WorldWideScience

Sample records for film casting process

  1. Dynamic control of crystallinity in polymer film casting process

    OpenAIRE

    Thananchai Leephakpreeda

    2005-01-01

    This paper presents an approach for dynamic control of crystallinity in polymer film casting process. As known, the transients of crystallization dictate the microstructures of semi-crystalline polymer during solidification. In turn, the properties of finished products can be determined by adjustable variables in polymer film casting process such as temperature of chill roll. In this work, an experimental model of the solidification in film casting process is derived by a system identificatio...

  2. Dynamic control of crystallinity in polymer film casting process

    Directory of Open Access Journals (Sweden)

    Thananchai Leephakpreeda

    2005-05-01

    Full Text Available This paper presents an approach for dynamic control of crystallinity in polymer film casting process. As known, the transients of crystallization dictate the microstructures of semi-crystalline polymer during solidification. In turn, the properties of finished products can be determined by adjustable variables in polymer film casting process such as temperature of chill roll. In this work, an experimental model of the solidification in film casting process is derived by a system identification technique. This model is used to design a digital feedback controller including a state estimator. The simulation results show the effectiveness of the proposed control technique on an extruded film.

  3. Influence of macromolecular architecture on necking in polymer extrusion film casting process

    Energy Technology Data Exchange (ETDEWEB)

    Pol, Harshawardhan; Banik, Sourya; Azad, Lal Busher; Doshi, Pankaj; Lele, Ashish [CSIR-National Chemical Laboratory, Pune, Maharashtra (India); Thete, Sumeet [Purdue University, West Lafayette, Indiana (United States)

    2015-05-22

    Extrusion film casting (EFC) is an important polymer processing technique that is used to produce several thousand tons of polymer films/coatings on an industrial scale. In this research, we are interested in understanding quantitatively how macromolecular chain architecture (for example long chain branching (LCB) or molecular weight distribution (MWD or PDI)) influences the necking and thickness distribution of extrusion cast films. We have used different polymer resins of linear and branched molecular architecture to produce extrusion cast films under controlled experimental conditions. The necking profiles of the films were imaged and the velocity profiles during EFC were monitored using particle tracking velocimetry (PTV) technique. Additionally, the temperature profiles were captured using an IR thermography and thickness profiles were calculated. The experimental results are compared with predictions of one-dimensional flow model of Silagy et al{sup 1} wherein the polymer resin rheology is modeled using molecular constitutive equations such as the Rolie-Poly (RP) and extended Pom Pom (XPP). We demonstrate that the 1-D flow model containing the molecular constitutive equations provides new insights into the role of macromolecular chain architecture on film necking.{sup 1}D. Silagy, Y. Demay, and J-F. Agassant, Polym. Eng. Sci., 36, 2614 (1996)

  4. Structure and properties of polypropylene cast films: Polymer type and processing effects

    Science.gov (United States)

    Mileva, Daniela; Gahleitner, Markus; Gloger, Dietrich

    2016-05-01

    The influence of processing parameters in a cast film extrusion process of thin films of isotactic polypropylene homopolymer and random propylene-ethylene copolymer was analyzed. Variation of the chill roll temperature allowed changing the supercooling of the melt and thus the generation of different crystal polymorphs of iPP. Additional focus was placed on the effect of flow induced crystallization via changing the output rate of the line. The crystal structure and morphology of the materials were evaluated and correlated to selected optical and mechanical properties.

  5. Fabrication of TiO2/PU Superhydrophobic Film by Nanoparticle Assisted Cast Micromolding Process.

    Science.gov (United States)

    Li, Jie; Zheng, Jianyong; Zhang, Jing; Feng, Jie

    2016-06-01

    Lotus-like surfaces have attracted great attentions in recent years for their wide applications in water repellency, anti-fog and self-cleaning. This paper introduced a novel process, nanoparticle assisted cast micromolding, to create polymer film with superhydrophobic surface. Briefly, waterborne polyurethane (WPU) sol and nano TiO2/WPU sol were each cast onto the featured surfaces of the poly(dimethylsiloxane) (PDMS) stamps replicated from fresh lotus leaves. After being dried and peeled off from the stamps, PU and TiO2/WPU replica films were created respectively. To the former, only high hydrophobic property was observed with static water contact angle (WCA) at 142.5 degrees. While to the later, superhydrophobic property was obtained with WCA more than 150 degrees and slide angle less than 3 degrees. Scanning electron microscopy (SEM) imaging showed that the PU replica film only had the micro-papillas and the TiO2/PU replica film not only had micro papillas but also had a large number of nano structures distributed on and between the micro-papillas. Such nano and micro hierarchical structures were very similar with those on the natural lotus leaf surface, thus was the main reason for causing superhydrophobic property. Although an elastic PDMS stamp from lotus leaf was used in herein process, hard molds may also be used in theory. This study supplied an alternative technique for large scale production of polymeric films with superhydrophobic.

  6. CA Investment Casting Process of Complex Castings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    CA (Computer aided) investment casting technique used in superalloy castings of aerospace engine parts was presented. CA investment casting integrated computer application, RP (Rapid Prototyping) process, solidification simulation and investment casting process. It broke the bottle neck of making metal die. Solid model of complex parts were produced by UGII or other software, then translated into STL(Stereolithography) file, after RP process of SLS(Selective Laser Sintering), wax pattern used in investment ...

  7. Improving Metal Casting Process

    Science.gov (United States)

    1998-01-01

    Don Sirois, an Auburn University research associate, and Bruce Strom, a mechanical engineering Co-Op Student, are evaluating the dimensional characteristics of an aluminum automobile engine casting. More accurate metal casting processes may reduce the weight of some cast metal products used in automobiles, such as engines. Research in low gravity has taken an important first step toward making metal products used in homes, automobiles, and aircraft less expensive, safer, and more durable. Auburn University and industry are partnering with NASA to develop one of the first accurate computer model predictions of molten metals and molding materials used in a manufacturing process called casting. Ford Motor Company's casting plant in Cleveland, Ohio is using NASA-sponsored computer modeling information to improve the casting process of automobile and light-truck engine blocks.

  8. Interplay of processing, morphological order, and charge-carrier mobility in polythiophene thin films deposited by different methods: comparison of spin-cast, drop-cast, and inkjet-printed films.

    Science.gov (United States)

    Wong, Loke-Yuen; Png, Rui-Qi; Silva, F B Shanjeera; Chua, Lay-Lay; Repaka, D V Maheswar; Shi-Chen; Gao, Xing-Yu; Ke, Lin; Chua, Soo-Jin; Wee, Andrew T S; Ho, Peter K H

    2010-10-05

    The dependence of morphology and polymer-chain orientation of regioregular poly(3-hexylthiophene) (rrP3HT) thin films on processing conditions have been widely studied. However, their possible variation across the film thickness direction remains largely unknown. We report here a marked difference in the optical dielectric (n,k) spectra between the top and bottom interfaces of spin-cast (sc) rrP3HT films deposited from chlorobenzene solutions. These spectra were obtained from reflection variable-angle spectroscopic ellipsometry using a self-consistent graded optical model with self-imposed Kramers-Krönig consistency. The top interface shows a red-shifted absorption that is characteristic of better order than at the bottom, across a wide range of film thicknesses. This disparity diminishes in drop-cast (dc) and multipass inkjet-printed (ijp) films, and disappears in amorphous films such as those of polystyrene and of a green-emitting phenyl-substituted poly(p-phenylenevinylene). The (n,k) spectra also reveal that crystallinity increases across sc dc > ijp films. Finally, near-edge X-ray absorption fine structure spectroscopy also shows the frontier chains in ijp and dc films are more isotropically oriented than those in sc films. These results suggest that semicrystalline conjugated polymer films can be produced far from equilibrium. This explains the marked variation in their (opto)electronic properties between the top and bottom surfaces that has sometimes been found depending on the film deposition method. In particular, an unusually pronounced crystallization is induced by ijp. We label this marked ijp-induced crystallization the "ijp morphology", which appears to be general, as it is found also in single-inkjet-droplet films. It appears also to be responsible for the lower field-effect mobility measured for ijp films deposited on a variety of linear and circular electrode arrays. This however can fortuitously be reversed by annealing in solvent vapor. As all

  9. Integrated real time studies to track all physical and chemical changes in polyimide film processing from casting to imidization

    Science.gov (United States)

    Unsal, Emre

    Physical and chemical changes during the complex multi-step thermal imidization reaction were investigated including all processing steps (solution casting, drying and imidization), using newly developed highly instrumented measurement systems. These instruments allowed us to observe the dynamic relationship between the bound solvent evaporation that causes relaxation and chain orientation during the imidization. Drying and imidization of PMDA-ODA solutions in NMP were investigated by a novel custom designed measurement system that tracks real time weight, thickness, surface temperature, in-plane and out-of-plane birefringence. At low temperature drying stage (T bound solvent as solvent molecules decomplexed from the polymer chains and plasticized the film. During the latter stage, out-of-plane birefringence rose rapidly as the polymer chains increasingly became oriented with their chain axes were preferentially oriented in the film plane. Throughout the whole process the in-plane birefringence remained zero. For the first time, these real time measurements allowed us to quantitatively show the dynamics between chain relaxation due to evaporation of the decomplexed solvent molecules, and orientation development due to decreased chain mobility caused by imidization reaction and increasing Tg for the PMDA-ODA/NMP solutions. In addition, the dynamics of this interplay was investigated by varying the processing conditions: initial casting thickness and drying temperature. Chemical conversion, bound solvent and chain orientation that take place during thermal imidization of uniaxially constraint PMDA-ODA polyamic acid precursor film was investigated up to 200°C using real time measurement system that combines true stress, true strain, in-plane birefringence and temperature with polarized ultra-rapid scan polarized FT-IR spectrometry (URS-FT-IR). Upon heating, initially isotropic solution cast film developed stress and birefringence from the beginning while the solvent

  10. Corrosion resistance of various bio-films deposited on austenitic cast steel casted by lost-wax process and in gypsum mould

    Directory of Open Access Journals (Sweden)

    J. Gawroński

    2010-01-01

    Full Text Available This work is the next of a series concerning the improvement of austenitic cast steel utility predicted for use in implantology for complicated long term implants casted by lost-wax process and in gypsum mould. Austenitic cast steel possess chemical composition of AISI 316L medical steel used for implants. In further part of present work investigated cast steel indicated as AISI 316L medical steel. Below a results of electrochemical corrosion resistance of carbon layer and bi-layer of carbon/HAp deposited on AISI 316L researches are presented. Coatings were manufactured by RF PACVD and PLD methods respectively. Obtained results, unequivocally indicates on the improvement of this type of corrosion resistance by substrate material with as deposited carbon layer. While bi-layer of carbon/HAp are characterized by very low corrosion resistance.

  11. Birefringence control of solution-cast film of cellulose triacetate

    Science.gov (United States)

    Kiyama, Ayumi; Nobukawa, Shogo; Yamaguchi, Masayuki

    2017-10-01

    We controlled the optical anisotropy of a solution-cast film composed of cellulose triacetate (CTA) by adding ferrocene. Owing to the molecular orientation in the film plane of solution-cast films, which results from the normal stress applied during the solvent evaporation process, the average refractive index is usually higher in the plane of the film than in the thickness direction. We found that the addition of ferrocene, which is miscible with CTA, reduced the optical anisotropy by nematic interaction; i.e., ferrocene molecules are forcibly embedded into the film plane accompanying the CTA chains. Because the direction of anisotropic polarizability of ferrocene is perpendicular to the long axis of the molecule, the refractive index in the thickness direction is reduced. Furthermore, the stress-optical coefficient in the glassy state is reduced by the addition of ferrocene.

  12. Fabrication of Meso-Porous Gamma-Alumina Films by Sol-Gel and Gel Casting Processes for Making Moisture Sensors

    Directory of Open Access Journals (Sweden)

    Kalyan Kumar Mistry

    2007-04-01

    Full Text Available Meso-porous g-Al2O3 film may be used as a highly sensitive trace moisture sensor. The crack-free alumina film was developed using a combination of sol-gel and tape casting processes, which produce high porosity, high surface area and small pore dimensions in the range of few nano-meter at uniform distribution. Sol-gel processes are well known in nano-technology and nano-material preparation, but it is difficult to make crack-free thick or thin films using this method. Tape cast methods are used for the fabrication of flexible crack-free thick ceramic sheets. Our objective was to develop nano-structured, crack-free, transparent Al2O3 film a few microns thick, has a highly porous and stable crystallographic nature. A metallic paste was printed by screen printing on both side of the film surface for electrodes to form a sensitive element. A silver wire (dia j=0.1mm lead was connected to a grid structure electrode using a silver paste spot for fine joining. Alumina is absorbs moisture molecules into its meso-porous layer and changes its electrical characteristics according to the moisture content, its dielectric constant increase as moisture increase. Moisture molecules can be conceived of as dipoles in random state before the application of an electric field. When the dipole orientation was changed from random to an equilibrium state under the application of external field, a large change in dielectric constant was observed. The number of water molecules absorbed determines the electrical impedance of the capacitor, which in turn is proportional to water vapor pressure.

  13. Effect of heating cast kafirin films on their functional properties

    CSIR Research Space (South Africa)

    Byaruhanga, YB

    2007-01-01

    Full Text Available Edible films can be produced from kafirin but the diverse food product requirements necessitate modification of the films. To modify their functional properties, kafirin films were cast, with and without plasticizer, from glacial acetic acid (GAA...

  14. Development of vacuum die-casting process

    Institute of Scientific and Technical Information of China (English)

    Masashi Uchida

    2009-01-01

    The vacuum die-casting process, started 25 years ago in Japan, has been widely applied. This technology contributes very much to improvement of castings quality. The main factor causing the defects of die castings is the trapped air in the mold cavity, while the key technology of vacuum die-casting process is to avoid the trapped air effectively by evacuating the cavity before casting. At the same time, due to the shot speed and the casting pressure reduced in half, the service life of the die is prolonged and the productivity is enhanced, as well. Vacuum die-casting process is of great significance in improving the die castings quality and making up the shortcomings of super-high-speed shot casting.

  15. Tape casting and partial melting of Bi-2212 thick films

    Energy Technology Data Exchange (ETDEWEB)

    Buhl, D.; Lang, T.; Heeb, B. [Nichtmetallische Werkstoffe, Zuerich (Switzerland)] [and others

    1994-12-31

    To produce Bi-2212 thick films with high critical current densities tape casting and partial melting is a promising fabrication method. Bi-2212 powder and organic additives were mixed into a slurry and tape casted onto glass by the doctor blade tape casting process. The films were cut from the green tape and partially molten on Ag foils during heat treatment. We obtained almost single-phase and well-textured films over the whole thickness of 20 {mu}m. The orientation of the (a,b)-plane of the grains were parallel to the substrate with a misalignment of less than 6{degrees}. At 77K/OT a critical current density of 15`000 A/cm{sup 2} was reached in films of the dimension 1cm x 2cm x 20{mu}m (1{mu}V/cm criterion, resistively measured). At 4K/OT the highest value was 350`000 A/cm{sup 2} (1nV/cm criterion, magnetically measured).

  16. Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering.

    Science.gov (United States)

    Lee, Min Chae; Kim, Dong-Kyu; Lee, Ok Joo; Kim, Jung-Ho; Ju, Hyung Woo; Lee, Jung Min; Moon, Bo Mi; Park, Hyun Jung; Kim, Dong Wook; Kim, Su Hyeon; Park, Chan Hum

    2016-04-01

    Films prepared from silk fibroin have shown potential as biomaterials in tissue engineering applications for the eye. Here, we present a novel process for fabrication of silk fibroin films for corneal application. In this work, fabrication of silk fibroin films was simply achieved by centrifugal force. In contrast to the conventional dry casting method, we carried out the new process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force was imposed on an aluminum tube containing silk fibroin solution. In the present study, we also compared the surface roughness, mechanical properties, transparency, and cell proliferation between centrifugal and dry casting method. In terms of surface morphology, films fabricated by the centrifugal casting have less surface roughness than those by the dry casting. For elasticity and transparency, silk fibroin films obtained from the centrifugal casting had favorable results compared with those prepared by dry casting. Furthermore, primary human corneal keratocytes grew better in films prepared by the centrifugal casting. Therefore, our results suggest that this new fabrication process for silk fibroin films offers important potential benefits for corneal tissue regeneration.

  17. Developing technological process of obtaining giality casts

    Directory of Open Access Journals (Sweden)

    A. Issagulov

    2014-10-01

    Full Text Available The article considers the process of manufacturing castings using sand-resin forms and alloying furnace. Were the optimal technological parameters of manufacturing shell molds for the manufacture of castings of heating equipment. Using the same upon receipt of castings by casting in shell molds furnace alloying and deoxidation of the metal will provide consumers with quality products and have a positive impact on the economy in general engineering.

  18. Process development of thin strip steel casting

    Energy Technology Data Exchange (ETDEWEB)

    Sussman, R.C.; Williams, R.S.

    1990-12-01

    An important new frontier is being opened in steel processing with the emergence of thin strip casting. Casting steel directly to thin strip has enormous benefits in energy savings by potentially eliminating the need for hot reduction in a hot strip mill. This has been the driving force for numerous current research efforts into the direct strip casting of steel. The US Department of Energy initiated a program to evaluate the development of thin strip casting in the steel industry. In earlier phases of this program, planar flow casting on an experimental caster was studied by a team of engineers from Westinghouse Electric corporation and Armco Inc. A subsequent research program was designed as a fundamental and developmental study of both planar and melt overflow casting processes. This study was arranged as several separate and distinct tasks which were often completed by different teams of researchers. An early task was to design and build a water model to study fluid flow through different designs of planar flow casting nozzles. Another important task was mathematically modeling of melt overflow casting process. A mathematical solidification model for the formation of the strip in the melt overflow process was written. A study of the material and conditioning of casting substrates was made on the small wheel caster using the melt overflow casting process. This report discusses work on the development of thin steel casting.

  19. Continuous squeeze casting process by mass production

    Institute of Scientific and Technical Information of China (English)

    Yun Xia; Rich Jacques

    2006-01-01

    Squeeze casting has become the most competitive casting process in the automotive industry because of its many advantages over high pressure die casting (HPDC). Many squeeze casting R & D and small amount volume making have been implemented around the world, but the mass production control still exists problem. SPX Contech squeeze casting process P2000 successfully achieved the goal of mass production; it includes lower metal turbulence, less gas entrapment, minimum volumetric shrinkage, and thus less porosity. Like other casting processes, however, the quality of squeeze castings is still sensitive to process control and gate and runner design. Casting defects can form in both die-filling and metal solidification phases. The occurrence of casting defects is directly attributed to improper adjustment or lack of control of process parameters including metal filling velocity, temperature, dwell time, cooling pattern, casting design, and etc. This paper presents examples using P2000 techniques to improve part quality in the following areas: runner & gate design, casting & runner layout in the die, squeeze pin application, high thermal conductivityinserts, cooling/heating systems, spray & lubricant techniques,and part stress calculation from shrinkage or displacement prediction after stress relief.

  20. Process development of thin strip steel casting

    Energy Technology Data Exchange (ETDEWEB)

    Sussman, R.C.; Williams, R.S.

    1990-12-01

    An important new frontier is being opened in steel processing with the emergence of thin strip casting. Casting steel directly to thin strip has enormous benefits in energy savings by potentially eliminating the need for hot reduction in a hot strip mill. This has been the driving force for numerous current research efforts into the direct strip casting of steel. The US Department of Energy initiated a program to evaluate the development of thin strip casting in the steel industry. In earlier phases of this program, planar flow casting on an experimental caster was studied by a team of engineers from Westinghouse Electric corporation and Armco Inc. A subsequent research program was designed as a fundamental and developmental study of both planar and melt overflow casting processes. This study was arranged as several separate and distinct tasks which were often completed by different teams of researchers. An early task was to design and build a water model to study fluid flow through different designs of planar flow casting nozzles. Another important task was mathematically modeling of melt overflow casting process. A mathematical solidification model for the formation of the strip in the melt overflow process was written. A study of the material and conditioning of casting substrates was made on the small wheel caster using the melt overflow casting process. This report discusses work on the development of thin steel casting.

  1. Geometric aspects of the casting process

    NARCIS (Netherlands)

    Ahn, H.-K.

    2002-01-01

    Manufacturing is the process of converting raw materials into useful products. Among the most important manufacturing processes, casting is a commonly used manufacturing process for plastic and metal objects. The industrial casting process consists of two stages. First, liquid is filled into a cavit

  2. Friction Stir Processing of Cast Superalloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for producing...

  3. Influence of processing and storage conditions on the mechanical and barrier properties of films cast from aqueous wheat gluten dispersions

    NARCIS (Netherlands)

    Lens, J.P.; Graaf, de L.A.; Stevels, W.M.; Dietz, C.H.J.T.; Verhelst, K.C.S.; Vereijken, J.M.; Kolster, P.

    2003-01-01

    A method was developed to prepare films based on industrial wheat gluten, from aqueous dispersion at neutral pH. An essential step in this procedure is to prepare aqueous dispersions in such a way that coagulation of the vital wheat gluten is prevented. In contrast to current procedures, adjustment

  4. Vacuum-sealed casting process under pressure

    Institute of Scientific and Technical Information of China (English)

    LI Chen-xi; GUO Tai-ming; WU Chun-jing; WANG Hong

    2006-01-01

    A new casting method, the vacuum-sealed mold casting under pressure, has been developed, and thin wall iron castings with high precision and smooth surface have been produced successfully with this casting method. The experimental results show that the liquid iron has a very excellent filling ability because a high negative pressure is formed in the mold cavity during filling process. The vacuum-sealed mold under pressure has very high compressive strength greater than 650 kPa, which is 3-4 times as high as that of the molds produced by high-pressure molding process or vacuum-sealed molding process.

  5. PHYSICAL SIMULATION OF CONTINUOUS ROLL CASTING PROCESS

    Institute of Scientific and Technical Information of China (English)

    L.H. Zhan; J. Zhong; X.Q. Li; M.H. Huang

    2005-01-01

    A series of simulating experimental studies on the rheological behavior and its influential factors of aluminum alloy in continuous roll-casting process have been explored in this paper with a Gleeble-1500 Thermal-Mechanical Simulation Tester and a set of special clamp system. Relevant rheological rules in the process of coupling transient solidification and continuous deformation of roll-casting conditions are obtained. Experimental results indicate that four different characteristic stages exist in the whole rheological process, and relative constitutive models suitable for the given conditions of continuous roll casting process have been established through multivariable linear regression analysis of the experimental data.

  6. Characterization of Acetone-Solution Casting Film of PMMA

    Institute of Scientific and Technical Information of China (English)

    Xue Feng; Fu Weiwen; Cheng Rongshi

    2006-01-01

    Acetone solution-casting films of poly(methylmethacrylate)were analyzed by differential scanning calorimetry and pyrolysis gas chromatography-mass spectroscopy under natural evaporation and ultrasonic vibration,respectively.Analytical results indicate that both the condensed structure of the polymer and the residue solvent in the films vary in different film-forming conditions and that the residuesolvated acetone in films prepared under natural evaporation is 12 times greater than that under ultrasonic vibration.

  7. Casting Process Developments for Improving Quality

    Science.gov (United States)

    El-Mahallawy, Nahed A.; Taha, Mohamed A.

    1985-09-01

    This paper presents a short synopsis of the important developments in casting/solidification processes, as well as the important advances in the conventional methods. These developments are discussed related to quality aspects. The position of each process with respect to practice, as well as expected gains in cost, are examined. The paper briefly features the author's work on innovative processes (directional solidification, rheocasting, squeeze-casting and rapid solidification) as well as work of other investigators on developments in conventional methods.

  8. The effect of tape casting operational parameters on the quality of adjacently graded ceramic film

    DEFF Research Database (Denmark)

    Bulatova, Regina; Gudik-Sørensen, Mads; Della Negra, Michela;

    2016-01-01

    For small length tape casting of ceramic slurries varying green film thickness is often a problem. To optimise this, the following parameters were investigated: single blade, double blade, using a pump system and a modelled speed change mode have been analysed. Advantages and limitations of every...... method are described here. The tape casting experiments were built to be generic in order to allow the control of various processing conditions. From these results, the single-blade technique was chosen for a study of side-by-side tape casting. The influence of the geometric parameters of partitioning...... the casting tank into chambers, on the quality of graded tape was studied. Tape casting experiments at different speeds and partition tongue lengths in combination with rheological tests revealed that high casting speeds and absence of the partition under the blade are detrimental to the formation...

  9. Friction Stir Processing of Cast Superalloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for producing...

  10. Rapid air film continuous casting of aluminum alloy using static magnetic field

    Institute of Scientific and Technical Information of China (English)

    Fu QU; Huixue JIANG; Gaosong WANG; Qingfeng ZHU; Xiangjie WANG; Jianzhong CUI

    2009-01-01

    The influences of the cooling style and static magnetic field on the air film casting process were investigated. Ingots of 6063 aluminum alloy were produced by AIRSOL VEIL casting with double-layer cooling water and static magnetic field. Surface segregation, hot crack and variation of solute content along the radius direction of ingot were examined. The results showed that double-layer cooling water can improve the surface quality and avoid of hot crack, which created conditions to increase the casting speed. The electromagnetic casting process can effectively improve the surface quality in high speed casting process, and static magnetic field has a great influence on solute distribution along the radius direction of ingot.

  11. Optimization of the investment casting process

    Directory of Open Access Journals (Sweden)

    M. Martinez-Hernandez

    2012-04-01

    Full Text Available Rapid prototyping is an important technique for manufacturing. This work refers to the manufacture of hollow patterns made of polymeric materials by rapid prototyping technologies for its use in the preparation of ceramic molds in the investment casting process. This work is focused on the development of a process for manufacturing patterns different from those that currently exist due to its hollow interior design, allowing its direct use in the fabrication of ceramic molds; avoiding cracking and fracture during the investment casting process, which is an important process for the foundry industry.

  12. High-Mobility Aligned Pentacene Films Grown by Zone-Casting

    DEFF Research Database (Denmark)

    Duffy, Claudia M.; Andreasen, Jens Wenzel; Breiby, Dag W.;

    2008-01-01

    We investigate the growth and field-effect transistor performance of aligned pentacene thin films deposited by zone-casting from a solution of unsubstituted pentacene molecules in a chlorinated solvent. Polarized optical microscopy shows that solution processed pentacene films grow as large......-of-plane 00n reflections up to at least the seventh order, and a pronounced in-plane anisotropy with the a-axis of the triclinic unit cell predominantly aligned parallel to the zone-casting direction and the ab-plane parallel to the substrate. The average charge carrier mobility of the zone-cast pentacene...... devices depends strongly on the underlying dielectric. Divinylsiloxane-bis-benzocyclobutene (BCB) resin is found to be a suitable gate dielectric allowing reproducible film deposition and high field-effect mobilities up to 0.4−0.7 cm2/(V s) and on/off ratios of 106−107. A small mobility anisotropy...

  13. Fundamentals of Numerical Modelling of Casting Processes

    DEFF Research Database (Denmark)

    Pryds, Nini; Thorborg, Jesper; Lipinski, Marek;

    Fundamentals of Numerical Modelling of Casting Processes comprises a thorough presentation of the basic phenomena that need to be addressed in numerical simulation of casting processes. The main philosophy of the book is to present the topics in view of their physical meaning, whenever possible......, rather than relying strictly on mathematical formalism. The book, aimed both at the researcher and the practicing engineer, as well as the student, is naturally divided into four parts. Part I (Chapters 1-3) introduces the fundamentals of modelling in a 1-dimensional framework. Part II (Chapter 4...

  14. Electroconductive PET/SWNT Films by Solution Casting

    Science.gov (United States)

    Steinert, Brian W.; Dean, Derrick R.

    2008-01-01

    The market for electrically conductive polymers is rapidly growing, and an emerging pathway for attaining these materials is via polymer-carbon nanotube (CNT) nanocomposites, because of the superior properties of CNTs. Due to their excellent electrical properties and anisotropic magnetic susceptibility, we expect CNTs could be easily aligned to maximize their effectiveness in imparting electrical conductivity to the polymer matrix. Single-walled carbon nanotubes (SWNT) were dispersed in a polyethylene terephthalate (PET) matrix by solution blending then cast onto a glass substrate to create thin, flexible films. Various SWNT loading concentrations were implemented (0.5, 1.0, and 3.0 wt.%) to study the effect of additive density. The processing method was repeated to produce films in the presence of magnetic fields (3 and 9.4 Tesla). The SWNTs showed a high susceptibility to the magnetic field and were effectively aligned in the PET matrix. The alignment was characterized with Raman spectroscopy. Impedance spectroscopy was utilized to study the electrical behavior of the films. Concentration and dispersion seemed to play very important roles in improving electrical conductivity, while alignment played a secondary and less significant role. The most interesting result proved to be the effect of a magnetic field during processing. It appears that a magnetic field may improve dispersion of unmodified SWNTs, which seems to be more important than alignment. It was concluded that SWNTs offer a good option as conductive, nucleating filler for electroconductive polymer applications, and the utilization of a magnetic field may prove to be a novel method for CNT dispersion that could lead to improved nanocomposite materials.

  15. Die casting process otimization using Taguchi method

    Directory of Open Access Journals (Sweden)

    Denilson Jose Viana

    2013-11-01

    Full Text Available The aluminum die casting process has developed significantly in recent decades, occupying a prominent place for producing innovative engineering components. Among quality problems of this process is porosity due to several factors, including the process parameters that are difficult to determine, and are commonly selected by trial and error approach. This paper sought to answer the question: How to determine the best set of parameters of the aluminum die casting process to minimize porosity in the parts produced? Aiming to improve die casting aluminum parts quality through reducing of porosity. The main contribution of this paper focuses on the application of Taguchi method using ordinal categorical data (porosity classes as a quality characteristic, by analyzing the weighted signal-to-noise ratio. The experimental results were analyzed from the average effect of factors and analysis of variance (ANOVA.  In conclusion parameters metal temperature and speed of the first and second injection phase were the most significant in reducing the porosity of the part studied. Also, the Taguchi method achieved the expected result, bringing significant reduction of porosity in the part studied by optimizing the process parameters.

  16. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  17. Aqueous Tape Casting Process with Styrene-acrylic Latex Binder

    Institute of Scientific and Technical Information of China (English)

    CUI Xue-min; OUYANG Shi-xi; HUANG Yong; YU Zhi-yong; ZHAO Shi-ke; WANG Chang-an

    2004-01-01

    A commercial styrene-acrylic latex binder has been investigated as a good binder for aqueous Al2O3 suspensions tape-casting process. This paper focuses on the forming film mechanism of latex binder, the rheological behaviors of the suspensions, physical properties of green tapes and drying process of aqueous slurries with latex binder system. The drying process of the alumina suspensions is shown to follow a two-stage mechanism (the first stage: evaporation controlled process; and the second stage: diffusion controlled process). During the drying stage of the suspensions, the compressive force presses the latex particles and makes them be distorted, which results in cross-linking structure in contacted latex particles of the solidified tapes.A smooth-surface and high-strength green tape was fabricated by aqueous tape casting with latex binder system. The results from the SEM images of the crossing section microstructure of green tapes show that the latex is a very suitable binder for aqueous tape casting.

  18. The temperature gradient on section of casting in process of primary crystallization of chromium cast iron

    OpenAIRE

    2008-01-01

    The methodology of defining in article was introduced the temperature gradient in process of primary crystallization during cooling the casting from chromium cast iron on basis of measurements of thermal field in test DTA-K3. Insert also the preliminary results of investigations of influence temperature gradient on structure of studied wear resistance chromium cast iron.

  19. The temperature gradient on section of casting in process of primary crystallization of chromium cast iron

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2008-08-01

    Full Text Available The methodology of defining in article was introduced the temperature gradient in process of primary crystallization during cooling the casting from chromium cast iron on basis of measurements of thermal field in test DTA-K3. Insert also the preliminary results of investigations of influence temperature gradient on structure of studied wear resistance chromium cast iron.

  20. Numerical simulation of semisolid continuous casting process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A general mathematical model and boundary condition applicable to momentum and heat transfer in the semisolid continuous casting(SCC) process was established. Using the model, the numerical simulation of the momentum and heat transfer of molten metal was carried out in the SCC system. The obtained results fit well with the measured ones. Moreover, using the numerical simulating software, the effect of various factors on breakout and breakage was explored. The obtained results show that heat flow density of copper mold and the withdrawal beginning time are two major influencing factors. The larger the heat flow density of copper mold, or the shorter the withdrawal beginning time, the more stable the semisolid continuous casting process.

  1. Large-area graphene films by simple solution casting of edge-selectively functionalized graphite.

    Science.gov (United States)

    Bae, Seo-Yoon; Jeon, In-Yup; Yang, Jieun; Park, Noejung; Shin, Hyeon Suk; Park, Sungjin; Ruoff, Rodney S; Dai, Liming; Baek, Jong-Beom

    2011-06-28

    We report edge-selective functionalization of graphite (EFG) for the production of large-area uniform graphene films by simply solution-casting EFG dispersions in dichloromethane on silicon oxide substrates, followed by annealing. The resultant graphene films show ambipolar transport properties with sheet resistances of 0.52-3.11 kΩ/sq at 63-90% optical transmittance. EFG allows solution processing methods for the scalable production of electrically conductive, optically transparent, and mechanically robust flexible graphene films for use in practice.

  2. Non-rigid Reconstruction of Casting Process with Temperature Feature

    Science.gov (United States)

    Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Ying; Wang, Lu

    2017-09-01

    Off-line reconstruction of rigid scene has made a great progress in the past decade. However, the on-line reconstruction of non-rigid scene is still a very challenging task. The casting process is a non-rigid reconstruction problem, it is a high-dynamic molding process lacking of geometric features. In order to reconstruct the casting process robustly, an on-line fusion strategy is proposed for dynamic reconstruction of casting process. Firstly, the geometric and flowing feature of casting are parameterized in manner of TSDF (truncated signed distance field) which is a volumetric block, parameterized casting guarantees real-time tracking and optimal deformation of casting process. Secondly, data structure of the volume grid is extended to have temperature value, the temperature interpolation function is build to generate the temperature of each voxel. This data structure allows for dynamic tracking of temperature of casting during deformation stages. Then, the sparse RGB features is extracted from casting scene to search correspondence between geometric representation and depth constraint. The extracted color data guarantees robust tracking of flowing motion of casting. Finally, the optimal deformation of the target space is transformed into a nonlinear regular variational optimization problem. This optimization step achieves smooth and optimal deformation of casting process. The experimental results show that the proposed method can reconstruct the casting process robustly and reduce drift in the process of non-rigid reconstruction of casting.

  3. Advances on Microstructure Modeling of Solidification Process of Shape Casting

    Institute of Scientific and Technical Information of China (English)

    柳百成; 许庆彦

    2004-01-01

    Simulation technology for shape casting at macro-scale has been successfully put into engineering application in a number of casting plants and as a result the quality of castings is assured, the research and development time is shortened, and the manufacturing cost is greatly saved as well. In this paper, modeling and simulation technologies of solidification process of shape casting at microstructure-scale, especially deterministic, cellular automaton, and phase field models are studied and reviewed.

  4. Investigation on the Interface Characteristics of Al/Mg Bimetallic Castings Processed by Lost Foam Casting

    Science.gov (United States)

    Jiang, Wenming; Li, Guangyu; Fan, Zitian; Wang, Long; Liu, Fuchu

    2016-05-01

    The lost foam casting (LFC) process was used to prepare the A356 aluminum and AZ91D magnesium bimetallic castings, and the interface characteristics of the reaction layer between aluminum and magnesium obtained by the LFC process were investigated in the present work. The results indicate that a uniform and compact interface between the aluminum and magnesium was formed. The reaction layer of the interface with an average thickness of approximately 1000 μm was mainly composed of Al3Mg2 and Al12Mg17 intermetallic compounds, including the Al3Mg2 layer adjacent to the aluminum insert, the Al12Mg17 middle layer, and the Al12Mg17 + δ eutectic layer adjacent to the magnesium base. Meanwhile, the Mg2Si intermetallic compound was also detected in the reaction layer. An oxide film mainly containing C, O, and Mg elements generated at the interface between the aluminum and magnesium, due to the decomposed residue of the foam pattern, the oxidations of magnesium and aluminum alloys as well as the reaction between the magnesium melt and the aluminum insert. The microhardness tests show that the microhardnesses at the interface were obviously higher than those of the magnesium and aluminum base metals, and the Al3Mg2 layer at the interface had a high microhardness compared with the Al12Mg17 and Al12Mg17 + δ eutectic layers, especially the eutectic layer.

  5. Numerical Simulation System for Casting Process in Concurrent Engineering

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    According to the implementing principle and application background of the Concurrent Engineering (CE) project, studies on the integration of numerical simulation system for casting process with CE, simulation of turbulent phenomena in filling process of casting by Algebraic Stress Model (ASM), computation efficiency of filling process and quantitative prediction of shrinkage cavity and porosity under feeding condition of several risers are discussed. After the simulation of casting process of typical magnesium-based alloy casting with complicated structure, remarkable success in assuring the quality is also presented.

  6. Hot melt extrusion: An industrially feasible approach for casting orodispersible film

    Directory of Open Access Journals (Sweden)

    Rushiraj Jani

    2015-07-01

    Full Text Available Over the recent few decades, many groups of formulation scientists are concentrating on rapid release dosage forms in oral cavity. Among all fast release dosage forms, orodispersible films are successful to attract pharmaceutical industry due to ease of formulation and extension patent life. Films are popular in patients too because of quick onset and user friendliness of dosage form. From the beginning, solvent casting has been selected as method of choice for manufacturing of orodispersible films. Solvent casting has been proved as a benchmark technology because of ease in product development, process optimization, process validation and technology transfer to production scale despite of some drawbacks like more number of unit operations involved and consumption of large quantity of solvents with controlled limits of organic volatile impurities in final formulation. The application of hot-melt extrusion (HME in the pharmaceutical industry is consecutively increasing due to its proven innumerable advantages like solvent free continuous process with fewer unit operations and better content uniformity. Very few development activities has been initiated in the field of hot melt extruded orodispersible films so far. This extensive review covers detailed discussion of heavy duty industrial extruders, selection of downstream equipments, selection of excipients, common problems found in formulations and their remedies. Successive part of review addresses identification of critical quality attributes, quality target profile of product, criticality in selection of process parameters and material for substantial simulation in laboratory scale and production for successful technology transfer.

  7. Scale-up of water-based spider silk film casting using a film applicator.

    Science.gov (United States)

    Agostini, Elisa; Winter, Gerhard; Engert, Julia

    2017-08-24

    Spider silk proteins for applications in drug delivery have attracted an increased interest during the past years. Some possible future medical applications for this biocompatible and biodegradable material are scaffolds for tissue engineering, implantable drug delivery systems and coatings for implants. Recently, we reported on the preparation of water-based spider silk films for drug delivery applications. In the current study, we describe the development of a manufacturing technique for casting larger spider silk films from aqueous solution employing a film applicator. Films were characterized in terms of morphology, water solubility, protein secondary structure, thermal stability, and mechanical properties. Different post-treatments were evaluated (phosphate ions, ethanol, steam sterilization and water vapor) to increase the content of β-sheets thereby achieving water insolubility of the films. Finally, the mechanical properties of the spider silk films were improved by incorporating 2-pyrrolidone as plasticizer. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Stability condition of semisolid continuous casting process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The major unsteady phenomena in semisolid continuous casting process are the breakage and breakout. The essential reasons for them are the passageway blocking or the solidified shell too thin to endure the withdrawal force because of the remained shell formed at the beginning and its developing afterwards. Through theoretically analyzing the crack filling and the remained shell developing, stability conditions were presented. The essential one of them is that the stress acted on the semisolid slurry must be larger than the yield stress of it. The condition without breakage is to build a balance between the increase of the remained shell resulted in solidifying and the decrease of it resulted in flowing of the semisolid slurry. The condition without breakout is to ensure the solidified thickness larger than the safe thickness. The corresponding mathematical formulas of these conditions were set up and the verification experiments show that these conditions are reliable in applications.

  9. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  10. SIMULATION OF THE TWIN ROLL STAINLESS STRIP CASTING PROCESS

    Institute of Scientific and Technical Information of China (English)

    Y.C. Miao; X.M. Zhang; G.D. Wang; H.S. Di; X.H. Liu

    2001-01-01

    The position of the solidification completed temperature of twin roll stainless strip casting process is very important to the quality of the casting strip. In order to control this position, the solidification completed temperature should be known at first.The present paper first simulated dendritic microsegregation under conditions of twin roll stainless strip casting, and got the relationship between the temperature and solid fraction of the mush zone. The temperatures such as ZDT (equal to the solidification completed temperature) and LIT (liquid impenetrable temperature), et al., also were obtained. Then by using the turbulent model, the flow and thermal fields of the pool of the twin roll stainless strip casting, and the speed and temperature fields of different casting speeds were given and also explained. The results are coincident with the experimental result. Combined with the results of these two simulations. the appropriated casting speed was found.

  11. An heuristic based practical tool for casting process design

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, N.K.; Smith, K.A.; Voller, V.R.; Haberle, K.F. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Civil Engineering

    1995-12-31

    The work in this paper reports on an heuristic based computer tool directed at casting process design; in particular key design parameters, such as part orientation, location of sprues, feeding rates, etc. The underlying principal used is that a given casting can be represented on identifying and classifying its critical features. The input to the system consists of the attributes of the features and the graphical output provides semi-quantitative information on key design parameters. Results on real castings match those of the expert casting designers and in some cases potential design improvements have been suggested by the system.

  12. Studying the features of hexaferrite film fabrication using a slurry casting for the substrates of subminiature microstrip ferrite decoupling devices in the short-wave range of millimeter wavelengths

    Science.gov (United States)

    Kostishin, V. G.; Andreev, V. G.; Nalogin, A. G.; Alekseev, A. A.; Chitanov, D. N.; Belokon', E. A.

    2017-06-01

    Using polyelectrolytes, ecologically safe film elements from hexaferrites have been designed for the first time with water slurry casting instead of existing processes with the use of organic solvent binders. The use of polyelectrolyte substances as binders has made it possible to reduce the energy consumption of drying by 20-30% during the process of film casting.

  13. The degradation processes in high loaded casts

    Directory of Open Access Journals (Sweden)

    E. Ďuriníková

    2010-01-01

    Full Text Available In this work are described structural changes of jet engine DV – 2 turbine blades and effect of degradation process. Turbine blades work in aggressively environs and because of that there are rate among high loaded cast stock. As an experimental material we have chose nickel superalloy ŽS6K with surface heat - resisting alitize layer. Evaluation is slant on largeness wearing over work of certain number of hour in operation. Effect working environs and overrun working temperatures is show changes measures as well as changes macrostructure of basic material blades. Evaluate is advance quantitative metallography through the medium metallographic software NIS element. Quantitative analysis evaluate thickness measures, quality control outer look and lack mixture in the seat, which is not splash, is precede by lack of near another applied protective layer. Allowance is knot on last examination in the area ratings protective heat-resisting layers and gives records for others possible ratings and experiments in this area.

  14. Study of self-assembled triethoxysilane thin films made by casting neat reagents in ambient atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yongan [Max Planck Institute for Solid State Research, Stuttgart (Germany)], E-mail: yongany@uci.edu; Bittner, Alexander M. [Max Planck Institute for Solid State Research, Stuttgart (Germany)], E-mail: a.bittner@fkf.mpg.de; Baldelli, Steve [University of Houston, Department of Chemistry, Houston TX (United States); Kern, Klaus [Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2008-04-30

    We studied four trialkoxysilane thin films, fabricated via self-assembly by casting neat silane reagents onto hydrophilic SiO{sub x}/Si substrates in the ambient. This drop-casting method is simple, yet rarely studied for the production of silane self-assembled monolayers (SAMs). Various ex-situ techniques were utilized to systematically characterize the growth process: Ellipsometry measurements can monitor the evolution of film thickness with silanization time; water droplet contact angle measurements reveal the wettability; the change of surface morphology was followed by Atomic Force Microscopy; the chemical identity of the films was verified by Infrared-Visible Sum Frequency Generation spectroscopy. We show that the shorter carbon chain (propyl-) or branched (2-(diphenylphosphino)ethyl-) silane SAMs exhibit poor ordering. In contrast, longer carbon chain (octadecyl and decyl) silanes form relatively ordered monolayers. The growth of the latter two cases shows Langmuir-like kinetics and a transition process from lying-down to standing-up geometry with increasing coverage.

  15. Thin film interconnect processes

    Science.gov (United States)

    Malik, Farid

    Interconnects and associated photolithography and etching processes play a dominant role in the feature shrinkage of electronic devices. Most interconnects are fabricated by use of thin film processing techniques. Planarization of dielectrics and novel metal deposition methods are the focus of current investigations. Spin-on glass, polyimides, etch-back, bias-sputtered quartz, and plasma-enhanced conformal films are being used to obtain planarized dielectrics over which metal films can be reliably deposited. Recent trends have been towards chemical vapor depositions of metals and refractory metal silicides. Interconnects of the future will be used in conjunction with planarized dielectric layers. Reliability of devices will depend to a large extent on the quality of the interconnects.

  16. Integration of CAD/CAE System for Casting Process Design

    Institute of Scientific and Technical Information of China (English)

    周舰; 荆涛

    2003-01-01

    Concurrent engineering is needed to modernize the foundry industry and to reduce the scrap from castings and thus increase the economic profit. This paper presents an integrated 3-D CAD/CAE system for a foundry using concurrent engineering which considers casting structure, casting type, and manufacturing properties in the CAD module to design the pouring system, the riser, the chill core and so on. A visualized solid model is developed for the casting component with the model design enhanced by CAE analysis. Heat transfer and fluid flow simulation are used to analyze the initial design. The whole product development process is analyzed using concurrent engineering methods. The application shows that the integrated system can improve the efficiency of the design and manufacturing process of die casting.

  17. Prediction of ALLOY SHRINKAGE FACTORS FOR THE INVESTMENT CASTING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL

    2006-01-01

    This study deals with the experimental measurements and numerical predictions of alloy shrinkage factors (SFs) related to the investment casting process. The dimensions of the A356 aluminum alloy casting were determined from the numerical simulation results of solidification, heat transfer, fluid dynamics, and deformation phenomena. The investment casting process was carried out using wax patterns of unfilled wax and shell molds that were made of fused silica with a zircon prime coat. The dimensions of the die tooling, wax pattern, and casting were measured, in order to determine the actual tooling allowances. Several numerical simulations were carried out, to assess the level of accuracy for the casting shrinkage. The solid fraction threshold, at which the transition from the fluid dynamics to the solid dynamics occurs, was found to be important in predicting shrinkage factors (SFs). It was found that accurate predictions were obtained for all measued dimensions when the shell mold was considered a deformable material.

  18. Simulation research on control algorithm of differential pressure casting process

    Institute of Scientific and Technical Information of China (English)

    Chai Yan; Jie Wanqi; Yang Bo

    2009-01-01

    To improve the precision of the filling pressure curve of differential pressure casting controlled with PID controller,the model of differential pressure casting process is established and two pressure-difference control systems using PID algorithm and Dahlin algorithm are separately designed in MATLAB. The scheduled pressure curves controlled with PID algorithm and Dahlin algorithm,respectively,are comparatively simulated in MATLAB.The simulated pressure curves obtained show that the control precision with Dahlin algorithm is higher than that with PID algorithm in the differential pressure casting process,and it was further verified by production practice.

  19. Virtual Mold Technique in Thermal Stress Analysis during Casting Process

    Institute of Scientific and Technical Information of China (English)

    Si-Young Kwak; Jae-Wook Baek; Jeong-Ho Nam; Jeong-Kil Choi

    2008-01-01

    It is important to analyse the casting product and the mold at the same time considering thermal contraction of the casting and thermal expansion of the mold. The analysis considering contact of the casting and the mold induces the precise prediction of stress distribution and the defect such as hot tearing. But it is difficult to generate FEM mesh for the interface of the casting and the mold. Moreover the mesh for the mold domain spends lots of computational time and memory for the analysis due to a number of meshes. Consequently we proposed the virtual mold technique which only uses mesh of the casting part for thermal stress analysis in casting process. The spring bar element in virtual mold technique is used to consider the contact of the casting and the mold. In general, a volume of the mold is much bigger than that of casting part, so the proposed technique decreases the number of mesh and saves the computational memory and time greatly. In this study, the proposed technique was verified by the comparison with the traditional contact technique on a specimen. And the proposed technique gave satisfactory results.

  20. Numerical simulation for thermal flow filling process of casting

    Institute of Scientific and Technical Information of China (English)

    CHEN Ye; ZHAO Yu-hong; HOU Hua

    2006-01-01

    The solution algorithm (SOLA) method was used to solve the velocity and pressure field of the thermal flow filling process, and the volume of fluid (VOF) method for the free surface problem. Since the "donor-acceptor" rule often results in the free interface vague, the explicit difference method was adopted, and a method describing the free surface state at 0<F<1 was proposed to deal with this problem. In order to raise the computation efficiency, such algorithms were investigated and invalidated as: 1) internal and external area separation simplification algorithm; 2) the reducing necessary search area method. With the improved algorithms, the filling processes of the valve cover castings with gravity cast and an up cylinder block casting with low-pressure cast were simulated, the simulation results are believable and the computation efficiency is greatly improved. The SOLA-VOF model and its difference method for thermal fluid flow filling process were introduced.

  1. Process Modeling of Low-Pressure Die Casting of Aluminum Alloy Automotive Wheels

    Science.gov (United States)

    Reilly, C.; Duan, J.; Yao, L.; Maijer, D. M.; Cockcroft, S. L.

    2013-09-01

    Although on initial inspection, the aluminum alloy automotive wheel seems to be a relatively simple component to cast based on its shape, further insight reveals that this is not the case. Automotive wheels are in a select group of cast components that have strict specifications for both mechanical and aesthetic characteristics due to their important structural requirements and their visibility on a vehicle. The modern aluminum alloy automotive wheel continues to experience tightened tolerances relating to defects to improve mechanical performance and/or the physical appearance. Automotive aluminum alloy wheels are assessed against three main criteria: wheel cosmetics, mechanical performance, and air tightness. Failure to achieve the required standards in any one of these categories will lead to the wheel either requiring costly repair or being rejected and remelted. Manufacturers are becoming more reliant on computational process modeling as a design tool for the wheel casting process. This article discusses and details examples of the use of computational process modeling as a predictive tool to optimize the casting process from the standpoint of defect minimization with the emphasis on those defects that lead to failure of aluminum automotive wheels, namely, macroporosity, microporosity, and oxide films. The current state of applied computational process modeling and its limitations with regard to wheel casting are discussed.

  2. Simulation study on three casting processes for a marine propeller hub body

    Directory of Open Access Journals (Sweden)

    Wang Tongmin

    2013-11-01

    Full Text Available The mold filling and solidification process of a marine propeller hub were simulated using ProCAST? Three casting processes ?gravity casting, centrifugal casting and low pressure casting ?were compared in order to get the best process. The heat transfer coefficient of the casting/mold interface was determined using a reverse method. The simulated results of velocity, temperature and shrinkage porosity distribution were discussed in detail for the three casting processes. A smooth filling was found in all three casting processes, especially the low pressure casting exhibiting a better filling performance than the other two, but the solidification processes were different. The casting did not experience the sequential solidification, and the feeding paths were blocked, leading to shrinkage porosity defects in the riser and the bottom of the casting in gravity casting and in the upper zone of the casting in low pressure casting. While, the sequential solidification was well controlled in the solidification process of centrifugal casting, and majority of the shrinkage porosity defects can only be observed in the riser. It could be concluded that the centrifugal casting process is the most suitable casting process for the production of propeller hub body. The casting experiments verified the simulation results, and a defect-free propeller hub was obtained by centrifugal casting with a rotational speed of 150 r.in-1.

  3. Effects of casting and post casting annealing on xylene isomer transport properties of Torlon® 4000T films

    KAUST Repository

    Chafin, Raymond

    2010-07-01

    Procedures for Torlon® 4000T membrane formation were developed to provide attractive and repeatable xylene separation properties. Torlon® 4000T membrane films cast by our method were investigated in terms of thermally induced imidization, molecular weight enhancement, and solvent removal. After development of the Torlon® 4000T casting procedure, pervaporation of a xylene mixture (i.e. 30% para-xylene, 30% meta-xylene, 30% ortho-xylene, and 10% ethylbenzene) was performed in both Torlon® 4000T and post casting annealed Torlon® 4000T films. The xylene pervaporation in annealed Torlon® 4000T film at 200°C gave a permeability of 0.25 Barrer and a selectivity of 3.1 (para/ortho) and 2.1 (para/meta) respectively. A so-called " permeability collapse" reflecting an accelerated reduction in the free volume is consistent with significant temperature-induced changes in the films observed after thermal annealing at 300°C. This conditioning effect is induced by a combination of heat treatment and the presence of the interacting aromatic penetrants. Optical methods were used to verify that the density of annealed samples exposed to xylene for 5 days eventually increased, suggesting that the membrane is originally swollen upon initial xylene exposure, and then relaxes to a more densified, and more discriminating state. © 2010 Elsevier Ltd.

  4. Development of a thin steel strip casting process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R.S.

    1994-04-01

    This is a comprehensive effort to develop direct strip casting to the point where a pilot scale program for casting carbon steel strip could be initiated. All important aspects of the technology were being investigated, however the program was terminated early due to a change in the business strategy of the primary contractor, Armco Inc. (focus to be directed at specialty steels, not low carbon steel). At termination, the project was on target on all milestones and under budget. Major part was casting of strip at the experiment casting facility. A new caster, capable of producing direct cast strip of up to 12 in. wide in heats of 1000 and 3000 lb, was used. A total of 81 1000-1200 lb heats were cast as well as one test heat of 3000 lb. Most produced strip of from 0.016 to 0.085 in. thick. Process reliability was excellent for short casting times; quality was generally poor from modern hot strip mill standards, but the practices necessary for good surface quality were identified.

  5. Lightweight Concrete Produced Using a Two-Stage Casting Process

    Directory of Open Access Journals (Sweden)

    Jin Young Yoon

    2015-03-01

    Full Text Available The type of lightweight aggregate and its volume fraction in a mix determine the density of lightweight concrete. Minimizing the density obviously requires a higher volume fraction, but this usually causes aggregates segregation in a conventional mixing process. This paper proposes a two-stage casting process to produce a lightweight concrete. This process involves placing lightweight aggregates in a frame and then filling in the remaining interstitial voids with cementitious grout. The casting process results in the lowest density of lightweight concrete, which consequently has low compressive strength. The irregularly shaped aggregates compensate for the weak point in terms of strength while the round-shape aggregates provide a strength of 20 MPa. Therefore, the proposed casting process can be applied for manufacturing non-structural elements and structural composites requiring a very low density and a strength of at most 20 MPa.

  6. Properties of cast films made of chayote (Sechium edule Sw.) tuber starch reinforced with cellulose nanocrystals

    Science.gov (United States)

    In this study, cellulose (C) and cellulose nanocrystals (CN) were blended with chayote tuber (Sechium edule Sw.) starch (CS) in formulations cast into films. The films were conditioned at different storage temperatures and relative humidity (RH), and analyzed by mechanical tests, X-ray diffraction, ...

  7. A Novel Process in Semi-Solid Metal Casting

    Institute of Scientific and Technical Information of China (English)

    Bijan Abbasi-Khazaei; Saeid Ghaderi

    2012-01-01

    In this research a new process for semi-solid casting of ductile iron based on the high nucleation rate combined with locally mechanical stirring is presented. In this process at first fully liquid ductile iron was poured on the peripheral surface of a wheel rotating against pouring direction. At this stage, the solid crystals nucleated at the chilling surface were pushed to the melt by a heat resistance steel cutter and finally the semi-solid slurry was generated. Reheating treatment was done on the samples to achieve more efficiency of semi-solid casting process. The effects of the travelling distance of solid particles during casting, the reheating time and temperature were examined. The results showed that the process effectively changes the dendrite structure to globular one.

  8. Copper base materials prepared by gel-casting process

    Institute of Scientific and Technical Information of China (English)

    LIU Weihua; JIA Chengchang; SHI Yantao; HAN Yuepeng

    2008-01-01

    Gel-casting process was developed as a new molding process in the field of copper base powder metallurgy to manufacture metal parts with excellent performance and complex shapes.Through changing the parameters of gel-casting process,such as dispersant and solid loading,the corresponding effects on the rheology of Cu slurries,molding and sintering behaviors were studied.The results show that the viscosity of Cu slurries was significantly reduced with an increase in dispersant.The most appropriate solid loading was found to be 61% and the sintering temperature was 910℃ in these experiments.After the optimization of parameters of gel-casting process,copper composite parts with relatively high density and better properties were obtained.

  9. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices

    Science.gov (United States)

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-12-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PEDOT: PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

  10. Application of the gel casting process in iron powder metallurgy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of various gel casting process parameters such as the dispersant and solid loading on the rheology of Fe slurries, molding, and sintering behaviors were studied. The relationship between solid loading and viscidity in the process of iron base powder metallurgy was researched to obtain better microstructure and properties. The results showed that the viscosity of Fe slurries is obviously reduced with the increase of the dispersant. The suitable parameters are as follows: the solid loading is 61% and sintering temperature is 1180℃. Iron parts with relatively high density and better properties were obtained by the gel casting process.

  11. Solidification process and infrared image characteristics of permanent mold castings

    Science.gov (United States)

    Viets, Roman; Breuer, Markus; Haferkamp, Heinz; Kruessel, Thomas; Niemeyer, Matthias

    1999-03-01

    Interdependence between the development of temperature gradients at the solid-liquid interface during solidification of metals and the formation of local defects demands for thermal investigation. In foundry practice thermocouples are used to control the die's overall cooling-rate, but fluctuations in product quality still occur. Capturing FIR- thermograms after opening the die visualizes the state, when most thermal throughput has already flattened the temperature gradients in the mold. Rapid dissipation of heat from liquid metal to the mold during solidification forces further approach of the process investigation by slowing down the heat flux or the use of transparent mold material. Aluminum gravity casting experiments under technical vacuum conditions lead to decelerated solidification by suppression of convection and image sequences containing explicit characteristics that could be assigned to local shrinkage of the casting. Hence relevant clusters are extracted and thermal profiles are drawn from image series, pointing out correlations between feeding performance from the sink heads and the appearance of local defects. Tracing thermal processes in vacuum casting can scarcely be transferred to image data in foundry practice, since only little analogies exist between atmospheric and vacuum casting. The diagnosis of the casting process requires detection of the still closed mold using a transparent silica- aerogel sheet as part of the die. Hereby thermograms of the initial heat input are recorded by adapting a NIR-camera in addition to the FIR-unit. Thus the entire thermal compensation at the joint face for each casting is visualized. This experimental set-up is used for image sequence analysis related to the intermediate casting phases of mold filling, body formation and solidification shrinkage.

  12. Application of particle method to the casting process simulation

    Science.gov (United States)

    Hirata, N.; Zulaida, Y. M.; Anzai, K.

    2012-07-01

    Casting processes involve many significant phenomena such as fluid flow, solidification, and deformation, and it is known that casting defects are strongly influenced by the phenomena. However the phenomena complexly interacts each other and it is difficult to observe them directly because the temperature of the melt and other apparatus components are quite high, and they are generally opaque; therefore, a computer simulation is expected to serve a lot of benefits to consider what happens in the processes. Recently, a particle method, which is one of fully Lagrangian methods, has attracted considerable attention. The particle methods based on Lagrangian methods involving no calculation lattice have been developed rapidly because of their applicability to multi-physics problems. In this study, we combined the fluid flow, heat transfer and solidification simulation programs, and tried to simulate various casting processes such as continuous casting, centrifugal casting and ingot making. As a result of continuous casting simulation, the powder flow could be calculated as well as the melt flow, and the subsequent shape of interface between the melt and the powder was calculated. In the centrifugal casting simulation, the mold was smoothly modeled along the shape of the real mold, and the fluid flow and the rotating mold are simulated directly. As a result, the flow of the melt dragged by the rotating mold was calculated well. The eccentric rotation and the influence of Coriolis force were also reproduced directly and naturally. For ingot making simulation, a shrinkage formation behavior was calculated and the shape of the shrinkage agreed well with the experimental result.

  13. Engineered Cooling Process for High Strength Ductile Iron Castings

    Science.gov (United States)

    Lekakh, Simon N.; Mikhailov, Anthony; Kramer, Joseph

    Professor Stefanescu contributed fundamentally to the science of solidification and microstructural evolutions in ductile irons. In this article, the possibility of development of high strength ductile iron by applying an engineered cooling process after casting early shake out from the sand mold was explored. The structures in industrial ductile iron were experimentally simulated using a computer controlled heating/cooling device. CFD modeling was used for process simulation and an experimental bench scale system was developed. The process concept was experimentally verified by producing cast plates with 25 mm wall thickness. The tensile strength was increased from 550 MPa to 1000 MPa in as-cast condition without the need for alloying and heat treatment. The possible practical applications were discussed.

