spectroscopy was performed to identify alpha emitting radioisotopes present on the balloons. The time dependent behaviour of the activity was investigated. Additionally, the Alpha activity of the balloon was compared to Beta activity. The grounds for further investigations are proposed. (author)

  3. Analysis of defect tubes of fast reactor heat exchanger

    International Nuclear Information System (INIS)

    Rukhlyada, N.Ya.

    2014-01-01

    The experimental Auger electron spectroscopy and X-ray diffraction microanalysis data of laboratory investigations of defect tubes of heat exchanger with sodium coolant are presented. Element distribution through depth of corrosion layers form on the side of coolant (sodium) and on the surface contacting with steam in heat exchanger tube is studied. Sodium presence through all thickness of the tube is determined. It is shown that treatment of 12Cr18N9 steel surface by plasma pulses decreases intergranular corrosion susceptibility. It is related with structural changes of surface layer (∼ 20 μm), its enrichment by chromium and formation of chromium oxide protective film [ru

  4. Cutting balloon and high-pressure balloon dilation for palliative treatment of congenital double-chambered right ventricle and primary infundibular stenosis in a Golden retriever dog.

    Science.gov (United States)

    Schober, Karsten E; Rhinehart, Jaylyn; Kohnken, Rebecca; Bonagura, John D

    2017-12-01

    Combined cutting balloon and high-pressure balloon dilation was performed in a dog with a double-chambered right ventricle and severe infundibular stenosis of the right ventricular outflow tract. The peak systolic pressure gradient across the stenosis decreased by 65% after dilation (from 187 mmHg before to 66 mmHg after) affirming the intervention as successful. However, early re-stenosis occurred within 3 months leading to exercise intolerance, exercise-induced syncope, and right-sided congestive heart failure. Cutting balloon followed by high-pressure balloon dilation provided temporary but not long-term relief of right ventricular obstruction in this dog. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Iridium: Global OTH data communications for high altitude scientific ballooning

    Science.gov (United States)

    Denney, A.

    While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several

  6. Evolution of gettering technologies for vacuum tubes to getters for MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Amiotti, M [SAES Getters S.p.A., Viale Italia 77, 20020 Lainate, Milano (Italy)], E-mail: Marco_Amiotti@saes-group.com

    2008-05-01

    Getter materials are technically proven and industrially accepted practical ways to maintain vacuum inside hermetically sealed tubes or devices to assure high reliability and long lifetime of the operating devices. The most industrially proven vacuum tube is the cathode rays tubes (CRTs), where large surfaces are available for the deposition of an evaporated barium film by a radio frequency inductive heating of a stainless steel container filled with a BaAl{sub 4} powder mixed to Ni powder. The evolution of the CRTs manufacturing technologies required also new types of barium getters able to withstand some thermal process in air without any deterioration of the evaporation characteristics. In other vacuum tubes such as traveling waves tubes, the space available for the evaporation of a barium film and the sorption capacity required to assure the vacuum for the lifetime of the devices did not allow the use of the barium film, prompting the development of sintered non evaporable getter pills that can be activated during the manufacturing process or by flowing current through an embedded resistance. The same sintered non evaporable getter pills could find usage also in evacuated parts to thermally isolate the infrared sensors for different final applications. In high energy physics particle accelerators, the getter technology moved from localized vacuum getter pumps or getter strips to a getter coating over the surface of vacuum chambers in order to guarantee a more uniform pumping speed. With the advent of solid state electronics, new challenges faced the getter technology to assure long life to vacuum or inert gas filled hermetical packages containing microelectronic devices, especially in the telecommunication and military applications. A well known problem of GaAs devices with Pd or Pt metalization is the H{sub 2} poisoning of the metal gate: to prevent this degradation a two layer getter film has been develop to absorb a large quantity of H{sub 2} per unit of

  7. Incremental balloon deflation following complete resuscitative endovascular balloon occlusion of the aorta results in steep inflection of flow and rapid reperfusion in a large animal model of hemorrhagic shock.

    Science.gov (United States)

    Davidson, Anders J; Russo, Rachel M; Ferencz, Sarah-Ashley E; Cannon, Jeremy W; Rasmussen, Todd E; Neff, Lucas P; Johnson, M Austin; Williams, Timothy K

    2017-07-01

    To avoid potential cardiovascular collapse after resuscitative endovascular balloon occlusion of the aorta (REBOA), current guidelines recommend methodically deflating the balloon for 5 minutes to gradually reperfuse distal tissue beds. However, anecdotal evidence suggests that this approach may still result in unpredictable aortic flow rates and hemodynamic instability. We sought to characterize aortic flow dynamics following REBOA as the balloon is deflated in accordance with current practice guidelines. Eight Yorkshire-cross swine were splenectomized, instrumented, and subjected to rapid 25% total blood volume hemorrhage. After 30 minutes of shock, animals received 60 minutes of Zone 1 REBOA with a low-profile REBOA catheter. During subsequent resuscitation with shed blood, the aortic occlusion balloon was gradually deflated in stepwise fashion at the rate of 0.5 mL every 30 seconds until completely deflated. Aortic flow rate and proximal mean arterial pressure (MAP) were measured continuously over the period of balloon deflation. Graded balloon deflation resulted in variable initial return of aortic flow (median, 78 seconds; interquartile range [IQR], 68-105 seconds). A rapid increase in aortic flow during a single-balloon deflation step was observed in all animals (median, 819 mL/min; IQR, 664-1241 mL/min) and corresponded with an immediate decrease in proximal MAP (median, 30 mm Hg; IQR, 14.5-37 mm Hg). Total balloon volume and time to return of flow demonstrated no correlation (r = 0.016). This study is the first to characterize aortic flow during balloon deflation following REBOA. A steep inflection point occurs during balloon deflation that results in an abrupt increase in aortic flow and a concomitant decrease in MAP. Furthermore, the onset of distal aortic flow was inconsistent across study animals and did not correlate with initial balloon volume or relative deflation volume. Future studies to define the factors that affect aortic flow during balloon

  8. Investigation of enhanced condensation heat transfer outside vertical titanium circularly-grooved tube

    International Nuclear Information System (INIS)

    Zhaorigetu; Huang Weitang; Lv Xiangbo; Liu Feng

    2005-01-01

    The investigation of enhanced condensation heat transfer had been conducted on the outside vertical Titanium circularly-grooved tube. The experimental result indicates that the Titanium circularly-grooved tube is fairly efficient in enhancing the heat transfer. Within the experimental scope, the total heat transfer coefficient of the optimum circularly-grooved tube is 1.12 to 1.36 times of that of the Titanium smooth tube. Through regression analysis on the experimental data, the experimental correlations for the inside heat transfer coefficient, the condensation heat transfer coefficient on film condensation and the friction coefficient were achieved. (authors)

  9. Double-Balloon Catheter for Isolated Liver Perfusion: An Experimental Study

    International Nuclear Information System (INIS)

    Cwikiel, Wojciech; Bergqvist, Lennart; Harnek, Jan

    2001-01-01

    Purpose: Further development of a previously described interventional method for isolated liver perfusion (ILP) with a new double-lumen balloon catheter, and evaluation of the side-effects of such isolation.Methods: In six pigs a double-balloon occlusion catheter was placed via the transjugular approach with its tip in the portal vein. One of the balloons was positioned in the inferior vena cava (IVC), cranial to the origin of the hepatic veins and the other balloon in the portal vein. By the transfemoral approach, a single-balloon occlusion catheter was placed in the IVC caudal to the origin of the hepatic veins. A third catheter was placed by the transfemoral route with the occlusion balloon in the proper hepatic artery. After inflation of all balloons 99 Tc m -labelled human serum albumin was recirculated through the liver. The isolation was evaluated by repeated measurement of radioactivity levels in peripheral blood. Laboratory tests of liver and pancreas function, and hemoglobin, were taken before, at the end of, and 3 days after the procedure. Blood gases were tested at the beginning and end of the procedure.Results: One pig died during the procedure due to technical failure and was excluded from the study. In the other pigs leakage from the isolated liver to the systemic circulation increased slowly, up to 9.7% (mean) during 30 min of recirculation of the perfusate through the liver. Laboratory tests were normal in all pigs except insignificant acidosis directly after the procedure and the slight elevation of s-ALAT after 3 days.Conclusions: Only minor leakage from the liver to the systemic circulation was noted during ILP performed with a new, double-balloon catheter. There were no serious side effects

  10. Laser plasma generation of hydrogen-free diamond-like carbon thin films on Zr-2.5Nb CANDU pressure tube materials and silicon wafers with a pulsed high-power CO2 laser

    International Nuclear Information System (INIS)

    Ebrahim, N.A.; Mouris, J.F.; Hoffmann, C.R.J.; Davis, R.W.

    1995-06-01

    We report the first experiments on the laser plasma deposition of hydrogen-free, diamond-like carbon (DLC) films on Zr-2.5Nb CANDU pressure-tube materials and silicon substrates, using the short-pulse, high-power, CO 2 laser in the High-Power Laser Laboratory at Chalk River Laboratories. The films were (AFM). The thin films show the characteristic signature of DLC films in the Raman spectra obtained using a krypton-ion (Kr + ) laser. The Vickers ultra-low-load microhardness tests show hardness of the coated surface of approximately 7000 Kg force mm -2 , which is consistent with the hardness associated with DLC films. AFM examination of the film morphology shows diamond-like crystals distributed throughout the film, with film thicknesses of up to 0.5 μm generated with 50 laser pulses. With significantly more laser pulses, it is expected that very uniform diamond-like films would be produced. These experiments suggest that it should be possible to deposit hydrogen-free, diamond-like films of relevance to nuclear reactor components with a high-power and high-repetition-rate laser facility. (author). 7 refs., 2 tabs., 15 figs

  11. Intragastric balloon for morbid obesity causing chronic gastric dilatation

    Energy Technology Data Exchange (ETDEWEB)

    Pretolesi, F.; Derchi, L.E. [Dept. of Radiology, University of Genoa (Italy); Redaelli, G.; Papagni, L. [IRCCS, Ist. Auxologico Italiano, Milan (Italy)

    2001-04-01

    We describe the radiographic findings observed in a morbidly obese and diabetic patient with an intragastric air-filled balloon introduced as a therapeutic measure to reduce food intake. The balloon was associated with chronic gastric dilatation and had to be removed 3 months after insertion. However, together with diet and behavioural therapy, it proved effective in reducing body weight and ameliorating glycaemic control. Although rarely used, intragastric balloons for the treatment of morbid obesity are still encountered in radiological practice. Radiologists must be able to recognize them and to understand their complications. (orig.)

  12. Intragastric balloon for morbid obesity causing chronic gastric dilatation

    International Nuclear Information System (INIS)

    Pretolesi, F.; Derchi, L.E.; Redaelli, G.; Papagni, L.

    2001-01-01

    We describe the radiographic findings observed in a morbidly obese and diabetic patient with an intragastric air-filled balloon introduced as a therapeutic measure to reduce food intake. The balloon was associated with chronic gastric dilatation and had to be removed 3 months after insertion. However, together with diet and behavioural therapy, it proved effective in reducing body weight and ameliorating glycaemic control. Although rarely used, intragastric balloons for the treatment of morbid obesity are still encountered in radiological practice. Radiologists must be able to recognize them and to understand their complications. (orig.)

  13. Ballooning-mirror instability and internally driven Pc 4--5 wave events

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Qian, Q.; Takahashi, K.; Lui, A.T.Y.

    1994-03-01

    A kinetic-MHD field-aligned eigenmode stability analysis of low frequency ballooning-mirror instabilities has been performed for anisotropic pressure plasma sin the magnetosphere. The ballooning mode is mainly a transverse wave driven unstable by pressure gradient in the bad curvature region. The mirror mode with a dominant compressional magnetic field perturbation is excited when the product of plasma beta and pressure anisotropy (P perpendicular /P parallel > 1) is large. From the AMPTE/CCE particle and magnetic field data observed during Pc 4--5 wave events the authors compute the ballooning-mirror instability parameters and perform a correlation study with the theoretical instability threshold. They find that compressional Pc 5 waves approximately satisfy the ballooning-mirror instability condition, and transverse Pc 4--5 waves are probably related to resonant ballooning instabilities with small pressure anisotropy

  14. Blood pressure normalization post-jugular venous balloon angioplasty.

    Science.gov (United States)

    Sternberg, Zohara; Grewal, Prabhjot; Cen, Steven; DeBarge-Igoe, Frances; Yu, Jinhee; Arata, Michael

    2015-05-01

    This study is the first in a series investigating the relationship between autonomic nervous system dysfunction and chronic cerebrospinal venous insufficiency in multiple sclerosis patients. We screened patients for the combined presence of the narrowing of the internal jugular veins and symptoms of autonomic nervous system dysfunction (fatigue, cognitive dysfunction, sleeping disorders, headache, thermal intolerance, bowel/bladder dysfunction) and determined systolic and diastolic blood pressure responses to balloon angioplasty. The criteria for eligibility for balloon angioplasty intervention included ≥ 50% narrowing in one or both internal jugular veins, as determined by the magnetic resonance venography, and ≥ 3 clinical symptoms of autonomic nervous system dysfunction. Blood pressure was measured at baseline and post-balloon angioplasty. Among patients who were screened, 91% were identified as having internal jugular veins narrowing (with obstructing lesions) combined with the presence of three or more symptoms of autonomic nervous system dysfunction. Balloon angioplasty reduced the average systolic and diastolic blood pressure. However, blood pressure categorization showed a biphasic response to balloon angioplasty. The procedure increased blood pressure in multiple sclerosis patients who presented with baseline blood pressure within lower limits of normal ranges (systolic ≤ 105 mmHg, diastolic ≤ 70 mmHg) but decreased blood pressure in patients with baseline blood pressure above normal ranges (systolic ≥ 130 mmHg, diastolic ≥ 80 mmHg). In addition, gender differences in baseline blood pressure subcategories were observed. The coexistence of internal jugular veins narrowing and symptoms of autonomic nervous system dysfunction suggests that the two phenomena may be related. Balloon angioplasty corrects blood pressure deviation in multiple sclerosis patients undergoing internal jugular vein dilation. Further studies should investigate the

  15. Unconventional ballooning structures for toroidal drift waves

    International Nuclear Information System (INIS)

    Xie, Hua-sheng; Xiao, Yong

    2015-01-01

    With strong gradients in the pedestal of high confinement mode (H-mode) fusion plasmas, gyrokinetic simulations are carried out for the trapped electron and ion temperature gradient modes. A broad class of unconventional mode structures is found to localize at arbitrary poloidal positions or with multiple peaks. It is found that these unconventional ballooning structures are associated with different eigen states for the most unstable mode. At weak gradient (low confinement mode or L-mode), the most unstable mode is usually in the ground eigen state, which corresponds to a conventional ballooning mode structure peaking in the outboard mid-plane of tokamaks. However, at strong gradient (H-mode), the most unstable mode is usually not the ground eigen state and the ballooning mode structure becomes unconventional. This result implies that the pedestal of H-mode could have better confinement than L-mode

  16. The development of coastal diffusion observation method with a captive balloon

    International Nuclear Information System (INIS)

    Fukuda, Masaaki; Yamada, Masaharu

    1980-03-01

    Apparatus whereby the dye cloud in a coastal area in diffusion experiment can be photographed was developed. It consists of a vinyl balloon two meters in diameter, a photographic device with the camera shutter released by wireless signals from the ground, and a winch to raise or lower the balloon. A maximum height of the balloon for taking photographs is 1000 m. During the single balloon flight, thirty photographs can be taken. With the balloon at a certain height, dye as the tracer in diffusion experiment is released at sea surface or a certain sea depth by dye-throwing means or pump, and then taking the photographs is started. Movement and diffusion of the dye are analyzed by means of the photographs taken. The apparatus is simple in mechanism and easy to transport. Dye experiment is possible in the surfe zone where a boat cannot enter. It is impossible, however, to raise the balloon in strong wind or sea breeze. Typical results of the dye diffusion experiment with the apparatus are given. (author)

  17. Intra-aortic balloon shape change: effects on volume displacement during inflation and deflation.

    Science.gov (United States)

    Khir, Ashraf William; Bruti, Gianpaolo

    2013-07-01

    It has been observed that operating the intra-aortic balloon at an angle to the horizontal resulted in a reduction of the volume displaced toward the coronary arteries and compromised afterload reduction. Therefore, the aim of this work is to examine whether changing the current balloon shape, which has not been altered for 40 years, could compensate for the negative hemodynamic effects due to angulation. We tested two tapered balloons, increasing diameter (TID) and decreasing diameter (TDD), and compared the results with those obtained from a standard cylindrical balloon. The balloons were tested in vitro at 60 beats/min and a static pressure of 90 mm Hg. The balloons were operated at four angles (0°, 20°, 30°, 45°), and the pressure at three locations along the balloon (base, middle, and tip) was also measured. Flow rate upstream of the tip of the balloon was also measured to indicate the flow displaced toward the coronary circulation. The relative volume displaced toward (VUTVi) and suctioned away from (VUTVd) the simulated ascending aorta, during inflation and deflation, respectively, is reduced when a standard cylindrical balloon is operated at an angle to the horizontal. The TDD provided the greatest VUTVi and also produced the largest pulse pressure during deflation. Although the TID provided less VUTVi and VUTVd at smaller angles, it was not markedly affected by the change of angle. According to these results, different balloon shapes analyzed, with comparable volume to that of a cylindrical balloon, produced greater inflation and deflation benefits, at the horizontal and at a range of angles to the horizontal. Further investigations are required to optimize the shape of the tapered balloons to fit into the available physiological space. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  18. Mammographic microcalcifications: Detection with xerography, screen-film, and digitized film display

    International Nuclear Information System (INIS)

    Smathers, R.L.; Bush, E.; Drace, J.; Stevens, M.; Sommer, F.G.; Brown, B.W.; Karras, B.

    1986-01-01

    Pulverized bone specks and aluminum oxide specks were measured by hand into sizes ranging from 0.2 mm to 1.0 mm and then arranged in clusters. These clusters were superimposed on a human breast tissue phantom, and xeromammograms and screen-film mammograms of the clusters were made. The screen-film mammograms were digitized using a high-resolution laser scanner and then displayed on cathode ray tube (CRT) monitors. Six radiologists independently counted the microcalcifications on the xeromammograms, the screen-film mammograms, and the digitized film mammograms. The xeromammograms were examined with a magnifying glass; the screen-film images were examined with a magnifying glass and by hot light; and the digitized-film images were examined by electronic magnification and image processing. The bone speck size that corresponded to a mean 50% detectability level for each technique was as follows: xeromammography, 0.550 mm; digitized film, 0.573 mm; and screen-film, 0.661 mm. We postulate that electronic magnification and image processing with edge enhancement can improve the capability of screen-film mammography to enhance the detection of microcalcifications

  19. Hot air balloons fill gap in atmospheric and sensing platforms

    Science.gov (United States)

    Watson, Steven M.; Price, Russ

    Eric Edgerton was having a problem he could not solve: how to noninvasively collect in situ incinerator plume data. So he called in the Air Force and learned about its Atmospheric and Sensor Test Platform program; its platform is a manned hot air balloon. Many investigators are discovering the advantages of hot air balloons as stable, inexpensive platforms for performing in situ atmospheric measurements. Some are also using remote sensing capabilities on the balloon platforms.

  20. Catching Comet's Particles in the Earth's Atmosphere by Using Balloons

    Science.gov (United States)

    Potashko, Oleksandr; Viso, Michel

    The project is intended to catch cometary particles in the atmosphere by using balloons. The investigation is based upon knowledge that the Earth crosses the comet’s tails during the year. One can catch these particles at different altitudes in the atmosphere. So, we will be able to gradually advance in the ability to launch balloons from low to high altitudes and try to catch particles from different comet tails. The maximum altitude that we have to reach is 40 km. Both methods - distance observation and cometary samples from mission Stardust testify to the presence of organic components in comet’s particles. It would be useful to know more details about this organic matter for astrobiology; besides, the factor poses danger to the Earth. Moreover, it is important to prove that it is possible to get fundamental scientific results at low cost. In the last 5 years launching balloons has become popular and this movement looks like hackers’ one - as most of them occur without launch permission to airspace. The popularity of ballooning is connected with low cost of balloon, GPS unit, video recording unit. If you use iPhone, you have a light solution with GPS, video, picture and control function in one unit. The price of balloon itself begins from $50; it depends on maximum altitude, payload weight and material. Many university teams realized balloon launching and reached even stratosphere at an altitude of 33 km. But most of them take only video and picture. Meanwhile, it is possible to carry out scientific experiments by ballooning, for example to collect comet particles. There is rich experience at the moment of the use of mineral, chemical and isotopic analysis techniques and data of the comet’s dust after successful landing of StarDust capsule with samples in 2006. Besides, we may use absolutely perfect material to catch particles in the atmosphere, which was used by cosmic missions such as Stardust and Japanese Hayabusa. As to balloon launches, we could use

  1. New configuration for efficient and durable copper coating on the outer surface of a tube

    Directory of Open Access Journals (Sweden)

    Irfan Ahmad

    2017-03-01

    Full Text Available A well-adhered copper coating on stainless steel power coupler parts is required in superconducting radio frequency (SRF accelerators. Radio frequency power coupler parts are complex, tubelike stainless steel structures, which require copper coating on their outer and inner surfaces. Conventional copper electroplating sometimes produces films with inadequate adhesion strength for SRF applications. Electroplating also requires a thin nickel strike layer under the copper coating, whose magnetic properties can be detrimental to SRF applications. Coaxial energetic deposition (CED and sputtering methods have demonstrated efficient conformal coating on the inner surfaces of tubes but coating the outer surface of a tube is challenging because these coating methods are line of sight. When the substrate is off axis and the plasma source is on axis, only a small section of the substrate’s outer surface is exposed to the source cathode. The conventional approach is to rotate the tube to achieve uniformity across the outer surface. This method results in poor film thickness uniformity and wastes most of the source plasma. Alameda Applied Sciences Corporation (AASC has developed a novel configuration called hollow external cathode CED (HEC-CED to overcome these issues. HEC-CED produces a film with uniform thickness and efficiently uses all eroded source material. The Cu film deposited on the outside of a stainless steel tube using the new HEC-CED configuration survived a high pressure water rinse adhesion test. HEC-CED can be used to coat the outside of any cylindrical structure.

  2. Ballooning stability of JET discharges

    International Nuclear Information System (INIS)

    Huysmans, G.T.A.; Goedbloed, J.P.; Galvao, R.M.O.; Lazzaro, E.; Smeulders, P.

    1989-01-01

    Conditions under which ballooning modes are expected to be excited have recently been obtained in two different types of discharges in JET. In the first type, extremely large pressure gradients have been produced in the plasma core through pellet injections in the current rise phase followed by strong additional heating. In the second type, the total pressure of the discharge is approaching the Troyon limit. The stability of these discharges with respect to the ideal MHD ballooning modes has been studied with the stability code HBT. The equilibria are reconstructed with the IDENTC code using the external magnetic measurements and the experimental pressure profile. The results show that the evaluated high beta discharge is unstable in the central region of the plasma. This instability is related to the low shear and not to a large pressure gradient, as expected at the Troyon limit. In the pellet discharges the regions with the large pressure gradients are unstable to ballooning modes at the time of the beta decay, which ends the period of enhanced performance. The maximum pressure gradient in these discharges is limited by the boundary of the first region of stability. The observed phenomena at the beta decay are similar to those observed at the beta limit in DIII-D and TFTR. (author)

  3. "YouTube Geology" - Increasing Geoscience Visibility Through Short Films

    Science.gov (United States)

    Piispa, E. J.; Lerner, G. A.

    2016-12-01

    Researchers have the responsibility to communicate their science to a broad audience: scientists, non-scientist, young and old. Effective ways of reaching these groups include using pathways that genuinely spark interest in the target audience. Communication techniques should evolve as the means of communication evolve. Here we talk about our experiences using short films to increase geoscience visibility and appreciation. At a time when brevity and quick engagement are vital to capturing people's attention, creating videos that fit popular formats is an effective way to draw and hold people's interest, and spreading these videos on popular sites is a good way to reach a non-academic audience. Creating videos that are fun, exciting, and catchy in order to initially increase awareness and interest is equally important as the educational content. The visual medium can also be powerful way to make complex scientific concepts seem less intimidating. We have experimented with this medium of geoscience communication by creating a number of short films that target a variety of audiences: short summaries of research topics, mock movie trailers, course advertisements, fieldwork highlight reels and geology lessons for elementary school children. Our two rules of thumb are to put the audience first and use style as a vital element. This allows for the creation of films that are more engaging and often less serious than standard informational (and longer-format) videos. Science does not need to be dry and dull - it can be humorous and entertaining while remaining highly accurate. Doing these short films has changed our own mindset as well - thinking about what to film while doing research helps keep the practical applications of our research in focus. We see a great deal of potential for collaboration between geoscientists and amateur or professional filmmakers creating hip and edgy videos that further raise awareness and interest. People like movies. We like movies. We like

  4. Numerical modeling of condensation from vapor-gas mixtures for forced down flow inside a tube

    International Nuclear Information System (INIS)

    Yuann, R.Y.; Schrock, V.E.; Chen, Xiang, M.

    1995-01-01

    Laminar film condensation is the dominant heat transfer mode inside tubes. In the present paper direct numerical simulation of the detailed transport process within the steam-gas core flow and in the condensate film is carried out. The problem was posed as an axisymmetric two dimensional (r, z) gas phase inside an annular condensate film flow with an assumed smooth interface. The fundamental conservation equations were written for mass, momentum, species concentration and energy in the gaseous phase with effective diffusion parameters characterizing the turbulent region. The low Reynolds number two equation κ-ε model was employed to determine the eddy diffusion coefficients. The liquid film was described by similar formulation without the gas species equation. An empirical correlation was employed to correct for the effect of film waviness on the interfacial shear. A computer code named COAPIT (Condensation Analysis Program Inside Tube) was developed to implement numerical solution of the fundamental equations. The equations were solved by a marching technique working downstream from the entrance of the condensing section. COAPIT was benchmarked against experimental data and overall reasonable agreement was found for the key parameters such as heat transfer coefficient and tube inner wall temperature. The predicted axial development of radial profiles of velocity, composition and temperature and occurrence of metastable vapor add insight to the physical phenomena

  5. Numerical modeling of condensation from vapor-gas mixtures for forced down flow inside a tube

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, R Y [Taiwan Power Company, Taipei (Taiwan, Province of China); Schrock, V E [Univ. of California, Berkeley, CA (United States); Chen, Xiang

    1995-09-01

    Laminar film condensation is the dominant heat transfer mode inside tubes. In the present paper direct numerical simulation of the detailed transport process within the steam-gas core flow and in the condensate film is carried out. The problem was posed as an axisymmetric two dimensional (r, z) gas phase inside an annular condensate film flow with an assumed smooth interface. The fundamental conservation equations were written for mass, momentum, species concentration and energy in the gaseous phase with effective diffusion parameters characterizing the turbulent region. The low Reynolds number two equation {kappa}-{epsilon} model was employed to determine the eddy diffusion coefficients. The liquid film was described by similar formulation without the gas species equation. An empirical correlation was employed to correct for the effect of film waviness on the interfacial shear. A computer code named COAPIT (Condensation Analysis Program Inside Tube) was developed to implement numerical solution of the fundamental equations. The equations were solved by a marching technique working downstream from the entrance of the condensing section. COAPIT was benchmarked against experimental data and overall reasonable agreement was found for the key parameters such as heat transfer coefficient and tube inner wall temperature. The predicted axial development of radial profiles of velocity, composition and temperature and occurrence of metastable vapor add insight to the physical phenomena.

  6. Detection of Artificially Generated Seismic Signals Using Balloon-Borne Infrasound Sensors

    Science.gov (United States)

    Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.; Cutts, James A.; Garcia, Raphael F.; Mimoun, David; Cadu, Alexandre; Sournac, Anthony; Jackson, Jennifer M.; Lai, Voon Hui; Bowman, Daniel C.