  14. Low-Gravity Investigations in Cast-Iron Processing

    Science.gov (United States)

    Frankhouser, W. L.

    1982-01-01

    Report on the state of the art in cast-iron processing identifies possible improvements that might result from processing in absence of gravity. Report suggests areas in which the knowledge of gravitational effects could eventually lead to practical improvements in material performance.

  15. Antimicrobial Activity of Nisin and Natamycin Incorporated Sodium Caseinate Extrusion-Blown Films: A Comparative Study with Heat-Pressed/Solution Cast Films.

    Science.gov (United States)

    Colak, Basak Yilin; Peynichou, Pierre; Galland, Sophie; Oulahal, Nadia; Prochazka, Frédéric; Degraeve, Pascal

    2016-05-01

    Antimicrobial edible films based on sodium caseinate, glycerol, and 2 food preservatives (nisin or natamycin) were prepared by classical thermomechanical processes. Food preservatives were compounded (at 65 °C for 2.5 min) with sodium caseinate in a twin-screw extruder. Anti-Listeria activity assays revealed a partial inactivation of nisin following compounding. Thermoplastic pellets containing food preservatives were then used to manufacture films either by blown-film extrusion process or by heat-press. After 24 h of incubation on agar plates, the diameters of K. rhizophila growth inhibition zones around nisin-incorporated films prepared by solution casting (control), extrusion blowing or heat pressing at 80 °C for 7 min of nisin-containing pellets were 15.5 ± 0.9, 9.8 ± 0.2, and 8.6 ± 1.0 mm, respectively. Since heat-pressing for 7 min at 80 °C of nisin-incorporated pellets did not further inactivate nisin, this indicates that nisin inactivation during extrusion-blowing was limited. Moreover, the lower diameter of the K. rhizophila growth inhibition zone around films prepared with nisin-containing pellets compared to that observed around films directly prepared by solution casting confirms that nisin inactivation mainly occurred during the compounding step. Natamycin-containing thermoplastic films inhibited Aspergillus niger growth; however, by contrast with nisin-containing films, heat-pressed films had higher inhibition zone diameters than blown films, therefore suggesting a partial inactivation of natamycin during extrusion-blowing.

  16. Process on cold crucible electromagnetic casting for titanium alloy

    Directory of Open Access Journals (Sweden)

    CHEN Rui-run

    2007-08-01

    Full Text Available The parameters and factors that influence the surface quality and macrostructure of titanium alloy with reactive properties under liquid state were studied experimentally using a cold crucible electromagnetic casting method. The variations in the process parameters have great impact on the surface quality and macrostructure of cast billets. Billets with crack free and smooth surfaces as well as directional solidified primary structures were obtained after the selection of optimized process parameters. The formation mechanisms of defects such as cracks and non-directional structural morphology were interpreted briefly. Finally, the casting of billets with good outer qualities and inner column grains has been attained successfully, which in turn gives a solid foundation for further development of the technology.

  17. Solidification, processing and properties of ductile cast iron

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat

    2010-01-01

    Ductile cast iron has been an important engineering material in the past 50 years. In that time, it has evolved from a complicated material that required the foundry metallurgist's highest skill and strict process control to being a commonly used material that can easily be produced with modern...... of the latest years of research indicate that ductile cast iron in the future will become a highly engineered material in which strict control of a range of alloy elements combined with intelligent design and highly advanced processing allows us to target properties to specific applications to a much higher...... and to illustrate how ductile iron's properties are optimised, the essentials of heat treatment are described too. It is the hope that researchers will find a comprehensive treatment of ductile cast iron metallurgy and that engineers and designers will be presented with the latest information on, and references to...

  18. Process on cold crucible electromagnetic casting for titanium alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The parameters and factors that influence the surface quality and macrostructure of titanium alloy with reactive properties under liquid state were studied experimentally using a cold crucible electromagnetic casting method. The variations in the process parameters have great impact on the surface quality and macrostructure of cast billets. Billets with crack free and smooth surfaces as well as directional solidified primary structures were obtained after the selection of optimized process parameters. The formation mechanisms of defects such as cracks and non-directional structural morphology were interpreted briefly. Finally, the casting of billets with good outer qualities and inner column grains has been attained successfully, which in turn gives a solid foundation for further development of the technology.

  19. Manufacturing of Aluminum Composite Material Using Stir Casting Process

    Directory of Open Access Journals (Sweden)

    Muhammad Hayat Jokhio

    2011-01-01

    Full Text Available Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of \\"Al2O3\\" particles in 7xxx aluminum matrix. The 7xxx series aluminum matrix usually contains Cu-Zn-Mg. Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha \\"Al2O3\\" particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% \\"Al2O3\\" particles reinforced in aluminum matrix.

  20. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films

    Science.gov (United States)

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.

    2015-07-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.

  1. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films.

    KAUST Repository

    Kim, Jin Young

    2015-07-13

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.

  2. Simulation of the ingot extraction in the continuous casting process

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2011-07-01

    Full Text Available Cast ingot pulling speed is significantly affecting the nature of the resulting structure and the quality of the outer surface of the ingot. By introducing a variable algorithm for extraction of the ingot we may to some extent control the shape and location of the solid / liquid interface and temperature field in the cross-section of the ingot. The shape of the crystallization front, as well as its position relative to mold plays an important role in the process of continuous casting ingots of grey iron and affects the structure of the casting. In order to verify the impact of an algorithm on the shape and the location of solid / liquid interface, a number of simulations in ANSYS Fluent 12 were made, for determining the shape of crystallization front and temperature distribution on the cross-section of the ingot.

  3. Integrated Modeling of Process, Structures and Performance in Cast Parts

    DEFF Research Database (Denmark)

    Kotas, Petr

    the importance of a good gating system design. Hence, it is common to see, especially in gravity sand casting, “traditional gating systems” which are known for a straight tapered down runner a well base and 90º bends in the runner system. There are theories supported by experimental results claiming that flow...... patterns induced by non-optimal gating systems can cause a variety of defects which are generally not considered to be filling related, such as hot tears and channel segregates. By improving the gating technology in traditional gating systems it is possible to achieve much higher casting integrity.......g. chill design, riser design, gating system design, etc., which would satisfy these objectives the most. The first step in the numerical casting process simulation is to analyze mould filling where the emphasis is put on the gating system design. There are still a lot of foundry specialists who ignore...

  4. Addition of Oils to Polylactide Casting Solutions as a Tool to Tune Film Morphology and Mechanical Properties

    NARCIS (Netherlands)

    Sawalha, H.I.M.; Schroën, C.G.P.H.; Boom, R.M.

    2010-01-01

    Poly(L-lactide) (PLLA) films exhibit toughening by the addition of oils to the polymer casting. This was investigated by casting films from solution and evaporation in air; the investigated oils were linear alkanes, cyclic alkanes, and two terpenes (limonene and eugenol). The addition of the oils gr

  5. Numerical Modeling of Fluid Flow in the Tape Casting Process

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Hattel, Jesper Henri

    2011-01-01

    The flow behavior of the fluid in the tape casting process is analyzed. A simple geometry is assumed for running the numerical calculations in ANSYS Fluent and the main parameters are expressed in non-dimensional form. The effect of different values for substrate velocity and pressure force...

  6. Ductile cast iron obtaining by Inmold method with use of LOST FOAM process

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2010-01-01

    Full Text Available The possibility of manufacturing of ductile cast iron castings by Inmold method with use of LOST FOAM process was presented in this work. The spheroidization was carried out by magnesium master alloy in amounts of 1% casting mass. Nodulizer was located in the reactive chamber in the gating system made of foamed polystyrene. Pretests showed, that there are technical possibilities of manufacturing of casts from ductile cast iron in the LOST FOAM process with use of spheroidization in mould.

  7. Ductile cast iron obtaining by Inmold method with use of LOST FOAM process

    OpenAIRE

    T. Pacyniak; R. Kaczorowski

    2010-01-01

    The possibility of manufacturing of ductile cast iron castings by Inmold method with use of LOST FOAM process was presented in this work. The spheroidization was carried out by magnesium master alloy in amounts of 1% casting mass. Nodulizer was located in the reactive chamber in the gating system made of foamed polystyrene. Pretests showed, that there are technical possibilities of manufacturing of casts from ductile cast iron in the LOST FOAM process with use of spheroidization in mould.

  8. STUDY ON MACRO AND MICRO MODELING ON SOLIDIFICATION PROCESS OF SHAPED CASTING

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Facing the market economy and global challenge the development of manufacturing industry especially casting industry is critical to the national economy. To reform the traditional casting industry by using computer technology is one of the hottest research frontiers studied by many researchers and engineers. Computer simulation of solidification process of shaped casting can assure the quality of casting, optimize the casting technology, shorten the lead time and therefore decrease the developing and manufacturing cost. Recently, numerical simulation of mold-filling and solidification processes of shaped casting and prediction of microstructure and property as well are extensively studied and put into application in many casting plants with many successful simulation cases.

  9. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices

    OpenAIRE

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-01-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic “substrate vibration-assisted drop casting” (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few...

  10. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices

    OpenAIRE

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-01-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic “substrate vibration-assisted drop casting” (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few...

  11. Optimization of casting defects analysis with supply chain in cast iron foundry process

    Directory of Open Access Journals (Sweden)

    C. Narayanaswamy

    2016-10-01

    Full Text Available Some of the foundries are in need of meeting production targets and due to the urgency they ignore the rejections. The objective of this paper is to analyze the various defects, [1] from molding process in a cast iron foundry. The Failure Mode Effects Analysis (FMEA in quality control [2-6] with suitable supply chain for mold making process considering rejection rates are identified and analyzed in terms of Risk Priority Number (RPN to prioritize the attention for each of the problem. The optimum levels of selected parameters [7] are obtained in this analysis.

  12. Processing Technology and Mechanical Properties of Die-Cast Magnesium Alloy AZ91D

    Institute of Scientific and Technical Information of China (English)

    LIU Yan'gai(刘艳改); LIU Wenhui(刘文辉); XIONG Shoumei(熊守美); LIU Baicheng(柳百成); Wang Gang (王罡); MATSUMOTO Yoshihide; MURAKAMI Masayuki

    2004-01-01

    The mechanical properties of magnesium die-casting components can be improved with improved die-casting processing technology. An orthogonal experiment with four factors and three levels (Lq, 34) was used to evaluate the effect of various die-casting processing parameters on the quality and mechanical properties of an AZ91D magnesium alloy cylinder head cover component. The results show that the injection speed and casting and die temperatures all influence the component quality, with the influence of the casting pressure being the smallest. The injection speed and casting pressure are the two most important factors influencing the tensile strength. The best die-casting parameters for the magnesium alloy cylinder head cover component were determined to be a casting temperature of 660℃, a die temperature of 200℃, an injection speed of 70 ms(1, and a casting pressure of 65 MPa. The porosity is one of the most important parameters influencing the casting strength.

  13. Influence of solvent polarity on the structure of drop-cast electroactive tetra(aniline)-surfactant thin films.

    Science.gov (United States)

    Dane, Thomas G; Bartenstein, Julia E; Sironi, Beatrice; Mills, Benjamin M; Alexander Bell, O; Emyr Macdonald, J; Arnold, Thomas; Faul, Charl F J; Briscoe, Wuge H

    2016-09-21

    The influence of processing conditions on the thin film microstructure is a fundamental question that must be understood to improve the performance of solution-processed organic electronic materials. Using grazing-incidence X-ray diffraction, we have studied the structure of thin films of a tetra(aniline)-surfactant complex prepared by drop-casting from five solvents (hexane, chloroform, tetrahydrofuran, dichloromethane and ethanol), selected to cover a range of polarities. We found that the structure, level of order and degree of orientation relative to the substrate were extremely sensitive to the solvent used. We have attempted to correlate such solvent sensitivity with a variety of solvent physical parameters. Of particular significance is the observation of a sharp structural transition in the thin films cast from more polar solvents; such films presented significantly greater crystallinity as measured by the coherence length and paracrystalline disorder parameter. We attribute this higher structural order to enhanced dissociation of the acid surfactant in the more polar solvents, which in turn promotes complex formation. Furthermore, the more polar solvents provide more effective screening of (i) the attractive ionic interaction between oppositely charged molecules, providing greater opportunity for dynamic reorganisation of the supramolecular aggregates into more perfect structures; and (ii) the repulsive interaction between the positively charged blocks permitting a solvophobic-driven aggregation of the aromatic surfaces during solvent evaporation.

  14. Studies on the Condensed Structure of Vacuum Cast Atactic Polystyrene Films

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The condensed structure of atactic-polystyrene(a-PS) films cast from the solutions of different concentrations in dichloromethane under vacuum and atmospheric conditions was studied bydifferential scanning calorimetry(DSC). It was found that only under vacuum evaporating conditions did the endothermic peak in the DSC curves of a-PS films depend on the concentration ofthe a-PS solution. For the samples cast from the solution of concentration below 0. 010 g/mL,no endothermal peak was observed, but for those cast from the solution of concentration above0. 020 g/mL, obvious endothermal peaks appeared. The onset of the endothermal peak is correlated with the critical overlapping concentration c* (0. 010-0. 020 g/mL), which is in agreement with the theoretically calculated one (c*cal=0. 014 g/mL).

  15. Electrospun fiber and cast films produced using zein blends with nylon-6

    Science.gov (United States)

    Blends of zein and nylon-6 (55k) were used to produce electrospun fibers and solution cast films. Zein was blended with nylon-6 in formic acid solution. When the amount of nylon-6 was 8% or less a compatible blend formed. The blend was determined to be compatible based on physical property measureme...

  16. Production of castings by patternless process

    Directory of Open Access Journals (Sweden)

    R. Pastirčák

    2012-01-01

    Full Text Available This paper deals with production of safety inlay for steam locomotive valve by the Patternless Process method. For the moulds creation was used moulding mixtures of II. generation, whereas binder was used a water glass. CNC miller was used for creation of mould cavity. Core was created also by milling into block made of moulding compound. In this article will be presented also making of 3D model, setting of milling tool paths and parameters for milling.

  17. Effects of casting speed on microstructure and segregation of electromagnetically stirred Aluminum alloy in continuous casting process

    Institute of Scientific and Technical Information of China (English)

    LEE Dock-Young; KANG Suk-Won; CHO Duck-Ho; KIM Ki-Bae

    2006-01-01

    Recently, a semi-solid metal processing has been acknowledged as a cost-effective technique to be able to manufacture high quality product for the transportation industry.In this study a hypo-eutectic Al alloy was fabricated by means of an electromagnetic stirrer in continuous casting process and the microstructural change during solidification due to a fluid flow by electromagnetic stirring was examined.Due to the forced fluid flow during solidification a dendritic phase of primary α phase of Al alloy was turned into a globular phase, which can make the Al alloy get a thixotropic behavior in the semi-solid region.In order to establish the quantitative relationship between microstructure and the process parameters, the morphology shape, a silicon distribution and a size of primary α phase were observed according to casting speed in continuous casting machine.The primary α phase was turned into the degenerate dendrites approaching a spherical configuration with increasing casting speed.The fine-grained and equiaxed microstructure appeared at higher casting speed.A segregation behavior of Si element was declined with increasing casting speed and a very uniform distribution of Si element was observed on the billet at a casting speed of 600 mm·min-1.A thickness of the solidifying shell of the billet was shortened with increasing the casting speed.

  18. Conical surface structures on model thin-film electrodes and tape-cast electrode materials for lithium-ion batteries

    Science.gov (United States)

    Kohler, R.; Proell, J.; Bruns, M.; Ulrich, S.; Seifert, H. J.; Pfleging, W.

    2013-07-01

    Three-dimensional structures in cathode materials for lithium-ion batteries were investigated in this study. For this purpose, laser structuring of lithium cobalt oxide was investigated at first for a thin-film model system and in a second step for conventional tape-cast electrode materials. The model thin-film cathodes with a thickness of 3 μm were deposited using RF magnetron sputtering on stainless steel substrates. The films were structured via excimer laser radiation with a wavelength of 248 nm. By adjusting the laser fluence, self-organized conical microstructures were formed. Using conventional electrodes, tape-cast cathodes made of LiCoO2 with a film thickness of about 80 μm on aluminum substrates were studied. It was shown that self-organizing surface structures could be formed by adjustment of the laser parameters. To investigate the formation mechanisms of the conical topography, the element composition was studied by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Electrochemical cycling using a lithium anode and conventional electrolyte was applied to study the influence of the laser processing procedures on cell performance. For the model electrode system, a significantly higher discharge capacity of 80 mAh/g could be obtained after 110 cycles by laser structuring compared to 8 mAh/g of the unstructured thin film. On conventional tape-cast electrodes self-organized surface structures could also increase the cycling stability resulting in an 80 % increase in capacity after 110 cycles in comparison to the unstructured electrode.

  19. Monitoring metal-fill in a lost foam casting process.

    Science.gov (United States)

    Abdelrahman, Mohamed; Arulanantham, Jeanison Pradeep; Dinwiddie, Ralph; Walford, Graham; Vondra, Fred

    2006-10-01

    The lost foam casting (LFC) process is emerging as a reliable casting method. The metal-fill profile in LFC plays an important role among several factors that affect casting quality. The metal-fill profile is in turn affected by several factors. Several casting defects may result due to an improper metal-fill process. Hence, it becomes essential to characterize and control, if possible, the metal-fill process in LFC. This research presents instrumentation and a technique to monitor and characterize the metal-fill process. The characterization included the determination of the position of the metal front and the profile in which the metal fills up the foam pattern. The instrumentation included capacitive sensors. Each sensor is comprised of two electrodes whose capacitive coupling changes as the metal fills the foam pattern. Foundry tests were conducted to obtain the sensors' responses to the metal fill. Two such sensors were used in the foundry tests. Data representing the responses of these sensors during the metal-fill process were collected using a data acquisition system. A number of finite element electrostatic simulations were carried out to study the metal-fill process under conditions similar to those experienced in foundry tests. An artificial neural network was trained using the simulation data as inputs and the corresponding metal-fill profiles as outputs. The neural network was then used to infer the profile of the metal-fill during foundry tests. The results were verified by comparing the metal-fill profile inferred from the neural network to the actual metal-fill profile captured by an infrared camera used during the foundry tests. The match up between the inferred profiles and the infrared camera measurements was satisfactory, indicating that the developed technique provides a reliable and cost effective method to monitor the metal-fill profile in LFC.

  20. The analysis of the possibility of the application of the casting waxes in the process RP

    OpenAIRE

    G. Budzik

    2009-01-01

    The article presents analysis of possibility of application of casting waxes in process of rapid prototyping of casting models in silicone the matrices. The researches were made on casting waxes applied to the manufacturing of precise casting models and also the model system. Testing waxes are intended nominally to the processing in process of the injection. The determining of possibility processing of waxes in silicone forms was purpose of researches. Researches concerned of whole manufactur...

  1. Aging properties of films of plasticized vital wheat gluten cast from acidic and basic solutions.

    Science.gov (United States)

    Olabarrieta, Idoia; Cho, Sung-Woo; Gällstedt, Mikael; Sarasua, Jose-Ramon; Johansson, Eva; Hedenqvist, Mikael S

    2006-05-01

    In order to understand the mechanisms behind the undesired aging of films based on vital wheat gluten plasticized with glycerol, films cast from water/ethanol solutions were investigated. The effect of pH was studied by casting from solutions at pH 4 and pH 11. The films were aged for 120 days at 50% relative humidity and 23 degrees C, and the tensile properties and oxygen and water vapor permeabilities were measured as a function of aging time. The changes in the protein structure were determined by infrared spectroscopy and size-exclusion and reverse-phase high-performance liquid chromatography, and the film structure was revealed by optical and scanning electron microscopy. The pH 11 film was mechanically more stable with time than the pH 4 film, the latter being initially very ductile but turning brittle toward the end of the aging period. The protein solubility and infrared spectroscopy measurements indicated that the protein structure of the pH 4 film was initially significantly less polymerized/aggregated than that of the pH 11 film. The polymerization of the pH 4 film increased during storage but it did not reach the degree of aggregation of the pH 11 film. Reverse-phase chromatography indicated that the pH 11 films were to some extent deamidated and that this increased with aging. At the same time a large fraction of the aged pH 11 film was unaffected by reducing agents, suggesting that a time-induced isopeptide cross-linking had occurred. This isopeptide formation did not, however, change the overall degree of aggregation and consequently the mechanical properties of the film. During aging, the pH 4 films lost more mass than the pH 11 films mainly due to migration of glycerol but also due to some loss of volatile mass. Scanning electron and optical microscopy showed that the pH 11 film was more uniform in thickness and that the film structure was more homogeneous than that of the pH 4 film. The oxygen permeability was also lower for the pH 11 film. The

  2. New crosslinked cast films based on poly(vinyl alcohol: Preparation and physico-chemical properties

    Directory of Open Access Journals (Sweden)

    C. Birck

    2014-12-01

    Full Text Available In this paper, we propose a green route to prepare insoluble poly(vinyl alcohol (PVOH cast films with potential application as antimicrobial packaging. First PVOH films were cast from different aqueous solutions and analyzed by Differential Scanning Calorimetry (DSC and Dynamic Mechanical Analysis (DMA to determine their physical properties under two storage conditions. In order to obtain insoluble films, PVOH was then crosslinked by citric acid (CTR as confirmed by Nuclear Magnetic Resonance (NMR analyses. The crosslinking reaction parameters (curing time, crosslinker content were studied by comparing the characteristics of PVOH/CTR films, such as free COOH content and glass transition temperature (Tg value, as well as the impact of the crosslinking reaction on mechanical properties. It was found that for 40 and 10 wt% CTR contents, 120 and 40 min of crosslinking times were necessary to bind all CTR respectively. Brittle films were obtained for 40 wt% CTR whereas 10 wt% CTR content led to ductile films. Finally, films containing hydroxypropyl-β-cyclodextrin (HPβCD, chosen as a potential vector of antimicrobial agent, were prepared. The obtained results show that the incorporation of HPβCD in the PVOH matrix does not mainly influence the physical and mechanical properties of the films.

  3. The lost foam process in pilot castings plattes

    Directory of Open Access Journals (Sweden)

    Z. Żółkiewicz

    2009-04-01

    Full Text Available The paper discusses the process of thermal evaporation of a foundry pattern. At several research-development centres, studies have beencarried out to examine the physico-chemical phenomena that take place in foundry mould filled with polystyrene pattern when it is pouredwith molten metal. In the technique of evaporative patterns, the process of mould filling with molten metal (the said mould holding inside a polystyrene pattern is interrelated with the process of thermal decomposition of this pattern. The process of polystyrene pattern evaporation in foundry mould under the effect of molten metal is of a very complex nature and depends on many different factors, still not fully investigated. The technology of evaporative patterns was used in manufacture of pilot castings of the high abrasion resistance plates. The material and the properties of the resultant castings were determined by the customer (patent protection. At the beginning of the studies, the properties of the pattern material were determined, patterns were assembled, the properties of the ceramic layer were determined as well as the technique of its preparation and application. The technique of molten metal feeding to the mould cavity was examined along with the parameters of the gating and feeding system, and casting cooling and solidification conditions (large contraction, shrinkage cavities and depressions.

  4. A study of interfacial heat transfer and process parameters in squeeze casting and low pressure permanent mold casting

    Science.gov (United States)

    Krishna, Prasad

    2001-08-01

    With the emerging demand for energy efficient and environment-friendly automobiles, cast aluminum alloys are increasingly being used in their manufacture. In this context, two permanent mold casting processes, namely, Squeeze Cast Permanent Mold and Low Pressure Permanent Mold (LPPM) have become very popular in the production of high integrity shape-cast aluminum components. However, many industries are yet to benefit from the full potential of these processes due to limited understanding of the effect of process parameters on casting quality and the necessary boundary conditions for computer modeling and simulation so as to minimize costly field trials. This dissertation attempts to address some of these concerns facing today's foundry industry. An experimental investigation of the Indirect Squeeze Casting Process was conducted by pouring molten Al-7Si-0.3Mg (A356) alloy into a specially designed and instrumented mold, mounted on a horizontal clamped-vertical shot squeeze caster (HVSC). Temperature measurements close to the metal/mold interface were made and compared with the results of the numerical simulation of heat flow during solidification and cooling of castings. The Heat Transfer Coefficient (HTC), a critical parameter essential for any solidification simulation, was estimated based on the simulation that gave the best fit to the experimental temperature data. During the solidification process, the HTC is relatively uniform over the entire casting and on reaching a critical solidification pressure, the HTC is close to 4500 W/m2 K. The work has also provided a correlation of Secondary Dendrite Arm Spacing (SDAS) with cooling rate for a modified A356 alloy. Low Pressure Permanent Mold Casting experiments were conducted by pouring a nearly identical aluminum alloy into an instrumented, coated mold mounted on a low pressure casting machine. The pressure levels, along with the time required to achieve complete filling, were microprocessor controlled in the

  5. SURFACE CAST IRON STRENGTHENING USING COMBINED LASER AND ULTRASONIC PROCESSING

    Directory of Open Access Journals (Sweden)

    O. Devojno

    2013-01-01

    Full Text Available The paper provides an analysis of ultrasonic surface plastic deformation and subsequent laser thermal strengthening of gray cast iron parts in the regime of hardening from a solid state with the purpose to obtain strengthened surface layers of bigger depth and less roughness of the processed surface. Program complex ANSYS 11.0 has been used for calculation of temperature fields induced by laser exposure.  The appropriate regime of laser processing without surface fusion has been selected on the basis of the applied complex. The possibility of displacement in the bottom boundary of α–γ-transformation temperature  for СЧ20 with 900 °С up to 800 °С is confirmed due to preliminary ultrasonic surface plastic deformation of the surface that allows to expand technological opportunities of laser quenching  of gray  cast iron from a solid state. 

  6. Numerical modelling of stresses and deformations in casting processes

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    1997-01-01

    Keywords: Stresses and deformations, casting, governing equations, thermal strain, control volume method......Keywords: Stresses and deformations, casting, governing equations, thermal strain, control volume method...

  7. Numerical modelling of stresses and deformations in casting processes

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    1997-01-01

    Keywords: Stresses and deformations, casting, governing equations, thermal strain, control volume method......Keywords: Stresses and deformations, casting, governing equations, thermal strain, control volume method...

  8. Quality and Safety Assurance of Iron Casts and Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Kukla S.

    2016-06-01

    Full Text Available The scope of this work focuses on the aspects of quality and safety assurance of the iron cast manufacturing processes. Special attention was given to the processes of quality control and after-machining of iron casts manufactured on automatic foundry lines. Due to low level of automation and huge work intensity at this stage of the process, a model area was established which underwent reorganization in accordance with the assumptions of the World Class Manufacturing (WCM. An analysis of work intensity was carried out and the costs were divided in order to identify operations with no value added, particularly at individual manufacturing departments. Also an analysis of ergonomics at work stations was carried out to eliminate activities that are uncomfortable and dangerous to the workers' health. Several solutions were proposed in terms of rationalization of work organization at iron cast after-machining work stations. The proposed solutions were assessed with the use of multi-criteria assessment tools and then the best variant was selected based on the assumed optimization criteria. The summary of the obtained results reflects benefits from implementation of the proposed solutions.

  9. Characteristics of mold filling and entrainment of oxide film in low pressure casting of A356 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shan-Guang; Cao, Fu-Yang; Zhao, Xin-Yi; Jia, Yan-Dong; Ning, Zhi-Liang; Sun, Jian-Fei, E-mail: jfsun_hit@263.net

    2015-02-25

    The effect of pressurizing speed of low pressure casting on mold filling and mechanical properties of A356 alloy was studied. The mold filling behavior was calculated by two phase flow model using VOF (Volume of Fluid) method. In order to evaluate the accuracy of simulated results, the real mold filling process observed by X-ray radiography was compared. The results show that during mold filling the gate velocity first increased dramatically, then kept unchanged under relatively low pressurizing speed, or increased slowly under relatively high pressurizing speed. High gate velocity causes melt falling back under gravity with high speed. The falling velocity and the resultant relative rotating vortex are the main causes of oxide film entrainment in low pressure casting. The mechanical properties of the as-cast A356 alloy were measured by four-point bend test. Weibull probability plots were used to assess the fracture mechanisms under different pressurizing speeds. The results obtained in this paper illuminate on designing suitable pressurizing speed for mold filling in low pressure casting.

  10. Casting defects of Ti-6Al-4V alloy in vertical centrifugal casting processes with graphite molds

    Science.gov (United States)

    Jia, Limin; Xu, Daming; Li, Min; Guo, Jingjie; Fu, Hengzhi

    2012-02-01

    Numerical simulation and experimental investigation are utilized to analyze the casting defects of Ti-6Al-4V alloy formed under different vertical centrifugal casting conditions in graphite molds. Mold rotating rates of 0, 110 and 210 rpm are considered in experimental process. Results show that centrifugal forces have significant effects on the quantity of both macropores and microdefects (micropores, microcracks and inclusions). The relative amount of all macro- and micro-scopic casting defects decreases from 62.4 % to 24.8 % with the increasing of the centrifugal force, and the macropore quantity in stepped casting decreases exponentially with the increase of the gravitation coefficient. The relative proportions of both micropores and microcracks decrease with the mold-rotating rate increase, but the relative proportion of inclusions increases significantly. Besides this, the mold-filling sequence is proved to be an important factor in casting quality control.

  11. Fabrication and characterization of thick-film piezoelectric lead zirconate titanate ceramic resonators by tape-casting.

    Science.gov (United States)

    Qin, Lifeng; Sun, Yingying; Wang, Qing-Ming; Zhong, Youliang; Ou, Ming; Jiang, Zhishui; Tian, Wei

    2012-12-01

    In this paper, thick-film piezoelectric lead zirconate titanate (PZT) ceramic resonators with thicknesses down to tens of micrometers have been fabricated by tape-casting processing. PZT ceramic resonators with composition near the morphotropic phase boundary and with different dopants added were prepared for piezoelectric transducer applications. Material property characterization for these thick-film PZT resonators is essential for device design and applications. For the property characterization, a recently developed normalized electrical impedance spectrum method was used to determine the electromechanical coefficient and the complex piezoelectric, elastic, and dielectric coefficients from the electrical measurement of resonators using thick films. In this work, nine PZT thick-film resonators have been fabricated and characterized, and two different types of resonators, namely thickness longitudinal and transverse modes, were used for material property characterization. The results were compared with those determined by the IEEE standard method, and they agreed well. It was found that depending on the PZT formulation and dopants, the relative permittivities ε(T)(33)/ε(0) measured at 2 kHz for these thick-films are in the range of 1527 to 4829, piezoelectric stress constants (e(33) in the range of 15 to 26 C/m(2), piezoelectric strain constants (d(31)) in the range of -169 × 10(-12) C/N to -314 × 10(-12) C/N, electromechanical coupling coefficients (k(t)) in the range of 0.48 to 0.53, and k(31) in the range of 0.35 to 0.38. The characterization results shows tape-casting processing can be used to fabricate high-quality PZT thick-film resonators, and the extracted material constants can be used to for device design and application.

  12. Experimental investigation of the start-up phase during direct chill and low frequency electromagnetic casting of 6063 aluminum alloy processes

    Science.gov (United States)

    Wang, Xiangjie; Zhang, Haitao; Zhao, Zhihao; Zhu, Qingfeng; Wang, Gaosong; Jiang, Huixue; Cui, Jianzhong

    2010-06-01

    On the basis of conventional hot-top casting and Casting, Refining and Electromagnetic process, a lower frequency electromagnetic field was applied during the conventional hot-top casting process. Nine thermocouples (type K) were introduced into the metal to study the temperature profile in the ingot during the start-up phase of casting process. The experimental results show that under the effect of the low frequency electromagnetic filed, the heat transfer is changed greatly and the film boiling disappears, which could restrain the formation of fine subsurface cracks; the sump is shallow, and the macrostructure of the ingot butt is fine during the start-up phase of direct chill casting process.

  13. Modeling of solidification of MMC composites during gravity casting process

    Directory of Open Access Journals (Sweden)

    R. Zagórski

    2013-04-01

    Full Text Available The paper deals with computer simulation of gravity casting of the metal matrix composites reinforced with ceramics (MMC into sand mold. The subject of our interest is aluminum matrix composite (AlMMC reinforced with ceramic particles i.e. silicon carbide SiC and glass carbon Cg. The created model describes the process taking into account solidification and its influence on the distribution of reinforcement particles. The computer calculation has been carried out in 2D system with the use of Navier-Stokes equations using ANSYS FLUENT 13. The Volume of Fluid approach (VOF and enthalpy method have been used to model the air-fluid free surface (and also volume fraction of particular continuous phases and the solidification of the cast, respectively.

  14. A finite element model for thermomechanical analysis in casting processes

    Energy Technology Data Exchange (ETDEWEB)

    Celentano, D. (International Center for Numerical Methods in Engineering, E.T.S. d' Enginyers de Camins, Canals i Ports, Univ. Politecnica de Catalunya, Barcelona (Spain)); Oller, S. (International Center for Numerical Methods in Engineering, E.T.S. d' Enginyers de Camins, Canals i Ports, Univ. Politecnica de Catalunya, Barcelona (Spain)); Onate, E. (International Center for Numerical Methods in Engineering, E.T.S. d' Enginyers de Camins, Canals i Ports, Univ. Politecnica de Catalunya, Barcelona (Spain))

    1993-11-01

    This paper summarizes the recent work of the authors in the numerical simulation of casting processes. In particular, a coupled thermomechanical model to simulate the solidification problem in casting has been developed. The model, based on a general isotropic thermoelasto-plasticity theory and formulated in a macroscopical point of view, includes generalized phase-change effects and considers the different thermomechanical behaviour of the solidifying material during its evolution from liquid to solid. For this purpose, a phase-change variable, plastic evolution equations and a temperature-dependent material constitutive law have been defined. Some relevant aspects of this model are presented here. Full thermomechanical coupling terms have been considered as well as variable thermal and mechanical boundary conditions: the first are due to air gap formation, while the second involve a contact formulation. Particular details concerning the numerical implementation of this model are also mentioned. An enhanced staggered scheme, used to solve the highly non-linear fully coupled finite element equations, is proposed. Furthermore, a proper convergence criterion to stop the iteration process is adopted and, although the quadratic convergence of Newton-Rapshon's method is not achieved, several numerical experiments demonstrate reasonable convergence rates. Finally, an experimental cylindrical casting test problem, including phase-change phenomena, temperature-dependent constitutive properties and contact effects, is analyzed. Numerical results are compared with some laboratory measurements. (orig.).

  15. Optical sensors based on the NiPc-CoPc composite films deposited by drop casting and under the action of centrifugal force

    Science.gov (United States)

    Fatima, Noshin; Ahmed, Muhammad M.; Karimov, Khasan S.; Ahmad, Zubair; Fariq Muhammad, Fahmi

    2017-06-01

    In this study, solution processed composite films of nickel phthalocyanine (NiPc) and cobalt phthalocyanine (CoPc) are deposited by drop casting and under centrifugal force. The films are deposited on surface-type inter-digitated silver electrodes on ceramic alumina substrates. The effects of illumination on the impedance and capacitance of the NiPc-CoPc composite samples are investigated. The samples deposited under centrifugal force show better conductivity than the samples deposited by drop casting technique. In terms of impedance and capacitance sensitivities the samples fabricated under centrifugal force are more sensitive than the drop casting samples. The values of impedance sensitivity ({S}z) are equal to (-1.83) {{M}}{{Ω }}\\cdot {{cm}}2/{mW} and (-5.365){{M}}{{Ω }}\\cdot {{cm}}2/{mW} for the samples fabricated using drop casting and under centrifugal force, respectively. Similarly, the values of capacitance sensitivity ({S}{{c}}) are equal to 0.083 {pF}\\cdot {{cm}}2/{mW} and 0.185 {pF}\\cdot {{cm}}2/{mW} for the samples fabricated by drop casting and under centrifugal force. The films deposited using the different procedures could potentially be viable for different operational modes (i.e., conductive or capacitive) of the optical sensors. Both experimental and simulated results are discussed. Project supported by the Center for Advanced Materials (CAM), Qatar University, Qatar.

  16. Development of 2D casting process CAD system based on PDF/image files

    Institute of Scientific and Technical Information of China (English)

    Tang Hongtao; Zhou Jianxin; Wang Lin; Liao Dunming; Tao Qing

    2014-01-01

    A casting process CAD is put forward to design and draw casting process. The 2D casting process CAD, most of the current systems are developed based on one certain version of the AutoCAD system. However the application of these 2D casting process CAD systems in foundry enterprises are restricted because they have several deficiencies, such as being overly dependent on the AutoCAD system, and some part files based on PDF format can not be opened directly. To overcome these deficiencies, for the first time an innovative 2D casting process CAD system based on PDF and image format file has been proposed, which breaks through the traditional research and application notion of the 2D casting process CAD system based on AutoCAD. Several key technologies of this system such as coordinate transformation, CAD interactive drawing, file storage, PDF and image format files display, and image recognition technologies were described in detail. A practical 2D CAD casting process system named HZCAD2D(PDF) was developed, which is capable of designing and drawing the casting process on the part drawing based on the PDF format directly, without spending time on drawing the part produced by AutoCAD system. Final y, taking two actual castings as examples, the casting processes were drawn using this system, demonstrating that this system can significantly shorten the cycle of casting process designing.

  17. Fabrication and Electrical Characteristics of Graphite/Carbon Nanotube/Polyvinyl Butyral Composite Film via Tape-Casting and Heat-Treatment.

    Science.gov (United States)

    Kim, Min-Young; Choi, Seung-Woo; Boo, Seong Jae; Lee, Jong-Ho; Noh, Hee Sook; Kim, Ho-Sung

    2015-10-01

    Composite stacking films, which can be applied as the bipolar plates of redox flow batteries, were fabricated via a tape-casting process that used slurry of graphite, CNT, and resin materials. The slurry was made of 25~45 wt% conductive filler (graphite, CNT) and 55~75 wt% polyvinyl butyral (PVB) binder solution (binder, dispersant, plasticizer, and solvent). The sheet thickness of the composite films was controlled to 70~150 μm, and composite films of about 1 mm in thickness were also fabricated by stacking and laminating the sheet film, including the conductive filler of above 85 wt%. The effects of the shape and physical properties of the graphite were investigated with regard to the dispersion behavior and flow of the slurry on the carrier film of the tape-casting device. As a result, the acicular graphite showed a good dispersion property with the resin of the PVB binder, as compared to spherical graphite. The composite film with acicular graphite showed a lower resistivity than that of a film with spherical graphite. Furthermore, the effects of adding a small amount of CNT and the heat-treatment to the composite stacking film were also studied. Finally, the composite film showed an electrical characteristic of below 50 mΩ·cm and a high bending strength of above 20 MPa.

  18. Polymer melt rheology and flow simulations applied to cast film extrusion die design: An industrial perspective

    Science.gov (United States)

    Catherine, Olivier

    2017-05-01

    This article is an overview of the techniques used today in the area of rheology and flow simulation, on the industrial level, for cast film extrusion die design. This industry has made significant progress over the past three decades and die and feedblock design and optimization certainly have been instrumental in the overall improvement. Dies and coextrusion feedblocks are a critical aspect of the process due to the layering and forming function, which drive the final product economics and properties. Polymer melt rheology is a key aspect to consider when optimizing the flow patterns in the extrusion equipment. Not only is rheology critical for the flow channel design when aiming at obtaining a uniform flow distribution at the die exit, but also it is playing a major role in the thermal aspect of the flow due to the strong mechanical and thermal coupling. This coupling comes, on one hand, from the occurrence of viscous dissipation in the flow and on the other hand from the significant temperature dependency of melt viscosity. Viscous dissipation is due to relatively high melt viscosities and strain rates, especially with today's processes which involve formidable extrusion speeds. The third aspect discussed in this paper is the complexity of residence time distribution in modern flow channels, which is evaluated with advanced three-dimensional flow simulation and particle tracking.

  19. The technology of precision casting of titanium alloys by centrifugal process

    Directory of Open Access Journals (Sweden)

    A. Karwiński

    2011-07-01

    Full Text Available The article describes the development of a procedure for the preparation of foundry ceramic moulds and making first test castings. The presented studies included:development of technological parameters of the ceramic mould preparation process using water-based zirconium binders and zirconia ceramic materials, where moulds are next used for the centrifugal casting of titanium alloys melted in vacuum furnaces, designing of pouring process using simulation software, making test castings,testing and control of the casting properties. The technological process described in this paper enables making castings in titanium alloys weighing up to about 500 g and used in the majority of technical applications.

  20. Properties of cast films from hemp (Cannabis sativa L.) and soy protein isolates. A comparative study.

    Science.gov (United States)

    Yin, Shou-Wei; Tang, Chuan-He; Wen, Qi-Biao; Yang, Xiao-Quan

    2007-09-05

    The properties of cast films from hemp protein isolate (HPI) including moisture content (MC) and total soluble mass (TSM), tensile strength (TS) and elongation at the break (EAB), and surface hydrophobicity were investigated and compared to those from soy protein isolate (SPI). The plasticizer (glycerol) level effect on these properties and the interactive force pattern for the film network formation were also evaluated. At some specific glycerol levels, HPI films had similar MC, much less TSM and EAB, and higher TS and surface hydrophobicity (support matrix side), as compared to SPI films. The TS of HPI and SPI films as a function of plasticizer level (in the range of 0.3-0.6 g/g of protein) were well fitted with the exponential equation with coefficient factors of 0.991 and 0.969, respectively. Unexpectedly, the surface hydrophobicity of HPI films (including air and support matrix sides) increased with increasing the glycerol level (from 0.3 to 0.6 g/g of protein). The analyses of protein solubility of film in various solvents and free sulfydryl group content showed that the disulfide bonds are the prominent interactive force in the HPI film network formation, while in the SPI case, besides the disulfide bonds, hydrogen bonds and hydrophobic interactions are also to a similar extent involved. The results suggest that hemp protein isolates have good potential to be applied to prepare protein film with some superior characteristics, e.g., low solubility and high surface hydrophobicity.

  1. Minimization of Macrosegregation in DC Cast Ingots Through Jet Processing

    Science.gov (United States)

    Wagstaff, Samuel R.; Allanore, Antoine

    2016-10-01

    With an increase in demand for aluminum alloys, industrial suppliers are seeking to increase the size and speed of casting processes. Unfortunately operating the existing Direct-Chill (DC) process in such conditions tends to enhance metallurgical defects. Perhaps the most recognized of these defects is macrosegregation, whose effects are permanent once the material is solidified. In order to facilitate the expansion of the DC process without increasing the presence of macrosegregation, a novel jet mixing method to distribute the liquid metal is presented. The governing equations for this process are derived and the operating parameters necessary to minimize the centerline macrosegregation are predicted. The results of commercial-scale tests are presented, validating the predictive equations and performance of this process.

  2. Solvent mediated enhanced mobility of PPV films cast under the presence of a static electric field

    Science.gov (United States)

    Liang, Chou Fan; White, Jonathon David; Huang, Yi Fang; Fann, Wunshain

    2007-12-01

    Application of a high voltage static electric field during casting increases charge carrier mobility and reduces nanostructure within MEH-PPV thin films. Greater enhancement occurs in films formed from a high static dipole moment solvent (chlorobenzene) than from one having a low moment (toluene). Analysis by Bassler's Gaussian Disorder Model indicates that the electric field decreases positional disorder - the effect being greater for the higher static dipole moment solvent. This suggests that the interaction of the electric field with MEH-PPV during deposition is indirect rather than direct, being mediated by the evaporating solvent.

  3. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    Energy Technology Data Exchange (ETDEWEB)

    Puthirath, Anand B.; Varma, Sreekanth J.; Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Cochin, Kerala 682022 (India); Methattel Raman, Shijeesh [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Cochin, Kerala 682022 (India)

    2016-04-18

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.

  4. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    Science.gov (United States)

    Puthirath, Anand B.; Methattel Raman, Shijeesh; Varma, Sreekanth J.; Jayalekshmi, S.

    2016-04-01

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.

  5. Development of high plasticity Al-Si alloy and its casting process

    Institute of Scientific and Technical Information of China (English)

    郭国文; 李元元; 陈维平; 张大童; 龙雁

    2002-01-01

    Aiming to meet the challenge of the shape complexity and high plasticity demanded for the upper connective plate(UCP) in motorcycle, a high plasticity Al-Si alloy named HGZL-02 was developed by optimizing the chemical composition and casting process. Premium UCP castings were obtained by using optimized casting process. Results show that fine and dense microstructure are obtained in the UCP castings. An average of 224MPa in ultimate tensile strength, 149MPa in yield strength and 13.2% in elongation are achieved for T6 heat-treated UPS castings.

  6. Mechanism and application of a newly developed pressure casting process: horizontal squeeze casting

    Directory of Open Access Journals (Sweden)

    Li Peijie

    2014-07-01

    Full Text Available Compared to traditional high-pressure die casting (HPDC, horizontal squeeze casting (HSC is a more promising way to fabricate high-integrity castings, owing to a reduced number of gas and shrinkage porosities produced in the casting. In this paper, the differences between HSC and HPDC are assessed, through which it is shown that the cavity filling velocity and the size of the gating system to be the most notable differences. Equipment development and related applications are also reviewed. Furthermore, numerical simulation is used to analyze the three fundamental characteristics of HSC: slow cavity filling, squeeze feeding and slow sleeve filling. From this, a selection principle is given based on the three related critical casting parameters: cavity filling velocity, gate size and sleeve filling velocity. Finally, two specific applications of HSC are introduced, and the future direction of HSC development is discussed.

  7. Quality control for the continuous casting process using electromagnetic transducers

    Directory of Open Access Journals (Sweden)

    I.S. Kim

    2008-12-01

    Full Text Available Purpose: The continuous casting process is controlled automatically because various sensors and control unitsare connected to the mold and lower tundish roll. The solidification point in the process has a major factor onthe quality of products, but the point has been predicted depending on the inaccurate calculated results from acomputer simulation until now. Therefore, the objective of this paper is to develop the EMAT sensors for themeasurement of the solidification point made by a through transmission technique based on the relationshipbetween ultrasonic speed and measured temperature.Design/methodology/approach: The EMAT sensor is composed of an Elongated Spiral (ES forming an eddycurrent and a permanent magnetic core generating a static magnetic field. ES coils of the sensor to measure0.08mm, 0.2mm and 0.45mm as solidification points were employed respectively. Probes for receiving andtransmitting which included 4 permanent magnets measuring 5 ×5 ×10mm, were placed together in one unit.Each coil was used to magnetic cores measuring 0.08mm and 0.45mm wound around it forty three times. TheAI 75 ×75mm and 75 ×100mm simulators to identify whether the solidification point can be detected using anEMAT sensor, were machined with 2mm, 4mm, 8mm, 16mm and 32mm holes in diameter respectively.Findings: The electromagnetic interaction decreases in a high sphere of lift-off. Solidification point in acontinuous casting processing could be detected through a series of tests with the use of a fabricated probe andthe amplitude extent of ultrasonic wave decreases as the hole diameter of the simulators increases, Furthermore,the sensor developed is useful for measuring things such as lift-off.Research limitations/implications: A considerable amount of time and energy for miniaturization of the sensorand construction of an on-line system for a field installation should be saved by reducing mistake ratio andcurtailing unnecessary processes

  8. Influence of Refiner in ZA-12 Alloys During Centrifugal Casting Process

    Science.gov (United States)

    Jyothi, P. N.; Shailesh, Rao A.; Jagath, M. C.; Channakeshavalu, K.

    2014-05-01

    The behavior of the molten melt plays a predominant role in determining the quality cast product. In continuous casting, addition of refiner 1% (Al+Ti+B2) onto the molten metal increases its mechanical properties as a result of the nucleation within the process. In this article, the effect of refiners in the centrifugal casting process was studied. Eutectic ZA-12 alloys were taken for our experiment and cast at various rotational speeds (400 rpm, 600 rpm, and 800 rpm) with and without the addition of refiners. Rather than increase in the solidification rate as in continuous casting, these refiners diminish the solidification rate, which in turn forms an irregular-shaped cast tube. The microstructure and hardness for the entire cast specimen were discussed finally.

  9. Rapid tooling for functional prototyping of metal mold processes: Literature review on cast tooling

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, M.D. [Sandia National Labs., Albuquerque, NM (United States); Hochanadel, P.W. [Colorado School of Mines, Golden, CO (United States). Dept. of Metallurgical and Materials Engineering

    1995-11-01

    This report is a literature review on cast tooling with the general focus on AISI H13 tool steel. The review includes processing of both wrought and cast H13 steel along with the accompanying microstructures. Also included is the incorporation of new rapid prototyping technologies, such as Stereolithography and Selective Laser Sintering, into the investment casting of tool steel. The limiting property of using wrought or cast tool steel for die casting is heat checking. Heat checking is addressed in terms of testing procedures, theories regarding the mechanism, and microstructural aspects related to the cracking.

  10. Heat Transfer between Casting and Dieduring High Pressure Die Casting Process of AM50 Alloy-Modeling and Experimental Results

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A method based on die casting experiments and mathematic modeling is presented for the determination of the heat flow density (HFD) and interfacial heat transfer coefficient (IHTC) during the high pressure die casting (HPDC) process. Experiments were carried out using step shape casting and a commercial magnesium alloy, AM50. Temperature profiles were measured and recorded using thermocouples embedded inside the die.Based on these temperature readings, the HFD and IHTC were successfully determined and the calculation results show that the HFD and IHTC at the metal-die interface increases sharply right after the fast phase injection process until approaching their maximum values, after which their values decrease to a much lower level until the dies are opened. Different patterns of heat transler behavior were found between the die and the castingat different thicknesses. The thinner the casting was, the more quickly the HFD and IHTC reached their steady states. Also, the values for both the HFD and IHTC values were different between die and casting at different thicknesses.

  11. Physicochemical and Microstructural Characterization of Corn Starch Edible Films Obtained by a Combination of Extrusion Technology and Casting Technique.

    Science.gov (United States)

    Fitch-Vargas, Perla Rosa; Aguilar-Palazuelos, Ernesto; de Jesús Zazueta-Morales, José; Vega-García, Misael Odín; Valdez-Morales, Jesús Enrique; Martínez-Bustos, Fernando; Jacobo-Valenzuela, Noelia

    2016-09-01

    Starch edible films (EFs) have been widely studied due to their potential in food preservation; however, their application is limited because of their poor mechanical and barrier properties. Because of that, the aim of this work was to use the extrusion technology (Ex T) as a pretreatment of casting technique to change the starch structure in order to obtain EFs with improved physicochemical properties. To this, corn starch and a mixture of plasticizers (sorbitol and glycerol, in different ratios) were processed in a twin screw extruder to generate the starch modification and subsequently casting technique was used for EFs formation. The best conditions of the Ex T and plasticizers concentration were obtained using response surface methodology. All the response variables evaluated, were affected significatively by the Plasticizers Ratio (Sorbitol:Glycerol) (PR (S:G)) and Extrusion Temperature (ET), while the Screw Speed (SS) did not show significant effect on any of these variables. The optimization study showed that the appropriate conditions to obtain EFs with the best mechanical and barrier properties were ET = 89 °C, SS = 66 rpm and PR (S:G) = 79.7:20.3. Once the best conditions were obtained, the optimal treatment was characterized according to its microstructural properties (X-ray diffraction, Scanning Electron Microscopy and Atomic Force Microscopy) to determine the damage caused in the starch during Ex T and casting technique. In conclusion, with the combination of Ex T and casting technique were obtained EFs with greater breaking strength and deformation, as well as lower water vapor permeability than those reported in the literature. © 2016 Institute of Food Technologists®

  12. 铸造中的联合工艺%Combined Process of Investment Casting and Sand Casting

    Institute of Scientific and Technical Information of China (English)

    陈平; 杨忠耀; 张百堂

    2011-01-01

    采用水玻璃精铸生产销孔座系列产品遇到了烧砂问题(指在焙烧或浇注中模壳局部烧结并鼓胀导致铸件形成不规则的凹缺陷).由于水玻璃精铸中的涂料耐火度低,且涂料为层状、厚度大、易堆积而形成烧砂,但相同条件下水玻璃砂铸的铸件就不易出现烧砂.试验表明,在水玻璃精铸中局部采用水玻璃砂铸的联合工艺能十分有效地、经济地解决销孔座系列产品的烧砂问题.联合工艺经常是一种解决特殊铸件质量问题的有效方法.%The burn sand problem (Burn sand is a common defect in investment casting which means part of the shell mould gets sintered and deformed during the roasting or pouring) was found in investment casting of pinhole seat series products using sodium silicate sand. It is due to the low refractoriness and thick layer of the coating in the sodium silicate sand, which prones to accumulate, and then cause the burn sand easily. But under the same condition, burn sand does not occur in the sand casting process. The experiments show that combining sand casting process with the investment casting process in the production of pinhole seat series products can remove the burn sand defect effectively and economically. Generally, combined process is an effective method in the production of special castings.

  13. Engineering scale demonstration of a prospective Cast Stone process

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A.; Fowley, M.; Hansen, E.; Fox, K.; Miller, D.; Williams, M.

    2014-09-30

    This report documents an engineering-scale demonstration with non-radioactive simulants that was performed at SRNL using the Scaled Continuous Processing Facility (SCPF) to fill an 8.5 ft container with simulated Cast Stone grout. The Cast Stone formulation was chosen from the previous screening tests. Legacy salt solution from previous Hanford salt waste testing was adjusted to correspond to the average composition generated from the Hanford Tank Waste Operation Simulator (HTWOS). The dry blend materials, ordinary portland cement (OPC), Class F fly ash, and ground granulated blast furnace slag (GGBFS or BFS), were obtained from Lafarge North America in Pasco, WA. Over three days, the SCPF was used to fill a 1600 gallon container, staged outside the facility, with simulated Cast Stone grout. The container, staged outside the building approximately 60 ft from the SCPF, was instrumented with x-, y-, and z-axis thermocouples to monitor curing temperature. The container was also fitted with two formed core sampling vials. For the operation, the targeted grout production rate was 1.5 gpm. This required a salt solution flow rate of approximately 1 gpm and a premix feed rate of approximately 580 lb/h. During the final day of operation, the dry feed rate was increased to evaluate the ability of the system to handle increased throughput. Although non-steady state operational periods created free surface liquids, no bleed water was observed either before or after operations. The final surface slope at a fill height of 39.5 inches was 1-1.5 inches across the 8.5 foot diameter container, highest at the final fill point and lowest diametrically opposed to the fill point. During processing, grout was collected in cylindrical containers from both the mixer discharge and the discharge into the container. These samples were stored in a humid environment either in a closed box proximal to the container or inside the laboratory. Additional samples collected at these sampling points

  14. Spin-Casting Polymer Brush Films for Stimuli-Responsive and Anti-Fouling Surfaces.

    Science.gov (United States)

    Xu, Binbin; Feng, Chun; Hu, Jianhua; Shi, Ping; Gu, Guangxin; Wang, Lei; Huang, Xiaoyu

    2016-03-01

    Surfaces modified with amphiphilic polymers can dynamically alter their physicochemical properties in response to changes of their environmental conditions; meanwhile, amphiphilic polymer coatings with molecular hydrophilic and hydrophobic patches, which can mitigate biofouling effectively, are being actively explored as advanced coatings for antifouling materials. Herein, a series of well-defined amphiphilic asymmetric polymer brushes containing hetero side chains, hydrophobic polystyrene (PS) and hydrophilic poly(ethylene glycol) (PEG), was employed to prepare uniform thin films by spin-casting. The properties of these films were investigated by water contact angle, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and quartz crystal microbalance (QCM). AFM showed smooth surfaces for all films with the roughness less than 2 nm. The changes in water contact angle and C/O ratio (XPS) evidenced the enrichment of PEG or PS chains at film surface after exposed to selective solvents, indicative of stimuli- responsiveness. The adsorption of proteins on PEG functionalized surface was quantified by QCM and the results verified that amphiphilic polymer brush films bearing PEG chains could lower or eliminate protein-material interactions and resist to protein adsorption. Cell adhesion experiments were performed by using HaCaT cells and it was found that polymer brush films possess good antifouling ability.

  15. Stress/strain Modelling of Casting Processes in the Framework of the Control-Volume Method

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Thorborg, Jesper; Andersen, Søren

    1998-01-01

    Realistic computer simulations of casting processes call for the solution of both thermal, fluid-flow and stress/strain related problems. The multitude of the influencing parameters, and their non-linear, transient and temperature dependent nature, make the calculations complex. Therefore the need......, the present model is based on the mainly decoupled representation of the thermal, mechanical and microstructural processes. Examples of industrial applications, such as predicting residual deformations in castings and stress levels in die casting dies, are presented...

  16. The Effect of Thermomechanical Processing on Mechanical Properties of a Cast 6061 Aluminum Metal Matrix Composite

    Science.gov (United States)

    1993-12-01

    Conference Proceedings, 1990 19. Lewandowski, J. J. et al., "Effects of Casting Conditions and Deformation Processing on A356 Aluminum and A356 -20 Vol...CAST 6061 ALUMINUM METAL MATRIX COMPOSITE by Werner Fletcher Hoyt December 1993 Thesis Advisor: Terry R. McNelley Approved for public release...Security Classification) THE EFFECT OF THERMOMECHANICAL PROCESSING ON MECHANICAL PROPERTIES OF A CAST 6061 ALUMINUM METAL MATRIX COMPOSITE 12. PERSONAL

  17. Espalhamento e secagem de filme de amido-glicerol-fibra preparado por "tape-casting"

    Directory of Open Access Journals (Sweden)

    Jaqueline Oliveira de Moraes

    2014-02-01

    Full Text Available O objetivo deste trabalho foi avaliar processos de espalhamento e secagem de filme de amido-glicerol-fibras de celulose, preparado por "tape-casting". O espalhamento da suspensão foi avaliado a 50, 150 e 250 cm min-1, seguido de secagem em estufa com circulação forçada de ar, a 40 ou 70ºC; avaliou-se também o espalhamento da suspensão a 150 cm min-1, seguido da secagem do filme sobre suporte de "tape-casting" a 22ºC e 60% de umidade relativa, com velocidades do ar de 4, 6 e 8 m s-1 no túnel de secagem. Ensaios reológicos mostraram que o espalhamento das suspensões a temperaturas inferiores a 50ºC apresentou módulo de elasticidade superior ao módulo viscoso, em todo o espectro de frequências de oscilação. As microscopias mostraram filmes secos a 40 e 70ºC sem defeitos de formação, e cujas propriedades mecânicas não diferiam. A velocidade de espalhamento e a do ar não modificam o tempo de secagem nem as propriedades dos filmes. O tempo de secagem pode ser reduzido para aproximadamente duas horas, o que é importante para a produção dos filmes em larga escala.

  18. Novel methodology for casting process optimization using Gaussian process regression and genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Yao Weixiong; Yang Yi; Zeng Bin

    2009-01-01

    High pressure die casting (HPDC) is a versatile material processing method for mass-production of metal parts with complex geometries,and this method has been widely used in manufacturing various products of excellent dimensional accuracy and productivity. In order to ensure the quality of the components,a number of variables need to be properly set. A novel methodology for high pressure die casting process optimization was developed,validated and applied to selection of optimal parameters,which incorporate design of experiment (DOE),Gaussian process (GP) regression technique and genetic algorithms (GA). This new approach was applied to process optimization for cast magnesium alloy notebook shell. After being trained,using data generated by PROCAST (FEM-based simulation software),the GP model approximated well with the simulation by extracting useful information from the simulation results. With the help of MATLAB,the GP/GA based approach has achieved the optimum solution of die casting process condition settings.

  19. Storage Stability and Antibacterial Activity against E. coli O157:H7 of Carvacrol in Edible Apple Films made by Two Different Casting Methods

    Science.gov (United States)

    The antimicrobial activities against E. coli O157:H7, as well as the stability of carvacrol, the main constituent of oregano oil, were evaluated during the preparation and storage of apple-based edible films made by two different casting methods, continuous casting and batch casting. Antimicrobial ...

  20. STUDY ON NUMERICAL SIMULATION OF MOLD-FILLING AND SOLIDIFICATION PROCESSES OF SHAPED CASTING

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The latest progress on the study of numerical simulation of mold-filling and solidification process of shaped casting is reviewed. In mold-filling process simulation of castings, the SOLA-VOF algorithmis is improved in efficient free surface treatment and turbulence consideration, and parallel computational techniques are implemented to accelerate the fluid flow calculation time as well. Methods for predication of shrinkage defects of steel castings and S.G. iron castings are developed based on the solidification simulation. In order to reduce the residual stress and deformation of castings, a combined FDM/FEM method is implemented for the modelling of stresses. Numerical models for the simulation of micro-structure and prediction of mechanical properties of S.G. iron are developed. The verifications and applications of the simulation software show that the models and techniques adopted in current research work are efficient and appropriate for the numerical simulation of shaped castings.