    2018-04-01

    We conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free-flying balloon is lower compared to one on a moored balloon. This has never been experimentally demonstrated in the lower troposphere. While seismoacoustic signals were not recorded on the hot air balloon platform owing to operational challenges, we demonstrate the detection of seismoacoustic signals on our moored balloon platform. Our results have important implications for performing seismology in harsh surface environments such as Venus through atmospheric remote sensing.

  7. Reflood Heat Transfer in SiC and Graphene Oxide Coated Tube

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Lee, Seung Won; Bang, In Cheol

    2013-01-01

    The reflood tests have been performed flowing water into bare tube and nanoparticles coated tube at constant flow rate (3 cm/s). The quenching curves have been obtained at atmospheric pressure. Finally, Scanning Electron Microscopy (SEM) images are acquired and contact angles are measured in order to observe the surface structures and wettability effect on cooling performance. The quenching time decreases and quenching velocity increases as the coating time of nanoparticles on the tube increases, because the nanoparticles deposited on the tube destabilize and rupture the vapor film early in the effect of increased Leidenfrost point temperature. The SiC nanoparticles coated tubes have better quenching performance than GO nanoparticles coated tubes. The SEM images and contact angle observations proved the enhanced wettability and rough surface due to deposition of SiC nanoparticles. And the wettability of GO nanoparticles coated tubes shows the increase at 600 s coating. But, the wettability decreases on GO nanoparticles tube coated for 900 s despite the enhanced quenching performance. Thus, the porous structure affects to the better cooling performance in case of GO nanoparticles coated tubes

  8. Test ventilation with smoke, bubbles, and balloons

    International Nuclear Information System (INIS)

    Pickering, P.L.; Cucchiara, A.L.; McAtee, J.L.; Gonzales, M.

    1987-01-01

    The behavior of smoke, bubbles, and helium-filled balloons was videotaped to demonstrate the mixing of air in the plutonium chemistry laboratories, a plutonium facility. The air-distribution patterns, as indicated by each method, were compared. Helium-filled balloons proved more useful than bubbles or smoke in the visualization of airflow patterns. The replay of various segments of the videotape proved useful in evaluating the different techniques and in identifying airflow trends responsible for air mixing. 6 refs

  9. Trace gas measurements from tethered balloon platforms

    Science.gov (United States)

    Bandy, Alan R.; Bandy, Terese L.; Youngbluth, Otto; Owens, Thomas L.

    1987-01-01

    Instrumentation and chemical sampling and analysis procedures are described for making measurements of atmospheric carbon disulfide in the concentration range 1-1000 pptv from tethered balloon platforms. Results of a study on the CS2 composition of air downward of a saltwater marsh are reported. A method for obtaining the necessary data for solving the budget equations for surface fluxes, chemical formation rates and chemical destruction rates using data acquired from tethered balloon platforms is presented.

  10. Balloon catheter dilatation of esophageal strictures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeung Sook; Yoon, Yup; Sung, Dong Yook; Choi, Woo Suk; Nam, Kyung Jin; Lim, Jae Hoon [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    1990-07-15

    The authors performed 27 fluoroscopically guided balloon dilatation in 12 patients of esophageal stricture during recent 3 years. The causes of esophageal stricture were corrosive esophagitis (N=2) and congenital narrowing (N=1), including postoperative narrowing in achalasia (N=3), esophageal varix (N=3), lye stricture (N=2) and esophageal cancer (N=1). Successful dilatation of the stricture was achieved during the procedure in 10 patients(83%). Major complication such as esophageal rupture was not found. The authors conclude that fluoroscopically guided esophageal balloon dilatation is a safe and effective method for treatment of symptomatic esophageal strictures.

  11. Balloon catheter dilatation of esophageal strictures

    International Nuclear Information System (INIS)

    Kim, Jeung Sook; Yoon, Yup; Sung, Dong Yook; Choi, Woo Suk; Nam, Kyung Jin; Lim, Jae Hoon

    1990-01-01

    The authors performed 27 fluoroscopically guided balloon dilatation in 12 patients of esophageal stricture during recent 3 years. The causes of esophageal stricture were corrosive esophagitis (N=2) and congenital narrowing (N=1), including postoperative narrowing in achalasia (N=3), esophageal varix (N=3), lye stricture (N=2) and esophageal cancer (N=1). Successful dilatation of the stricture was achieved during the procedure in 10 patients(83%). Major complication such as esophageal rupture was not found. The authors conclude that fluoroscopically guided esophageal balloon dilatation is a safe and effective method for treatment of symptomatic esophageal strictures

  12. Performance of the EUSO-Balloon electronics

    International Nuclear Information System (INIS)

    Barrillon, P.; Dagoret, S.; Miyamoto, H.; Moretto, C.; Bacholle, S.; Blaksley, C; Gorodetzky, P.; Jung, A.; Prévôt, G.; Prat, P.; Bayer, J.; Blin, S.; Taille, C. De La; Cafagna, F.; Fornaro, C.; Karczmarczyk, J.; Tanco, G. Medina; Osteria, G.; Perfetto, F.; Park, I.

    2016-01-01

    The 24th of August 2014, the EUSO-Balloon instrument went for a night flight for several hours, 40 km above Timmins (Canada) balloon launching site, concretizing the hard work of an important part of the JEM-EUSO collaboration started 3 years before. This instrument consists of a telescope made of two lenses and a complex electronic chain divided in two main sub-systems: the PDM (Photo Detector Module) and the DP (Data Processor). Each of them is made of several innovative elements developed and tested in a short time. This paper presents their performances before and during the flight

  13. JUBA (Joint UAS-Balloon Activities) Final Campaign Report.

    Energy Technology Data Exchange (ETDEWEB)

    Dexheimer, Darielle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Apple, Monty [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Callow, Diane Schafer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Longbottom, Casey Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Novick, David K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Christopher W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    Using internal investment funds within Sandia National Laboratories’ (SNL) Division 6000, JUBA was a collaborative exercise between SNL Orgs. 6533 & 6913 (later 8863) to demonstrate simultaneous flights of tethered balloons and UAS on the North Slope of Alaska. JUBA UAS and tethered balloon flights were conducted within the Restricted Airspace associated with the ARM AMF3 site at Oliktok Point, Alaska. The Restricted Airspace occupies a 2 nautical mile radius around Oliktok Point. JUBA was conducted at the Sandia Arctic Site, which is approximately 2 km east-southeast of the AMF3. JUBA activities occurred from 08/08/17 – 08/10/17. Atmospheric measurements from tethered balloons can occur for a long duration, but offer limited spatial variation. Measurements from UAS could offer increased spatial variability.

  14. External caps: An approach to stress reduction in balloons

    Science.gov (United States)

    Hazlewood, K. H.

    Recent findings of the catastrophic balloon failures investigation in the U.S.A. indicate that very large gross inflations, in balloons using present design philosophy, over-stress currently available materials. External caps are proposed as an economic approach to reducting those stresses to an acceptable level.

  15. Balloon dacryocystoplasty: Incomplete versus complete obstruction of the nasolacrimal system

    International Nuclear Information System (INIS)

    Lee, Jeong Min; Lee, Sang Hoon; Han, Young Min; Chung, Gyung Ho; Kim, Chong Soo; Choi, Ki Chul; Song, Ho Young

    1993-01-01

    Balloon dilatation of nasolacrimal drainage apparatus was attempted for the treatment of stenoses or obstructures of the nasolacrimal system in 49 eyes of 41 consecutive patients with complete obstructions and 16 eyes of 14 patients with incomplete obstructions. These two groups were compared with regards to the effectiveness of balloon dacryocystoplasty. All patients suffered from severe epiphora had already undergone multiple probings. A 0.018 inch hair or ball guide wire was introduced through the superior punctum into the inferior meatus of the nasal cavity and pulled out through the nasal aperture using a hemostat under nasal endoscopy. A deflated angiography balloon catheter was then introduced in a retrograde direction and dilated under fluoroscopic control. No major complications occurred in any of the patients. At 7 days after balloon dilatation, 25 of 49 eyes with complete obstruction demonstrated improvement in epiphora (initial success rate: 51.0%) and among them 17 eyes showed complete resolution of symptoms. Reocclusion occurred in 12 of the 25 eyes with initial improvement at the 2 months follow up. For the 16 eyes with incomplete obstruction, and improvement of epiphora was attained in 11 eyes (initial success rate 68.8%): 5 of these eyes showed complete resolution of epiphora, and 3 was failed to maintain initial improvement at the 2 month follow up. Although this study demonstrate that results of balloon dacryocystoplasty are not encouraging because of the high failure and recurrence rate, balloon dacryocystoplasty is a simple and safe nonsurgical technique that can be used to treat for obstructions of the nasolacrimal system. In addition, balloon dacryocystoplasty shows better results in incomplete obstruction than in complete obstruction than complete obstruction of the nasolacrimal system

  16. Drift chambers on the basis of mylar tubing blocks

    International Nuclear Information System (INIS)

    Budagov, Yu.A.; Golovanov, L.B.; Kuritsin, A.A.; Pukhov, O.E.; Khazins, D.M.; Chirikov-Zorin, I.E.; Joint Inst. for Nuclear Research, Dubna; Zhukov, V.Yu.

    1992-01-01

    We tested the models of the drift chambers, which are constructed of mylar tubing blocks. The purpose of the tubing block forming technology is to create long chambers (up to 3-4 meters). There are count and drift characteristics of the chambers for different gas pressures and different diameters of sense wires. The service time of the chambers is defined. We registered a photoeffect in the visible spectrum area, which is displayed on the surface of the mylar film cathode, covered by aluminium. 8 refs.; 5 figs

  17. Damping in heat exchanger tube bundles. A review

    International Nuclear Information System (INIS)

    Iqbal, Qamar; Khushnood, Shahab; Ghalban, Ali Roheim El; Sheikh, Nadeem Ahmed; Malik, Muhammad Afzaal; Arastu, Asif

    2007-01-01

    Damping is a major concern in the design and operation of tube bundles with loosely supported tubes in baffles for process shell and tube heat exchangers and steam generators which are used in nuclear, process and power generation industries. System damping has a strong influence on the amplitude of vibration. Damping depends upon the mechanical properties of the tube material, geometry of intermediate supports and the physical properties of shell-side fluid. Type of tube motion, number of supports, tube frequency, vibration amplitude, tube mass or diameter, side loads, support thickness, higher modes, shell-side temperature etc., affect damping in tube bundles. The importance of damping is further highlighted due to current trend of larger exchangers with increased shell-side velocities in modern units. Various damping mechanisms have been identified (Friction damping, Viscous damping, Squeeze film damping, Support damping. Two-Phase damping, and very recent-Thermal damping), which affect the performance of process exchangers and steam generators with respect to flow induced vibration design, including standard design guidelines. Damping in two-phase flow is very complex and highly void fraction, and flow-regime dependent. The current paper focuses on the various known damping mechanisms subjected to both single and two-phase cross-flow in process heat exchangers and steam generators and formulates the design guidelines for safer design. (author)

  18. OCT evaluation of directional atherectomy compared to balloon angioplasty

    International Nuclear Information System (INIS)

    Marmagkiolis, Konstantinos; Lendel, Vasili; Cilingiroglu, Mehmet

    2015-01-01

    Directional atherectomy (DA) is one of the most commonly used modalities for the treatment of obstructive femoropopliteal peripheral arterial disease (PAD), especially in patients with large and calcified atherosclerotic plaques. The effect of directional atherectomy to the vascular wall compared to balloon angioplasty by optical coherence tomography (OCT) has not been previously described. We present the first case of OCT after directional atherectomy with SilverHawk followed by angiosculpt balloon angioplasty. - Highlights: • Directional atherectomy avoids the vascular mechanical damage caused by angioplasty balloons and the exposure of stent struts or the potential of stent fracture with stents. • OCT can accurately assess the effect of endovacular interventions to the vessel wall. • Although angiographic results after directional atherectomy are acceptable, OCT use demonstrated suboptimal improvement of the MLA requiring additional balloon angioplasty. • Longer studies are needed to define whether the improved OCT results with angioplasty compared to DA may offer better clinical outcomes.

  19. OCT evaluation of directional atherectomy compared to balloon angioplasty

    Energy Technology Data Exchange (ETDEWEB)

    Marmagkiolis, Konstantinos [Citizens Memorial Hospital Heart and Vascular Institute, Bolivar, MO (United States); Lendel, Vasili [Arkansas Heart Hospital, Peripheral Vascular Institute, Little Rock, AR (United States); Cilingiroglu, Mehmet, E-mail: mcilingiroglu@yahoo.com [Arkansas Heart Hospital, Peripheral Vascular Institute, Little Rock, AR (United States); Koc University, School of Medicine, Istanbul (Turkey)

    2015-09-15

    Directional atherectomy (DA) is one of the most commonly used modalities for the treatment of obstructive femoropopliteal peripheral arterial disease (PAD), especially in patients with large and calcified atherosclerotic plaques. The effect of directional atherectomy to the vascular wall compared to balloon angioplasty by optical coherence tomography (OCT) has not been previously described. We present the first case of OCT after directional atherectomy with SilverHawk followed by angiosculpt balloon angioplasty. - Highlights: • Directional atherectomy avoids the vascular mechanical damage caused by angioplasty balloons and the exposure of stent struts or the potential of stent fracture with stents. • OCT can accurately assess the effect of endovacular interventions to the vessel wall. • Although angiographic results after directional atherectomy are acceptable, OCT use demonstrated suboptimal improvement of the MLA requiring additional balloon angioplasty. • Longer studies are needed to define whether the improved OCT results with angioplasty compared to DA may offer better clinical outcomes.

  20. The effect of pressure anisotropy on ballooning modes in tokamak plasmas

    Science.gov (United States)

    Johnston, A.; Hole, M. J.; Qu, Z. S.; Hezaveh, H.

    2018-06-01

    Edge Localised Modes are thought to be caused by a spectrum of magnetohydrodynamic instabilities, including the ballooning mode. While ballooning modes have been studied extensively both theoretically and experimentally, the focus of the vast majority of this research has been on isotropic plasmas. The prevalence of pressure anisotropy in modern tokamaks thus motivates further study of these modes. This paper presents a numerical analysis of ballooning modes in anisotropic equilibria. The investigation was conducted using the newly-developed codes HELENA+ATF and MISHKA-A, which adds anisotropic physics to equilibria and stability analysis. We have examined the impact of anisotropy on the stability of an n = 30 ballooning mode, confirming results conform to previous calculations in the isotropic limit. Growth rates of ballooning modes in equilibria with different levels of anisotropy were then calculated using the stability code MISHKA-A. The key finding was that the level of anisotropy had a significant impact on ballooning mode growth rates. For {T}\\perp > {T}| | , typical of ICRH heating, the growth rate increases, while for {T}\\perp < {T}| | , typical of neutral beam heating, the growth rate decreases.

  1. Dose Reduction Study in Vaginal Balloon Packing Filled With Contrast for HDR Brachytherapy Treatment

    International Nuclear Information System (INIS)

    Saini, Amarjit S.; Zhang, Geoffrey G.; Finkelstein, Steven E.; Biagioli, Matthew C.

    2011-01-01

    Purpose: Vaginal balloon packing is a means to displace organs at risk during high dose rate brachytherapy of the uterine cervix. We tested the hypothesis that contrast-filled vaginal balloon packing reduces radiation dose to organs at risk, such as the bladder and rectum, in comparison to water- or air-filled balloons. Methods and Materials: In a phantom study, semispherical vaginal packing balloons were filled with air, saline solution, and contrast agents. A high dose rate iridium-192 source was placed on the anterior surface of the balloon, and the diode detector was placed on the posterior surface. Dose ratios were taken with each material in the balloon. Monte Carlo (MC) simulations, by use of the MC computer program DOSXYZnrc, were performed to study dose reduction vs. balloon size and contrast material, including commercially available iodine- and gadolinium-based contrast agents. Results: Measured dose ratios on the phantom with the balloon radius of 3.4 cm were 0.922 ± 0.002 for contrast/saline solution and 0.808 ± 0.001 for contrast/air. The corresponding ratios by MC simulations were 0.895 ± 0.010 and 0.781 ± 0.010. The iodine concentration in the contrast was 23.3% by weight. The dose reduction of contrast-filled balloon ranges from 6% to 15% compared with water-filled balloon and 11% to 26% compared with air-filled balloon, with a balloon size range between 1.4 and 3.8 cm, and iodine concentration in contrast of 24.9%. The dose reduction was proportional to the contrast agent concentration. The gadolinium-based contrast agents showed less dose reduction because of much lower concentrations in their solutions. Conclusions: The dose to the posterior wall of the bladder and the anterior wall of the rectum can be reduced if the vaginal balloon is filled with contrast agent in comparison to vaginal balloons filled with saline solution or air.

  2. A balloon-borne prototype for demonstrating the concept of JEM-EUSO

    Science.gov (United States)

    von Ballmoos, P.; Santangelo, A.; Adams, J. H.; Barrillon, P.; Bayer, J.; Bertaina, M.; Cafagna, F.; Casolino, M.; Dagoret, S.; Danto, P.; Distratis, G.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Evrard, J.; Gorodetzky, Ph.; Haungs, A.; Jung, A.; Kawasaki, Y.; Medina-Tanco, G.; Mot, B.; Osteria, G.; Parizot, E.; Park, I. H.; Picozza, P.; Prévôt, G.; Prieto, H.; Ricci, M.; Rodríguez Frías, M. D.; Roudil, G.; Scotti, V.; Szabelski, J.; Takizawa, Y.; Tusno, K.

    2014-05-01

    EUSO-BALLOON has been conceived as a pathfinder for JEM-EUSO, a mission concept for a space-borne wide-field telescope monitoring the Earth's nighttime atmosphere with the objective of recording the ultraviolet light from tracks initiated by ultra-high energy cosmic rays. Through a series of stratospheric balloon flights performed by the French Space Agency CNES, EUSO-BALLOON will serve as a test-bench for the key technologies of JEM-EUSO. EUSO-BALLOON shall perform an end-to-end test of all subsystems and components, and prove the global detection chain while improving our knowledge of the atmospheric and terrestrial ultraviolet background. The balloon-instrument also has the potential to detect for the first time UV-light generated by atmospheric air-shower from above, marking a milestone in the development of UHECR science, and paving the way for any future large scale, space-based ultra-high energy cosmic ray observatory.

  3. MHD Ballooning Instability in the Plasma Sheet

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Zaharia, S.

    2003-01-01

    Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the plasma compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the plasma compressibility the MHD ballooning modes are unstable for the entire plasma sheet where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current sheet region in the near-Earth plasma sheet, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped electron dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current sheet region where the free energy associated with the plasma pressure gradient and magnetic field curvature is maximum

  4. Modified jailed balloon technique for bifurcation lesions.

    Science.gov (United States)

    Saito, Shigeru; Shishido, Koki; Moriyama, Noriaki; Ochiai, Tomoki; Mizuno, Shingo; Yamanaka, Futoshi; Sugitatsu, Kazuya; Tobita, Kazuki; Matsumi, Junya; Tanaka, Yutaka; Murakami, Masato

    2017-12-04

    We propose a new systematic approach in bifurcation lesions, modified jailed balloon technique (M-JBT), and report the first clinical experience. Side branch occlusion brings with a serious complication and occurs in more than 7.0% of cases during bifurcation stenting. A jailed balloon (JB) is introduced into the side branch (SB), while a stent is placed in the main branch (MB) as crossing SB. The size of the JB is half of the MB stent size. While the proximal end of JB attaching to MB stent, both stent and JB are simultaneously inflated with same pressure. JB is removed and then guidewires are recrossed. Kissing balloon dilatation (KBD) and/or T and protrusion (TAP) stenting are applied as needed. Between February 2015 and February 2016, 233 patients (254 bifurcation lesions including 54 left main trunk disease) underwent percutaneous coronary intervention (PCI) using this technique. Procedure success was achieved in all cases. KBD was performed for 183 lesions and TAP stenting was employed for 31 lesions. Occlusion of SV was not observed in any of the patients. Bench test confirmed less deformity of MB stent in M-JBT compared with conventional-JBT. This is the first report for clinical experiences by using modified jailed balloon technique. This novel M-JBT is safe and effective in the preservation of SB patency during bifurcation stenting. © 2017 Wiley Periodicals, Inc.

  5. Effect of flame-tube head structure on combustion chamber performance

    Science.gov (United States)

    Gu, Minqqi

    1986-01-01

    The experimental combustion performance of a premixed, pilot-type flame tube with various head structures is discussed. The test study covers an extensive area: efficiency of the combustion chamber, quality of the outlet temperature field, limit of the fuel-lean blowout, ignition performance at ground starting, and carbon deposition. As a result of these tests, a nozzle was found which fits the premixed pilot flame tube well. The use of this nozzle optimized the performance of the combustion chamber. The tested models had premixed pilot chambers with two types of air-film-cooling structures, six types of venturi-tube structures, and secondary fuel nozzles with two small spray-cone angles.

  6. Double balloon esophageal catheter for diagnosis of tracheo-esophageal fistula

    International Nuclear Information System (INIS)

    Kiyan, Guersu; Dagli, Tolga E.; Tugtepe, Halil; Kodalli, Nihat

    2003-01-01

    Congenital H-type and recurrent tracheo-esophageal fistulas (TEF) are always difficult to diagnose. For a more accurate diagnosis we designed a new double balloon catheter, which is a modification of esophageal dilatation balloon. The catheter has two balloons to occlude the esophagus proximal and distal to the fistula. The fistula can be identified by passing of the contrast material to the tracheal tree, which was injected into the esophageal segment between the inflated balloons. To prove the efficiency of this catheter, a TEF was created surgically in a New Zealand rabbit. On the postoperative fourteenth day the catheter was tried and the fistula could be visualized easily by injecting the contrast material. We think this technique may be of use in the diagnosis of TEF in children. (orig.)

  7. The UK sounding rocket and balloon programme

    International Nuclear Information System (INIS)

    Delury, J.T.

    1980-01-01

    The UK civil science balloon and rocket programmes for 1979/80/81 are summarised and the areas of scientific interest for the period 1981/85 mentioned. In the main the facilities available are 10 in number balloons up to 40 m cu ft launched from USA or Australia and up to 10 in number 7 1/2'' diameter Petrel rockets. This paper outlines the 1979 and 1980 programmes and explains the longer term plans covering the next 5 years. (Auth.)

  8. Second-generation endometrial ablation technologies: the hot liquid balloons.

    Science.gov (United States)

    Vilos, George A; Edris, Fawaz

    2007-12-01

    Hysteroscopic endometrial ablation (HEA) was introduced in the 1980s to treat menorrhagia. Its use required additional training, surgical expertise and specialized equipment to minimize emergent complications such as uterine perforations, thermal injuries and excessive fluid absorption. To overcome these difficulties and concerns, thermal balloon endometrial ablation (TBEA) was introduced in the 1990s. Four hot liquid balloons have been introduced into clinical practice. All systems consist of a catheter (4-10mm diameter), a silicone balloon and a control unit. Liquids used to inflate the balloons include internally heated dextrose in water (ThermaChoice, 87 degrees C), and externally heated glycine (Cavaterm, 78 degrees C), saline (Menotreat, 85 degrees ) and glycerine (Thermablate, 173 degrees C). All balloons require pressurization from 160 to 240 mmHg for treatment cycles of 2 to 10 minutes. Prior to TBEA, preoperative endometrial thinning, including suction curettage, is optional. Several RCTs and cohort studies indicate that the advantages of TBEA include portability, ease of use and short learning curve. In addition, small diameter catheters requiring minimal cervical dilatation (5-7 mm) and short duration of treatment cycles (2-8 min) allow treatment under minimal analgesia/anesthesia requirements in a clinic setting. Following TBEA serious adverse events, including thermal injuries to viscera have been experienced. To minimize such injuries some surgeons advocate the use of routine post-dilatation hysteroscopy and/or ultrasonography to confirm correct intrauterine placement of the balloon prior to initiating the treatment cycle. After 10 years of clinical practice, TBEA is thought to be the preferred first-line surgical treatment of menorrhagia in appropriately selected candidates. Economic modeling also suggested that TBEA may be more cost-effective than HEA.

  9. Scientific ballooning. Proceedings. PSB Meeting of the COSPAR Panel on Technical Problems Related to Scientific Ballooning which was held during the Thirtieth COSPAR Scientific Assembly, Hamburg (Germany), 11 - 21 Jul 1994.

    Science.gov (United States)

    Riedler, W.; Torkar, K.

    1996-05-01

    This issue is grouped into sections on materials, design, performance and analysis of balloons, reviews of major national and international balloon programmes, novel instrumentation and systems for scientific ballooning, and selected recent scientific observations.

  10. Estimation of structural film viscosity based on the bubble rise method in a nanofluid.

    Science.gov (United States)

    Cho, Heon Ki; Nikolov, Alex D; Wasan, Darsh T

    2018-04-15

    When a single bubble moves at a very low capillary number (10 -7 ) through a liquid with dispersed nanoparticles (nanofluid) inside a vertical tube/capillary, a film is formed between the bubble surface and the tube wall and the nanoparticles self-layer inside the confined film. We measured the film thickness using reflected light interferometry. We calculated the film structural energy isotherm vs. the film thickness from the film-meniscus contact angle measurements using the reflected light interferometric method. Based on the experimental measurement of the film thickness and the calculated values of the film structural energy barrier, we estimated the structural film viscosity vs. the film thickness using the Frenkel approach. Because of the nanoparticle film self-layering phenomenon, we observed a gradual increase in the film viscosity with the decreasing film thickness. However, we observed a significant increase in the film viscosity accompanied by a step-wise decrease in the bubble velocity when the film thickness decreased from 3 to 2 particle layers due to the structural transition in the film. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. High Altitude Infrasound Measurements using Balloon-Borne Arrays

    Science.gov (United States)

    Bowman, D. C.; Johnson, C. S.; Gupta, R. A.; Anderson, J.; Lees, J. M.; Drob, D. P.; Phillips, D.

    2015-12-01

    For the last fifty years, almost all infrasound sensors have been located on the Earth's surface. A few experiments consisting of microphones on poles and tethered aerostats comprise the remainder. Such surface and near-surface arrays likely do not capture the full diversity of acoustic signals in the atmosphere. Here, we describe results from a balloon mounted infrasound array that reached altitudes of up to 38 km (the middle stratosphere). The balloon drifted at the ambient wind speed, resulting in a near total reduction in wind noise. Signals consistent with tropospheric turbulence were detected. A spectral peak in the ocean microbarom range (0.12 - 0.35 Hz) was present on balloon-mounted sensors but not on static infrasound stations near the flight path. A strong 18 Hz signal, possibly related to building ventilation systems, was observed in the stratosphere. A wide variety of other narrow band acoustic signals of uncertain provenance were present throughout the flight, but were absent in simultaneous recordings from nearby ground stations. Similar phenomena were present in spectrograms from the last balloon infrasound campaign in the 1960s. Our results suggest that the infrasonic wave field in the stratosphere is very different from that which is readily detectable on surface stations. This has implications for modeling acoustic energy transfer between the lower and upper atmosphere as well as the detection of novel acoustic signals that never reach the ground. Our work provides valuable constraints on a proposed mission to detect earthquakes on Venus using balloon-borne infrasound sensors.

  12. Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

    Energy Technology Data Exchange (ETDEWEB)

    Blanford, R.

    2005-04-06

    We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (25-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO will detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter technology used in balloon-borne experiments (Welcome-1) and AstroE2 Hard X-ray Detector. PoGO consists of close-packed array of 397 hexagonal well-type phoswich counters. Each unit is composed of a long thin tube (well) of slow plastic scintillator, a solid rod of fast plastic scintillator, and a short BGO at the base. A photomultiplier coupled to the end of the BGO detects light from all 3 scintillators. The rods with decay times < 10 ns, are used as the active elements; while the wells and BGOs, with decay times {approx}250 ns are used as active anti-coincidence. The fast and slow signals are separated out electronically. When gamma rays entering the field-of-view (fwhm {approx} 3deg{sup 2}) strike a fast scintillator, some are Compton scattered. A fraction of the scattered photons are absorbed in another rod (or undergo a second scatter). A valid event requires one clean fast signal of pulse-height compatible with photo-absorption (> 20keV) and one or more compatible with Compton scattering (< 10keV). Studies based on EGS4 (with polarization features) and Geant4 predict excellent background rejection and high sensitivity.

  13. Track chambers based on precision drift tubes housed inside 30 mm mylar pipe

    International Nuclear Information System (INIS)

    Borisov, A; Bozhko, N; Fakhrutdinov, R; Kozhin, A; Leontiev, B; Levin, A

    2014-01-01

    We describe drift chambers consisting of 3 layers of 30 mm (OD) drift tubes made of double sided aluminized mylar film with thickness 0.125 mm. A single drift tube is self-supported structure withstanding 350 g tension of 50 microns sense wire located in the tube center with 10 microns precision with respect to end-plug outer surface. Such tubes allow to create drift chambers with small amount of material, construction of such chambers doesn't require hard frames. Twenty six chambers with working area from 0.8 × 1.0 to 2.5 × 2.0 m 2 including 4440 tubes have been manufactured for experiments at 70-GeV proton accelerator at IHEP(Protvino)

  14. Track chambers based on precision drift tubes housed inside 30 mm mylar pipe

    Science.gov (United States)

    Borisov, A.; Bozhko, N.; Fakhrutdinov, R.; Kozhin, A.; Leontiev, B.; Levin, A.

    2014-06-01

    We describe drift chambers consisting of 3 layers of 30 mm (OD) drift tubes made of double sided aluminized mylar film with thickness 0.125 mm. A single drift tube is self-supported structure withstanding 350 g tension of 50 microns sense wire located in the tube center with 10 microns precision with respect to end-plug outer surface. Such tubes allow to create drift chambers with small amount of material, construction of such chambers doesn't require hard frames. Twenty six chambers with working area from 0.8 × 1.0 to 2.5 × 2.0 m2 including 4440 tubes have been manufactured for experiments at 70-GeV proton accelerator at IHEP(Protvino).

  15. Analysis of current diffusive ballooning mode in tokamaks

    International Nuclear Information System (INIS)

    Uchida, M.; Fukuyama, A.; Itoh, S.-I.; Yagi, M.

    1999-12-01

    The effect of finite gyroradius on the current diffusive ballooning mode is examined. Starting from the reduced MHD equations including turbulent transports, coupling with drift motion and finite gyroradius effect of ions, we derive a ballooning mode equation with complex transport coefficients. The eigenfrequency, saturation level and thermal diffusivity are evaluated numerically from the marginal stability condition. Preliminary results of their parameter dependence is presented. (author)

  16. Robotic weather balloon launchers spread in Alaska

    Science.gov (United States)

    Rosen, Julia

    2018-04-01

    Last week, things began stirring inside the truck-size box that sat among melting piles of snow at the airport in Fairbanks, Alaska. Before long, the roof of the box yawned open and a weather balloon took off into the sunny afternoon, instruments dangling. The entire launch was triggered with the touch of a button, 5 kilometers away at an office of the National Weather Service (NWS). The flight was smooth, just one of hundreds of twice-daily balloon launches around the world that radio back crucial data for weather forecasts. But most of those balloons are launched by people; the robotic launchers, which are rolling out across Alaska, are proving to be controversial. NWS says the autolaunchers will save money and free up staff to work on more pressing matters. But representatives of the employee union question their reliability, and say they will hasten the end of Alaska's remote weather offices, where forecasting duties and hours have already been slashed.

  17. Retrieving Balloon Data in Flight

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Ultra Long Duration Balloon (ULDB) program will soon make flights lasting up to 100 days. Some flights may generate high data rates and retrieving this data...

  18. Behaviour of liquid films and flooding in counter-current two-phase flow, (1)

    International Nuclear Information System (INIS)

    Suzuki, Shin-ichi; Ueda, Tatsuhiro.

    1978-01-01

    This paper reports on the results of study of the behavior of liquid film and flooding in counter-current two phase flow, and the flow speed of gas phase was measured over the wide ranges of tube diameter, tube length, amount of liquid flow, viscosity and surface tension. Liquid samples used for this experiment were water, glycerol, and second octyl alcohol. The phenomena were observed with a high speed camera. The maximum thickness of liquid film was measured, and the effects of various factors on the flooding were investigated. The results of investigation were as follows. The big waves which cause the flooding were developed by the interaction of one of the waves on liquid film surface with gas phase flow. The flow speed of gas phase at the time of beginning of flooding increases with the reduction of amount of liquid flow and the increase of tube diameter. The flooding flow speed is reduced with the increase of tube length. The larger maximum film thickness at the time of no gas phase flow causes flooding at low gas phase flow speed. (Kato, T.)

  19. Validation of film dryout model in a three-fluid code FIDAS

    International Nuclear Information System (INIS)

    Sugawara, Satoru

    1989-11-01

    Analytical prediction model of critical heat flux (CHF) has been developed on the basis of film dryout criterion due to droplets deposition and entrainment in annular mist flow. CHF in round tubes were analyzed by the Film Dryout Analysis Code in Subchannels, FIDAS, which is based on the three-fluid, three-field and newly developed film dryout model. Predictions by FIDAS were compared with the world-wide experimental data on CHF obtained in water and Freon for uniformly and non-uniformly heated tubes under vertical upward flow condition. Furthermore, CHF prediction capability of FIDAS was compared with those of other film dryout models for annular flow and Katto's CHF correlation. The predictions of FIDAS are in sufficient agreement with the experimental CHF data, and indicate better agreement than the other film dryout models and empirical correlation of Katto. (author)

  20. Numerical Modelling Of Pumpkin Balloon Instability

    Science.gov (United States)

    Wakefield, D.

    Tensys have been involved in the numerical formfinding and load analysis of architectural stressed membrane structures for 15 years. They have recently broadened this range of activities into the `lighter than air' field with significant involvement in aerostat and heavy-lift hybrid airship design. Since early 2004 they have been investigating pumpkin balloon instability on behalf of the NASA ULDB programme. These studies are undertaken using inTENS, an in-house finite element program suite based upon the Dynamic Relaxation solution method and developed especially for the non-linear analysis and patterning of membrane structures. The paper describes the current state of an investigation that started with a numerical simulation of the lobed cylinder problem first studied by Calladine. The influence of material properties and local geometric deformation on stability is demonstrated. A number of models of complete pumpkin balloons have then been established, including a 64-gore balloon with geometry based upon Julian Nott's Endeavour. This latter clefted dramatically upon initial inflation, a phenomenon that has been reproduced in the numerical model. Ongoing investigations include the introduction of membrane contact modelling into inTENS and correlation studies with the series of large-scale ULDB models currently in preparation.

  1. On the origin of burnout in tubes during subheated water and wet steam flow

    International Nuclear Information System (INIS)

    Doroshchuk, V.E.

    1980-01-01

    Mecahnisms of arising the burnouts of the first and second kinds during water and steam-water mixture flow in a tube have been studied. It is shown that the burnout of the first kind arises in the cases when the main part is palyed by the thermal processes providing a possibility of the film boiling or destruction of near-wall liquid film. The high value of critical heat flux qsub(cr) is typical for this kind of burnout. In arising the burnout of the second kind the determining part is played by the hydrodynamic processes in the channel but not by the thermal ones. In this case the burnout is related with the formation of disperse structure of the flow in the pipe. The thermal load does not play the determining part in this case. The burnout arises at any q value (within the limits qsub(cr)sup(0)>q>qsub(gr)sup(0)) but always at the certain steam content. On the base of the analysis of conditions of burnout in steam-generating tubes it is concluded that determination of the two-phase flow structure in heating tubes, determination of the regularities of flow rate and film thickness changes in annular flows, investigation of the moisture carrying out by bubbles from a near-wall liquid film are of the greatest importance

  2. SBARMO-79 a multi-balloon campaign in the auroral zone

    International Nuclear Information System (INIS)

    Tanskanen, P.; Kangas, J.; Bjordal, J.; Bronstad, K.; Block, L.P.; Holtet, T.

    1982-01-01

    A joint European International Magnetospheric Study (IMS) balloon campaign was conducted within the framework of the Scientific Ballooning and Radiation Monitoring Organization (SBARMO). The campaign was carried out during the time from May 30 to July 10, 1979. A total of 29 successful balloon launches were made from four launch sites located in Norway and in Finland. The campaign has the objective to provide information for a better understanding of temporal and spatial variations of magnetospheric processes, giving particular attention to the coupling between the magnetosphere and the ionosphere

  3. US Air Force Balloon Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Worksheets containing pilot balloon data computed from releases at Air Force stations in the western United States. Elevation and azimuth angles are used to compute...

  4. Childhood re-edits: challenging norms and forming lay professional competence on YouTube

    OpenAIRE

    Konstantin Economou; Anne-Li Lindgren

    2015-01-01

    This article presents the initial findings of research into how YouTube culture can become an arena for young YouTube videographers to remodel mainstream, sub-cultural, and media content (YouTube clips, music, film content, and viral memes). We juxtapose analyses from both media and child studies to look at the ways in which preferred images and notions of the “good” and idyllic childhood are re-edited into a possible critique of the prescribed Swedish childhood. Also, we look at ways in whic...

  5. Measurement on liquid film in microchannels using laser focus displacements meter

    International Nuclear Information System (INIS)

    Fukamachi, Norihiro; Tamura, Naohisa; Hazuku, Tatsuya; Takamasa, Tomoji

    2003-01-01

    To elucidate details of the fascinating nonlinear phenomena of gas-liquid interface in micro- and mini-channels, high spatial temporal knowledge of the interface in gas-liquid two-phase flows is essential. This paper presents a new method for measuring interface of liquid film in microchannels using a laser focus displacement meter(LFD). The purpose of the study was to clarify the effectiveness the new method for obtaining detailed information of interface displacement, especially in the case of thin liquid film, in micro- and mini-channels. In the test, water and nitrogen gas were used as working fluids. To eliminate the signal of tube wall disturbing that of gas-liquid interface, a fluorocarbon tube with water box was used; whose refraction index was the same as one of water. With this method, accurate measurements of the interface of liquid film, in real time, with sensitivity of 0.1 μm and 1 kHz, were achieved. The error caused by the refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated theoretically and experimentally. The formulated theoretical equation can derive the real interface displacement using measured displacement in a fluorocarbon tube of 25 μm -2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 and 2 mm in I.D. showed that the corrected interface displacement calculated by the equation agreed with real displacement within a 1% margin of error. Simultaneous measurement on the interface in a fluorocarbon tube of 0.5 and 1 mm in I.D. using the LFD and a high-speed camera movie with a microscope was carried out. It showed that the LFD could measure the interface of liquid film in high spatially and temporally in annular, slug and piston flow regions and clarified the existence of thin liquid film thinner than 1 μm in thickness in slug and annular regions. (author)

  6. Embolization of carotid-cavernous fistula using a silicone balloon and a tracker-catheter system

    International Nuclear Information System (INIS)

    Kim, Sun Yong; Cho, Kil Ho; Park, Bok Hwan

    1992-01-01

    With the recent introduction and development of the detachable balloon system, it has become the treatment of choice in the management of carotid cavernous fistulas(CCFs). But, since most delivery systems for embolization of CCF mainly depend on flow guidance for balloon delivery, in case of small fistula, pseudo aneurysm and arterialized venous collaterals, failure of balloon embolization can occur. To overcome these limitation, the authors designed and used a new versatile, steerable, and flow-guided detachable balloon system by using a Tracker catheter system with silicone or latex balloons. Using this maneuver, we could get successful fistula occlusion in 7 out of 8 patients (silicone balloon). But in one case, we had to occlude the internal carotid artery at the fistula site, proximal and distal cervical portions of the internal carotid artery. This balloon delivery system proved to provide high selectivity for fistula and relatively ease of handing

  7. Measurement of interfacial displacement of a liquid film in microchannels using laser focus displacement meter

    International Nuclear Information System (INIS)

    Hazuku, Tatsuya; Fukamachi, Norihiro; Takamasa, Tomoji; Hibiki, Takashi

    2004-01-01

    This paper presents a new method for measuring the interfacial displacement of a liquid film in microchannels using a laser focus displacement meter (LFD). The purpose of the study is to clarify the effectiveness of the new method for obtaining detailed information concerning interfacial displacement, especially in the case of a thin liquid film, in micro- and mini-channels. To prevent the tube wall signal from disturbing that of the gas-liquid interface, a fluorocarbon tube with water box was used; the refraction index of this device is same as that for water. With this method, accurate instantaneous measurements of interfacial displacement of the liquid film were achieved. The error caused by refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated analytically and experimentally. The formulated analytical equation can estimate the real interface displacement using measured displacement in a fluorocarbon tube of 25 μm to 2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 and 2 mm I.D. showed that the corrected interface displacement calculated by the equation agreed with real displacement within a 1% margin of error. It was also confirmed that the LFD in the system could measure a liquid film of 0.25 μm at the thinnest. We made simultaneous measurements of the interface in fluorocarbon tubes of 0.5 and 1 mm I.D. using the LFD and a high-speed video camera with a microscope. These showed that the LFD could measure the interface of a liquid film with high spatial and temporal resolution during annular, slug, and piston flow regimes. The data also clarified the existence of a thin liquid film less than 1 μm in thickness in slug and annular flow regions. (author)

  8. A local network integrated into a balloon-borne apparatus

    Science.gov (United States)

    Imori, Masatosi; Ueda, Ikuo; Shimamura, Kotaro; Maeno, Tadashi; Murata, Takahiro; Sasaki, Makoto; Matsunaga, Hiroyuki; Matsumoto, Hiroshi; Shikaze, Yoshiaki; Anraku, Kazuaki; Matsui, Nagataka; Yamagami, Takamasa

    A local network is incorporated into an apparatus for a balloon-borne experiment. A balloon-borne system implemented in the apparatus is composed of subsystems interconnected through a local network, which introduces modular architecture into the system. The network decomposes the balloon-borne system into subsystems, which are similarly structured from the point of view that the systems is kept under the control of a ground station. The subsystem is functionally self-contained and electrically independent. A computer is integrated into a subsystem, keeping the subsystem under the control. An independent group of batteries, being dedicated to a subsystem, supplies the whole electricity of the subsystem. The subsystem could be turned on and off independently of the other subsystems. So communication among the subsystems needs to be based on such a protocol that could guarantee the independence of the individual subsystems. An Omninet protocol is employed to network the subsystems. A ground station sends commands to the balloon-borne system. The command is received and executed at the system, then results of the execution are returned to the ground station. Various commands are available so that the system borne on a balloon could be controlled and monitored remotely from the ground station. A subsystem responds to a specific group of commands. A command is received by a transceiver subsystem and then transferred through the network to the subsystem to which the command is addressed. Then the subsystem executes the command and returns results to the transceiver subsystem, where the results are telemetered to the ground station. The network enhances independence of the individual subsystems, which enables programs of the individual subsystems to be coded independently. Independence facilitates development and debugging of programs, improving the quality of the system borne on a balloon.

  9. Solar advanced internal film receiver; Receptor avanzado de pelicular interna

    Energy Technology Data Exchange (ETDEWEB)

    Torre Cabezas, M. de la

    1990-07-01

    In a Solar Central Internal Film Receiver, the heat absorbing fluid (a molten nitrate salt) flows in a thin film down over the non illuminated side of an absorber panel. Since the molten salt working fluid is not contained in complicated tube manifolds, the receiver design is simples than a conventional tube type-receiver resulting in a lower cost and a more reliable receiver. The Internal Film Receiver can be considered as an alternative to the Direct Absorption Receiver, in the event that the current problems of the last one can not be solved. It also describes here the test facility which will be used for its solar test, and the test plans foreseen. (Author) 17 refs.

  10. Paraspinal arteriovenous malformation Onyx embolization via an Ascent balloon.

    Science.gov (United States)

    Martínez-Galdámez, Mario; Rodriguez-Arias, Carlos A; Utiel, Elena; Arreba, Emilio; Gonzalo, Miguel; Arenillas, Juan F

    2014-04-01

    Purely extradural lumbar spinal arteriovenous malformations (AVMs) are rare lesions that have diverse presentations and imaging features. The treatment of a symptomatic high flow paraspinal AVM with multiple feeders remains a challenge. We report the first use of an Ascent balloon (dual lumen balloon catheter) to deliver Onyx with excellent penetration to a paraspinal AVM.

  11. Experimental investigation of undesired stable equilibria in pumpkin shape super-pressure balloon designs

    Science.gov (United States)

    Schur, W. W.

    2004-01-01

    Excess in skin material of a pneumatic envelope beyond what is required for minimum enclosure of a gas bubble is a necessary but by no means sufficient condition for the existence of multiple equilibrium configurations for that pneumatic envelope. The very design of structurally efficient super-pressure balloons of the pumpkin shape type requires such excess. Undesired stable equilibria in pumpkin shape balloons have been observed on experimental pumpkin shape balloons. These configurations contain regions with stress levels far higher than those predicted for the cyclically symmetric design configuration under maximum pressurization. Successful designs of pumpkin shape super-pressure balloons do not allow such undesired stable equilibria under full pressurization. This work documents efforts made so far and describes efforts still underway by the National Aeronautics and Space Administration's Balloon Program Office to arrive on guidance on the design of pumpkin shape super-pressure balloons that guarantee full and proper deployment.

  12. Clinical application of Inoue-balloon in percutaneous transluminal angioplasty for Budd-Chiari syndrome

    International Nuclear Information System (INIS)

    Mei Jian; Qu Jian; Zhu Yaoqing; Wang Lei; Liu Cheng

    2007-01-01

    Objective: To investigate the feasibility and effect of recanalization of inferior vena cava with percutaneous transluminal angioplasty(PTA)by Inoue-balloon. Methods: Eighty-nine patients with Budd-chiari syndrome (BCS )were treated with PTA by Inoue-balloon. Results: After PTA, the median (interquartile range)diameter of hepatic segment inferior vena cava increased from 0.00 (0.20-0.00) cm to 1.90 (2.00 1.47)cm; (P < 0.001), and the mean pressure of inferior vena cava reduced from (20.63 ± 7.22) mmHg to (12.13 ± 5.60) mmHg; (P < 0.001); with only less serious complications as rupture in two cases and without need of prior minor diameter balloon dilation in Inoue-balloon PTA. Conclusion: The advantages of Inoue- balloon PTA for BCS are more reliable and facile than those of polyethylene balloon, and may take the place in the foreseen future. (authors)

  13. De-entrainment phenomena on vertical tubes in droplet cross flow. Informal report

    International Nuclear Information System (INIS)

    Dallman, J.C.; Kirchner, W.L.

    1980-04-01

    In this study, flow conditions in the upper plenum of a PWR during the reflood stage of a loss-of-coolant accident (LOCA) are simulated using water sprays and a draft-induced wind tunnel. The de-entrainment efficiencies of isolated structures are presented for a variety of air-water droplet cross flow conditions. Since droplet splashing and/or bouncing from the draining liquid film is not accounted for in classical inertial impaction theory, there is substantial disagreement between measurement and the theory. The de-entrainment efficiencies of isolated tubes are extrapolated to those of tubes in a multiple tube array, and a predictive relation is presented for the overall de-entrainment eficiency of multiple tube arrays

  14. Impact of contrast agent viscosity on coronary balloon deflation times: bench testing results.

    Science.gov (United States)

    Mogabgab, Owen; Patel, Vishal G; Michael, Tesfaldet T; Kotsia, Anna; Christopoulos, George; Banerjee, Subhash; Brilakis, Emmanouil S

    2014-04-01

    To assess the impact of viscosity on angioplasty balloon deflation times. Lower contrast viscosity could result in more rapid coronary balloon deflation times. We performed a bench comparison of coronary balloon deflation times using 2 contrast agents with different viscosity (ioxaglate and iodixanol), 3 contrast dilutions, and 2 inflation syringe filling volumes. Ten identical pairs of coronary angioplasty balloons were used to conduct each comparison after balloon inflation to 12 atmospheres. Simultaneous deflations were performed under cineangiography. The time to full contrast extraction and the area of contrast remaining after 5 seconds of deflation (quantified by opaque pixel count) were compared between groups. The mean time to full contrast extraction during balloon deflation was 8.3 ± 2.5 seconds for ioxaglate (lower viscosity) versus 10.1 ± 2.9 seconds for iodixanol (higher viscosity) (17.4% decrease, P = 0.005), with a 35.6% (P = 0.004) reduction in contrast area at 5 seconds. Compared to 1:1 ioxaglate-saline mixture, 1:2 and 1:3 ioxaglate/saline mixes resulted in 26.7% (P deflation time, respectively, but at the expense of decreased balloon opacity. Filling the inflation syringe with 5 versus 15 ml of contrast/saline solution was associated with 7.5% decrease in balloon deflation time (P = 0.005), but no difference in contrast area at 5 seconds (P = 0.749). Use of a lower viscosity contrast agent and higher contrast dilution significantly reduced coronary balloon deflation times, whereas use of lower syringe filling volume had a modest effect. Rapid coronary balloon deflation could improve the safety of interventional procedures. © 2014 Wiley Periodicals, Inc.

  15. Efficacy of Intrauterine Bakri Balloon Tamponade in Cesarean Section for Placenta Previa Patients.

    Directory of Open Access Journals (Sweden)

    Hee Young Cho

    Full Text Available The aims of this study were to analyze the predictive factors for the use of intrauterine balloon insertion and to evaluate the efficacy and factors affecting failure of uterine tamponade with a Bakri balloon during cesarean section for abnormal placentation.We reviewed the medical records of 137 patients who underwent elective cesarean section for placenta previa between July 2009 and March 2014. Cesarean section and Bakri balloon insertion were performed by a single qualified surgeon. The Bakri balloon was applied when blood loss during cesarean delivery exceeded 1,000 mL.Sixty-four patients (46.7% required uterine balloon tamponade during cesarean section due to postpartum bleeding from the lower uterine segment, of whom 50 (78.1% had placenta previa totalis. The overall success rate was 75% (48/64 for placenta previa patients. Previous cesarean section history, anterior placenta, peripartum platelet count, and disseminated intravascular coagulopathy all significantly differed according to balloon success or failure (all p<0.05. The drainage amount over 1 hour was 500 mL (20-1200 mL in the balloon failure group and 60 mL (5-500 mL in the balloon success group (p<0.01.Intrauterine tamponade with a Bakri balloon is an adequate adjunct management for postpartum hemorrhage following cesarean section for placenta previa to preserve the uterus. This method is simple to apply, non-invasive, and inexpensive. However, possible factors related to failure of Bakri balloon tamponade for placenta previa patients such as prior cesarean section history, anterior placentation, thrombocytopenia, presence of DIC at the time of catheter insertion, and catheter drainage volume more than 500 mL within 1 hour of catheter placement should be recognized, and the next-line management should be prepared in advance.

  16. Balloon dilatation for the treatment of stricture of gastrojejunostomy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeon Hwa [Lee Rha Hospital, Chungju (Korea, Republic of); Song, Ho Young [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Han, Young Min; Chon, Su Bin; Chung, Gyung Ho; Kim, Chong Soo; Choi, Ki Chul [Chonbuk National University College of Medicine, Chungju (Korea, Republic of)

    1993-07-15

    Enteroenteric anastomotic strictures of UGI tract are common and require treatment if significant obstruction occurs. We performed fluoroscopic guided balloon dilatation in 6 patients who had symptomatic stricture of gastrojejunostomy. The stricture was successfully resolved in 4 patients with benign stricture. But 2 patients with malignant stricture had recurrence of obstructive symptoms 2 weeks later, and they required a stent. Asymptomatic balloon rupture was seen in one patients, but other procedural complications did not occur. We found that fluoroscopic guided balloon dilatation is an effective and safe method in the treatment of anastomotic stricture of gastrojejunostomy. We also found transient effect in malignant gastrojejunal anastomotic strictures, which required an interventional procedure, such as placement of a stent.

  17. US Daily Pilot Balloon Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pilot Balloon observational forms for the United States. Taken by Weather Bureau and U.S. Army observers. Period of record 1918-1960. Records scanned from the NCDC...

  18. Effect of sponge ball cleaning on removing barnacles in condenser tubes

    Energy Technology Data Exchange (ETDEWEB)

    Mimura, K; Minamoto, K; Kyohara, S [Kobe Steel Ltd. (Japan)

    1977-07-01

    Considering environmental protection, the recent tendency has been to give up chlorination of cooling water for power stations. The experimental results show that cooling sea-water without chlorination cannot get rid of barnacles which grow inside condenser tubes when the speed of the cooling water is less than 1 m/s. Cleaning by sponge balls 2 -- 3 times a week is found to be effective for both barnacle prevention and inactive film formation on the tube surface.

  19. Stability analysis and trend study of a balloon tethered in a wind, with experimental comparisons

    Science.gov (United States)

    Redd, L. T.; Bland, S. R.; Bennett, R. M.

    1973-01-01

    A stability analysis and trend study for a balloon tethered in a steady wind are presented. The linearized, stability-derivative type analysis includes balloon aerodynamics, buoyancy, mass (including apparent mass), and static forces resulting from the tether cable. The analysis has been applied to a balloon 7.64 m in length, and the results are compared with those from tow tests of this balloon. This comparison shows that the analysis gives reasonable predictions for the damping, frequencies, modes of motion, and stability boundaries exhibited by the balloon. A trend study for the 7.64-m balloon was made to illustrate how the stability boundaries are affected by changes in individual stability parameters. The trends indicated in this study may also be applicable to many other tethered-balloon systems.

  20. Conduction properties of thin films from a water soluble carbon nanotube/hemicellulose complex

    Science.gov (United States)

    Shao, Dongkai; Yotprayoonsak, Peerapong; Saunajoki, Ville; Ahlskog, Markus; Virtanen, Jorma; Kangas, Veijo; Volodin, Alexander; Van Haesendonck, Chris; Burdanova, Maria; Mosley, Connor D. W.; Lloyd-Hughes, James

    2018-04-01

    We have examined the conductive properties of carbon nanotube based thin films, which were prepared via dispersion in water by non-covalent functionalization of the nanotubes with xylan, a type of hemicellulose. Measurements of low temperature conductivity, Kelvin probe force microscopy, and high frequency (THz) conductivity elucidated the intra-tube and inter-tube charge transport processes in this material. The measurements show excellent conductive properties of the as prepared thin films, with bulk conductivity up to 2000 S cm-1. The transport results demonstrate that the hemicellulose does not seriously interfere with the inter-tube conductance.

  1. Fasting and meal-induced CCK and PP secretion following intragastric balloon treatment for obesity.

    Science.gov (United States)

    Mathus-Vliegen, Elisabeth M H; de Groot, Gerrit H

    2013-05-01

    Satiety is centrally and peripherally mediated by gastrointestinal peptides and the vagal nerve. We aimed to investigate whether intragastric balloon treatment affects satiety through effects on fasting and meal-stimulated cholecystokinin (CCK) and pancreatic polypeptide (PP) secretion. Patients referred for obesity treatment were randomised to 13 weeks of sham treatment followed by 13 weeks of balloon treatment (group 1; sham/balloon) or to twice a 13-week period of balloon treatment (group 2; balloon/balloon). Blood samples were taken for fasting and meal-stimulated CCK and PP levels at the start (T0) and after 13 (T1) and 26 (T2) weeks. Patients filled out visual analogue scales (VAS) to assess satiety. Forty-two patients (35 females, body weight 125.1 kg, BMI 43.3 kg/m(2)) participated. In group 1, basal CCK levels decreased but meal-stimulated response remained unchanged after 13 weeks of sham treatment. In group 2, basal and meal-stimulated CCK levels decreased after 13 weeks of balloon treatment. At the end of the second 13-week period, when group 1 had their first balloon treatment, they duplicated the initial 13-week results of group 2, whereas group 2 continued their balloon treatment and reduced meal-stimulated CCK release. Both groups showed reduced meal-stimulated PP secretions at T1 and T2 compared to T0. Changes in diet composition and VAS scores were similar. Improvements in glucose homeostasis partly explained the PP results. The reduced CCK and PP secretion after balloon positioning was unexpected and may reflect delayed gastric emptying induced by the balloon. Improved glucose metabolism partly explained the reduced PP secretion. Satiety and weight loss were not adversely influenced by these hormonal changes.