  1. Investigation of the beryllia ceramics molding process by the hot casting method

    Science.gov (United States)

    Zhapbasbaev, U. K.; Ramazanova, G. I.; Sattinova, Z. K.

    2013-03-01

    Results of mathematical simulation of the ceramics molding process by the hot casting method are presented. The mathematical model describes the motion of beryllia liquid thermoplastic slurry in a form-building cavity subject to solidification. Velocity and temperature profiles providing homogeneous properties of the beryllia ceramics in the process of molding by the hot casting method are obtained.

  2. Properties of Cast Films Made from Different Ratios of Whey Protein Isolate, Hydrolysed Whey Protein Isolate and Glycerol

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2013-08-01

    Full Text Available Whey protein isolate (WPI-based cast films are very brittle, due to several chain interactions caused by a large amount of different functional groups. In order to overcome film brittleness, plasticizers, like glycerol, are commonly used. As a result of adding plasticizers, the free volume between the polymer chains increases, leading to higher permeability values. The objective of this study was to investigate the effect of partially substituting glycerol by hydrolysed whey protein isolate (h-WPI in WPI-based cast films on their mechanical, optical and barrier properties. As recently published by the author, it is proven that increasing the h-WPI content in WPI-based films at constant glycerol concentrations significantly increases film flexibility, while maintaining the barrier properties. The present study considered these facts in order to increase the barrier performance, while maintaining film flexibility. Therefore glycerol was partially replaced by h-WPI in WPI-based cast films. The results clearly indicate that partially replacing glycerol by h-WPI reduces the oxygen permeability and the water vapor transmission rate, while the mechanical properties did not change significantly. Thus, film flexibility was maintained, even though the plasticizer concentration was decreased.

  3. Geometrical modulus of a casting and its influence on solidification process

    Directory of Open Access Journals (Sweden)

    F. Havlicek

    2011-10-01

    Full Text Available Object: The work analyses the importance of the known criterion for evaluating the controlled solidification of castings, so called geometrical modulus defined by N. Chvorinov as the first one. Geometrical modulus influences the solidification process. The modulus has such specificity that during the process of casting formation it is not a constant but its initial value decreases with the solidification progress because the remaining melt volume can decrease faster than its cooling surface.Methodology: The modulus is determined by a simple calculation from the ratio of the casting volume after pouring the metal in the mould to the cooled mould surface. The solidified metal volume and the cooled surface too are changed during solidification. That calculation is much more complicated. Results were checked up experimentally by measuring the temperatures in the cross-section of heavy steel castings during cooling them.Results: The given experimental results have completed the original theoretical calculations by Chvorinov and recent researches done with use of numerical calculations. The contribution explains how the geometrical modulus together with the thermal process in the casting causes the higher solidification rate in the axial part of the casting cross-section and shortening of solidification time. Practical implications: Change of the geometrical modulus negatively affects the casting internal quality. Melt feeding by capillary filtration in the dendritic network in the casting central part decreases and in such a way the shrinkage porosity volume increases. State of stress character in the casting is changed too and it increases.

  4. AN INTRODUCTION TO RAPID CASTING: DEVELOPMENT AND INVESTIGATION OF PROCESS CHAINS FOR SAND CASTING OF FUNCTIONAL PROTOTYPES

    OpenAIRE

    Dimitrov, D.; Wijk, W.; Beer, N.

    2012-01-01

    ENGLISH ABSTRACT: This paper discusses the results obtained from studies on different Rapid Tooling process chains in order to improve the design and manufacture of foundry equipment that is used for sand casting of prototypes in final material. These prototypes are intended for functional and pre-production tests of vehicles. The Three Dimensional Printing process is used as core technology. Subsequently, while considering aspects such as time, cost, quality (accuracy and surface ro...

  5. Characterization of Jatropha curcas L. Protein Cast Films with respect to Packaging Relevant Properties

    Directory of Open Access Journals (Sweden)

    Gabriele Gofferje

    2015-01-01

    Full Text Available There is increasing research ongoing towards the substitution of petrochemical based plastics by more sustainable raw materials, especially in the field of bioplastics. Proteins of different types such as whey, casein, gelatine, or zein show potential beyond the food and feed industry as, for instance, the application in packaging. Protein based coatings provide different packaging relevant properties such as barrier against permanent gases, certain water vapour barrier, and mechanical resistance. The aim of this study was to explore the potential for packaging applications of proteins from Jatropha curcas L. and to compare the performance with literature data on cast films from whey protein isolate. As a by-product from oil extraction, high amounts of Jatropha meal are obtained requiring a concept for its sustainable utilization. Jatropha seed cake includes up to 40% (w/w of protein which is currently not utilized. The present study provides new data on the potential of Jatropha protein for packaging applications. It was shown that Jatropha protein cast films show suitable barrier and mechanical properties depending on the extraction and purification method as well as on the plasticiser content. Based on these findings Jatropha proteins own potential to be utilized as coating material for food packaging applications.

  6. Testing of heating and cooling process of ADI cast iron with use of ATND method

    Directory of Open Access Journals (Sweden)

    A. Białobrzeski

    2008-10-01

    Full Text Available ADI (Austempered Ductile Iron cast iron, owing to its unique combination of high tensile strength and abrasion resistance with very goodplasticity, founds implementation in many branches of industry as a substitute of alloy cast steel and carburized or heat treated steels. Inspite of its solid position among producers and recipients of castings, there are still undertaken studies aimed at perfection of its propertiesand recognition of mechanisms enabling obtaining such properties.The paper presents implementation of thermal-voltage-derivative (ATND method to registration of heating and cooling course of ADIcast iron with EN-GJS-1200-2 grade. ADI cast iron with EN-GJS-1200-2 grade underwent the study. Heat treatment of the cast iron wasperformed in Foundry Institute with use of LT ADI-350/1000 processing line. Results obtained from the testing illustrate in graphic formregistered heating and cooling curves of investigated cast irons obtained with use of the ATND method.

  7. Precursor- route ZnO films from mixed casting solvent for high performance aqueous electrolyte- gated transistors

    OpenAIRE

    Grell, M.; Althagafi, T.M.; Algarni, S.A.; Al Naim, A.; Mazher, J.

    2015-01-01

    We significantly improved the properties of semiconducting zinc oxide (ZnO) films resulting from the thermal conversion of a soluble precursor, zinc acetate (ZnAc), by using a mixed casting solvent for the precursor. ZnAc dissolves more readily in a 1:1 mix of ethanol (EtOH) and acetone than in either pure EtOH, pure acetone, or pure isopropanol, and ZnO films converted from mixed solvent cast ZnAc are more homogeneous. When gated with a biocompatible electrolyte, phosphate buffered saline (P...

  8. Mechanical Performances of Carbonitriding Films on Cast Iron by Plasma Electrolytic Carbonitriding

    Institute of Scientific and Technical Information of China (English)

    PANG Hua; ZHANG Gu-Ling; WANG Xing-Quan; LV Guo-Hua; CHEN Huan; YANG Si-Ze

    2011-01-01

    The plasma electrolytic carbonitriding (PEC/N) process is applied to cast iron using an aqueous solution of acetamide and glycerin as the electrolyte. Mechanical properties of the carbonitriding layers on cast iron are investigated. After the PEC/N treatment, the microhardness and wear resistance of cast iron are improved significantly compared to the untreated substrate. When the substrate is processed at 350 V for 60s, the coating presents the highest microhardness and it is about 554.14HK0.02, and the coating with the highest hardness has the best wear resistance.%The plasma electrolytic carbonitriding (PEC/N) process is applied to cast iron using an aqueous solution of acetamide and glycerin as the electrolyte.Mechanical properties of the carbonitriding layers on cast iron are investigated.After the PEC/N treatment,the microhardness and wear resistance of cast iron are improved significantly compared to the untreated substrate.When the substrate is processed at 350 V for 60s,the coating presents the highest microhardness and it is about 554.14HK0.02,and the coating with the highest hardness has the best wear resistance.Plasma electrolytic saturation (PES) is a relatively novel surface engineering technique,which operates at room temperature and atmospheric pressure.[1-3]It includes plasma electrolytic carburizing (PEC),[4,5]plasma electrolytic nitriding (PEN)[6] and plasma electrolytic carbonitriding (PEC/N).[7-10] The relatively unrestrained size and shape,and shorter treatment time compared to vacuum-plasma processes make the PES a desirable and flexible technique for industrial use.The PES treatments on low carbon steel,[11] stainless steel[3,12] and pure iron[13] have been investigated.Researchers studied the microstructure,phase composition,corrosion resistance,microhardness and wear performance of the PES-treated samples.It was found that the diffusion of N into stainless steels can improve the corrosion resistance of stainless steels,[14] while the

  9. Coupled Simulation of Flow and Thermal Field of Twin-Roll Strip Casting Process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The first micro-segregation under conditions of twin roll strip casting was simulated. The relationship between the temperature and solid fraction in the mushy zone was given. The temperatures such as ZDT, LIT were got from this simulation. Then using the turbulent model, the flow field and thermal field in the pool of twin-roll strip caster was simulated. The speed and temperature at different casting speed was given, and the results were also explained. By these two simulations, the appropriate casting speed can be found. These simulations can provide effective data for controlling the twin-roll strip casting process.

  10. STARCH/PULP-FIBER BASED PACKAGING FOAMS AND CAST FILMS CONTAINING ALASKAN FISH BY-PRODUCTS (WASTE

    Directory of Open Access Journals (Sweden)

    Syed H. Imam

    2008-08-01

    Full Text Available Baked starch/pulp foams were prepared from formulations containing zero to 25 weight percent of processed Alaskan fish by-products that consisted mostly of salmon heads, pollock heads, and pollock frames (bones and associated remains produced in the filleting operation. Fish by-products thermoformed well along with starch and pulp fiber, and the foam product (panels exhibited useful mechanical properties. Foams with all three fish by-products, ranging between 10 and 15 wt%, showed the highest flexural modulus (500-770 Mpa. Above 20% fiber content, the modulus dropped considerably in all foam samples. Foam panels with pollock frames had the highest flexural modulus, at about 15% fiber content (770 Mpa. Foams with salmon heads registered the lowest modulus, at 25% concentration. Attempts were also made to cast starch-glycerol-poly (vinyl alcohol films containing 25% fish by-product (salmon heads. These films showed a tensile strength of 15 Mpa and elongation at break of 78.2%. All foams containing fish by-product degraded well in compost at ambient temperature (24oC, loosing roughly between 75-80% of their weight within 7 weeks. The films degraded at a much higher rate initially. When left in water, foams prepared without fish by-product absorbed water much more quickly and deteriorated faster, whereas, water absorption in foams with fish by-product was initially delayed and/or slowed for about 24 h. After this period, water absorption was rapid.

  11. The influence of the parameters of lost foam process on the quality of aluminum alloys castings

    Directory of Open Access Journals (Sweden)

    Aćimović-Pavlović Zagorka

    2010-01-01

    Full Text Available This paper presents the research results of application of Lost foam process for aluminum alloys castings of a simple geometry. The process characteristic is that patterns and gating of moulds, made of polymers, stay in the mould till the liquid metal inflow. In contact with the liquid metal, pattern intensely and in relatively short time decomposes and evaporates, which is accompanied by casting crystallization. As a consequence of polymer pattern decomposition and evaporation a great quantity of liquid and gaseous products are produced, which is often the cause of different types of casting errors. This paper presents the results of a research with a special consideration given to detecting and analyzing the errors of castings. In most cases the cause of these errors are defects of polymer materials used for evaporable patterns production, as well as defects of materials for refractory coatings production for polymer patterns. The researches have shown that different types of coatings determine properties of the obtained castings. Also, the critical processing parameters (polymer pattern density, casting temperature, permeability of refractory coating and sand, construction of patterns and gating of moulds significantly affect on castings quality. During the research a special consideration was given to control and optimization of these parameters with the goal of achieving applicable castings properties. The study of surface and internal error of castings was performed systematically in order to carry out preventive measures to avoid errors and minimize production costs. In order to achieve qualitative and profitable castings production by the method of Lost foam it is necessary to reach the balance in the system: evaporable polymer pattern - liquid metal - refractory coating - sandy cast in the phase of metal inflow, decomposition and evaporation of polymer pattern, formation and solidification of castings. By optimizing the processing

  12. Process-directed self-assembly of multiblock copolymers: Solvent casting vs spray coating

    Science.gov (United States)

    Tang, Q.; Tang, J.; Müller, M.

    2016-07-01

    Using computer simulation of a soft, coarse-grained model and self-consistent field theory we investigate how collapsed, globular chain conformations in the initial stages of structure formation, which are produced by spray-coating, affect the single-chain structure and morphology of microphase-separated multiblock copolymers. Comparing spray-coated films with films that start from a disordered state of Gaussian chains, we observe that the collapsed molecular conformations in the initial stage give rise to (1) a smaller fraction of blocks that straddle domains (bridges), (2) a significant reduction of the molecular extension normal to the internal interfaces, and (3) a slightly larger lamellar domain spacing in the final morphology. The relaxation of molecular conformations towards equilibrium is very protracted for both processes - solvent casting and spray coating. These findings illustrate that the process conditions of the copolymer materials may significantly affect materials properties (such as mechanical properties) because the system does not reach thermal equilibrium on the relevant time scales.

  13. Numerical simulation of complex multi-phase fluid of casting process and its applications

    Institute of Scientific and Technical Information of China (English)

    CHEN Li-liang; LIU Rui-xiang; C. Beckermann

    2006-01-01

    The fluid of casting process is a typical kind of multi-phase flow. Actually, many casting phenomena have close relationship with the multi-phase flow, such as molten metal filling process, air entrapment, slag movement, venting process of die casting, gas escaping of lost foam casting and so on. Obviously, in order to analyze these phenomena accurately,numerical simulation of the multi-phase fluid is necessary. Unfortunately, so far, most of the commercial casting simulation systems do not have the ability of multi-phase flow modeling due to the difficulty in the multi-phase flow calculation. In the paper, Finite Different Method (FDM) technique was adopt to solve the multi-phase fluid model. And a simple object of the muiti-phase fluid was analyzed to obtain the fluid rates of the liquid phase and the entrapped air phase.

  14. Principles and practice of low pressure-expendable pattern casting process for magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    LI Ji-qiang; FAN Zi-tian; WU He-bao; DONG Xuan-pu; ZHANG Da-fu; HUANG Nai-yu

    2006-01-01

    A newly developed low-pressure expendable pattern casting (LP-EPC) process was introduced and its basic pnnciples or effect factors were further analyzed. According to theoretical calculation and experimental results, the major casting parameters that are of great and critical importance on the process include pressure and flux of filling gas, decomposition characteristic and density of foam pattern,thickness and permeability of coating, pouring temperature, vacuum degree and their combination. Most of casting defects can be effectively avoided by choosing the suitable parameters. The success achieved in pouring motor housing and exhaust manifold castings demonstrates the advantages of LP-EPC process in the production of high-complicated castings with high dimension accuracy.

  15. Numerical simulation of complex multi-phase fluid of casting process and its applications

    Directory of Open Access Journals (Sweden)

    CHEN Li-liang

    2006-05-01

    Full Text Available The fluid of casting process is a typical kind of multi-phase flow. Actually, many casting phenomena have close relationship with the multi-phase flow, such as molten metal filling process, air entrapment, slag movement, venting process of die casting, gas escaping of lost foam casting and so on. Obviously, in order to analyze these phenomena accurately, numerical simulation of the multi-phase fluid is necessary. Unfortunately, so far, most of the commercial casting simulation systems do not have the ability of multi-phase flow modeling due to the difficulty in the multi-phase flow calculation. In the paper, Finite Different Method (FDM technique was adopt to solve the multi-phase fluid model. And a simple object of the muiti-phase fluid was analyzed to obtain the fluid rates of the liquid phase and the entrapped air phase.

  16. Moving through the phase diagram: morphology formation in solution cast polymer-fullerene blend films for organic solar cells.

    Science.gov (United States)

    Schmidt-Hansberg, Benjamin; Sanyal, Monamie; Klein, Michael F G; Pfaff, Marina; Schnabel, Natalie; Jaiser, Stefan; Vorobiev, Alexei; Müller, Erich; Colsmann, Alexander; Scharfer, Philip; Gerthsen, Dagmar; Lemmer, Uli; Barrena, Esther; Schabel, Wilhelm

    2011-11-22

    The efficiency of organic bulk heterojunction solar cells strongly depends on the multiscale morphology of the interpenetrating polymer-fullerene network. Understanding the molecular assembly and the identification of influencing parameters is essential for a systematic optimization of such devices. Here, we investigate the molecular ordering during the drying of doctor-bladed polymer-fullerene blends on PEDOT:PSS-coated substrates simultaneously using in situ grazing incidence X-ray diffraction (GIXD) and laser reflectometry. In the process of blend crystallization, we observe the nucleation of well-aligned P3HT crystallites in edge-on orientation at the interface at the instant when P3HT solubility is crossed. A comparison of the real-time GIXD study at ternary blends with the binary phase diagrams of the drying blend film gives evidence of strong polymer-fullerene interactions that impede the crystal growth of PCBM, resulting in the aggregation of PCBM in the final drying stage. A systematic dependence of the film roughness on the drying time after crossing P3HT solubility has been shown. The highest efficiencies have been observed for slow drying at low temperatures which showed the strongest P3HT interchain π-π-ordering along the substrate surface. By adding the "unfriendly" solvent cyclohexanone to a chlorobenzene solution of P3HT:PCBM, the solubility can be crossed prior to the drying process. Such solutions exhibit randomly orientated crystalline structures in the freshly cast film which results in a large crystalline orientation distribution in the dry film that has been shown to be beneficial for solar cell performance.

  17. Application of Numerical Simulation Technique to Casting Process of Valve Block

    Institute of Scientific and Technical Information of China (English)

    MI Guo-fa; LIU Xiang-yu; WANG Kuang-fei; FU Heng-zhi

    2009-01-01

    The numerical simulation technique was applied to the casting process of a valve-type part. The mold-filling and solidification stages of the casting were numerically analyzed. The filling behavior, solidification sequence,and thermal stress distribution were reproduced and the possible defects, such as cold shut and shrinkage, were predicted. Based on the simulation result, the double-gating system was replaced by a single-gating system. Meanwhile,the chills were used to regulate the solidification sequence of casting. To eliminate the cracks in the casting, the sand core was converted into a canulate one. By modifying the original process, the defects were eliminated and the casting with good quality was obtained.

  18. Multiphysics modeling of the steel continuous casting process

    Science.gov (United States)

    Hibbeler, Lance C.

    This work develops a macroscale, multiphysics model of the continuous casting of steel. The complete model accounts for the turbulent flow and nonuniform distribution of superheat in the molten steel, the elastic-viscoplastic thermal shrinkage of the solidifying shell, the heat transfer through the shell-mold interface with variable gap size, and the thermal distortion of the mold. These models are coupled together with carefully constructed boundary conditions with the aid of reduced-order models into a single tool to investigate behavior in the mold region, for practical applications such as predicting ideal tapers for a beam-blank mold. The thermal and mechanical behaviors of the mold are explored as part of the overall modeling effort, for funnel molds and for beam-blank molds. These models include high geometric detail and reveal temperature variations on the mold-shell interface that may be responsible for cracks in the shell. Specifically, the funnel mold has a column of mold bolts in the middle of the inside-curve region of the funnel that disturbs the uniformity of the hot face temperatures, which combined with the bending effect of the mold on the shell, can lead to longitudinal facial cracks. The shoulder region of the beam-blank mold shows a local hot spot that can be reduced with additional cooling in this region. The distorted shape of the funnel mold narrow face is validated with recent inclinometer measurements from an operating caster. The calculated hot face temperatures and distorted shapes of the mold are transferred into the multiphysics model of the solidifying shell. The boundary conditions for the first iteration of the multiphysics model come from reduced-order models of the process; one such model is derived in this work for mold heat transfer. The reduced-order model relies on the physics of the solution to the one-dimensional heat-conduction equation to maintain the relationships between inputs and outputs of the model. The geometric

  19. Research on Integrated Casting and Forging Process of Aluminum Automobile Wheel

    OpenAIRE

    Zhang, Qi; Cao, Miao; ZHANG, DAWEI; Zhang, Shuai; Sun, Jue

    2014-01-01

    Integrated casting and forging process (ICFP) is a new manufacturing method combining the advantages of both casting and forging. Aluminum structure parts, such as aluminum alloy automobile wheel, with complex shape and excellent mechanical properties can be produced by this process. The effects of different process parameters on the ICFP of the automobile wheel were simulated by Forge software. Microstructure of forging region and the nonforging region were studied by experiment. The results...

  20. Application of Anand's constitutive model on twin roll casting process of AZ31 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    HU Xiao-dong; JU Dong-ying

    2006-01-01

    Twin-roll thin strip casting process combines casting and hot rolling into a single process,in which thermal stress and thermal mechanical stress were involved. Considering the high temperature gradient,the existing of liquid and solid regions and rolling deformation,suitable constitutive model is the key to describe the process. Anand's model is a temperature-dependent,rate-dependent and unified of creep and plasticity model and the Jaumann derivative was employed in Anand's model which makes the constitutive model frame-indifferent or objective,therefore the highly nonlinearities behavior in the twin-roll casting process can be simulated. The parameters of the Anand's model were regressed based on the compression tests of AZ31 magnesium alloy. The simulation results reveal that the Anand's model can well describe the deformation characteristics of twin-roll casting process. Based on the simulation results,the form of evolution equations in Anand's model was discussed.

  1. Modeling and simulation of 3D thermal stresses of large-sized castings in solidification processes

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large- sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings.Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique.

  2. Electrocatalytic Oxidation of Dopamine by Ferrocene in Lipid Film Cast on a Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG,Jian-Guo(王建国); WU,Zheng-Yan(吴正岩); TANG,Ji-Lin(唐纪琳); TENG,Ren-Rui(滕人瑞); WANG,Er-Kang(汪尔康)

    2002-01-01

    The ferrocene-lipid film electrode was successfully prepared by means of casting the solution of ferrocene and lipid in chloroform onto a glassy carbon (GC) electrode surface. Ferrocene saved in the biological membrane gave a couple of quasi-reversble peaks of cyclic voltammmogram. The electrode displays a preferential electrocatalytic oxidation of dopamine (DA).The effect of electrocatalytic oxidation of DA depends on the solution pH and the negative charge lipid is in favor of catalytic oxidation of DA. The charistic was employed for separating the electrochemical responses of DA and ascorbic acid (AA). The electrode was assessed for the voltammtric differentiation of DA and AA. The measurement of DA can be achieved with differential pulse voltammetry in the presence of high conentration of AA. The catalytic peak current was proportional to the concentration of DA in the range of 1 ×10- 4-3 × 10-3 mol/L.

  3. Mathematical Modelling of the Thermical Regime in the Continous Casting Process

    Directory of Open Access Journals (Sweden)

    Monika Erika POPA

    2005-10-01

    Full Text Available Continuous casting is one of the prominent methods of production of casts. Effective design and operation of continuous casting machines needs complete analysis of the continuous casting process. In this paper the basic principles of continuous casting and its heat transfer analysis using the finite element method are presented. In the analysis phase change is assumed to take place at constant temperature. A front tracking algorithm has been developed to predict the position of the solidification front at each step. Finally, examples that are solved by the proposed algorithm are discussed. The results show that there is a good agreement between the method developed in this work and other previously reported works.

  4. Temperature and Thermal Stress Distribution for Metal Mold in Squeeze Casting Process

    Institute of Scientific and Technical Information of China (English)

    K.H.Chang; G.C.Jang; C.H.Lee; S.H.Lee

    2008-01-01

    In the squeeze casting process, loaded high pressure (over approximately 100 MPa) and high temperature influence the thermo-mechanical behavior and performance of the used metal mold. Therefore, to safely maintain the metal molds, the thermo-mechanical characteristics (temperature and thermal stress) of metal mold in the squeeze casting must be investigated. In this paper, temperature and thermal stress distribution of steel mold in squeeze casting process were investigated by using a three-dimensional non-steady heat conduction analysis and a three-dimensional thermal elastic-plastic analysis considering temperature-dependent thermo- physical and mechanical properties of the steel mold.

  5. In vitro biocompatibility of schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds.

    Science.gov (United States)

    Sangsanoh, Pakakrong; Waleetorncheepsawat, Suchada; Suwantong, Orawan; Wutticharoenmongkol, Patcharaporn; Weeranantanapan, Oratai; Chuenjitbuntaworn, Boontharika; Cheepsunthorn, Poonlarp; Pavasant, Prasit; Supaphol, Pitt

    2007-05-01

    The in vitro responses of Schwann cells (RT4-D6P2T, a schwannoma cell line derived from a chemically induced rat peripheral neurotumor) on various types of electrospun fibrous scaffolds of some commercially available biocompatible and biodegradable polymers, i.e., poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polycaprolactone (PCL), poly(l-lactic acid) (PLLA), and chitosan (CS), were reported in comparison with those of the cells on corresponding solution-cast film scaffolds as well as on a tissue-culture polystyrene plate (TCPS), used as the positive control. At 24 h after cell seeding, the viability of the attached cells on the various substrates could be ranked as follows: PCL film > TCPS > PCL fibrous > PLLA fibrous > PHBV film > CS fibrous approximately CS film approximately PLLA film > PHB film > PHBV fibrous > PHB fibrous. At day 3 of cell culture, the viability of the proliferated cells on the various substrates could be ranked as follows: TCPS > PHBV film > PLLA film > PCL film > PLLA fibrous > PHB film approximately PCL fibrous > CS fibrous > CS film > PHB fibrous > PHBV fibrous. At approximately 8 h after cell seeding, the cells on the flat surfaces of all of the film scaffolds and that of the PCL nanofibrous scaffold appeared in their characteristic spindle shape, while those on the surfaces of the PHB, PHBV, and PLLA macrofibrous scaffolds also appeared in their characteristic spindle shape, but with the cells being able to penetrate to the inner side of the scaffolds.

  6. THE EQUATION FOR THE CONTINUOUS INGOT SOLIDIFICATION PROCESS FOR CONTROL SYSTEMS OF CONTINUOUS CASTING CASTER MNLZ

    Directory of Open Access Journals (Sweden)

    I. A. Pugachev

    2013-01-01

    Full Text Available A process of heat transfer in continuous casting mould is considered. The substantiated equations predict shell growth, temperature distributions, solidification rates and can be used for continuous casters control systems.

  7. The analysis of the possibility of the application of the casting waxes in the process RP

    Directory of Open Access Journals (Sweden)

    G. Budzik

    2009-04-01

    Full Text Available The article presents analysis of possibility of application of casting waxes in process of rapid prototyping of casting models in silicone the matrices. The researches were made on casting waxes applied to the manufacturing of precise casting models and also the model system. Testing waxes are intended nominally to the processing in process of the injection. The determining of possibility processing of waxes in silicone forms was purpose of researches. Researches concerned of whole manufacturing process i.e. the preparation of the form and wax, the filling of form and also the deforming. As a result of made researches the temperature of filling of matrix was determined. The main part of research process concerned determining of temperature of deforming for every with kinds of waxes. This is especially important in case of manufacturing of casting models of precise elements, which can be destroyed easily. In this purpose researches of the bending of waxen forms were made in the range of temperature 20-37ºC. The processing parameters of casting waxes were determined as a result of made researches.

  8. Turbulent Fluid Flow and Heat Transfer Calculation in Mold Filling and Solidification Processes of Castings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the time-averaging equations and a modified engineering turbulence model, the mold filling and solidification processes of castings are approximately described. The algorithm for the control equations is briefly introduced, and some problems and improvement methods for the traditional method are also presented. Both calculation and tests proved that, comparing with the laminar fluid flow and heat transfer, the simulation results by using the turbulence model are closer to the real mold filling and solidification processes of castings.

  9. Real-time measurement system for tracking birefringence, weight, thickness, and surface temperature during drying of solution cast coatings and films

    Science.gov (United States)

    Unsal, E.; Drum, J.; Yucel, O.; Nugay, I. I.; Yalcin, B.; Cakmak, M.

    2012-02-01

    This paper describes the design and performance of a new instrument to track temporal changes in physical parameters during the drying behavior of solutions, as well as curing of monomers. This real-time instrument follows in-plane and out-of-plane birefringence, weight, thickness, and surface temperature during the course of solidification of coatings and films through solvent evaporation and thermal or photocuring in a controlled atmosphere. It is specifically designed to simulate behavior of polymer solutions inside an industrial size, continuous roll-to-roll solution casting line and other coating operations where resins are subjected to ultraviolet (UV) curing from monomer precursors. Controlled processing parameters include air speed, temperature, initial cast thickness, and solute concentration, while measured parameters are thickness, weight, film temperature, in-plane and out-of-plane birefringence. In this paper, we illustrate the utility of this instrument with solution cast and dried poly (amide-imide)/DMAc (Dimethylacetamide) solution, water based black paint, and organo-modified clay/NMP (N-Methylpyrrolidone) solution. In addition, the physical changes that take place during UV photo polymerization of a monomer are tracked. This instrument is designed to be generic and it can be used for tracking any drying/swelling/solidification systems including paper, foodstuffs such as; grains, milk as well as pharmaceutical thin paste and slurries.

  10. Materials processing threshold report: 2. Use of low gravity for cast iron process development

    Science.gov (United States)

    Frankhouser, W. L.

    1980-01-01

    Potential applications of a low gravity environment of interest to the commercial producers of cast iron were assessed to determine whether low gravity conditions offer potential opportunities to producers for improving cast iron properties and expanding the use of cast irons. The assessment is limited to the gray and nodular types of iron, however, the findings are applicable to all cast irons. The potential advantages accrued through low gravity experiments with cast irons are described.

  11. Analysis of key technologies and development of integrated digital processing system for cast blasting design

    Institute of Scientific and Technical Information of China (English)

    丁小华; 李克民; 肖双双; 狐为民

    2015-01-01

    Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasting and casting blast parameters determination which have influence on the effect of casting blast have been researched with the combination of the ballistic theory and experience in mines. The integrated digital processing system of casting blast was developed in order to simplify the design process of casting blast, improve working efficiency and veracity of design result and comprehensively adopt the software programming method and the theory of casting blast. This system has achieved five functions, namely, the 3D visualization graphics management, the intelligent management of geological information, the intelligent design of casting blast, the analysis and prediction of the blasting effect and the automatic output of the design results. Long-term application in opencast coal mines has shown that research results can not only reduce the specific explosive consumption and improve the blasting effect, but also have high value of popularization and application.

  12. Mechanism and simulation of external cooling in aluminum casting-rolling process

    Institute of Scientific and Technical Information of China (English)

    GAO Zhi

    2005-01-01

    External cooling technology is one of the key technologies to realize fast-casting-rolling process of aluminum, i.e. using compulsive cooling on the external surface of rollers and aluminum plate to improve the cooling ability of system, increase casting-rolling speed, and enhance the quality of aluminum plate. Heat transfer model of casting-rolling process was proposed and the characteristics of the temperature field of roller-plate system were analyzed. The influences of external cooling surface of the plate and the roller on the temperature field of the roller and the aluminum plate and the casting-rolling speed were discussed, and the relationship between external cooling and internal cooling were also analyzed. Experiment results show that, with the increase of casting-rolling speed, the influence of cooling plate surface on increasing casting-rolling speed was gradually decreased, but that of cooling roller surface was enhanced. Different mechanisms of external cooling plate surface and roller surface for improving casting-rolling speed account for this phenomenon.

  13. Market Opportunity of Some Aluminium Silicon Alloys Materials through Changing the Casting Process

    Directory of Open Access Journals (Sweden)

    Delfim SOARES

    2012-08-01

    Full Text Available Fatigue is considered to be the most common mechanism by which engineering components fail, and it accounts for at least 90% of all service failures attributed to mechanical causes. Mechanical properties (tensile strength, tensile strain, Young modulus, etc as well as fatigue properties (fatigue life are very dependent on casting method. The most direct effects of casting techniques are on the metallurgical microstructure that bounds the mechanical properties. One of the important variables affected by the casting technique is the cooling rate which is well known to strongly restrict the microstructure. In the present research has been done a comparison of fatigue properties of two aluminum silicon alloys obtained by two casting techniques. It was observed that the fatigue life is increasing with 24% for Al12Si and 31% for AL18Si by using centrifugal casting process instead of gravity casting. This increasing in fatigue life means that a component tailored from materials obtained by centrifugal casting will stay longer in service. It was made an estimation of the time required to recover the costs of technology in order to use the centrifuge process that will allow to obtain materials with improved properties. The amortization can be achieved by using two different marketing techniques: through the release of the product at the old price and with much longer life of the component which means "same price - longer life", or increasing price, by highlighting new product performance which means "higher price - higher properties".

  14. Prediction of Shrinkage Porosity Defect in Sand Casting Process of LM25

    Science.gov (United States)

    Rathod, Hardik; Dhulia, Jay K.; Maniar, Nirav P.

    2017-08-01

    In the present worldwide and aggressive environment, foundry commercial enterprises need to perform productively with least number of rejections and create casting parts in shortest lead time. It has become extremely difficult for foundry industries to meet demands of defects free casting and meet strict delivery schedules. The process of casting solidification is complex in nature. Prediction of shrinkage defect in metal casting is one of the critical concern in foundries and is one of the potential research areas in casting. Due to increasing pressure to improve quality and to reduce cost, it is very essential to upgrade the level of current methodology used in foundries. In the present research work, prediction methodology of shrinkage porosity defect in sand casting process of LM25 using experimentation and ANSYS is proposed. The objectives successfully achieved are prediction of shrinkage porosity distribution in Al-Si casting and determining effectiveness of investigated function for predicting shrinkage porosity by correlating results of simulating studies to those obtained experimentally. The real-time application of the research reflects from the fact that experimentation is performed on 9 different Y junctions at foundry industry and practical data obtained from experimentation are used for simulation.

  15. Evaluation of the lost foam process in terms of casting dimensional accuracy and ecology

    Directory of Open Access Journals (Sweden)

    A. Karwiński

    2009-07-01

    Full Text Available The paper discusses some of the major issues that are related with the use of polystyrene foam (of the density above 1,04 g/cm3 in the manufacture of investment castings characterised by intricate shapes. Test patterns were made from the high impact polystyrene and from styrene polymers (styrene acrylonitrile SAN.The process of polystyrene patterns removal from ceramic moulds considerably reduces the quality of these moulds in terms of surface microgeometry and dimensional accuracy of castings.The results of the studies can find practical application in the manufacture of near-net-shape castings for industrial applications as well as prototype castings. They may also serve as a tool in evaluation of the rapid prototyping process using polystyrene foam and polymers in the manufacture of investment castings characterised by high dimensional accuracy. The said technology has also been estimated in terms of its impact on the natural environment, taking into consideration the energy consumption during castings manufacture and their later use. It is possible to further improve the casting accuracy, raising it from class CT7 to CT6 according to Polish Standard PN [5].

  16. Product and process innovation of grey cast iron brake discs

    Energy Technology Data Exchange (ETDEWEB)

    Schorn, M. [Brembo S.P.A. (Italy)

    2006-07-01

    The brake disc out of grey cast iron often seems to be playing the role of the ''underdog'' in the technical examinations of the entire brake system. This is also reflected by the 25 year history of the {mu}-club. In a total of 93 presentations in those 25 years, only 3 were related to the topic of grey cast iron discs. This is not a correct relation to the importance of this component within the brake system. The disc, although per definition with a lower specific load than the pad, has the major task to store and dissipate the heat in which the kinetic energy of the vehicle is transformed. The disc also has a significant effect on NVH behaviour, particularly in the low frequency range. It also has a permanent fight with its weight as an unsprung mass. (orig.)

  17. Machinability of hypereutectic cast Al–Si alloys processed by SSM processing technique

    Indian Academy of Sciences (India)

    P K SOOD; RAKESH SEHGAL; D K DWIVEDI

    2017-03-01

    Experimental investigation carried out on the machinability studies to determine the influence of semi-solid metal processing and modification on hypereutectic Al–20Si–0.5Mg–1.2Fe-based alloy produced by conventional cast and semi-solid metal processing technique (mechanical stirring) and modified with iron correctors (Be and Cd) has been presented in this paper. The alloys under investigation were prepared bycontrolling melt using an induction melting furnace. Stirring of semi-solid metal takes place at constant cooling conditions from liquidus temperature at a constant stirring speed of 400 rpm. To determine the machining performance characteristics an orthogonal array, signal-to-noise ratio and statistical tool analysis of variance were jointly used during experimentation. A CNC lathe was used to conduct experiments in dry condition and coated carbide inserts were used as tool inserts. Machining variables like cutting velocity, approaching angle,feed rate and depth of cut, which can be considered as process parameters, are taken into account. The combined effect of modification and semi-solid metal processing has a significant effect on the machining characteristics,which was concluded from study. The modified alloy processed by semi-solid metal processing technique exhibits better machinability conditions when compared with the conventional cast. The feed rate has more effect on machining behaviour.

  18. Heat flow description during crystallization process of cast dispersive composites

    Directory of Open Access Journals (Sweden)

    Cholewa M.

    2007-01-01

    Full Text Available The aim of this work was to show possibilities of numerical simulation software, based on heat transfer model, commonly used in foundry industry in cast composite properties engineering. The main restriction in most of used software systems is lack of heat transfer, which may occur at composite creation. In this work the reinforcing particle morphology an size were expressed by one quantity – morphological modulus Mm and were examined for influence on heat transfer and conductivity up to the Newton’s and Fourier’s laws. The main restrictions for using Fourier’s model based software for composite engineering are shown. The way for crystallization control was presented including influence of morphology, transition zone and thermo-physical properties of components. Proposed methodology can be used for cast composite properties engineering in cases, where relative motion of components is negligible. In other cases heat transfer coefficient is justified only if the software used is based on Fourier’s model and the source code is accessible. Proposed assumptions create possibility for components selection verification in terms of technological and operating properties of cast composite. An example of such approach was shown in work [1, 23].

  19. Microstructure and properties of cast iron by semi-solid die casting process; Hangyoko diecast shita chutetsu no soshiki to seishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, C.; Kitamura, K.; Ando, Y.; Hironaka, K.

    1996-02-25

    In the semi-solid die casting process, products are made by processing metals in the liquid and solid coexistence region. Die casting experiments were conducted using flaky graphite cast iron by means of the rheocasting method in which semi-solid slurry is directly die cast and the thixocasting method in which raw material billet is heated up to the semi-solid temperature and then die cast. In both the methods, flat plates were produced. In the rheocasting with the solid ratio of 0.2, flat plates of 6 mm thick were obtained. The surface temperature of die was lower than that in the case of melt die casting, which reduced the heat load of die. The macro segregation was also reduced. In the thixocasting, flat plates of 3 mm thick were obtained. Using general flaky graphite cast iron, the microstructure was observed where solid phase austenite is uniformly dispersed in the solid-liquid coexistence region. Austenite and austenite/cementite eutectic was observed in the specimens without treatment after casting. Cementite easily changed into fine graphite spheres through the heat treatment, which has excellent tensile strength of 400 MPa and elongation of 3%. 7 refs., 12 figs., 5 tabs.

  20. Die casting process assessment using single minute exchange of dies (SMED method

    Directory of Open Access Journals (Sweden)

    M. Perinić

    2009-07-01

    Full Text Available Die casting process uses high productive level machines. Machine capacity utilization is a key goal in achieving minimum time consumption. Changeover procedure during die casting process is recognized as possible area for reducing time consumption. The SMED method has been improved by additional procedures simultaneously applying the 5S method. Their contribution is evident in recognition of internal and external activities, particularly while transferring internal activities into external ones in as many numbers as possible, by minimizing at the same moment the internal ones. The validity of the method and procedures are verified by an example application of die casting foundry for casting automobile parts. Significant time savings have been achieved with minimum investment.

  1. PZT/P(VDF-HFP) 0-3 composites as solvent-cast thin films: preparation, structure and piezoelectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, Michael; Arlt, Kristin [Functional Polymer Systems, Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstrasse 69, 14476 Potsdam-Golm (Germany)], E-mail: michael.wegener@iap.fraunhofer.de

    2008-08-21

    Composite films of lead zirconate titanate (PZT) and poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) were prepared as 100 {mu}m thin films by solvent casting. Within the 0-3 composites, the ceramic-volume fraction was varied between 0.19 and 0.65, which yielded films with different structural and dielectric properties. These influenced the piezoelectric properties of the composite films found after electric poling, which was performed here at room temperature. The piezoelectric activity, with a maximum piezoelectric coefficient of 11 pC N{sup -1} in the film-thickness direction, originates from the polarization of the embedded ceramic particles as proved by poling experiments in corona discharges as well as in direct contact.

  2. Heat transfer characteristics of lost foam casting process of magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Zi-li; PAN Qing-lin; CHEN Zhao-feng; LIU Xi-qin; TAO Jie

    2006-01-01

    Effects of vacuum, pouring temperature and pattern thickness on the heat transfer of magnesium alloy lost foam casting(LFC) process were explored. The results indicate that without vacuum a positive thermal gradient from the gate to the end of the casting was formed immediately after the mold filling. The average temperature of the casting, the temperature gradient and solidification times increase significantly with pouring temperature and pattern thickness. Vacuum plays a quite different role in the heat transfer during mould filling and solidification periods: it significantly increases the cooling rate of the filling melt, but decreases the cooling rate of the casting during solidification period. The temperature of the liquid metal drops sharply and varies greatly with no apparent mode in the casting after the mold filling. The amplitude of temperature fluctuations in the casting increases with vacuum, pouring temperature and pattern thickness. The average temperature increases with pouring temperature and pattern thickness, but less rapidly than that without vacuum. The effect of vacuum on the solidification times of castings is found to depend on pouring temperature, vacuum makes solidification times increase greatly at high pouring temperature, while decreases slightly at low pouring temperature.

  3. Development and mechanical characterization of solvent-cast polymeric films as potential drug delivery systems to mucosal surfaces.

    Science.gov (United States)

    Boateng, Joshua S; Stevens, Howard N E; Eccleston, Gillian M; Auffret, Anthony D; Humphrey, Michael J; Matthews, Kerr H

    2009-08-01

    Solvent-cast films from three polymers, carboxymethylcellulose (CMC), sodium alginate (SA), and xanthan gum, were prepared by drying the polymeric gels in air. Three methods, (a) passive hydration, (b) vortex hydration with heating, and (c) cold hydration, were investigated to determine the most effective means of preparing gels for each of the three polymers. Different drying conditions [relative humidity - RH (6-52%) and temperature (3-45 degrees C)] were investigated to determine the effect of drying rate on the films prepared by drying the polymeric gels. The tensile properties of the CMC films were determined by stretching dumbbell-shaped films to breaking point, using a Texture Analyser. Glycerol was used as a plasticizer, and its effects on the drying rate, physical appearance, and tensile properties of the resulting films were investigated. Vortex hydration with heating was the method of choice for preparing gels of SA and CMC, and cold hydration for xanthan gels. Drying rates increased with low glycerol content, high temperature, and low relative humidity. The residual water content of the films increased with increasing glycerol content and high relative humidity and decreased at higher temperatures. Generally, temperature affected the drying rate to a greater extent than relative humidity. Glycerol significantly affected the toughness (increased) and rigidity (decreased) of CMC films. CMC films prepared at 45 degrees C and 6% RH produced suitable films at the fastest rate while films containing equal quantities of glycerol and CMC possessed an ideal balance between flexibility and rigidity.

  4. Development of low-temperature high-strength integral steel castings for offshore construction by casting process engineering

    OpenAIRE

    Lim Sang-Sub; Mun Jae-Chul; Kim Tae-Won; Kang Chung-Gil

    2014-01-01

    In casting steels for offshore construction, manufacturing integral casted structures to prevent fatigue cracks in the stress raisers is superior to using welded structures. Here, mold design and casting analysis were conducted for integral casting steel. The laminar flow of molten metal was analyzed and distributions of hot spots and porosities were studied. A prototype was subsequently produced, and air vents were designed to improve the surface defects caused by the release of gas. A radio...

  5. A Thermal Simulation Method for Solidification Process of Steel Slab in Continuous Casting

    Science.gov (United States)

    Zhong, Honggang; Chen, Xiangru; Han, Qingyou; Han, Ke; Zhai, Qijie

    2016-10-01

    Eighty years after the invention of continuous cast of steels, reproducibility from few mm3 samples in the laboratory to m3 product in plants is still a challenge. We have engineered a thermal simulation method to simulate the continuous casting process. The temperature gradient ( G L ) and dendritic growth rate ( v) of the slab were reproduced by controlling temperature and cooling intensity at hot and chill end, respectively, in our simulation samples. To verify that our samples can simulate the cast slab in continuous casting process, the heat transfer, solidification structure, and macrosegregation of the simulating sample were compared to those of a much larger continuous casting slab. The morphology of solid/liquid interface, solidified shell thickness, and dendritic growth rate were also investigated by in situ quenching the solidifying sample. Shell thickness ( δ) determined by our quenching experiment was related to solidification time ( τ) by equation: δ = 4.27 × τ 0.38. The results indicated that our method closely simulated the solidification process of continuous casting.

  6. Thermal stress analysis method considering geometric effect of risers in sand mold casting process

    Institute of Scientific and Technical Information of China (English)

    S Y Kwak; HY Hwang; C Cho

    2014-01-01

    Solidification and fluid flow analysis using computer simulation is a current common practice. There is also a high demand for thermal stress analysis in the casting process because casting engineers want to control the defects related to thermal stresses, such as large deformation and crack generation during casting. The riser system is an essential part of preventing the shrinkage defects in the casting process, and it has a great influence on thermal phenomena. The analysis domain is dramatical y expanded by attaching the riser system to a casting product due to its large volume, and it makes FEM mesh generation difficult. However, it is difficult to study and solve the above proposed problem caused by riser system using traditional analysis methods which use single numerical method such as FEM or FDM. In this paper, some research information is presented on the effects of the riser system on thermal stress analysis using a FDM/FEM hybrid method in the casting process simulation. The results show the optimal conditions for stress analysis of the riser model in order to save computation time and memory resources.

  7. Construction and analysis of dynamic solidification curves for non-equilibrium solidification process in lost-foam casting hypo-eutectic gray cast iron

    Directory of Open Access Journals (Sweden)

    Ming-guo Xie

    2017-05-01

    Full Text Available Most lost-foam casting processes involve non-equilibrium solidification dominated by kinetic factors, while construction of a common dynamic solidification curve is based on pure thermodynamics, not applicable for analyses and research of non-equilibrium macro-solidification processes, and the construction mode can not be applied to non-equilibrium solidification process. In this study, the construction of the dynamic solidification curve (DSC for the non-equilibrium macro-solidification process included: a modified method to determine the start temperature of primary austenite precipitation (TAL and the start temperature of eutectic solidification (TES; double curves method to determine the temperature of the dendrite coherency point of primary austenite (TAC and the temperature of eutectic cells collision point (TEC; the “technical solidus” method to determine the end temperature of eutectic reaction (TEN. For this purpose, a comparative testing of the non-equilibrium solidification temperature fields in lost-foam casting and green sand mold casting hypoeutectic gray iron was carried out. The thermal analysis results were used to construct the DSCs of both these casting methods under non-equilibrium solidification conditions. The results show that the transformation rate of non-equilibrium solidification in hypoeutectic gray cast iron is greater than that of equilibrium solidification. The eutectic solidification region presents a typical mushy solidification mode. The results also indicate that the primary austenite precipitation zone of lost-foam casting is slightly larger than that of green sand casting. At the same time, the solid fraction (fs of the dendrite coherency points in lost-foam casting is greater than that in the green sand casting. Therefore, from these two points, lost-foam casting is more preferable for reduction of shrinkage and mechanical burnt-in sand tendency of the hypoeutectic gray cast iron. Due to the fact that

  8. Manufacturing Methods for Process Effects on Aluminum Casting Allowables

    Science.gov (United States)

    1985-03-01

    aluminum alloy A356 ingots were melted in a silicon Scarbide crucible and held at 1350F. Flux was added, and the oxides were Sskim~med off the...1REFERENCES 1. Lemon, R.C., and Hunsicker, H.Y., "New Aluminum Permanent Mold Casting Alloys C355 and A356 ," Aluminum Company of America, May 1956. 2... A356 ," Aluminum Company of America, May 1956. Lipson, S., "Effect of Section Thickness on the Tensile Properties of Thin- Section Aluminum Alloy Sand

  9. Formation of Structure and Properties in Casting Processes on the Example of AZ91 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Augustyn B.

    2014-06-01

    Full Text Available Contemporary materials engineering requires the use of materials characterised by high mechanical properties, as these precisely properties determine the choice of material for parts of machinery and equipment. Owing to these properties it is possible to reduce the weight and, consequently, the consumption of both material and energy. Trying to meet these expectations, the designers are increasingly looking for solutions in the application of magnesium alloys as materials offering a very beneficial strength-to-weight ratio. However, besides alloying elements, the properties are to a great extent shaped by the solidification conditions and related structure. The process of structure formation depends on the choice of casting method forced by the specific properties of casting or by the specific intended use of final product. The article presents a comparison of AZ91 magnesium alloys processed by different casting technologies. A short characteristic was offered for materials processed by the traditional semi-continuous casting process, which uses the solidification rates comprised in a range of 5 - 20°C/s, and for materials made in the process of Rapid Solidification, where the solidification rate can reach 106 °C/s. As a result of the casting process, a feedstock in the form of billets and thin strips was obtained and was subjected next to the process of plastic forming. The article presents the results of structural analysis of the final product. The mechanical properties of the ø7 mm extruded rods were also evaluated and compared.

  10. High Cr white cast iron/carbon steel bimetal liner by lost foam casting with liquid-liquid composite process

    Directory of Open Access Journals (Sweden)

    Xiao Xiaofeng

    2012-05-01

    Full Text Available Liners in wet ball mill for mineral processing industry must bear abrasive wear and corrosive wear, and consequently, the service life of the liner made from traditional materials, such as Hadfield steel and alloyed steels, is typically less than ten months. Bimetal liner, made from high Cr white cast iron and carbon steel, has been successfully developed by using liquid-liquid composite lost foam casting process. The microstructure and interface of the composite were analyzed using optical microscope, SEM, EDX and XRD. Micrographs indicate that the boundary of bimetal combination regions is staggered like dogtooth, two liquid metals are not mixed, and the interface presents excellent metallurgical bonding state. After heat treatment, the composite liner specimens have shown excellent properties, including hardness > 61 HRC, fracture toughness αk >16.5 J·cm-2 and bending strength >1,600 MPa. Wear comparison was made between the bimetal composite liner and alloyed steel liner in an industrial hematite ball mill of WISCO, and the results of eight-month test in wet grinding environment have proved that the service life of the bimetal composite liner is three times as long as that of the alloyed steel liner.

  11. Validation Studies of Temperature Distribution and Mould Filling Process for Composite Skeleton Castings

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2007-07-01

    Full Text Available In this work authors showed selected results of simulation and experimental studies on temperature distribution during solidification of composite skeleton casting and mould filling process (Fig. 4, 5, 6. The basic subject of the computer simulation was the analysis of ability of metal to fill the channels creating the skeleton shape and prepared in form of a core. Analysis of filling for each consecutive levels of the skeleton casting was conducted for simulation results and real casting. The skeleton casting was manufactured according to proposed technology (Fig. 5. Number of fully filled nodes in simulation was higher than obtained in experimental studies. It was observed in the experiment, that metal during pouring did not flow through the whole channel section, what enabled possibilities of reducing the channel section and pointed out the necessity of local pressure increase.

  12. A Statistics-Based Cracking Criterion of Resin-Bonded Silica Sand for Casting Process Simulation

    Science.gov (United States)

    Wang, Huimin; Lu, Yan; Ripplinger, Keith; Detwiler, Duane; Luo, Alan A.

    2017-02-01

    Cracking of sand molds/cores can result in many casting defects such as veining. A robust cracking criterion is needed in casting process simulation for predicting/controlling such defects. A cracking probability map, relating to fracture stress and effective volume, was proposed for resin-bonded silica sand based on Weibull statistics. Three-point bending test results of sand samples were used to generate the cracking map and set up a safety line for cracking criterion. Tensile test results confirmed the accuracy of the safety line for cracking prediction. A laboratory casting experiment was designed and carried out to predict cracking of a cup mold during aluminum casting. The stress-strain behavior and the effective volume of the cup molds were calculated using a finite element analysis code ProCAST®. Furthermore, an energy dispersive spectroscopy fractographic examination of the sand samples confirmed the binder cracking in resin-bonded silica sand.

  13. Scientific paper zircon-based coating for the applications in Lost Foam casting process

    Directory of Open Access Journals (Sweden)

    Prstić Aurel

    2012-01-01

    Full Text Available In this work, a possibility to develop a new zircon-based refractory coating for casting applications was investigated. Optimization of the coating composition with controlled rheological properties was attained by application of different coating components, particularly by application of a new suspension agent and by alteration of coating production procedure. Zircon powder with particle size of 25x10-6 m was used as filler. The zircon sample was investigated by means of the following methods: X-ray diffraction analysis, diffraction thermal analysis and polarized microscope. The shape and grain size were analyzed by means of the PC program package OZARIA 2.5. It was shown that application of this type of water-alcohol-based coating had a positive influence on surface quality, structural and mechanical properties of the castings of cast iron obtained by pouring into sand molds by means of the expandable patterns method (Lost Foam casting process.

  14. Numerical Simulation of Solidification of Work Roll in Centrifugal Casting Process

    Institute of Scientific and Technical Information of China (English)

    Nannan Song; Yikun Luan; Yunlong Bai; Z.A. Xu; Xiuhong Kang; Dianzhong Li

    2012-01-01

    A program on the solidification process of horizontal centrifugal casting coupled with eutectic carbides segregation has been developed in this paper. Due to the geometrical features of work roll, a cylindrical coordinate system was used. The temperature field of the outer layer at the end of filling process was imported as the initial temperature condition for the solidification process. The model of eutectic carbides segregation caused by different densities between eutectic MC and the molten steel was coupled in the program. The temperature field of the outer layer of work roll during horizontal centrifugal casting process was investigated. Results show that the outer layer has a "sandwich shape" solid fraction manner. Results also indicate that the segregation of eutectic MC is quite severe during centrifugal casting process. It forms four zones of different content of carbides in radial direction. The simulated results of MC carbides segregation phenomenon agree with the experimental observations.

  15. Numerical simulation and analysis of mould filling process in lost foam casting

    Institute of Scientific and Technical Information of China (English)

    Jiang Junxia; Wu Zhichao; Chen Liliang; Hao Jing

    2008-01-01

    In lost foam casting (LFC) the foam pattern is the key criterion, and the filling process is crucial to ensure the high quality of the foam pattern. Filling which lacks uniformity and denseness will cause various defects and affect the surface quality of the casting. The influential factors of the filling process are realized in this research. Optimization of the filling process, enhancement of efficiency, decrease of waste, etc., are obtained by the numerical simulation of the filling process using a computer. The equations governing the dense gas-solid two-phase flow are established, and the physical significance of each equation is discussed. The Euler/Lagrange numerical model is used to simulate the fluid dynamic characteristics of the dense two-phase flow during the mould filling process in lost foam casting. The experiments and numerical results showed that this method can be a very promising tool in the mould filling simulation of beads' movement.

  16. Influence of the casting processing route on the corrosion behavior of dental alloys.

    Science.gov (United States)

    Galo, Rodrigo; Rocha, Luis Augusto; Faria, Adriana Claudia; Silveira, Renata Rodrigues; Ribeiro, Ricardo Faria; de Mattos, Maria da Gloria Chiarello

    2014-12-01

    Casting in the presence of oxygen may result in an improvement of the corrosion performance of most alloys. However, the effect of corrosion on the casting without oxygen for dental materials remains unknown. The aim of this study was to investigate the influence of the casting technique and atmosphere (argon or oxygen) on the corrosion behavior response of six different dental casting alloys. The corrosion behavior was evaluated by electrochemical measurements performed in artificial saliva for the different alloys cast in two different conditions: arc melting in argon and oxygen-gas flame centrifugal casting. A slight decrease in open-circuit potential for most alloys was observed during immersion, meaning that the corrosion tendency of the materials increases due to the contact with the solution. Exceptions were the Co-based alloys prepared by plasma, and the Co-Cr-Mo and Ni-Cr-4Ti alloys processed by oxidized flame, in which an increase in potential was observed. The amount of metallic ions released into the artificial saliva solution during immersion was similar for all specimens. Considering the pitting potential, a parameter of high importance when considering the fluctuating conditions of the oral environment, Co-based alloys show the best performance in comparison with the Ni-based alloys, independent of the processing route.

  17. Research on Integrated Casting and Forging Process of Aluminum Automobile Wheel

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2014-07-01

    Full Text Available Integrated casting and forging process (ICFP is a new manufacturing method combining the advantages of both casting and forging. Aluminum structure parts, such as aluminum alloy automobile wheel, with complex shape and excellent mechanical properties can be produced by this process. The effects of different process parameters on the ICFP of the automobile wheel were simulated by Forge software. Microstructure of forging region and the nonforging region were studied by experiment. The results show that die temperature, static pressure of the injection piston, forging speed, and material flow have significant influences on the process. Compared with nonforging region, the microstructure of forging region becomes finer, more uniform, and denser. Meanwhile, the casting defects can be removed and mechanical properties improved.

  18. Design of process parameters for direct squeeze casting

    Institute of Scientific and Technical Information of China (English)

    Milan Zhang; Shuming Xing Liming Xiao; Peiwei Bao; Wen Liu; Qiao Xin

    2008-01-01

    On the basis of the analysis of solidification interval and temperature distribution of components manufactured by the squeeze casting method, formulas for calculating the solidification interval and compaction pressure were deduced according to the principal request that the compaction pressure should be equal to or greater than the plastic deformation resistance of the forming component when solidification ended. The solidification interval was proven to be associated with many factors, such as weight of the component, specific heat of the alloy, latent heat, pouring temperature, component temperature at the end of solidification and heat-transfer coefficients. The compaction pressure was related to the strain rate, deformation temperature, and dimension of the de-forming component. The solidification interval and compaction pressure calculated by the formulas deduced in this article were adopted in the production of 45 steel bidirectional chapiter valves, and components with excellent performance were manufactured.

  19. EXAMPLES OF 3D-TECHNOLOGIES IN FOUNDRY PROCESSES. DECREASE IN METAL CONSUMPTION IN CASTINGS

    Directory of Open Access Journals (Sweden)

    V. S. Doroshenko

    2016-01-01

    Full Text Available The review describes the design of metal castings produced by use of 3D-technologies. Some new ways of 3D-processing of materials connected with additive processes are described, which represents the next step in environmental resource-saving production. Examples of patterns and casting of complex design with an optimal combination of materials, durability and attractive appearance are shown. Described 3D high-tech processes are expanding the existing range of metal products and the ways of its production.

  20. Numerical simulation and analysis of mould filling process in lost foam casting

    OpenAIRE

    Jiang Junxia; Wu Zhichao; Chen Liliang

    2008-01-01

    In lost foam casting (LFC) the foam pattern is the key criterion, and the filling process is crucial to ensure the high quality of the foam pattern. Filling which lacks uniformity and denseness will cause various defects and affect the surface quality of the casting. The infl uential factors of the fi lling process are realized in this research. Optimization of the fi lling process, enhancement of effi ciency, decrease of waste, etc., are obtained by the numerical simulation of the fi lling p...

  1. Thermodynamic Behavior Research Analysis of Twin-roll Casting Lead Alloy Strip Process

    Science.gov (United States)

    Jiang, Chengcan; Rui, Yannian

    2017-03-01

    The thermodynamic behavior of twin-roll casting (TRC) lead alloy strip process directly affects the forming of the lead strip, the quality of the lead strip and the production efficiency. However, there is little research on the thermodynamics of lead alloy strip at home and abroad. The TRC lead process is studied in four parameters: the pouring temperature of molten lead, the depth of molten pool, the roll casting speed, and the rolling thickness of continuous casting. Firstly, the thermodynamic model for TRC lead process is built. Secondly, the thermodynamic behavior of the TRC process is simulated with the use of Fluent. Through the thermodynamics research and analysis, the process parameters of cast rolling lead strip can be obtained: the pouring temperature of molten lead: 360-400 °C, the depth of molten pool: 250-300 mm, the roll casting speed: 2.5-3 m/min, the rolling thickness: 8-9 mm. Based on the above process parameters, the optimal parameters(the pouring temperature of molten lead: 375-390 °C, the depth of molten pool: 285-300 mm, the roll casting speed: 2.75-3 m/min, the rolling thickness: 8.5-9 mm) can be gained with the use of the orthogonal experiment. Finally, the engineering test of TRC lead alloy strip is carried out and the test proves the thermodynamic model is scientific, necessary and correct. In this paper, a detailed study on the thermodynamic behavior of lead alloy strip is carried out and the process parameters of lead strip forming are obtained through the research, which provide an effective theoretical guide for TRC lead alloy strip process.