  2. Balloon dilation of congenital supravalvular pulmonic stenosis in a dog.

    Science.gov (United States)

    Treseder, Julia R; Jung, SeungWoo

    2017-03-30

    Percutaneous balloon valvuloplasty is considered the standard of care for treatment of valvular pulmonic stenosis, a common congenital defect in dogs. Supravalvular pulmonic stenosis is a rare form of pulmonic stenosis in dogs and standard treatment has not been established. Although, there have been reports of successful treatment of supravalvular pulmonic stenosis with surgical and stenting techniques, there have been no reports of balloon dilation to treat dogs with this condition. Here, a case of supravalvular pulmonic stenosis diagnosed echocardiographically and angiographically in which a significant reduction in pressure gradient was achieved with balloon dilation alone is presented.

  3. Titan Balloon Convection Model, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovative research effort is directed at determining, quantitatively, the convective heat transfer coefficients applicable to a Montgolfiere balloon operating...

  4. Experimental determination of thermal contact conductance between pressure and calandria tubes of Indian pressurised heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dureja, A.K., E-mail: akdureja@barc.gov.in [Reactor Design & Development Group, Bhabha Atomic Research Centre, Mumbai (India); Pawaskar, D.N.; Seshu, P. [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai (India); Sinha, S.K. [Reactor Design & Development Group, Bhabha Atomic Research Centre, Mumbai (India); Sinha, R.K. [Department of Atomic Energy, OYC, Near Gateway of India, Mumbai (India)

    2015-04-01

    Highlights: • We established an experimental facility to measure thermal contact conductance between disc shaped specimens. • We measured thermal contact conductance between Zr-2.5Nb alloy pressure tube (PT) material and Zr-4 calandria tube (CT) material. • We concluded that thermal contact conductance is a linear function of contact pressure for interface of PT and CT up to 10 MPa contact pressure. • We concluded that thermal contact conductance is a weak function of interface temperature. - Abstract: Thermal contact conductance (TCC) is one of the most important parameters in determining the temperature distribution in contacting structures. Thermal contact conductance between the contacting structures depends on the mechanical properties of underlying materials, thermo-physical properties of the interstitial fluid and surface condition of the structures coming in contact. During a postulated accident scenario of loss of coolant with coincident loss of emergency core cooling system in a tube type heavy water nuclear reactor, the pressure tube is expected to sag/balloon and come in contact with outer cooler calandria tube to dissipate away the heat generated to the moderator. The amount of heat thus transferred is a function of thermal contact conductance and the nature of contact between the two tubes. An experimental facility was designed, fabricated and commissioned to measure thermal contact conductance between pressure tube and calandria tube specimens. Experiments were conducted on disc shaped specimens under axial contact pressure in between mandrels. Experimental results of TCC and a linear correlation as a function of contact pressure have been reported in this paper.

  5. Vascular Rupture Caused by a Molding Balloon during Endovascular Aneurysm Repair: Case Report

    International Nuclear Information System (INIS)

    Lee, Hee Young; Do, Young Soo; Park, Hong Suk; Park, Kwang Bo; Kim, Young Wook; Kim, Dong Ik

    2011-01-01

    Endovascular aneurysm repair (EVAR) has been accepted as an alternative to traditional open surgery in selected patients. Despite the minimally invasiveness of this treatment, several complications may occur during or after EVAR. Complications include endoleak, aortic dissection, distal embolism, or iatrogenic injury to the access artery. However, there are few reports on the vascular rupture caused by a molding balloon during EVAR. We report two cases of infrarenal abdominal aortic aneurysms complicated by procedure-related aortic or iliac artery rupture by the molding balloon during EVAR. In our cases, we observed suddenly abrupt increase of the diameter of the endograft during balloon inflation, because we inflated the balloon rapidly. In conclusion, careful attention must be paid during inflation of the molding balloon to prevent vascular rupture.

  6. Cutting-balloon angioplasty of resistant ureteral stenosis as bridge to stent insertion

    Energy Technology Data Exchange (ETDEWEB)

    Iezzi, R., E-mail: iezzir@virgilio.it [Department of Bioimaging and Radiological Sciences, Institute of Radiology, ' A. Gemelli' Hospital - Catholic University, L.go A Gemelli 8, 00168 Rome (Italy); Di Stasi, C.; Simeone, A.; Bonomo, L. [Department of Bioimaging and Radiological Sciences, Institute of Radiology, ' A. Gemelli' Hospital - Catholic University, L.go A Gemelli 8, 00168 Rome (Italy)

    2011-07-15

    Ureteral stenting is a routine, minimally invasive procedure performed for relief of benign or malignant obstruction. In case of ureteral stenosis, to allow a correct insertion of the stent, a predilatation of the ureter stenosis with a conventional balloon catheter can be necessary. In exceptional cases, it can be difficult to advance an 7-8 Fr JJ-catheter over a tight resistant ureter stenosis following unsuccessful high-pressure balloon dilatation. In the present report, we describe two cases of resistant ureter stenosis successfully dilated by a cutting-balloon following the failure of high-pressure balloon dilatation, allowing a correct and uncomplicated antegrade stent insertion.

  7. Cutting-balloon angioplasty of resistant ureteral stenosis as bridge to stent insertion

    International Nuclear Information System (INIS)

    Iezzi, R.; Di Stasi, C.; Simeone, A.; Bonomo, L.

    2011-01-01

    Ureteral stenting is a routine, minimally invasive procedure performed for relief of benign or malignant obstruction. In case of ureteral stenosis, to allow a correct insertion of the stent, a predilatation of the ureter stenosis with a conventional balloon catheter can be necessary. In exceptional cases, it can be difficult to advance an 7-8 Fr JJ-catheter over a tight resistant ureter stenosis following unsuccessful high-pressure balloon dilatation. In the present report, we describe two cases of resistant ureter stenosis successfully dilated by a cutting-balloon following the failure of high-pressure balloon dilatation, allowing a correct and uncomplicated antegrade stent insertion.

  8. Fluoroscopic guidance for placing a double lumen endotracheal tube in adults.

    Science.gov (United States)

    Calenda, Emile; Baste, Jean Marc; Hajjej, Ridha; Rezig, Najiba; Moriceau, Jerome; Diallo, Yaya; Sghaeir, Slim; Danielou, Eric; Peillon, Christophe

    2014-09-01

    The aim of this study was to assess the right placement of the double lumen endotracheal tube with fluoroscopic guidance, which is used in first intention prior to the fiberscope in our institution. This was a prospective observational study. The study was conducted in vascular and thoracic operating rooms. We enrolled 205 patients scheduled for thoracic surgery, with ASA physical statuses of I (n = 37), II (n = 84), III (n = 80), and IV (n = 4). Thoracic procedures were biopsy (n = 20), wedge (n = 34), culminectomy (n = 6), lobectomy (n = 82), pneumonectomy (n = 4), sympathectomy (n = 9), symphysis (n = 47), and thymectomy (n = 3). The intubation with a double lumen tube was performed with the help of a laryngoscope. Tracheal and bronchial balloons were inflated and auscultation was performed after right and left exclusions. One shot was performed to locate the position of the bronchial tube and the hook. Fluoroscopic guidance was used to relocate the tube in case of a wrong position. When the fluoroscopic guidance failed to position the tube, a fiberscope was used. Perioperative collapse of the lung was assessed by the surgeon during the surgery. Correct fluoroscopic image was obtained after the first attempt in 58.5% of patients therefore a misplaced position was encountered in 41.5%. The fluoroscopic guidance allowed an exact repositioning in 99.5% of cases, and the mean duration of the procedure was 8 minutes. A fiberscope was required to move the hook for one patient. We did not notice a moving of the double lumen endotracheal tube during the surgery. The surgeon satisfaction was 100%. The fluoroscopy evidenced the right position of the double lumen tube and allowed a right repositioning in 99.5% of patients with a very simple implementation. Copyright © 2014. Published by Elsevier B.V.

  9. Single-centre comparison of a novel single-step balloon inflation ...

    African Journals Online (AJOL)

    Objective. A new second-generation balloon dilatation device for percutaneous nephrolithotomy (PCNL) has been launched, promising to challenge the traditional Amplatz serial dilators (ASDs). This device allows for the polyurethane sheath to be deployed on balloon inflation. Our primary objective in this pilot study was to ...

  10. Gastrostomy Tube (G-Tube)

    Science.gov (United States)

    ... any of these problems: a dislodged tube a blocked or clogged tube any signs of infection (including redness, swelling, or warmth at the tube site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site severe abdominal pain lasting ...

  11. Composition and corrosion properties of high-temperature oxide films on steel type 18-10

    International Nuclear Information System (INIS)

    Vakulenko, B.F.; Morozov, O.N.; Chernysheva, M.V.

    1985-01-01

    The composition and propeties of oxide films, formed in the process of tube production of steel type 18-10, as well as the behaviour of the steels coated with oxide films under operating conditions of NPP heat-exchange equipment at the 20-300 deg C temperatures are determined. It is found, that the films have a good adhesion to the steel surface and repeat the metal structure without interfering with, the surface defect determination. Introduction of the NaNO 2 corrosion inhibitor decreases the film destruction rate to the level of the base metal corrosion. It is found acceptable to use tubes of steel 18-10 coated with dense oxide films in the heat-exchange and water supply systems of NPP

  12. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    Directory of Open Access Journals (Sweden)

    A. Gallice

    2011-10-01

    Full Text Available A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ∼30–35 km altitude is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. In its present state, the model does not account for solar radiation, i.e. it is only able to describe the ascent of balloons during the night. It could however be adapted to also represent daytime soundings, with solar radiation modeled as a diffusive process. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s−1 in the troposphere and 0.2 m s−1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects

  13. Experimental Investigation of Average Heat-Transfer and Friction Coefficients for Air Flowing in Circular Tubes Having Square-Thread-Type Roughness

    Science.gov (United States)

    Sams, E. W.

    1952-01-01

    An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through electrically heated Inconel tubes having various degrees of square-thread-type roughness, an inside diameter of 1/2 inch, and a length of 24 inches. were obtained for tubes having conventional roughness ratios (height of thread/radius of tube) of 0 (smooth tube), 0.016, 0.025, and 0.037 over ranges of bulk Reynolds numbers up to 350,000, average inside-tube-wall temperatures up to 1950deg R, and heat-flux densities up to 115,000 Btu per hour per square foot. Data The experimental data showed that both heat transfer and friction increased with increase in surface roughness, becoming more pronounced with increase in Reynolds number; for a given roughness, both heat transfer and friction were also influenced by the tube wall-to-bulk temperature ratio. Good correlation of the heat-transfer data for all the tubes investigated was obtained by use of a modification of the conventional Nusselt correlation parameters wherein the mass velocity in the Reynolds number was replaced by the product of air density evaluated at the average film temperature and the so-called friction velocity; in addition, the physical properties of air were evaluated at the average film temperature. The isothermal friction data for the rough tubes, when plotted in the conventional manner, resulted in curves similar to those obtained by other investigators; that is, the curve for a given roughness breaks away from the Blasius line (representing turbulent flow in smooth tubes) at some value of Reynolds number, which decreases with increase in surface roughness, and then becomes a horizontal line (friction coefficient independent of Reynolds number). A comparison of the friction data for the rough tubes used herein indicated that the conventional roughness ratio is not an adequate measure of relative roughness for tubes having a square-thread-type element. The present data, as well

  14. Long duration balloon flights in the middle stratosphere

    Science.gov (United States)

    Malaterre, P.

    1993-02-01

    Research and development performed by the French Space Agency (CNES) over the past 10 years has given the scientific community the Infrared Montgolfiere, a balloon capable of lifting 50-kg payloads into the stratosphere for periods of several weeks. The Infrared Montgolfiere is a hot air balloon that captures infrared radiation using the earth as a heat source. Thirty flights have been launched so far, some lasting more than sixty days and circling the globe twice.

  15. Use of Cutting Balloon in the Treatment of Urethral Stricture: A Novel Technique

    International Nuclear Information System (INIS)

    Yildirim, Erkan; Cicek, Tufan; Istanbulluoglu, Okan; Ozturk, Bulent

    2009-01-01

    The peripheral cutting balloon has been used to treat various nonvascular strictures as well as vascular stenosis. In this article, we describe for the first time the use of the cutting balloon in the treatment of patients with urethral stricture. Four patients with bulbar urethral stricture were included in the study. All strictures were successfully dilated with the cutting balloon, and patients were free of symptoms at 6-month follow-up. Cutting-balloon dilatation is a safe, easy-to-perform, and effective treatment for patients with tight urethral strictures.

  16. Viscoresistive g-modes and ballooning

    International Nuclear Information System (INIS)

    Dagazian, R.Y.; Paris, R.B.

    1980-01-01

    The resistive G-mode and its particular form, the resistive ballooning mode, are treated as limits of a single simple model. MHD theory including parallel and perpendicular viscosity, finite shear, and finite beta is employed to study their linear stability

  17. Absorbed Dose Distributions in Irradiated Plastic Tubing and Wire Insulation

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1979-01-01

    Plastic tubing and wire insulation were simulated by radiochromic dye dosimeter films having electron absorbing properties similar to the materials of interest (polyethylene and PVC). A 400-keV electron accelerator was used to irradiate from 1, 2, 3 and 4 sides simulating possible industrial...

  18. Droplet behaviour in a Ranque-Hilsch vortex tube

    Energy Technology Data Exchange (ETDEWEB)

    Liew, R; Zeegers, J C H [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Michalek, W R; Kuerten, J G M, E-mail: r.liew@tue.nl [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2011-12-22

    The vortex tube is an apparatus by which compressed gas is separated into cold and warm streams. Although the apparatus is mostly used for cooling, the possibility to use the vortex tube as a device for removing non-desired condensable components from gas mixtures is investigated. To give first insight on how droplets behave in the vortex tube, a MATLAB model is written. The model tracks Lagrangian droplets in time and space according to the forces acting on the droplets. Phase interactions, i.e. evaporation or condensation, are modeled according to the kinetic approach for phase interactions. Liquid (water) concentrations are shown for two cases where the humidity at the inlet of the vortex tube is varied from 0% to 50%. It is clearly observed from the results that the concentration of liquid increases with increasing humidity. The higher this concentration is, the higher the probability that droplets collide with each other and form larger droplets which are swirled towards the wall to form an easy-to-separate liquid film.

  19. Balloon dacryocystoplasty study in the management of adult epiphora.

    LENUS (Irish Health Repository)

    Fenton, S

    2012-02-03

    PURPOSE: To determine the efficacy of dacryocystoplasty with balloon dilation in the treatment of acquired obstruction of the nasolacrimal system in adults. METHODS: Balloon dacryocystoplasty was performed in 52 eyes of 42 patients under general anaesthetic. A Teflon-coated guidewire was introduced through the canaliculus and manipulated through the nasolacrimal system and out of the nasal aperture. A 4 mm wide 3 cm coronary angioplasty balloon catheter was threaded over the guidewire in a retrograde fashion and dilated at the site of obstruction. RESULTS: There was complete obstruction in 30% of cases and partial obstruction in 70%. The most common site of obstruction was the nasolacrimal duct. The procedure was technically successful in 94% of cases. The overall re-obstruction rate was 29% within 1 year of the procedure. There was an anatomical failure rate of 17% for partial obstruction and 69% for complete obstruction within 1 year. CONCLUSIONS: Balloon dacryocystoplasty has a high recurrence rate. There may be a limited role for this procedure in partial obstructions. Further refinements of the procedure are necessary before it can be offered as a comparable alternative to a standard surgical dacryocystorhinostomy.

  20. Safety and effectiveness of gastric balloons associated with hypocaloric diet for the treatment of obesity.

    Science.gov (United States)

    de Castro, Maria Luisa; Morales, Maria Jose; Martínez-Olmos, Miguel A; Pineda, Juan R; Cid, Lucia; Estévez, Pamela; del-Campo, Victor; Rodríguez-Prada, J Ignacio

    2013-10-01

    intragastric balloons provide early satiety and thereby induce short-term weight loss. The aim of this study was to evaluate safety and short and medium-term effectiveness of gastric balloons associated to hypocaloric diet in obesity. from May 2004 to June 2011 91 obese patients, body mass index (BMI) 45.2 +/- 7.2 kg/m2 were prospectively followed after endoscopic implantation of a gastric balloon associated to restricted diet. Successful therapy was defined as percent loss of total weight (%LTW) > or = 5 % at six months after balloon placement and 6 and 12 months after their withdrawal. All analyses followed intention-to treat principles considering significant p-values or = 5 %. Short-term and medium-term effectiveness was negatively associated to obesity in first-grade relatives (p = 0.003 and p = 0.04). Higher weight loss 6 months after balloon placement independently predicted medium-term effectiveness (p = 0.0001). Mortality was absent but there were two spontaneous deflations of air-filled balloons and severe withdrawal difficulties in 8 patients, leading to surgery in one case. Retrieval complications associated to air-filled balloons (p = 0.0005). in obesity, effectiveness of gastric balloons associated to hypocaloric diet decreases over time.Complications occurred mainly in the retrieval endoscopic procedure and related to air-filled balloons.

  1. Visual study of air--water mixtures flowing inside serpentine tubes

    International Nuclear Information System (INIS)

    Farukhi, M.N.; Parker, J.D.

    1974-01-01

    Hydrodynamic behavior of air-water mixtures flowing inside serpentine tubes, with bends in the vertical plane, was investigated. Flow visualization was accomplished by injecting dye into the liquid phase and recording the events on color slides and color movies. For certain combinations of gas and liquid flow rates, in the annular type flow regime, ''film inversion'' was observed in the bend as well as in the straight section immediately downstream of the bend. A new flow regime map particularly applicable to two phase flow inside serpentine tubes is presented. (U.S.)

  2. EUSO-BALLOON a pathfinder for detecting UHECR's from the edge of space

    Directory of Open Access Journals (Sweden)

    Scotti V.

    2013-06-01

    Full Text Available EUSO-Balloon has been conceived as a pathfinder mission for JEM-EUSO, to perform an end-to-end test of the subsystems and components, and to prove the global detection chain while improving our knowledge of the atmospheric and terrestrial UV background. Through a series of stratospheric balloon flights performed by the French Space Agency CNES, EUSO-BALLOON will serve as an evolutive test-bench for all the key technologies of JEM-EUSO. EUSO-Balloon also has the potential to detect Extensive Air Showers from above, marking a key milestone in the development of UHECR science, and paving the way for any future large scale, space-based UHECR observatory.

  3. Studies on the causes of failures in titanium tube condensers of nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Uh Chul; Kim, Joung Soo; Chung, Han Sub; Hwang, Seong Sik; Hur, Do Haeng

    1991-02-01

    The amount of hydrogen absorbed in Ti tubes varies as the surface condition of Ti tubes changes. It was observed that the amount of hydrogen absorbed in Ti tubes was highest in as-received and welded specimens, while that could be reduced by oxidizing them to make stable oxide surface film or by pickling them. The results of the experiments done by varing the applied cathodic potentials show that hydrogen content absorbed in Ti tubes increases very sharply at or below the potential of -0.9 V versus SCE, which suggests that critical potential for cathodic protection should be above -0.9 V versus SCE. (Author)

  4. Endovascular rescue of a fused monorail balloon and cerebral protection device.

    Science.gov (United States)

    Campbell, John E; Bates, Mark C; Elmore, Michael

    2007-08-01

    To present a case of successful endovascular retrieval of a monorail predilation balloon fused to an embolic protection device (EPD) in the distal internal carotid artery (ICA) of a high-risk symptomatic patient. A 60-year-old man with documented systemic atherosclerotic disease had a severe (>70%) restenosis in the left ICA 3 years after endarterectomy. He was scheduled for carotid artery stenting (CAS) with cerebral protection; however, he developed unstable angina and was transferred to our facility, where the admitting team decided that staged CAS followed by coronary bypass grafting would be the best option. During the CAS procedure, a 6-mm AccuNet filter was passed across the lesion via a 6-F carotid sheath and deployed in the distal ICA without incident. However, the 4-x20-mm predilation monorail balloon was then advanced without visualizing the markers, resulting in inadvertent aggressive interaction that trapped the balloon's tip in the filter. Several maneuvers to separate the devices were unsuccessful. Finally, the filter/balloon combination was moved gently retrograde until the balloon was straddling the subtotal ICA lesion. The lesion was dilated to 4 mm with the balloon, and the sheath was gently advanced across the lesion as the balloon was deflated. Angiography excluded interval occlusion of the filter from the embolic debris during the aforementioned aggressive maneuvers and documented antegrade flow. The filter was slowly withdrawn into the 6-F sheath with simultaneous aspiration. A second 6-mm filter was deployed, and the procedure was completed satisfactorily. The patient did well, with no neurological sequelae. EPDs are an essential in carotid artery stenting and, keeping in mind the potential risks associated with their use, will help the operator avoid complications such as this one.

  5. Preparation and characterisation of polyamide 11/montmorillonite (MMT) nanocomposites for use in angioplasty balloon applications

    International Nuclear Information System (INIS)

    Halim, Khairul Anwar A.; Farrell, Joseph B.; Kennedy, James E.

    2013-01-01

    With increased demands on catheter balloon functionality, there is an emphasis to blend new materials which can improve mechanical performance. Polymer nanocomposites were prepared by melt blending polyamide 11 (PA 11) with organically modified montmorillonite nanoclay. The effects of incorporating the nanoclay on the short-term mechanical properties of PA 11 were assessed using a design of experiments (DoEs) approach. X-ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis techniques (DMA) were used to characterise the morphology of the nanocomposites. Design of experiments studies revealed that the optimum nanocomposites properties can be achieved by carefully controlling the melt compounding parameters. XRD and TEM data proved that exfoliated clay morphologies existed within the matrix at low clay loading (2%). Whereas the interaction between the polymer matrix and nanoclay was quantified in the DMA spectra, showed a significant increase in storage modulus (up to 80%). The reinforcing effect of nanoclay within the PA 11 was further investigated using mechanical testing, where significant increases in the ultimate tensile strength and strain at break of reinforced tri-layer balloon tubing were observed. - Highlights: • TEM reveals the coexistence of exfoliated and intercalated nanostructures. • Isothermal crystallisation studies found that the nano-clays reduced the crystallisation time. • Significant increase in the storage modulus was due to the reinforcing effect of the nano-clay platelets. • It was observed that the activation energy values decreased due to the presence of nanoclay

  6. Preparation and characterisation of polyamide 11/montmorillonite (MMT) nanocomposites for use in angioplasty balloon applications

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Khairul Anwar A. [Department of Polymer Engineering, Athlone Institute of Technology, Athlone (Ireland); School of Materials Engineering, Universiti Malaysia Perlis, Perlis (Malaysia); Farrell, Joseph B. [Department of Polymer Engineering, Athlone Institute of Technology, Athlone (Ireland); Kennedy, James E., E-mail: jkennedy@ait.ie [Department of Polymer Engineering, Athlone Institute of Technology, Athlone (Ireland)

    2013-12-16

    With increased demands on catheter balloon functionality, there is an emphasis to blend new materials which can improve mechanical performance. Polymer nanocomposites were prepared by melt blending polyamide 11 (PA 11) with organically modified montmorillonite nanoclay. The effects of incorporating the nanoclay on the short-term mechanical properties of PA 11 were assessed using a design of experiments (DoEs) approach. X-ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis techniques (DMA) were used to characterise the morphology of the nanocomposites. Design of experiments studies revealed that the optimum nanocomposites properties can be achieved by carefully controlling the melt compounding parameters. XRD and TEM data proved that exfoliated clay morphologies existed within the matrix at low clay loading (2%). Whereas the interaction between the polymer matrix and nanoclay was quantified in the DMA spectra, showed a significant increase in storage modulus (up to 80%). The reinforcing effect of nanoclay within the PA 11 was further investigated using mechanical testing, where significant increases in the ultimate tensile strength and strain at break of reinforced tri-layer balloon tubing were observed. - Highlights: • TEM reveals the coexistence of exfoliated and intercalated nanostructures. • Isothermal crystallisation studies found that the nano-clays reduced the crystallisation time. • Significant increase in the storage modulus was due to the reinforcing effect of the nano-clay platelets. • It was observed that the activation energy values decreased due to the presence of nanoclay.

  7. Balloon-borne stratospheric BrO measurements: comparison with Envisat/SCIAMACHY BrO limb profiles

    Directory of Open Access Journals (Sweden)

    M. Dorf

    2006-01-01

    Full Text Available For the first time, results of four stratospheric BrO profiling instruments, are presented and compared with reference to the SLIMCAT 3-dimensional chemical transport model (3-D CTM. Model calculations are used to infer a BrO profile validation set, measured by 3 different balloon sensors, for the new Envisat/SCIAMACHY (ENVIronment SATellite/SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY satellite instrument. The balloon observations include (a balloon-borne in situ resonance fluorescence detection of BrO (Triple, (b balloon-borne solar occultation DOAS measurements (Differential Optical Absorption Spectroscopy of BrO in the UV, and (c BrO profiling from the solar occultation SAOZ (Systeme d'Analyse par Observation Zenithale balloon instrument. Since stratospheric BrO is subject to considerable diurnal variation and none of the measurements are performed close enough in time and space for a direct comparison, all balloon observations are considered with reference to outputs from the 3-D CTM. The referencing is performed by forward and backward air mass trajectory calculations to match the balloon with the satellite observations. The diurnal variation of BrO is considered by 1-D photochemical model calculation along the trajectories. The 1-D photochemical model is initialised with output data of the 3-D model with additional constraints on the vertical transport, the total amount and photochemistry of stratospheric bromine as given by the various balloon observations. Total [Bry]=(20.1±2.5 pptv obtained from DOAS BrO observations at mid-latitudes in 2003, serves as an upper limit of the comparison. Most of the balloon observations agree with the photochemical model predictions within their given error estimates. First retrieval exercises of BrO limb profiling from the SCIAMACHY satellite instrument on average agree to around 20% with the photochemically-corrected balloon observations of the remote sensing instruments (SAOZ

  8. Endoscopic minor papilla balloon dilation for the treatment of symptomatic pancreas divisum.

    Science.gov (United States)

    Yamamoto, Natsuyo; Isayama, Hiroyuki; Sasahira, Naoki; Tsujino, Takeshi; Nakai, Yousuke; Miyabayashi, Koji; Mizuno, Suguru; Kogure, Hirofumi; Sasaki, Takashi; Hirano, Kenji; Tada, Minoru; Koike, Kazuhiko

    2014-08-01

    A subpopulation of patients with pancreas divisum experience symptomatic events such as recurrent acute pancreatitis and chronic pancreatitis. Minor papilla sphincterotomy has been reported as being an effective treatment. The aim of this study was to evaluate the safety and efficacy of endoscopic balloon dilation for the minor papilla. Between 2000 and 2012, 16 patients were retrospectively included in this study. After endoscopic balloon dilation for the minor papilla was received, a pancreatic stent or a nasal pancreatic drainage catheter was placed for 1 week. If a stricture or obstruction was evident, it was treated with balloon dilation followed by long-term stent placement (1 year). When an outflow of pancreatic juice was disturbed by a pancreatic stone, endoscopic stone extraction was performed. Balloon dilation and stent placement were achieved and were successful in all the cases (16/16; 100%). Clinical improvement was achieved in 7 (84.7%) of the 9 patients with recurrent acute pancreatitis and in 6 (85.7%) of the 7 patients with chronic pancreatitis. Early complications were observed in 1 (6.3%) patient. Pancreatitis or bleeding related to balloon dilation was not observed. Endoscopic balloon dilation for the minor papilla is feasible for the management of symptomatic pancreas divisum.

  9. The thin-wall tube drift chamber operating in vacuum (prototype)

    Science.gov (United States)

    Alexeev, G. D.; Glonti, L. N.; Kekelidze, V. D.; Malyshev, V. L.; Piskun, A. A.; Potrbenikov, Yu. K.; Rodionov, V. K.; Samsonov, V. A.; Tokmenin, V. V.; Shkarovskiy, S. N.

    2013-08-01

    The goal of this work was to design drift tubes and a chamber operating in vacuum, and to develop technologies for tubes independent assembly and mounting in the chamber. These design and technology were tested on the prototype. The main features of the chamber are the following: the drift tubes are made of flexible mylar film (wall thickness 36 μm, diameter 9.80 mm, length 2160 mm) using ultrasonic welding along the generatrix; the welding device and methods were developed at JINR. Drift tubes with end plugs, anode wires and spacers were completely assembled outside the chamber. "Self-centering" spacers and bushes were used for precise setting of the anode wires and tubes. The assembled tubes were sealed with O-rings in their seats in the chamber which simplified the chamber assembling. Moreover the tube assembly and the chamber manufacture can be performed independently and in parallel; this sufficiently reduces the total time of chamber manufacture and assembling, its cost and allows tubes to be tested outside the chamber. The technology of independent tube assembling is suitable for a chamber of any shape but a round chamber is preferable for operation in vacuum. Single channel amplifier-discriminator boards which are more stable against cross talks were used for testing the tubes. Independently assembled tubes were mounted into the chamber prototype and its performance characteristic measured under the vacuum conditions. The results showed that both the structure and the tubes themselves normally operate. They are suitable for making a full-scale drift chamber for vacuum.

  10. The thin-wall tube drift chamber operating in vacuum (prototype)

    International Nuclear Information System (INIS)

    Alexeev, G.D.; Glonti, L.N.; Kekelidze, V.D.; Malyshev, V.L.; Piskun, A.A.; Potrbenikov, Yu.K.; Rodionov, V.K.; Samsonov, V.A.; Tokmenin, V.V.; Shkarovskiy, S.N.

    2013-01-01

    The goal of this work was to design drift tubes and a chamber operating in vacuum, and to develop technologies for tubes independent assembly and mounting in the chamber. These design and technology were tested on the prototype. The main features of the chamber are the following: the drift tubes are made of flexible mylar film (wall thickness 36 μm, diameter 9.80 mm, length 2160 mm) using ultrasonic welding along the generatrix; the welding device and methods were developed at JINR. Drift tubes with end plugs, anode wires and spacers were completely assembled outside the chamber. “Self-centering” spacers and bushes were used for precise setting of the anode wires and tubes. The assembled tubes were sealed with O-rings in their seats in the chamber which simplified the chamber assembling. Moreover the tube assembly and the chamber manufacture can be performed independently and in parallel; this sufficiently reduces the total time of chamber manufacture and assembling, its cost and allows tubes to be tested outside the chamber. The technology of independent tube assembling is suitable for a chamber of any shape but a round chamber is preferable for operation in vacuum. Single channel amplifier-discriminator boards which are more stable against cross talks were used for testing the tubes. Independently assembled tubes were mounted into the chamber prototype and its performance characteristic measured under the vacuum conditions. The results showed that both the structure and the tubes themselves normally operate. They are suitable for making a full-scale drift chamber for vacuum

  11. The thin-wall tube drift chamber operating in vacuum (prototype)

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, G.D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Glonti, L.N., E-mail: glonti@sunse.jinr.ru [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kekelidze, V.D.; Malyshev, V.L.; Piskun, A.A.; Potrbenikov, Yu.K.; Rodionov, V.K.; Samsonov, V.A.; Tokmenin, V.V.; Shkarovskiy, S.N. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2013-08-01

    The goal of this work was to design drift tubes and a chamber operating in vacuum, and to develop technologies for tubes independent assembly and mounting in the chamber. These design and technology were tested on the prototype. The main features of the chamber are the following: the drift tubes are made of flexible mylar film (wall thickness 36 μm, diameter 9.80 mm, length 2160 mm) using ultrasonic welding along the generatrix; the welding device and methods were developed at JINR. Drift tubes with end plugs, anode wires and spacers were completely assembled outside the chamber. “Self-centering” spacers and bushes were used for precise setting of the anode wires and tubes. The assembled tubes were sealed with O-rings in their seats in the chamber which simplified the chamber assembling. Moreover the tube assembly and the chamber manufacture can be performed independently and in parallel; this sufficiently reduces the total time of chamber manufacture and assembling, its cost and allows tubes to be tested outside the chamber. The technology of independent tube assembling is suitable for a chamber of any shape but a round chamber is preferable for operation in vacuum. Single channel amplifier-discriminator boards which are more stable against cross talks were used for testing the tubes. Independently assembled tubes were mounted into the chamber prototype and its performance characteristic measured under the vacuum conditions. The results showed that both the structure and the tubes themselves normally operate. They are suitable for making a full-scale drift chamber for vacuum.

  12. Severe Sunburn After a Hot Air Balloon Ride: A Case Report and Literature Review.

    Science.gov (United States)

    Ozturk, Sinan; Karagoz, Huseyin

    2015-01-01

    Hot air balloon tours are very popular among travelers worldwide. Preventable burn injuries associated with hot air balloon rides have been reported during crashes into power lines, in propane burner explosions, and following contact with the propane burner tanks. We present a case of severe repeated sunburn, which poses another risk of preventable injury during hot air balloon rides, and briefly discuss the injury epidemiology of hot air balloon rides. © 2015 International Society of Travel Medicine.

  13. Characterization of piesoelectric ZnO thin films and the fabrication of piezoelectric micro-cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Raegan Lynn [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    In Atomic Force Microscopy (AFM), a microcantilever is raster scanned across the surface of a sample in order to obtain a topographical image of the sample's surface. In a traditional, optical AFM, the sample rests on a bulk piezoelectric tube and a control loop is used to control the tip-sample separation by actuating the piezo-tube. This method has several disadvantages--the most noticeable one being that response time of the piezo-tube is rather long which leads to slow imaging speeds. One possible solution aimed at improving the speed of imaging is to incorporate a thin piezoelectric film on top of the cantilever beam. This design not only improves the speed of imaging because the piezoelectric film replaces the piezo-tube as an actuator, but the film can also act as a sensor. In addition, the piezoelectric film can excite the cantilever beam near its resonance frequency. This project aims to fabricate piezoelectric microcantilevers for use in the AFM. Prior to fabricating the cantilevers and also part of this project, a systematic study was performed to examine the effects of deposition conditions on the quality of piezoelectric ZnO thin films deposited by RF sputtering. These results will be presented. The deposition parameters that produced the highest quality ZnO film were used in the fabrication of the piezoelectric cantilevers. Unfortunately, the fabricated cantilevers warped due to the intrinsic stress of the ZnO film and were therefore not usable in the AFM. The complete fabrication process will be detailed, the results will be discussed and reasons for the warping will be examined.

  14. The Micro-Instrumentation Package: A Solution to Lightweight Ballooning

    Science.gov (United States)

    Juneau, Jill

    This paper discusses the design and testing of an over the horizon (OTH) light weight telemetry and termination system that can be used for small ballooning payloads. Currently, the Columbia Scientific Balloon Facility (CSBF) provides telemetry for the science payload by integrating one of two types of support packages. The type of support package integrated depends on whether the flight will stay in range of line of sight (LOS) or will exceed LOS requiring the use of over the horizon (OTH) telemetry. The weights of these systems range from 100 pounds to 350 pounds depending upon the use of redundant systems, equipment for high data rates, and batteries and/or solar panels for power requirements. These weight values are not as significant for larger payloads but can be crippling for smaller payloads. In addition, these support package systems are fairly expensive, placing a high importance on recovery. A lightweight and inexpensive telemetry system could be beneficial for various reasons. First, it would allow scientists to fly lightweight payloads on large balloons reaching even higher altitudes. Second, scientists could fly lightweight payloads on less expensive balloons such as meteorological balloons. Depending on the payload, these flights could be fairly inexpensive and even disposable. Third, a compact telemetry system on any balloon will free up more room for the science portion of the payload. In response, a compact telemetry/termination system called the Micro-Instrumentation Package (MIP) was developed. The MIP provides uplink and downlink communications, an interface to the science, housekeeping information including global positioning system (GPS) position, and relays. Instead of a power-hungry microprocessor, the MIP's central consists of a microcontroller. Microcontrollers are lower power, easily programmed, and can be purchased for less than ten dollars. For uplink and downlink telemetry, the MIP uses an LOS serial transceiver and an Iridium unit

  15. Balloon catheter dilatation of esophageal strictures in children and an infant

    International Nuclear Information System (INIS)

    Yeon, Kyung Mo; Choe, Yeon Hyeon; Kim, In One

    1986-01-01

    Severe postoperative strictures in two children and an infant and mild postoperative stricture in a child were treated with balloon catheter. A child with post-fundoplication stricture showed symptomatic improvement. Anastomotic strictures after esophageal atresia repair in an infant and a child were successfully dilated with improved luminal diameter and symptoms. In a child with mild postoperative stricture, balloon dilatation was performed to prevent stricture of the anastomotic site. Radiological esophageal dilatation using balloon catheters is a safe effective method for dilating symptomatic esophageal strictures which obviates surgery and allows subsequent standard bougienage.

  16. High n ballooning modes in highly elongated tokamaks

    International Nuclear Information System (INIS)

    An, C.H.; Bateman, G.

    1980-02-01

    An analytic study of stability against high n ballooning modes in highly elongated axisymmetric plasmas is presented and compared with computational results. From the equation for the marginal pressure gradient, it is found that the local shear plays an important role on the stability of elongated and shifted plasma, and that high elongation deteriorates the stability by decreasing the stabilizing effects of field line bending and local shear. The net contribution of the local shear to stability decreases with elongation and shift for strongly ballooning modes (eigenfunctions strongly localized near the outer edge of the toroidal flux surfaces) but increases for interchange modes (eigenfunctions more uniform along the flux surfaces). The computational study of high n ballooning modes in a highly elongated plasma reveals that lowering the aspect ratio and broadening the pressure profile enhance the marginal beta for β/sub p/ less than unity but severely reduce the marginal beta for β/sub p/ larger than unity

  17. Malignant Esophagogastric Junction Obstruction: Efficacy of Balloon Dilation Combined with Chemotherapy and/or Radiation Therapy

    International Nuclear Information System (INIS)

    Ko, Gi-Young; Song, Ho-Young; Hong, Heuk-Jin; Sung, Kyu-Bo; Seo, Tae-Seok; Yoon, Hyun-Ki

    2003-01-01

    Purpose: To assess the efficacy of balloon dilation combined with chemotherapy and/or radiation therapy for palliation of dysphagia due to malignant esophagogastric junction strictures. Methods: Fluoroscopically guided balloon dilation was attempted in 20 patients. The causes of strictures were gastric adenocarcinoma (n = 10) and esophageal squamous cell carcinoma (n = 10). Scheduled chemotherapy and/or radiation therapy followed balloon dilation in all patients. Results: There were no technical failures or major complications. After balloon dilation, 15 (75%) patients showed improvement of dysphagia. No patient complained of reflux esophagitis during the follow-up period. Among the 15 patients, seven needed no further treatment for palliation of dysphagia until their deaths. The remaining eight patients underwent repeat balloon dilation(n = 4) or stent placement (n = 4)3-43 weeks (mean 15 weeks) after the initial balloon dilation because of recurrent dysphagia. Conclusion: Balloon dilation combined with chemotherapy and/or radiation therapy seems to be an easy and reasonably effective palliative treatment for malignant esophagogastric strictures

  18. Balloon dilatations of esophageal strictures

    International Nuclear Information System (INIS)

    Seo, Jeong Jin; Juhng, Seon Kwan; Kim, Jae Kyu; Chung, Hyon De

    1990-01-01

    Most benign esophageal strictures can be successfully dilated with conventional bougienage technique. But occasionally strictures are so tight, lengthy, or sometimes irregular that this technique fail, and surgical intervention is required. Since 1974 Gruentzig balloon catheter has succeed when used for strictures in the cardiac and peripheral vasculatures, the biliary and urinary tracts, the colon of neonates after inflammatory disease and also in the esophagus. Fluoroscopically guided balloon catheters were used to dilate 30 esophageal strictures in 30 patients over 3 years at Department of Diagnostic Radiology, Chonnam University, College of Medicine. The distribution of age was from 7 years to 71 days and the ratio of male to female was 15:15. The causes of benign stricture (23 cases) were post-operative strictures (13), chemical (4), achalasia (3), chronic inflammation (2), esophageal rupture (1) and those of malignant stricture (7 cases) were post-radiation stricture of primary esophageal cancer (6) and metastatic esophageal cancer (1). The success rate of procedure was 93% (28/30). The causes of failure were the failure of passage of stricture due to markedly dilated proximal segment of esophagus (1 case) and too long segment of stricture (1 case). Complication of procedure was the diverticular-formation of esophagus in 3 cases, but has no clinical significance in follow-up esophagography. In conclusion, fluoroscopically guided balloon dilation of esophageal stricture appears to be safe, effective treatment and may be have theoretical advantages over conventional bougienage and also should be considered before other methods of treatment are used

  19. Balloon dilatations of esophageal strictures

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Jin; Juhng, Seon Kwan; Kim, Jae Kyu; Chung, Hyon De [Chonnam National University College of Medicine, Seoul (Korea, Republic of)

    1990-04-15

    Most benign esophageal strictures can be successfully dilated with conventional bougienage technique. But occasionally strictures are so tight, lengthy, or sometimes irregular that this technique fail, and surgical intervention is required. Since 1974 Gruentzig balloon catheter has succeed when used for strictures in the cardiac and peripheral vasculatures, the biliary and urinary tracts, the colon of neonates after inflammatory disease and also in the esophagus. Fluoroscopically guided balloon catheters were used to dilate 30 esophageal strictures in 30 patients over 3 years at Department of Diagnostic Radiology, Chonnam University, College of Medicine. The distribution of age was from 7 years to 71 days and the ratio of male to female was 15:15. The causes of benign stricture (23 cases) were post-operative strictures (13), chemical (4), achalasia (3), chronic inflammation (2), esophageal rupture (1) and those of malignant stricture (7 cases) were post-radiation stricture of primary esophageal cancer (6) and metastatic esophageal cancer (1). The success rate of procedure was 93% (28/30). The causes of failure were the failure of passage of stricture due to markedly dilated proximal segment of esophagus (1 case) and too long segment of stricture (1 case). Complication of procedure was the diverticular-formation of esophagus in 3 cases, but has no clinical significance in follow-up esophagography. In conclusion, fluoroscopically guided balloon dilation of esophageal stricture appears to be safe, effective treatment and may be have theoretical advantages over conventional bougienage and also should be considered before other methods of treatment are used.

  20. GRAINE balloon experiment in 2015

    Directory of Open Access Journals (Sweden)

    Rokujo Hiroki

    2017-01-01

    Full Text Available Observations of cosmic gamma rays are important for studying high energy phenomena in the universe. Since 2008, the Large Area Telescope on the Fermi satellite has surveyed the whole gamma-ray sky in the sub-GeV/GeV energy region, and accumurated a large amount of data. However, observations at the low galactic latitude remains difficult because of a lack of angular resolution, increase of background flux originating from galactic diffuse gamma rays, etc. The Gamma-Ray Astro-Imager with Nuclear Emulsion (GRAINE is a gamma-ray observation project with a new balloon-borne emulsion gamma-ray telescope. Nuclear emulsion is a high-resolution 3D tracking device. It determines the incident angle with 0.1∘ resolution for 1 GeV gamma rays (1.0∘ for 100 MeV, and has linear polarization sensitivity. GRAINE aims at precise observation of gamma-ray sources, especially in the galactic plane, by repeating long-duration balloon flights with large-aperture-area (10 m2 high-resolution emulsion telescopes. In May 2015, we performed a balloon-borne experiment in Alice Springs, Australia, in order to demonstrate the imaging performance of our telescope. The emulsion telescope that has an aperture area of 0.4 m2 was employed in this experiment. It observed the Vela pulsar (the brightest gamma-ray source in the GeV sky at an altitude of 37 km for 6 hours out of the flight duration of 14 hours. In this presentation, we will report the latest results and the status of the GRAINE project.

  1. Treatment of intracranial atherosclerotic stenoses with balloon dilatation and self-expanding stent deployment (WingSpan)

    Energy Technology Data Exchange (ETDEWEB)

    Henkes, H. [Robert Janker Klinik, Bonn (Germany); Alfried Krupp Krankenhaus, Klinik fuer Radiologie und Neuroradiologie, Essen (Germany); Miloslavski, E.; Lowens, S.; Reinartz, J. [Robert Janker Klinik, Bonn (Germany); Liebig, T.; Kuehne, D. [Alfried Krupp Krankenhaus, Klinik fuer Radiologie und Neuroradiologie, Essen (Germany)

    2005-03-01

    The endovascular treatment of atherosclerotic intracranial arterial stenoses has previously been based on balloon dilatation or the deployment of a balloon expandable stent. Both methods have advantages (balloon: flexibility; balloon expandable stent: high radial force) and drawbacks (balloon: risk of elastic recoil and dissection; balloon expandable stent: limited flexibility, risk of injury to the vessel due to excessive straightening, overexpansion at ends of stent). A new combination of balloon dilatation, followed by the deployment of a self-expanding microstent has been applied in 15 patients with atherosclerotic arterial stenoses, symptomatic despite medical treatment. An anatomically and clinically adequate result was achieved in all patients. The initial degree of stenosis was 72% (mean). Balloon dilatation resulted in an average residual stenosis of 54% (mean), reduced further to a mean of 38% after stent deployment. Arterial dissection, occlusion of the target artery or symptomatic distal emboli was not encountered. In one patient, a side branch occlusion occurred after dilatation of a M1 stenosis, with complete neurological recovery. All patients were either stable or improved 4 weeks after the treatment. Recurrent TIA did not occur in any patient. Balloon dilatation and subsequent deployment of a self-expandable stent for the treatment of symptomatic intracranial arterial stenoses combines the advantages of both techniques and allows a rapid, clinically effective and technically safe treatment of these frequently challenging lesions. (orig.)

  2. Treatment of intracranial atherosclerotic stenoses with balloon dilatation and self-expanding stent deployment (WingSpan)

    International Nuclear Information System (INIS)

    Henkes, H.; Miloslavski, E.; Lowens, S.; Reinartz, J.; Liebig, T.; Kuehne, D.

    2005-01-01

    The endovascular treatment of atherosclerotic intracranial arterial stenoses has previously been based on balloon dilatation or the deployment of a balloon expandable stent. Both methods have advantages (balloon: flexibility; balloon expandable stent: high radial force) and drawbacks (balloon: risk of elastic recoil and dissection; balloon expandable stent: limited flexibility, risk of injury to the vessel due to excessive straightening, overexpansion at ends of stent). A new combination of balloon dilatation, followed by the deployment of a self-expanding microstent has been applied in 15 patients with atherosclerotic arterial stenoses, symptomatic despite medical treatment. An anatomically and clinically adequate result was achieved in all patients. The initial degree of stenosis was 72% (mean). Balloon dilatation resulted in an average residual stenosis of 54% (mean), reduced further to a mean of 38% after stent deployment. Arterial dissection, occlusion of the target artery or symptomatic distal emboli was not encountered. In one patient, a side branch occlusion occurred after dilatation of a M1 stenosis, with complete neurological recovery. All patients were either stable or improved 4 weeks after the treatment. Recurrent TIA did not occur in any patient. Balloon dilatation and subsequent deployment of a self-expandable stent for the treatment of symptomatic intracranial arterial stenoses combines the advantages of both techniques and allows a rapid, clinically effective and technically safe treatment of these frequently challenging lesions. (orig.)

  3. Anchoring barbs and balloon expandable stents: what is the risk of perforation and failed stent deployment?

    Science.gov (United States)

    Bown, M J; Harrison, G J; How, T V; Brennan, J A; Fisher, R K; Vallabhaneni, S R; McWilliams, R G

    2012-09-01

    Balloon expandable stents may on occasion be deployed in close proximity to the anchoring barbs of endovascular grafts. The aim of this study was to determine the risk and effect of balloon perforation by anchoring barbs and to assess whether these risks are different if the balloon is protected by a covered stent mounted upon it. A bench-top model was developed to mimic the penetration of anchoring barbs into the lumen of medium sized blood vessels. The model allowed variation of angle and depth of vessel penetration. Both bare balloons and those with covered stents mounted upon them were tested in the model to determine whether there was a risk of perforation and which factors increased or decreased this risk. All combinations of barb angle and depth caused balloon perforation but this was most marked when the barb was placed perpendicular to the long axis of the balloon. When the deployment of covered stents was attempted balloon perforation occurred in some cases but full stent deployment was achieved in all cases where the perforation was in the portion of the balloon covered by the stent. The only situation in which stent deployment failed was where the barb was intentionally placed in the uncovered portion of the balloon. This resulted in only partial deployment of the stent. Balloon rupture is a distinct possibility when deploying balloon-expandable stents in close proximity to anchoring barbs. Care should be taken in this circumstance to ensure that the barb is well away from the uncovered portion of the balloon. Copyright © 2012 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Solid State Inflation Balloon Active Deorbiter

    Data.gov (United States)

    National Aeronautics and Space Administration — The Solid State Inflation Balloon (SSIB) is a simple, reliable, low-cost, non-propulsive system for deliberate deorbit and control of downrange point-of-impact that...

  5. Heat transfer and carryover of low pressure water in a heated vertical tube

    International Nuclear Information System (INIS)

    Smith, T.A.

    1976-01-01

    Local heat transfer coefficients in the stable film boiling and dispersed flow regimes were studied for the upward flow of low pressure water in a heated vertical tube. Wall temperatures were maintained constant with time and along the tube so that both axial and time temperature gradients approached zero. Heat flux along the tube was not constant but was applied so as to maintain a steady state temperature profile. A preheater was used to bring the liquid to saturation before it entered the main portion of the test section and in some cases the equilibrium quality was greater than zero at the entrance to the main test section. The test section was made of stainless steel, and the lower portion, the preheater, was heated directly by dc current. Copper block heat spikes were clamped to the upper test section and were used to apply the heat flux to maintain the wall temperature constant with time. Several theories for the different possible types of flow (laminar or turbulent, tube or film) were compared with the experimental data. The carry-over point for low flooding rates (1 inch/sec or less) was inferred from these comparisons and gave good agreement with the Plummer critical mass criterion for liquid carry-over

  6. QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALLOONING MODES

    International Nuclear Information System (INIS)

    LAO, LL; SNYDER, PB; LEONARD, AW; OSBORNE, TH; PETRIE, TW; FERRON, JR; GROEBNER, RJ; HORTON, LD; KAMADA, Y; MURAKAMI, M; OIKAWA, T; PEARLSTEIN, LD; SAARELMA, S; STJOHN, HE; THOMAS, DM; TURNBULL, AD; WILSON, HR

    2002-01-01

    OAK A271 QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALLOONING MODES. Two of the major issues crucial for the design of the next generation tokamak burning plasma devices are the predictability of the edge pedestal height and control of the divertor heat load in H-mode configurations. Both of these are strongly impacted by edge localized modes (ELMs) and their size. A working model for ELMs is that they are intermediate toroidal mode number, n ∼ 5-30, peeling-ballooning modes driven by the large edge pedestal pressure gradient P(prime) and the associated large edge bootstrap current density J BS . the interplay between P(prime) and J BS as a discharge evolves can excite peeling-ballooning modes over a wide spectrum of n. The pedestal current density plays a dual role by stabilizing the high n ballooning modes via opening access to second stability but providing free energy to drive the intermediate n peeling modes. This makes a systematic evaluation of this model particularly challenging. This paper describes recent quantitative tests of this model using experimental data from the DIII-D and the JT-60U tokamaks. These tests are made possible by recent improvements to the ELITE MHD stability code, which allow an efficient evaluation of the unstable peeling-ballooning modes, as well as by improvements to other diagnostic and analysis techniques. Some of the key testable features of this model are: (1) ELMs are triggered when the growth rates of intermediate n MHD modes become significantly large; (2) ELM sizes are related to the radial widths of the unstable modes; (3) the unstable modes have a strong ballooning character localized in the outboard bad curvature region; (4) at high collisionality, ELM size generally becomes smaller because J BS is reduced

  7. Criteria for Second Stability for Ballooning Modes in Stellarators

    International Nuclear Information System (INIS)

    Hudson, S.R.; Hegna, C.C.

    2004-01-01

    An expression determining how variations in the pressure-gradient and average magnetic shear affect ballooning stability for a stellarator equilibrium is presented. The procedure for determining the marginal stability boundaries, for each field line, depends only on the equilibrium and a single ballooning eigenfunction calculation. This information is sufficient to determine if increasing pressure-gradient is stabilizing or destabilizing and to predict whether the configuration possess a second stable region

  8. Peripheral Applications of Drug-Coated Balloons: Past, Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Krokidis, Miltiadis, E-mail: mkrokidis@hotmail.com; Spiliopoulos, Stavros, E-mail: stavspiliop@upatras.gr; Katsanos, Konstantinos, E-mail: katsanos@med.upatras.gr; Sabharwal, Tarun, E-mail: tarun_sabharwal@yahoo.co.uk [Guy' s and St. Thomas' Hospitals, NHS Foundation Trust, Department of Radiology (United Kingdom)

    2013-04-15

    Drug-coated balloon (DCB) technologies represent the latest and hottest development in the field of endovascular treatment of peripheral arterial disease. Initial experience with paclitaxel-coated balloon use in the femoral artery has demonstrated lower mid-term restenosis and superior mid-term clinical outcomes in terms of improved wound healing and reduced repeat angioplasty rates compared with standard balloon angioplasty. Many companies are presently developing and/or improving DCB catheters and therefore ongoing, technical improvements of the already existing platforms, new drugs, and innovative carriers are expected. The ongoing basic research studies and various multicenter randomized, controlled trials that are currently in progress will offer valuable scientific insights regarding the long-term effectiveness and other crucial issues, such as efficacy in various vascular beds, optimal balloon dosage, and post angioplasty antiplatelet therapy. Future applications of these devices also could include in-stent restenosis, anastomotic stenosis of surgical bypass, and benign stenoses of the central venous system. The authors envision that DCB angioplasty will evolve to a major paradigm shift in the endovascular treatment of occlusive vascular diseases.

  9. Peripheral Applications of Drug-Coated Balloons: Past, Present and Future

    International Nuclear Information System (INIS)

    Krokidis, Miltiadis; Spiliopoulos, Stavros; Katsanos, Konstantinos; Sabharwal, Tarun

    2013-01-01

    Drug-coated balloon (DCB) technologies represent the latest and hottest development in the field of endovascular treatment of peripheral arterial disease. Initial experience with paclitaxel-coated balloon use in the femoral artery has demonstrated lower mid-term restenosis and superior mid-term clinical outcomes in terms of improved wound healing and reduced repeat angioplasty rates compared with standard balloon angioplasty. Many companies are presently developing and/or improving DCB catheters and therefore ongoing, technical improvements of the already existing platforms, new drugs, and innovative carriers are expected. The ongoing basic research studies and various multicenter randomized, controlled trials that are currently in progress will offer valuable scientific insights regarding the long-term effectiveness and other crucial issues, such as efficacy in various vascular beds, optimal balloon dosage, and post angioplasty antiplatelet therapy. Future applications of these devices also could include in-stent restenosis, anastomotic stenosis of surgical bypass, and benign stenoses of the central venous system. The authors envision that DCB angioplasty will evolve to a major paradigm shift in the endovascular treatment of occlusive vascular diseases.