  2. Process for Producing a Cast Article from a Hypereutectic Aluminum-Silicon Alloy

    Science.gov (United States)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2003-01-01

    A process for making a cast article from an aluminum alloy includes first casting an article from an alloy having the following composition, in weight percent: Silicon (Si) 14.0-25.0, Copper (CU) 5.5-8.0, Iron (Fe) 0-0.8, Magnesium (Mg) 0.5-1.5, Nickel (Ni) 0.05-1.2, Manganese (Mn) 0-1.0, Titanium (Ti) 0.05-1.2, Zirconium (Zr) 0.12-1.2, Vanadium (V) 0.05-1.2, Zinc (Zn) 0-0.9, Phosphorus (P) 0.001-0.1, Aluminum, balance. In this alloy the ration of Si:Mg is 15-35, and the ratio of Cu:Mg is 4-15. After an article is cast from the alloy, the cast article is aged at a temperature within the range of 400 F to 500 F for a time period within the range of four to 16 hours. It has been found especially advantageous if the cast article is first exposed to a solutionizing step prior to the aging step. This solutionizing step is carried out by exposing the cast article to a temperature within the range of 875 F to 1025 F for a time period of fifteen minutes to four hours. It has also been found to be especially advantageous if the solutionizing step is followed directly with a quenching step, wherein the cast article is quenched in a quenching medium such as water at a temperature within the range of 120 F to 300 F. The resulting cast article is highly suitable in a number of high temperature applications, such as heavy-duty pistons for internal combustion engines.

  3. Processing map of as-cast 7075 aluminum alloy for hot working

    Directory of Open Access Journals (Sweden)

    Guo Lianggang

    2015-12-01

    Full Text Available The true stress–strain curves of as-cast 7075 aluminum alloy have been obtained by isothermal compression tests at temperatures of 300–500 °C and strain rates of 0.01–10 s−1. The plastic flow instability map is established based on Gegel B and Murthy instability criteria because the deformed compression samples suggest that the combination of the above two instability criteria has more comprehensive crack prediction ability. And the processing map based on Dynamic Material Model (DMM of as-cast 7075 aluminum alloy has been developed through a superposition of the established instability map and power dissipation map. In terms of microstructure of the deformed samples and whether plastic flow is stable or not, the processing map can be divided into five areas: stable area with as-cast grain, stable area with homogeneous grain resulting from dynamic recovery, instability area with as-cast grain, instability area with the second phase and instability area with mixed grains. In consideration of microstructure characteristics in the above five areas of the processing map, the stable area with homogeneous grain resulting from dynamic recovery, namely the temperatures at 425–465 °C and the strain rates at 0.01–1 s−1, is suggested to be suitable processing window for the as-cast 7075 aluminum alloy.

  4. The Effect of Dewaxing and Burnout Temperature in Block Mold Process for Copper Alloy Casting

    Directory of Open Access Journals (Sweden)

    S.Z. Mohd Nor

    2015-10-01

    Full Text Available The main objective of this research is to investigate the effect of dewaxing and burnout temperature on the quality of copper alloy casting produced by a low cost block mold that has been developed. In the molding process, two types of silica sand which contains 97.9% silica (SiO2 and 97.2% silica have been used as a refractory material with POP served as a binder. Several mold formulations contained 15-40% plaster of paris (POP, 60-85% silica sand and 35% water had been developed and each formulation had been tested in the process of copper alloy casting. In the dewaxing process, the temperature of 170oC was found appropriate to be used as an initial mold heating temperature and complete wax burnout was effectively achieved with the temperature of 750oC for 5 hours. The insufficient burnout process has produced a defect casting with carbon residue, appeared as a black stain on the surface of the casting. Meanwhile, rapid initial heating had prevented the wax from flowing out smoothly thus, eroded the surface of the mold cavities. This has resulted in deteriorated cavity surface, hence a rough surface of the casting.

  5. State of the Art Treatment of Non-Ferrous Castings 3-in-1 Heat Treatment Systems Combine Foundry Processes

    Institute of Scientific and Technical Information of China (English)

    Volker R. Knobloch

    2004-01-01

    The interior of a high-pressure die-casting is of an unsatisfactory quality. Engine blocks made with this die casting process show lower specific engine performance. Pressure die-casting can hardly be heat treated for obvious reasons.PSM (Precision Sand Molds) process uses sand and organic binder to generate a mold and even allows the manufacturing of complex diesel engine blocks in aluminum alloys. Combined technologies are available for semi-permanent mold castings with cores and castings made in Precision Sand Molds with organic binders. Castings are placed into the special heat treatment furnace immediately after pouring without the operations in stand alone machinery. This patented Sand Lion(R) 3-in-1 technology processes hot castings and carries out three (3) foundry processes simultaneously in one (1) automated machine: 1) De-coring and sand removal; 2) Thermal sand reclamation; 3) Solution heat treatment of castings. The combination of several main casting processes is reflected in significant reductions of energy consumption, of production costs, and improving the quality of the castings. Audits in foundries using the 3-in-1 process showed an average reduction in production costs of more than 30%.

  6. Effect of binder molecular weight on morphology of TiO2 films prepared by tape casting and their photovoltaic performance

    Directory of Open Access Journals (Sweden)

    Tasić N.

    2012-01-01

    Full Text Available Titanium(IV oxide in the form of anatase has proven to be the best choice for photoanodic material in dye-sensitized solar cells (DSCs. The aim of the work was to study the influence of binder molecular weight on the morphology of deposited films, and consequently, DSC parameters. For this study, five different TiO2 tape casting slips were prepared from commercially available nanoanatase powder and polyethylene glycol (PEG as a binder. The process of drying and sintering was carefully designed, so that the organic template was slowly decomposed, leaving favorable crack-free, porous structure. It was found that there is an optimal region of binder molecular weight for obtaining homogeneous, nonagglomerated and porous microstructure which is a necessary condition for application of TiO2 films in DSCs. [Projekat Ministarstva nauke Republike Srbije, br. III45007

  7. Tape casting as a fabrication process for iron aluminide (FeAl) thin sheets

    Energy Technology Data Exchange (ETDEWEB)

    Mistler, R.E. [Richard E. Mistler Inc., Morrisville, PA (United States); Sikka, V.K. [ORNL, PO Box 2008, Oak Ridge, TN 37831 (United States); Scorey, C.R.; McKernan, J.E. [Ametek Inc., 21 Toelles Road, Wallingford, CT 06492 (United States); Hajaligol, M.R. [Research and Development Center, Philip Morris USA, PO Box 26581, Richmond, VA 23261 (United States)

    1998-12-31

    The conversion of iron aluminide powder into a slurry followed by tape casting into a green sheet was investigated. Casting parameters affecting green sheet properties were studied. Application of thermo-mechanical processing including sintering, cold rolling, annealing and heat treating resulted in sheets with a fine-grain structure at essentially 100% of theoretical density. The various microstructures developed throughout the process are described, along with tensile property measurements on the fully dense product. Differences in property with sheets made by other processes are explained, and it is demonstrated that tape casting is a viable method of making thin gauge sheets of iron aluminide with a wide range of compositions. (orig.) 9 refs.

  8. Study on Numerical Simulation of Mold Filling and HeatTransfer in Die Casting Process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A 3-D mathematical model considering turbulence phenomena has been established basedon a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established.The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by theheat transfer simulation. All the optimized designs were verified by the production practice.

  9. Forward and Reverse Process Models for the Squeeze Casting Process Using Neural Network Based Approaches

    Directory of Open Access Journals (Sweden)

    Manjunath Patel Gowdru Chandrashekarappa

    2014-01-01

    Full Text Available The present research work is focussed to develop an intelligent system to establish the input-output relationship utilizing forward and reverse mappings of artificial neural networks. Forward mapping aims at predicting the density and secondary dendrite arm spacing (SDAS from the known set of squeeze cast process parameters such as time delay, pressure duration, squeezes pressure, pouring temperature, and die temperature. An attempt is also made to meet the industrial requirements of developing the reverse model to predict the recommended squeeze cast parameters for the desired density and SDAS. Two different neural network based approaches have been proposed to carry out the said task, namely, back propagation neural network (BPNN and genetic algorithm neural network (GA-NN. The batch mode of training is employed for both supervised learning networks and requires huge training data. The requirement of huge training data is generated artificially at random using regression equation derived through real experiments carried out earlier by the same authors. The performances of BPNN and GA-NN models are compared among themselves with those of regression for ten test cases. The results show that both models are capable of making better predictions and the models can be effectively used in shop floor in selection of most influential parameters for the desired outputs.

  10. Microstructure analysis of AISI 304 stainless steel produced by twin-roll thin strip casting process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The microstructure of AISI 304 austenite stainless steel fabricated by the thin strip casting process were investigated using optical microscope, scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD).The microstructures of the casting strips show a duplex structure consisting of delta ferrite and austenite. The volume fraction of the delta ferrite is about 9.74vol% at the center and 6.77vol% at the surface of the casting thin strip, in vermicular and band shapes. On account of rapid cooling and solidification in the continuous casting process, many kinds of inclusions and precipitates have been found. Most of the inclusions and precipitates are spherical complex compounds consisting of oxides, such as, SiO2, MnO, Al2O3,Cr2O3,and FeO or their multiplicity oxides of MnO·Al2O3,2FeO·SiO2, and 2MnO·SiO2. Many defects including dislocations and stacking faults have also formed during the rapid cooling and solidification process, which is helpful to improve the mechanical properties of the casting strips.

  11. PRINCIPALLY NEW EFFECTIVE CASTING PROCESS OF THE HOLLOW CYLINDRICAL SLUGS OF CAST IRON BY METHOD OF DIRECTIONAL SOLIDIFICATION

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2010-01-01

    Full Text Available The advantages of the new method of the hollow ingots production of cast iron are presented. The thermal state of crystallizer at cyclic temperature influences on its inside face, the ingot hardening and cast iron structure formation in conditions of intensive one-sided heat sink is examined. The comparative data on properties and exploitation characteristics of the parts, produced by different ways of casting is given.

  12. Thermomechanical processing and mechanical properties of hypereutectoid steels and cast irons

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Syn, C.K.; Sherby, O.D. (eds.)

    1998-01-01

    Recent advances in metallurgy of hypereutectoid steels and cast irons show that unique properties, such ultrahigh hardness and strength, and superplasticity, are achievable. This book focuses on the mechanical properties of hypereutectoid steels and cast irons as influenced by thermomechanical processing and microstructure. Some topics covered are: (1) Hot workability of hypereutectoid tool steels; (2) Thermomechanical processing of austempered ductile iron: An overview; (3) Mechanical behavior of ultrahigh strength, ultrahigh carbon steel wire and rod; and (4) Tensile elongation behavior of fine-grained Fe-C alloys at elevated temperatures.

  13. The Influence of Ingate Size on the Lost Foam Casting Process

    OpenAIRE

    T. Pacyniak; R. Kaczorowski

    2012-01-01

    The article presents analysis of the influence of ingate size on the Lost Foam casting process. In particular, analysis of simulation tests has been carried out to determine the ingate size influence on the rate of filling of the mould cavity, pressure in the gas gap and size of the gas gap. A specially prepared mathematical model of the process and an original calculation algorithm were used in simulation tests of full-mould casting. The tests have indicated that the increase of the ingate s...

  14. Die design and process optimization of die cast V6 engine blocks

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The use of aluminum, particularly for engine blocks, has grown considerably in the past ten years, and continues to rise in the automotive industry. In order to enhance the quality and engineering functionality of die cast engine blocks, die design and processes have to be optimized. In this study, a computer simulation software,MAGMAsoft, as an advanced tool for optimizing die design and casting process, was employed to virtually visualize cavity filling and patterns of a V6 engine block. The original die design and process was simulated first to establish a baseline.A reality check was used to verifythe predicted results. Then, the die modification with a different runner system was made by using a CAD software, Unigraphics (UG). The simulation on combinations of the modified die design and revised process was performed to examine the effect of die modification and process change on flow filling of V6 engine blocks. The simulated prediction indicates that the enhancement of cavity filling due to the die and process modification minimizes the occurrence of defects during casting, and consequently improves the quality of blocks. The results of mechanical testing show a significant increase in fatigue strengths, and a moderately improvement on tensile properties for the blocks die cast with the new die design and process in comparison with those produced by the original ones.

  15. Modeling of Filling and Solidification Process for TiAl Exhaust Valves During Suction Casting

    Institute of Scientific and Technical Information of China (English)

    Chao XIONG; Yingche MA; Bo CHEN; Kui LIU; Yiyi LI

    2013-01-01

    Investment and suction casting (ISC) represents an economic and promising process route to fabricate automotive exhaust valves ofγ-TiAl based alloys,but information available on the metal flow and the temperature changes during mould filling and solidification process for the ISC process is meager.A sequentially coupled mathematical flow-thermal model,based on the commercial finite-volume/finite-difference code FLOW-3D and the finite-element code PROCAST,has been developed to investigate the ISC process.In term of calculating the flow and temperature fields during the filling and solidification stages,potential defects including the gas bubbles and the surface air entrainment occurred in the mould filling process and the shrinkage porosities formed in the solidification process are predicted and the reasons for the formation of these defects are also analyzed.The effects of filling pressure difference control methods and moulds on gas bubble and surface air entrainment behavior are presented.It is found that by changing the filling pressure difference control methods from general suction casting to "air leakage" suction casting and reducing air leakage flow rates,the gas bubbles are eliminated effectively,and the surface air entrainment attenuate dramatically.With resort to a mould with a tetragonal runner,the surface air entrainment decrease to the lowest level.Finally,the water analogue and suction casting experiments of exhaust valves are implemented for further validation of the simulation results.

  16. AN INTRODUCTION TO RAPID CASTING: DEVELOPMENT AND INVESTIGATION OF PROCESS CHAINS FOR SAND CASTING OF FUNCTIONAL PROTOTYPES

    Directory of Open Access Journals (Sweden)

    D. Dimitrov

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper discusses the results obtained from studies on different Rapid Tooling process chains in order to improve the design and manufacture of foundry equipment that is used for sand casting of prototypes in final material. These prototypes are intended for functional and pre-production tests of vehicles. The Three Dimensional Printing process is used as core technology. Subsequently, while considering aspects such as time, cost, quality (accuracy and surface roughness, and tool life, a framework is presented for the evaluation and selection of the most suitable process chain in accordance with specific requirements. This research builds on an in-depth characterisation of the accuracy and repeatability of a 3D printing process.

    AFRIKAANSE OPSOMMING: Hierdie artikel bespreek die resultate wat verkry is tydens studies op verskillende Snel-Gereedskapvervaardigingproseskettings wat ondersoek is teneinde die ontwerp en vervaardiging van sandgietgereedskap, om prototipes in finale materiaal te vervaardig, te verbeter. Die prototipes is bestem vir gebruik in funksionele- en voorproduksietoetse van voertuie. Die sogenaamde Driedimensionele Drukproses (3DP is as kerntegnologie aangewend. Gevolglik, na oorweging van aspekte soos tyd, koste, kwaliteit (akkuraatheid en oppervlakafwerking, en gereedskapleeftyd, is ’n raamwerk ontwikkel vir die evaluering en seleksie van die mees geskikte prosesketting met inagname van spesifieke vereistes. Hierdie navorsing bou op ’n diepgaande karakterisering van die akkuraatheids- en herhaalbaarheidsvermoë van ’n 3D drukproses.

  17. PHYSICOCHEMICAL AND ANTIBACTERIAL PROPERTIES OF PLA-CHITOSAN BLENDS OBTAINED BY CASTING WITH POTENTIAL USE AS AGRICULTURAL MULCH FILMS

    Directory of Open Access Journals (Sweden)

    Danila Merino

    2016-03-01

    Full Text Available PLA-Chitosan films compatibilized with hexamethylenediisocyanate (HDI were obtained by casting and subsequent hot pressing. The films were prepared with different contents of chitosan (CS and then its physicochemical properties were studied by Fourier Transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, optical microscopy (OM and X-ray diffraction (XRD. It was found that the compatibilizing agent reacts completely and that chitosan affects the thermal properties of the films decreasing their decomposition temperatures, glass transition temperature (Tg and melting (Tm and increase its crystallinity. From the functional standpoint, antimicrobial properties of each blend were tested against Pseudomonas syringae pv tomato DC-3000. The increase in chitosan content was proportional to the antimicrobial effect allowing project its potential application in the agronomic field.

  18. Development of low-temperature high-strength integral steel castings for offshore construction by casting process engineering

    Directory of Open Access Journals (Sweden)

    Lim Sang-Sub

    2014-12-01

    Full Text Available In casting steels for offshore construction, manufacturing integral casted structures to prevent fatigue cracks in the stress raisers is superior to using welded structures. Here, mold design and casting analysis were conducted for integral casting steel. The laminar flow of molten metal was analyzed and distributions of hot spots and porosities were studied. A prototype was subsequently produced, and air vents were designed to improve the surface defects caused by the release of gas. A radiographic test revealed no internal defects inside the casted steel. Evaluating the chemical and mechanical properties of specimens sampled from the product revealed that target values were quantitatively satisfied. To assess weldability in consideration of repair welding, the product was machined with grooves and welded, after which the mechanical properties of hardness as well as tensile, impact, and bending strengths were evaluated. No substantive differences were found in the mechanical properties before and after welding.

  19. Development of low-temperature high-strength integral steel castings for offshore construction by casting process engineering

    Science.gov (United States)

    Lim, Sang-Sub; Mun, Jae-Chul; Kim, Tae-Won; Kang, Chung-Gil

    2014-12-01

    In casting steels for offshore construction, manufacturing integral casted structures to prevent fatigue cracks in the stress raisers is superior to using welded structures. Here, mold design and casting analysis were conducted for integral casting steel. The laminar flow of molten metal was analyzed and distributions of hot spots and porosities were studied. A prototype was subsequently produced, and air vents were designed to improve the surface defects caused by the release of gas. A radiographic test revealed no internal defects inside the casted steel. Evaluating the chemical and mechanical properties of specimens sampled from the product revealed that target values were quantitatively satisfied. To assess weldability in consideration of repair welding, the product was machined with grooves and welded, after which the mechanical properties of hardness as well as tensile, impact, and bending strengths were evaluated. No substantive differences were found in the mechanical properties before and after welding.

  20. Analysis and development of an aqueous tape casting ceramic process

    OpenAIRE

    Mortara, L.

    2005-01-01

    The laboratory scale process developed by Navarro [Navarro, 2001 ] for the production of pyroelectric ceramics was used as a case study for the design of a high-level methodology for the scale-up of ceramic processes. A twofold approach was adopted as the basis of the methodology to perform the process scale-up. A "process focussed" approach was used that considered the sequence of processing operations, their feasibility on a larger scale and the potential problems foreseeable for a scale...

  1. Study of Nozzle and Vent Locations on Die Casting Filling Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The casting nozzle location plays an important role in die casting. Improper location results in defects, such as cold shut, air cavity, shrinkage, etc. Therefore, it's sure that the molten metal full fills the mould cavity before it solidifies. And, it's to be wished that no vortex occur during the filling process, because the vortex is a main source that induces gas entrapment. To get the high quality and performance product, the inlet and outlet locations must be set properly. This paper, an optimal desi...

  2. Microstructural and mechanical evolutions during the forging step of the COBAPRESS, a casting/forging process

    Science.gov (United States)

    Perrier, Frédéric; Desrayaud, Christophe; Bouvier, Véronique

    Aluminum casting/forging processes are used to produce parts for the automotive industry. In this study, we examined the influence of the forging step on the microstructure and the mechanical properties of an A356 aluminum alloy modified with strontium. Firstly, a design of samples which allows us to test mechanically the alloy before and after forging was created. A finite element analysis with the ABAQUS software predicts a maximum of strain in the core of the specimens. Observations with the EBSD technique confirm a more intense sub-structuration of the dendrite cells in this zone. Yield strength, ultimate tensile strength, elongation and fatigue lives were then improved for the casting/forging samples compared to the only cast specimens. The closure of the porosities and the improvement of the surface quality during the forging step enhance also the fatigue resistance of the samples.

  3. Multi-Objective Optimization of Squeeze Casting Process using Genetic Algorithm and Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Patel G.C.M.

    2016-09-01

    Full Text Available The near net shaped manufacturing ability of squeeze casting process requiresto set the process variable combinations at their optimal levels to obtain both aesthetic appearance and internal soundness of the cast parts. The aesthetic and internal soundness of cast parts deal with surface roughness and tensile strength those can readily put the part in service without the requirement of costly secondary manufacturing processes (like polishing, shot blasting, plating, hear treatment etc.. It is difficult to determine the levels of the process variable (that is, pressure duration, squeeze pressure, pouring temperature and die temperature combinations for extreme values of the responses (that is, surface roughness, yield strength and ultimate tensile strength due to conflicting requirements. In the present manuscript, three population based search and optimization methods, namely genetic algorithm (GA, particle swarm optimization (PSO and multi-objective particle swarm optimization based on crowding distance (MOPSO-CD methods have been used to optimize multiple outputs simultaneously. Further, validation test has been conducted for the optimal casting conditions suggested by GA, PSO and MOPSO-CD. The results showed that PSO outperformed GA with regard to computation time.

  4. Numerical Modeling of the Flow of a Power Law Ceramic Slurry in the Tape Casting Process

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Hattel, Jesper Henri

    2012-01-01

    Multilayer ceramics and their application have increased recently. One of the most common ways used to produce these products is tape casting. In this process the wet tape thickness is one of the most determining parameters affecting the final properties of the product and it is therefore of great...

  5. Microstructures and formation mechanism of hypoeutectic white cast iron by isothermal electromagnetic rheocast process

    Directory of Open Access Journals (Sweden)

    Zhang Wanning

    2010-05-01

    Full Text Available An investigation was made on the evolution of microstructures of hypoeutectic white cast iron slurry containing 2.5wt.%C and 1.8wt.%Si produced by rheocasting in which the solidifying alloy was vigorously agitated by electromagnetic stirrer during isothermal cooling processes. The results indicated that under the proper agitating temperatures and speeds applied, the dendrite structures in white cast iron slurry were gradually evolved into spherical structures during a certain agitating time. It also revealed that the bent dendrites were formed by either convection force or by the growth of the dendrites themselves in the bending direction; then, as they were in solidifying, they were gradually being alternated into separated particles and into more spherical structures at the end of the isothermal cooling process. Especially, the dendrites were granulated as the bending process proceeding, which suggested that they were caused by unwanted elements such as sulfur and phosphor usually contained in engineering cast iron. Convective flow of the melt caused corrosion on the dendritic segments where they were weaker in strength and lower in melting temperature because of higher concentration of sulfur or phosphor. And the granulation process for such dendrites formed in the melt became possible under the condition. Certainly, dendrite fragments are another factors considerable to function for spherical particles formation. A new mechanism, regarding to the rheocast structure formation of white cast iron, was suggested based on the structural evolution observed in the study.

  6. SOME ASPECTS OF TECHNOLOGICAL PROCESS OF CASTINGS IN COATED CHILL

    Directory of Open Access Journals (Sweden)

    A. N. Krutilin

    2010-01-01

    Full Text Available Analysis of technological process of pouring into coated iron chill is presented. It is shown that the process is very sensitive to the change of technological parameters, is rather complex in regulation and control.

  7. Numerical modelling of evaporation in a ceramic layer in the tape casting process

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Jambhekar, V. A.; Hattel, Jesper Henri

    2016-01-01

    Evaporation of water from a ceramic layer is a key phenomenon in the drying process for the manufacturing of tape cast ceramics. This process contains mass, momentum and energy exchange between the porous medium and the free-flow region. In order to analyze such interaction processes, a Represent......Evaporation of water from a ceramic layer is a key phenomenon in the drying process for the manufacturing of tape cast ceramics. This process contains mass, momentum and energy exchange between the porous medium and the free-flow region. In order to analyze such interaction processes......, a Representative Elementary Volume (REV)-scale model concept is presented for coupling non-isothermal multi-phase compositional porous-media flow and single-phase compositional laminar free-flow. The preliminary results show the typical expected evaporation behaviour from a porous medium initially saturated...

  8. Numerical modelling of evaporation in a ceramic layer in the tape casting process

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Jambhekar, V. A.; Hattel, Jesper Henri;

    2016-01-01

    Evaporation of water from a ceramic layer is a key phenomenon in the drying process for the manufacturing of tape cast ceramics. This process contains mass, momentum and energy exchange between the porous medium and the free-flow region. In order to analyze such interaction processes, a Represent......Evaporation of water from a ceramic layer is a key phenomenon in the drying process for the manufacturing of tape cast ceramics. This process contains mass, momentum and energy exchange between the porous medium and the free-flow region. In order to analyze such interaction processes......, a Representative Elementary Volume (REV)-scale model concept is presented for coupling non-isothermal multi-phase compositional porous-media flow and single-phase compositional laminar free-flow. The preliminary results show the typical expected evaporation behaviour from a porous medium initially saturated...

  9. Mineralization of Zein Films by Biomimetic Process

    Institute of Scientific and Technical Information of China (English)

    JIN Xiaoning; ZHANG Yanxiang; MA Ying; ZENG Sheng; WANG Shaozhen; MA Yalu

    2015-01-01

    The transparent or opaque zein film was prepared by a phase separation method with a zein ethanol aqueous solution. The circular zein film was self-assembled on the air-water interface. According to the images by scanning elec-tron microscopy, the upper surface of film is flat and smooth and the downward surface presents a complex reticulation structure of corn protein fiber. Zein film as a biomimetic mineralization template is used to synthesize calcium phosphate crystals by a bioinspired mineralization process. Randomly oriented apatite crystals appear on the both surfaces of zein film after immersion in 10´simulated body fluid, and the phase composition and morphology of the deposited calcium apatite are also distinguished from deposited location and immersion time. The phase transformation process from dical-cium phosphate dihydrate into hydroxyapatite (HAp) phase was investigated by X-ray powder diffraction, transmission electron microscopy and Fourier transform infrared spectroscopy, respectively. Based on the results by energy dispersive X-ray spectroscopy, the Ca/P ratio of the deposited apatite increases with the transformation from DCPD to HAp. The HAp/Zein films possess the excellent biodegradable structural features, and the coating of HAp crystallites has some potential applications for bone repair and regeneration.

  10. Mineralization of Zein Films by Biomimetic Process

    Institute of Scientific and Technical Information of China (English)

    JIN; Xiaoning; ZHANG; Yanxiang; MA; Ying; ZENG; Sheng; WANG; Shaozhen; MA; Yalu

    2015-01-01

    The transparent or opaque zein film was prepared by a phase separation method with a zein ethanol aqueous solution.The circular zein film was self-assembled on the air-water interface.According to the images by scanning electron microscopy,the upper surface of film is flat and smooth and the downward surface presents a complex reticulation structure of corn protein fiber.Zein film as a biomimetic mineralization template is used to synthesize calcium phosphate crystals by a bioinspired mineralization process.Randomly oriented apatite crystals appear on the both surfaces of zein film after immersion in lOxsimulated body fluid,and the phase composition and morphology of the deposited calcium apatite are also distinguished from deposited location and immersion time.The phase transformation process from dicalcium phosphate dihydrate into hydroxyapatite(HAp) phase was investigated by X-ray powder diffraction,transmission electron microscopy and Fourier transform infrared spectroscopy,respectively.Based on the results by energy dispersive X-ray spectroscopy,the Ca/P ratio of the deposited apatite increases with the transformation from DCPD to HAp.The HAp/Zein films possess the excellent biodegradable structural features,and the coating of HAp crystallites has some potential applications for bone repair and regeneration.

  11. The Influence of Casting Conditions on the Microstructure of As-Cast U-10Mo Alloys: Characterization of the Casting Process Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, Eric A.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean M.; Burkes, Douglas

    2013-12-13

    Sections of eight plate castings of uranium alloyed with 10 wt% molybdenum (U-10Mo) were sent from Y-12 to the Pacific Northwest National Laboratory (PNNL) for microstructural characterization. This report summarizes the results from this study.

  12. The Influence of Casting Conditions on the Microstructure of As-Cast U-10Mo Alloys: Characterization of the Casting Process Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, Eric A.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean M.; Burkes, Douglas

    2013-12-13

    Sections of eight plate castings of uranium alloyed with 10 wt% molybdenum (U-10Mo) were sent from Y-12 to the Pacific Northwest National Laboratory (PNNL) for microstructural characterization. This report summarizes the results from this study.

  13. Optimization of Master Alloy Amount and Gating System Design for Ductile Cast Iron Obtain in Lost Foam Process

    OpenAIRE

    Just, P.; R. Kaczorowski; T. Pacyniak

    2013-01-01

    The paper presents the optimization of master alloy amount for the high nodular graphite yield (80-90%) in cast iron obtain in lost foam process. The influence of the gating system configuration and the shape of the reaction chamber, the degree of spheroidisation cast iron was examined. Research has shown that the, optimal of master alloy amount of 1.5% by mass on casting iron. The degree of spheroidisation is also influenced by the gating system configuration. The best spheroidisation effect...

  14. Efficient production of nanoparticle-loaded orodispersible films by process integration in a stirred media mill.

    Science.gov (United States)

    Steiner, Denise; Finke, Jan Henrik; Kwade, Arno

    2016-09-25

    Orodispersible films possess a great potential as a versatile platform for nanoparticle-loaded oral dosage forms. In this case, poorly water-soluble organic materials were ground in a stirred media mill and embedded into a polymer matrix. The aim of this study was the shortening of this manufacturing process by the integration of several process steps into a stirred media mill without facing disadvantages regarding the film quality. Furthermore, this process integration is time conserving due to the high stress intensities provided in the mill and applicable for high solids contents and high suspension viscosities. Two organic materials, the model compound Anthraquinone and the active pharmaceutical ingredient Naproxen were investigated in this study. Besides the impact of the film processing on the crystallinity of the particles in the orodispersible film, a particle load of up to 50% was investigated with the new developed processing route. Additionally, a disintegration test was developed, combining an appropriate amount of saliva substitute and a clear endpoint determination. In summary, high nanoparticle loads in orodispersible films with good particle size preservation after film redispersion in water as well as a manufacturing of the film casting mass within a few minutes in a stirred media mill was achieved.

  15. HANFORD CONTAINERIZED CAST STONE FACILITY TASK 1 PROCESS TESTING & DEVELOPMENT FINAL TEST REPORT

    Energy Technology Data Exchange (ETDEWEB)

    LOCKREM, L L

    2005-07-13

    Laboratory testing and technical evaluation activities on Containerized Cast Stone (CCS) were conducted under the Scope of Work (SOW) contained in CH2M HILL Hanford Group, Inc. (CHG) Contract No. 18548 (CHG 2003a). This report presents the results of testing and demonstration activities discussed in SOW Section 3.1, Task I--''Process Development Testing'', and described in greater detail in the ''Containerized Grout--Phase I Testing and Demonstration Plan'' (CHG, 2003b). CHG (2003b) divided the CCS testing and evaluation activities into six categories, as follows: (1) A short set of tests with simulant to select a preferred dry reagent formulation (DRF), determine allowable liquid addition levels, and confirm the Part 2 test matrix. (2) Waste form performance testing on cast stone made from the preferred DRF and a backup DRF, as selected in Part I, and using low activity waste (LAW) simulant. (3) Waste form performance testing on cast stone made from the preferred DRF using radioactive LAW. (4) Waste form validation testing on a selected nominal cast stone formulation using the preferred DRF and LAW simulant. (5) Engineering evaluations of explosive/toxic gas evolution, including hydrogen, from the cast stone product. (6) Technetium ''getter'' testing with cast stone made with LAW simulant and with radioactive LAW. In addition, nitrate leaching observations were drawn from nitrate leachability data obtained in the course of the Parts 2 and 3 waste form performance testing. The nitrate leachability index results are presented along with other data from the applicable activity categories.

  16. Numerical simulation of continuous roll-casting process of aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    XIE Shui-sheng; YANG Hao-qiang; HUANG Guo-jie

    2006-01-01

    In order to improve the strip quality of continuous roll-casting process (CRP) of aluminum alloy, the investigations of the flow behavior within the metal pool, the heat transfer condition between roll and strip, the pouring temperature of molten alloy, the roll-casting speed and the control of the position of solidification final point are important. The finite volume method was applied to the analysis of the continuous roll-casting process. A two-dimensional incompressible non-Newtonian fluid flow with heat transfer was considered, which was described by the continuity equation, the Navier-Stokes equation and the energy equation. With this mathematical model, the flow patterns, temperature fields and solid fraction distributions in the metal pool between two rolls were simulated. From the calculated results, the effects of technical parameters to the position of solidification final point are obtained.The simulated results show that the roll-casting speed and pouring temperature have an enormous effect on the temperature distribution and the position of solidification final point.

  17. Design and Processing of Bimetallic Aluminum Alloys by Sequential Casting Technique

    Science.gov (United States)

    Karun, Akhil S.; Hari, S.; Ebhota, Williams S.; Rajan, T. P. D.; Pillai, U. T. S.; Pai, B. C.

    2017-01-01

    Sequential casting is a facile and fairly new technique to produce functionally graded materials (FGMs) and components by controlled mold filling process. In the present investigation, functionally graded bimetallic aluminum alloys are produced by sequential gravity casting using A390-A319 and A390-A6061 alloy combinations. The control in pouring time between two melts has shown a significant effect on the quality and nature of interface bonding. The microstructure reveals good interface miscibility achieved through diffusion bonding between the alloys. A higher hardness of 160 BHN in the A390 region is obtained in both sequential cast systems, and a minimum value of 105 and 91 BHN is observed in the A319 and A6061 regions, respectively. The tensile and compression strength for A390-A319 are 337 and 490 MPa, whereas for A390-A6061, they are 364 and 401 MPa, respectively, which are significantly higher compared with the standard values of the base alloys, which confirms strong interface bonding. The A390 region shows higher wear resistance compared with other regions of the sequential cast system. The process described in this study is a potential and efficient approach to create good bonding between two different aluminum alloys to develop advanced functional and structural materials.

  18. Development of Deformation-Semisolid-Casting (D-SSC) Process and Applications to Some Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent advances in the semisolid casting technologies are introduced for aluminum alloys. The advantages of the rheocast and thixocast methods to fabricate alloys with refined spheroidized α-Al particles are described.The deformation-semisolid-casting (D-SSC) process developed by the author's group is presented. The D-SSC process is extremely effective to produce microstructures of refined intermetallic compound particles as well as the spheroidized α-Al particles in the Al-Si based alloys containing highly concentrated Fe. In the D-SSC processed Al-Si-Cu alloy high elongation of about 20% was achieved even contained concentrated impurity of Fe. The D-SSC process is also useful to produce wrought aluminum alloys with microstructures of refined α-Al particles.

  19. Microstructure And Mechanical Properties Of An Al-Zn-Mg-Cu Alloy Produced By Gravity Casting Process

    OpenAIRE

    2015-01-01

    High-strength aluminum alloy are widely used for structural components in aerospace, transportation and racing car applications. The objective of this study is to enhance the strength of the Al-Zn-Mg-Cu alloy used for gravity casting process. All alloys cast into stepped-form sand mold (Sand-mold Casting; SC) and Y-block shaped metal mold(Permanent mold Casting; PC) C and then two –step aged at 398-423 K after solution treated at 743 K for 36 ks. The tensile strength and total elongation of t...

  20. Optimization of Master Alloy Amount and Gating System Design for Ductile Cast Iron Obtain in Lost Foam Process

    Directory of Open Access Journals (Sweden)

    P. Just

    2013-07-01

    Full Text Available The paper presents the optimization of master alloy amount for the high nodular graphite yield (80-90% in cast iron obtain in lost foam process. The influence of the gating system configuration and the shape of the reaction chamber, the degree of spheroidisation cast iron was examined. Research has shown that the, optimal of master alloy amount of 1.5% by mass on casting iron. The degree of spheroidisation is also influenced by the gating system configuration. The best spheroidisation effect was obtained for liquid cast iron was fed into the reaction chamber from the bottom and discharged from the top.

  1. Practice of Improving Casting Process for Thin Cover Aluminum Castings%改进薄壁罩体铸铝件铸造工艺的实践

    Institute of Scientific and Technical Information of China (English)

    韩桂新

    2012-01-01

    针对薄壁罩体铸铝件在铸件内腔、法兰端面产生大面积夹渣、局部气孔及偏箱等缺陷,铸件成品率不到45%,进行了工艺改进,即由法兰朝上改为法兰朝下,由顶注改为底注,并使用明顶切割冒口、暗冒口、变壁冷铁及工艺补贴,有效地解决了铸件大面积夹渣、局部气孔及偏箱等质量问题,生产出的铸件能够满足使用性能要求,成晶率提高到100%.%Aimed at the cast defects of large area slag, local porosity and partial boxes in thin-wall cover castings of aluminum at the cavity of castings and the end faces of flanges, the finished product rate is less than 45%, the process was improved, that was, flange facing downward, bottom injection, and using top cutting riser, dark riser, variable wall cold iron and process allowance matching. Practice showes that these measures can effectively eliminate the cast defects, produced castings can meet the performance requirements, the rate of finished products improves to 100%.

  2. Spectral response of solvent-cast polyvinyl chloride (PVC) thin film used as a long-term UV dosimeter.

    Science.gov (United States)

    Amar, Abdurazaq; Parisi, Alfio V

    2013-08-01

    The spectral response of solvent-cast polyvinyl chloride (PVC) thin film suitable for use as a long-term UV dosimeter has been determined by measuring the UV induced change in the 1064 cm(-1) peak intensity of the PVC's infrared (IR) spectra as a function of the wavelength of the incident radiation. Measurements using cut-off filters, narrow band-pass filters and monochromatic radiation showed that the 16 μm PVC film responds mainly to the UVB band. The maximum response was at 290 nm and decreasing exponentially with wavelength up to about 340 nm independent of temperature and exposure dose. The most suitable concentration (W/V%) of PVC/Tetrahydrofuran solution was found to be 10% and the best thickness for the dosimeter was determined as 16 μm.

  3. Periodic porous stripe patterning in a polymer blend film induced by phase separation during spin-casting.

    Science.gov (United States)

    Kim, Jae-Kyung; Taki, Kentaro; Nagamine, Shinsuke; Ohshima, Masahiro

    2008-08-19

    A periodic striping pattern with microscale pore size is observed on the surface of thin films prepared by spin-casting from a polystyrene (PS) and polyethylene glycol (PEG) blend solution. The pattern is created by the convection generated by thermal gradients in the solution between the substrate and film solution during solvent evaporation, the radial flow of the spin-coated solution, and the primary and secondary phase separation of the PS and PEG solutions. The formation mechanism of the periodic porous stripe pattern is discussed, wherein the effects of the polymer blend weight ratio, polymer concentration, and drying rate on the formation of the periodic porous striping pattern are investigated using scanning electron and atomic force microscopy.

  4. Application of Anodization Process for Cast Aluminium Surface Properties Enhancement

    Directory of Open Access Journals (Sweden)

    Włodarczyk-Fligier A.

    2016-09-01

    Full Text Available An huge interest is observed in last years in metal matrix composite, mostly light metal based, which have found their applications in many industry branches, among others in the aircraft industry, automotive-, and armaments ones, as well as in electrical engineering and electronics, where one of the most important issue is related to the corrosion resistance, especially on the surface layer of the used aluminium alloys. This elaboration presents the influence of ceramic phase on the corrosion resistance, quality of the surface layer its thickness and structure of an anodic layer formed on aluminium alloys. As test materials it was applied the aluminium alloys Al-Si-Cu and Al-Cu-Mg, for which heat treatment processes and corrosion tests were carried out. It was presented herein grindability test results and metallographic examination, as well. Hardness of the treated alloys with those ones subjected to corrosion process were compared.

  5. Modeling of mould cavity filling process with cast iron in Lost Foam method Part 2. Mathematical model – Pouring rate

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2008-08-01

    Full Text Available In this work pouring rate equation for cast iron in lost foam process was shown. For description of this phenomenon the motion dynamic equation was used. Pressure affecting the liquid cast iron surface was described using Bernoulli formulae. Numerical simulation results were analyzed with respect to permeability, refractory coating thickness and foamed polystyrene pattern density influence on pouring rate.

  6. Dehydration of moulding sand in simulated casting process examined with neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Schillinger, B., E-mail: Burkhard.Schillinger@frm2.tum.de [Technische Universitaet Muenchen, FRM II and Faculty for Physics E21, Lichtenbergstr. 1, 85748 Garching (Germany); Calzada, E. [Technische Universitaet Muenchen, FRM II and Faculty for Physics E21, Lichtenbergstr. 1, 85748 Garching (Germany); Eulenkamp, C.; Jordan, G.; Schmahl, W.W. [Ludwig-Maximilians-Universitaet Muenchen, Department fuer Geo- und Umweltwissenschaften, Sektion Kristallographie, Theresienstr. 41, 80333 Muenchen (Germany)

    2011-09-21

    Natural bentonites are an important material in the casting industry. Smectites as the main component of bentonites plasticize and stabilise sand moulds. Pore water as well as interlayer water within the smectites are lost as a function of time, location and temperature. Although rehydration of the smectites should be a reversible process, the industrially dehydrated smectites lose their capability to reabsorb water. This limits the number of possible process cycles of the mould material. A full understanding of the dehydration process would help to optimise the amount of fresh material to be added and thus save resources. A simulated metal casting was investigated with neutron radiography at the ANTARES neutron imaging facility of the FRM II reactor of Technische Universitaet Muenchen, Germany.

  7. Dehydration of moulding sand in simulated casting process examined with neutron radiography

    Science.gov (United States)

    Schillinger, B.; Calzada, E.; Eulenkamp, C.; Jordan, G.; Schmahl, W. W.

    2011-09-01

    Natural bentonites are an important material in the casting industry. Smectites as the main component of bentonites plasticize and stabilise sand moulds. Pore water as well as interlayer water within the smectites are lost as a function of time, location and temperature. Although rehydration of the smectites should be a reversible process, the industrially dehydrated smectites lose their capability to reabsorb water. This limits the number of possible process cycles of the mould material. A full understanding of the dehydration process would help to optimise the amount of fresh material to be added and thus save resources. A simulated metal casting was investigated with neutron radiography at the ANTARES neutron imaging facility of the FRM II reactor of Technische Universität München, Germany.

  8. A Novel Algorithm to Scheduling Optimization of Melting-Casting Process in Copper Alloy Strip Production

    Directory of Open Access Journals (Sweden)

    Xiaohui Yan

    2015-01-01

    Full Text Available Melting-casting is the first process in copper alloy strip production. The schedule scheme on this process affects the subsequent processes greatly. In this paper, we build the multiobjective model of melting-casting scheduling problem, which considers minimizing the makespan and total weighted earliness and tardiness penalties comprehensively. A novel algorithm, which we called Multiobjective Artificial Bee Colony/Decomposition (MOABC/D algorithm, is proposed to solve this model. The algorithm combines the framework of Multiobjective Evolutionary Algorithm/Decomposition (MOEA/D and the neighborhood search strategy of Artificial Bee Colony algorithm. The results on instances show that the proposed MOABC/D algorithm outperforms the other two comparison algorithms both on the distributions of the Pareto front and the priority in the optimal selection results.

  9. Optimization of Casting Process Parameters for Homogeneous Aggregate Distribution in Self-Compacting Concrete: A Feasibility Study

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Tutum, Cem Celal; Hattel, Jesper Henri

    2011-01-01

    during the casting process may lead to variations of local mechanical properties and hence to a potential decrease in load carrying capacity of the structure. This paper presents a methodology for optimization of SCC casting aiming at having a homogeneous aggregate distribution; a beam has been used...... of the filling etc., however since this work is the initial feasibility study in this field, only three process parameters are considered. Despite the reduction in the number of process parameters, the complexity involved in the considered casting process results in a non trivial optimal design set....

  10. Sand, die and investment cast parts via the SLS selective laser sintering process

    Science.gov (United States)

    van de Crommert, Simon; Seitz, Sandra; Esser, Klaus K.; McAlea, Kevin

    1997-09-01

    Complex three-dimensional parts can be manufactured directly from CAD data using rapid prototyping processes. SLS selective laser sintering is a rapid prototyping process developed at the University of Texas at Austin and commercialized by DTM Corporation. SLS parts are constructed layer by layer from powdered materials using laser energy to melt CAD specified cross sections. Polymer, metal, and ceramic powders are all potential candidate materials for this process. In this paper the fabrication of complex metal parts rapidly using the investment, die and sand casting technologies in conjunction with the selective laser sintering process are being explained and discussed. TrueForm and polycarbonate were used for investment casting, while RapidSteel metal mould inserts were used for the die casting trials. Two different SandForm materials, zircon and silica sand, are currently available for the direct production of sand moulds and cores. The flexible and versatile selective laser sintering process all these materials on one single sinterstation. Material can be changed fast and easily between two different builds.

  11. EFFECTS OF FRICTION STIR PROCESSING ON MICROSTRUCTURAL, HARDNESS AND DAMPING CHARACTERISTICS OF FERRITIC NODULAR CAST IRON

    Directory of Open Access Journals (Sweden)

    ABDULSALAM Y.OBAID

    2017-01-01

    Full Text Available Experimental investigations had been done in this study to explore the effects of friction stir processing (FSP on the microstructure, hardness and damping capacity of fully ferrite nodular cast iron ASTM A536, grade 65-45-12. The main process parameters employed in this study were the rotational speed, translational speed and axial applied load which were varied within selected ranges. Their influence to be analysed and optimized for best process conditions compared with as cast material. Detailed investigations were carried out using optical microscopy, hardness test and impact test. Results showed that graphite grain refinements of 2-3 times the original size and phase transformations of a fully ferritic to bainite/martensite were achieved within the processed zone and across thickness. Matrix modifications caused improvement in hardness of 3.5 times compared to hardness of original cast iron. Increment in the damping capacity up to 14% was achieved. The stated improvements were related to the process parameters employed in the test.

  12. Numerical simulation and analysis of mould filling process in lost foam casting

    Directory of Open Access Journals (Sweden)

    Jiang Junxia

    2008-08-01

    Full Text Available In lost foam casting (LFC the foam pattern is the key criterion, and the filling process is crucial to ensure the high quality of the foam pattern. Filling which lacks uniformity and denseness will cause various defects and affect the surface quality of the casting. The infl uential factors of the fi lling process are realized in this research. Optimization of the fi lling process, enhancement of effi ciency, decrease of waste, etc., are obtained by the numerical simulation of the fi lling process using a computer.The equations governing the dense gas-solid two-phase flow are established, and the physical significance of each equation is discussed. The Euler/Lagrange numerical model is used to simulate the fluid dynamic characteristics of the dense two-phase fl ow during the mould fi lling process in lost foam casting. The experiments and numerical results showed that this method can be a very promising tool in the mould fi lling simulation of beads' movement.

  13. Fabrication of plain carbon steel/high chromium white cast iron bimetal by a liquid-solid composite casting process

    Institute of Scientific and Technical Information of China (English)

    V Javaheri; H Rastegari; M Naseri

    2015-01-01

    High-chromium white cast iron (HCWCI) is one of the most widely used engineering materials in the mining and cement indus-tries. However, in some components, such as the pulverizer plates of ash mills, the poor machinability of HCWCI creates difficulties. The bimetal casting technique is a suitable method for improving the machinability of HCWCI by joining an easily machined layer of plain car-bon steel (PCS) to its hard part. In this study, the possibility of PCS/HCWCI bimetal casting was investigated using sand casting. The inves-tigation was conducted by optical and electron microscopy and non-destructive, impact toughness, and tensile tests. The hardness and chemical composition profiles on both sides of the interface were plotted in this study. The results indicated that a conventional and low-cost casting technique could be a reliable method for producing PCS/HCWCI bimetal. The interfacial microstructure comprised two distinct lay-ers:a very fine, partially spheroidized pearlite layer and a coarse full pearlite layer. Moreover, characterization of the microstructure revealed that the interface was free of defects.

  14. Physical Characterization of Cementitious Materials on Casting and Placing Process

    Science.gov (United States)

    Yim, Hong Jae; Kim, Jae Hong

    2014-01-01

    Coagulation of cement particles is an inevitable phenomenon of fresh cement-based materials undergoing solidification. Coagulation can be classified into two types, reversible flocculation and irreversible coagulation, wherein microstructural change affects the rheological properties, including shear thinning and thixotropy, and the hydration process. This paper attempts to measure the mechanical property and the coagulation of cement particles according to the mix proportions of cement paste. Experimental setups were proposed for two different types of coagulations using a laser backscattering instrument. Volume fraction and size distribution of coagulated particles were obtained, and their variations were discussed. From the obtained results the microstructural buildup of freshly mixed cement pastes can be divided into three categories: permanent coagulation and strong and weak flocculation. PMID:28788606

  15. Comparison between two rheocasting processes of damper cooling tube method and low superheat casting

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaoli; Ling Xiangjun; Wang Tongmin; Li Tingju

    2014-01-01

    To produce a high quality semisolid slurry that consists of fine primary particles uniformly suspended in the liquid matrix for rheoforming, chemical refining and electromagnetic or mechanical stirring are the two methods commonly used. But these two methods either contaminate the melt or incur high cost. In this study, the damper cooling tube (DCT) method was designed to prepare semisolid slurry of A356 aluminum alloy, and was compared with the low superheat casting (LSC) method - a conventional process used to produce casting slab with equiaxed dendrite microstructure for thixoforming route. A series of comparative experiments were performed at the pouring temperatures of 650 °C, 638 °C and 622 °C. Metal ographic observations of the casting samples were carried out using an optical electron microscope with image analysis software. Results show that the microstructure of semisolid slurry produced by the DCT process consists of spherical primary α-Al grains, while equiaxed grains microstructure is found in the LSC process. The lower the pouring temperature, the smal er the grain size and the rounder the grain morphology in both methods. The copious nucleation, which could be generated in the DCT, owing to the cooling and stirring effect, is the key to producing high quality semisolid slurry. DCT method could produce rounder and smal er α-Al grains, which are suitable for semisolid processing; and the equivalent grain size is no more than 60 µm when the pouring temperature is 622 °C.

  16. Comparison between two rheocasting processes of damper cooling tube method and low superheat casting

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoli

    2014-09-01

    Full Text Available To produce a high quality semisolid slurry that consists of fine primary particles uniformly suspended in the liquid matrix for rheoforming, chemical refining and electromagnetic or mechanical stirring are the two methods commonly used. But these two methods either contaminate the melt or incur high cost. In this study, the damper cooling tube (DCT method was designed to prepare semisolid slurry of A356 aluminum alloy, and was compared with the low superheat casting (LSC method - a conventional process used to produce casting slab with equiaxed dendrite microstructure for thixoforming route. A series of comparative experiments were performed at the pouring temperatures of 650 °C, 638 °C and 622 °C. Metallographic observations of the casting samples were carried out using an optical electron microscope with image analysis software. Results show that the microstructure of semisolid slurry produced by the DCT process consists of spherical primary α-Al grains, while equiaxed grains microstructure is found in the LSC process. The lower the pouring temperature, the smaller the grain size and the rounder the grain morphology in both methods. The copious nucleation, which could be generated in the DCT, owing to the cooling and stirring effect, is the key to producing high quality semisolid slurry. DCT method could produce rounder and smaller α-Al grains, which are suitable for semisolid processing; and the equivalent grain size is no more than 60 μm when the pouring temperature is 622 °C.

  17. Effect of Technological Parameters on the Quality and Dimensional Accuracy of Castings Manufactured by Patternless Process Technology

    Directory of Open Access Journals (Sweden)

    Krivoš E.

    2014-10-01

    Full Text Available Submitted article deals with the effect of selected technological parameters on the quality and dimensional accuracy of prototype castings made by Patternless process technology. During experiments were used two types of molding compounds (foamed gypsum and compound based on silica sand and resin. Experiments were focused on optimization of cutting parameters in terms of efficiency, accuracy and possibilities to minimize tool wear. Article deals also with the dimensional and shape accuracy of the castings made by Z-Cast technology. The main aim of the research is to optimize Patternless process technology to such an extent, that achieved dimensional and shape accuracy will be comparable to castings made by the Z-Cast technology.

  18. Development of a semi-solid metal processing technique for aluminium casting applications

    Directory of Open Access Journals (Sweden)

    Sangop Thanabumrungkul

    2008-03-01

    Full Text Available A semi-solid metal processing technique has been invented and is being developed for aluminium casting applications in Thailand. The technique uses fine gas bubbles to create convection necessary for modifying grain structure. Semi-solid metal processing of three aluminium alloys, A356, Al-4.4%Cu, and ADC12, was investigated. Results show that the novel technique successfully modified A356 and Al-4.4%Cu to become semi-solid slurry with solid fractions up to about 50%. Current developments show a feasibility of applying this technique with gravity casting and the capability to prepare semisolid slurry up to 2 kg of aluminium alloys for industrial production.

  19. The Influence of Ingate Size on the Lost Foam Casting Process

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2012-04-01

    Full Text Available The article presents analysis of the influence of ingate size on the Lost Foam casting process. In particular, analysis of simulation tests has been carried out to determine the ingate size influence on the rate of filling of the mould cavity, pressure in the gas gap and size of the gas gap. A specially prepared mathematical model of the process and an original calculation algorithm were used in simulation tests of full-mould casting. The tests have indicated that the increase of the ingate size results in the increase of filling rate and increase of pressure of gases in the gas gap. However, significant influence on mould cavity filling occurs only when the ingate size is less than ~1 cm2.

  20. Breakout Prediction Based on BP Neural Network in Continuous Casting Process

    Directory of Open Access Journals (Sweden)

    Zhang Ben-guo

    2016-01-01

    Full Text Available An improved BP neural network model was presented by modifying the learning algorithm of the traditional BP neural network, based on the Levenberg-Marquardt algorithm, and was applied to the breakout prediction system in the continuous casting process. The results showed that the accuracy rate of the model for the temperature pattern of sticking breakout was 96.43%, and the quote rate was 100%, that verified the feasibility of the model.

  1. FEM Analysis of Physical Field in Level Rolling Process of Inversion Casting by ANSYS Program

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The strain physical field in level rolling process of inversion casting was analyzed by ANSYS program. Plastics train, stress and displacement were gained. The results show that only surfaces train takes place; the maximum stress exists in the geometrical deformation zone ; In the deformation transition zone and the part leaving the rollers, different stress exists. The rolling force estimated with ANSYS program corresponds to those measured.

  2. Structure-property-processing correlations in freeze-cast composite scaffolds.

    Science.gov (United States)

    Hunger, Philipp M; Donius, Amalie E; Wegst, Ulrike G K

    2013-05-01

    Surprisingly few reports have been published, to date, on the structure-property-processing correlations observed in freeze-cast materials directionally solidified from polymer solutions, or ceramic or metal slurries. The studies that exist focus on properties of sintered ceramics, that is materials whose structure was altered by further processing. In this contribution, we report first results on correlations observed in alumina-chitosan-gelatin composites, which were chosen as a model system to test and compare the effect of particle size and processing parameters on their mechanical properties at a specific composition. Our study reveals that highly porous (>90%) hybrid materials can be manufactured by freeze casting, through the self-assembly of a polymer and a ceramic phase that occurs during directional solidification, without the need of additional processing steps such as sintering or infiltration. It further illustrates that the properties of freeze-cast hybrid materials can independently be tailored at two levels of their structural hierarchy, allowing for the simultaneous optimization of both mechanical and structural requirements. An increase in freezing rate resulted in decreases in lamellar spacing, cell wall thickness, pore aspect ratio and cross-sectional area, as well as increases in both Young's modulus and compressive yield strength. The mechanical properties of the composite scaffolds increased with an increasing particle size. The results show that both structure and mechanical properties of the freeze-cast composites can be custom-designed and that they are thus ideally suited for a large variety of applications that require high porosity at low or medium load-bearing capacity.

  3. Process development of making bearings and bushings from continuous-cast SAE 660 bronze alloy plate

    Science.gov (United States)

    Chill, J. L.

    A process for making bearings and bushings offers considerable potential. The ability to minimize machining and scrap loss, especially for middle and large diameter bearings, should help to lower manufacturing costs appreciably. In addition, the substantial improvement of mechanical properties resulting from rolling offers the increased performance over as-cast SAE 660 bronze bearings in terms of better load carrying ability and wear resistance.

  4. Influence of the cordierite lining on the lost foam casting process

    OpenAIRE

    Trumbulović Ljiljana; Gulišija Zvonko; Aćimović-Pavlović Zagorka; Andrić Lj.

    2003-01-01

    This paper discuss the influence of the refractory cordierite lining on the structure and mechanical properties of Al-Si and Al-Cu casings obtained from the Lost foam casting process. So far there has not been any report of the research on cordierite lining in the literature and moreover the cordierite ceramics have never been used in foundries. In the light of these facts this paper investigates the possibility of using cordierite for manufacturing evaporable model refractory linings. Our re...

  5. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures

    Science.gov (United States)

    Stein, Stefan; Wedler, Jonathan; Rhein, Sebastian; Schmidt, Michael; Körner, Carolin; Michaelis, Alexander; Gebhardt, Sylvia

    The application of piezoelectric transducers to structural body parts of machines or vehicles enables the combination of passive mechanical components with sensor and actuator functions in one single structure. According to Herold et al. [1] and Staeves [2] this approach indicates significant potential regarding smart lightweight construction. To obtain the highest yield, the piezoelectric transducers need to be integrated into the flux of forces (load path) of load bearing structures. Application in a downstream process reduces yield and process efficiency during manufacturing and operation, due to the necessity of a subsequent process step of sensor/actuator application. The die casting process offers the possibility for integration of piezoelectric transducers into metal structures. Aluminum castings are particularly favorable due to their high quality and feasibility for high unit production at low cost (Brunhuber [3], Nogowizin [4]). Such molded aluminum parts with integrated piezoelectric transducers enable functions like active vibration damping, structural health monitoring or energy harvesting resulting in significant possibilities of weight reduction, which is an increasingly important driving force of automotive and aerospace industry (Klein [5], Siebenpfeiffer [6]) due to increasingly stringent environmental protection laws. In the scope of those developments, this paper focuses on the entire process chain enabling the generation of lightweight metal structures with sensor and actuator function, starting from the manufacturing of piezoelectric modules over electrical and mechanical bonding to the integration of such modules into aluminum (Al) matrices by die casting. To achieve this challenging goal, piezoceramic sensors/actuator modules, so-called LTCC/PZT modules (LPM) were developed, since ceramic based piezoelectric modules are more likely to withstand the thermal stress of about 700 °C introduced by the casting process (Flössel et al., [7]). The

  6. Cold cracking in DC-cast high strength aluminum alloy ingots: An intrinsic problem intensified by casting process parameters

    NARCIS (Netherlands)

    Lalpoor, M.; Eskin, D.G.; Ruvalcaba, D.; Fjaer, H.G.; Ten Cate, A.; Ontijt, N.; Katgerman, L.

    2011-01-01

    For almost half a century the catastrophic failure of direct chill (DC) cast high strength aluminum alloys has been challenging the production of sound ingots. To overcome this problem, a criterion is required that can assist the researchers in predicting the critical conditions which facilitate the

  7. Processing of Advanced Cast Alloys for A-USC Steam Turbine Applications

    Science.gov (United States)

    Jablonski, Paul D.; Hawk, Jeffery A.; Cowen, Christopher J.; Maziasz, Philip J.

    2012-02-01

    The high-temperature components within conventional supercritical coal-fired power plants are manufactured from ferritic/martensitic steels. To reduce greenhouse-gas emissions, the efficiency of pulverized coal steam power plants must be increased to as high a temperature and pressure as feasible. The proposed steam temperature in the DOE/NETL Advanced Ultra Supercritical power plant is high enough (760°C) that ferritic/martensitic steels will not work for the majority of high-temperature components in the turbine or for pipes and tubes in the boiler due to temperature limitations of this class of materials. Thus, Ni-based superalloys are being considered for many of these components. Off-the-shelf forged nickel alloys have shown good promise at these temperatures, but further improvements can be made through experimentation within the nominal chemistry range as well as through thermomechanical processing and subsequent heat treatment. However, cast nickel-based superalloys, which possess high strength, creep resistance, and weldability, are typically not available, particularly those with good ductility and toughness that are weldable in thick sections. To address those issues related to thick casting for turbine casings, for example, cast analogs of selected wrought nickel-based superalloys such as alloy 263, Haynes 282, and Nimonic 105 have been produced. Alloy design criteria, melt processing experiences, and heat treatment are discussed with respect to the as-processed and heat-treated microstructures and selected mechanical properties. The discussion concludes with the prospects for full-scale development of a thick section casting for a steam turbine valve chest or rotor casing.