  10. TETHERED BALLOON MEASUREMENTS OF BIOGENIC VOCS IN THE ATMOSPHERIC BOUNDARY LAYER

    Science.gov (United States)

    Measurements of biogenic volatile organic compounds (BVOCs) have been made on a tethered balloon platform in eleven field deployments between 1985 and 1996. A series of balloon sampling packages have been developed for these campaigns and they have been used to describe boundary ...

  11. Unified theory of ballooning instabilities and temperature gradient driven trapped ion modes

    International Nuclear Information System (INIS)

    Xu, X.Q.

    1990-08-01

    A unified theory of temperature gradient driven trapped ion modes and ballooning instabilities is developed using kinetic theory in banana regimes. All known results, such as electrostatic and purely magnetic trapped particle modes and ideal MHD ballooning modes (or shear Alfven waves) are readily derived from our single general dispersion relation. Several new results from ion-ion collision and trapped particle modification of ballooning modes are derived and discussed and the interrelationship between those modes is established. 24 refs

  12. Basic development of a small balloon-mounted telemetry and its operation system by university students

    Science.gov (United States)

    Yamamoto, Masa-yuki; Kakinami, Yoshihiro; Kono, Hiroki

    In Japan, the high altitude balloon for scientific observation has been continuously launched by JAXA. The balloon has a possibility to reach 50 km altitude without tight environmental condition for onboard equipments, operating with a cost lower than sounding rockets, however, development of the large-scale scientific observation balloons by university laboratories is still difficult. Being coupled with recent improvement of semiconductor sensors, laboratory-basis balloon experiments using small weather balloons has been becoming easily in these years. Owing to an advantage of wide land fields in continental regions, the launch of such small balloons has become to be carried out many times especially in continental countries (e.g. Near Space Ventures, Inc., 2013). Although the balloon is very small as its diameter of 6 feet, excluding its extra buoyancy and the weight of the balloon itself, it is expected that about 2 kg loading capacity is remained for payloads to send it up to about 35 km altitude. However, operation of such balloons in Japan is not in general because precise prediction of a landing area of the payload is difficult, thus high-risk situation for balloon releases is remained. In this study, we aim to achieve practical engineering experiments of weather balloons in Japan to be used for scientific observation within university laboratory level as an educational context. Here we report an approach of developing many devices for a small tethered balloon currently in progress. We evaluated an accuracy of altitude measurement by using a laboratory developed altitude data logger system that consists of a GPS-module and a barometric altimeter. Diameter of the balloon was about 1.4 m. Being fulfilled with about 1440 L helium, it produced buoyancy of about 15.7 N. Taking into account of total weight including the mooring equipments, available payload mass becomes to be about 1100 g. Applying an advantage of a 3D printer of FDM (Fused Deposition Modeling

  13. Review of the British scientific sounding rocket and balloon programmes

    International Nuclear Information System (INIS)

    Delury, J.T.

    1978-01-01

    This review describes the UK scientific sounding rocket programmes which have utilised Skylarks for 21 years, Petrels for 10 years and Fulmars for 2 years. The SRC's ongoing programme is now based on the Petrel and Fulmar rockets, and approved proposals by 5 UK scientific groups covering 1978 and 1979 are outlined. The British scientific balloon programme, which serves 14 scientific groups within UK universities, involves a planned 10 flights per annum using balloons of 3 M cu ft to 31 M cu ft capacity and payloads up to 2 tons in weight. The review outlines the balloon programme of flights planned mainly from Palestine in Texas and Alice Springs/Mildura in Australia. (author)

  14. Condensation of refrigerants in horizontal, spirally grooved microfin tubes: Numerical analysis of heat transfer in the annular flow regime

    Energy Technology Data Exchange (ETDEWEB)

    Nozu, S; Honda, H

    2000-02-01

    A method is presented for estimating the condensation heat transfer coefficient in a horizontal, spirally grooved microfin tube. Based on the flow observation study performed by the authors, a laminar film condensation model in the annular flow regime is proposed. The model assumes that all the condensate flow occurs through the grooves. The condensate film is segmented into thin and thick film regions. In the thin film region formed on the fin surface, the condensate is assumed to be drained by the combined surface tension and vapor shear forces. In the thick film region formed in the groove, on the other hand, the condensate is assumed to be driven by the vapor shear force. The present and previous local heat transfer data including four fluids (CFC11, HCFC22, HCFC123, and HFCl34a) and three microfin tubes are found to agree with the present predictions to a mean absolute deviation of 15.1%.

  15. Balloon dilation and airway stenting for benign and malignant tracheal stenosis

    International Nuclear Information System (INIS)

    Guo Jianhai; Yang Renjie; Zhang Hongzhi

    2009-01-01

    Objective: To assess the effectiveness of balloon dilation and airway stenting performed under fluoroscopic guidance for the treatment of benign and malignant tracheal stenosis. Methods: Under fluoroscopic guidance, balloon dilation and airway stenting were performed in 45 patients with tracheobronchial stricture. Of the 45 patients,malignant tracheal stenosis was seen in 37, including mediastinal nodal metastases (n=14), esophageal carcinoma (n=13), lung carcinoma (n= 4), adenocarcinoma of bronchus (n=3), lymphoma (n=2) and laryngocarcinoma (n=1), and benign tracheal stenosis was seen in 8, including endobronchial tuberculosis (n=6), retrosternal thyroid adenoma (n=1) and endotracheal intubation (n=1). Airway stenting with self-expandable metal stent was employed in 38 patients and balloon dilation in 7 patients. All the procedures were performed under fluoroscopic guidance. Results: A total of 53 self-expandable metal stents was implanted in 38 patients. The clinical symptoms were immediately relived after the procedure in all patients except for one patient who died from choking of sputum. No stent migration was observed. Restenosis developed in 4 patients, which was successfully treated with repeated stenting and balloon dilation. Nineteen times of balloon dilation procedure were accomplished in 7 patients. Marked remission of clinical symptoms was seen in most cases. During a follow-up period (ranged from 0 to 124 months with a mean of 24.5 months) 31 patients died. Conclusion: For both benign and malignant tracheal stenosis, balloon dilation with airway stenting performed under fluoroscopic guidance is a safe and efficient therapy with instant curative effect in relieving clinical symptoms. (authors)

  16. Balloon dilatation of tuberculous bronchial stenosis: immediate and long term effect

    International Nuclear Information System (INIS)

    Lee, Sang Yoon; Kwak, Byung Kook; Kang, Ho Yeong; Kim, Tae Hoon; Kim, Soo Rhan; Park, Hyun Sun; Lee, Shin Hyung; Lee, Chang Joon

    1997-01-01

    To evaluate the long-term immediate effects of balloon dilatation of the tuberculous bronchial stenosis. Twenty-three women with tuberculous bronchial stenosis (19, left main bronchus ; 4, right main bronchus) underwent balloon dilatation (13 bronchoscopically guided ; 10 fluoroscopically guided). Immediate (n=23) and long-term follow-up (mean, 17.2 months; range, 1month-6years 3months ; n=20) assessments focused on changes in the results of the pulmonary function test (PFT). An increase in FVC or FEVI of more than 10% after the procedure was considered effective. In all patients, any complications were evaluated. Balloon dilatation was effective at immediate follow-up in 69.5% of patients(16/23) and in 75.0%(15/20) at long-term follow-up. Bronchoscopically and fluoroscopically-guided balloon dilatation proved effective in 61.5%(8/13) and 80.0% of patients(8/10) on immediate follow-up respectively, but in 90.0%(9/10) and 60.0%(6/10) on long term follow-up respectively. Balloon dilatation was effective in the active(n 10) and inactive(n = 13) stage of tuberculous bronchitis in 80.0%(8/10) and 61.5% of cases(8/13) on immediate follow-up respectively, but in 66.6%(6/9) and 81.8%(9/11) on long term follow-up study, respectively. On immediate follow-up, balloon dilatation of tubular bronchial stenosis was more effective in the active than in the inactive stage, but on long-term follow-up was less effective ; long-term improvement in the inactive stage was, however, well-maintained

  17. Cutting Balloon Angioplasty in the Treatment of Short Infrapopliteal Bifurcation Disease.

    Science.gov (United States)

    Iezzi, Roberto; Posa, Alessandro; Santoro, Marco; Nestola, Massimiliano; Contegiacomo, Andrea; Tinelli, Giovanni; Paolini, Alessandra; Flex, Andrea; Pitocco, Dario; Snider, Francesco; Bonomo, Lorenzo

    2015-08-01

    To evaluate the safety, feasibility, and effectiveness of cutting balloon angioplasty in the management of infrapopliteal bifurcation disease. Between November 2010 and March 2013, 23 patients (mean age 69.6±9.01 years, range 56-89; 16 men) suffering from critical limb ischemia were treated using cutting balloon angioplasty (single cutting balloon, T-shaped double cutting balloon, or double kissing cutting balloon technique) for 47 infrapopliteal artery bifurcation lesions (16 popliteal bifurcation and 9 tibioperoneal bifurcation) in 25 limbs. Follow-up consisted of clinical examination and duplex ultrasonography at 1 month and every 3 months thereafter. All treatments were technically successful. No 30-day death or adverse events needing treatment were registered. No flow-limiting dissection was observed, so no stent implantation was necessary. The mean postprocedure minimum lumen diameter and acute gain were 0.28±0.04 and 0.20±0.06 cm, respectively, with a residual stenosis of 0.04±0.02 cm. Primary and secondary patency rates were estimated as 89.3% and 93.5% at 6 months and 77.7% and 88.8% at 12 months, respectively; 1-year primary and secondary patency rates of the treated bifurcation were 74.2% and 87.0%, respectively. The survival rate estimated by Kaplan-Meier analysis was 82.5% at 1 year. Cutting balloon angioplasty seems to be a safe and effective tool in the routine treatment of short/ostial infrapopliteal bifurcation lesions, avoiding procedure-related complications, overcoming the limitations of conventional angioplasty, and improving the outcome of catheter-based therapy. © The Author(s) 2015.

  18. Humidity Sensor Based on Multi-Walled Carbon Nanotube Thin Films

    International Nuclear Information System (INIS)

    Cao, C.L.; Hu, C.G.; Fang, L.; Wang, S.X.; Cao, C.L.; Tian, Y.S.; Pan, C.Y.

    2009-01-01

    The properties of the humidity sensors made of chemically treated and untreated multi-walled carbon nano tube (MWCNT) thin films are investigated systematically. It shows that both the chemically treated and untreated MWCNT thin films demonstrate humidity sensitive properties, but the former have stronger sensitivity than the latter. In the range of 11%-98% relative humidity (RH), the resistances of the chemically treated and untreated MWCNT humidity sensors increase 120% and 28%, respectively. Moreover, the treated humidity sensors showed higher sensitivity and better stability. In addition, the response and recover properties, and stabilization of the humidity sensors are measured, and the humidity sensitive mechanisms of the sensors are analyzed. The humidity sensitivity of carbon nano tube thin films indicates it promise as a kind of humidity sensitive material

  19. The absorption of thermal radiation by water films

    International Nuclear Information System (INIS)

    Pearson, K.G.; Elliott, D.

    1977-04-01

    Except at the shortest wavelengths (i.e. <2μm) liquid water is relatively opaque to thermal radiation. It is also a poor reflector, reflecting back only about 2% of normal incident radiation. It is shown that when radiation falls on a plane water surface from a parallel heated surface about 93.5% of the incident radiation enters the surface, the remaining 6.5% being reflected back to the source. It is also shown that, for source temperatures up to the maximum of interest in reactor safety studies, a large fraction of the thermal radiation which enters the water is absorbed on passing through a distance approaching 0.5 mm. Since liquid water films of such thickness can be expected to exist on the pressure tubes of an SGHWR following a loss of coolant accident it follows that, irrespective of the condition of the pressure tube wall, the absorptivity of the pressure tubes will in effect be about 0.9. Data are presented for experiments performed to determine the absorptivity of water films on a polished surface whose dry absorptivity was measured to be 0.18. The presence of the water film, of estimated thickness 0.3 mm, increased the absorptivity of the surface to a value close to unity. (author)

  20. Initial experience with the Europass: a new ultra-low profile monorail balloon catheter.

    Science.gov (United States)

    Zimarino, M; Corcos, T; Favereau, X; Tamburino, C; Toussaint, M; Spaulding, C; Guérin, Y

    1994-09-01

    One of the causes for percutaneous transluminal coronary angioplasty (PTCA) failure is the inability to cross the lesion with the balloon catheter after guidewire positioning. The Europass coronary angioplasty catheter is a monorail Duralyn balloon catheter developed to enhance lesion crossability and to overcome this limitation. This system was evaluated in 50 patients in which target lesions were chronic total coronary occlusions (12 cases) or stenoses that could not be reached or crossed by other new monorail balloon catheters. Overall procedural success was obtained in 49/50 patients (98%), using a single Europass balloon catheter in 46/50 patients (92%), with no in-hospital complications. Its low profile, small distal shaft, and excellent trackability allowed successful angioplasty in cases where other catheters failed. This balloon catheter represents a significant advance in angioplasty technology and can be considered as a first-choice device for a safe and expeditious single-operator procedure.

  1. Numerical prediction of dryout heat flux in vertical uniformly heated round tubes

    International Nuclear Information System (INIS)

    Okawa, Tomio; Kotani, Akio; Kataoka, Isao; Naito, Masanori

    2003-01-01

    Dryout heat fluxes in vertical uniformly heated round tubes were predicted using a film flow model. The correlations adopted in the present analysis were summarized as follows: (1) Entrainment rate and deposition rate were evaluated by the correlations whose validity was confirmed in wide range of thermal-hydraulic conditions. (2) In addition to the droplet entrainment due to interfacial shear force, the entrainment resulting from the boiling in liquid film was considered. (3) The vapor quality at the onset of annular flow was evaluated by the correlation based on the measurement of minimum droplet flowrate. (4) It was postulated that the droplet flowrate at the starting point of annular flow was to be approximated by that in equilibrium state. (5) The onset of critical heat flux condition was determined by the complete disappearance of liquid film. Though several assumptions were used in the present model, all the correlations adopted here were based on experimental data or considerations of the physical processes in annular flow. The resulting model required no parameters that should be adjusted from the measured data of critical heat flux. A number of experimental data of critical heat flux in forced flow of water in vertical uniformly heated round tubes were used to test the basic performance of the model. The comparisons between the calculated and measured critical heat fluxes showed that the predicted results by the present model agree with the experimental data fairly well if the flow pattern at burnout is considered annular flow. The predictive capability was not deteriorated even in the cases of small diameter tube, short length tube as well as low vapor quality at the onset of critical heat flux condition. (author)

  2. PEBS - Positron Electron Balloon Spectrometer

    CERN Document Server

    von Doetinchem, P.; Kirn, T.; Yearwood, G.Roper; Schael, S.

    2007-01-01

    The best measurement of the cosmic ray positron flux available today was performed by the HEAT balloon experiment more than 10 years ago. Given the limitations in weight and power consumption for balloon experiments, a novel approach was needed to design a detector which could increase the existing data by more than a factor of 100. Using silicon photomultipliers for the readout of a scintillating fiber tracker and of an imaging electromagnetic calorimeter, the PEBS detector features a large geometrical acceptance of 2500 cm^2 sr for positrons, a total weight of 1500 kg and a power consumption of 600 W. The experiment is intended to measure cosmic ray particle spectra for a period of up to 20 days at an altitude of 40 km circulating the North or South Pole. A full Geant 4 simulation of the detector concept has been developed and key elements have been verified in a testbeam in October 2006 at CERN.

  3. Experimental study of single taylor bubbles rising in stagnant liquid mixtures inside of vertical tubes

    International Nuclear Information System (INIS)

    Azevedo, Marcos B. de; Faccini, Jose L.H.; Su, Jian

    2015-01-01

    The present work reports an experimental study of single Taylor bubbles rising in vertical tubes filled with water-glycerin mixtures by using the pulse-echo ultrasonic technique. A 2m long acrylic tube with inner diameter of 24 mm was used in the experiments. Initially, the tube was sealed at the ends and filled partially with the liquid mixtures to leave an air pocket of length L 0 at the top end. A Taylor bubble was formed by the inversion of the tube. The rising bubbles were detected by ultrasonic transducers located at the upper part of the tube. The velocity, the length and the pro le of the bubbles and the thickness of the liquid lm around them were obtained from the ultrasonic signals processing. The liquid lm thickness in the vertical tube was also determined by a graphic method that relates the bubble length L b with the initial length of the air pocket L 0 . It was observed that the bubble velocity decreased with increasing viscosity, while the lm thickness increased. It was shown that the liquid lm thickness determined by the graphic method fitted well the higher viscosities data, but overestimated the lower viscosities data. Additionally, the results indicated that some correlations developed to estimate the thickness of liquid films falling down inside/outside of tubes and down a plane surface could be applied to estimate the thickness of liquid films falling around Taylor bubbles in an Inverse Viscosity Number (N f ) range different to those considered in the literature. (author)

  4. Comparison between double-balloon and single-balloon enteroscopy in therapeutic ERC after Roux-en-Y entero-enteric anastomosis.

    Science.gov (United States)

    Moreels, Tom G; Pelckmans, Paul A

    2010-09-16

    To compare the efficacy of double-balloon enteroscopy (DBE) and single-balloon enteroscopy (SBE) in therapeutic endoscopic retrograde cholangiography (ERC) in patients with Roux-en-Y entero-enteric anastomosis. Retrospective analysis of our patient cohort revealed 4 patients with enterobiliary anastomosis and Roux-en-Y entero-enteric anastomosis who underwent repeated ERC with DBE and SBE because of recurrent cholangitis. A total of 38 endoscopic retrograde cholangiopancreatography procedures were performed in 25 patients with Roux-en-Y entero-enteric anastomosis. DBE was used in 29 procedures and SBE in 9. The 4 patients who underwent repeated ERC with DBE and SBE suffered from recurrent cholangitis due to stenosis of the enterobiliary anastomosis. ERC was performed repeatedly to achieve balloon dilation with/without biliary stone extraction and multiple stent placement at the level of the enterobiliary anastomosis. In all 4 patients DBE and SBE were equally successful. Compared to DBE, SBE was equally effective in passing the Roux-en-Y entero-enteric anastomosis, reaching the enterobiliary anastomosis and performing therapeutic ERC. This retrospective comparison shows that DBE and SBE are equally successful in the performance of therapeutic ERC at the level of the enterobiliary anastomosis after Roux-en-Y entero-enteric anastomosis.

  5. The German scientific balloon and sounding rocket programme

    International Nuclear Information System (INIS)

    Dahl, A.F.

    1980-01-01

    This report contains information on sounding rocket projects in the scientific field of astronomy, aeronomy, magnetosphere, and material science under microgravity. The scientific balloon projects are performed with emphasis on astronomical research. By means of tables it is attempted to give a survey, as complete as possible, of the projects the time since the last symposium in Ajaccio, Corsica, and of preparations and plans for the future until 1983. The scientific balloon and sounding rocket projects form a small successful part of the German space research programme. (Auth.)

  6. Radiographic apparatus and method for monitoring film exposure time

    International Nuclear Information System (INIS)

    Vatne, R.S.; Woodmansee, W.E.

    1981-01-01

    In connection with radiographic inspection of structural and industrial materials, method and apparatus are disclosed for automatically determining and displaying the time required to expose a radiographic film positioned to receive radiation passed by a test specimen, so that the finished film is exposed to an optimum blackening (density) for maximum film contrast. A plot is made of the variations in a total exposure parameter (representing the product of detected radiation rate and time needed to cause optimum film blackening) as a function of the voltage level applied to an X-ray tube. An electronic function generator storing the shape of this plot is incorporated into an exposure monitoring apparatus, such that for a selected tube voltage setting, the function generator produces an electrical analog signal of the corresponding exposure parameter. During the exposure, another signal is produced representing the rate of radiation as monitored by a diode detector positioned so as to receive the same radiation that is incident on the film. The signal representing the detected radiation rate is divided, by an electrical divider circuit into the signal representing total exposure, and the resulting quotient is an electrical signal representing the required exposure time. (author)

  7. TiO2 and SiC nanostructured films, organized CNT structures

    Indian Academy of Sciences (India)

    sized nanostructured TiO2 films through hydrolysis of titanium tetra-isopropoxide. (TTIP) [9 ... structured TiO2 as a photocatalyst is as follows [15]:. TiO2(ns) ... The deposited films were easily detached from the silica tube and subjected to. SEM.

  8. Stenting for curved lesions using a novel curved balloon: Preliminary experimental study.

    Science.gov (United States)

    Tomita, Hideshi; Higaki, Takashi; Kobayashi, Toshiki; Fujii, Takanari; Fujimoto, Kazuto

    2015-08-01

    Stenting may be a compelling approach to dilating curved lesions in congenital heart diseases. However, balloon-expandable stents, which are commonly used for congenital heart diseases, are usually deployed in a straight orientation. In this study, we evaluated the effect of stenting with a novel curved balloon considered to provide better conformability to the curved-angled lesion. In vitro experiments: A Palmaz Genesis(®) stent (Johnson & Johnson, Cordis Co, Bridgewater, NJ, USA) mounted on the Goku(®) curve (Tokai Medical Co. Nagoya, Japan) was dilated in vitro to observe directly the behavior of the stent and balloon assembly during expansion. Animal experiment: A short Express(®) Vascular SD (Boston Scientific Co, Marlborough, MA, USA) stent and a long Express(®) Vascular LD stent (Boston Scientific) mounted on the curved balloon were deployed in the curved vessel of a pig to observe the effect of stenting in vivo. In vitro experiments: Although the stent was dilated in a curved fashion, stent and balloon assembly also rotated conjointly during expansion of its curved portion. In the primary stenting of the short stent, the stent was dilated with rotation of the curved portion. The excised stent conformed to the curved vessel. As the long stent could not be negotiated across the mid-portion with the balloon in expansion when it started curving, the mid-portion of the stent failed to expand fully. Furthermore, the balloon, which became entangled with the stent strut, could not be retrieved even after complete deflation. This novel curved balloon catheter might be used for implantation of the short stent in a curved lesion; however, it should not be used for primary stenting of the long stent. Post-dilation to conform the stent to the angled vessel would be safer than primary stenting irrespective of stent length. Copyright © 2014 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  9. Percutaneous balloon dilatation of stenotic calyceal diverticular infundibula in patients with recurrent urinary tract infections.

    LENUS (Irish Health Repository)

    Keeling, Aoife N

    2012-02-01

    AIM: Renal calyceal diverticula are usually detected as incidental findings on intravenous pyelograms (IVPs) and rarely manifest any clinical signs or symptoms. However, they can interfere with patient\\'s quality of life in a number of instances causing pain, recurrent urinary tract infections (UTIs), abscess, systemic sepsis and calculus formation. The purpose of this study was to review the clinical indications, procedure technique and clinical outcome in all patients referred to Interventional Radiology for the percutaneous management of renal calyceal diverticula. MATERIALS AND METHODS: A retrospective review of all patients treated with percutaneous balloon dilatation of calyceal diverticular infundibula in the Interventional Radiology Department over a 10-year period was performed. Data collected included clinical details, laboratory indices, IVP and CT findings, procedure details and clinical outcome. RESULTS: A total of three patients were treated over the course of the study period. All patients were young females who presented as a result of recurrent urinary tract infections. The calyceal diverticula were diagnosed incidentally on routine IVPs, with CT eloquently confirming the plain film findings in two cases. Technical procedure success was achieved in all cases, avoiding surgical intervention. Clinical follow-up revealed no further UTIs following dilatation. CONCLUSION: Fluoroscopic guided percutaneous balloon dilatation of renal calyceal diverticular infundibula following direct diverticular puncture is a safe and well tolerated method to reduce UTI and potentially avoid future stone formation.

  10. Percutaneous balloon dilatation of stenotic calyceal diverticular infundibula in patients with recurrent urinary tract infections

    Energy Technology Data Exchange (ETDEWEB)

    Keeling, Aoife N. [Department of Academic Radiology, Beaumont Hospital, Beaumont Road, Dublin 9 (Ireland); Wang, Tim T. [Department of Biosurgery and Surgical Technology, Surgical Epidemiology and Quality Unit, Imperial College London, St. Mary' s Hospital, London W2 1NY (United Kingdom); Lee, Michael J., E-mail: mlee@rcsi.ie [Department of Academic Radiology, Beaumont Hospital, Beaumont Road, Dublin 9 (Ireland)

    2011-02-15

    Aim: Renal calyceal diverticula are usually detected as incidental findings on intravenous pyelograms (IVPs) and rarely manifest any clinical signs or symptoms. However, they can interfere with patient's quality of life in a number of instances causing pain, recurrent urinary tract infections (UTIs), abscess, systemic sepsis and calculus formation. The purpose of this study was to review the clinical indications, procedure technique and clinical outcome in all patients referred to Interventional Radiology for the percutaneous management of renal calyceal diverticula. Materials and methods: A retrospective review of all patients treated with percutaneous balloon dilatation of calyceal diverticular infundibula in the Interventional Radiology Department over a 10-year period was performed. Data collected included clinical details, laboratory indices, IVP and CT findings, procedure details and clinical outcome. Results: A total of three patients were treated over the course of the study period. All patients were young females who presented as a result of recurrent urinary tract infections. The calyceal diverticula were diagnosed incidentally on routine IVPs, with CT eloquently confirming the plain film findings in two cases. Technical procedure success was achieved in all cases, avoiding surgical intervention. Clinical follow-up revealed no further UTIs following dilatation. Conclusion: Fluoroscopic guided percutaneous balloon dilatation of renal calyceal diverticular infundibula following direct diverticular puncture is a safe and well tolerated method to reduce UTI and potentially avoid future stone formation.

  11. Percutaneous balloon dilatation of stenotic calyceal diverticular infundibula in patients with recurrent urinary tract infections

    International Nuclear Information System (INIS)

    Keeling, Aoife N.; Wang, Tim T.; Lee, Michael J.

    2011-01-01

    Aim: Renal calyceal diverticula are usually detected as incidental findings on intravenous pyelograms (IVPs) and rarely manifest any clinical signs or symptoms. However, they can interfere with patient's quality of life in a number of instances causing pain, recurrent urinary tract infections (UTIs), abscess, systemic sepsis and calculus formation. The purpose of this study was to review the clinical indications, procedure technique and clinical outcome in all patients referred to Interventional Radiology for the percutaneous management of renal calyceal diverticula. Materials and methods: A retrospective review of all patients treated with percutaneous balloon dilatation of calyceal diverticular infundibula in the Interventional Radiology Department over a 10-year period was performed. Data collected included clinical details, laboratory indices, IVP and CT findings, procedure details and clinical outcome. Results: A total of three patients were treated over the course of the study period. All patients were young females who presented as a result of recurrent urinary tract infections. The calyceal diverticula were diagnosed incidentally on routine IVPs, with CT eloquently confirming the plain film findings in two cases. Technical procedure success was achieved in all cases, avoiding surgical intervention. Clinical follow-up revealed no further UTIs following dilatation. Conclusion: Fluoroscopic guided percutaneous balloon dilatation of renal calyceal diverticular infundibula following direct diverticular puncture is a safe and well tolerated method to reduce UTI and potentially avoid future stone formation.

  12. Creeping motion of long bubbles and drops in capillary tubes

    DEFF Research Database (Denmark)

    Westborg, Henrik; Hassager, Ole

    1989-01-01

    The flow of inviscid bubbles and viscous drops in capillary tubes has been simulated by a Galerkin finite element method with surface tension included at the bubble/liquid interface. The results show good agreement with published experimental results. At low capillary numbers the front and the rear...... of the bubble are nearly spherical. As the capillary number increases the thickness of the wetting film between the tube wall and the bubble increases, and the bubble assumes a more slender shape with a characteristic bump at the rear. Recirculations are found in front and behind the bubble, which disappear...

  13. Modular and Reusable Power System Design for the BRRISON Balloon Telescope

    Science.gov (United States)

    Truesdale, Nicholas A.

    High altitude balloons are emerging as low-cost alternatives to orbital satellites in the field of telescopic observation. The near-space environment of balloons allows optics to perform near their diffraction limit. In practice, this implies that a telescope similar to the Hubble Space Telescope could be flown for a cost of tens of millions as opposed to billions. While highly feasible, the design of a balloon telescope to rival Hubble is limited by funding. Until a prototype is proven and more support for balloon science is gained, projects remain limited in both hardware costs and man hours. Thus, to effectively create and support balloon payloads, engineering designs must be efficient, modular, and if possible reusable. This thesis focuses specifically on a modular power system design for the BRRISON comet-observing balloon telescope. Time- and cost-saving techniques are developed that can be used for future missions. A modular design process is achieved through the development of individual circuit elements that span a wide range of capabilities. Circuits for power conversion, switching and sensing are designed to be combined in any configuration. These include DC-DC regulators, MOSFET drivers for switching, isolated switches, current sensors and voltage sensing ADCs. Emphasis is also given to commercially available hardware. Pre-fabricated DC-DC converters and an Arduino microcontroller simplify the design process and offer proven, cost-effective performance. The design of the BRRISON power system is developed from these low-level circuits elements. A board for main power distribution supports the majority of flight electronics, and is extensible to additional hardware in future applications. An ATX computer power supply is developed, allowing the use of a commercial ATX motherboard as the flight computer. The addition of new capabilities is explored in the form of a heater control board. Finally, the power system as a whole is described, and its overall

  14. Positioning X-Ray Film Inside A Flow Splitter

    Science.gov (United States)

    Darter, Charles; Pierce, Darryl

    1990-01-01

    Simple and inexpensive tool ensures secure placement for radiographic inspection. Holder places film positively and securely for x-ray inspection inside sections of tube with splitter welds. V-shaped piece of film fits on arms of holder. With arms squeezed together, holder inserted in opening of neck. Arms of holder cut from 0.020-in. (0.51-mm) thick stock of unspecified material.

  15. Investigation of source position uncertainties & balloon deformation in MammoSite brachytherapy on treatment effectiveness

    International Nuclear Information System (INIS)

    Bensaleh, S.

    2010-01-01

    The MammoSite ® breast high dose rate brachytherapy is used in treatment of early-stage breast cancer. The tumour bed volume is irradiated with high dose per fraction in a relatively small number of fractions. Uncertainties in the source positioning and MammoSite balloon deformation will alter the prescribed dose within the treated volume. They may also expose the normal tissues in balloon proximity to excessive dose. The purpose of this work is to explore the impact of these two uncertainties on the MammoSite dose distribution in the breast using dose volume histograms and Monte Carlo simulations. The Lyman–Kutcher and relative seriality models were employed to estimate the normal tissues complications associated with the MammoSite dose distributions. The tumour control probability was calculated using the Poisson model. This study gives low probabilities for developing heart and lung complications. The probability of complications of the skin and normal breast tissues depends on the location of the source inside the balloon and the volume receiving high dose. Incorrect source position and balloon deformation had significant effect on the prescribed dose within the treated volume. A 4 mm balloon deformation resulted in reduction of the tumour control probability by 24%. Monte Carlo calculations using EGSnrc showed that a deviation of the source by 1 mm caused approximately 7% dose reduction in the treated target volume at 1 cm from the balloon surface. In conclusion, accurate positioning of the 192 Ir source at the balloon centre and minimal balloon deformation are critical for proper dose delivery with the MammoSite brachytherapy applicator. On the basis of this study, we suggest that the MammoSite treatment protocols should allow for a balloon deformation of ≤2 mm and a maximum source deviation of ≤1 mm.

  16. Study of tube diameter effect on the burnout

    International Nuclear Information System (INIS)

    Levitan, L.L.; Lantsman, F.P.; Dedneva, E.I.

    1981-01-01

    Effect of a tube diameter d on boundary steam content Xsub(b) is experimentally investigated during unwashed liquid wall film drying in the disperse-ring flow regime. For this purpose systematical experimental investigations of the burnout of the second kind in tubes with diameters of 4, 6 and 12 mm have been carried out as well as the other data relating to burnout in tubes with diameter from 4 to 40 mm are used. The investigations have been carried out at water and steam pressures of 4.9-13.7 MPa and mass velocities from 750 to 5000 kg/m 2 xs. It is elucidated that increase in the tube diameter results in reducing the ranges of pressures and mass velocities at which Xsub(b) is independent of heat flux. Quantity dependence Xsub(b)=f(d) has been obtained as well. The best agreement with data from different experiments is observed when taking into account the effect of d on Xsub(b) by means of the following relation: Xsub(b) is proportional to dsup(-0.25). In this case divergence, as a rule, does not exceed 10% [ru

  17. Strong 'Quantum' Chaos in the Global Ballooning Mode Spectrum of Three-dimensional Plasmas

    International Nuclear Information System (INIS)

    Dewar, R. L.; Cuthbert, P.; Ball, R.

    2000-01-01

    The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning) modes in strongly nonaxisymmetric toroidal systems is difficult to analyze numerically owing to the singular nature of ideal MHD caused by lack of an inherent scale length. In this paper, ideal MHD is regularized by using a k-space cutoff, making the ray tracing for the WKB ballooning formalism a chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier spectrum needed for resolving toroidally localized ballooning modes with a global eigenvalue code is estimated from the Weyl formula. This phase-space-volume estimation method is applied to ballooning-unstable plasma equilibria in the H-1NF helical axis stellarator and the Large Helical Device (LHD)

  18. Transthoracic ultrasound guided balloon dilation of cor triatriatum dexter in 2 Rottweiler puppies.

    Science.gov (United States)

    Birettoni, F; Caivano, D; Bufalari, A; Giorgi, M E; Miglio, A; Paradies, P; Porciello, F

    2016-12-01

    Balloon dilation was performed in two Rottweiler puppies with cor triatriatum dexter and clinical signs of ascites using transthoracic echocardiographic guidance. The dogs were positioned on a standard echocardiography table in right lateral recumbency, and guide wires and balloon catheters were imaged by echocardiographic views optimized to allow visualization of the defect. The procedures were performed successfully without complications and clinical signs were resolved completely in both cases. Guide wires and balloon catheters appeared hyperechoic on transthoracic echocardiography image and could be clearly monitored and guided in real-time. These two cases demonstrate that it is possible to perform balloon catheter dilation of cor triatriatum dexter under transthoracic guidance alone. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A Sensitivity Analysis of fMRI Balloon Model

    KAUST Repository

    Zayane, Chadia; Laleg-Kirati, Taous-Meriem

    2015-01-01

    Functional magnetic resonance imaging (fMRI) allows the mapping of the brain activation through measurements of the Blood Oxygenation Level Dependent (BOLD) contrast. The characterization of the pathway from the input stimulus to the output BOLD signal requires the selection of an adequate hemodynamic model and the satisfaction of some specific conditions while conducting the experiment and calibrating the model. This paper, focuses on the identifiability of the Balloon hemodynamic model. By identifiability, we mean the ability to estimate accurately the model parameters given the input and the output measurement. Previous studies of the Balloon model have somehow added knowledge either by choosing prior distributions for the parameters, freezing some of them, or looking for the solution as a projection on a natural basis of some vector space. In these studies, the identification was generally assessed using event-related paradigms. This paper justifies the reasons behind the need of adding knowledge, choosing certain paradigms, and completing the few existing identifiability studies through a global sensitivity analysis of the Balloon model in the case of blocked design experiment.

  20. A Sensitivity Analysis of fMRI Balloon Model

    KAUST Repository

    Zayane, Chadia

    2015-04-22

    Functional magnetic resonance imaging (fMRI) allows the mapping of the brain activation through measurements of the Blood Oxygenation Level Dependent (BOLD) contrast. The characterization of the pathway from the input stimulus to the output BOLD signal requires the selection of an adequate hemodynamic model and the satisfaction of some specific conditions while conducting the experiment and calibrating the model. This paper, focuses on the identifiability of the Balloon hemodynamic model. By identifiability, we mean the ability to estimate accurately the model parameters given the input and the output measurement. Previous studies of the Balloon model have somehow added knowledge either by choosing prior distributions for the parameters, freezing some of them, or looking for the solution as a projection on a natural basis of some vector space. In these studies, the identification was generally assessed using event-related paradigms. This paper justifies the reasons behind the need of adding knowledge, choosing certain paradigms, and completing the few existing identifiability studies through a global sensitivity analysis of the Balloon model in the case of blocked design experiment.

  1. Isothermal pumping analysis for high-altitude tethered balloons.

    Science.gov (United States)

    Kuo, Kirsty A; Hunt, Hugh E M

    2015-06-01

    High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal analysis is used to determine the variation of pressures and velocities along the pipe length. Results show that transport of small quantities of hydrogen to power fuel cells and maintain balloon buoyancy can be achieved at pressures and temperatures that are tolerable in terms of both the pipe strength and the current state of pumping technologies. To avoid solidification, transport of SO2 would require elevated temperatures that cannot be tolerated by the strength fibres in the pipe. While the use of particle-based slurries rather than SO2 for climate engineering can reduce the pipe size significantly, the pumping pressures are close to the maximum bursting pressure of the pipe.

  2. Safety and effectiveness of gastric balloons associated with hypocaloric diet for the treatment of obesity

    Directory of Open Access Journals (Sweden)

    M.ª Luisa de Castro

    2013-10-01

    Full Text Available Introduction: intragastric balloons provide early satiety and thereby induce short-term weight loss. The aim of this study was to evaluate safety and short and medium-term effectiveness of gastric balloons associated to hypocaloric diet in obesity. Material and methods: from May 2004 to June 2011 91 obese patients, body mass index [BMI] 45.2 ± 7.2 kg/m² were prospectively followed after endoscopic implantation of a gastric balloon associated to restricted diet. Successful therapy was defined as percent loss of total weight (%LTW ≥ 5% at six months after balloon placement and 6 and 12 months after their withdrawal. All analyses followed intention-to treat principles considering significant p-values < 0.05. Results: we placed 73 fluid-filled balloons (80.2% and 18 air-filled ones (19.8%. Compared to baseline values, at 6-month 73.7% subjects succeeded, showing significant reductions in weight (13.3 ± 8.8 kg, BMI (5 ± 3.4 kg/m² (p < 0.0001, with% LTW 11 ± 7%. Six and twelve months after retrieval 45.1% and 28.6% patients reached% LTW ≥ 5%. Short-term and medium-term effectiveness was negatively associated to obesity in first-grade relatives (p = 0.003 and p = 0.04. Higher weight loss 6 months after balloon placement independently predicted medium-term effectiveness (p = 0.0001. Mortality was absent but there were two spontaneous deflations of air-filled balloons and severe withdrawal difficulties in 8 patients, leading to surgery in one case. Retrieval complications associated to air-filled balloons (p = 0.0005. Conclusions: in obesity, effectiveness of gastric balloons associated to hypocaloric diet decreases over time. Complications occurred mainly in the retrieval endoscopic procedure and related to air-filled balloons.

  3. OCT evaluation of directional atherectomy compared to balloon angioplasty.

    Science.gov (United States)

    Marmagkiolis, Konstantinos; Lendel, Vasili; Cilingiroglu, Mehmet

    2015-09-01

    Directional atherectomy (DA) is one of the most commonly used modalities for the treatment of obstructive femoropopliteal peripheral arterial disease (PAD), especially in patients with large and calcified atherosclerotic plaques. The effect of directional atherectomy to the vascular wall compared to balloon angioplasty by optical coherence tomography (OCT) has not been previously described. We present the first case of OCT after directional atherectomy with SilverHawk followed by angiosculpt balloon angioplasty. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Ileal Varices Treated with Balloon-Occluded Retrograde Transvenous Obliteration.

    Science.gov (United States)

    Sato, Takahiro; Yamazaki, Katsu; Toyota, Jouji; Karino, Yoshiyasu; Ohmura, Takumi; Akaike, Jun

    2009-04-01

    A 55-year-old man with hepatitis B virus antigen-positive liver cirrhosis was admitted to our hospital with anal bleeding. Colonoscopy revealed blood retention in the entire colon, but no bleeding lesion was found. Computed tomography images showed that vessels in the ileum were connected to the right testicular vein, and we suspected ileal varices to be the most probable cause of bleeding. We immediately performed double balloon enteroscopy, but failed to find any site of bleeding owing to the difficulty of fiberscope insertion with sever adhesion. Using a balloon catheter during retrograde transvenous venography, we found ileal varices communicating with the right testicular vein (efferent vein) with the superior mesenteric vein branch as the afferent vein of these varices. We performed balloon occluded retrograde transvenous obliteration by way of the efferent vein of the varices and have detected no further bleeding in this patient one year after treatment.

  5. Freezing of aluminium oxide and iron flowing upward in circular quartz glass tubes

    International Nuclear Information System (INIS)

    Kuhn, D.; Moeschke, M.; Werle, H.

    1983-10-01

    The freezing of aluminium oxide and iron flowing upward in circular quartz glass tubes has been studied in a series of experiments. Several tubes were used in the same test. This demonstrated a good reproducibility and allowed systematic parameter variations, especially of the channel diameter. The time-dependance of the penetration was observed with a film camera and these date provide a good basis for a detailed check of sophisticated models which are in development. (orig.) [de

  6. Balloon dilatation and balloon-expandable stents for PTA of proximal venous stenoses in haemodialysis patients. Dilatation und ballonexpandierbare Stents zur Therapie zentralvenoeser Stenosen bei Dialysepatienten

    Energy Technology Data Exchange (ETDEWEB)

    Landwehr, P; Lackner, K [Wuerzburg Univ. (Germany, F.R.). Inst. fuer Roentgendiagnostik; Goetz, R [Wuerzburg Univ. (Germany, F.R.). Abt. fuer Nephrologie

    1990-09-01

    On 10 dialysis patients we performed 12 balloon dilatations, 2 catheter lyses, 6 stent implants (Palmaz stent) and one atherectomy of central venous stenoses or occlusions (v. subclavia, v. brachiocephalica) at the shunt arm of the patient. The primary success rate was, in balloon PTA and lysis, 12/14 interventions, and in stent placement and atherectomy 7/7. The angiographical and clinical primary result after stent implantation was significantly better than after conventional dilatation. After 66% of the balloon dilatations recidivation occurred within the first year; this can be treated by means of repeated PTA. Whether long-term exclusion of recurrence can be achieved by stent implantation, must be established by means of follow-up studies that are at present in progress. (orig.).

  7. Predictors of cardiogenic shock in cardiac surgery patients receiving intra-aortic balloon pumps.

    Science.gov (United States)

    Iyengar, Amit; Kwon, Oh Jin; Bailey, Katherine L; Ashfaq, Adeel; Abdelkarim, Ayman; Shemin, Richard J; Benharash, Peyman

    2018-02-01

    Cardiogenic shock after cardiac surgery leads to severely increased mortality. Intra-aortic balloon pumps may be used during the preoperative period to increase coronary perfusion. The purpose of this study was to characterize predictors of postoperative cardiogenic shock in cardiac surgery patients with and without intra-aortic balloon pumps support. We performed a retrospective analysis of our institutional database of the Society of Thoracic Surgeons for patients operated between January 2008 to July 2015. Multivariable logistic regression was used to model postoperative cardiogenic shock in both the intra-aortic balloon pumps and matched control cohorts. Overall, 4,741 cardiac surgery patients were identified during the study period, of whom 192 (4%) received a preoperative intra-aortic balloon pump. Intra-aortic balloon pumps patients had a greater prevalence of diabetes, previous cardiac surgery, congestive heart failure, and an urgent/emergent status (P pumps patients also had greater 30-day mortality and more postoperative cardiogenic shock (9% vs 3%, P pumps cohort, only sex, previous percutaneous coronary intervention and preoperative arrhythmia remained significant on multivariable analysis (all P pumps and those who do not. Further analysis of the effects of prophylactic intra-aortic balloon pumps support is warranted. (Surgery 2017;160:XXX-XXX.). Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Application of new balloon catheters in the treatment of congenital heart defects

    Directory of Open Access Journals (Sweden)

    Roland Fiszer

    2016-08-01

    Full Text Available Introduction : Balloon angioplasty (BAP and aortic or pulmonary balloon valvuloplasty (BAV, BPV are well-established treatment options in congenital heart defects. Recently, significant technological progress has been made and new catheters have been implemented in clinical practice. Aim: To analyze the results of BAP, BAV and BPV with the new balloon catheter Valver and its second generation Valver II, which the company Balton (Poland launched and developed. These catheters have not been clinically evaluated yet. Material and methods: We performed 64 interventions with Valver I and Valver II. With Valver I the following procedures were performed: 17 BPV (including 9 in tetralogy of Fallot – TOF, 10 BAV and 27 BAP in coarctations of the aorta (CoA – including 9 native and 18 after surgery. With Valver II ten interventions were done – 3 BPV, 2 pulmonary supravalvular BAP (after switch operations, 2 BAP of recoarctations and 3 other BAP. Age of the patients ranged from a few days to 40 years. Results: All procedures were completed successfully, without rupture of any balloon catheters. The pressure gradient drop was statistically significant in all groups: BPV in isolated pulmonary valvular stenosis 28.1 mm Hg (mean, BPV in TOF 18.7 mm Hg, BAV 32.8 mm Hg, BAP in native CoA 15.4 mm Hg and in recoarctations 18.6 mm Hg. In 3 cases during rapid deflation of Valver I, wrinkles of the balloons made it impossible to insert the whole balloon into the vascular sheath (all were removed surgically from the groin. No such complication occured with Valver II. Conclusions : Valver balloon catheters are an effective treatment modality in different valvular and vascular stenoses.

  9. Change in Imaging Findings on Angiography-Assisted CT During Balloon-Occluded Transcatheter Arterial Chemoembolization for Hepatocellular Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimatsu, Rika [Hiroshima University, Department of Diagnostic Radiology, Institute and Graduate School of Biomedical Sciences (Japan); Yamagami, Takuji, E-mail: yamagami@kochi-u.ac.jp [Kochi University, Department of Radiology (Japan); Ishikawa, Masaki; Kajiwara, Kenji [Hiroshima University, Department of Diagnostic Radiology, Institute and Graduate School of Biomedical Sciences (Japan); Aikata, Hiroshi; Chayama, Kazuaki [Hiroshima University, Department of Gastroenterology and Metabolism, Institute of Biomedical and Health Sciences (Japan); Awai, Kazuo [Hiroshima University, Department of Diagnostic Radiology, Institute and Graduate School of Biomedical Sciences (Japan)

    2016-06-15

    PurposeTo evaluate changes in imaging findings on CT during hepatic arteriography (CTHA) and CT during arterial portography (CTAP) by balloon occlusion of the treated artery and their relationship with iodized oil accumulation in the tumor during balloon-occluded transcatheter arterial chemoembolization (B-TACE).MethodsBoth B-TACE and angiography-assisted CT were performed for 27 hepatocellular carcinomas. Tumor enhancement on selective CTHA with/without balloon occlusion and iodized oil accumulation after B-TACE were evaluated. Tumorous portal perfusion defect size on CTAP was compared with/without balloon occlusion. Factors influencing discrepancies between selective CTHA with/without balloon occlusion and the degree of iodized oil accumulation were investigated.ResultsAmong 27 tumors, tumor enhancement on selective CTHA changed after balloon occlusion in 14 (decreased, 11; increased, 3). In 18 tumors, there was a discrepancy between tumor enhancement on selective CTHA with balloon occlusion and the degree of accumulated iodized oil, which was higher than the tumor enhancement grade in all 18. The tumorous portal perfusion defect on CTAP significantly decreased after balloon occlusion in 18 of 20 tumors (mean decrease from 21.9 to 19.1 mm in diameter; p = 0.0001). No significant factors influenced discrepancies between selective CTHA with/without balloon occlusion. Central area tumor location, poor tumor enhancement on selective CTHA with balloon occlusion, and no decrease in the tumorous portal perfusion defect area on CTAP after balloon occlusion significantly influenced poor iodized oil accumulation in the tumor.ConclusionsTumor enhancement on selective CTHA frequently changed after balloon occlusion, which did not correspond to accumulated iodized oil in most cases.

  10. Sizing of patent ductus arteriosus in adults for transcatheter closure using the balloon pull-through technique.

    Science.gov (United States)

    Shafi, Nabil A; Singh, Gagan D; Smith, Thomas W; Rogers, Jason H

    2018-05-01

    To describe a novel balloon sizing technique used during adult transcatheter patent ductus arteriosus (PDA) closure. In addition, to determine the clinical and procedural outcomes in six patients who underwent PDA balloon sizing with subsequent deployment of a PDA occluder device. Transcatheter PDA closure in adults has excellent safety and procedural outcomes. However, PDA sizing in adults can be challenging due to variable defect size, high flow state, or anatomical complexity. We describe a series of six cases where the balloon- pull through technique was successfully performed for PDA sizing prior to transcatheter closure. Consecutive adult patients undergoing adult PDA closure at our institution were studied retrospectively. A partially inflated sizing balloon was pulled through the defect from the aorta into the pulmonary artery and the balloon waist diameter was measured. Procedural success and clinical outcomes were obtained. Six adult patients underwent successful balloon pull-through technique for PDA sizing during transcatheter PDA closure, since conventional angiography often gave suboptimal opacification of the defect. All PDAs were treated with closure devices based on balloon PDA sizing with complete closure and no complications. In three patients that underwent preprocedure computed tomography, the balloon size matched the CT derived measurements. The balloon pull-through technique for PDA sizing is a safe and accurate sizing modality in adults undergoing transcatheter PDA closure. © 2017 Wiley Periodicals, Inc.

  11. Balloon-assisted coiling through a 5-French system

    International Nuclear Information System (INIS)

    White, J. Bradley; Layton, Kennith F.; Kallmes, David F.; Cloft, Harry J.

    2007-01-01

    We present a catheter technique that utilizes a 5F system for the purpose of balloon-assisted coiling in the setting of intracranial aneurysms. A standard 5F short sheath is placed in the common femoral artery, and a 5F diagnostic catheter is placed through the sheath and used for selective vessel angiography. When endovascular intervention is pursued, the diagnostic catheter is placed in the appropriate vessel and systemic heparinization is ensured. Over an exchange length wire, the 5F vertebral catheter and 5F short sheath are exchanged for a 5F Shuttle (Cook) sheath. We then routinely place a 10, 14 or 18 microcatheter over an appropriately gauged microguidewire into the aneurysm. As needed, balloon catheters are then placed across the neck of the aneurysm for remodeling purposes. During the course of the procedure, control angiography is performed through the Shuttle sheath. Following the placement of coils, the microcatheter and balloon catheter are removed and a final biplane image is obtained via the 5F Shuttle sheath. This technique has been employed in 15 patients who required balloon-assisted coiling of an intracranial aneurysm. There were no technical difficulties or arterial access site complications from the procedures. Catheter mobility and torque were not affected, nor was the quality of our imaging. We conclude that this small-diameter system provides ample ''room'' for catheter placement and interventional treatment while reducing the known risks of postprocedural complications. Angiographic images remain excellent and are comparable to those obtained by larger catheters. (orig.)

  12. Methods of measurements on incidental X-radiation from electron tubes

    International Nuclear Information System (INIS)

    1977-01-01

    The standard describes the method for detection of x-radiation and the method for the direct and indirect measurement of field pattern and exposure rate of random incidental radiation emanating from high voltage electron tubes. Required apparatus and calibration procedure for the exposure rate meter or film mount are described. (M.G.B.)

  13. Long Duration Balloon Charge Controller Stack Integration

    Science.gov (United States)

    Clifford, Kyle

    NASA and the Columbia Scientific Balloon Facility are interested in updating the design of the charge controller on their long duration balloon (LDB) in order to enable the charge controllers to be directly interfaced via RS232 serial communication by a ground testing computers and the balloon's flight computer without the need to have an external electronics stack. The design involves creating a board that will interface with the existing boards in the charge controller in order to receive telemetry from and send commands to those boards, and interface with a computer through serial communication. The inputs to the board are digital status inputs indicating things like whether the photovoltaic panels are connected or disconnected; and analog inputs with information such as the battery voltage and temperature. The outputs of the board are 100ms duration command pulses that will switch relays that do things like connect the photovoltaic panels. The main component of this design is a PIC microcontroller which translates the outputs of the existing charge controller into serial data when interrogated by a ground testing or flight computer. Other components involved in the design are an AD7888 12-bit analog to digital converter, a MAX3232 serial transceiver, various other ICs, capacitors, resistors, and connectors.

  14. Ballooning mode stabilization by moderate sheared rotation

    International Nuclear Information System (INIS)

    Hameiri, E.

    1996-01-01

    Sheared toroidal plasma rotation has been known for some time to have a stabilizing effect on the ballooning modes. A recent calculation showed that a large flow shear, with dΩ/dq of the order of the Alfven toroidal frequency, can stabilize the ballooning modes. This latest result is, in fact, not so optimistic. For observed flows with Mach number of order unity one gets dΩ/dq smaller by a factor O(√β) from the required level (if the flow shear length is of the same order as the magnetic shear length). Moreover, the calculation does not take into account a possibly large transient growth of the mode amplitude due to its Floquet structures We show here that, in fact, there is a general tendency of the ballooning mode to stabilize as soon as the flow shear dΩ/dq exceeds the (O√β smaller) open-quotes slowclose quotes magnetosonic wave frequency. Our analysis is perturbative, where the small parameter is related to the small coupling between the slow and Alfven waves-as is the case in a high aspect-ratio tokamak. (In the perturbation it is important to take the Hamiltonian nature of the governing equations into account.) Moreover, our results apply to the relevant transient growth of the mode amplitude

  15. Critical heat flux and exit film flow rate in a flow boiling system

    International Nuclear Information System (INIS)

    Ueda, Tatsuhiro; Isayama, Yasushi

    1981-01-01

    The critical heat flux in a flowing boiling system is an important problem in the evaporating tubes with high thermal load such as nuclear reactors and boilers, and gives the practical design limit. When the heat flux in uniformly heated evaporating tubes is gradually raised, the tube exit quality increases, and soon, the critical heat flux condition arises, and the wall temperature near tube exit rises rapidly. In the region of low exit quality, the critical heat flux condition is caused by the transition from nucleating boiling, and in the region of high exit quality, it is caused by dry-out. But the demarcation of both regions is not clear. In this study, for the purpose of obtaining the knowledge concerning the critical heat flux condition in a flowing boiling system, the relation between the critical heat flux and exit liquid film flow rate was examined. For the experiment, a uniformly heated vertical tube supplying R 113 liquid was used, and the measurement in the range of higher heating flux and mass velocity than the experiment by Ueda and Kin was carried out. The experimental setup and experimental method, the critical heat flux and exit quality, the liquid film flow rate at heating zone exit, and the relation between the critical heat flux and the liquid film flow rate at exit are described. (Kako, I.)

  16. Haemodynamic changes in hepatocellular carcinoma and liver parenchyma under balloon occlusion of the hepatic artery

    Energy Technology Data Exchange (ETDEWEB)

    Sugihara, Fumie; Murata, Satoru; Ueda, Tatsuo; Yasui, Daisuke; Yamaguchi, Hidenori; Miki, Izumi; Kumita, Shin-ichiro [Nippon Medical School, Department of Radiology, Center for Advanced Medical Technology, Tokyo (Japan); Kawamoto, Chiaki [Nippon Medical School, Department of Internal Medicine, Tokyo (Japan); Uchida, Eiji [Nippon Medical School, Department of Surgery, Tokyo (Japan)

    2017-06-15

    To investigate haemodynamic changes in hepatocellular carcinoma (HCC) and liver under hepatic artery occlusion. Thirty-eight HCC nodules in 25 patients were included. Computed tomography (CT) during hepatic arteriography (CTHA) with and without balloon occlusion of the hepatic artery was performed. CT attenuation and enhancement volume of HCC and liver with and without balloon occlusion were measured on CTHA. Influence of balloon position (segmental or subsegmental branch) was evaluated based on differences in HCC-to-liver attenuation ratio (H/L ratio) and enhancement volume of HCC and liver. In the segmental group (n = 20), H/L ratio and enhancement volume of HCC and liver were significantly lower with balloon occlusion than without balloon occlusion. However, in the subsegmental group (n = 18), H/L ratio was significantly higher and liver enhancement volume was significantly lower with balloon occlusion; HCC enhancement volume was similar with and without balloon occlusion. Rate of change in H/L ratio and enhancement volume of HCC and liver were lower in the segmental group than in the subsegmental group. There were significantly more perfusion defects in HCC in the segmental group. Hepatic artery occlusion causes haemodynamic changes in HCC and liver, especially with segmental occlusion. (orig.)