  8. A Coupled Thermo-Mechanical Simulation on Squeeze Casting Solidification Process of Three-Dimensional Geometrically Complex Components

    Science.gov (United States)

    Tang, Jie; Han, Zhiqiang; Wang, Feifan; Sun, Jue; Xu, Shanxin

    A coupled thermo-mechanical simulation method for three-dimensional squeeze casting components has been developed. The simulation was achieved by using ANSYS Parametric Design Language (APDL). The effect of volume shrinkage due to cooling and solidification, the effect of pressure on the latent heat release, the mutual dependence of interfacial heat transfer and casting deformation, and materials behavior under elevated temperatures were taken into account in the simulation. A step-shaped trial casting was simulated, which demonstrates the ability of the method to simulate the pressure transmission and decline inside the casting as well as the distribution and evolution of the interfacial heat transfer coefficient. Finally, the method was applied to simulate the solidification of an automotive sub-frame component, based on which the squeeze casting process of the component was optimized.

  9. Influence of the cordierite lining on the lost foam casting process

    Directory of Open Access Journals (Sweden)

    Trumbulović Ljiljana

    2003-01-01

    Full Text Available This paper discuss the influence of the refractory cordierite lining on the structure and mechanical properties of Al-Si and Al-Cu casings obtained from the Lost foam casting process. So far there has not been any report of the research on cordierite lining in the literature and moreover the cordierite ceramics have never been used in foundries. In the light of these facts this paper investigates the possibility of using cordierite for manufacturing evaporable model refractory linings. Our results indicate that the application of cordierite ceramics is comparable to talc-based refractory linings in both Al-Cu and Al-Si castings, while cordierites are favorable in Al-Cu case due to their higher melting temperature.

  10. Thermo-Mechanical Behavior of the Continuous Casting Bloom in the Heavy Reduction Process

    Science.gov (United States)

    Ji, Cheng; Wu, Chen-hui; Zhu, Miao-yong

    2016-08-01

    A two-stage sequential heavy reduction (HR) method, in which the reduction amount was increased both before and after the solidification end, is presented to simultaneously improve the homogeneity and compactness of the continuous casting bloom. With bearing steel GCr15 chosen as the specific research steel, a three-dimensional thermal-mechanical finite element model was developed to simulate and analyze the thermal and mechanical behaviors of the continuous casting bloom during the HR process. In order to ensure the accuracy of the simulation, the constitutive model parameters were derived from the experimental results. The predicted temperature distribution and shell thickness were verified using a thermal infrared camera and nail shooting results, respectively. The real measured relationship between the HR pressure and amount were applied to verify the mechanical model. The explorative application results showed that the quality of the bloom center and compactness of rolled bars have both been significantly improved after the HR was applied.

  11. Mg-Al Alloys Manufactured by Casting and Hot Working Process

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mechanical properties of Mg-Al based alloys at different fabrication state, namely as-cast, hot rolled, and annealed, were investigated to develop the alloys that are suitable for the casting/hot working process. Experimental results indicated that the castability such as hot cracking resistance tends to improve with increasing the aluminum content. However, the elongation at elevated temperatures was observed to decrease as the Al content increases, implying difficulties in hot forming. A small amount of Zr additions could significantly enhance the room temperature mechanical properties of hot-rolled Mg-6%Al-1%Zn alloy. The tendency of remarkable grain coarsening at high temperatures was effectively reduced by the Zr additions. TEM analyses suggested that very fine Al3Zr precipitates formed in the Zr-added alloy are responsible for the obtained results.

  12. Calorimetric analysis of heating and cooling process of nodular cast iron

    Directory of Open Access Journals (Sweden)

    Bińczyk F.

    2007-01-01

    Full Text Available The study presents the results of investigations of the thermal effects which take place during heating and cooling of samples of the nodular graphite cast iron taken from the stepped test casting of the wall thicknesses amounting to 5, 10, 15 and 20 mm. For investigations, a differential scanning calorimeter, type Multi HTC S60, was used. During heating, three endothermic effects related with pearlite decomposition, phase transformation α → γ, and carbon dissolution in austenite were observed on a DSC diagram. During cooling, two exothermic effects related with phase transformation γ→ α and pearlite formation were observed to consecutively take place on a DSC diagram. The values of the enthalpy of these processes differ and depend on the initial microstructure of the examined samples. The metallic matrix in 5 mm sample after the process of heating and cooling changes totally in favour of ferrite. The same effect, though less advanced in intensity, takes place in 10 mm sample, while in 15 and 20 mm samples the matrix constitution remains unchanged. The higher is the content of ferrite in samples, the stronger is the endothermic effect of the α → γ transformation and the weaker is the endothermic effect related with carbon dissolution in austenite. The total of the endothermic effects (heating is reduced, while that of the exothermic effects (cooling increases along with the increasing thickness of walls in a stepped test casting, from which samples for the investigations were taken.

  13. Microstructural modification of as-cast Al-Si-Mg alloy by friction stir processing

    Science.gov (United States)

    Ma, Z. Y.; Sharma, S. R.; Mishra, R. S.

    2006-11-01

    Friction stir processing (FSP) has been applied to cast aluminum alloy A356 plates to enhance the mechanical properties through microstructural refinement and homogenization. The effect of tool geometry and FSP parameters on resultant microstructure and mechanical properties was investigated. The FSP broke up and dispersed the coarse acicular Si particles creating a uniform distribution of Si particles in the aluminum matrix with significant microstructural refinement. Further, FSP healed the casting porosity. These microstructural changes led to a significant improvement in both strength and ductility. Higher tool rotation rate was the most effective parameter to refine coarse Si particles, heal the casting porosity, and consequently increase strength. The effect of tool geometry was complicated and no systematic trend was observed. For a standard pin design, maximum strength was achieved at a tool rotation rate of 900 rpm and traverse speed of 203 mm/min. Post-FSP aging increased strength for materials processed at higher tool rotation rates of 700 to 1100 rpm, but exerted only a marginal effect on samples prepared at the lower rotation rate of 300 rpm. Two-pass FSP with 100 pct overlapping passes resulted in higher strength for both as-FSP and post-FSP aged conditions.

  14. Are Shadows Only Coarsely Processed? Exploring Depth Discrimination with Cast Shadow Cue Conflicts Across Spatial Frequency

    Directory of Open Access Journals (Sweden)

    P.G Lovell

    2014-08-01

    Full Text Available Shape-from-shading is a ubiquitous cue informing object identification and depth judgements. Cast-shadows contribute towards these judgements (see Mammassian, Knill and Kersten, 1998. A number of studies have reported that search-times for inconsistent shadows vary according to whether the scene is presented as-if illuminated from above or below. Though the direction of these inhomogeneities is sometimes contested (see Rensink and Cavanagh, 2004 and Lovell et al, 2009. Lovell et. al. posit that the processing of shadows is handled by coarse-scale processes, but only in light-from-above presentations. The current study explores depth discrimination judgements informed by cast shadows. We create stimuli featuring a pair of floating discs, casting shadows onto a fronto-parallel surface. Participants were asked to identify the disc protruding the most towards them. One disc featured a cast-shadow with a cue-conflict, where low and high spatial-frequency components conveyed different depth information. This allowed us to estimate the weight assigned to the different cues when depth discrimination judgements were made. Firstly, we find that depth judgements consistently reflected the coarse-scale cues, fine-scale cues were largely ignored. Secondly, we found only small differences in the cue weightings for stimuli presented as-if light were above or below. The latter result is perplexing as previous studies have shown a difference between light-from-above and below conditions. We speculate that this difference reflects the task undertaken, i.e. discriminating depths rather than searching for odd shadows.

  15. The Computational Fluid Dynamic (CFD) Modeling of the Horizontal Single Belt Casting (HSBC) Processing of Al-Mg-Sc-Zr Alloy Strips

    Science.gov (United States)

    Ge, S.; Isac, M.; Guthrie, R. I. L.

    2015-10-01

    Al-Mg-Sc-Zr alloys have shown exceptional potential as structural materials for transportation applications. These alloys have proved to be good candidates to be processed as thin strips via the horizontal single belt casting (HSBC) process. The HSBC process is a near-net-shape casting technology, which involves casting molten metal directly into thin strips, close to the final product thickness, at higher cooling rates than conventional continuous casting and thin-slab casting processes. It offers an efficient, economical, and environmentally friendly approach to the production of metal strips. Fluid mechanics and associated heat transfer are important aspects of any casting process, and the novel HSBC process is no exception. Three-dimensional computational fluid dynamics simulations using ANSYS FLUENT 14.5 were performed, in order to assess the importance and effects of the various operational conditions of the HSBC process. This enabled process parameter optimization. Numerical predictions were validated against experimental casting results.

  16. Birefringence dynamics of poly{l_brace}1-[4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl, sodium salt{r_brace} cast films

    Energy Technology Data Exchange (ETDEWEB)

    Madruga, Carla [Centro de Fisica e Investigacao Tecnologica CEFITEC, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica (Portugal); Filho, Paulo Alliprandini [Instituto de Fisica, Universidade Federal de Uberlandia, 38400902, Uberlandia, MG (Brazil); Andrade, Marta M. [REQUIMTE, CQFB, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Goncalves, Manuel [Institute of Experimental Physics, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm (Germany); Raposo, Maria [Centro de Fisica e Investigacao Tecnologica CEFITEC, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica (Portugal); Ribeiro, Paulo A., E-mail: pfr@fct.unl.pt [Centro de Fisica e Investigacao Tecnologica CEFITEC, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica (Portugal)

    2011-09-01

    Photoinduced birefringence creation/decay dynamics in poly{l_brace}1-[4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl, sodium salt{r_brace}cast films, has been characterized in the 5 to 100 mW writing laser power range at the wavelength of 514 nm. The maximum birefringence magnitude increased with laser beam power, being the largest value of 0.03, measured at 632.8 nm. Birefringence creation kinetics followed a biexponential behavior, where a slow process and a fast process could be clearly distinguished. The fast process accounted for more than 60% of birefringence. The time constants for both fast and slow processes decreased with increasing power of writing beam. Birefringence relaxation after removal of writing laser beam revealed to be independent of beam power and, was found to be ruled by two processes, described by a biexponential curve plus a constant term accounting for residual birefringence. A high residual birefringence signal of 85 {+-} 3% was attained, with the fast process contributing to 67% of decay from maximum value. The large values obtained for time constants for both birefringence creation and relaxation processes are believed to arise from stabilization of azo-group either by the formation of an ionic network, or by local short range interactions that are coming through as a result polyelectrolyte coiling due to its high degree of ionization.

  17. Structure of zone-cast HBC-C12H25 films

    DEFF Research Database (Denmark)

    Breiby, Dag Werner; Bunk, Oliver; Pisula, W.

    2005-01-01

    The structure of a thin zone-cast film of the hexa-n-dodecyl-substituted hexa-peri-benzocoronene (HBC) has been investigated using grazing incidence X-ray diffraction. A model with an orthorhombic unit cell containing two molecules accounts well for the observations. The molecules are arranged in...... stacking faults....

  18. PREFACE: MCWASP XIII: International Conference on Modeling of Casting, Welding and Advanced Solidification Processes

    Science.gov (United States)

    Ludwig, Andreas

    2012-07-01

    Due to fast-paced development in computer technologies during the last three decades, computer-based process modeling has become an important tool for the improvement of existing process technologies and the development of new, innovative technologies. With the help of numerical process simulations, complex and costly experimental trials can now be reduced to a minimum. For metallurgical processes in particular, computer simulations are of outstanding importance, as the flow and solidification of molten alloys or the formation of microstructure and defects can hardly be observed experimentally. Corresponding computer simulations allow us inside views into the key process phenomena and so offer great potential for optimization. In 1980 the conference series 'Modeling of Casting, Welding and Advanced Solidification Processes (MCWASP)' was started up, and has now been continued by holding the 13th international conference on 'Modeling of Casting, Welding and Advanced Solidification Processes', MCWASP XIII, in Schladming, Austria, from June 17-22 2012. Around 200 scientists from industry and academia, coming from 20 countries around the globe attended 78 oral and 50 poster presentations on different aspects of solidification-related modeling topics. Besides process-related sessions such as (i) Ingot and Shape Casting, (ii) Continuous Casting and Direct Chill Casting, (iii) Directional Solidification and Zone Melting, (iv) Welding, and (v) Centrifugal Casting, a larger focus was put on (vi) Experimental Investigation and In-Situ Observations. In recent years, this topic has been significantly strengthened as advanced synchrotron technologies allow fantastic in-situ observations of phenomena happening inside small metallic samples. These observations will definitely serve as a benchmark for the modeling community. Further macroscopic aspects of advanced solidification science were tackled in the sessions (vii) Electromagnetic Coupling, (viii) Thermomechanics, (ix

  19. Process Parameters of Manufacturing Single Crystal Copper by Heated Mold Continuous Casting

    Institute of Scientific and Technical Information of China (English)

    XU Guangji; DING Zongfu; DING Yutian; KOU Shengzhong; LIU Guanglin; LI Wei

    2005-01-01

    The effect of process parameters on the surface quality of single crystal copper ingot was studied through experiment with a self-designed horizontal heated mould continuous casting apparatus, and the mechanism was analyzed. The results show that the process parameters affect the surface quality of pure copper ingot by affecting the position of the liquid-solid interface in the mould. The position of the liquid-solid interface in the mould must be controlled carefully in an appropriate range determined through experiments in order to gain a single crystal copper ingot with a high surface quality.

  20. Development of a semi-solid metal processing technique for aluminium casting applications

    OpenAIRE

    Sangop Thanabumrungkul; Jessada Wannasin

    2008-01-01

    A semi-solid metal processing technique has been invented and is being developed for aluminium casting applications in Thailand. The technique uses fine gas bubbles to create convection necessary for modifying grain structure. Semi-solid metal processing of three aluminium alloys, A356, Al-4.4%Cu, and ADC12, was investigated. Results show that the novel technique successfully modified A356 and Al-4.4%Cu to become semi-solid slurry with solid fractions up to about 50%. Current developments sho...

  1. Polymeric bionanocomposite cast thin films with in situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cell applications.

    Science.gov (United States)

    Tan, Yueming; Deng, Wenfang; Li, Yunyong; Huang, Zhao; Meng, Yue; Xie, Qingji; Ma, Ming; Yao, Shouzhuo

    2010-04-22

    We report here on the facile preparation of polymer-enzyme-multiwalled carbon nanotubes (MWCNTs) cast films accompanying in situ laccase (Lac)-catalyzed polymerization for electrochemical biosensing and biofuel cell applications. Lac-catalyzed polymerization of dopamine (DA) as a new substrate was examined in detail by UV-vis spectroscopy, cyclic voltammetry, quartz crystal microbalance, and scanning electron microscopy. Casting the aqueous mixture of DA, Lac and MWCNTs on a glassy carbon electrode (GCE) yielded a robust polydopamine (PDA)-Lac-MWCNTs/GCE that can sense hydroquinone with 643 microA mM(-1) cm(-2) sensitivity and 20-nM detection limit (S/N = 3). The DA substrate yielded the best biosensing performance, as compared with aniline, o-phenylenediamine, or o-aminophenol as the substrate for similar Lac-catalyzed polymerization. Casting the aqueous mixture of DA, glucose oxidase (GOx), Lac, and MWCNTs on a Pt electrode yielded a robust PDA-GOx-Lac-MWCNTs/Pt electrode that exhibits glucose-detection sensitivity of 68.6 microA mM(-1) cm(-2). In addition, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) was also coimmobilized to yield a PDA-Lac-MWCNTs-ABTS/GCE that can effectively catalyze the reduction of O(2), and it was successfully used as the biocathode of a membraneless glucose/O(2) biofuel cell (BFC) in pH 5.0 Britton-Robinson buffer. The proposed biomacromolecule-immobilization platform based on enzyme-catalyzed polymerization may be useful for preparing many other multifunctional polymeric bionanocomposites for wide applications.

  2. A study on atomic diffusion behaviours in an Al-Mg compound casting process

    Science.gov (United States)

    Liu, Yongning; Chen, Yiqing; Yang, Chunhui

    2015-08-01

    Al and Mg alloys are main lightweight alloys of research interest and they both have superb material properties, i.e., low density and high specific strength, etc. Being different from Al alloys, the corrosion of Mg alloys is much more difficult to control. Therefore to combine merits of these two lightweight alloys as a composite-like structure is an ideal solution through using Al alloys as a protective layer for Mg alloys. Compound casting is a realistic technique to manufacture such a bi-metal structure. In this study, a compound casting technique is employed to fabricate bi-layered samples using Al and Mg and then the samples are analysed using electron probe micro-analyzer (EPMA) to determine diffusion behaviours between Al and Mg. The diffusion mechanism and behaviours between Al and Mg are studied numerically at atomic scale using molecular dynamics (MD) and parametric studies are conducted to find out influences of ambient temperature and pressure on the diffusion behaviours between Al and Mg. The results obtained clearly show the effectiveness of the compound casting process to increase the diffusion between Al and Mg and thus create the Al-base protection layer for Mg.

  3. Evaluation of the Effects of Rotary Degassing Process Variables on the Quality of A357 Aluminum Alloy Castings

    Science.gov (United States)

    Mostafaei, M.; Ghobadi, M.; Eisaabadi B., Ghasem; Uludağ, Muhammet; Tiryakioğlu, Murat

    2016-12-01

    The effects of rotary degassing process variables on the melt and casting quality have been investigated using reduced pressure test results and quality index calculations from tensile data. The results showed that the effectiveness of the rotary degassing process of Al alloys is highly dependent on the combination of rotational speed and the gas flow rate, and that the wrong combination of these factors may result in no improvement or even degradation in quality of castings. For the first time, it has been found that the effectiveness of the pouring and filling system to produce high-quality castings can be characterized numerically. This new method of quantifying the casting system is introduced as a new quality improvement tool for materials and process engineers.

  4. Numerical Simulation and Optimization of Directional Solidification Process of Single Crystal Superalloy Casting

    Directory of Open Access Journals (Sweden)

    Hang Zhang

    2014-02-01

    Full Text Available The rapid development of numerical modeling techniques has led to more accurate results in modeling metal solidification processes. In this study, the cellular automaton-finite difference (CA-FD method was used to simulate the directional solidification (DS process of single crystal (SX superalloy blade samples. Experiments were carried out to validate the simulation results. Meanwhile, an intelligent model based on fuzzy control theory was built to optimize the complicate DS process. Several key parameters, such as mushy zone width and temperature difference at the cast-mold interface, were recognized as the input variables. The input variables were functioned with the multivariable fuzzy rule to get the output adjustment of withdrawal rate (v (a key technological parameter. The multivariable fuzzy rule was built, based on the structure feature of casting, such as the relationship between section area, and the delay time of the temperature change response by changing v, and the professional experience of the operator as well. Then, the fuzzy controlling model coupled with CA-FD method could be used to optimize v in real-time during the manufacturing process. The optimized process was proven to be more flexible and adaptive for a steady and stray-grain free DS process.

  5. Effect of Cast Modification on Denture Base Adaptation Following Maxillary Complete Denture Processing.

    Science.gov (United States)

    Sayed, Mohammed E; Porwal, Amit; Ehrenberg, David; Weiner, Saul

    2017-01-19

    To investigate the effect of cast modifications on denture base adaptation in coronal and sagittal projections following maxillary complete denture processing. A total of 60 edentulous maxillary casts (n = 10) were distributed among six groups. Group 1 was the control group with no modification, groups 2 through 6 included a butterfly postdam preparation, groups 3 and 4 also included a 10-mm wide/4-mm deep box with addition of four round holes in group 4, and groups 5 and 6 also included a 20-mm wide/4-mm deep box with addition of four round holes in group 6. The boxes were prepared at the mid-heel area of the casts. Two layers of baseplate wax (1 mm each) were used to standardize denture base thickness across the groups. A standard technique was used to replicate the denture tooth set-up, and standardized processing was done for all the groups. Following deflasking, casts with the dentures were sectioned in the coronal and sagittal directions. Microscopic pictures were taken at preselected points. Data were organized in tables, and statistical analyses were performed using repeated measure ANOVA, Tukey post hoc tests, and post hoc comparison tests set at 5% level of significance. Maximum gaps were measured at the mid-palatal area followed by nearby areas and the areas near ridge crests in both coronal and sagittal projections. The analyses revealed significant differences between the groups in coronal projection (1/2, 3/4, 5/6) and sagittal projection (1, 2, 3/4, 5/6) without significant differences within the pairs. The groups were ranked from the highest group 1 to the lowest group 6 relative to the gap means. Post hoc comparisons showed that points 1C and 2A had the highest gap means across the study groups. Within the limitations of this study, it can be extrapolated that the denture base adaptation can be effectively increased with the box preparation at the mid-heel aspect of the casts. Significant reduction of gaps was seen when the box size increased from

  6. The Effect of Aluminum Content and Processing on the Tensile Behavior of High Pressure Die Cast Mg Alloys

    Science.gov (United States)

    Deda, Erin M.

    Due to their high specific strength and good castability, magnesium alloys are desirable for use in weight reduction strategies in automotive applications. However, the mechanical properties of high pressure die cast (HPDC) magnesium can be highly variable and dependent on location in the casting. To better understand the relationship between microstructure and tensile properties, the influence of alloying and section thickness on the microstructural features and tensile properties of Mg-Al and Mg-Al-Mn alloys is quantified. This investigation provides experimental input to modeling activities for the development of an Integrated Computational Materials Engineering capability, to assess and quantify the impact of microstructure on the tensile behavior of HPDC Mg AM series (magnesium-aluminum-manganese) alloys. As a result of this work, it is found that with increasing aluminum content, the yield strength increases and the ductility decreases. Increasing the plate thickness results in a decrease in both the yield strength and ductility. HPDC components have varying microstructural features through the plate thickness, developing a "skin" and "core". The grain size, beta-Mg 17Al12 phase, and solute content are all quantified through the thickness of the plates. By quantifying microstructural variations, a physics-based model has been developed which is able to predict the effects of alloying and plate thickness on yield strength. The primary factors affecting strengthening are accounted for using a linear superposition model of solid solution, grain size, and dispersion hardening. This model takes into account through-thickness microstructure gradients that exist in HPDC components by using a composite model to incorporate the skin and core changes. The yield strength in these alloys is dominated by grain boundary strengthening and solute hardening effects. In order to isolate the effects of eutectic phases, shrinkage porosity and oxide films on strength and

  7. Relation between surface roughness of free films and process parameters in spray coating.

    Science.gov (United States)

    Perfetti, G; Alphazan, T; van Hee, P; Wildeboer, W J; Meesters, G M H

    2011-02-14

    A novel spraying apparatus was developed to obtain reproducible free sprayed films. Aqueous solutions of PolyVinyl Alcohol PVA 4-98, HydroxyPropyl MethylCellulose HPMC 603 and HPMC 615 were used as reference coating materials. The apparatus is composed by a spraying system, a closed chamber containing a rotating Teflon cylinder, a pressured air supply system, a spray solution supply system, and a computerized control system. The spraying air pressure, the cylinder rotation speed, and the cylinder-spray nozzle distance were tailored in such a manner that the roughness of the obtained free films was similar to that from reference coated particles. Optimum spraying process conditions were found for all three coating materials using design of experiments. The morphology of the sprayed films obtained using the optimum conditions is evaluated by means of scanning electron microscopy (SEM), and atomic force microscopy (AFM), and then compared with those from corresponding cast films and coating layers on particles. A match was found between the morphology of sprayed films and that from the corresponding coating layer on the particle surface. The spray apparatus produced reproducible sprayed films with tuneable roughness and/or smoothness depending on the set of processing parameters. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Effects of casting conditions and deformation processing on A356 aluminum and A356-20 vol. pct SiC composites

    Science.gov (United States)

    Rozak, G. A.; Lewandowski, J. J.; Wallace, J. F.; Altmisoglu, A.

    1992-01-01

    The effects of casting conditions and deformation processing on the mechanical properties of unreinforced A356 aluminum and A356-20 vol pct SiC composite were investigated by tensile properties in these compounds fabricated by either sand casting or squeeze casting techniques followed by hot working to 33, 50, 90, and 95 percent reductions. The evolution of the microstructure and values of tensile properties were evaluated for the cast materials in each of the hot worked conditions. It was found that, while the deformation processing of the sand-cast composite resulted in banding of the Al and SiC particles within the microstructure, such features were not observed in the squeeze-cast microstructure. The tensile strengths of the squeeze cast materials was found to be higher than those of the sand cast materials, for both the unreinforced and composite samples, while increased amounts of deformation were found to improve the ductility of the composite.

  9. Evaluation of Centrifugal Casting Process Parameters for In Situ Fabricated Functionally Gradient Fe-TiC Composite

    Science.gov (United States)

    Rahimipour, Mohammad Reza; Sobhani, Manoochehr

    2013-10-01

    A gradient Fe-TiC composite was successfully produced via combination of in situ reaction with centrifugal casting techniques. Additionally, some of the effective parameters of the centrifugal casting process have been studied. Cast iron and ferrotitanium, which were used as raw materials, were melted using a high-frequency induction furnace coupled with centrifugal equipment. The microstructure and phase characterization of the fabricated composite was studied by scanning electron microscopy, optical microscopy, and X-ray diffraction. The results show that the production of a pearlite matrix composite reinforced by TiC particles is feasible. The distribution of TiC in the pearlitic matrix is completely uneven as a result of density difference between molten medium and TiC in the centrifugal casting process.

  10. Fuzzy algorithm used to water debit control to the secondary cooling in continuous casting process

    Directory of Open Access Journals (Sweden)

    Corina Cunţan

    2005-10-01

    Full Text Available The relised research, reffering to human expert behaviar, show that this have a strong nonlinear behaviar, accompanied by prediction, integration, anticipation and delayed effects and even in adaptation of the real functioning process.The prominencing of languages caracterisation of process and also the interpretation based of experience in commands generation process represent the parameters which can modify the controll properties.The projected Fuzzy algorithms lead to nonlinear controllers. To determine the controlling characteristics was used: Fuzzy Controller PIC 16C74, the appropriate software and ADA 3100 data acquisition board.To obtain a best controlling precision, the process was divided in two parts: start-stop and continuous casting process. For each part was establised the base rules and the membership functions which lead to obtain the controll surfaces and statical characteristics.

  11. Study on Pot Forming of Induction Heater Type Rice Cookers by Forging Cast Process

    Science.gov (United States)

    Ohnishi, Masayuki; Yamaguchi, Mitsugi; Ohashi, Osamu

    This paper describes a study result on pot fabrication by the forging cast process of stainless steel with aluminum. Rice cooked with the new bowl-shaped pot for the induction heater type rice cookers is better tasting than rice cooked with the conventional cylindrical one, due to the achievement of better heat conduction and convection. The conventional pot is made of the clad sheet, consisting of stainless steel and aluminum. However, it is rather difficult to form a bowl shape from the clad sheet, primarily due to the problem of a material spring back. The fabrication of a new type of a pot was made possible by means of the adoption of a forging cast process instead of the clad sheet. In this process, iron powder is inserted between stainless steel and aluminum in order to alleviate the large difference on the coefficient of expansion between each material. It was made clear that the application of two kinds of iron particle, namely 10 μm size powder on the stainless steel side and 44 μm on the aluminum side, enables the joints to become strong enough. The joint strength of the new pot by this fabrication process was confirmed by the tests of the shear strength and the fatigue tests together with the stress analysis.

  12. Quantitative characterization of processing-microstructure-properties relationships in pressure die-cast magnesium alloys

    Science.gov (United States)

    Lee, Soon Gi

    The central goal of this research is to quantitatively characterize the relationships between processing, microstructure, and mechanical properties of important high-pressure die-cast (HPDC) Mg-alloys. For this purpose, a new digital image processing technique for automatic detection and segmentation of gas and shrinkage pores in the cast microstructure is developed and it is applied to quantitatively characterize the effects of HPDC process parameters on the size distribution and spatial arrangement of porosity. To get better insights into detailed geometry and distribution of porosity and other microstructural features, an efficient and unbiased montage based serial sectioning technique is applied for reconstruction of three-dimensional microstructures. The quantitative microstructural data have been correlated to the HPDC process parameters and the mechanical properties. The analysis has led to hypothesis of formation of new type of shrinkage porosity called, "gas induced shrinkage porosity" that has been substantiated via simple heat transfer simulations. The presence of inverse surface macrosegregation has been also shown for the first time in the HPDC Mg-alloys. An image analysis based technique has been proposed for simulations of realistic virtual microstructures that have realistic complex pore morphologies. These virtual microstructures can be implemented in the object oriented finite elements framework to model the variability in the fracture sensitive mechanical properties of the HPDC alloys.

  13. Multiscale modelling and simulation of single crystal superalloy turbine blade casting during directional solidiifcation process

    Institute of Scientific and Technical Information of China (English)

    Xu Qingyan; Zhang Hang; Liu Baicheng

    2014-01-01

    As the key parts of an aero-engine, single crystal (SX) superalloy turbine blades have been the focus of much attention. However, casting defects often occur during the manufacturing process of the SX turbine blades. Modeling and simulation technology can help to optimize the manufacturing process of SX blades. Multiscale coupled models were proposed and used to simulate the physical phenomena occurring during the directional solidification (DS) process. Coupled with heat transfer (macroscale) and grain growth (meso-scale), 3D dendritic grain growth was calculated to show the competitive grain growth at micro-scale. SX grain selection behavior was studied by the simulation and experiments. The results show that the geometrical structure and technical parameters had strong inlfuences on the grain selection effectiveness. Based on the coupled models, heat transfer, grain growth and microstructure evolution of a complex holow SX blade were simulated. Both the simulated and experimental results show that the stray grain occurred at the platform of the SX blade when a constant withdrawal rate was used in manufacturing process. In order to avoid the formation of the stray crystal, the multi-scale coupled models and the withdrawal rate optimized technique were applied to the same SX turbine blade. The modeling results indicated that the optimized variable withdrawal rate can achieve SX blade castings with no stray grains, which was also proved by the experiments.

  14. Multiscale modelling and simulation of single crystal superalloy turbine blade casting during directional solidification process

    Directory of Open Access Journals (Sweden)

    Xu Qingyan

    2014-07-01

    Full Text Available As the key parts of an aero-engine, single crystal (SX superalloy turbine blades have been the focus of much attention. However, casting defects often occur during the manufacturing process of the SX turbine blades. Modeling and simulation technology can help to optimize the manufacturing process of SX blades. Multiscale coupled models were proposed and used to simulate the physical phenomena occurring during the directional solidification (DS process. Coupled with heat transfer (macroscale and grain growth (meso-scale, 3D dendritic grain growth was calculated to show the competitive grain growth at micro-scale. SX grain selection behavior was studied by the simulation and experiments. The results show that the geometrical structure and technical parameters had strong influences on the grain selection effectiveness. Based on the coupled models, heat transfer, grain growth and microstructure evolution of a complex hollow SX blade were simulated. Both the simulated and experimental results show that the stray grain occurred at the platform of the SX blade when a constant withdrawal rate was used in manufacturing process. In order to avoid the formation of the stray crystal, the multi-scale coupled models and the withdrawal rate optimized technique were applied to the same SX turbine blade. The modeling results indicated that the optimized variable withdrawal rate can achieve SX blade castings with no stray grains, which was also proved by the experiments.

  15. Forming Conditions and Neural Network Control of Continuously Directional Microstructure in Directional Solidification Continuous Casting Process

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Directional solidification continuous casting (DSCC) process is a new manufacturing technology for metal- lic materials which combines advantages of both directional solidification technology and continuous casting technolo- gy. Unlimited long shaped metal with directionally solidifying microstructure can be produced by this process. It is experimentally shown that controlling condition of stable and continuous growth of single crystal structure means the precise control of the location of the S/L interface, which is affected and determined by seven process parameters. Moreover, these parameters are also interacted each other, so the disturbance of any parameters may cause the fail- ure of controlling of S/L interface. In this paper, on the basis of analyzing the forming conditions of continuously di- rectional microstructures in DSCC process, the control model of DSCC procedure by neural network control (NNC) method was proposed and discussed. Combining with the experiments, we first used the computer to simulate the effects of the solidification parameters on destination control variable (S/L interface) and the interactions among these parameters during DSCC procedure. Secondly many training samples necessary for neural network calculation can be obtained through the simulation. Moreover, these samples are inputted into neural network software (NNs) and trained, then the control model can be built up.

  16. Numerical analysis of thermal processes in domain of cast composite with spherical particles

    Directory of Open Access Journals (Sweden)

    B. Mochnacki

    2010-10-01

    Full Text Available Heat transfer proceeding in domain of cast composite with particles is considered. In particular the thermal processes in a sub-domainbeing the composition of single spherical particle (Pb and adjoining metal matrix (Al are analyzed. Initial temperatures of componentscorrespond to solid state (particle and liquid one (matrix. Numerical algorithm corresponding to a mathematical model of the boundaryinitialproblem discussed is constructed on the basis of control volume method. In the final part of the paper the examples of computations are shown.

  17. A finite element modeling on the fluid flow and solidification in a continuous casting process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.H.; Kim, D.S. [Hanyang University Graduate School, Seoul (Korea); Choi, H.C. [Agency for Defence Development, Taejon (Korea); Kim, S.W. [Hanyang University, Seoul (Korea); Lee, S.K. [Chung Buk National University, Chungju (Korea)

    1999-07-01

    The coupled turbulent flow and solidification is considered in a typical slab continuous casting process using commercial program FIDAP. Standard {kappa}-{epsilon} turbulence model is modified to decay turbulent viscosity in the mushy zone and laminar viscosity is set to a sufficiently large value at the solid region. This coupled turbulent flow and solidification model also contains thermal contact resistance due to the mold powder and air gap between the strand and mold using an effective thermal conductivity. From the computed flow pattern, the trajectory of inclusion particles was calculated. The comparison between the predicted and experimental solidified shell thickness shows a good agreement. (author). 27 refs., 11 figs., 2 tabs.

  18. Process compilation methods for thin film devices

    Science.gov (United States)

    Zaman, Mohammed Hasanuz

    This doctoral thesis presents the development of a systematic method of automatic generation of fabrication processes (or process flows) for thin film devices starting from schematics of the device structures. This new top-down design methodology combines formal mathematical flow construction methods with a set of library-specific available resources to generate flows compatible with a particular laboratory. Because this methodology combines laboratory resource libraries with a logical description of thin film device structure and generates a set of sequential fabrication processing instructions, this procedure is referred to as process compilation, in analogy to the procedure used for compilation of computer programs. Basically, the method developed uses a partially ordered set (poset) representation of the final device structure which describes the order between its various components expressed in the form of a directed graph. Each of these components are essentially fabricated "one at a time" in a sequential fashion. If the directed graph is acyclic, the sequence in which these components are fabricated is determined from the poset linear extensions, and the component sequence is finally expanded into the corresponding process flow. This graph-theoretic process flow construction method is powerful enough to formally prove the existence and multiplicity of flows thus creating a design space {cal D} suitable for optimization. The cardinality Vert{cal D}Vert for a device with N components can be large with a worst case Vert{cal D}Vert≤(N-1)! yielding in general a combinatorial explosion of solutions. The number of solutions is hence controlled through a-priori estimates of Vert{cal D}Vert and condensation (i.e., reduction) of the device component graph. The mathematical method has been implemented in a set of algorithms that are parts of the software tool MISTIC (Michigan Synthesis Tools for Integrated Circuits). MISTIC is a planar process compiler that generates

  19. INVESTIGATION OF THE INFLUENCE OF MOLD ROTATIONAL SPEED ON THE CAST WALL THICKNESS IN THE ROTATIONAL MOLDING PROCESS

    Directory of Open Access Journals (Sweden)

    Tomasz Jachowicz

    2013-09-01

    Full Text Available This paper presents the rotational molding process. The general principles of this polymer processing technology have been described. The main applications have been introduced and leading advantages and typical disadvantages of rotational molding process have been discussed. Based on the conducted experimental tests, the influence of changing one selected technological parameter, which characterized rotational molding process, on selected geometrical features of the polymer cast has been determined. Rotational mold’s speed around axes was changed and a thickness of cast walls has been measured. Laboratory test stand, processing properties of polymer, also test program and experimental test methodology have been described.

  20. Effects of material variables and process parameters on properties of investment casting shells

    Science.gov (United States)

    Tumurugoti, Priyatham

    Manufacture of investment casting shells is a complex process. The choice of raw materials - refractory powders or grains, binders and additives - affects the properties of investment casting shells. In this study, different systems of shells were prepared, according to a design of experiments, with commercially available raw materials that differ in chemistry, particle size or particle size distribution. Shell strength was measured in green, fired and cooled, and hot conditions and the results were analyzed for strength -- material property relation. Various microstructures of polished cross sections of these shells were characterized using scanning electron microscope. It was determined that the amount of matrix holding the stucco grains was dominant factor affecting green strength. Fired and hot strengths were observed to vary depending on interactions between different phases of matrix and stucco. In addition to the material properties, control of shell building parameters is critical to achieve quality shells. Process parameters affect strength of the shell by providing a means to change the relative amounts of stucco, slurry and porosity. To study the microstructural variations, shells were prepared by varying process parameters like slurry viscosity and stucco size. Data from image analysis of different microstructures were correlated to their respective fired strengths. It was determined that the shells prepared from high viscosity slurry and fine stucco had the highest strength.

  1. Predictive modeling of nanoscale domain morphology in solution-processed organic thin films

    Science.gov (United States)

    Schaaf, Cyrus; Jenkins, Michael; Morehouse, Robell; Stanfield, Dane; McDowall, Stephen; Johnson, Brad L.; Patrick, David L.

    2017-09-01

    The electronic and optoelectronic properties of molecular semiconductor thin films are directly linked to their extrinsic nanoscale structural characteristics such as domain size and spatial distributions. In films prepared by common solution-phase deposition techniques such as spin casting and solvent-based printing, morphology is governed by a complex interrelated set of thermodynamic and kinetic factors that classical models fail to adequately capture, leaving them unable to provide much insight, let alone predictive design guidance for tailoring films with specific nanostructural characteristics. Here we introduce a comprehensive treatment of solution-based film formation enabling quantitative prediction of domain formation rates, coverage, and spacing statistics based on a small number of experimentally measureable parameters. The model combines a mean-field rate equation treatment of monomer aggregation kinetics with classical nucleation theory and a supersaturation-dependent critical nucleus size to solve for the quasi-two-dimensional temporally and spatially varying monomer concentration, nucleation rate, and other properties. Excellent agreement is observed with measured nucleation densities and interdomain radial distribution functions in polycrystalline tetracene films. Numerical solutions lead to a set of general design rules enabling predictive morphological control in solution-processed molecular crystalline films.

  2. INFLUENCE OF FILM STRUCTURE AND LIGHT ON CHARGE TRAPPING AND DISSIPATION DYNAMICS IN SPUN-CAST ORGANIC THIN-FILM TRANSISTORS MEASURED BY SCANNING KELVIN PROBE MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Teague, L.; Moth, M.; Anthony, J.

    2012-05-03

    Herein, time-dependent scanning Kelvin probe microscopy of solution processed organic thin film transistors (OTFTs) reveals a correlation between film microstructure and OTFT device performance with the location of trapped charge within the device channel. The accumulation of the observed trapped charge is concurrent with the decrease in I{sub SD} during operation (V{sub G}=-40 V, V{sub SD}= -10 V). We discuss the charge trapping and dissipation dynamics as they relate to the film structure and show that application of light quickly dissipates the observed trapped charge.

  3. Colloidal processing, tape casting and sintering of PLZT for development of piezoceramic/polymer interlayered composites

    Science.gov (United States)

    Feng, Jian-Huei

    Piezoceramic/polymer composites possess many advantages as compared to single-phase piezoceramics. One typical form of the composites is the interlayered structure, where the main requirement is to obtain thin, flat and dense ceramic sheets. Tape casting is a reliable process for producing such high-quality sheets. The colloidal processing of tape casting slurries is a critical step to achieve uniform ceramic bodies. Lanthanum-modified lead zirconate titanate (PLZT) was selected for making piezoceramic sheets due to its superior piezoelectric properties. The quality of green tapes depends mainly on the solvents and organic additives of tape casting slurries. The effects of xylenes/ethanol solvent mixtures on non-aqueous slurries were first investigated. Well-dispersed colloidal suspensions were obtained in xylenes-rich solvents with a minimum amount of menhaden fish oil as a dispersant. Adsorption of dispersant and PLZT solids content of unfired tapes are strongly affected by the solvent(s) utilized. Furthermore, when selecting solvent mixtures, one needs to consider other additives, such as binder that can affect the viscosity of slurries. Aqueous tape casting was performed using a polyelectrolyte dispersant, poly(vinyl alcohol) (PVA) binders and various plasticizers. Zeta potential, conductivity and viscosity of PLZT suspensions containing dispersant were characterized. The effects of plasticizers and binders on properties of unfired tapes were also investigated. The tapes made from low molecular weight plasticizers showed higher plasticity. Glycerol was shown to be the most effective plasticizer for PVA. Strong hydrogen bonding in high hydrolysis PVA led to high strength and high bulk density of green tapes, but also caused deformation of the tapes after drying. There are many challenges for sintering PLZT tapes due to volatilization of PbO component at high temperatures and fragility of thin tapes. By using the proper setter powders and the sandwich method

  4. Preparation and properties of films cast from mixtures of poly(vinyl alcohol) and submicron particles prepared from amylose-palmitic acid inclusion complexes.

    Science.gov (United States)

    Fanta, George F; Selling, Gordon W; Felker, Frederick C; Kenar, James A

    2015-05-05

    The use of starch in polymer composites for film production has been studied for increasing biodegradability, improving film properties and reducing cost. In this study, submicron particles were prepared from amylose-sodium palmitate complexes both by rapidly cooling jet-cooked starch-palmitic acid mixtures and by acidifying solutions of starch-sodium palmitate complexes. Films were cast containing poly(vinyl alcohol) (PVOH) with up to 50% starch particles. Tensile strength decreased and Young's modulus increased with starch concentration, but percent elongations remained similar to controls regardless of preparation method or starch content. Microscopy showed particulate starch distribution in films made with rapidly cooled starch-palmitic acid particles but smooth, diffuse starch staining with acidified sodium palmitate complexes. The mild effects on tensile properties suggest that submicron starch particles prepared from amylose-palmitic acid complexes provide a useful, commercially viable approach for PVOH film modification.

  5. Neuro-Knowledge-Based Expert System (NKBES)for Optimal Scheming of Die Casting Process

    Institute of Scientific and Technical Information of China (English)

    Qiaodan HU; Peng LUO; Yi YANG; Liliang CHEN

    2004-01-01

    We develop a neuro-knowledge-based expert system (NKBES) frame in this work. The system mainly concerns with decision of gating system and die casting machine based on a neuro-inference engine launched under the MATLAB software environment. For enhancement of reasoning agility, an error back-propagation neural network was applied.A rapidly convergent adaptive learning rate (ALR) and a momentum-based error back-propagation algorithm was used to conduct neuro-reasoning. The working effect of the system was compared to a conventional expert system that is based on a two-way (forward and backward) chaining inference mechanism. As the reference, the present paper provided the neural networks sum-squared error (SSE) and ALR vs iterative epoch curves of process planning case mentioned above. The study suggests that the neuro-modeling optimization application to die casting process design has good feasibility, and based on that a novel and effective intelligent expert system can be launched at low cost.

  6. Abnormal Failure Analysis of H13 Punches in Steel Squeeze Casting Process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Mi-lan; XING Shu-ming; XIN Qiao; XIAO Li-ming; GOU Jun-nian; WU Xia-ling

    2008-01-01

    In steel squeeze casting process, the working condition of a punch was very rigorous. The abnormal failure models of an H13 punch, such as plastic rubbed damnification, could not be avoided easily. Based on the analysis of the flow stress and the friction-shearing stress of an H13 punch in steel squeeze casting process, the following results were obtained: if the flow stress of an H13 punch was smaller than its friction-shearing stress, these abnormal failures could not be avoided; and if there were some protection measures that enable the flow stress to have a greater value than its friction-shearing one, the abnormal failures would not occur. In the production of 45# steel valves and eatenary system components, the flow stress of a lateral H13 punch without any protection measure was about 29 MPa and its friction-shearing stress.was about 51 MPa, then, the abnormal failures occurred: however, when the protection measures of the punch enabled its working temperature to have a value below 682 "C, its flow stress was greater than its friction-shearing stress, and the abnormal failures were avoided.

  7. The mechanical response of a uranium-nobium alloy: a comparison of cast versus wrought processing

    Energy Technology Data Exchange (ETDEWEB)

    Cady, Carl M [Los Alamos National Laboratory; Gray, George T., III [Los Alamos National Laboratory; Cerreta, Ellen K [Los Alamos National Laboratory; Aikin, Robert M [Los Alamos National Laboratory; Chen, Shuh - Rong [Los Alamos National Laboratory; Trujillo, Carl P [Los Alamos National Laboratory; Lopez, Mike F [Los Alamos National Laboratory; Korzekwa, Deniece R [Los Alamos National Laboratory; Kelly, Ann M [Los Alamos National Laboratory

    2009-02-13

    A rigorous experimentation and validation program is being undertaken to create constitutive models that elucidate the fundamental mechanisms controlling plasticity in uranium-6 wt.% niobium alloys (U-6Nb). The first, 'wrought', material produced by processing a cast ingot I'ia forging and forming into plate was studied. The second material investigated is a direct cast U-6Nb alloy. The purpose of the investigation is to detennine the principal differences, or more importantly, similarities, between the two materials due to processing. It is well known that parameters like grain size, impurity size and chemistry affect the deformation and failure characteristics of materials. Metallography conducted on these materials revealed that the microstructures are quite different. Characterization techniques like tension, compression, and shear were performed to find the principal differences between the materials as a function of stress state. Dynamic characterization using a split Hopkinson pressure bar in conjunction with Taylor impact testing was conducted to derive and thereafter validate constitutive material models. The Mechanical Threshold Strength Model is shown to accurately capture the constitutive response of these materials and Taylor cylinder tests are used to provide a robust way to verify and validate the constitutive model predictions of deformation by comparing finite element simulations with the experimental results. The primary differences between the materials will be described and predictions about material behavior will be made.

  8. Optimization of a 0.69PZT-0.31PZNN thick film by controlling slurry viscosity and tape-casting blade height

    Science.gov (United States)

    Song, Daniel; Woo, Min Sik; Ahn, Jung Hwan; Sung, Tae Hyun; Kim, Kyoung Bum

    2014-12-01

    We investigated how the viscosities of piezoelectric lead zirconate titanate/lead zirconate nickel niobate (PZT-PZNN) slurry samples affect the laminated-film densities based on various conditions of degassing time for 0, 30, and 60 min. PZT-PZNN slurries with different viscosities were tape casted into green sheets by adjusting the comma blade height to 100, 200, 300, 400, and 500 μm. As a result the slurry viscosity linearly increased with increasing slurry degassing time, and the thickness of the green sheet increased with increasing comma blade height. The density and the dielectric properties of piezoelectric ceramic films with the same thicknesses, but composed of different numbers of layers, were compared. The laminated-film density and the dielectric property d33 × g33 increased with decreasing number of laminated layers. However, when the viscosity of the slurry was too high (degassing time > 60 min) and the comma blade height was too high (comma blade height > 300 μm), the tape-casted green sheet was too thick to have enough time to dry. By controlling the slurry viscosity by adjusting the degassing time and the comma blade height, we were able to optimize the thickness of the green sheet in a tape-casting. The optimal green sheet thickness was < 70 μm, and the number of sheets laminated should be minimized to increase the film's density and dielectric constant.

  9. Optimization of a 0.69PZT-0.31PZNN thick film by controlling slurry viscosity and tape-casting blade height

    Energy Technology Data Exchange (ETDEWEB)

    Song, Daniel; Woo, Minsik; Ahn, Junghwan; Sung, Taehyun [Hanyang University, Seoul (Korea, Republic of); Kim, Kyoungbum [Korea University, Seoul (Korea, Republic of)

    2014-12-15

    We investigated how the viscosities of piezoelectric lead zirconate titanate/lead zirconate nickel niobate (PZT-PZNN) slurry samples affect the laminated-film densities based on various conditions of degassing time for 0, 30, and 60 min. PZT-PZNN slurries with different viscosities were tape casted into green sheets by adjusting the comma blade height to 100, 200, 300, 400, and 500 μm. As a result the slurry viscosity linearly increased with increasing slurry degassing time, and the thickness of the green sheet increased with increasing comma blade height. The density and the dielectric properties of piezoelectric ceramic films with the same thicknesses, but composed of different numbers of layers, were compared. The laminated-film density and the dielectric property d{sub 33} x g{sub 33} increased with decreasing number of laminated layers. However, when the viscosity of the slurry was too high (degassing time > 60 min) and the comma blade height was too high (comma blade height > 300 μm), the tape-casted green sheet was too thick to have enough time to dry. By controlling the slurry viscosity by adjusting the degassing time and the comma blade height, we were able to optimize the thickness of the green sheet in a tape-casting. The optimal green sheet thickness was < 70 μm, and the number of sheets laminated should be minimized to increase the film's density and dielectric constant.

  10. Improving Drug Loading of Mucosal Solvent Cast Films Using a Combination of Hydrophilic Polymers with Amoxicillin and Paracetamol as Model Drugs

    Directory of Open Access Journals (Sweden)

    Joshua Boateng

    2013-01-01

    Full Text Available Solvent cast mucosal films with improved drug loading have been developed by combining carboxymethyl cellulose (CMC, sodium alginate (SA, and carrageenan (CAR using paracetamol and amoxicillin as model drugs and glycerol (GLY as plasticizer. Films were characterized using X-ray powder diffraction (XRPD, scanning electron microscopy (SEM, folding resilience, swelling capacity, mucoadhesivity, and drug dissolution studies. SA, CMC, and GLY (5 : 3 : 6 films showed maximum amoxicillin loading of 26.3% whilst CAR, CMC, and GLY (1 : 2 : 3 films had a maximum paracetamol loading of 40%. XRPD analysis showed different physical forms of the drugs depending on the amount loaded. Films containing 29.4% paracetamol and 26.3% amoxicillin showed molecular dispersion of the drugs while excess paracetamol was observed on the film surface when the maximum 40% was loaded. Work of adhesion was similar for blank films with slightly higher cohesiveness for CAR and CMC based films, but the differences were significant between paracetamol and amoxicillin containing films. The stickiness and cohesiveness for drug loaded films were generally similar with no significant differences. The maximum percentage cumulative drug release was 84.65% and 70.59% for paracetamol and amoxicillin, respectively, with anomalous case two transport mechanism involving both drug diffusion and polymer erosion.

  11. Lost Foam Casting Process of Gray Cast Iron Flywheel Cover%灰铸铁飞轮壳体消失模铸造工艺

    Institute of Scientific and Technical Information of China (English)

    孟兆亚; 王建民; 史家全; 孙洪超

    2011-01-01

    以灰铸铁飞轮壳体为例,系统的阐述了消失模铸造的工艺过程和工艺参数.采用阶梯式浇注系统,雨淋式加沙法,浇道比为F内∶F横∶F直=1.0∶1.2:1.4,浇注时负压为0.040~0.055 MPa.浇注温度控制在1 470~1 480℃.生产出的飞轮壳体铸件,石墨分布较均匀,基体组织为珠光体加铁素体,抗拉强度达200 MPa以上.%The article systematically interpreted the process and parameter of lost foam casting,taking gray cast iron flywheel cover for example.Step gating system and raining wise sand filling was adopted.The gating ratio was F内: F横: F直 = 1.0: 1.2: 1.4.The negative pressure was 0.04 ~0.055 MPa during pouring.And the pouring temperature was controlled at 1 470~ 1 480 ℃.With uniformly distributed graphite, matrix of the flywheel cover casting was pearlite and ferrite.Its tensile strength was higher than 200 MPa.

  12. Effects of casting process on microstructures and flow stress behavior of Mg–9Gd–3Y–1.5Zn–0.8Zr semi-continuous casting billets

    Directory of Open Access Journals (Sweden)

    Xuan liu

    2014-12-01

    Full Text Available Mg–9Gd–3Y–1.5Zn–0.8Zr alloys own high strength, good heat and corrosion resistance. However, it is difficult for the fabrication of large-scale billets, due to the poor deformation ability and strong hot-crack tendency. This work investigated the casting process on the microstructures and flow stress behaviors of the semi-continuous casting billets for the fabrication of large-scale Mg–9Gd–3Y–1.5Zn–0.8Zr billets. The casting process (electromagnetic intensity and casting speed shows outstanding effects on the microstructures and flow stress behavior of the billets. The billets with the specific casting process (I = 68 A, V = 65 mm/min exhibit uniform microstructures and good deformation uniformity.

  13. CORRECTION OF DISCARDED HMITS OF AUTOMATIC LINE OF SORTING BY PROCESSIBILITY OF NON-TUMED CASTINGS OF NIPPLES OF MALLEABLE CAST IRON KCh30-6 AT CHANGING OF THEIR SIZES

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirski

    2008-01-01

    Full Text Available The methods of correction of rejected limits of automated control line and automated sorting on processibility of unturned nipple castings of malleable cast iron KCh 30-6 on the basis of devices M axi-P is developed and implemented in production of Minsk plant of heating equipment.

  14. COMPUTER RESEARCH OF INFLUENCE OF THERMAL CONDUCTIVITY CHANGE OF THE VACUUM-FILM MOLD OF ON CHARACTERISTICS OF THE CASTING PRODUCTION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2013-01-01

    Full Text Available The influence of changes in the thermal conductivity of vacuum-film mold at production of cast iron castings «body» was studied. Three variants of the gating system with different thermal conductivity l, 0,6 l and 0,4 l are considered. The dependencies of speed change and its projections on the time of filling in the allocated form points were established. Statistical distributions of temperatures in the casting for various moments of times are calculated. The technique of the formalization of statistical distributions characterizing the quantification of different groups of grid elements on the average temperature of the object was offered.

  15. Archiving the animation film-making process. The earliest Dutch animation films

    NARCIS (Netherlands)

    Peters, Mette

    2012-01-01

    abstractAnimation film-makers working in the Netherlands in the first decade of the 20th century,made use of processes and skills from live-action film production and the world of the visualarts. And yet for the majority, making animation films was nothing more than an excursionduring their careers

  16. Archiving the animation film-making process. The earliest Dutch animation films

    NARCIS (Netherlands)

    Peters, Mette

    2012-01-01

    abstractAnimation film-makers working in the Netherlands in the first decade of the 20th century,made use of processes and skills from live-action film production and the world of the visualarts. And yet for the majority, making animation films was nothing more than an excursionduring their careers

  17. Understanding of the influence of process parameters on the heat transfer behavior at the metal/die inter-face in high pressure die casting process

    Institute of Scientific and Technical Information of China (English)

    GUO ZhiPeng; XIONG ShouMei; LIU BaiCheng; LI Mei; Allison John

    2009-01-01

    The current paper focuses on the influence of the process parameters on the peak values of the inter-facial heat transfer coefficient (IHTC) at metal/die interface during high pressure die casting (HPDC) process. A "step shape" casting and AM50 alloy were used during the experiment. The IHTC was de-termined by solving the inverse thermal problem based on the measured temperature inside the die. Results show that the initial die surface temperature (IDST, TDI) has a dominant influence while the casting pressure and fast shot velocity have a secondary influence on the IHTC peak values. By curve fitting, it was found that the IHTC peak value (hmax) changes as a function of the IDST in a manner of hmax=eαTγDI. Such relationship between the IHTC peak value and the IDST can also be found when the casting alloy is ADC12, indicating that this phenomenon is a common characteristic in the HPDC process.

  18. Development of Cast Alumina-forming Austenitic Stainless Steel Alloys for use in High Temperature Process Environments

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Yamamoto, Yukinori [ORNL; Brady, Michael P [ORNL; Pint, Bruce A [ORNL; Pankiw, Roman [Duraloy Technologies Inc; Voke, Don [Duraloy Technologies Inc

    2015-01-01

    There is significant interest in the development of alumina-forming, creep resistant alloys for use in various industrial process environments. It is expected that these alloys can be fabricated into components for use in these environments through centrifugal casting and welding. Based on the successful earlier studies on the development of wrought versions of Alumina-Forming Austenitic (AFA) alloys, new alloy compositions have been developed for cast products. These alloys achieve good high-temperature oxidation resistance due to the formation of protective Al2O3 scales while multiple second-phase precipitation strengthening contributes to excellent creep resistance. This work will summarize the results on the development and properties of a centrifugally cast AFA alloy. This paper highlights the strength, oxidation resistance in air and water vapor containing environments, and creep properties in the as-cast condition over the temperature range of 750°C to 900°C in a centrifugally cast heat. Preliminary results for a laboratory cast AFA composition with good oxidation resistance at 1100°C are also presented.

  19. Liquid Metal Processing and Casting Experiences at the U.S. Department of Energy's Albany Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, Paul D.; Turner, Paul C.

    2005-09-01

    In this paper we will discuss some of the early pioneering work as well as some of our more recent research. The Albany Research Center (ARC) has been involved with the melting and processing of metals since it was established in 1942. In the early days, hardly anything was known about melting refractory or reactive metals and as such, virtually everything had to be developed in-house. Besides the more common induction heated air-melt furnaces, ARC has built and/or utilized a wide variety of furnaces including vacuum arc remelt ingot and casting furnaces, cold wall induction furnaces, electric arc furnaces, cupola furnaces and reverberatory furnaces. The melt size of these furnaces range from several grams to a ton or more. We have used these furnaces to formulate custom alloys for wrought applications as well as for such casting techniques as spin casting, investment casting and lost foam casting among many. Two early spin-off industrializations were Wah Chang (wrought zirconium alloys for military and commercial nuclear applications) and Oremet (both wrought and cast Ti). Both of these companies are now part of the ATI Allegheny Ludlum Corporation.

  20. PECULIARITIES OF PROCESSES OF CARBIDE FORMATION AND DISTRIBUTION OF Cr, Mn AND Ni IN WHITE CAST IRONS

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2015-01-01

    Full Text Available During crystallization of castings from white cast iron, carbides Me3С, Me7С3, Me23С6 were formed depending on chromium and carbon content. Impeded chromium diffusion caused formation of thermodynamically unstable and non-uniform phases (carbides. During heat treatment process stable equilibrium phases were formed as a result of rearrangement of the carbides’ crystal lattice, replacement of iron, manganese, nickel and silicon atoms by chromium atoms. The allocated atoms concentrated, forming inclusions of austenite inside the carbides. Holding during 9 hours at 720 °С and annealing decreased the non-uniformity of chromium distribution in the metallic base of cast iron containing 11,5 % Cr, and increased it in the cast iron containing 21,5 % Cr. Holding during 4.5 hours at 1050 °С and normalization decreased the non-uniformity of chromium distribution in the metallic base of cast iron containing 21,5 % Cr, and increased it in cast iron containing 11,5 % Cr.

  1. Aluminum-Silicon Alloy Having Improved Properties At Elevated Temperatures and Process for Producing Cast Articles Therefrom

    Science.gov (United States)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2002-01-01

    A process for making a cast article from an aluminum alloy includes first casting an article from an alloy having the following composition, in weight percent: Silicon 11.0-14.0, Copper 5.6-8.0, Iron 0-0.8, Magnesium 0.5-1.5, Nickel 0.05-0.9, Manganese 0-1.0, Titanium 0.05-1.2, Zirconium 0.12-1.2, Vanadium 0.05-1.2, Zinc 0.05-0.9, Strontium 0.001-0.1, Aluminum balance . In this alloy the ratio of silicon to magnesium is 10 to 25, and the ratio of copper to magnesium is 4 to 15. After an article is cast from the alloy, the cast article is aged at a temperature within the range of 400F to 500F for a time period within the range of four to 16 hours. It has been found especially advantageous if the cast article is first exposed to a solutionizing step prior to the aging step. This solutionizing step is carried out by exposing the cast article to a temperature within the range of 900F to 1000F for a time period of fifteen minutes to four hours. It has also been found to be especially advantageous if the solutionizing step is followed directly with a quenching step, wherein the cast article is quenched in a quenching medium such as water at a temperature within the range of 120F to 300F. The resulting cast article is suitable in a number of high temperature applications, such as heavy-duty pistons for internal combustion engines.