  17. A study on usefulness of balloon cholangiography in operating ERCP

    International Nuclear Information System (INIS)

    Son, Soon Yong

    1997-01-01

    Purpose of this paper is to extend help for clinical application in balloon cholangiography on patients who have undergone endoscopic sphincterotomy, impacted stones of intrahepatic duct, and missed bile duct because of other diseases in operating endoscopic retrograde cholangio pancreatography. This study was done for the patients who had clinical signs of biliary diseases from January to December in 1996. We studied 45 patients who had endoscopic sphincterotomy, re-examination after interventional treatment of the endoscopic retrograde cholangio pancreatography, and uncertain diagnosis due to common bile duct and intrahepatic duct those are not filled with contrast media. Balloon cholangiography was performed in case of uncertain diagnosis while operating endoscopic retrograde cholangio pancreatography. First of all, we insert balloon catheter into the working channel of treatment jejunofiberscope and remove treatment jejunofiberscope after ballooning, and lastly take biliary tract X-ray after injection and changing position of patient. The results of this study were as follows. (1) In classification of diseases, stones of gall bladder, those of common bile duct, and those of intrahepatic duct were 30 cases, fistula was 1 case. (2) In total cases of 45, only diagnosis were 25 cases, interventional treatment were 20 cases. (3) In case of interventional treatment, endoscopic sphincterotomy and endoscopic nasobiliary drainage, and stone removal were about the same, 7, 7, 6 respectively. Balloon cholangiography will be useful to prevent patients from having repeated and unnecessary studies for the cases above explained. It is considered that this study will be useful for clinical application in terms of reducing medical expenses, pain while examination, and consultation hours

  18. A new approach to the diagnosis of esophageal rupture due to balloon dilatation

    International Nuclear Information System (INIS)

    Song, Ho Young; Han, Young Min; Lee, Sang Young; Kuh, Ja Hong; Lee, Dong Kun; Chae, Soo Wan

    1990-01-01

    The diagnosis of esophageal rupture in balloon dilatation is usually made from clinical symptom of sharp chest pain, plain chest radiographs and esophagograms after dilation. It has some problems; the pain is varied patients to patients and bacterial flora in the mouth or esophagus can be mixed with the contrast media to flow into the mediastinum during esophagography, to create mediastinitis. We could make the diagnosis of esophageal rupture without using contrast media by the observation of the pressure change in the balloon during dilatation. An infusion pump, transducer and esophageal balloon were connected through a multi-way connector, and the transducer of them was also connected to an amplifier which was connected to a pressure monitor to record the balloon pressure. As balloon(20mm/3cm) inserted in the mid-thoracic esophagus under the fluoroscopic control was inflated until the esophagus was ruptured. Balloon was distended by injecting air in 15 rabbits(A group), and by injecting diluted contrast medium in 15 rabbits(B group). The pressure decrease after esophageal rupture was ranged from 94 to 160 mmHg(mean; 103) in A group and 340 to 1040 mmHg(mean; 537) in B group. The pressure curve of A group was smooth, regular and so accurate to make the diagnosis of esophageal rupture, whereas that of B group was irregular and not so accurate. In conclusion, our new method to make the diagnosis of esophageal rupture during balloon dilatation may be useful in patients of esophageal stricture

  19. The German scientific balloon and sounding rocket projects

    International Nuclear Information System (INIS)

    Dalh, A.F.

    1978-01-01

    This report contains information on the sounding rocket projects: experiment preparation for spacelab (astronomy), aeronomy, magnetosphere, and material science. Except for material science the scientific balloon projects are performed in the some scientific fields, but with a strong emphasis on astronomical research. It is tried to provide by means of tables a survey as complete as possible of the projects for the time since the last symposium in Elmau and of the plans for the future until 1981. The scientific balloon and sounding rocket projects form a small succesful part of the German space research programme. (author)

  20. Sensitivity of screen-film systems

    International Nuclear Information System (INIS)

    Sandborg, M.; Nilsson, Goergen; Holje, G.

    1992-01-01

    This report, which has been funded by SSI, presents sensitivity data on the 'second generation' of modern intensifying screens, commercially available at the onset of the investigation. The sensitivity of the screen-film systems was evaluated with 80 kV tube potential and a total filtration of 3.0 mm Al. 20 mm aluminum was used for simulating human tissue, since it gives the same HVL x , as does 25 cm water. Kerma in air, needed to produce a net film density of 1.00 was determined and its inverse, expressed in mGy -1 , was taken as an indicator of the sensitivity; here called the sensitivity class of a screen-film system

  1. Analytical prediction of CHF by FIDAS code based on three-fluid and film-dryout model

    International Nuclear Information System (INIS)

    Sugawara, Satoru

    1990-01-01

    Analytical prediction model of critical heat flux (CHF) has been developed on the basis of film dryout criterion due to droplets deposition and entrainment in annular mist flow. Critical heat flux in round tubes were analyzed by the Film Dryout Analysis Code in Subchannels (FIDAS) which is based on the three-fluid, three-field and newly developed film dryout model. Predictions by FIDAS were compared with the world-wide experimental data on CHF obtained in water and Freon for uniformly and non-uniformly heated tubes under vertical upward flow condition. Furthermore, CHF prediction capability of FIDAS was compared with those of other film dryout models for annular flow and Katto's CHF correlation. The predictions of FIDAS are in sufficient agreement with the experimental CHF data, and indicate better agreement than the other film dryout models and empirical correlation of Katto. (author)

  2. Lifting options for stratospheric aerosol geoengineering: advantages of tethered balloon systems.

    Science.gov (United States)

    Davidson, Peter; Burgoyne, Chris; Hunt, Hugh; Causier, Matt

    2012-09-13

    The Royal Society report 'Geoengineering the Climate' identified solar radiation management using albedo-enhancing aerosols injected into the stratosphere as the most affordable and effective option for geoengineering, but did not consider in any detail the options for delivery. This paper provides outline engineering analyses of the options, both for batch-delivery processes, following up on previous work for artillery shells, missiles, aircraft and free-flying balloons, as well as a more lengthy analysis of continuous-delivery systems that require a pipe connected to the ground and supported at a height of 20 km, either by a tower or by a tethered balloon. Towers are shown not to be practical, but a tethered balloon delivery system, with high-pressure pumping, appears to have much lower operating and capital costs than all other delivery options. Instead of transporting sulphuric acid mist precursors, such a system could also be used to transport slurries of high refractive index particles such as coated titanium dioxide. The use of such particles would allow useful experiments on opacity, coagulation and atmospheric chemistry at modest rates so as not to perturb regional or global climatic conditions, thus reducing scale-up risks. Criteria for particle choice are discussed, including the need to minimize or prevent ozone destruction. The paper estimates the time scales and relatively modest costs required if a tethered balloon system were to be introduced in a measured way with testing and development work proceeding over three decades, rather than in an emergency. The manufacture of a tether capable of sustaining the high tensions and internal pressures needed, as well as strong winds, is a significant challenge, as is the development of the necessary pumping and dispersion technologies. The greatest challenge may be the manufacture and launch of very large balloons, but means have been identified to significantly reduce the size of such balloons or aerostats.

  3. Balloon kyphoplasty for aged osteoporotic vertebral compressive fractures using domestic instruments

    International Nuclear Information System (INIS)

    Sun Gang; Jin Peng; Yi Yuhai; Xie Zhiyong; Zhang Xuping; Zhang Kangli

    2006-01-01

    Objective: To evaluate the efficacy and safety of balloon kyphoplasty in the treatment of painful osteoporosis vertebral compressive fractures using instruments made in China. Methods: 10 cases of painful osteoporotic vertebral compressive fractures, involved 11 vertebrae. Under X-ray fluoroscopy monitoring, the inflatable balloon were inserted into the fractured vertebral body via transpedicular route bilaterally. The balloon was inflated with injected contrast agent to restore vertebral height and form a cavity within vertebral body. The cavity was then filled with bone cement in toothpaste state period. The postoperative symptoms and the radiographic findings of vertebral height recovery were observed. Results: Balloon kyphoplasty was successful in all 10 cases with dramatic pain relief within 48 hours after the procedure without clinical complications. The height restoration of vertebral body was satisfactory with correction of kyphosis up to 6 degree-24 degree. Leakage of a small quantity of bone cement occurred at only the anterior border of the vertebral body. Conclusions: Kyphoplasty using domestic instruments for painful osteoporotic vertebral compressive fractures was effective and safe. (authors)

  4. Evaluation of dimensions of diagnostic X-ray tube focal spots using direct digitalization

    International Nuclear Information System (INIS)

    Costa, Paulo R.; Furquim, Tania A.C.

    1996-01-01

    An image digitalization system is proposed as an alternative method for replacing direct exposure X-ray films on the evaluation of dimensions of diagnostic X-ray tube focal spots. Results of measurements are presented and compared to nominal values

  5. A 16 channel frequency-domain-modulation readout system with custom superconducting LC filters for the SWIPE instrument of the balloon-borne LSPE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Signorelli, G., E-mail: giovanni.signorelli@pi.infn.it [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Baldini, A.M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Bemporad, C. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Biasotti, M. [INFN Sezione di Genova and Università degli studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Cei, F. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Ceriale, V.; Corsini, D.; Fontanelli, F. [INFN Sezione di Genova and Università degli studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Galli, L.; Gallucci, G. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Gatti, F. [INFN Sezione di Genova and Università degli studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Incagli, M.; Grassi, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Nicolò, D. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Spinella, F. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Vaccaro, D. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Venturini, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2016-07-11

    We present the design, implementation and first tests of the superconducting LC filters for the frequency domain readout of spiderweb TES bolometers of the SWIPE experiment on the balloon-borne LSPE mission which aims at measuring the linear polarization of the Cosmic Microwave Background at large angular scales to find the imprint of inflation on the B-mode CMB polarization. LC filters are designed, produced and tested at the INFN sections of Pisa and Genoa where thin film deposition and cryogenic test facilities are present, and where also the TES spiderweb bolometers are being produced.

  6. SMEX02 Balloon-borne Radiosonde Data, Iowa

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes radiosonde measurements of upper air temperature and pressure, relative humidity, and wind direction and speed during the balloons' ascent to...

  7. Ballooning Representation Approach to Low-Frequency Instabilities in Stellarators

    International Nuclear Information System (INIS)

    Dewar, R.L.; Gardner, H.J.; Lewandowski, J.; Persson, M.

    1995-01-01

    Local ideal MHD ballooning eigenvalues have been calculated on many field lines for heliac and torsatron cases using a parallel implementation of a ballooning code on a Thinking Machines Corporation CM-5 Global eigenvalues have been estimated for the torsatron test case using the ray tracing method of Dewar and Glasser and also by using the TERPSI-CHORE global eigenvalue code, with good agreement. As a preliminary to detailed study of H-1, 3-D visualizations of stability-related quantities have been produced. 6 refs

  8. Linear and nonlinear studies of resistive-ballooning modes in a tokamak edge plasma with scrape-off layer

    International Nuclear Information System (INIS)

    Lau, Y.T.; Novakovskii, S.V.; Drake, J.F.

    1996-01-01

    We will present 2D linear and 3D nonlinear studies of resistive-ballooning modes in tokamak edge plasmas which include a closed flux region, as well as a limiter scrape-off layer (SOL) region. These studies therefore go beyond most earlier work, where the stability of the edge in the closed flux region and in the SOL have been considered separately. A 2D linear code, 2D-BALLOON, examines the stability of these curvature driven modes and provides the complete 2D eigenfunction spanning the closed flux surface region as well the open field line region. The sheath boundary condition in the SOL introduces an important new parameter λ = (m e /m i ) 1/2 v ei qR/v Te . This parameter plays a significant role in determining the stability of these modes in both the closed flux and SOL regions because of the radial coupling across the last closed flux surface (LCFS). For small λ the spectrum of unstable modes is broad and extends into the low toroidal mode number exclamation point regime where the spatial structure is flute-like. The amplitude for these modes is larger in the SOL compared to the closed flux region. However when A is increased, the low mode numbers are strongly stabilized and the high mode numbers which are strongly ballooning are the dominant modes. In this regime the radial modes straddle the LCFS. In both these cases, the variation in the plasma density is necessary for the radial localization. In the three-dimensional nonlinear simulations, we have solved a set of fluid equations in a toroidal geometry with both the closed flux region and the SOL. The introduction of the SOL to the twisted tube for the closed flux region, has been a major addition to our 3D code. We find that the turbulent transport in the SOL drops significantly as A is increased, which is consistent with our expectations from the 2D linear code results

  9. Balloon-based adjuvant radiotherapy in breast cancer: comparison between 99mTc and HDR 192Ir

    Directory of Open Access Journals (Sweden)

    Tarcísio Passos Ribeiro de Campos

    2016-04-01

    Full Text Available Abstract Objective: To perform a comparative dosimetric analysis, based on computer simulations, of temporary balloon implants with 99mTc and balloon brachytherapy with high-dose-rate (HDR 192Ir, as boosts to radiotherapy. We hypothesized that the two techniques would produce equivalent doses under pre-established conditions of activity and exposure time. Materials and Methods: Simulations of implants with 99mTc-filled and HDR 192Ir-filled balloons were performed with the Siscodes/MCNP5, modeling in voxels a magnetic resonance imaging set related to a young female. Spatial dose rate distributions were determined. In the dosimetric analysis of the protocols, the exposure time and the level of activity required were specified. Results: The 99mTc balloon presented a weighted dose rate in the tumor bed of 0.428 cGy.h-1.mCi-1 and 0.190 cGyh-1.mCi-1 at the balloon surface and at 8-10 mm from the surface, respectively, compared with 0.499 and 0.150 cGyh-1.mCi-1, respectively, for the HDR 192Ir balloon. An exposure time of 24 hours was required for the 99mTc balloon to produce a boost of 10.14 Gy with 1.0 Ci, whereas only 24 minutes with 10.0 Ci segments were required for the HDR 192Ir balloon to produce a boost of 5.14 Gy at the same reference point, or 10.28 Gy in two 24-minutes fractions. Conclusion: Temporary 99mTc balloon implantation is an attractive option for adjuvant radiotherapy in breast cancer, because of its availability, economic viability, and similar dosimetry in comparison with the use of HDR 192Ir balloon implantation, which is the current standard in clinical practice.

  10. Measurements of Intra‐Aortic Balloon Wall Movement During Inflation and Deflation: Effects of Angulation

    Science.gov (United States)

    Bruti, Gianpaolo; Kolyva, Christina; Pepper, John R.

    2015-01-01

    Abstract The intra‐aortic balloon pump (IABP) is a ventricular assist device that is used with a broad range of pre‐, intra‐, and postoperative patients undergoing cardiac surgery. Although the clinical efficacy of the IABP is well documented, the question of reduced efficacy when patients are nursed in the semi‐recumbent position remains outstanding. The aim of the present work is therefore to investigate the underlying mechanics responsible for the loss of IABP performance when operated at an angle to the horizontal. Simultaneous recordings of balloon wall movement, providing an estimate of its diameter (D), and fluid pressure were taken at three sites along the intra‐aortic balloon (IAB) at 0 and 45°. Flow rate, used for the calculation of displaced volume, was also recorded distal to the tip of the balloon. An in vitro experimental setup was used, featuring physiological impedances on either side of the IAB ends. IAB inflation at an angle of 45° showed that D increases at the tip of the IAB first, presenting a resistance to the flow displaced away from the tip of the balloon. The duration of inflation decreased by 15.5%, the inflation pressure pulse decreased by 9.6%, and volume decreased by 2.5%. Similarly, changing the position of the balloon from 0 to 45°, the balloon deflation became slower by 35%, deflation pressure pulse decreased by 14.7%, and volume suctioned was decreased by 15.2%. IAB wall movement showed that operating at 45° results in slower deflation compared with 0°. Slow wall movement, and changes in inflation and deflation onsets, result in a decreased volume displacement and pressure pulse generation. Operating the balloon at an angle to the horizontal, which is the preferred nursing position in intensive care units, results in reduced IAB inflation and deflation performance, possibly compromising its clinical benefits. PMID:25959284

  11. Modelling of Condensation in Vertical Tubes for Passive Safety System

    International Nuclear Information System (INIS)

    Papini, D.; Ricotti, M.; Santini, L.; Grgic, D.

    2008-01-01

    Condensation in vertical tubes plays an important role in the performance of heat exchangers in passive safety systems, widely adopted in next generation reactors. Vertical pipe condensers are implemented in the GE-SBWR1000 Isolation Condenser as well as in the Emergency Heat Removal System (EHRS) of the IRIS reactor. The transient and safety analysis is usually carried out by means of best-estimate, thermalhydraulic codes, as RELAP. Suitable heat transfer correlations are required to duly model the two-phase processes. As far as the condensation process is concerned, RELAP5/MOD3.3 adopts the Nusselt correlation to calculate the heat transfer coefficient in laminar conditions and the Shah correlation for turbulent conditions; the maximum of the predictions from laminar and turbulent regimes is used to calculate the condensation heat transfer coefficient. Shah correlation is generally considered as the best empirical correlation for turbulent annular film condensation, but suitable in proper ranges of the various parameters. Nevertheless, recent investigations have pointed out that its validity is highly questionable for high pressure and large diameter tube applications with water, as should be for the utilization for vertical tube condensers in passive safety systems. Thus, a best-estimate model, based on the theory of film condensation on a plain wall, is proposed. Condensate velocity, expressed in terms of Reynolds number, governs the development of three different regime zones: laminar, laminar wavy and turbulent. The best correlation for each regime (Nusselt's for laminar, Kutateladze's for laminar wavy and Chen's for turbulent) is considered and then implemented in RELAP code. Comparison between the Nusselt-Shah and the proposed model shows substantial differences in heat transfer coefficient prediction. Especially, a trend of increasing value of the heat transfer coefficient with tube abscissa (and quality decreasing) is predicted, when turbulence

  12. Balloon dilation of congenital supravalvular pulmonic stenosis in a dog

    OpenAIRE

    Treseder, Julia R.; Jung, SeungWoo

    2017-01-01

    Percutaneous balloon valvuloplasty is considered the standard of care for treatment of valvular pulmonic stenosis, a common congenital defect in dogs. Supravalvular pulmonic stenosis is a rare form of pulmonic stenosis in dogs and standard treatment has not been established. Although, there have been reports of successful treatment of supravalvular pulmonic stenosis with surgical and stenting techniques, there have been no reports of balloon dilation to treat dogs with this condition. Here, a...

  13. TLE Balloon experiment campaign carried out on 25 August 2006 in Japan

    Science.gov (United States)

    Takahashi, Y.; Chikada, S.; Yoshida, A.; Adachi, T.; Sakanoi, T.

    2006-12-01

    The balloon observation campaign for TLE and lightning study was carried out 25 August 2006 in Japan by Tohoku University, supported by JAXA. The balloon was successfully launched at 18:33 LT at Sanriku Balloon Center of JAXA located in the east coast of northern part of Japan (Iwate prefecture). Three types of scientific payloads were installed at the 1 m-cubic gondola, that is, 3-axis VLF electric filed antenna and receiver (VLFR), 4 video frame CCD cameras (CCDI) and 2-color photometer (PM). The video images were stored in 4 HD video recorders, which have 20GB memories respectively, at 30 frames/sec and VLFR and PM data were put into digital data recorder with 30 GB memory at sampling rate of 100 kHz. The balloon floated at the altitude of 13 km until about 20:30 LT, going eastward and went up to 26 km at a distance of 130 km from the coast. And it went back westward at the altitude of 26 km until midnight. The total observation period is about 5 hours. Most of the equipments worked properly except for one video recorder. Some thunderstorms existed within the direct FOV from the balloon in the range of 400-600 km and more than about 400 lightning flashes were recorded as video images. We confirmed that, at least, one sprite halo was captured by CCDI which occurred in the oceanic thunderstorm at a distance of about 500 km from balloon. This is the first TLE image obtained by a balloon-borne camera. Simultaneous measurements of VLF sferics and lightning/TLE images will clarify the role of intracloud (IC) currents in producing and/or modulating TLEs as well as cloud-to-ground discharges (CG). Especially the effect of horizontal components will be investigated in detail, which cannot be detected on the ground, to explain the unsolved properties of TLEs, such as long time delay of TLE from the timing of stroke and large horizontal displacement between CG and TLEs.

  14. Tethered balloon-based measurements of meteorological variables and aerosols

    Science.gov (United States)

    Sentell, R. J.; Storey, R. W.; Chang, J. J. C.; Jacobsen, S. J.

    1976-01-01

    Tethered balloon based measurements of the vertical distributions of temperature, humidity, wind speed, and aerosol concentrations were taken over a 4-hour period beginning at sunrise on June 29, 1976, at Wallops Island, Virginia. Twelve consecutive profiles of each variable were obtained from ground to about 500 meters. These measurements were in conjuction with a noise propagation study on remotely arrayed acoustic range (ROMAAR) at Wallops Flight Center. An organized listing of these vertical soundings is presented. The tethered balloon system configuration utilized for these measurements is described.

  15. Peak potential meter applied to X-ray tubes in mammal radiography systems

    International Nuclear Information System (INIS)

    Schiabel, Homero; Frere, Annie F.; Andreeta, Jose P.

    1989-01-01

    It is of a great importance to identify accurately the real peak potential (or simply, KVp) applied to a X-ray tube purposed to medical diagnosis, since it defines the beam energetic quality in terms of photons penetration power. Mainly in mammographic systems. it is of fundamental relevance the KVp accurate measurement because the soft tissues involved in this kind of examination provides different absorption - and, hence, clear contrast on mammographic film - just in a very restrict energetic range. Thus a device to measure KVp with adequate accuracy in mammographic units, using the basic principles of scintillation detection, was developed. This system is therefore composed of a NaI(Tl) crystal which is a X-ray sensor - replacing radiographic films which usually are a source of errors in these measurements - , a photo multiplier tube and changed into amplified electric pulses. Finally the electronic circuit, after adequate pulses treatment, shows instantaneously the actual KVp value in the test on displays. (author)

  16. A rectal balloon catheter as internal immobilization device for conformal radiotherapy of prostate cancer

    International Nuclear Information System (INIS)

    Gerstner, N.; Wachter, S.; Dorner, D.; Goldner, G.; Colotto, A.; Poetter, R.

    1999-01-01

    Background: As known from the literature, prostate motion depends on different bladder and/or rectum fillings. The aim of this study was to analyze the influence of a rectum balloon catheter, used as an internal immobilization device, on prostate and rectum motion during the treatment course. Moreover we have analysed if the balloon enables an increase of the distance between the prostate and the posterior rectum wall. Results: An increase of the distance between the prostate and the posterior rectal wall of 8 mm was observed at the base of the prostate when using the rectum balloon. Moreover prostate motion in the ventrodorsal direction ≥4 mm (1 SD) was reduced from 6/10 patients (60%) to 1/10 patients (10%) using the rectal balloon. In general, deviations in the latero-lateral and cranio-caudal directions were less (mean ≤ 2 mm, 1 SD), no difference between both examination series (with and without balloon) was observed. Conclusion: Rectal balloon catheter offers a possibility to reduce prostate motion and rectum filling variations during treatment course. In addition it enables an increase in the distance between prostate and posterior rectal wall, which could enable an improved protection of the posterior rectal wall. (orig./AJ) [de

  17. Verification tests for GRAD, a computer program to predict nonuniform deformation and failure of Zr-2.5 wt percent Nb pressure tubes during a postulated loss-of-coolant accident

    International Nuclear Information System (INIS)

    Shewfelt, R.S.W.; Godin, D.P.

    1985-03-01

    During a postulated loss-of-coolant accident in a CANDU reactor, the temperature of the pressure tubes could rise sufficiently so that ballooning could occur. It is also likely that there would be a variation in temperature around the tube circumference, causing the deformation to be nonuniform. Since the deformation of the pressure tube controls how the core heat is transferred to the surrounding moderator, which is a large heat sink, a computer program, GRAD, has been developed to predict this nonuniform deformation. Numerous biaxial creep tests were done, where the temperature of internally pressurized sections of Zr-2.5 wt percent Nb pressure tubes were ramped to check the ability of GRAD to predict the resulting nonuniform deformation and possible tube failure. GRAD was successful in predicting the average transverse creep strain observed during the tests and the local transverse creep strain at the end of the tests. GRAD was also able to predict the failure time and average transverse creep strain at failure for all the specimens that failed

  18. Shear flow generation and turbulence suppression by resistive ballooning and resistive interchange modes

    International Nuclear Information System (INIS)

    Guzdar, P.N.; Drake, J.F.

    1993-01-01

    The generation of shear flow by resistive ballooning modes and resistive interchange modes is compared and contrasted using a 3-D fluid code. The resistive ballooning modes give rise to poloidally asymmetric transport and hence drive poloidal rotation due to the Reynold's Stress as well as the anomalous Stringer/Winsor mechanism. On the other hand the resistive interchange mode can drive shear flow only through the Reynold's Stress. The studies show that if the self-consistent sheared flow is suppressed, the resistive ballooning modes give rise to a larger anomalous transport than produced by the resistive interchange modes. Furthermore the shear flow generated by the resistive ballooning modes is larger than that driven by the resistive interchange modes due to the combined effect of the dual mechanisms stated earlier. As a consequence strong suppression of the fluctuations as well as reduction of the transport occurs for resistive ballooning modes. On the other hand, for the resistive interchange modes the level of fluctuation as well as the anomalous transport is not reduced by the self consistent shear flow generated by the Reynold's Stress. This latter result is in agreement with some earlier 3-D simulation of resistive interchange modes

  19. Single-tube condensation experiment in Passive Auxiliary Feedwater System of APR1400+

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Wook; No, Hee Cheon; Yun, Bong Yo; Jeon, Byong Guk [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-05-15

    Conventional Korean nuclear power plants, Advanced Power Reactors (APR), are characterized by an active cooling system. However, Active cooling system may not prevent significant damage without any AC power source available for its operation as vividly illustrated through the recent Fukushima incident. In the APR1400+ to be designed, an independent passive cooling system was added in order to overcome the aforementioned shortcomings. In the Passive Auxiliary Feedwater System (PAFS), gravity force and density difference between steam and water are used. The system comprises of 240 condensation tubes to efficiently remove decay heat. Before applying the PAFS to APR1400+, the system's safety and heat removal performance must be verified. The present study experimentally evaluates the heat removal performance of a single tube in the PAFS. The objectives of SCOP (Single-tube Condensation experiment facility of PAFS) are the evaluation of the heat removal performance in the tube of the PAFS and database construction under various tube designs and test conditions. Reaching these objectives, we developed advanced measurement techniques for the amount of moisture, heat flux, and water film thickness.

  20. Percutaneous Transhepatic Cutting Balloon Papillotomy for Removal of Common Bile Duct Stones

    International Nuclear Information System (INIS)

    Oguzkurt, Levent; Ozkan, Ugur; Gumus, Burcak

    2009-01-01

    We report the case of a 66-year-old female who presented with jaundice secondary to recurrent adenocarcinoma of the gallbladder and several common bile duct stones. Percutaneous papillary dilatation was planned to remove the common bile duct stones. Papilla was dilated through the percutaneous approach with an 8-mm peripheral cutting balloon instead of a standard balloon. All the stones were pushed successfully into the duodenum with a saline flush. No complications were encountered. Use of a peripheral cutting balloon for dilatation of the papilla seems to be safe and effective because it has the advantage of controlled incision and dilatation of the target at low pressures.