  2. Effect of modifying process on mechanical properties of EN AC-43300 silumin cast into sand moulds

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2009-07-01

    Full Text Available Significance of alloy modification in course of casting process is the most explicitly visible on example of Al-Si alloys. Broad application of these alloys in foundry industry has become possible after invention of a method which changes solidification form of Al-Si eutectic mixture. Such primarily thick, acicular shape of silicon crystals becomes changed into fine and compact structure due to introduction of a small quantity of modifier to liquid alloy. The paper presents an attempt of assessment of melting and modification with strontium effects on mechanical properties of EN AC-43300 alloy cast into sand moulds. Obtained results concern selection of optimal quantity of strontium additive in aspect of obtained mechanical properties (Rm, A5, KCV, HB. Effect of strontium additive on change of mechanical properties of the investigated alloy was presented in graphical form. Further investigations shall be connected with determination of an effect of strontium additive on mechanical properties of the alloy after solution heat treatment and ageing treatment.

  3. Intelligent Machine Vision Based Modeling and Positioning System in Sand Casting Process

    Directory of Open Access Journals (Sweden)

    Shahid Ikramullah Butt

    2017-01-01

    Full Text Available Advanced vision solutions enable manufacturers in the technology sector to reconcile both competitive and regulatory concerns and address the need for immaculate fault detection and quality assurance. The modern manufacturing has completely shifted from the manual inspections to the machine assisted vision inspection methodology. Furthermore, the research outcomes in industrial automation have revolutionized the whole product development strategy. The purpose of this research paper is to introduce a new scheme of automation in the sand casting process by means of machine vision based technology for mold positioning. Automation has been achieved by developing a novel system in which casting molds of different sizes, having different pouring cup location and radius, position themselves in front of the induction furnace such that the center of pouring cup comes directly beneath the pouring point of furnace. The coordinates of the center of pouring cup are found by using computer vision algorithms. The output is then transferred to a microcontroller which controls the alignment mechanism on which the mold is placed at the optimum location.

  4. In-situ real time monitoring of the polymerization in gel-cast ceramic processes

    Energy Technology Data Exchange (ETDEWEB)

    Ahuja, S.; Dieckman, S.L.; Bostrom, G.A.; Waterfield, L.G.; Raptis, A.C. [Argonne National Lab., IL (United States); Omatete, O.O. [Oak Ridge National Lab., TN (United States)

    1996-08-01

    Gelcasting requires making a mixture of a slurry of ceramic powder in a solution of organic monomers and casting it in a mold. Gelcasting is different from injection molding in that it separates mold filling from setting during conversion of the ceramic slurry to a formed green part. In this work, NMR spectroscopy and imaging were used for in-situ monitoring of the gelation process and gelcasting of alumina. {sup 1}H NMR spectra and images are obtained during polymerization of a mixture of soluble reactive acrylamide monomers. Polymerization was initiated by adding an initiator and an accelerator to form long- chain, crosslinked polymers. Multidimensional NMR imaging was used for in-situ monitoring of the process and for verification of homogeneous polymerization. Comparison of the modeled intensities with acquired images shows a direction extraction of T{sub 1} data from the images.

  5. Quality problems root cause identification and variability reduction in casting processes

    Directory of Open Access Journals (Sweden)

    G. Furgał

    2009-01-01

    Full Text Available Increasing customer requirements and production costs force casting manufacturers to adopt a methodological approach to manufacturingprocesses, in order to deliver increasingly more repeatable, predictable and competitive products. One of the methods of achieving such results is the reduction of variability of manufacturing processes and the optimization of their control. This paper presents the possibilities granted by the Six Sigma methodology in efficient identification of special factors influencing pre-heat of ceramic moulds and castingparameters, in the minimization of the frequency at which they occur, and in the reduction of key process parameters variability. This paper also shows the usability of the method in achieving measurable business advantages for the company using the example of one DMAIC methodology based project realized in the Investment Foundry Department of WSK “PZL-Rzeszow” S.A.

  6. Quantitative evaluation of evaporation rate during spin-coating of polymer blend films: Control of film structure through defined-atmosphere solvent-casting.

    Science.gov (United States)

    Mokarian-Tabari, P; Geoghegan, M; Howse, J R; Heriot, S Y; Thompson, R L; Jones, R A L

    2010-12-01

    Thin films of polymer mixtures made by spin-coating can phase separate in two ways: by forming lateral domains, or by separating into distinct layers. The latter situation (self-stratification or vertical phase separation) could be advantageous in a number of practical applications, such as polymer optoelectronics. We demonstrate that, by controlling the evaporation rate during the spin-coating process, we can obtain either self-stratification or lateral phase separation in the same system, and we relate this to a previously hypothesised mechanism for phase separation during spin-coating in thin films, according to which a transient wetting layer breaks up due to a Marangoni-type instability driven by a concentration gradient of solvent within the drying film. Our results show that rapid evaporation leads to a laterally phase-separated structure, while reducing the evaporation rate suppresses the interfacial instability and leads to a self-stratified final film.

  7. Thin-Film Materials Synthesis and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a wide capability for deposition and processing of thin films, including sputter and ion-beam deposition, thermal evaporation, electro-deposition,...

  8. Physics of Spin Casting Dilute Solutions

    CERN Document Server

    Karpitschka, Stefan; Riegler, Hans

    2012-01-01

    We analyze the spin casting of dilute (ideal) binary mixtures of non-volatile solutes in volatile solvents as a prototype for evaporation-controlled processes that are increasingly used to deposit specifically structured (sub)monolayers ("evaporation-induced self-assembly"). The first analytical description of the thinning of a volatile liquid film simultaneously subject to spinning and evaporation is presented. It shows, that the duration of a spin casting process is linked to the process parameters via power laws. A diffusion-advection model leads analytically to the equation governing the spatio-temporal evolution of the internal film composition. Its solution reveals that the solute concentration enrichment, its gradient, and its time evolution are related to the process parameters via power laws. The physics behind the power laws is uncovered and discussed. This reveales universal insights into the interplay between the control parameters and their impact on the spatiotemporal evolution of the film compo...

  9. Machinability of Austempered Ductile Iron (ADI) Produced by Integrated Green Technology of Continuous Casting-Heat Treatment Processes

    Science.gov (United States)

    Meena, A.; El Mansori, M.; Ghidossi, P.

    2011-01-01

    This study presents the novel processing technique known as continuous casting-heat treatment processes to produce Austempered Ductile Iron (ADI) which is a new class of ductile iron. ADI is characterized by improved mechanical properties but has low machinability as compared to other cast irons and steel of similar strength. The novel technique is developed by the integration of casting (in die casting) and heat treatment processes in foundry to save cost energy and time. Specimens just after casting were austenitized at 930° C for 90 min and then austempered in fluidized bed at 380° C for 90 and 120 min. Hence, the effect of austempering time on the morphology of retained austenite and mechanical properties of the material were examined and compared with conventionally produced ADI. Drilling tests were then carried out to evaluate the machinability of ADI in terms of cutting forces, chip micro-hardness, chip morphology and surface roughness. The mechanical properties of ADI austempered for 120 min have found to be better as compare to the ADI austempered for 90 min.

  10. Significance of the  phase for the erosive wear process of the duplex cast steel

    Directory of Open Access Journals (Sweden)

    Z. Stradomski

    2008-10-01

    Full Text Available The work presents a possibility of increasing the tribological properties of the ferritic-austenitic cast steel (the so called duplex cast steel of GX2CrNiMoCu25-6-3-3 grade by taking an advantage of the mechanism of precipitation strengthening with the σ phase arisen due to the eutectoidal ferrite decomposition. The examinations have been held using specimens cut out of both a massive casting (an impeller of about one-ton mass and a thin-walled casting (of the wall thickness about 2 mm. The huge impeller has been made of cast steel containing 0.09% of carbon (i.e. exceeding the demands of the current standard, while the thin-walled casting has been of cast steel withextremely low carbon content (0.024% due to applying the input material of a great purity. Employing the moulding material withalkaline phenolic binder hardened with CO2 and using the zirconia coating has allowed for achieving about 20% fraction of σ phase in the as-cast state of the casting. An increase in σ phase fraction in the structure of duplex cast steel results in improving the abrasive wear resistance of the material. It should be stressed that despite the high fraction of the σ phase in the material, the crack-free castings have been obtained. An addition of copper has made possible producing the high-quality thin-walled (as for cast steel castings of smoothsurfaces. No defects (including shrinkage porosity have been found.

  11. Technical cost modelling for a novel semi-solid metal (SSM) casting processes for automotive component manufacturing

    CSIR Research Space (South Africa)

    Tlale, NS

    2008-09-01

    Full Text Available The cost structure and benefits of a new billet preparation process in semi-solid metal (SSM) casting of automotive components were investigated. The process was developed by the CSIR, a government research and development agency in South Africa...

  12. Structure-Property-Processing Correlations in Freeze-Cast Hybrid Scaffolds

    Science.gov (United States)

    Hunger, Philipp Malte

    Porous materials are highly sought after for applications ranging from catalyst carriers to tissue scaffolds. Most applications require clearly defined structural features and a specific mechanical performance. Therefore, it is essential to establish systematic structure-property-processing correlations to be able to tailor both structure and mechanical properties for a particular application. Because the introduction of porosity is detrimental to the mechanical performance of highly porous structures, it is necessary to generate a structure that allows for the mechanical properties to be maximized. One example for such a structure are honeycombs. In addition to the porosity and pore morphology, the scaffold's performance depends on the properties inherent to the material from which it is made. Polymeric foams possess high toughness but low stiffness, whereas ceramic foams possess high stiffness but low toughness. Natural composites like bone, antler and nacre have both high stiffness and high toughness. This unusual set of mechanical properties is thought to be intricately linked to the multi-level hierarchical composite structure present in these materials. Great potential for the fabrication of stiff, strong and tough porous scaffolds is thus seen in nacre-like composite materials with a hierarchical, honeycomb-like structure. Freeze casting is a method with which such hybrid materials can be made, adding the third dimension to nacre by forming a highly porous, hierarchical bulk material, with dense, nacre-like cell walls. The nacre-like cell walls self-assemble during the directional freezing of a water-based ceramic-polymer slurry. Reported here are structure-property-processing correlations observed in these materials. They are unusual, because they are, like nacre, solely glued by a polymeric phase and not processed further by sintering. The results illustrate several pathways to control both structure and mechanical properties in freeze-cast composites and

  13. Report of Separate Effects Testing for Modeling of Metallic Fuel Casting Process

    Energy Technology Data Exchange (ETDEWEB)

    Crapps, Justin M. [Los Alamos National Laboratory; Galloway, Jack D. [Los Alamos National Laboratory; Decroix, David S. [Los Alamos National Laboratory; Korzekwa, David A. [Los Alamos National Laboratory; Aikin, Robert M. Jr. [Los Alamos National Laboratory; Unal, Cetin [Los Alamos National Laboratory; Fielding, R. [Idaho National Laboratory; Kennedy, R [Idaho National Laboratory

    2012-06-29

    In order to give guidance regarding the best investment of time and effort in experimental determination of parameters defining the casting process, a Flow-3D model of the casting process was used to investigate the most influential parameters regarding void fraction of the solidified rods and solidification speed for fluid flow parameters, liquid heat transfer parameters, and solid heat transfer parameters. Table 1 summarizes the most significant variables for each of the situations studied. A primary, secondary, and tertiary effect is provided for fluid flow parameters (impacts void fraction) and liquid heat transfer parameters (impacts solidification). In Table 1, the wetting angle represents the angle between the liquid and mold surface as pictured in Figure 1. The viscosity is the dynamic viscosity of the liquid and the surface tension is the property of the surface of a liquid that allows it to resist an external force. When only considering solid heat transfer properties, the variations from case to case were very small. Details on this conclusion are provided in the section considering solid heat transfer properties. The primary recommendation of the study is to measure the fluid flow parameters, specifically the wetting angle, surface tension, and dynamic viscosity, in order of importance, as well as the heat transfer parameters latent heat and specific heat of the liquid alloy. The wetting angle and surface tension can be measured simultaneously using the sessile drop method. It is unclear whether there is a temperature dependency in these properties. Thus measurements for all three parameters are requested at 1340, 1420, and 1500 degrees Celsius, which correspond to the minimum, middle, and maximum temperatures of the liquid alloy during the process. In addition, the heat transfer coefficient between the mold and liquid metal, the latent heat of transformation, and the specific heat of the liquid metal all have strong influences on solidification. These

  14. Experimental and Numerical Simulations of the Solidification Process in Continuous Casting of Slab

    Directory of Open Access Journals (Sweden)

    Liang Bai

    2016-03-01

    Full Text Available Thermal simulation equipment (TSE was recently developed to simulate the solidification process in the industrial continuous casting of slab. The grain growth, solid-liquid interface movement, and columnar-to-equiaxed transition (CET in the continuous casting process can be reproduced using this equipment. The current study is focused on the effects of different cooling rates and superheat conditions on the grain growth in the solidification process of chromium-saving ferritic stainless steel (B425. The temperature distribution and microstructure evolution are simulated by a Cellular Automaton-Finite Element (CAFE model. The experimental results demonstrate that the temperature gradient and the grain growth rate of the sample can be effectively controlled by the equipment. It is observed from optical micrographs of the microstructure that the average equiaxed grain ratio increases when the superheat temperature decreases. The average equiaxed grain ratio is approximately 26% and 42% under superheat conditions of 40 °C and 30 °C, respectively, and no apparent columnar grain generation in the samples occurs under superheat conditions of 10 °C and 20 °C, as the result of a large thermal resistance at the copper-sample interface and low superheat inside the sample. A lower cooling rate results in a higher equiaxed crystal ratio in the sample. As the cooling rate decreases, the equiaxed crystal ratio becomes 14%, 23%, and 42%. Comparing the simulation results with the experimental observations, a reasonable qualitative agreement is achieved for the chilled layer thickness, grain morphology, and CET in the sample. Thus, the CAFE model in the current study can accurately predict the grain growth under different superheating and cooling rate conditions.

  15. Numerical simulation of casting processes: coupled mould filling and solidification using VOF and enthalpy-porosity method

    Science.gov (United States)

    Richter, Ole; Turnow, Johann; Kornev, Nikolai; Hassel, Egon

    2017-06-01

    Within the scope of industrial casting applications a numerical model for the simultaneous mould filling and solidification process has been formulated, implemented in a finite volume code and successfully validated using analytical and experimental data. In order to account for the developing of free surface flow and the liquid/solid phase change, respectively, the volume-of-fluid and enthalpy-porosity method have been coupled under a volume averaging framework on a fixed Eulerian grid. The coupled method captures the basic physical effects of a combined mould filling and solidification process and provides a trustful method for comprehensive casting simulations.

  16. Analysis and Evaluation of Novel Al-Mg-Sc-Zr Aerospace Alloy Strip Produced Using the Horizontal Single Belt Casting (HSBC) Process

    Science.gov (United States)

    Ge, Sa; Celikin, Mert; Isac, Mihaiela; Guthrie, Roderick I. L.

    2015-04-01

    Horizontal single belt casting (HSBC) is a near net shape casting process in which molten metal is directly cast into thin strips, at high cooling rates (order of several 100 °C/s), with the potential for high volume, friction free, continuous production of metal strips. This casting process was used in the present work to produce strips of Al-Mg alloys in the AA5000 series, with additions of Sc and Zr. Such aluminum alloys show exceptional potential as a structural material for transportation/aerospace applications. To demonstrate the suitability of the HSBC process to manufacture competitive strip products of Al-Mg-Sc-Zr, the mechanical properties and microstructures of the strips produced using the HSBC process were compared with conventionally cast products. The effects of annealing on the mechanical properties of the strip-cast Al-Mg-Sc-Zr alloys were also investigated.

  17. Process for fabrication of metal oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, C.E.; Benson, D.; Svensson, S.

    1990-07-17

    This invention is comprised of a method of fabricating metal oxide films from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of metal oxides, e.g. electro-optically active transition metal oxides, at a high deposition rate. The presence of hydrogen during the plasma reaction enhances the deposition rate of the metal oxide. Various types of metal oxide films can be produced.

  18. Processing and Microstructure Characteristics of As-Cast A356 Alloys Manufactured via Ultrasonic Cavitation during Solidification

    Science.gov (United States)

    Xuan, Yang; Jia, Shian; Nastac, Laurentiu

    2017-04-01

    Recent studies have showed that the microstructure and mechanical properties of A356 alloy can be significantly improved when ultrasonic cavitation and solidification processing is used. This is because during the fabrication of A356 castings, ultrasonic cavitation processing plays an important role in degassing and refining the as-cast microstructure. In the present study, A356 alloy and Al2O3/SiC nanoparticles are used as the matrix alloy and the reinforcements, respectively. Nanoparticles are injected into the molten alloy and dispersed by ultrasonic cavitation. Ultrasonic cavitation was also applied during solidification of these nanocomposites. The microstructure and nanoparticle distribution of the cast samples have been investigated in detail. The current experimental results indicated that ultrasonic cavitation during solidification will greatly improve the microstructure of the samples. Al2O3 and SiC nanoparticle reinforced nanocomposites have different nanoparticle distributions in the matrix.

  19. Thermal degradation of foamed polymethyl methacrylate in the expendable pattern casting process

    Science.gov (United States)

    Mehta, S.; Shivkumar, S.

    1994-06-01

    The thermal degradation of foamed polymethyl methacrylate (PMMA) patterns in the expendable pat-tern casting process has been studied. Various physical transitions that may occur during the degradation of PMMA have been determined using scanning electron microscopy, differential scanning calorimetry, and thermogravimetric analysis, and the effects of polymer density on the degradation characteristics have been investigated. The results indicate that, when exposed to elevated temperatures, the polymer beads collapse at about 140 to 200 °. The collapsed beads melt at 260 ° and begin to volatilize. Peak volatilization temperatures are on the order of 370 °. The end temperature for volatilization is between 420 and 430 °. The initial density of the polymer does not have a significant effect on the transition tem-peratures associated with degradation.

  20. MICROSTRUCTURE OF BINARY Mg-Al EUTECTIC ALLOY WIRES PRODUCED BY THE OHNO CONTINUOUS CASTING PROCESS

    Institute of Scientific and Technical Information of China (English)

    Z.M.Zhang; T.Lū; C.J.Xu; X.F.Guo

    2008-01-01

    Directionally solidified binary Mg-Al eutectic alloy wires of approximately 5 mm in diameter were produced by the Ohno continuous casting (OCC) process and the mi-crostructure was examined.It was found that the wires possess obvious unidirectional growth characteristic along its axial direction.The microstructure consists of parallel columnar grains that resulted from the competitive growth of equiaxed grains solidified on the head of dummy bar.Each columnar grain comprises regular eutectic α-Mg and β-Mg17 Al12 phases,which grew along the axial direction of the wires.The morphology of the eutectic is mainly lameUar,meanwhile rod eutectic exists.The formation of rod eutectic was attributed to the "bridging effect" caused by incidental elements in the alloy.

  1. Production of A356 aluminum alloy wheels by thixo-forging combined with a low superheat casting process

    Directory of Open Access Journals (Sweden)

    Wang Shuncheng

    2013-09-01

    Full Text Available The A356 aluminum alloy wheels were produced by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of thixo-forged wheels made from the A356 aluminum alloy were studied. The results show that the A356 aluminum alloy round billet with fine, uniform and non-dendritic grains can be obtained when the melt is cast at 635 篊. When the round billet is reheated at 600 篊 for 60 min, the non-dendritic grains are changed into spherical ones and the round billet can be easily thixo-forged into wheels. The tensile strength, yield strength and elongation of the thixo-forged wheels with T6 heat treatment are 327.6 MPa, 228.3 MPa and 7.8%, respectively, which are higher than those of a cast wheel. It is suggested that the thixo-forging combined with the low superheat casting process is an effective technique to produce aluminum alloy wheels with high mechanical properties.

  2. Li-Assisted Low-Temperature Phase Transitions in Solution-Processed Indium Oxide Films for High-Performance Thin Film Transistor

    Science.gov (United States)

    Nguyen, Manh-Cuong; Jang, Mi; Lee, Dong-Hwi; Bang, Hyun-Jun; Lee, Minjung; Jeong, Jae Kyeong; Yang, Hoichang; Choi, Rino

    2016-04-01

    Lithium (Li)-assisted indium oxide (In2O3) thin films with ordered structures were prepared on solution-processed zirconium oxide (ZrO2) gate dielectrics by spin-casting and thermally annealing hydrated indium nitrate solutions with different Li nitrate loadings. It was found that the Li-assisted In precursor films on ZrO2 dielectrics could form crystalline structures even at processing temperatures (T) below 200 °C. Different In oxidation states were observed in the Li-doped films, and the development of such states was significantly affected by both temperature and the mol% of Li cations, [Li+]/([In3+] + [Li+]), in the precursor solutions. Upon annealing the Li-assisted precursor films below 200 °C, metastable indium hydroxide and/or indium oxyhydroxide phases were formed. These phases were subsequently transformed into crystalline In2O3 nanostructures after thermal dehydration and oxidation. Finally, an In2O3 film doped with 13.5 mol% Li+ and annealed at 250 °C for 1 h exhibited the highest electron mobility of 60 cm2 V-1 s-1 and an on/off current ratio above 108 when utilized in a thin film transistor.

  3. Computer Catalog and Semantic Search of Data in the Domain of Cast Iron Processing

    Directory of Open Access Journals (Sweden)

    Rojek G.

    2017-06-01

    Full Text Available The aim of this study is to design and implement a computer system, which will allow the semantic cataloging and data retrieval in the field of cast iron processing. The intention is to let the system architecture allow for consideration of data on various processing techniques based on the information available or searched by a potential user. This is achieved by separating the system code from the knowledge of the processing operations or from the chemical composition of the material being processed. This is made possible by the creation and subsequent use of formal knowledge representation in the form of ontology. So, any use of the system is associated with the use of ontologies, either as an aid for the cataloging of new data, or as an indication of restrictions imposed on the data which draw user attention. The use of formal knowledge representation also allows consideration of semantic meaning, a consequence of which may be, for example, returning all elements in subclasses of the searched process class or material grade.

  4. Analysis of Monolith Cores from an Engineering Scale Demonstration of a Prospective Cast Stone Process

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-06-01

    The primary disposition path of Low Activity Waste (LAW) at the DOE Hanford Site is vitrification. A cementitious waste form is one of the alternatives being considered for the supplemental immobilization of the LAW that will not be treated by the primary vitrification facility. Washington River Protection Solutions (WRPS) has been directed to generate and collect data on cementitious or pozzolanic waste forms such as Cast Stone. This report documents the coring and leach testing of monolithic samples cored from an engineering-scale demonstration (ES Demo) with non-radioactive simulants. The ES Demo was performed at SRNL in October of 2013 using the Scaled Continuous Processing Facility (SCPF) to fill an 8.5 ft. diameter x 3.25 ft. high container with simulated Cast Stone grout. The Cast Stone formulation was chosen from the previous screening tests. Legacy salt solution from previous Hanford salt waste testing was adjusted to correspond to the average LAW composition generated from the Hanford Tank Waste Operation Simulator (HTWOS). The dry blend materials, ordinary portland cement (OPC), Class F fly ash, and ground granulated blast furnace slag (GGBFS or BFS), were obtained from Lafarge North America in Pasco, WA. In 2014 core samples originally obtained approximately six months after filling the ES Demo were tested along with bench scale molded samples that were collected during the original pour. A latter set of core samples were obtained in late March of 2015, eighteen months after completion of the original ES Demo. Core samples were obtained using a 2” diameter x 11” long coring bit. The ES Demo was sampled in three different regions consisting of an outer ring, a middle ring and an inner core zone. Cores from these three lateral zones were further segregated into upper, middle and lower vertical segments. Monolithic core samples were tested using the Environmental Protection Agency (EPA) Method 1315, which is designed to provide mass transfer rates

  5. Processing and characterization of extruded zein-based biodegradable films

    Science.gov (United States)

    Wang, Ying

    The objectives of this study were to prepare biodegradable zein films by extrusion processing and to evaluate relevant physical properties of resulting films with respect to their potential as packaging materials. The manufacture of protein-based packaging films by extrusion has remained a challenge. In this study, a zein resin was prepared by combining zein and oleic acid. This resin was formed into films by blown extrusion at the bench-top scale. Resin moisture content and extruder barrel temperature profile were identified as major parameters controlling the process. The optimum temperature of the blowing head was determined to be 40--45°C, while optimum moisture at film collection was 14--15%. Physico-chemical properties of the extruded products were characterized. Extruded products exhibited plastic behavior and ductility. Morphology characterization by SEM showed micro voids in extruded zein sheets, caused by entrapped air bubbles or water droplets. DSC characterization showed that zein was effectively plasticized by oleic acid as evidenced by the lowered glass transition temperature of zein films. X-ray scattering was used to investigate changes in zein molecular aggregation during processing. It was observed that higher mechanical energy treatment progressively disrupted zein molecular aggregates, resulting in a more uniform distribution of individual zein molecules. With the incorporation of oleic acid as plasticizer and monoglycerides as emulsifier, zein formed structures with long-range periodicity which varied depending on the formulation and processing methods. Processing methods for film formation affected the binding of oleic acid to zein with higher mechanical energy treatment resulting in better interaction between the two components. The moisture sorption capacity of extruded zein films was reduced due to the compact morphology caused by extrusion. Plasticization with oleic acid further reduced moisture sorption of zein films. The overall

  6. Parylene film for sidewall passivation in SCREAM process

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Trench sidewall passivation is a key step in the SCREAM (single crystal reactive etching and metallization) process for releasing suspended MEMS structures. In this paper, the parylene thin film is reported to serve as the passivation layer owing to its excellent conformality, chemical inertness, mechanical performance, and especially, low growth temperature. The deposited parylene films are characterized and the test structures are released through SCREAM process utilizing the parylene films as a passivation layer. The results show that as a passivation layer the parylene has more merits than the PECVD SiO2 film.

  7. Effect of Rotational Speeds on the Cast Tube During Vertical Centrifugal Casting Process on Appearance, Microstructure, and Hardness Behavior for Al-2Si Alloy

    Science.gov (United States)

    Shailesh Rao, A.; Tattimani, Mahantesh S.; Rao, Shrikantha S.

    2015-04-01

    The flow of molten metal plays a crucial role in determining casting quality. During rotation of the mold, melt flow around its inner circumference determines the final configurations and properties of the cast tube. In this paper, Al-2Si alloy is cast in the vertical mold at the various rotational speeds of the mold. The uniform cylinder tube is formed at a rotational speed of 1000 rpm, while before and beyond this speed, irregular-shaped cast tube is formed. Finally, fine structured grain size with high hardness value is found in uniform cast tube compared with others.

  8. Microstructure and phase morphology during thermochemical processing of {alpha}{sub 2}-based titanium aluminide castings

    Energy Technology Data Exchange (ETDEWEB)

    Saqib, M. [Wright State Univ., Dayton, OH (United States). Dept. of Mechanical and Materials Engineering; Apgar, L.S. [Dayton Univ., OH (United States). Graduate Materials Engineering; Eylon, D. [Dayton Univ., OH (United States). Graduate Materials Engineering; Weiss, I. [Wright State Univ., Dayton, OH (United States). Dept. of Mechanical and Materials Engineering

    1995-12-31

    Changes in the microstructure, volume fraction and distribution of phases during different stages of thermochemical processing of Ti-25Al-10Nb-3V-1Mo (at.%) castings were investigated. Up to 14.5 at.% (0.35 wt.%) of hydrogen was introduced into the material by gas charging at temperatures between 650 and 980 C for times up to 20 h. The material was subsequently dehydrogenated by vacuum annealing at 650 C for 48 h. Investment cast Ti-25Al-10Nb-3V-1Mo alloy, hot isostatically pressed (HIP) at 1175 C at 260 MPa for 6 h, was used as the starting material. The microstructure of the as-HIP material consists of {alpha}{sub 2}, B2 and orthorhombic phases. The {alpha}{sub 2} phase exists in equiaxed, Widmanstaeten and cellular morphologies. The B2 phase is observed mainly along {alpha}{sub 2}/{alpha}{sub 2} boundaries. Some {alpha}{sub 2} Widmanstaeten also contain very fine orthorhombic phase in a plate-like morphology. Hydrogenation of the material modified the microstructure; however, the morphology of the {alpha}{sub 2} and B2 phases did not change. Furthermore, hydride precipitation and a higher volume fraction of the orthorhombic phase were observed compared with the as-HIP material. Following dehydrogenation, the hydrogen level in the material was found to be less than 0.1 at.% (0.0025wt.%). Transmission electron microscopy of the dehydrogenated material did not reveal the presence of hydride precipitates; however, the high volume fraction of the orthorhombic phase was found to persist following dehydrogenation. (orig.)

  9. Investigation of the solute transportation coupled with heat transfer and fluid flow during twin-roll strip casting process

    Institute of Scientific and Technical Information of China (English)

    Yongsheng WANG; Chenxi JI; Jiongming ZHANG; Xinhua WANG; Wanjun WANG

    2009-01-01

    Mathematical model of solute [C] distribution in twin-roll strip casting process has been setup successfully with Calcosoft for the first time. Simulation result shows that in the center of the molten steel pool between the two rolls there is a vortex flow, which is a solute enriched area. But the highest solute concentration position is at the solidification front of the columnar grain zone near the cooling roll surface. Another solute enriched position is in the back flow above the nip point. Combined with the formation mechanism of microstruoture in final as cast strip, analysis shows that solute enriched area is in the transitional area between columnar and equiaxed grain zone.

  10. Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process

    Directory of Open Access Journals (Sweden)

    S. Aravindan

    2015-03-01

    Full Text Available Magnesium alloy (AZ91D composites reinforced with silicon carbide particle with different volume percentage were fabricated by two step stir casting process. The effect of changes in particle size and volume fraction of SiC particles on physical and mechanical properties of composites were evaluated under as cast and heat treated (T6 conditions. The experimental results were compared with the standard theoretical models. The results reveal that the mechanical properties of composites increased with increasing SiC particles and decrease with increasing particle size. Distribution of particles and fractured surface were studied through SEM and the presence of elements is revealed by EDS study.

  11. Thermoplastic processing of proteins for film formation--a review.

    Science.gov (United States)

    Hernandez-Izquierdo, V M; Krochta, J M

    2008-03-01

    Increasing interest in high-quality food products with increased shelf life and reduced environmental impact has encouraged the study and development of edible and/or biodegradable polymer films and coatings. Edible films provide the opportunity to effectively control mass transfer among different components in a food or between the food and its surrounding environment. The diversity of proteins that results from an almost limitless number of side-chain amino-acid sequential arrangements allows for a wide range of interactions and chemical reactions to take place as proteins denature and cross-link during heat processing. Proteins such as wheat gluten, corn zein, soy protein, myofibrillar proteins, and whey proteins have been successfully formed into films using thermoplastic processes such as compression molding and extrusion. Thermoplastic processing can result in a highly efficient manufacturing method with commercial potential for large-scale production of edible films due to the low moisture levels, high temperatures, and short times used. Addition of water, glycerol, sorbitol, sucrose, and other plasticizers allows the proteins to undergo the glass transition and facilitates deformation and processability without thermal degradation. Target film variables, important in predicting biopackage performance under various conditions, include mechanical, thermal, barrier, and microstructural properties. Comparisons of film properties should be made with care since results depend on parameters such as film-forming materials, film formulation, fabrication method, operating conditions, testing equipment, and testing conditions. Film applications include their use as wraps, pouches, bags, casings, and sachets to protect foods, reduce waste, and improve package recyclability.

  12. Thick Co-based coating on cast iron by side laser cladding : Analysis of processing conditions and coating properties

    NARCIS (Netherlands)

    Ocelik, V.; de Oliveira, U.; de Boer, M.; de Hosson, J. Th. M.

    2007-01-01

    The objective of this work was to create Co-based coatings (compositionally close to Stellite 6) on compacted graphite and gray cast iron,substrates with a high power laser (2 kW continuous Nd:YAG) cladding process. The relationships between the relevant laser cladding parameters (i.e. laser beam sc

  13. Development of industry processes simulators. Part III (Continuous casting); Desarrollo de Simulares para Procesos Industriales. Parte III (Colada continua)

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A.; Morales, R.; Morales, A. J.; Ramos, A.; Solorio, G.

    2006-07-01

    This work written for illustrating the use of Monte Carlo methods and generating of random number in combination with the information of the simulation system of thermal behaviour described previously in order to reproduce in a computer the solidification process of the steel and simulate the formation of strictures of casting step by step. (Author). 12 refs.

  14. The 3D Simulation of Liquid Core Change of Cylinder Steel Rolling Forming on Soft-reduction Continuous Casting Process

    Institute of Scientific and Technical Information of China (English)

    LUO Jian; WANG Ying; LI Ainong; HUA Lin

    2006-01-01

    Using ABAQUS FEM software, the Elastic-plastic with isotropic hardening model is applied to simulate 3D cylinder slab rolling forming in continuous casting (CC), the change of liquid core before slab solidification completely on soft reduction process is studied, the analyse result shows the soft reduction technique can change the liquid core size, which is useful to cylinder slab forming in CC.

  15. 75 FR 8114 - In the Matter of Certain Cast Steel Railway Wheels, Processes for Manufacturing or Relating to...

    Science.gov (United States)

    2010-02-23

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION In the Matter of Certain Cast Steel Railway Wheels, Processes for Manufacturing or Relating to Same and Certain Products Containing Same ; Issuance of a Limited Exclusion Order and Cease and Desist...

  16. Thick Co-based coating on cast iron by side laser cladding : Analysis of processing conditions and coating properties

    NARCIS (Netherlands)

    Ocelik, V.; de Oliveira, U.; de Boer, M.; de Hosson, J. Th. M.

    2007-01-01

    The objective of this work was to create Co-based coatings (compositionally close to Stellite 6) on compacted graphite and gray cast iron,substrates with a high power laser (2 kW continuous Nd:YAG) cladding process. The relationships between the relevant laser cladding parameters (i.e. laser beam

  17. Monitoring tablet surface roughness during the film coating process

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Heinämäki, Jyrki; Rantanen, Jukka

    2006-01-01

    the process of film coating tablets were studied by noncontact laser profilometry and scanning electron microscopy (SEM). An EDX analysis was used to monitor the magnesium stearate and titanium dioxide of the tablets. The tablet cores were film coated with aqueous hydroxypropyl methylcellulose, and the film...... coating was performed using an instrumented pilot-scale side-vented drum coater. The SEM images of the film-coated tablets showed that within the first 30 minutes, the surface of the tablet cores was completely covered with a thin film. The magnesium signal that was monitored by SEM-EDX disappeared after...... ~15 to 30 minutes, indicating that the tablet surface was homogeneously covered with film coating. The surface roughness started to increase from the beginning of the coating process, and the increase in the roughness broke off after 30 minutes of spraying. The results clearly showed that the surface...

  18. The Use of Formal Knowledge Representation in Operating on Resources Concerning Cast Iron Processing

    Directory of Open Access Journals (Sweden)

    Kluska-Nawarecka S.

    2015-06-01

    Full Text Available The problem of materials selection in terms of their mechanical properties during the design of new products is a key issue of design. The complexity of this process is mainly due to a multitude of variants in the previously produced materials and the possibility of their further processing improving the properties. In everyday practice, the problem is solved basing on expert or designer knowledge. The paper is the proposition of a solution using computer-aided analysis of material experimental data, which may be acquired from external data sources. In both cases, taking into account the rapid growth of data, additional tools become increasingly important, mainly those which offer support for adding, viewing, and simple comparison of different experiments. In this paper, the use of formal knowledge representation in the form of an ontology is proposed as a bridge between physical repositories of data in the form of files and user queries, which are usually formulated in natural language. The number and the sophisticated internal structure of attributes or parameters that could be the criteria of the search for the user are an important issue in the traditional data search tools. Ontology, as a formal representation of knowledge, enables taking into account the known relationships between concepts in the field of cast iron, materials used and processing techniques. This allows the user to receive support by searching the results of experiments that relate to a specific material or processing treatment. Automatic presentation of the results which relate to similar materials or similar processing treatments is also possible, which should make the conducted analysis of the selection of materials or processing treatments more comprehensive by including a wider range of possible solutions.

  19. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    Science.gov (United States)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  20. Formation of VC- composites surface layers on spheroidized graphite cast iron by laser surface cladding process

    Directory of Open Access Journals (Sweden)

    Essam R.I. Mahmoud

    2015-01-01

    Full Text Available Spheroidal graphite cast iron was laser cladded with VC powder of 44-53 μm particle size using YAG Fiber laser at 500, 1000, and 1500 W processing power and fixed travelling speed of 4 mm/s. The powder was preplaced on the surface of the specimens with 0.5 mm thickness. To prevent the oxidation, argon gas was used as a shielding gas. After the treatment, three zones were resulted: build-up (cladding, fusion, and heat affected zones. The build-up zone was a composite structure consisted of VC particles/dendrites dispersed in a matrix of martensite, carbides and ledeburite structure. At 500 W, most of the VC particles were appeared as their original large size. When the laser power was increased to 1000 W or more, the VC particles were melted and then re-solidified in the form of fine dendrites. The surface hardness of the cladded area was remarkably improved. As the distance from the free surface increases, the hardness decreases. The average hardness value at the surface treated by 500 W was about 710 HV (3 times of the hardness of substrate, while it reached to about 1340 HV and 1520 HV at powers of 1000 W and 1500 W, respectively. The wear resistance of the laser treated samples was improved at all investigated laser processing powers, especially at 1000W and 1500 W.

  1. APPLICATION OF TAGUCHI AND ANOVA IN OPTIMIZATION OF PROCESS PARAMETERS OF LAPPING OPERATION FOR CAST IRON

    Directory of Open Access Journals (Sweden)

    P.R. Parate

    2013-06-01

    Full Text Available Lapping appears like a miraculous process, because it can produce surfaces that are perfectly flat, perfectly round, perfectly smooth, perfectly sharp, or perfectly accurate. Under the correct circumstances, it can impart or improve precise geometry (flatness, roundness, etc., improve surface finish, improve surface quality, achieve high dimensional accuracy (length, diameter, etc., improve angular accuracy (worm gears, couplings, etc., improve fit, and above all, sharpen the tools. This paper presents research on calculating the material removal rate for a machining component by the lapping process. The cast iron sample with an outer diameter of 50 mm and an inner diameter of 45 mm was tested on a single plate tabletop lapping machine. Experiments based on design of experiments were conducted by varying lapping load, lapping time, paste concentration, lapping fluid, and by using different types of abrasives. The Taguchi statistical method has been used in this work. Optimum machining parameters for material removal rate are estimated and verified with experimental results and are found to be in good agreement. The confirmation test exhibits high material removal rate by using Al2O3 abrasive particles together with oil as a carrier fluid under the impression of high load. Further material removal rate increases with an increase in lapping load and time.

  2. Inorganic and Organic Solution-Processed Thin Film Devices

    Institute of Scientific and Technical Information of China (English)

    Morteza Eslamian

    2017-01-01

    Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging tech-nologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials, conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique prop-erties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution.

  3. LLNL casting technology

    Science.gov (United States)

    Shapiro, A. B.; Comfort, W. J., III

    1994-01-01

    Competition to produce cast parts of higher quality, lower rejection rate, and lower cost is a fundamental factor in the global economy. To gain an edge on foreign competitors, the US casting industry must cut manufacturing costs and reduce the time from design to market. Casting research and development (R&D) are the key to increasing US competiveness in the casting arena. Lawrence Livermore National Laboratory (LLNL) is the home of a wide range of R&D projects that push the boundaries of state-of-the art casting. LLNL casting expertise and technology include: casting modeling research and development, including numerical simulation of fluid flow, heat transfer, reaction/solidification kinetics, and part distortion with residual stresses; special facilities to cast toxic material; extensive experience casting metals and nonmetals; advanced measurement and instrumentation systems. Department of Energy (DOE) funding provides the leverage for LLNL to collaborate with industrial partners to share this advanced casting expertise and technology. At the same time, collaboration with industrial partners provides LLNL technologists with broader insights into casting industry issues, casting process data, and the collective experience of industry experts. Casting R&D is also an excellent example of dual-use technology; it is the cornerstone for increasing US industrial competitiveness and minimizing waste nuclear material in weapon component production. Annual funding for casting projects at LLNL is $10M, which represents 1% of the total LLNL budget. Metal casting accounts for about 80% of the funding. Funding is nearly equally divided between development directed toward US industrial competitiveness and weapon component casting.

  4. Synthesis of thin films by the pyrosol process

    Directory of Open Access Journals (Sweden)

    Tucić Aleksandar

    2002-01-01

    Full Text Available Among many aerosol routes, the Pyrosol process, due to its simplicity, low cost and quality of obtained films, represents a promising technique for the synthesis of thin films. The pyrosol process is based on the transport and pyrolysls of an aerosol of processor solution, generated in an ultrasonic atomizer, on a heated substrate. The theoretical principles of the pyrosol process are presented in this paper, as well as the influence of some synthesis parameters on the deposition of SnO2 thin films.

  5. Analysis of filling process of Ti6Al4V alloy melt poured in permanent mold during centrifugal casting process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ti6Al4V hip joint was foundered and the filling process of the melt poured in permanent mould during the centrifugal casting process was analyzed and the mathematical model of the filling process was established. Furthermore, the mathematical model was validated with a wax-model experiment. Calculating results show that the centrifugal field has an important influence on the filling process and the melt fills the mould with variational cross-sectional area and inclined angle. The cross-sectional area is in inverse proportion to the filling speed and its decreasing speed becomes fast with increasing rotating speed. The tangential value of the melt cross-sectional free-surface inclined angle is in direct proportion to the filling speed and the inclined angle increases with the filling length. Change curves of the cross-sectional inclined angle and area were obtained by the wax-model experiment when the rotating speeds were 60, 90 and 120  r/min respectively, which shows that the mathematical model is consistent with the experimental results.

  6. Full Mold Casting Process of 83 Tons Oversize Heterotypic Gray Iron Crossbeam Casting%83t异形特大灰铁横梁的实型铸造

    Institute of Scientific and Technical Information of China (English)

    刘建; 李增民; 王培华; 肖占德

    2012-01-01

    83 ton oversize heterotypic gray iron crossbeam was manufactured by full mold casting. Aiming at the structure characteristics of the crossbeam, pattern was made. Meanwhile, process parameters were presented. Sand and coating were taken into acount, and pitmoulding was performed. Finally, qualified crossbeam was produced sucesssfully.%介绍了对83 t异形特大灰铁横梁的实型铸造过程.针对横梁的结构特点,进行了模样制作.并对铸件的工艺参数进行了选取,合理选用了型砂和涂料,并用地坑造型,最终成功生产出合格的铸件.

  7. A comparative study on cellulose nanocrystals extracted from bleached cotton and flax and used for casting films with glycerol and sorbitol plasticisers.

    Science.gov (United States)

    Csiszár, Emilia; Nagy, Sebestyén

    2017-10-15

    Cellulose nanocrystals (CNCs) were released from bleached cotton and flax by a sulphuric acid hydrolysis with about 40 and 34% yield, respectively. The rod-like cotton-CNC particles were slightly longer and wider and had a less pronounced aggregation ability in aqueous suspension than the flax-CNC ones. Films were cast from the CNC suspensions with sorbitol and glycerol plasticisers. The concept behind this research was to explore how the plasticisers - with similar structure but different molecular weight - and their concentrations affect the perceptible and measured properties of CNC films. Results revealed that the type of plasticiser determined the morphology and the optical and tensile properties of films. The best quality CNC film with an averaged thickness of 50μm was obtained with 20% sorbitol from cotton-CNC. It was proved that behaviour of sorbitol and glycerol plasticisers in CNC films was very similar to that reported previously for starch films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Influence of fabricating process on microstructure and properties of spheroidal cast tungsten carbide powder

    Institute of Scientific and Technical Information of China (English)

    DAI Yu; TAN Xing-long; LI Yu-xi; YANG Jian-gao; HUANG Bai-yun

    2005-01-01

    A super-high temperature furnace was developed to fabricate spheroidal cast tungsten carbide powder with excellent flowability and fine feathery structure in a large scale. Optical microscope and scanning electron microscope were taken to characterize the morphology and microstructure of cast tungsten carbide powder. X-ray diffractometry was used to analyze the phase composition of powders involved. It is found that the carbon potential in the furnace and feeding speed play an important role on the microstructure, morphology and properties of the spheroidal cast tungsten carbide powder. As carbon potential is between 0.3% and 0.9% in the furnace, cast tungsten carbide powder with hardness over 2800(HV0.5 ), flowability over 7. 1 s/50 g and tap density over 10.3 g/cm3 is obtained.

  9. Low Temperature Processing of Nanocrystalline Lead Zirconate Titanate (PZT) Thick Films and Ceramics by a Modified Sol-Gel Route

    Science.gov (United States)

    Zhu, Weiguang; Wang, Zhihong; Zhao, Changlei; Tan, Ooi Kiang; Hng, Huey Hoon

    2002-11-01

    Dispersing fine particles into a sol-gel matrix is a promising process to get a thick 0-3 composite coating layer. In this paper, we have further improved this modified sol-gel process by nanocrystalline composite technique to realize the low temperature annealing. Dense Pb(Zr, Ti)O3 (PZT) thick films of 10 to 50 μm in thickness have been obtained on the platinum-coated silicon substrates by spin-coating at sintering temperature of 600-700°C and fully developed submicron-sized grains have been demonstrated in screen-printing piezoelectric films on alumina substrates at sintering temperature of 700-800°C. The dependence of various properties such as microstructure, crystallization, ferroelectric and dielectric properties of such made thick films on the processing parameters have been investigated. For a 10 μm-thick film spin-coated on silicon wafer, the dielectric loss and relative permittivity are 0.010 and 1024, respectively, at 1 kHz. The remanent polarization (Pr) and the coercive field (Ec) are 13.6 μC/cm2 and 34.5 kV/cm, respectively. Obviously, such made thick film has comparable properties with bulk PZT ceramic. This novel technique can be extensively used in sol-gel, screen-printing, tape-casting, even in traditional ceramic process to reduce the process temperature.

  10. Center Segregation with Final Electromagnetic Stirring in Billet Continuous Casting Process

    Science.gov (United States)

    Jiang, Dongbin; Zhu, Miaoyong

    2017-02-01

    With a multiphase solidification model built, the effect of F-EMS parameters on center segregation was investigated in 160 mm × 160 mm billet continuous casting process. In the model, the initial growth of equiaxed grains which could move freely with liquid was treated as slurry, while the coherent equiaxed zone was regarded as porous media. The results show that the stirring velocity is not the main factor influencing center segregation improvement, which is more affected by current intensity and stirring pool width. Because solute transport is controlled by solidification rate as stirring pool width is 73 mm, center segregation declines continuously with current intensity increasing. As liquid pool width decreases to 61 mm and less latent heat needs to dissipate in the later solidification, the center segregation could be improved more obviously by F-EMS. Due to center liquid solute enrichment and liquid phase accumulation in the stirring zone, center segregation turns to rise reversely with higher current intensity and becomes more serious with stirring pool width further decreasing to 43 mm. As the stirring pool width is 25 mm, the positive segregation has already formed and solute could still concentrate with weak stirring, leading to center segregation deterioration. With the optimized current intensity (400 A) and stirring pool width (61 mm) set for continuous mode, center segregation improvement is better than that of alternative mode.

  11. Bending strength and fracture surface topography of natural fiber-reinforced shell for investment casting process

    Directory of Open Access Journals (Sweden)

    Kai Lu

    2016-05-01

    Full Text Available In order to improve the properties of silica sol shell for investment casting process, various contents of cattail fibers were added into the slurry to prepare a fiber-reinforced shell in the present study. The bending strength of fiber-reinforced shell was investigated and the fracture surfaces of shell specimens were observed using SEM. It is found that the bending strength increases with the increase of fiber content, and the bending strength of a green shell with 1.0 wt.% fiber addition increases by 44% compared to the fiber-free shell. The failure of specimens of the fiber-reinforced green shell results from fiber rupture and debonding between the interface of fibers and adhesive under the bending load. The micro-crack propagation in the matrix is inhibited by the micro-holes for ablation of fibers in specimens of the fiber-reinforced shell during the stage of being fired. As a result, the bending strength of specimens of the fired shell had no significant drop. Particularly, the bending strength of specimens of the fired shell reinforced with 0.6wt.% fiber reached the maximum value of 4.6 MPa.

  12. Mensuration and simulation of mold filling process in semi-solid die-cast of aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    YANG Yi-tao; WANG Jian-fu; ZHANG Heng-hua; SHAO Guang-jie

    2006-01-01

    To understand the flow trace of semi-solid slurry in mold cavity, some thermocouples were inserted in mold cavity, and the reaction timing of thermocouples showed the arrival of fluid. The filling time and rate were estimated by comparison between the experiment and calculation. The introduction of computer simulation technique based on ADSTEFAN was to predict injectionforming process and to prevent defects during trial manufacture of various parts. By comparing the formed appearance of parts in experiment and in simulation, and observing the relationship between internal defects inspected by X-ray or microscope and the flow field obtained in simulation, it was indicated that both have quite good agreement in simulation and experiment. Right predictions for cast defects resulted from mold filling can be carried out and proper direction was also proposed. The realization of numerical visualization for filling process during semi-solid die-cast process will play an important role in optimizing technology plan.

  13. Intelligent Processing of Ferroelectric Thin Films

    Science.gov (United States)

    1994-05-31

    unsatisfactory. To detect the electroopic effects of thin films deposited on opaque substrates a waveguide refractometry of category 3 was reported. An advantage...of the waveguide refractometry is its capability of resolving the change in ordinary index from the change in the extraordinary index. Some successes

  14. Isotope biogeochemical assessment of natural biodegradation processes in open cast pit mining landscapes

    Science.gov (United States)

    Jeschke, Christina; Knöller, Kay; Koschorreck, Matthias; Ussath, Maria; Hoth, Nils

    2014-05-01

    In Germany, a major share of the energy production is based on the burning of lignite from open cast pit mines. The remediation and re-cultivation of the former mining areas in the Lusatian and Central German lignite mining district is an enormous technical and economical challenge. After mine closures, the surrounding landscapes are threatened by acid mine drainage (AMD), i.e. the acidification and mineralization of rising groundwater with metals and inorganic contaminants. The high content of sulfur (sulfuric acid, sulfate), nitrogen (ammonium) and iron compounds (iron-hydroxides) deteriorates the groundwater quality and decelerates sustainable development of tourism in (former) mining landscapes. Natural biodegradation or attenuation (NA) processes of inorganic contaminants are considered to be a technically low impact and an economically beneficial solution. The investigations of the stable isotope compositions of compounds involved in NA processes helps clarify the dynamics of natural degradation and provides specific informations on retention processes of sulfate and nitrogen-compounds in mine dump water, mine dump sediment, and residual pit lakes. In an active mine dump we investigated zones where the process of bacterial sulfate reduction, as one very important NA process, takes place and how NA can be enhanced by injecting reactive substrates. Stable isotopes signatures of sulfur and nitrogen components were examined and evaluated in concert with hydrogeochemical data. In addition, we delineated the sources of ammonium pollution in mine dump sediments and investigated nitrification by 15N-labeling techniques to calculate the limit of the conversion of harmful ammonium to nitrate in residual mining lakes. Ultimately, we provided an isotope biogeochemical assessment of natural attenuation of sulfate and ammonium at mine dump sites and mining lakes. Also, we estimated the risk potential for water in different compartments of the hydrological system. In

  15. Friction and wear characteristics of Al-Cu/C composites synthesized using partial liquid phase casting process

    Energy Technology Data Exchange (ETDEWEB)

    Ng, W.B.; Gupta, M.; Lim, S.C. [Department of Mechanical and Production Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore (Singapore)

    1997-10-01

    During the sliding of aluminium alloys dispersed with graphite particulates, a layer of graphite is usually present at the sliding interface. This tribo-layer significantly reduces the amount of direct metal-to-metal contact, giving rise to low friction and a low rate of wear, making these composites useful candidate materials for anti-friction applications. Such self-lubricating composites are commonly fabricated via the squeeze casting, slurry casting or powder metallurgy route. These processes are expensive while the less-expensive conventional casting route is limited by the agglomeration of graphite particles in the composites, giving rise to poor mechanical properties. In this work, graphite particulate-reinforced Al-4.5 wt.% Cu composites with two effective graphite contents (Al-4.5 Cu/4.2 wt.% C and Al-4.5 Cu/6.8 wt.% C) were synthesized through an innovative partial liquid phase casting (rheocasting) technique, which is a modification of the conventional casting process. Unlubricated (without the use of conventional liquid lubrication) friction and wear performance of these composites as well as the un-reinforced aluminium alloy was determined using a pin-on-disk tester. The results revealed that the graphite-reinforced composites have a higher wear rate than the un-reinforced matrix alloy while their frictional characteristics are very similar within the range of testing conditions. Combining these with the information gathered from worn-surface examinations and wear-debris analysis, it is suggested that there exists a certain threshold for the amount and size of graphite particulates in these composites to enable them to have improved tribological properties. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Microstructure And Mechanical Properties Of An Al-Zn-Mg-Cu Alloy Produced By Gravity Casting Process

    Directory of Open Access Journals (Sweden)

    Saikawa S.

    2015-06-01

    Full Text Available High-strength aluminum alloy are widely used for structural components in aerospace, transportation and racing car applications. The objective of this study is to enhance the strength of the Al-Zn-Mg-Cu alloy used for gravity casting process. All alloys cast into stepped-form sand mold (Sand-mold Casting; SC and Y-block shaped metal mold(Permanent mold Casting; PC C and then two –step aged at 398-423 K after solution treated at 743 K for 36 ks. The tensile strength and total elongation of the two-step aged SC alloys were 353-387 MPa and about 0.4% respectively. This low tensile properties of the SC alloys might be caused by remaining of undissolved crystallized phase such as Al2CuM, MgZn2 and Al-Fe-Cu system compounds. However, good tensile properties were obtained from PC alloys, tensile strength and 0.2% proof stress and elongation were 503-537 MPa, 474-519 MPa and 1.3-3.3%.

  17. The Influence of the Shape of the Reaction Chamber on Spheroidisation of Cast Iron Produced in the Lost Foam Casting Process with use of the Inmold Method

    Directory of Open Access Journals (Sweden)

    P. Just

    2012-04-01

    Full Text Available The article presents the results of the research on the influence of the shape of reaction chamber on spheroidisation of cast iron produced with use of the inmold method. The amounts of nodular graphite precipitates in castings produced with the use of different reaction chambers have been compared.

  18. The Influence of the Shape of the Reaction Chamber on Spheroidisation of Cast Iron Produced in the Lost Foam Casting Process with use of the Inmold Method

    OpenAIRE

    Just, P.; T. Pacyniak

    2012-01-01

    The article presents the results of the research on the influence of the shape of reaction chamber on spheroidisation of cast iron produced with use of the inmold method. The amounts of nodular graphite precipitates in castings produced with the use of different reaction chambers have been compared.

  19. Highly conductive Cu2-xS nanoparticle films through room-temperature processing and an order of magnitude enhancement of conductivity via electrophoretic deposition.

    Science.gov (United States)

    Otelaja, Obafemi O; Ha, Don-Hyung; Ly, Tiffany; Zhang, Haitao; Robinson, Richard D

    2014-11-12

    A facile room-temperature method for assembling colloidal copper sulfide (Cu2-xS) nanoparticles into highly electrically conducting films is presented. Ammonium sulfide is utilized for connecting the nanoparticles via ligand removal, which transforms the as-deposited insulating films into highly conducting films. Electronic properties of the treated films are characterized with a combination of Hall effect measurements, field-effect transistor measurements, temperature-dependent conductivity measurements, and capacitance-voltage measurements, revealing their highly doped p-type semiconducting nature. The spin-cast nanoparticle films have carrier concentration of ∼ 10(19) cm(-3), Hall mobilities of ∼ 3 to 4 cm(2) V(-1) s(-1), and electrical conductivities of ∼ 5 to 6 S · cm(-1). Our films have hole mobilities that are 1-4 orders of magnitude higher than hole mobilities previously reported for heat-treated nanoparticle films of HgTe, InSb, PbS, PbTe, and PbSe. We show that electrophoretic deposition (EPD) as a method for nanoparticle film assembly leads to an order of magnitude enhancement in film conductivity (∼ 75 S · cm(-1)) over conventional spin-casting, creating copper sulfide nanoparticle films with conductivities comparable to bulk films formed through physical deposition methods. The X-ray diffraction patterns of the Cu2-xS films, with and without ligand removal, match the Djurleite phase (Cu(1.94)S) of copper sulfide and show that the nanoparticles maintain finite size after the ammonium sulfide processing. The high conductivities reported are attributed to better interparticle coupling through the ammonium sulfide treatment. This approach presents a scalable room-temperature route for fabricating highly conducting nanoparticle assemblies for large-area electronic and optoelectronic applications.

  20. Highly Conductive Cu 2– x S Nanoparticle Films through Room-Temperature Processing and an Order of Magnitude Enhancement of Conductivity via Electrophoretic Deposition

    KAUST Repository

    Otelaja, Obafemi O.

    2014-11-12

    © 2014 American Chemical Society. A facile room-temperature method for assembling colloidal copper sulfide (Cu2-xS) nanoparticles into highly electrically conducting films is presented. Ammonium sulfide is utilized for connecting the nanoparticles via ligand removal, which transforms the as-deposited insulating films into highly conducting films. Electronic properties of the treated films are characterized with a combination of Hall effect measurements, field-effect transistor measurements, temperature-dependent conductivity measurements, and capacitance-voltage measurements, revealing their highly doped p-type semiconducting nature. The spin-cast nanoparticle films have carrier concentration of ∼1019 cm-3, Hall mobilities of ∼3 to 4 cm2 V-1 s-1, and electrical conductivities of ∼5 to 6 S·cm-1. Our films have hole mobilities that are 1-4 orders of magnitude higher than hole mobilities previously reported for heat-treated nanoparticle films of HgTe, InSb, PbS, PbTe, and PbSe. We show that electrophoretic deposition (EPD) as a method for nanoparticle film assembly leads to an order of magnitude enhancement in film conductivity (∼75 S·cm-1) over conventional spin-casting, creating copper sulfide nanoparticle films with conductivities comparable to bulk films formed through physical deposition methods. The X-ray diffraction patterns of the Cu2-xS films, with and without ligand removal, match the Djurleite phase (Cu1.94S) of copper sulfide and show that the nanoparticles maintain finite size after the ammonium sulfide processing. The high conductivities reported are attributed to better interparticle coupling through the ammonium sulfide treatment. This approach presents a scalable room-temperature route for fabricating highly conducting nanoparticle assemblies for large-area electronic and optoelectronic applications.

  1. Influence of rotational speed of centrifugal casting process on appearance, microstructure, and sliding wear behaviour of Al-2Si cast alloy

    Science.gov (United States)

    Mukunda, P. G.; Shailesh, Rao A.; Rao, Shrikantha S.

    2010-02-01

    Although the manner in which the molten metal flows plays a major role in the formation of the uniform cylinder in centrifugal casting, not much information is available on this topic. The flow in the molten metal differs at various rotational speeds, which in turn affects the final casting. In this paper, the influence of the flow of molten metal of hyper eutectic Al-2Si alloys at various rotational speeds is discussed. At an optimum speed of 800 rpm, a uniform cylinder was formed. For the rotational speeds below and above these speeds, an irregular shaped casting was formed, which is mainly due to the influence of melt. Primary á-Al particles were formed in the tube periphery at low rotational speed, and their sizes and shapes were altered with changes in rotational speeds. The wear test for the inner surface of the casting showed better wear properties for the casting prepared at the optimum speed of rotation.

  2. Oromucosal film preparations: points to consider for patient centricity and manufacturing processes.

    Science.gov (United States)

    Krampe, Raphael; Visser, J Carolina; Frijlink, Henderik W; Breitkreutz, Jörg; Woerdenbag, Herman J; Preis, Maren

    2016-01-01

    According to the European Pharmacopoeia, oromucosal films comprise mucoadhesive buccal films and orodispersible films. Both oral dosage forms receive considerable interest in the recent years as commercially available pharmaceutical products and as small scale personalized extemporaneous preparations. In this review, technological issues such as viscosity of the casting liquid, mechanical properties of the film, upscaling and the stability of the casting solution and produced films will be discussed. Furthermore, patient-related problems like appearance, mucosal irritation, taste, drug load, safety and biopharmaceutics are described. Current knowledge and directions for solutions are summarized. The viscosity of the casting solution is a key factor for producing suitable films. This parameter is amongst others dependent on the polymer and active pharmaceutical ingredient, and the further excipients that are used. For optimal patient compliance, an acceptable taste and palatability are desirable. Safe and inert excipients should be used and appropriate packaging should be provided to produced films. Absorption through the oral mucosa will vary for each active compound, formulation and patient, which gives rise to pharmacokinetic questions. Finally, the European Pharmacopoeia needs to specify methods, requirement and definitions for oromucosal film preparations based on bio-relevant data.

  3. Thickness control and interface quality as functions of slurry formulation and casting speed in side-by-side tape casting

    DEFF Research Database (Denmark)

    Bulatova, Regina; Jabbari, Mirmasoud; Kaiser, Andreas;

    2014-01-01

    A novel method of co-casting called side-by-side tape casting was developed aiming to form thin functionally graded films with varying properties within a single plane. The standard organic-based recipe was optimized to co-cast slurries into thick graded tapes. Performed numerical simulations...... identified the stable flow beneath the blade with a shear rate profile independent of slurry viscosity as long as the slurry load in the casting tank was low. Thickness and interface shape could be well predicted if the rheological behaviour of slurries is known and the processing parameters are well......-controlled. A well-defined steep interface was obtained by co-casting slurries with similar viscosities above 4000mPas at a speed of 40cm/min. The elastic properties of green tapes were proven to be defined by the binder concentration in the recipe formulation. The interfaces in graded tapes were shown to withstand...

  4. Statistical Study to Evaluate the Effect of Processing Variables on Shrinkage Incidence During Solidification of Nodular Cast Irons

    Science.gov (United States)

    Gutiérrez, J. M.; Natxiondo, A.; Nieves, J.; Zabala, A.; Sertucha, J.

    2017-04-01

    The study of shrinkage incidence variations in nodular cast irons is an important aspect of manufacturing processes. These variations change the feeding requirements on castings and the optimization of risers' size is consequently affected when avoiding the formation of shrinkage defects. The effect of a number of processing variables on the shrinkage size has been studied using a layout specifically designed for this purpose. The β parameter has been defined as the relative volume reduction from the pouring temperature up to the room temperature. It is observed that shrinkage size and β decrease as effective carbon content increases and when inoculant is added in the pouring stream. A similar effect is found when the parameters selected from cooling curves show high graphite nucleation during solidification of cast irons for a given inoculation level. Pearson statistical analysis has been used to analyze the correlations among all involved variables and a group of Bayesian networks have been subsequently built so as to get the best accurate model for predicting β as a function of the input processing variables. The developed models can be used in foundry plants to study the shrinkage incidence variations in the manufacturing process and to optimize the related costs.

  5. Combined multi-nozzle deposition and freeze casting process to superimpose two porous networks for hierarchical three-dimensional microenvironment.

    Science.gov (United States)

    Snyder, Jessica E; Hunger, Philipp M; Wang, Chengyang; Hamid, Qudus; Wegst, Ulrike G K; Sun, Wei

    2014-03-01

    An engineered three-dimensional scaffold with hierarchical porosity and multiple niche microenvironments is produced using a combined multi-nozzle deposition-freeze casting technique. In this paper we present a process to fabricate a scaffold with improved interconnectivity and hierarchical porosity. The scaffold is produced using a two-stage manufacturing process which superimposes a printed porous alginate (Alg) network and a directionally frozen ceramic-polymer matrix. The combination of two processes, multi-nozzle deposition and freeze casting, provides engineering control of the microenvironment of the scaffolds over several length scales; including the addition of lateral porosity and the ratio of polymer to ceramic microstructures. The printed polymer scaffold is submerged in a ceramic-polymer slurry and subsequently, both structures are directionally frozen (freeze cast), superimposing and patterning both microenvironments into a single hierarchical architecture. An optional additional sintering step removes the organic material and densifies the ceramic phase to produce a well-defined network of open pores and a homogenous cell wall material composition. The techniques presented in this contribution address processing challenges, such as structure definition, reproducibility and fine adjustments of unique length scales, which one typically encounters when fabricating topological channels between longitudinal and transverse porous networks.

  6. Processing and characterization of high porosity aerogel films

    Energy Technology Data Exchange (ETDEWEB)

    Hrubesh, L.W.; Poco, J.F.

    1994-11-22

    Aerogels are highly porous solids having unique morphology among materials because both the pores and particles making up the material have sizes less than wavelengths of visible light. Such a unique morphology modifies the normal molecular transport mechanisms within the material, resulting in exceptional thermal, acoustical, mechanical, and electrical properties. For example, aerogels have the lowest measured thermal conductivity and dielectric constant for any solid material. Special methods are required to make aerogel films with high porosity. In this paper, we discuss the special conditions needed to fabricate aerogel films having porosities greater than 75% and we describe methods of processing inorganic aerogel films having controllable thicknesses in the range 0.5 to 200 micrometers. We report methods and results of characterizing the films including thickness, refractive index, density (porosity), and dielectric constant. We also discuss results of metallization and patterning on the aerogel films for applications involving microminiature electronics and thermal detectors.

  7. Process optimization of ultrasonic spray coating of polymer films

    DEFF Research Database (Denmark)

    Bose, Sanjukta; Keller, Stephan Sylvest; Boisen, Anja

    2013-01-01

    In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect...... these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating...... to thickness, roughness (profilometer), and morphology (optical microscopy). Polyvinylpyrrolidone (PVP) is used to do a full factorial design of experiments with selected process parameters such as temperature, distance between spray nozzle and substrate, and speed of the spray nozzle. A mathematical model...

  8. Grain refinement of ASTM A356 aluminum alloy using sloping plate process through gravity die casting

    Directory of Open Access Journals (Sweden)

    Adnan Mehmood

    2016-09-01

    Full Text Available Sloping plate flow is used for enhancement of material properties through grain refinement in gravity die casting of Aluminum alloy ASTM A356. The castings are prepared with different slope angles of an 800 mm long, naturally cooled stainless steel plate. The specimens obtained are then tested for tensile strength and elongation. Microstructure of the cast specimens is observed and conclusions drawn on the grain size and precipitate morphology as a function of angle of sloping plate. Analysis is presented for the boundary layer created while the material flows over the plate. An indication of the boundary layer thickness is determined by measuring the thickness of the residual metal layer on the plate after casting. An analytical solution of the boundary layer thickness is also presented. It is shown that the calculated boundary layer thickness and the thickness of the layer of material left in the channel after casting are in good agreement. Moreover, microstructure examination and tensile tests show that best properties are achieved with a 60° sloping plate.

  9. Analysis of the biomineralization process on SWNT-COOH and F-SWNT films

    Energy Technology Data Exchange (ETDEWEB)

    Armentano, Ilaria [Materials Engineering Centre, UdR INSTM, NIPLAB, University of Perugia, Terni (Italy)], E-mail: Ilaria.armentano@lnl.infn.it; Alvarez-Perez, Marco Antonio; Carmona-Rodriguez, Bruno [Laboratorio de Biologia Celular y Molecular, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, Mexico D. F. (Mexico); Gutierrez-Ospina, Ivan [Universidad Autonoma Metropolitana, Xochimilco, Mexico D. F. (Mexico); Kenny, Jose Maria [Materials Engineering Centre, UdR INSTM, NIPLAB, University of Perugia, Terni (Italy); Arzate, Higinio [Laboratorio de Biologia Celular y Molecular, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, Mexico D. F. (Mexico)

    2008-12-01

    In vitro biomineralization process was investigated on functionalized single wall nanotube (SWNT) films. The films were prepared by solvent casting method by using carboxylated and fluorinated nanotubes. SWNT films were characterized by means of electron microscopy, contact angle measurements and optical absorption. The in vitro assays were performed on cultured human alveolar bone-derived cells (HABDC) to determine the capabilities of carboxylated single-walled nanotubes (SWNTs-COOH) and fluorinated single-walled nanotubes (F-SWNTs) to promote the deposit of mineral-like tissue. The results showed that the cellular response of HABDC in secreting a mineralized extracellular matrix and their consequent mineralization is dependent on the degree of functionalization of the SWNTs. Differences were found related to the kind of sidewall functionalization. Both structures promoted hydroxyapatite formation, however, calcium uptake on SWNTs-COOH increased and it was related to crystal density. From our results, it is possible to infer that CNT functionalization opens a path to future developments in new bone graft materials and techniques.

  10. Controlling coverage of solution cast materials with unfavourable surface interactions

    KAUST Repository

    Burlakov, V. M.

    2014-03-03

    Creating uniform coatings of a solution-cast material is of central importance to a broad range of applications. Here, a robust and generic theoretical framework for calculating surface coverage by a solid film of material de-wetting a substrate is presented. Using experimental data from semiconductor thin films as an example, we calculate surface coverage for a wide range of annealing temperatures and film thicknesses. The model generally predicts that for each value of the annealing temperature there is a range of film thicknesses leading to poor surface coverage. The model accurately reproduces solution-cast thin film coverage for organometal halide perovskites, key modern photovoltaic materials, and identifies processing windows for both high and low levels of surface coverage. © 2014 AIP Publishing LLC.

  11. Effects of different cooling rates during two casting processes on the microstructures and mechanical properties of extruded Mg-Al-Ca-Mn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.W., E-mail: xushiwei@stn.nagaokaut.ac.jp [Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka 940-2188 (Japan); Oh-ishi, K.; Kamado, S.; Takahashi, H.; Homma, T. [Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka 940-2188 (Japan)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Ordered monolayer GP zone was formed by increasing cooling rate. Black-Right-Pointing-Pointer Finer extruded microstructure was obtained by increasing cooling rate. Black-Right-Pointing-Pointer Higher number density precipitates was obtained by increasing cooling rate. Black-Right-Pointing-Pointer Tensile 0.2% proof stress was increased by 105 MPa by increasing cooling rate. Black-Right-Pointing-Pointer Extruded DC-cast alloy shows higher tensile 0.2% proof stress of 409 MPa. - Abstract: In this study, Mg-3.6Al-3.4Ca-0.3Mn (wt.%) (which is denoted AXM4303) alloy ingots were prepared by two casting processes with different cooling rates: permanent mold (PM) casting, which has a lower cooling rate of 10-20 Degree-Sign C/s and direct chill (DC) casting, which has a higher cooling rate of 100-110 Degree-Sign C/s. Then, these two types of AXM4303 alloy ingots were hot extruded at 400 Degree-Sign C under the same conditions. The microstructures of the as-cast and extruded alloy samples were systematically investigated by field-emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and electron backscattered diffraction (EBSD) systems. The effects of the different cooling rates during the casting process on the microstructures and mechanical properties of the extruded AXM4303 alloy samples were evaluated. The results show that the strength of the extruded Mg-Al-Ca-Mn alloy can be substantially increased by microstructural control during the casting process. Because the cooling rate of the DC casting process is much faster than the cooling rate of PM casting, the DC-cast AXM4303 has the following properties: (i) the lamellar eutectic structure and dendrite cell size are significantly refined, (ii) the ordered monolayer GP zones enriched with Al and Ca nucleate with no growth, and (iii) most of the Mn remains in solution in the matrix. Thus, after hot extrusion, the DC-cast AXM4303 has finer

  12. Thermal analysis on Al7075/Al2O3 metal matrix composites fabricated by stir casting process

    Science.gov (United States)

    Jacob, S.; Shajin, S.; Gnanavel, C.

    2017-03-01

    Metal matrix Composites (MMC’s) have evoked a keen interest in recent times for various applications in aerospace, renewable energy and automotive industries due to their superior strength, low cost, easy availability and high temperature resistance [1]. The crack and propagation occurs in conventional materials without any appreciable indication in a short span. Hence composite materials are preferred nowadays to overcome this problem [2]. The process of metal matrix composites (MMC’s) is to unite the enviable attributes of metals and ceramics. The Stir casting method is used for producing aluminium metal matrix composites (AMC’s). A key challenge of the process is to spread the ceramic particles to achieve a defect free microstructure [2]. By carefully selecting stir casting processing specification, such as stirring time, temperature of the melt and blade angle, the desired microstructure can be obtained. The focus of this work is to develop a high strength particulate strengthen aluminium metal matrix composites, and Al7075 was selected which can offer high strength without much disturbing ductility of metal matrix [4]. The composites will be examined using standard metallurgical and mechanical tests. The cast composites are analysed to Laser flash analysis (LFA) to determine Thermal conductivity [5]. Also changes in microstructure are determined by using SEM analysis.

  13. Crystallization characteristics of cast aluminum alloys during a unidirectional solidification process

    Energy Technology Data Exchange (ETDEWEB)

    Okayasu, Mitsuhiro, E-mail: mitsuhiro.okayasu@utoronto.ca; Takeuchi, Shuhei

    2015-05-01

    The crystal orientation characteristics of cast Al–Si, Al–Cu and Al–Mg alloys produced by a unidirectional solidification process are examined. Two distinct crystal orientation patterns are observed: uniform and random formation. A uniform crystal orientation is created by columnar growth of α-Al dendrites in the alloys with low proportions of alloying element, e.g., the Al–Si alloy (with Si <12.6%) and the Al–Cu and Al–Mg alloys (with Cu and Mg <2%). A uniformly organized crystal orientation with [100] direction is created by columnar growth of α-Al dendrites. With increasing proportion of alloying element (>2% Cu or Mg), the uniform crystal orientations collapse in the Al–Cu and Al–Mg alloys, owing to interruption of the columnar α-Al dendrite growth as a result of different dynamics of the alloying atoms and the creation of a core for the eutectic phases. For the hypo-eutectic Al–Si alloys, a uniform crystal orientation is obtained. In contrast, a random orientation can be detected in the hyper-eutectic Al–Si alloy (15% Si), which results from interruption of the growth of the α-Al dendrites due to precipitation of primary Si particles. There is no clear effect of crystal formation on ultimate tensile strength (UTS), whereas crystal orientation does influence the material ductility, with the alloys with a uniform crystal orientation being elongated beyond their UTS points and with necking occurring in the test specimens. In contrast, the alloys with a nonuniform crystal orientation are not elongated beyond their UTS points.

  14. Wiped-Film Molecular Distillation Process

    Institute of Scientific and Technical Information of China (English)

    LI Guobing; ZHANG Xubin; XU Chunjian; ZHOU Ming

    2005-01-01

    Based on the Bhatnagar-Gross-Krook equation, a new scheme of wiped-film molecular distillation for two components in the presenceof inert gas is developed. The equations in the scheme are solved numerically by the method of finite difference and iteration. The new scheme is used to simulate the molecular distillation of dibutyl phthalate and dibutyl sebacate (DBP-DBS) mixture. The effects of the inert gas pressure, the distance between the evaporation surface and condensation surface, the rotation rate of blade, and the number of blades on the distillation rate and separation factor are discussed.

  15. Electronic processes in thin-film PV materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.C.; Chen, D.; Chen, S.L. [and others

    1998-07-01

    The electronic and optical processes in an important class of thin-film PV materials, hydrogenated amorphous silicon (a-Si:H) and related alloys, have been investigated using several experimental techniques designed for thin-film geometries. The experimental techniques include various magnetic resonance and optical spectroscopies and combinations of these two spectroscopies. Two-step optical excitation processes through the manifold of silicon dangling bond states have been identifies as important at low excitation energies. Local hydrogen motion has been studied using nuclear magnetic resonance techniques and found to be much more rapid than long range diffusion as measured by secondary ion mass spectroscopy. A new metastable effect has been found in a-Si:H films alloyed with sulfur. Spin-one optically excited states have been unambiguously identified using optically detected electron spin resonance. Local hydrogen bonding in microcrystalline silicon films has been studied using NMR.

  16. An Improved Processing Technology of Traditional Soybean Films

    Institute of Scientific and Technical Information of China (English)

    JiangYuanrong; ZhangHui

    2002-01-01

    This paper studies on the processing technology of soybean films.Based on the statistical analysis of the traditional soybean films,two property indices were determined with Rheometer;Percent Elongation(PE) higher than 5.49%,Tensile Strength(TS)higher than 23.25kg/cm2.As the examined specimen has 19.0±0.5% moisture.An improved processing technology high yield of soybean films was obtained.The new product has the nearly same or even higher nutrient content,property and structure as the traditional ones.The new product is consistent,flexible,smooth and transparent.The method offers more promises for commercial-scale film production.

  17. High integrity automotive castings

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D. [Eck Industries Inc., St. Manitowoc, WI (United States)

    2007-07-01

    This paper described the High Integrity Magnesium Automotive Casting (HI-MAC) program, which was developed to ensure the widespread adoption of magnesium in structural castings. The program will encourage the use of low pressure permanent molds, squeeze casting, and electromagnetic pumping of magnesium into dies. The HI-MAC program is currently investigating new heat treatment methods, and is in the process of creating improved fluid flow and solidification modelling to produce high volume automotive components. In order to address key technology barriers, the program has been divided into 8 tasks: (1) squeeze casting process development; (2) low pressure casting technology; (3) thermal treatment; (4) microstructure control; (5) computer modelling and properties; (6) controlled molten metal transfer and filling; (7) emerging casting technologies; and (8) technology transfer throughout the automotive value chain. Technical challenges were outlined for each of the tasks. 1 ref., 3 tabs., 5 figs.

  18. Processing-structure-properties relationships in PLA nanocomposite films

    Science.gov (United States)

    Di Maio, L.; Scarfato, P.; Garofalo, E.; Galdi, M. R.; D'Arienzo, L.; Incarnato, L.

    2014-05-01

    This work deals on the possibility to improve performances of PLA-based nanocomposite films, for packaging applications, through conveniently tuning materials and processing conditions in melt compounding technology. In particular, two types of polylactic acid and different types of filler selected from montmorillonites and bentonites families were used to prepare the hybrid systems by using a twin-screw extruder. The effect of biaxial drawing on morphology and properties of the nanocomposites, produced by film blowing, was investigated.

  19. Optimization of Casting Process Parameters for Homogeneous Aggregate Distribution in Self-Compacting Concrete: A Feasibility Study

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Tutum, Cem Celal; Hattel, Jesper Henri

    2011-01-01

    The use of self-compacting concrete (SCC) as a construction material has been getting more attention from the industry. Its application area varies from standard structural elements in bridges and skyscrapers to modern architecture having geometrical challenges. However, heterogeneities induced...... of the filling etc., however since this work is the initial feasibility study in this field, only three process parameters are considered. Despite the reduction in the number of process parameters, the complexity involved in the considered casting process results in a non trivial optimal design set....

  20. PREFACE: Innovations in Thin Film Processing and Characterisation

    Science.gov (United States)

    Henrion, Gérard; Belmahi, Mohammed; Andrieu, Stéphane

    2010-07-01

    This special issue contains selected papers which were presented as invited or contributed communications at the 4th International Conference on Innovation in Thin Film Processing and Characterization (ITFPC'09) which was held on 17-20 November, 2009 in Nancy (France) Jointly organized by the French Vacuum Society and the Institut Jean Lamour-a joint research unit specialized in materials, metallurgy, nano-sciences, plasmas and surfaces-the ITFPC conferences aim at providing an open forum to discuss the progress and latest developments in thin film processing and engineering. Invited lectures aim particularly at providing overviews on scientific topics while contributed communications focus on particular cutting-edge aspects of thin film science and technology, including CVD, PVD and ion beam assisted processes. The 2009 conference was organized along the 6 main following topics: Thin films processing and surface engineering Numerical simulation and thin film characterization Protective applications of thin films Energy, environment and health applications of thin films Micro- and nano-patterning of thin films New properties and applications resulting from patterned thin films which were completed by a special half day session devoted to industry-supported innovation. 180 scientists from 20 worldwide countries attended the different sessions along with the 9 invited lectures and 130 contributions were given. Besides the outstanding scientific program, a half-day tutorial session preceded the conference. During the short courses, emphasis was laid on: Lithography for thin film patterning Mechanical properties of thin films Principles and applications of reactive sputtering processes. The French Vacuum Society granted financial aid to PhD students who applied for it in order to encourage the participation of young scientists. The 19 papers published in this volume were accepted for publication after peerreviewal as for regular papers. As chairmen of this conference

  1. COMPUTER IMAGE PROCESSING OF MICROSTRUCTURES OF GRAY CAST IRON AS A TOOL FOR QUANTITATIVE ANALYSIS OF GRAPHITE DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2013-01-01

    Full Text Available Based on gray cast iron microstructure with different lengths of flaky graphite inclusions contained in GOST 3443-87 «Cast iron with various forms of graphite. Methods for determining the structure «shows the possibilities of classification of microstructures ПГд15, ПГд25, ПГд45, ПГд90, ПГд180, ПГд350, ПГд750 and ПГд1000 based on image processing techniques that allows to develop a methodology for the transition from qualitative scale of microstructures used for the analysis of the graphite phase, to quantify.

  2. Laser welding of SSM Cast A356 aluminium alloy processed with CSIR-Rheo technology

    CSIR Research Space (South Africa)

    Akhter, R

    2006-01-01

    Full Text Available Samples of aluminium alloy A356 were manufactured by Semi Solid Metals HPDC technology, developed recently in CSIR, Pretoria. They were butt welded in as cast conditions using as Nd: YAG laser. The best metal and weld microstructure were presented...

  3. Effects of the manufacturing process on fracture behaviour of cast TiAl intermetallic alloys

    Directory of Open Access Journals (Sweden)

    A. Brotzu

    2014-01-01

    Full Text Available The γ -TiAl based intermetallic alloys are interesting candidate materials for high-temperature applications with the efforts being directed toward the replacement of Ni-based superalloys. TiAl-based alloys are characterised by a density (3.5-4 g/cm3 which is less than half of that of Ni-based superalloys, and therefore these alloys have attracted broad attention as potential candidate for high-temperature structural applications. Specific composition/microstructure combinations should be attained with the aim of obtaining good mechanical properties while maintaining satisfactory oxidation resistance, creep resistance and high temperature strength for targeted applications. Different casting methods have been used for producing TiAl based alloys. In our experimental work, specimens were produced by means of centrifugal casting. Tests carried out on several samples characterised by different alloy compositions highlighted that solidification shrinkage and solid metal contraction during cooling produce the development of relevant residual stresses that are sufficient to fracture the castings during cooling or to produce a delayed fracture. In this work, crack initiation and growth have been analysed in order to identify the factors causing the very high residual stresses that often produce explosive crack propagation throughout the casting.

  4. Colloidal processing of PMN-PT thick films for piezoelectric sensor applications

    Science.gov (United States)

    Luo, Hongyu

    65%Pb(Mg1/3Nb2/3)O3-35%PbTiO3 (65PMN-35PT, or PMN-PT) is a highly piezoelectric ceramic with superior piezoelectric coefficients over the more popular Pb(Zr0.5Ti0.5)O 3 (PZT). Because of its complex chemistry and high volatility of lead above 1000°C, the perovskite phase of PMN-PT is hard to process and has prevented PMN-PT from various piezoelectric applications, especially in the new area of piezoelectric micro-electro-mechanical systems (PMEMS) involving thick or thin piezoelectric films. In this thesis, a novel precursor suspension method is introduced that substantially lowers the sintering temperature of PMN-PT to 850°C from a PMN precursor powder made by coating Mg(OH) 2 on Nb2O5 particles. The precursor suspension method entails suspending PMN powders in PT precursor and uses the reaction sintering capability of PMN with nano-sized PT in the temperature range of 800°C˜1000°C. Moreover, free-standing PMN-PT thick films were obtained by tape casting the PMN-PT powder. This new geometry of PMN-PT shows giant electric-field enhanced piezoelectric responses comparable with those of single crystals. As an example of application, the PMN-PT thick film is bonded to a thinner layer of copper by electroplating and made into piezoelectric cantilever sensors. In conclusion, the colloidal suspension processing method produces free-standing PMN-PT thick films with ultrahigh piezoelectric properties.

  5. Processing and Characterization of Functionally Graded Aluminum (A319)—SiCp Metallic Composites by Centrifugal Casting Technique

    Science.gov (United States)

    Jayakumar, E.; Jacob, Jibin C.; Rajan, T. P. D.; Joseph, M. A.; Pai, B. C.

    2016-08-01

    Functionally graded materials (FGM) are successfully adopted for the design and fabrication of engineering components with location-specific properties. The present study describes the processing and characterization of A319 Aluminum functionally graded metal matrix composites (FGMMC) with 10 and 15 wt pct SiCp reinforcements. The liquid stir casting method is used for composite melt preparation followed by FGMMC formation by vertical centrifugal casting method. The process parameters used are the mold preheating temperature of 523 K (250 °C), melt pouring temperature of 1013 K (740 °C), and mold rotation speed of 1300 rpm. The study analyzes the distribution and concentration of reinforcement particles in the radial direction of the FGMMC disk along with the effects of gradation on density, hardness, mechanical strength, the variation in coefficient of thermal expansion and the wear resistance properties at different zones. Microstructures of FGMMC reveal an outward radial gradient distribution of reinforcements forming different zones. Namely, matrix-rich inner, transition, particles-rich outer, and chill zone of a few millimeters thick at the outer most periphery of the casting are formed. From 10-FGM, a radial shift in the position of SiCp maxima is observed in 15-FGM casting. The mechanical characterization depicts enhanced properties for the particle-rich zone. The hardness shows a graded nature in correlation with particle concentration and a maximum of 94.4 HRB has been obtained at the particle-rich region of 15-FGM. In the particle-rich zone, the lowest CTE value of 20.1 µm/mK is also observed with a compressive strength of 650 MPa and an ultimate tensile strength of 279 MPa. The wear resistance is higher at the particle-rich zone of the FGMMC.

  6. Solvothermal synthesis of Cu2Zn1-x Fe x SnS4 nanoparticles and the influence of annealing conditions on drop-casted thin films

    Science.gov (United States)

    Shadrokh, Zohreh; Yazdani, Ahmad; Eshghi, Hosein

    2016-04-01

    Cu2Zn1-x Fe x SnS4 (CZFTS) semiconductor alloy sphere-like nanoparticles were synthesized by a solvothermal method and their thin films were fabricated using a facile drop casting route then annealed in Ar and/or sulfur atmosphere. The sphere-like CZFTS nanoparticles demonstrate promising morphological, structural, and optical properties for an absorber layer in thin film solar cells. X-ray diffraction patterns, Raman spectra and EDS measurements of the samples indicate that a phase transition from kesterite to stannite occurred by increasing the Fe content to Fe/Fe + Zn = 0.61 ratio. Moreover, the increase in Fe content (0 ≤ x ≤ 1) resulted in a variation of the band gap energies of CZFTS from ˜1.515 to 1.206 eV on the basis of a parabolic decreasing trend. From a band gap bowing model we derived a small bowing constant of b ˜ 0.2009 ± 0.02 eV, indicating suitable miscibility of alloyed constituents in the host crystal lattice. The films annealed in sulfur showed a dense, uniform, low-crack surface, high thickness and low transmission compared to the films annealed in Ar flow. The four-point probe analysis showed an increasing resistivity of samples annealed in Ar with increasing Fe content.

  7. The cognitive processing of film and musical soundtracks.

    Science.gov (United States)

    Boltz, Marilyn G

    2004-10-01

    Previous research has demonstrated that musical soundtracks can influence the interpretation, emotional impact, and remembering of film information. The intent here was to examine how music is encoded into the cognitive system and subsequently represented relative to its accompanying visual action. In Experiment 1, participants viewed a set of music/film clips that were either congruent or incongruent in their emotional affects. Selective attending was also systematically manipulated by instructing viewers to attend to and remember the music, film, or both in tandem. The results from tune recognition, film recall, and paired discrimination tasks collectively revealed that mood-congruent pairs lead to a joint encoding of music/film information as well as an integrated memory code. Incongruent pairs, on the other hand, result in an independent encoding in which a given dimension, music or film, is only remembered well if it was selectively attended to at the time of encoding. Experiment 2 extended these findings by showing that tunes from mood-congruent pairs are better recognized when cued by their original scenes, while those from incongruent pairs are better remembered in the absence of scene information. These findings both support and extend the "Congruence Associationist Model" (A. J. Cohen, 2001), which addresses those cognitive mechanisms involved in the processing of music/film information.

  8. Energy Saving Melting and Revert Reduction Technology: Improved Die Casting Process to Preserve the Life of the Inserts

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam, PI; Xuejun Zhu, Sr. Research Associate

    2012-09-30

    The goal of this project was to study the combined effects of die design, proper internal cooling and efficient die lubricants on die life. The project targeted improvements in die casting insert life by: Optomized Die Design for Reduced Surface Temperature: The life of die casting dies is significantly shorter when the die is exposed to elevated temperature for significant periods of time. Any die operated under conditions leading to surface temperature in excess of 1050oF undergoes structural changes that reduce its strength. Optimized die design can improve die life significantly. This improvement can be accomplished by means of cooling lines, baffles and bubblers in the die. A key objective of the project was to establish criteria for the minimal distance of the cooling lines from the surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. The Uddeholm Dievar steel evaluated in this program showed superior resistance to thermal fatigue resistance. Based on the experimental evidence, cooling lines could be placed as close as 0.5" from the surface. Die Life Extension by Optimized Die Lubrication: The life of die casting dies is affected by additions made to its surface with the proper lubricants. These lubricants will protect the surface from the considerable temperature peaks that occur when the molten melt enters the die. Dies will reach a significantly higher temperature without this lubricant being applied. The amount and type of the lubricant are critical variables in the die casting process. However, these lubricants must not corrode the die surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. Chem- Trend participated in the program with die

  9. Numerical simulations of rarefied gas flows in thin film processes

    NARCIS (Netherlands)

    Dorsman, R.

    2007-01-01

    Many processes exist in which a thin film is deposited from the gas phase, e.g. Chemical Vapor Deposition (CVD). These processes are operated at ever decreasing reactor operating pressures and with ever decreasing wafer feature dimensions, reaching into the rarefied flow regime. As numerical

  10. Numerical simulations of rarefied gas flows in thin film processes

    NARCIS (Netherlands)

    Dorsman, R.

    2007-01-01

    Many processes exist in which a thin film is deposited from the gas phase, e.g. Chemical Vapor Deposition (CVD). These processes are operated at ever decreasing reactor operating pressures and with ever decreasing wafer feature dimensions, reaching into the rarefied flow regime. As numerical simulat

  11. Process optimization of ultrasonic spray coating of polymer films.

    Science.gov (United States)

    Bose, Sanjukta; Keller, Stephan S; Alstrøm, Tommy S; Boisen, Anja; Almdal, Kristoffer

    2013-06-11

    In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect to thickness, roughness (profilometer), and morphology (optical microscopy). Polyvinylpyrrolidone (PVP) is used to do a full factorial design of experiments with selected process parameters such as temperature, distance between spray nozzle and substrate, and speed of the spray nozzle. A mathematical model is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating with poly (D,L-lactide) (PDLLA). The results confirm the processing knowledge obtained with PVP and indicate that the observed trends are identical for spraying of other polymer films.

  12. Photocatalytic Graphene-TiO2 Thin Films Fabricated by Low-Temperature Ultrasonic Vibration-Assisted Spin and Spray Coating in a Sol-Gel Process

    Directory of Open Access Journals (Sweden)

    Fatemeh Zabihi

    2017-05-01

    Full Text Available In this work, we communicate a facile and low temperature synthesis process for the fabrication of graphene-TiO2 photocatalytic composite thin films. A sol-gel chemical route is used to synthesize TiO2 from the precursor solutions and spin and spray coating are used to deposit the films. Excitation of the wet films during the casting process by ultrasonic vibration favorably influences both the sol-gel route and the deposition process, through the following mechanisms. The ultrasound energy imparted to the wet film breaks down the physical bonds of the gel phase. As a result, only a low-temperature post annealing process is required to eliminate the residues to complete the conversion of precursors to TiO2. In addition, ultrasonic vibration creates a nanoscale agitating motion or microstreaming in the liquid film that facilitates mixing of TiO2 and graphene nanosheets. The films made based on the above-mentioned ultrasonic vibration-assisted method and annealed at 150 °C contain both rutile and anatase phases of TiO2, which is the most favorable configuration for photocatalytic applications. The photoinduced and photocatalytic experiments demonstrate effective photocurrent generation and elimination of pollutants by graphene-TiO2 composite thin films fabricated via scalable spray coating and mild temperature processing, the results of which are comparable with those made using lab-scale and energy-intensive processes.

  13. Patterning Multicomponent Polymer Thin Films via Dynamic Thermal Processing

    Science.gov (United States)

    Singh, Gurpreet

    Bottom-up patterning is gaining increased importance owing to the physical limitations and rising costs of top-down patterning. One example of bottom-up patterning is self-assembling polymer thin films. Although there are several pathways to facilitate polymer thin film self-assembly, this presentation will focus on dynamic thermal field based processes for patterning multicomponent polymer thin films. Dynamic thermal field processing is an attractive roll­to­roll (R2R) amenable directed self­assembly (DSA) method for molecular level organization of multicomponent polymer systems such as block copolymer thin films over large areas without requiring guiding templates. The talk will first outline how parameters such as magnitude of the temperature gradient, velocity of annealing, thermal expansion, and molecular weight of the polymer can be optimized to finely tune the morphology of the block copolymer thin films and also elucidate their associated physical mechanisms. The second part of the talk will outline application of dynamic thermal field processes for fabricating functional nanomaterials and discuss the recent advancements achieved using these processes.

  14. Structural, morphological and optical properties of PEDOT:PSS/QDs nano-composite films prepared by spin-casting

    Science.gov (United States)

    Najeeb, Mansoor Ani; Abdullah, Shahino Mah; Aziz, Fakhra; Ahmad, Zubair; Rafique, Saqib; Wageh, S.; Al-Ghamdi, Ahmed A.; Sulaiman, Khaulah; Touati, Farid; Shakoor, R. A.; Al-Thani, N. J.

    2016-09-01

    This paper describes the structural, morphological and optical properties of the nano-composite of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and quantum dots (QDs). The ZnSe and CdSe QDs have been synthesized, with the aid of Mercaptoacetic acid (MAA), by a colloidal method with an average size of ~5 to 7 nm. QDs have been embedded in PEDOT:PSS using a simple solution processing approach and has been deposited as thin films by spin coating technique. The QDs embedded PEDOT:PSS enhances the light absorption spectra of samples, prominently in terms of absorption intensity which may consequently improve sensitivity of the optoelectronic devices.

  15. Development of industry processes simulators. Part II (continuous casting); Desarrollo de simuladores para procesos industriales. Parte II (Colada continua)

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A.; Mosqueda, A.; Sauce, V.; Morales, R.; Ramos, A.; Solario, G.

    2006-07-01

    The understanding of steel thermal behavior is very important in order to take care the quality of the products like billets and slabs due to these; this work shows the joint of a subroutine to simulate the heat transfer conditions during the continuous casting process to the model for simulating the process described by the present authors in a previous work; the result is the temperature profiles and surface temperature graphics of the steel, then they are compared with data carried out or real operating conditions. (Author). 15 refs.

  16. Toxicological evaluation of natural rubber films from vulcanized latex by the conventional process and the alternative process with ionizing radiation; Avaliacao toxicologica de filmes de borracha natural obtidos do latex vulcanizado pelo processo convencional e pelo processo alternativo com radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Vania Elisabeth

    1997-07-01

    The industrial vulcanization of natural rubber latex (NRL) is made all over the world by conventional process using sulphur and heat but it can be made by an alternative process using ionizing radiation. In this research the NRL was tested by 13 physical, chemical and mechanical assays which showed its good quality. It was done a preliminary study of the toxicological properties of 4 natural rubber films obtained by casting process of NRL: one non vulcanized, other vulcanized by the conventional process and two vulcanized by the alternative process. In the alternative process the films were obtained by irradiation of NRL by gamma rays from the {sup 60} Co source at 250 kGy in the absence of sensitizer and irradiated NRL at 12 kGy in the presence of 4ph r of n-butyl acrylate / 0.2 phr of KOH. These vulcanization doses were determined from broken tensile strength. In the conventional process, sulphur vulcanized NRL was made using a classical composition. Another film was made with non vulcanized NRL. The preliminary evaluation of the toxicological properties was made from in vitro cytotoxicity and in vivo systemic toxicity assays. The LBN films vulcanized by the alternative process have less cytotoxicity than the NRL film vulcanized by the conventional process. The sensitized vulcanized films by gamma rays and non vulcanized films showed similar cytotoxicity while the vulcanized films without sensitizer showed a slight lower cytotoxicity. The non vulcanized NRL film and the NRL films vulcanized by the alternative process did not show toxic effects in the 72 hours period of the systemic toxicity assay. However the NRL film vulcanized with sulphur induced effects like allaying and motor in coordination on the animals treated with an oil extract at the fourth hour and recovering after that. The alternative process promoted lower toxic effects than conventional process because there was no toxic substances present. (author)

  17. Structure-Processing Relationships in Solution Processable Polymer Thin Film Transistors and Small Molecule Bulk Heterojunction Solar Cells

    Science.gov (United States)

    Perez, Louis A.

    domains of each moiety, on the order of the exciton diffusion length, which extend vertically from each electrode, thereby increasing the surface area of the domains and forming continuous conducting pathways for efficient charge extraction and transfer. An optimal morphology, however, is seldom achieved during film formation; therefore, a number of processing techniques, such as thermal and sol vent annealing, and the addition of solvent additives to the casting solution have been explored to control the morphology in order to attain the multiple structural requirements. Solvent additive processing, a technique that is used in most record performing polymer:fullerene BHJ solar cell devices, involves the addition of small volumes of a high boiling point liquid to the BHJ casting solu- tion. Solvent additive processing, with 1,8-diiodooctane (DIO) as the additive, has recently been employed in solution processable small molecule (SPSM) BHJ systems, showing similar drastic effects on several device metrics and ultimately the power conversion efficiency (PCE). A recent SPSM study delineates how the volume of solvent additive used affects device performance: when 0.4 v/v% of DIO was used, the PCE increased from 1.8 to 7%, while a deterioration in the PCE to less than 1% occurred when only 1 v/v% of DIO was used. Several structural characterization techniques, such as grazing incidence wide and small-angle X-ray scattering (GIWAXS and GISAXS), and energy filtered transmission electron microscopy (EF-TEM), were used to investigate structure-processing-property relationships in additive-treated SPSM BHJ films and were correlated to device performance. Scattering experiments showed that the use of additives had several effects on the structure of the BHJ at multiple length scales: e.g. the number and orientation of SPSM crystallites, different pi-pi stacking distances, and the nano-scale domain size. Additionally, EF-TEM further verified the effect of additives on the domain size

  18. Evolution of halictine castes

    Science.gov (United States)

    Knerer, Gerd

    1980-03-01

    Social halictine bees have female castes that range from species with no size differences to those with a discrete bimodality. Female caste differences are inversely correlated with the number of males produced in the first brood. It is proposed that the sexual dimorphism of solitary forms is being usurped by the female caste system of species in the process of turning social. Thus, caste differences and summer male suppression are greatest in the social species originating from solitary precursors with distinct sexual dimorphism, and are least in species evolving from solitary ancestors with a continuous sexual polymorphism.

  19. Temperature field in the hot-top during casting a new super-high strength Al-Zn-Mg-Cu alloy by low frequency electromagnetic process

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The billets of a new super-high strength Al-Zn-Mg-Cu alloy in 200mm diameter were produced by the processes of low frequency electromagnetic casting (LFEC) and conventional direct chill (DC) casting, respectively. The effects of low frequency electromagnetic field on temperature field of the melt in the hot-top were investigated by temperature measurement method. Temperature curves were measured from the surface to the center of the billets by locating type K thermocouples into the casting during the processes. The results show that during LFEC process the temperature field in the melt applying the hot-top is very uniform, which is helpful to reduce the difference of thermal gradients between the surface and the center, and then to reduce the thermal stress and to eliminate casting crack.

  20. Effect of TurboSwirl Structure on an Uphill Teeming Ingot Casting Process

    Science.gov (United States)

    Bai, Haitong; Ersson, Mikael; Jönsson, Pär

    2015-12-01

    To produce high-quality ingot cast steel with a better surface quality, it would be beneficial for the uphill teeming process if a much more stable flow pattern could be achieved in the runners. Several techniques have been utilized in the industry to try to obtain a stable flow of liquid steel, such as a swirling flow. Some research has indicated that a swirl blade inserted in the horizontal and vertical runners, or some other additional devices and physics could generate a swirling flow in order to give a lower hump height, avoid mold flux entrapment, and improve the quality of the ingot products, and a new swirling flow generation component, TurboSwirl, was introduced to improve the flow pattern. It has recently been demonstrated that the TurboSwirl method can effectively reduce the risk of mold flux entrapment, lower the maximum wall shear stress, and decrease velocity fluctuations. The TurboSwirl is built at the elbow of the runners as a connection between the horizontal and vertical runners. It is located near the mold and it generates a tangential flow that can be used with a divergent nozzle in order to decrease the axial velocity of the vertical flow into the mold. This stabilizes flow before the fluid enters the mold. However, high wall shear stresses develop at the walls due to the fierce rotation in the TurboSwirl. In order to achieve a calmer flow and to protect the refractory wall, some structural improvements have been made. It was found that by changing the flaring angle of the divergent nozzle, it was possible to lower the axial velocity and wall shear stress. Moreover, when the vertical runner and the divergent nozzle were not placed at the center of the TurboSwirl, quite different flow patterns could be obtained to meet to different requirements. In addition, the swirl numbers of all the cases mentioned above were calculated to ensure that the swirling flow was strong enough to generate a swirling flow of the liquid steel in the TurboSwirl.

  1. All-solution-processed flexible thin film piezoelectric nanogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Sung Yun; Kim, Sunyoung; Kim, Kyongjun [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-744 (Korea, Republic of); Lee, Ju-Hyuck; Kim, Sang-Woo [SKKU Advanced Institute of Nanotechnology, School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Kang, Chong-Yun; Yoon, Seok-Jin [Electronic Materials Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Kim, Youn Sang [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-744 (Korea, Republic of); Advanced Institutes of Convergence Technology, 864-1 Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270 (Korea, Republic of)

    2012-11-27

    An all-solution-processed flexible thin film piezoelectric nanogenerator is demonstrated using reactive zinc hydroxo-condensation and a screen-printing method. The highly elastic thin film allows the piezoelectric energy to be generated through the mechanical rolling and muscle stretching of the piezoelectric unit. This flexible all solution-processed nanogenerator is promising for use in future energy harvesters such as wearable human patches and mobile electronics. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Automatic quantitative analysis of microstructure of ductile cast iron using digital image processing

    Directory of Open Access Journals (Sweden)

    Abhijit Malage

    2015-09-01

    Full Text Available Ductile cast iron is preferred as nodular iron or spheroidal graphite iron. Ductile cast iron contains graphite in form of discrete nodules and matrix of ferrite and perlite. In order to determine the mechanical properties, one needs to determine volume of phases in matrix and nodularity in the microstructure of metal sample. Manual methods available for this, are time consuming and accuracy depends on expertize. The paper proposes a novel method for automatic quantitative analysis of microstructure of Ferritic Pearlitic Ductile Iron which calculates volume of phases and nodularity of that sample. This gives results within a very short time (approximately 5 sec with 98% accuracy for volume phases of matrices and 90% of accuracy for nodule detection and analysis which are in the range of standard specified for SG 500/7 and validated by metallurgist.

  3. Rheologic behaviors of A356 aluminum alloy billet produced by semisolid continuous casting process

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The experiments for rheologic behaviors of semisolid continuous casting billets of A356 alloy in semisolid state had been carried out with a rnultifunctional rheometer. The results show that the deformation rate increases with loading time, the maximum strain reaches to 120 % ( which is one time larger than that of traditional mold casting billet) and the strain can be rapidly elirninated to 10% after unloading. Moreover, there is a critic stress for billet deformation even in semisolid state, which is named as critic shear stress. This stress increases with the decreasing of heating time. The rheologic behaviors can be expressed by five elements mechanical model (H2 - [N1 | H2] - [N2|S] ) and can be modified with the increasing of heating time.

  4. Rheologic behaviors of A356 aluminum alloy billet produced by semisolid continuous casting process

    Directory of Open Access Journals (Sweden)

    Shuming XING

    2004-08-01

    Full Text Available The experiments for rheologic behaviors of semisolid continous casting billets of A356 alloy in semisolid state has been carried out with a multifunctional rheometer. The results show that the deformation rate increases with loading time, the maximum strain reaches 120% (which is one time larger than that of traditional casting billet and the strain can be rapidly eliminated to 10% after unloading. Moreover, there is a critic stress for billet deformation even in semisolid state, which is named as critic shear stress. This stress increases with the decreasing of heating time. The rheologic behaviors can be expressed by five elements mechanical model and can be modified with the increasing of heating time.

  5. Experimental Investigation of Two-Dimensional Shock Initiation Process of Cast Composition B

    Institute of Scientific and Technical Information of China (English)

    黄风雷; 胡湘渝

    2004-01-01

    A two-streak high-speed photography measuring system is designed, which can successfully record the reactive shock front and the reaction profile within the run distance of shock initiation under two-dimensional shock initiation. The strong reaction delay time and the shape of reaction shock front are determined in the cast composition B (RDX/TNT/60/40). A low level reaction zone has been found and analyzed.

  6. Improvement of Process Design of Lost Foam Casting for Thin-walled Tall Steel Casting%薄壁高大铸钢件消失模铸造工艺的改进

    Institute of Scientific and Technical Information of China (English)

    杨彦芳; 卢献忠; 范晓明

    2015-01-01

    The heavy rail bearing of thin-walled tall steel castings were produced by the use of lost foam casting. But the problems such as 'vacant shell', collapse of sand and so on,which lead to the lower quality and yield of castings. By improving the casting process, using bottom pouring system to replace the ladder pouring system,using sprue and runner of refractory materials, reducing pouring temperature and degree of negative pressure, and adopting appropriate pouring speed, the quality and yield of heavy rail bearing steel castings were successfully improved. The experience of production is worth promoting.%利用消失模铸造工艺生产了薄壁高大铸钢重轨支座,出现了“空壳”、塌箱等问题,导致其质量和成品率较低。通过改进铸造工艺,改阶梯浇注为底部浇注,采用耐火材料直浇道和横浇道,降低浇注温度和负压度,并采用合适的浇注速度,成功提高了重轨支座铸钢件的质量和成品率,其生产经验值得推广。

  7. Interplay Between Residual Stresses, Microstructure, Process Variables and Engine Block Casting Integrity

    Science.gov (United States)

    Lombardi, Anthony; D'Elia, Francesco; Ravindran, Comondore; Sediako, Dimitry; Murty, B. S.; MacKay, Robert

    2012-12-01

    The replacement of nodular cast iron with 319 type aluminum (Al) alloys in gasoline engine blocks is an example of the shift towards the use of lighter alloys in the automotive industry. However, excessive residual stress along the cylinder bore may lead to bore distortion, significantly reducing engine operating efficiency. In the current study, microstructure, mechanical properties and residual stress were characterized along the cylinder bridge of engine blocks following thermal sand reclamation (TSR), T7 heat treatment, and service testing of the casting. Neutron diffraction was effectively used to quantify the residual stress along both the Al cylinder bridge and the adjacent gray cast iron cylinder liners in the hoop, radial, and axial orientations with respect to the cylinder axis. The results suggest that an increase in cooling rate along the cylinder caused a significant refinement in microstructure at the bottom of the cylinder. In turn, this suggested an increase in alloy strength at the bottom of the cylinder relative to the top. This increased strength at the bottom of the cylinder likely reduced the susceptibility of the cylinder to rapid relief of residual stress at elevated temperature. In contrast, the coarse microstructure at the top of the cylinder likely triggered stress relief at an elevated temperature.

  8. Assessment of Computer Simulation Software and Process Data for High Pressure Die Casting of Magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL; Hatfield, Edward C [ORNL; Dinwiddie, Ralph Barton [ORNL; Kuwana, Kazunori [University of Kentucky; Viti, Valerio [University of Kentucky, Lexington; Hassan, Mohamed I [University of Kentucky, Lexington; Saito, Kozo [University of Kentucky

    2007-09-01

    Computer software for the numerical simulation of solidification and mold filling is an effective design tool for cast structural automotive magnesium components. A review of commercial software capabilities and their validation procedures was conducted. Aside form the software assessment, the program addressed five main areas: lubricant degradation, lubricant application, gate atomization, and heat transfer at metal mold interfaces. A test stand for lubricant application was designed. A sensor was used for the direct measurement of heat fluxes during lubricant application and casting solidification in graphite molds. Spray experiments were conducted using pure deionized water and commercial die lubricants. The results show that the sensor can be used with confidence for measuring heat fluxes under conditions specific to the die lube application. The data on heat flux was presented in forms suitable for use in HPDC simulation software. Severe jet breakup and atomization phenomena are likely to occur due to high gate velocities in HPDC. As a result of gate atomization, droplet flow affects the mold filling pattern, air entrapment, skin formation, and ensuing defects. Warm water analogue dies were designed for obtaining experimental data on mold filling phenomena. Data on break-up jet length, break-up pattern, velocities, and droplet size distribution were obtained experimentally and was used to develop correlations for jet break-up phenomena specific to die casting gate configurations.

  9. Material Characterization of Austempered Ductile Iron (ADI) Produced by a Sustainable Continuous Casting-Heat Treatment Process

    Science.gov (United States)

    Meena, Anil; El Mansori, Mohamed

    2012-12-01

    Selecting a suitable manufacturing process is one way of achieving sustainability of a product by diminishing energy consumption during its production cycle and improving material efficiency. The article attempts to explore the new processing technology for direct manufacturing of lightweight austempered ductile iron (ADI) casting in a permanent mold. The new processing technology is based on the innovative integrated approach toward casting and heat-treatment process. In this technology, the ductile iron samples obtained using the permanent mold are first austenized immediately after solidification process followed by austempering heat treatment in the fluidized bed and then air cooled at room temperature to obtain ADI material. The influence of austempering time on the microstructural characteristics, mechanical properties, and strain-hardening behavior of ADI was studied. Optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses were performed to correlate the mechanical properties with microstructural characteristics. It was observed that the mechanical properties of resulting ADI samples were influenced by the microstructural transformations and varied retained austenite volume fractions obtained due to different austempering time. The results indicate that the strain-hardening behavior of the ADI material is influenced by the carbon content of retained austenite.

  10. Casting materials

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhry, Anil R. (Xenia, OH); Dzugan, Robert (Cincinnati, OH); Harrington, Richard M. (Cincinnati, OH); Neece, Faurice D. (Lyndurst, OH); Singh, Nipendra P. (Pepper Pike, OH)

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  11. Porous Gold Films Fabricated by Wet-Chemistry Processes

    Directory of Open Access Journals (Sweden)

    Aymeric Pastre

    2016-01-01

    Full Text Available Porous gold films presented in this paper are formed by combining gold electroless deposition and polystyrene beads templating methods. This original approach allows the formation of conductive films (2 × 106 (Ω·cm−1 with tailored and interconnected porosity. The porous gold film was deposited up to 1.2 μm on the silicon substrate without delamination. An original zirconia gel matrix containing gold nanoparticles deposited on the substrate acts both as an adhesion layer through the creation of covalent bonds and as a seed layer for the metallic gold film growth. Dip-coating parameters and gold electroless deposition kinetics have been optimized in order to create a three-dimensional network of 20 nm wide pores separated by 20 nm thick continuous gold layers. The resulting porous gold films were characterized by GIXRD, SEM, krypton adsorption-desorption, and 4-point probes method. The process is adaptable to different pore sizes and based on wet-chemistry. Consequently, the porous gold films presented in this paper can be used in a wide range of applications such as sensing, catalysis, optics, or electronics.

  12. Preparation of Nafion-sulfonated clay nanocomposite membrane for direct menthol fuel cells via a film coating process

    Science.gov (United States)

    Kim, Tae Kyoung; Kang, Myeongsoon; Choi, Yeong Suk; Kim, Hae Kyung; Lee, Wonmok; Chang, Hyuk; Seung, Doyoung

    Nafion sulfonated clay nanocomposite membranes were successfully produced via a film coating process using a pilot coating machine. For producing the composite membranes, we optimized the solvent ratio of N-methyl-2-pyrrolidinone (NMP) to N, N‧-dimethylacetamide (DMAc), the amount of sulfonated montmorillonite (S-MMT) in composite membranes and the overall concentration of composite dispersions. Based on the optimized viscosity and composition, the composite dispersions were coated on a poly(ethylene terephthalate) (PET) substrate film. The distance between a metering roll and a PET film and the ratio of metering roll speed versus coating roll speed of the pilot coating machine were varied to control membrane thickness. The film coated composite membrane exhibited enhanced properties in the swelling behavior against MeOH solution, ion conductivity and MeOH permeability, compared to the cast Nafion composite membrane due to the higher dispersion state of S-MMT in Nafion matrix and the uniform distribution of small-size ion clusters. These properties influenced a cell performance test of a direct methanol fuel cell (DMFC), showing the film coated composite membrane had a higher power density than that of Nafion 115. The power density was also related with the higher selectivity of the composite membrane than Nafion 115.

  13. Study on interfacial heat transfer coefficient at metal/die interface during high pressure die casting process of AZ91D alloy

    Directory of Open Access Journals (Sweden)

    GUO Zhi-peng

    2007-02-01

    Full Text Available The high pressure die casting (HPDC process is one of the fastest growing and most efficient methods for the production of complex shape castings of magnesium and aluminum alloys in today’s manufacturing industry.In this study, a high pressure die casting experiment using AZ91D magnesium alloy was conducted, and the temperature profiles inside the die were Measured. By using a computer program based on solving the inverse heat problem, the metal/die interfacial heat transfer coefficient (IHTC was calculated and studied. The results show that the IHTC between the metal and die increases right after the liquid metal is brought into the cavity by the plunger,and decreases as the solidification process of the liquid metal proceeds until the liquid metal is completely solidified,when the IHTC tends to be stable. The interfacial heat transfer coefficient shows different characteristics under different casting wall thicknesses and varies with the change of solidification behavior.

  14. Microstructure and Eutectic Carbide Morphology of the High Speed Steel Strips Produced by Twin Roll Strip Casting Process

    Institute of Scientific and Technical Information of China (English)

    Hongshuang DI; Xiaoming ZHANG; Guodong WANG; Xianghua LIU

    2003-01-01

    The M2 high-speed steel strip was produced by using the laboratory scale twin roll strip caster. The microstructureand eutectic carbide morphology of thus produced products were observed and analyzed, and the comparison ofthose with conventional products was carried out. The effects of the processing parameters such as the meltingtemperature, the pouring temperature, rolling speed and separating force on the microstructure and eutectic carbidemorphology and their distribution were analyzed. The spheroidizing process of the strips in the annealing process wasinvestigated. The relations between the growth and spheroidizing of the eutectic carbide and the annealing technologywere obtained, and the mechanism of the twin roll strip casting process improving the eutectic carbide spheroidizingwas discussed. The theoretical instruction for determining the subsequent treatment process was provided.

  15. Morphology and Precipitation Kinetics of MnS in Low-Carbon Steel During Thin Slab Continuous Casting Process

    Institute of Scientific and Technical Information of China (English)

    YU Hao; KANG Yong-lin; ZHAO Zheng-zhi; SUN Hao

    2006-01-01

    The morphology of manganese sulfide formed during thin slab continuous casting process in low-carbon steel produced by compact strip production (CSP) technique was investigated. Using transmission electron microscopy analysis, it was seen that a majority of manganese sulfides precipitated at austenite grain boundaries, the morphologies of which were spherical or close to the spherical shape and the size of MnS precipitates ranged from 30 nm to 100 nm. A mathematical model of the manganese sulfide precipitation in this process was developed based on classical nucleation theory. Under the given conditions, the starting and finishing precipitation temperatures of MnS in the continuous casting thin slab of the studied low-carbon steel are 1 189 ℃ and 1 171 ℃, respectively, and the average diameter of MnS precipitates is about 48 nm within this precipitation temperature range. The influences of chemical components and thermo-mechanical processing conditions on the precipitation behavior of MnS in the same process were also discussed.

  16. Modeling of mould cavity filling process with cast iron in Lost Foam method Part 3. Mathematical model – pressure inside the gas gap

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2008-08-01

    Full Text Available In this work mathematical model describing changes of pressure inside the gas gap was shown during manufacturing gray cast iron castings with use of lost foam process. Authors analyzed the results of numerical simulation enclosing influence of foamed polystyrene pattern density, permeability and thickness of refractory coating on pressure changes in the gap. Studies have shown, that all these parameters have significant influence on pressure inside the gas gap.

  17. Predicting the optimal process window for the coating of single-crystalline organic films with mobilities exceeding 7 cm2/Vs.

    Science.gov (United States)

    Janneck, Robby; Vercesi, Federico; Heremans, Paul; Genoe, Jan; Rolin, Cedric

    2016-09-01

    Organic thin film transistors (OTFTs) based on single crystalline thin films of organic semiconductors have seen considerable development in the recent years. The most successful method for the fabrication of single crystalline films are solution-based meniscus guided coating techniques such as dip-coating, solution shearing or zone casting. These upscalable methods enable rapid and efficient film formation without additional processing steps. The single-crystalline film quality is strongly dependent on solvent choice, substrate temperature and coating speed. So far, however, process optimization has been conducted by trial and error methods, involving, for example, the variation of coating speeds over several orders of magnitude. Through a systematic study of solvent phase change dynamics in the meniscus region, we develop a theoretical framework that links the optimal coating speed to the solvent choice and the substrate temperature. In this way, we can accurately predict an optimal processing window, enabling fast process optimization. Our approach is verified through systematic OTFT fabrication based on films grown with different semiconductors, solvents and substrate temperatures. The use of best predicted coating speeds delivers state of the art devices. In the case of C8BTBT, OTFTs show well-behaved characteristics with mobilities up to 7 cm2/Vs and onset voltages close to 0 V. Our approach also explains well optimal recipes published in the literature. This route considerably accelerates parameter screening for all meniscus guided coating techniques and unveils the physics of single crystalline film formation.

  18. Front and backside processed thin film electronic devices

    Science.gov (United States)

    Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang; Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.

    2012-01-03

    This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  19. Thin film process forms effective electrical contacts on semiconductor crystals

    Science.gov (United States)

    Formigoni, N. P.; Roberts, J. S.

    1967-01-01

    Process makes microscopic, low-resistance electrical contacts on hexagonal n-type silicon carbide crystals used for microelectronic devices. A vacuum deposition of aluminum is etched to expose the bare silicon carbide where the electrical contacts are made. Sputtering alternating layers of tantalum and gold forms the alloy film.

  20. Liquid-Phase Processing of Barium Titanate Thin Films

    Science.gov (United States)

    Harris, David Thomas

    Processing of thin films introduces strict limits on the thermal budget due to substrate stability and thermal expansion mismatch stresses. Barium titanate serves as a model system for the difficulty in producing high quality thin films because of sensitivity to stress, scale, and crystal quality. Thermal budget restriction leads to reduced crystal quality, density, and grain growth, depressing ferroelectric and nonlinear dielectric properties. Processing of barium titanate is typically performed at temperatures hundreds of degrees above compatibility with metalized substrates. In particular integration with silicon and other low thermal expansion substrates is desirable for reductions in costs and wider availability of technologies. In bulk metal and ceramic systems, sintering behavior has been encouraged by the addition of a liquid forming second phase, improving kinetics and promoting densification and grain growth at lower temperatures. This approach is also widespread in the multilayer ceramic capacitor industry. However only limited exploration of flux processing with refractory thin films has been performed despite offering improved dielectric properties for barium titanate films at lower temperatures. This dissertation explores physical vapor deposition of barium titanate thin films with addition of liquid forming fluxes. Flux systems studied include BaO-B2O3, Bi2O3-BaB2O 4, BaO-V2O5, CuO-BaO-B2O3, and BaO-B2O3 modified by Al, Si, V, and Li. Additions of BaO-B2O3 leads to densification and an increase in average grain size from 50 nm to over 300 nm after annealing at 900 °C. The ability to tune permittivity of the material improved from 20% to 70%. Development of high quality films enables engineering of ferroelectric phase stability using residual thermal expansion mismatch in polycrystalline films. The observed shifts to TC match thermodynamic calculations, expected strain from the thermal expansion coefficients, as well as x-ray diffract measurements

  1. Ion beam sputter deposition of Ge films: Influence of process parameters on film properties

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C., E-mail: carsten.bundesmann@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Feder, R. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Wunderlich, R.; Teschner, U.; Grundmann, M. [Universität Leipzig, Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik II, Linnéstrasse 5, 04103 Leipzig (Germany); Neumann, H. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany)

    2015-08-31

    Several sets of Ge films were grown by ion beam sputter deposition under systematic variation of ion beam parameters (ion species and ion energy) and geometrical parameters (ion incidence angle and polar emission angle). The films were characterized concerning thickness, growth rate, mass density, structural properties and composition. The film thicknesses show a cosine-like angular distribution, and the growth rates were found to increase with increasing ion incidence angle and ion energy. All films are amorphous and the average mass density was found to be (4.3 ± 0.2) g/cm{sup 3}, without a systematic relation to ion energy and geometrical parameters. Slightly higher mass densities were found for Ge films grown by sputtering with Xe than for sputtering with Ar. The Ge films contain a fraction of inert gas atoms from backscattered primary particles. This fraction is found to be higher for sputtering with Ar than for sputtering with Xe. The fraction of inert gas atoms increases with increasing polar emission angle and increasing ion incidence angle. Raman scattering experiments revealed also systematic shifts of the characteristic Raman mode. The shifts are tentatively assigned to the change of the Ge particle densities caused by the incorporation of inert gas particles. There seem to be also slight changes in short range ordering. The experimental data are discussed with respect to the known energy and angular distributions of the sputtered and backscattered particles. - Highlights: • Ion beam sputter deposition under systematic variation of process parameters • Thickness, growth rate, mass density, composition, structure, phonon properties • All germanium films are amorphous with small variations in mass density. • Incorporation of considerable amount of inert process gas • Vibrational properties correlate with composition.

  2. The effect of friction stir processing on the microstructure, mechanical properties and fracture behavior of investment cast titanium aluminum vanadium

    Science.gov (United States)

    Pilchak, Adam L.

    The use of investment cast titanium components is becoming increasingly common in the aerospace industry due to the ability to produce large, one-piece components with complex geometries that were previously fabricated by mechanically fastening or welding multiple smaller parts together. However, the coarse, fully lamellar microstructure typical of investment cast alpha + beta titanium alloys results in relatively poor fatigue strength compared to forged titanium products. As a result, investment castings are not considered for use in fatigue limited structures. In recent years, friction stir processing has emerged as a solid state metalworking technique capable of substantial microstructure refinement in aluminum and nickel-aluminum-bronze alloys. The purpose of the present study is to determine the feasibility of friction stir processing and assess its effect on the microstructure and mechanical properties of the most widely used alpha + beta titanium alloy, Ti-6Al-4V. Depending on processing parameters, including tool travel speed, rotation rate and geometry, the peak temperature in the stir zone was either above or below the beta transus. The resulting microstructures consisted of either ˜1 mum equiaxed a grains, ˜25 mum prior beta grains containing a colony alpha + beta microstructure or a combination of 1 mum equiaxed alpha and fine, acicular alpha + beta. The changes in microstructure were characterized with scanning and transmission electron microscopy and electron backscatter diffraction. The texture in the stir zone was nearly random for all processing conditions, however, several components of ideal simple shear textures were observed in both the hexagonal close packed alpha and the body centered cubic beta phases which provided insight into the operative grain refinement mechanisms. Due to the relatively small volume of material affected by friction stir processing, conventionally sized test specimens were unable to be machined from the stir zone

  3. Study on Permanent Mold Casting Process for Wheel Shaft%某车轮轴金属型铸造工艺的实验研究

    Institute of Scientific and Technical Information of China (English)

    王狂飞; 王有超; 历长云; 米国发

    2012-01-01

    Through permanent mold casting, the casting process for a wheel shaft was studied. As ingate affectinng the casting shrinkage in the original process, a hot crack of casting appeared. The hot crack defect was eliminated by using the riser improved process. Using the self-made metal coating, qualified castings were trial-produced. A reasonable and practical casting technology is provided.%利用金属型铸造,研究了某车轮轴铸造工艺.发现原工艺中内浇道影响到铸件的收缩,出现了热裂等铸造缺陷.采用浇冒口改进工艺,侧面开出气孔,消除了热裂缺陷.采用自制的金属型涂料,成功试制出合格铸件,获得实用有效的车轮轴金属型铸造工艺.

  4. Application of Hot Strength and Ductility Test to Optimization of Secondary Cooling System in Billet Continuous Casting Process

    Institute of Scientific and Technical Information of China (English)

    WANG Biao; JI Zhen-ping; LIU Wen-hong; MA Jiao-cheng; XIE Zhi

    2008-01-01

    By means of Gleeble-1500 dynamic thermomechanical simulator,the continuous casting process for HRB335C steel was simulated using solidifying method and hot ductility and strength of the steel were determined.The test results indicate that there are three temperature regions of brittleness for HRB335C billet in the temperature range from 700℃ to solidification point;the first temperature region of brittleness is 1 300℃ to solidification point of the billet,the second temperature region of brittleness is 1 200-1 000℃,and the third temperature region of brittleness is 700-850℃;the steel is plastic at 850-1 000℃.The cracking sensitivity was studied in the different temperature zones of the brittleness for steel HRB335C and the target surface temperature curve for the secondary cooling is determined.With optimized process,the mathematical model of the steady temperature field with two-dimensional heat transfer for 150 mm×150 mm HRB335C steel billet was established to optimize the secondary cooling process.The conic relation of water distribution between secondary cooling water flux and casting speed is regressed.Keeping the surface temperature of billet before the straightening point above 1 000℃,the results of billet test indicate that there is free central shrinkage cavity.The billet defect is decreased greatly,and the quality of billet is obviously improved.

  5. Improving Microstructure and Mechanical Properties for Large-Diameter 7075 Aluminum Alloy Ingots by a Forced Convection Stirring Casting Process

    Science.gov (United States)

    Qi, Mingfan; Kang, Yonglin; Zhu, Guoming; Li, Yangde; Li, Weirong

    2017-01-01

    A simple process so-called forced convection stirring casting (FCSC) was proposed to prepare large-diameter 7075 Al alloy ingots. The flow behavior, temperature, and composition fields of the melt in the FCSC process were simulated. The macromorphology, macrosegregation, microstructure, and mechanical properties of the ingots prepared by the FCSC were studied and compared with those prepared by normal casting (NC). The results showed that in the FCS device, the strong convection caused by the axial flow and circular flow rapidly promoted the uniformity of the temperature and composition fields of the melt. Microstructures of the FCSC ingots from the edge to the center were all nearly spherical grains, which were much finer and more uniform than that of the NC ingots. The rotation speed played an important role in the microstructure of the FCSC ingots, and the grains became finer and rounder as the speed increasing. The FCSC process effectively eliminated cracks, improved macrosegregation, and decreased the eutectic phase area fraction and the average grain boundary thickness of ingots. Mechanical properties of the ingots prepared by the FCSC are far better than that of the NC ingots.

  6. Evolution of microstructure, texture and inhibitor along the processing route for grain-oriented electrical steels using strip casting

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Yao, Sheng-Jie [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 264209 (China); Sun, Yu; Gao, Fei; Song, Hong-Yu; Liu, Guo-Huai [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Li, Lei; Geng, Dian-Qiao [Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Liu, Zhen-Yu; Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China)

    2015-08-15

    In the present work, a regular grade GO sheet was produced successively by strip casting, hot rolling, normalizing annealing, two-stage cold rolling with intermediate annealing, primary recrystallization annealing, secondary recrystallization annealing and purification. The aim of this paper was to characterize the evolution of microstructure, texture and inhibitor along the new processing route by comprehensive utilization of optical microscopy, X-ray diffraction and transmission electron microscopy. It was found that a fine microstructure with the ferrite grain size range of 7–12 μm could be obtained in the primary recrystallization annealed sheet though a very coarse microstructure was produced in the initial as-cast strip. The main finding was that the “texture memory” effect on Goss texture started on the through-thickness intermediate annealed strip after first cold rolling, which was not similar to the “texture memory” effect on Goss texture starting on the surface layers of the hot rolled strip in the conventional production route. As a result, the origin of Goss nuclei capable of secondary recrystallization lied in the grains already presented in Goss orientation in the intermediate annealed strip after first cold rolling. Another finding was that fine and dispersive inhibitors (mainly AlN) were easy to be produced in the primary recrystallization microstructure due to the initial rapid solidification during strip casting and the subsequent rapid cooling, and the very high temperature reheating usually used before hot rolling in the conventional production route could be avoided. - Highlights: • A regular grade grain-oriented electrical steel was produced. • Evolution of microstructure, texture and inhibitor was characterized. • Origin of Goss nuclei lied in the intermediate annealed strip. • A fine primary recrystallization microstructure could be produced. • Effective inhibitors were easy to be obtained in the new processing route.

  7. Adaptive fuzzy control design for the molten steel level in a strip casting process

    Directory of Open Access Journals (Sweden)

    Y. J. Zhang

    2017-01-01

    Full Text Available This paper studies the adaptive fuzzy control problem of the molten steel level for a class of twin roll strip casting systems. Based on fuzzy logic systems (FLSs and the mean value theorem, a novel adaptive tracking controller with parameter updated laws is effectively designed. It is proved that all the closed-loop signals are uniformly bounded and the system tracking errors can asymptotically converge to zero by using the Lyapunov stability analysis. Simulation results of semi-experimental system dynamic model and parameters are provided to demonstrate the validity of the proposed adaptive fuzzy design approach.

  8. The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties.

    Science.gov (United States)

    Spence, Kelley L; Venditti, Richard A; Habibi, Youssef; Rojas, Orlando J; Pawlak, Joel J

    2010-08-01

    Films of microfibrillated celluloses (MFCs) from pulps of different yields, containing varying amounts of extractives, lignin, and hemicelluloses, were produced by combining refining and high-pressure homogenization techniques. MFC films were produced using a casting-evaporation technique and the physical and mechanical properties (including density, roughness, fold endurance and tensile properties) were determined. Homogenization of bleached and unbleached Kraft pulps gave rise to highly individualized MFCs, but not for thermo-mechanical pulp (TMP). The resulting MFC films had a roughness equivalent to the surface upon which the films were cast. Interestingly, after homogenization, the presence of lignin significantly increased film toughness, tensile index, and elastic modulus. The hornification of fibers through a drying and rewetting cycle prior to refining and homogenization did not produce any significant effect compared to films from never-dried fibers, indicating that MFC films can potentially be made from low-cost recycled cellulosic materials.

  9. Modelling of flow phenomena during DC casting

    NARCIS (Netherlands)

    Zuidema, J.

    2005-01-01

    Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an instanta

  10. Modelling of flow phenomena during DC casting

    NARCIS (Netherlands)

    Zuidema, J.

    2005-01-01

    Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an

  11. Relaxation Processes in Nonlinear Optical Polymer Films

    Directory of Open Access Journals (Sweden)

    S.N. Fedosov

    2010-01-01

    Full Text Available Dielectric properties of the guest-host polystyrene/DR1 system have been studied by the AC dielectric spectroscopy method at frequencies from 1 Hz to 0,5 MHz and by the thermally stimulated depolarization current (TSDC method from – 160 to 0 °C. The relaxation peaks at infra-low frequencies from 10 – 5to 10–2 Hz were also calculated using the Hamon’s approximation. Three relaxation processes, namely, α, β and δ ones were identified from the TSDC peaks, while the ε''(fdependence showed a non-Debye ρ-peak narrowing with temperature. The activation energy of the α-relaxation appeared to be 2,57 eV, while that of the γ-process was 0,52 eV. Temperature dependence of the relaxation time is agreed with the Williams-Landel-Ferry model. The ε''(fpeaks were fitted to Havriliak-Negami’s expression and the corresponding distribution parameters were obtained.

  12. Improvement of Castability and Surface Quality of Continuously Cast TWIP Slabs by Molten Mold Flux Feeding Technology

    Science.gov (United States)

    Cho, Jung-Wook; Yoo, Shin; Park, Min-Seok; Park, Joong-Kil; Moon, Ki-Hyeon

    2016-10-01

    An innovative continuous casting process named POCAST (POSCO's advanced CASting Technology) was developed based on molten mold flux feeding technology to improve both the productivity and the surface quality of cast slabs. In this process, molten mold flux is fed into the casting mold to enhance the thermal insulation of the meniscus and, hence, the lubrication between the solidifying steel shell and the copper mold. Enhancement of both the castability and the surface quality of high-aluminum advanced high-strength steel (AHSS) slabs is one of the most important advantages when the new process has been applied into the commercial continuous casting process. A trial cast of TWIP steel has been carried out using a 10-ton scale pilot caster and 100-ton scale and 250-ton scale commercial casters. The amount of mold flux consumption was more than 0.2 kg/m2 in the new process, which is much larger than that in the conventional powder casting. Trial TWIP castings at both the pilot and the plant caster showed stable mold performances such as mold heat transfer. Also, cast slabs showed periodic/sound oscillation marks and little defects. The successful casting of TWIP steel has been attributed to the following characteristics of POCAST: dilution of the reactant by increasing the slag pool depth, enlargement of channel for slag film infiltration at meniscus by elimination of the slag bear, and decrease of apparent viscosity of the mold slag at meniscus by increasing the slag temperature.

  13. Improvement of Castability and Surface Quality of Continuously Cast TWIP Slabs by Molten Mold Flux Feeding Technology

    Science.gov (United States)

    Cho, Jung-Wook; Yoo, Shin; Park, Min-Seok; Park, Joong-Kil; Moon, Ki-Hyeon

    2017-02-01

    An innovative continuous casting process named POCAST (POSCO's advanced CASting Technology) was developed based on molten mold flux feeding technology to improve both the productivity and the surface quality of cast slabs. In this process, molten mold flux is fed into the casting mold to enhance the thermal insulation of the meniscus and, hence, the lubrication between the solidifying steel shell and the copper mold. Enhancement of both the castability and the surface quality of high-aluminum advanced high-strength steel (AHSS) slabs is one of the most important advantages when the new process has been applied into the commercial continuous casting process. A trial cast of TWIP steel has been carried out using a 10-ton scale pilot caster and 100-ton scale and 250-ton scale commercial casters. The amount of mold flux consumption was more than 0.2 kg/m2 in the new process, which is much larger than that in the conventional powder casting. Trial TWIP castings at both the pilot and the plant caster showed stable mold performances such as mold heat transfer. Also, cast slabs showed periodic/sound oscillation marks and little defects. The successful casting of TWIP steel has been attributed to the following characteristics of POCAST: dilution of the reactant by increasing the slag pool depth, enlargement of channel for slag film infiltration at meniscus by elimination of the slag bear, and decrease of apparent viscosity of the mold slag at meniscus by increasing the slag temperature.

  14. Evaluation of the Influence of Formulation and Process Variables on Mechanical Properties of Oral Mucoadhesive Films Using Multivariate Data Analysis

    Directory of Open Access Journals (Sweden)

    Hana Landová

    2014-01-01

    Full Text Available Oral mucosa is an attractive region for the local and systemic application of many drugs. Oral mucoadhesive films are preferred for their prolonged time of residence, the improved bioavailability of the drug they contain, their painless application, their protection against lesions, and their nonirritating properties. This work was focused on preparation of nonmedicated carmellose-based films using both solvent casting and impregnation methods, respectively. Moreover, a modern approach to evaluation of mucoadhesive films applying analysis of texture and subsequent multivariate data analysis was used. In this experiment, puncture strength strongly correlated with tensile strength and could be used to obtain necessary information about the mechanical film characteristics in films prepared using both methods. Puncture work and tensile work were not correlated in films prepared using the solvent casting method, as increasing the amount of glycerol led to an increase in the puncture work in thinner films. All measured texture parameters in films prepared by impregnation were significantly smaller compared to films prepared by solvent casting. Moreover, a relationship between the amount of glycerol and film thickness was observed, and a greater recalculated tensile/puncture strength was needed for an increased thickness in films prepared by impregnation.

  15. Optimization of Stir Casting Process Parameters to Minimize the Specific Wear of Al-SiC Composites by Taguchi Method

    Directory of Open Access Journals (Sweden)

    Sadi

    2015-02-01

    Full Text Available The aim of this research is to optimize of stir casting process parameters to minimize the specific wear of Al-SiC composites by Taguchi method. Composite material used in this research was Al- Si aluminum alloy as the matrix and SiC (silicon carbide particles size 400 mesh as the reinforcement. Experimental design used L16 orthogonal arrays Taguchi method standards. Experimental factors used in the making of composite samples were SiC content, melt temperature, rotation speed and stirring duration, each with 4 levels or variations. The microstructures of Al-SiC composite were observed by scanning electron microscope (SEM. Experimental result showed that the optimum of stir casting process parameters are SiC content of 15 wt.%, melt temperature of 740 oC, rotation speed of 300 rpm and stirring duration of 10 minutes. The most significant parameter which affected on specific wear was SiC content which contributes 88.67%. Adding content of SiC from 0 to 15 wt. % can decrease the specific wear of Al-SiC composites about 90.08 %.

  16. Development of Brake Head Casting Process Technology%闸瓦托铸件工艺技术开发

    Institute of Scientific and Technical Information of China (English)

    王爱丽; 刘天平; 孙玉福

    2016-01-01

    根据闸瓦托使用性能要求,采用QT550-8材质;通过确定合适的Si、Cu和Mn含量,严格控制炉料质量和铁液成分;选用合适的球化剂,采用合理的球化、多环节孕育处理工艺,解决了远边薄壁部位白口问题;采用静压造型+覆膜砂芯定位补芯工艺,确保闸瓦托铸件的内外质量,满足了产品使用性能要求。%The casting use QT550-8 according brake head performance requirements; determine suitable silicon, copper, manganese and strictly control the charging quality and composition of molten iron; select appropriate nodulizer, spheroidizing treatment and multi-link inoculation process to solve white at the thin-walled remote end; guarantee quality of internal and external and performance requirements with brake head casting by hydrostatic modeling and coated sand cores positioning process.

  17. Effect of Solution Treatment Process on Hardness of Alumina Reinforced Al-9Zn Composite Produced by Squeeze Casting

    Directory of Open Access Journals (Sweden)

    Dwi Rahmalina

    2014-10-01

    Full Text Available Characteristics of aluminium matrix composites reinforced by alumina have been developed to improve mechanical properties. One of the determining factors in the development of this material is parameter of solution treatment process. This study discusses the performance of the composite matrix of Al-9Zn-6Mg-3Si reinforced by alumina powder of 5 % volume fraction. Composite are manufactured by squeeze casting process with the pressure of 20 Ton in the metal mould. To improve mechanical properties, the precipitation hardening process is conducted through variation of temperature of solution treatment of 450, 475 and 500 °C and holding time of solution treatment of 30, 60 and 90 minutes. Materials are characterized by hardness testing and microstructure observation. The results showed that the optimum condition of hardness was produced by solution treatment temperature of 500 °C and 90 minutes holding time of 86 HRB.

  18. REDUCING REJECTION/REWORK IN PRESSURE DIE CASTING PROCESS BY APPLICATION OF DMAIC METHODOLOGY OF SIX SIGMA

    Directory of Open Access Journals (Sweden)

    Javedhusen Malek

    2015-12-01

    Full Text Available In today's ever-changing customer driven market, industries are needed to improve their products and processes to satisfy customer requirements. The Six Sigma approach has set a new paradigm of business excellence. Six Sigma as a process driven improvement methodology has been adopted successfully by many industries. From the review of various literatures, it is revealed that Six Sigma is well adopted in large scale enterprise but having less evidence of adoption in Indian SMEs. This paper is focused on providing path to Indian SMEs for initiating Six Sigma approach in their industries. The paper discusses the real life case where Six Sigma has been successfully applied at one of the Indian small-scale unit to improve rejection/rework rate in manufacturing products by pressure die casting process. This paper describes phase wise application of all the phases of define-measure-analyse-improve-control (DMAIC which also shows impact of Six Sigma in quality improvement.

  19. Analysis of Solid-Liquid Interface Behavior during Continuous Strip-Casting Process Using Sharp-Interface Technique

    Directory of Open Access Journals (Sweden)

    Changbum Lee

    2013-01-01

    Full Text Available Continuous strip casting (CSC has been developed to fabricate thin metal plates while simultaneously controlling the microstructure of the product. A numerical analysis to understand the solid-liquid interface behaviors during CSC was carried out and used to identify the solidification morphologies of the plate, which were then used to obtain the optimum process conditions. In this study, we used a modified level contour reconstruction method and the sharp-interface method to modify the interface tracking, and we performed a simulation analysis to identify the differences in the material properties that affect the interface behavior. The effects of the process parameters such as the heat transfer coefficient and extrusion velocity on the behavior of the solid-liquid interface are estimated and also used to improve the CSC process.

  20. Elastomeric inverse moulding and vacuum casting process characterization for the fabrication of arrays of concave refractive microlenses

    Science.gov (United States)

    Desmet, L.; Van Overmeire, S.; Van Erps, J.; Ottevaere, H.; Debaes, C.; Thienpont, H.

    2007-01-01

    We present a complete and precise quantitative characterization of the different process steps used in an elastomeric inverse moulding and vacuum casting technique. We use the latter replication technique to fabricate concave replicas from an array of convex thermal reflow microlenses. During the inverse elastomeric moulding we obtain a secondary silicone mould of the original silicone mould in which the master component is embedded. Using vacuum casting, we are then able to cast out of the second mould several optical transparent poly-urethane arrays of concave refractive microlenses. We select ten particular representative microlenses on the original, the silicone moulds and replica sample and quantitatively characterize and statistically compare them during the various fabrication steps. For this purpose, we use several state-of-the-art and ultra-precise characterization tools such as a stereo microscope, a stylus surface profilometer, a non-contact optical profilometer, a Mach-Zehnder interferometer, a Twyman-Green interferometer and an atomic force microscope to compare various microlens parameters such as the lens height, the diameter, the paraxial focal length, the radius of curvature, the Strehl ratio, the peak-to-valley and the root-mean-square wave aberrations and the surface roughness. When appropriate, the microlens parameter under test is measured with several different measuring tools to check for consistency in the measurement data. Although none of the lens samples shows diffraction-limited performance, we prove that the obtained replicated arrays of concave microlenses exhibit sufficiently low surface roughness and sufficiently high lens quality for various imaging applications.

  1. Energy use in selected metal casting facilities - 2003

    Energy Technology Data Exchange (ETDEWEB)

    Eppich, Robert E. [Eppich Technologies, Syracuse, IN (United States)

    2004-05-01

    This report represents an energy benchmark for various metal casting processes. It describes process flows and energy use by fuel type and processes for selected casting operations. It also provides recommendations for improving energy efficiency in casting.

  2. Clean Metal Casting

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  3. Multi-layers castings

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2010-01-01

    Full Text Available In paper is presented the possibility of making of multi-layers cast steel castings in result of connection of casting and welding coating technologies. First layer was composite surface layer on the basis of Fe-Cr-C alloy, which was put directly in founding process of cast carbon steel 200–450 with use of preparation of mould cavity method. Second layer were padding welds, which were put with use of TIG – Tungsten Inert Gas surfacing by welding technology with filler on Ni matrix, Ni and Co matrix with wolfram carbides WC and on the basis on Fe-Cr-C alloy, which has the same chemical composition with alloy, which was used for making of composite surface layer. Usability for industrial applications of surface layers of castings were estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.

  4. Application of successive austempering process to spheroidal graphite cast iron produced by inmold process. Inmold ho de seizoshita kyujo kokuen chutetsu eno chikuji austemper ho no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Oide, T.; Ahmadabadi, M.; Kawashima, S. (Tohoku University, Sendai (Japan). Faculty of Engineering)

    1994-06-25

    Application of successive austempering process to the iron produced by inmold process leads to much higher graphite nodule count in the structure than the other spheroidizing methods. In this study, to improve the toughness of spheroidal graphite cast iron produced by inmold process, successive austempering process was applied to austemper ductile iron (ADI) production. Both hardenability and austemperability of the iron could be controlled with Mn alloying through the two-stage austempering at high and low temperatures. Higher retained austenite volume fraction and lower untransformed austenite volume fraction were obtained in the most suitable duplex upper and lower bainitic structure. It was confirmed that the impact energy of ADI treated by successive austempering process was remarkably much higher than the conventional austempering processes. In this process, an excellent value of toughness was obtained by selecting a combination of holding temperature and holding time, strictly. 17 refs., 10 figs., 2 tabs.

  5. Die-casting Process for High-performance Thin-wall Casting of Aluminum Alloy%高性能薄壁铝合金铸件的压铸

    Institute of Scientific and Technical Information of China (English)

    尹志鹏; 宋朝辉; 李义平

    2016-01-01

    采用本公司发明的专利技术制备了铝合金浆料。概述了高性能薄壁多抽芯铝合金铸件的半固态流变压铸生产过程。经半固态流变压铸生产的铝合金铸件的显微组织致密,无气孔、缩松和夹杂,T6热处理后的力学性能比普通压铸件提高了40%左右。%Aluminum alloy paste was fabricated with a patent technology invented by Cixi Alt Advanced Materials Co.. The semi-solid rheocasting process for high-performance multi-core thin-wall aluminum alloy castings was outlined. The aluminum alloy castings produced by the semi-solid rheologic die-casting technology exhibited dense structure in which there are not any pore, porosity and inclusion, and after being T6 treated its mechanical properties were 40% higher that of common die castings.

  6. Optimization of (002)-Oriented ZnO Film Synthesis in Sol-Gel Process and Film Photoluminescence Property

    Institute of Scientific and Technical Information of China (English)

    YAN Jun-Feng; ZHAO Li-Li; ZHANG Zhi-Yong

    2008-01-01

    By orthogonal design theory, technological parameters of the (002)-oriented ZnO film prepared in sol-gel process are optimized. A set of technological parameters for growing highly (002)-oriented ZnO film is obtained. As a result, it is proven that the Zn2+ concentration is the most important factor to grow a highly (O02)-oriented ZnO film. We take an appropriate Zn2+ concentration 0.35 mol/L for the aimed film, of which photoluminescence property is better than those of the films derived from other Zn2+ concentrations precursor solution. The Zn2+ concentration either larger or smaller than 0.35 mol/L leads to the (002)-oriented degree decrease of films. By employing an atom force microscope, a hexagonal atom arrangement, which indicates that the film site detected is a ZnO single crystal, is observed in the surface of the highly (002)-oriented film.

  7. Application of Thermal Analysis Tests Results in the Numerical Simulations of Continuous Casting Process

    Directory of Open Access Journals (Sweden)

    Kargul T.

    2015-04-01

    Full Text Available Measurement of thermophysical properties of steel is possible by using different thermal analysis techniques. In the field of metallurgy the most relevant methods are Differential Thermal Analysis (DTA and Differential Scanning Calorimetry (DSC. The paper presents the results of thermophysical properties which are necessary to carry out numerical simulation of continuous casting of steel. The study was performed for two steel grades S320GD and S235JR. The main aim of the research was to determine the dependence of specific heat on temperature. On the basis of obtained results the thermal effects of phase transformations and characteristic transition temperatures were also identified. Both the specific heat of steel and thermal effects of phase transformations are included in the Fourier-Kirchhoff equation, as the material properties necessary to obtain the numerical solution. The paper presents the research methodology, analysis of results and method of determining the specific heat of steel based on the results of DSC analysis.

  8. Influence of process parameters on microstructure of semisolid A356 alloy slug cast through vertical pipe

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-rong; MAO Wei-min; PEI Sheng

    2008-01-01

    Suitable microstructures required for semisolid casting were formed by using a vertical pipe. Different lengths of vertical pipe, slug dimensions and pouring time were used to investigate their influence on the microstructure of A356 alloy. The results indicate that at the same length of the vertical pipe, the morphology of the primary α(Al) gradually deteriorates by the enlargement in the slug size, but the deteriorating speed slows down with increasing pipe length. They also reveal that the increase in the pipe length improves the microstructure, whereas no further improvement appears when the pipe length reaches a certain value. The optimum length of the pipe obtained in the present work is 430 mm. The microstructure of larger slug poured at higher pouring temperature gets worse and it can be improved by moderately elongating pouring time. The relative mechanisms were also discussed.

  9. Exposures and their determinants in radiographic film processing.

    Science.gov (United States)

    Teschke, Kay; Chow, Yat; Brauer, Michael; Chessor, Ed; Hirtle, Bob; Kennedy, Susan M; Yeung, Moira Chan; Ward, Helen Dimich

    2002-01-01

    Radiographers process X-ray films using developer and fixer solutions that contain chemicals known to cause or exacerbate asthma. In a study in British Columbia, Canada, radiographers' personal exposures to glutaraldehyde (a constituent of the developer chemistry), acetic acid (a constituent of the fixer chemistry), and sulfur dioxide (a byproduct of sulfites, present in both developer and fixer solutions) were measured. Average full-shift exposures to glutaraldehyde, acetic acid, and sulfur dioxide were 0.0009 mg/m3, 0.09 mg/m3, and 0.08 mg/m3, respectively, all more than one order of magnitude lower than current occupational exposure limits. Local exhaust ventilation of the processing machines and use of silver recovery units lowered exposures, whereas the number of films processed per machine and the time spent near the machines increased exposures. Personnel in clinic facilities had higher exposures than those in hospitals. Private clinics were less likely to have local exhaust ventilation and silver recovery units. Their radiographers spent more time in the processor areas and processed more films per machine. Although exposures were low compared with exposure standards, there are good reasons to continue practices to minimize or eliminate exposures: glutaraldehyde and hydroquinone (present in the developer) are sensitizers; the levels at which health effects occur are not yet clearly established, but appear to be lower than current standards; and health effects resulting from the mixture of chemicals are not understood. Developments in digital imaging technology are making available options that do not involve wet-processing of photographic film and therefore could eliminate the use of developer and fixer chemicals altogether.

  10. DOE applied to study the effect of process parameters on silicon spacing in lost foam Al-Si-Cu alloy casting

    Science.gov (United States)

    Shayganpour, A.; Idris, M. H.; Izman, S.; Jafari, H.

    2012-09-01

    Lost foam casting as a relatively new manufacturing process is extensively employed to produce sound complicated castings. In this study, an experimental investigation on lost foam casting of an Al-Si-Cu aluminium cast alloy was conducted. The research was aimed in evaluating the effect of different pouring temperatures, slurry viscosities, vibration durations and sand grain sizes on eutectic silicon spacing of thin-wall castings. A stepped-pattern was used in the study and the focus of the investigations was at the thinnest 3 mm section. A full two-level factorial design experimental technique was used to plan the experiments and afterwards identify the significant factors affecting casting silicon spacing. The results showed that pouring temperature and its interaction with vibration time have pronounced effect on eutectic silicon phase size. Increasing pouring temperature coarsened the eutectic silicon spacing while the higher vibration time diminished coarsening effect. Moreover, no significant effects on silicon spacing were found with variation of sand size and slurry viscosity.

  11. Experimental and Numerical Modeling of Fluid Flow Processes in Continuous Casting: Results from the LIMMCAST-Project

    Science.gov (United States)

    Timmel, K.; Kratzsch, C.; Asad, A.; Schurmann, D.; Schwarze, R.; Eckert, S.

    2017-07-01

    The present paper reports about numerical simulations and model experiments concerned with the fluid flow in the continuous casting process of steel. This work was carried out in the LIMMCAST project in the framework of the Helmholtz alliance LIMTECH. A brief description of the LIMMCAST facilities used for the experimental modeling at HZDR is given here. Ultrasonic and inductive techniques and the X-ray radioscopy were employed for flow measurements or visualizations of two-phase flow regimes occurring in the submerged entry nozzle and the mold. Corresponding numerical simulations were performed at TUBAF taking into account the dimensions and properties of the model experiments. Numerical models were successfully validated using the experimental data base. The reasonable and in many cases excellent agreement of numerical with experimental data allows to extrapolate the models to real casting configurations. Exemplary results will be presented here showing the effect of electromagnetic brakes or electromagnetic stirrers on the flow in the mold or illustrating the properties of two-phase flows resulting from an Ar injection through the stopper rod.

  12. Centrifugal casting processes of manufacturing in situ functionally gradient composite materials of Al-19Si-5Mg alloy

    Institute of Scientific and Technical Information of China (English)

    XIE Yong; LIU Changming; ZHAI Yanbo; WANG Kai; LING Xuedong

    2009-01-01

    Cylindrical components of in situ functionally gradient composite materials of Al-19Si-5Mg alloy were manufactured by centrifugal casting. Microstructure characteristics of the manufactured components were observed and the effects of the used process factors on these character-istics were analyzed. The results of observations shows that, in thickness, the components possess microstructures accumulating lots of Mg2Si particles and a portion of primary silicon particles in the inner layer, a little Mg2Si and primary silicon particles in the outer layer, and without any Mg2Si and primary silicon particle in the middle layer. The results of the analysis indicate that the rotation rate of centrifugal casting, mould temperature, and melt pouring temperature have evidently affected the accumulation of the second phase particles. Also, the higher the centrifugal rotation rate, mould temperature, and melt pouring temperature are, the more evident in the inner layer the degree of accumulation of Mg2Si and primary silicon particles is.

  13. Effect of Friction Stir Processing on Microstructure and Mechanical Properties of AZ91C Magnesium Cast Alloy Weld Zone

    Science.gov (United States)

    Hassani, Behzad; Karimzadeh, Fathallah; Enayati, Mohammad Hossein; Sabooni, Soheil; Vallant, Rudolf

    2016-07-01

    In this study, friction stir processing (FSP) was applied to the GTAW (TIG)-welded AZ91C cast alloy to refine the microstructure and optimize the mechanical properties of the weld zone. Microstructural investigation of the samples was performed by optical microscopy and the phases in the microstructure were determined by x-ray diffraction (XRD). The microstructural evaluations showed that FSP destroys the coarse dendritic microstructure. Furthermore, it dissolves the secondary hard and brittle β-Mg17Al12 phase existing at grain boundaries of the TIG weld zone. The closure and decrease in amount of porosities along with the elimination of the cracks in the microstructure were observed. These changes were followed by a significant grain refinement to an average value of 11 µm. The results showed that the hardness values increased to the mean ones, respectively, for as-cast (63 Hv), TIG weld zone (67 Hv), and stir zone (79 Hv). The yield and ultimate strength were significantly enhanced after FSP. The fractography evaluations, by scanning electron microscopy (SEM), indicated to a transition from brittle to ductile fracture surface after applying FSP to the TIG weld zone.

  14. Effect of Processing Parameters on the Protective Quality of Electroless Nickel-Phosphorus on Cast Aluminium Alloy

    Directory of Open Access Journals (Sweden)

    Olawale Olarewaju Ajibola

    2015-01-01

    Full Text Available The effects of temperature, pH, and time variations on the protective amount and quality of electroless nickel (EN deposition on cast aluminium alloy (CAA substrates were studied. The temperature, pH, and plating time were varied while the surface condition of the substrate was kept constant in acid or alkaline bath. Within solution pH of 5.0–5.5 range, the best quality is obtained in acid solution pH of 5.2. At lower pH (5.0–5.1, good adhesion characterised the EN deposition. Within the range of plating solution pH of 7.0 to 11.5, the highest quantity and quality of EN deposition are obtained on CAA substrate in solution pH of 10.5. It is characterised with few pores and discontinuous metallic EN film. The quantity of EN deposition is time dependent, whereas the adhesion and brightness are not time controlled. The best fit models were developed from the trends of result data obtained from the experiments. The surface morphologies and the chemical composition of the coating were studied using the Jeol JSM-7600F field emission scanning electron microscope.

  15. Effect of Polymer Blocking Layer and Processing Method on the Breakdown Strength and the Extractable Energy Density of Barium Titanate/poly(vinylidene fluoride-co-hexafluoropropylene) Nanocomposite Thin Film Capacitors

    Science.gov (United States)

    Kim, Yunsang; Kathaperumal, Mohanalingam; Smith, O'neil; Pan, Ming-Jen; Perry, Joseph

    2013-03-01

    Polymer-metal oxide nanocomposites are of great interest because of their high energy density and easy processability, which make them candidate materials for energy storage applications. Although loading of high-k filler in polymer matrix is desirable to maximize energy density of nanocomposites, the decrease of breakdown strength at higher loading compromises a potential gain in energy density. In this work, we investigate the effect of a fluoropolymer (CYTOP) blocking layer in BaTiO3/poly(vinylidene fluoride-co-hexafluoro propylene) nanocomposite films on the improvement of breakdown strength and energy storage density. The introduction of blocking layer may serve to prevent moisture absorption and charge injection from electrode, thereby decreasing the probability of catastrophic breakdown events. We also examine the influence of processing method, i.e. spin- or blade-casting, on the performance of bilayer films. The charge-discharge method shows about a twofold increase in extractable energy density (from 2 to 3.7 J/cm3) of bilayer films fabricated by blade-casting compared to single layer film by spin-casting because of improved breakdown strength. The results will be discussed in regards to morphology, electric field distribution, and loss of bilayer films.

  16. Temperature field in the hot-top during casting a new super-high strength Al-Zn-Mg-Cu alloy by low frequency electromagnetic process

    Directory of Open Access Journals (Sweden)

    Yubo ZUO

    2005-08-01

    Full Text Available The billets of a new super-high strength Al-Zn-Mg-Cu alloy in 200 mm diameter were produced by the processed of low frequency electromagnetic casting (LFEC and conventional direct chill(DCcasting, respectively. The effects of low frequency electromagnetic field on temperature field of the melt in the hot-top were investigated by temperature thermocouples into the casting during the processes. The results show that during LFEC process the temperature field in the melt applying the hot-top is very uniform, which is helpful to reduce the difference of thermal gradients between the surface and the center, and then to reduce the thermal stress and to eliminate casting crack.

  17. Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions

    Science.gov (United States)

    Gandin, Charles-Andre; Ratke, Lorenz

    2008-01-01

    The Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MSL-CETSOL and MICAST) are two investigations which supports research into metallurgical solidification, semiconductor crystal growth (Bridgman and zone melting), and measurement of thermo-physical properties of materials. This is a cooperative investigation with the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) for accommodation and operation aboard the International Space Station (ISS). Research Summary: Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST) are two complementary investigations which will examine different growth patterns and evolution of microstructures during crystallization of metallic alloys in microgravity. The aim of these experiments is to deepen the quantitative understanding of the physical principles that govern solidification processes in cast alloys by directional solidification.

  18. Nanostructure Study of TiO2 Films Prepared by Dip Coating Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The microstructure properties of the sol-gel derived TiO2 films were studied by the atomic force microscopy (AFM).The films were prepared by dip coating process. The optical properties of the films were explained on the basis ofthe microstructure of the films.

  19. Laser process for extended silicon thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hessmann, M.T., E-mail: hessmann@zae.uni-erlangen.de [Bavarian Center for Applied Energy Research, Am Weichselgarten 7, 91058 Erlangen (Germany); Kunz, T.; Burkert, I.; Gawehns, N. [Bavarian Center for Applied Energy Research, Am Weichselgarten 7, 91058 Erlangen (Germany); Schaefer, L.; Frick, T.; Schmidt, M. [Bayerisches Laserzentrum, Konrad-Zuse-Str 2-6, 91052 Erlangen (Germany); Meidel, B. [Schott Solar AG, Carl-Zeiss-Strasse 4, 63755 Alzenau (Germany); Auer, R. [Bavarian Center for Applied Energy Research, Am Weichselgarten 7, 91058 Erlangen (Germany); Brabec, C.J. [Bavarian Center for Applied Energy Research, Am Weichselgarten 7, 91058 Erlangen (Germany); Chair VI - Materials for Electronics and Energy Technology, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen (Germany)

    2011-10-31

    We present a large area thin film base substrate for the epitaxy of crystalline silicon. The concept of epitaxial growth of silicon on large area thin film substrates overcomes the area restrictions of an ingot based monocrystalline silicon process. Further it opens the possibility for a roll to roll process for crystalline silicon production. This concept suggests a technical pathway to overcome the limitations of silicon ingot production in terms of costs, throughput and completely prevents any sawing losses. The core idea behind these thin film substrates is a laser welding process of individual, thin silicon wafers. In this manuscript we investigate the properties of laser welded monocrystalline silicon foils (100) by micro-Raman mapping and spectroscopy. It is shown that the laser beam changes the crystalline structure of float zone grown silicon along the welding seam. This is illustrated by Raman mapping which visualizes compressive stress as well as tensile stress in a range of - 147.5 to 32.5 MPa along the welding area.

  20. Solution processed silver sulfide thin films for filament memory applications

    Science.gov (United States)

    Yin, Shong

    Filament Memories based on resistive switching have been attracting attention in recent years as a potential replacement for flash memory in CMOS technology and as a potential candidate memory for low-cost, large-area electronics. These memories operate at low voltages with fast switching speeds. These devices are based on ionic conduction through an electrolyte layer and differ fundamentally in operation from conventional flash memory, which is based on the field effect transistor. To facilitate development of this technology, effects of film structure on ionic and electronic conducting properties and the filament formation processes must be studied. In this work, silver sulfide, a mixed ionic-electronic conductor, is used as a model material for studying the solution processing of filament memories, and to study the impact of film structure on conducting and switching properties. Three different solution processing methods are investigated for depositing silver sulfide: sulfidation of elemental silver films, and sintering of two types of silver sulfide nanoparticles. Effects of nanoparticle sintering conditions on electrolyte structured and mixed conducting properties are investigated by a combination of X-ray diffraction, electrical impedance spectroscopy and thermo-gravimetric analysis. Impact of forming voltage and time on filament morphology is examined to provide an overall view of the impact of electrical and material parameters on device operation.

  1. The influence of soil and landfill leachate microorganisms in the degradation of PVC/PCL films cast from DMF

    Directory of Open Access Journals (Sweden)

    Adriana de Campos

    2012-01-01

    Full Text Available While the use of plastics continues to increase in our daily lives in a growing range products, these materials are very persistent in the environment. The blending of aliphatic polyesters with other thermoplastic polymers is a profitable way of producing materials with changed physical properties and biodegradability, which can facilitate microbial adhesion to the polymer matrix and help to reduce (post-consumer degradation time of these materials in landfills. This study was an investigation of the biodegradation of films of blends of poly(vinyl chloride (PVC and poly(ε-caprolactone (PCL by soil microorganisms and leachate, by means of respirometry, infrared absorption spectroscopy (FTIR, differential calorimetry scanning (DSC, scanning electron microscopy (SEM, contact angle and weight loss. The results showed that in the soil, the films suffered oxidative biodegradation. The PCL promoted degradation of the PVC in the film of PVC/PCL and the PVC inhibited the rapid degradation of the PCL.

  2. Copper Alloy Mold process for Production Irons Casting in Japan%日本铜合金金属型生产铸铁件状况

    Institute of Scientific and Technical Information of China (English)

    刘子安; 齐笑冰; 唐骥; 申泽骥

    2001-01-01

    The technique of permanent mold casting for producing iron castings has been applied in advanced countries, the copper alloy mold processes for producing the iron castings are rapidly developing in Japan. The characteristics of copper alloy Mold process and its effect on the properties of ductile iron and gray iron castings are presented in this paper. The situation of production of iron castings by using copper alloy mold processes in Japan is also presented.%铸铁件金属型铸造技术已在工业发达国家得到应用,铜合金金属型生产铸铁件在日本得到很快发展。本文介绍了铜合金金属型的特点及其对所生产的球墨铸铁件、灰铸铁件性能的影响;比较详细地介绍了日本铜合金金属型生产铸铁件的状况。

  3. Two kinds of composite films: Graphene oxide/carbon nanotube film and graphene oxide/activated carbon film via a self-assemble preparation process

    Science.gov (United States)

    Zou, Li-feng; Ma, Nan; Sun, Mei; Ji, Tian-hao

    2014-11-01

    Two kinds of free-standing composite films, including graphene oxide and activated carbon film as well as graphene oxide and carbon nanotube film, were fabricated through a simple suspension mixing and then natural deposition process. The films were characterized by various measurement techniques in detail. The results show that the composite films without any treatment almost still remain the original properties of the corresponding precursors, and exhibit loose structure, which can be easily broken in water; whereas after treated at 200 °C in air, the films become relatively more dense, and even if immersed into concentrated strong alkali or acid for five days, they still keep the film-morphologies, but regretfully, they show obvious brittleness and slight hydrophilicity. As soon as the treated films are performed in high concentrated strong alkali for about one day, their brittleness and wettability can be improved and became good flexibility and complete hydrophilicity.

  4. Application of fault diagnosis for CAST sewage treatment process%CAST 污水处理工艺故障诊断方法的研究与应用

    Institute of Scientific and Technical Information of China (English)

    高大康

    2014-01-01

    This paper analyzes the characteristics and requirements of CAST wastewater treatment process fault diagnosis. On this basis,it put forward methods to establish the CAST process fault di-agnosis system:use the automatic monitoring system to realize online monitoring and fault alarming, construct fault diagnosis model through the fault tree analysis method,and perform the fast fault diag-nosis combined with the operation parameters trend chart. It introduces this diagnosis process by a practical application in a sewage treatment plant.%本文分析了 CAST 污水处理工艺故障诊断的特点和需求。在此基础上,提出了建立 CAST工艺故障诊断系统的思路和方法,利用自动化监控系统实现在线故障监测和报警,利用故障树分析法构建故障诊断模型,结合运行参数趋势图,实现故障快速诊断。文章通过实例分析,介绍了该方法在污水处理厂的实际应用。

  5. CENTRIFUGAL CASTING MACHINE

    Science.gov (United States)

    Shuck, A.B.

    1958-04-01

    A device is described that is specifically designed to cast uraniumn fuel rods in a vacuunn, in order to obtain flawless, nonoxidized castings which subsequently require a maximum of machining or wastage of the expensive processed material. A chamber surrounded with heating elements is connected to the molds, and the entire apparatus is housed in an airtight container. A charge of uranium is placed in the chamber, heated, then is allowed to flow into the molds While being rotated. Water circulating through passages in the molds chills the casting to form a fine grained fuel rod in nearly finished form.

  6. [Casting faults and structural studies on bonded alloys comparing centrifugal castings and vacuum pressure castings].

    Science.gov (United States)

    Fuchs, P; Küfmann, W

    1978-07-01

    The casting processes in use today such as centrifugal casting and vacuum pressure casting were compared with one another. An effort was made to answer the question whether the occurrence of shrink cavities and the mean diameter of the grain of the alloy is dependent on the method of casting. 80 crowns were made by both processes from the baked alloys Degudent Universal, Degudent N and the trial alloy 4437 of the firm Degusa. Slice sections were examined for macro and micro-porosity and the structural appearance was evaluated by linear analysis. Statistical analysis showed that casting faults and casting structure is independent of the method used and their causes must be found in the conditions of casting and the composition of the alloy.

  7. Control of Crystal Morphology for Mold Flux During High-Aluminum AHSS Continuous Casting Process

    Science.gov (United States)

    GUO, Jing; SEO, Myung-Duk; SHI, Cheng-Bin; CHO, Jung-Wook; KIM, Seon-Hyo

    2016-08-01

    In the present manuscript, the efforts to control the crystal morphology are carried out aiming at improving the lubrication of lime-alumina-based mold flux for casting advanced high-strength steel with high aluminum. Jackson α factors for crystals of melt crystallization in multi-component mold fluxes are established and reasonably evaluated by applying thermodynamic databases to understand the crystal morphology control both in lime-alumina-based and lime-silica-based mold fluxes. The results show that Jackson α factor and supercooling are the most critical factors to determine the crystal morphology in a mold flux. Crystals precipitating in mold fluxes appear with different morphologies due to their different Jackson α factors and are likely to be more faceted with higher Jackson α factor. In addition, there is a critical supercooling degree for crystal morphology dendritic transition. When the supercooling over the critical value, the crystals transform from faceted shape to dendritic ones in morphology as the kinetic roughening occurs. Typically, the critical supercooling degrees for cuspidine dendritic transition in the lime-silica-based mold fluxes are evaluated to be between 0.05 and 0.06. Finally, addition of a small amount of Li2O in the mold flux can increase the Jackson α factor and decrease the supercooling for cuspidine precipitation; thus, it is favorable to enhance a faceted cuspidine crystal.

  8. Control of cast iron and casts manufacturing by Inmold method

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2009-07-01

    Full Text Available In this paper the usability of cast iron spheroidizing process in mould control by ATD method as well as by ultrasonic method were presented. Structure of instrumentation needed for control form performance of cast iron spheroidizing by Inmold method was illustrated. Author, pointed out that amount of magnesium master alloy should obtain 0,8 ÷ 1,0% of mass in form at all. Such quantity of preliminary alloy assure of obtain of nodular graphite in cast iron. In consequence of this, is reduce the cast iron liquidus temperature and decrease of recalescence temperature of graphite-eutectic crystallization in compare with initial cast iron. Control of casts can be carried out by ultrasonic method. In plain cast iron, ferritic-pearlitic microstructure is obtaining. Additives of 1,5% Cu ensure pearlitic structure.

  9. Casting Process Optimization of φ1300 Vertical Grinder Base%φ1300立式磨底座的铸造工艺改进

    Institute of Scientific and Technical Information of China (English)

    米国发; 郑喜平; 南红艳

    2011-01-01

    运用V-Cast软件对铸钢件φ1300立式磨底座铸造工艺进行凝固过程模拟,分析缩孔、缩松缺陷产生的原因.根据模拟结果,添加了冒口和保温材料,以优化工艺;最终获得了合适的工艺,消除了缩孔、缩松缺陷,保证了铸件质量.%he solidification of initial scheme of φ1300 vertical grinder base was simulated by V-Cast software, and the causes of the shrinkage defects were analyzed. Based on the simulation resul.the riser and insolating materials were increased to optimize process. The appropriate casting process is gained and the casting quality is ensured at last

  10. Drying of a tape-cast layer: Numerical modelling of the evaporation process in a graded/layered material

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Jambhekar, V. A.; Hattel, Jesper Henri;

    2016-01-01

    Evaporation of water from a ceramic layer is a key phenomenon in the drying process for the manufacturing of water-based tape cast ceramics. In this paper we present a coupled free-flow-porous-media model on the Representative Elementary Volume (REV) scale for coupling non-isothermal multi...... in accordance with the available results from the literature. We elaborate on and discuss the characteristic drying-rate curve for a single layer ceramic, and compare it with that of a graded/layered ceramic. We, moreover, show the influence of the mean diameter of particles of the porous medium (dp) — which...... directly affects the intrinsic permeability (K) based on the well-known Ergun's equation — of each single ceramic layer on the drying behaviour of a graded/layered ceramic....

  11. An improved mathematical model to simulate mold filling process in high pressure die casting using CLSVOF method and CSF model

    Directory of Open Access Journals (Sweden)

    Cheng Bi

    2015-05-01

    Full Text Available A 3D mathematical model was proposed to simulate the mold filling process in high-pressure die casting (HPDC to improve accuracy considering the surface tension. Piecewise liner interface calculation (PLIC and volume of fluid (VOF methods were used to construct the pattern of the liquid interface. A coupled level-set and VOF method (CLSVOF was proposed to capture the interface pattern and obtain its normal vector. A continuum surface force (CSF model was used to consider the surface tension. Two water analogy experiments were carried out using the proposed model. Simulation and experimental results were analyzed and compared; and the effects of surface tension were also discussed. The simulation results agreed well with the experiments and the simulation accuracy was an improvement on interface geometries, liquid flows, and gas entrapments.

  12. Resource-saving technologies of making advanced cast and deformable superalloys with allowance for processing all types of wastes

    Science.gov (United States)

    Kablov, E. N.; Sidorov, V. V.; Kablov, D. E.; Min, P. G.; Rigin, V. E.

    2016-12-01

    The results of thermodynamic analysis of the vacuum-melt-ceramic system and experimental investigations of using up to 100% wastes during vacuum-induction melting are presented. An important role of rare-earth and alkaline-earth metals and heat treatment is shown for effective refining of a melt from impurities and gases. As a result, a resource-saving technology of making advanced cast and deformable nickel superalloys is developed with allowance for processing all types of wastes, including off-grade wastes. The developed technology of refining wastes under vacuum makes it possible to manufacture the alloys that fully meet the requirements of alloy specifications from 100% wastes. This technology is now used for the mass production of nickel superalloys in a research complex at FGUP VIAM.

  13. Effect of Process Parameters on Tensile Strength of Friction Stir Welded Cast LM6 Aluminium Alloy Joints

    Institute of Scientific and Technical Information of China (English)

    M. Jayaraman; R.Sivasubramanian; V. Balasubramanian

    2009-01-01

    This paper reports the effect of friction stir welding (FSW) process parameters on tensile strength of cast LM6 aluminium alloy. Joints were made by using different combinations of tool rotation speed, welding speed and axial force each at four levels. The quality of weld zone was investigated using macrostructure and microstructure analysis. Tensile strength of the joints were evaluated and correlated with the weld zone hardness and microstructure. The joint fabricated using a rotational speed of 900 r/min, a welding speed of 75 mm/min and an axial force of 3 kN showed superior tensile strength compared with other joints. The tensile strength and microhardness of the welded joints for the optimum conditions were 166 MPa and 64.8 Hv respectively.

  14. Modeling and Analysis of Mechanical Properties of Aluminium Alloy (A413 Processed through Squeeze Casting Route Using Artificial Neural Network Model and Statistical Technique

    Directory of Open Access Journals (Sweden)

    R. Soundararajan

    2015-01-01

    Full Text Available Artificial Neural Network (ANN approach was used for predicting and analyzing the mechanical properties of A413 aluminum alloy produced by squeeze casting route. The experiments are carried out with different controlled input variables such as squeeze pressure, die preheating temperature, and melt temperature as per Full Factorial Design (FFD. The accounted absolute process variables produce a casting with pore-free and ideal fine grain dendritic structure resulting in good mechanical properties such as hardness, ultimate tensile strength, and yield strength. As a primary objective, a feed forward back propagation ANN model has been developed with different architectures for ensuring the definiteness of the values. The developed model along with its predicted data was in good agreement with the experimental data, inferring the valuable performance of the optimal model. From the work it was ascertained that, for castings produced by squeeze casting route, the ANN is an alternative method for predicting the mechanical properties and appropriate results can be estimated rather than measured, thereby reducing the testing time and cost. As a secondary objective, quantitative and statistical analysis was performed in order to evaluate the effect of process parameters on the mechanical properties of the castings.

  15. The application of optical measurements for the determination of accuracy of gear wheels casts manufactured in the RT/RP process

    Directory of Open Access Journals (Sweden)

    G. Budzik

    2010-01-01

    Full Text Available The article discusses the possibilities of using optical measurements for defining the geometric accuracy of gear wheels casts manufactured in the rapid prototyping process. The tested gear wheel prototype was cast using an aluminum alloy. The casting mould was made by means of the three-dimensional print method (3DP with the use of a Z510 Spectrum device. The aim of the tests was to determine the geometric accuracy of the cast made by the ZCast technology in the rapid prototyping process. The tests were conducted with the use of the coordinate optical measuring method and a GOM measuring device. The prototype measurements were made in the scanning mode. The results of the measurements, saved in the STL format with the use of the scanning device software, were compared with the gear wheel 3D-CAD nominal model. The measurements enabled the determination of the real accuracy of prototypes manufactured in casting moulds by means of the ZCast technology. The selection of the measuring method was also analyzed in terms of measurement accuracy and the RP technology precision.

  16. Laser processing of silicon at submicron scale using photochromic films

    Energy Technology Data Exchange (ETDEWEB)

    Chen Qiying; Nikumb, Suwas

    2004-05-31

    Laser fabrication at submicron scale is experimentally demonstrated with the nonlinear optical switching effect of photochromism. The effect, which is a result of change in the optical properties of the photochromic material between the open-ring and closed-ring isomers during the photoisomerization, effectively reduces the laser beam size. The ultrafast response of the molecular photocyclization and cycloreversion reactions at a time scale of a few picoseconds ensures the instantaneous realization of the effect. Utilizing a photochromic film of cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl) ethane as the mask layer, laser processing of a silicon wafer demonstrated submicron scale feature size with improved surface quality as compared to the smallest features achievable using direct laser ablation without the photochromic film.

  17. Qualitative Analysis of Films: Cultural Processes in the Mirror of Film

    Directory of Open Access Journals (Sweden)

    Gloria Dahl

    2004-05-01

    Full Text Available A special qualitative psychological analysis of movies developed by Wilhelm SALBER is practiced at the Psychological Institute of the University of Cologne for more than 40 years. This kind of film-analysis does not have an end in itself, but also aids as access to research cultural structures. In this respect movies are seismographs of cultural trends expressing general visions and images of future development. They indicate as well the status of society in its genesis and complexity as developmental perspectives, providing information about crisis, narrowing scope of action and its immanent self-healing power. Comparable to the process of dream-interpretation, the "manifest" film narration is expanded with the associations and in-depth descriptions of the audience in order to reconstruct the latent "Komplexentwicklung," the development of psychological lines. Suspense and spellbound is based on activating a meaningful transformational experience—only movies stimulate such a process which touch the heart of the viewers. The psychological analysis works out the morphological dramaturgy of the film-experience, which is shaped into a specific dynamic figure. Paradox insoluble problem-constellations are the driving forces in this moving process. The mere examination of the screenplay or the film-story does not take into consideration that the audience is always part of the scene. Viewers modify the story in a characteristic way while they are watching it—according to the dynamic of the psychological process they are going through. A combination of joining in and maintaining an observing distance—as in therapy, in advertising or in education—is an integral part of this interplay. Because the significant factors work unconsciously, it is necessary to apply a specific qualitative method in order to be able to grasp this. Short exemplary analyses of the movies The Piano, Fight Club, Dogville, Punch-Drunk Love, Catch Me If You Can, The Hours

  18. Rheo-Cast Microstructure and Mechanical Properties of AM60 Alloy Produced by Self-Inoculation Rheo-Diecasting Process

    Directory of Open Access Journals (Sweden)

    Bo Xing

    2016-03-01

    Full Text Available Rheo-forming is becoming the choice for production of high quality parts with diminished defects and fine integrity. In this paper, the novel self-inoculation rheo-diecasting (SIRD process, in which semisolid slurry is produced by mixing two precursory solid and liquid alloys and subsequently pouring them through a multi-stream fluid director, has been proposed. Microstructural characteristics of AM60 alloy slurry and the microstructure and mechanical properties of rheo-diecasting AM60 samples were investigated. Quenching experiments reveal that the slurry microstructure of AM60 was well refined to irregular α-Mg particles with the average size of approximately 20–40 μm after pouring with the self-inoculation process, and these particles were evolved to globular and coarse morphology while continuously keeping in semisolid state. After rheo-diecasting, the microstructure of the sample was dominated by fine primary α-Mg globules accompanied with tiny secondary α-Mg particles while the sample from conventional liquid die casting was characterized by developed dendrite and porosity. Microscopic analysis indicates that there are three stages of remaining liquid solidification in die cavity in SIRD: α-Mg nucleation and growth on primary α-Mg surface, α-Mg nucleated independently in liquid, and, finally, formation of skeleton devoiced eutectic. Due to diminished porosity and hot tearing, tensile strength and elongation of SIRD samples were increased by 12.9% and 35.3%, respectively, compared to a conventional liquid die casting sample.

  19. Combining Aluminum Heat Treat with Hot Isostatic Pressing:A Comparison of Structure, Properties, and Processing Routes for a Cast Al-Si-Mg Alloy

    Institute of Scientific and Technical Information of China (English)

    Stephen J. Mashl

    2004-01-01

    Bodycote researchers have successfully demonstrated that a T6 heat treatment can be integrated with Densal(R), a proprietary, aluminum specific, hot isostatic pressing (HIP) process. In this combined operation, at least a portion of the solution heat treatment is conducted at elevated pressure. During development, two issues, adiabatic cooling during depressurization and a possible variation in the kinetics of homogenization resulting from conducting the solution heat treat at elevated pressure were perceived as factors which could alter the heat treat response fiom that seen in conventional processing.This paper reviews the results of experiments performed to A1-Si-Mg (A356.0) castings subjected to both combined and conventional processing routes. Results indicate that the combined HIP and heat treat process is an efficient means of achieving a microstructure characteristic of a conventionally T6 processed material while eliminating porosity within the casting. Further, the fatigue life of an A356.0 casting processed using the combined cycle can be improved by more than an order of magnitude over the as-cast and T6 treated component.

  20. Crystallization Behavior of Solution-Processed CIGSe Thin Film Semiconductor by Stepwise Annealing Process.

    Science.gov (United States)

    Park, Mi Sun; Sung, Shi-Joon; Kim, Dae-Hwan

    2015-03-01

    CuIn(x)Ga1-xSe2 (CIGS) thin films were prepared by a solution-based CuInGa (CIG) precursor- selenization process. First, we investigated the effect of selenization temperature on the formation of polycrystalline CIGS and grain growth. The CIG precursor films were selenized using a two-step process to investigate the reaction of Se and CIG precursors during the formation of CIGS thin films. Depending on the temperature in the 1st step of the selenization process, the CIG precursor forms a different intermediate phase between the single phase to ternary phase such as Cu, Se, CuSe, InSe, and CuInSe2. In addition, the intermediate phase exerts a significant influence on the final phase obtained after the 2nd step of the selenization process, particularly with regard to characteristics such as polycrystalline structure and grain growth in the CIGS films. The photoelectron conversion efficiency of devices prepared using CIGS thin films was approximately 1.59-2.75%.