WorldWideScience

Sample records for film ag superlens

  1. Thin film Ag superlens towards lab-on-a-chip integration

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Nielsen, Rasmus Bundgaard; Boltasseva, Alexandra

    2009-01-01

    A thin metal film near-field superlens, as originally suggested by Pendry and realized by Fang et al. and Melville et al., is investigated with emphasis on materials suitable for integration on a lab-on-a-chip platform. A chemically resistant cyclo-olefin copolymer (COC), mr-I-T85 from microresist...

  2. An experimental investigation of Fang's Ag superlens suitable for integration

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Nielsen, Rasmus Bundgaard; Xiao, Sanshui

    2009-01-01

    We report on experimental realization of the Fang Ag superlens structure [1] suitable for further processing and integration in bio-chips by replacing PMMA with a highly chemical resistant cyclo-olefin copolymer, mr-I T85 (Micro Resist Technology, Berlin, Germany). The superlens was able to resolve...

  3. Defining a superlens operating regime for imaging fluorescent molecules.

    Directory of Open Access Journals (Sweden)

    Kareem Elsayad

    Full Text Available It has been shown that thin metal-based films can at certain frequencies act as planar near-field lenses for certain polarization components. A desirable property of such "lenses" is that they can also enhance and focus some large transverse spatial frequency components which contain sub-diffraction limit details. Over the last decade there has been much work in optimizing designs to reduce effects (such as material losses and surface roughness that are detrimental to image reconstruction. One design that can reduce some of these undesirable effects, and which has received a fair amount of attention recently, is the stacked metal-dielectric superlens. Here we theoretically explore the imaging ability of such a design for the specific purpose of imaging a fluorescent dye (the common bio-marker GFP in the vicinity of the superlens surface. Our calculations take into consideration the interaction (damping of an oscillating electric dipole with the metallic layers in the superlens. We also assume a Gaussian frequency distribution spectrum for the dipole. We treat the metallic-alloy and dielectric-alloy layers separately using an appropriate effective medium theory. The transmission properties are evaluated via Transfer matrix (-matrix calculations that were performed in the MatLab and MathCad environments. Our study shows that it is in principle possible to image fluorescent molecules using a simple bilayer planar superlens. We find that optimal parameters for such a superlens occur when the peak dipole emission-frequency is slightly offset from the Surface Plasmon resonance frequency of the metal-dielectric interfaces. The best resolution is obtained when the fluorescent molecules are not too close (>/ approximately 10 nm or too far (>/approximately 30 nm from the superlens surface. The realization and application of a superlens with the specified design is possible using current nanofabrication techniques. When combined with e.g. a sub

  4. Enhanced photocatalytic activity of Ag-TiO2/Ag heterogeneous films

    Science.gov (United States)

    Liang, Ying; Wang, ShaoHua; Guo, PengFeng

    2015-11-01

    Ag-deposited TiO2 and Ag (Ag-TiO2/Ag) films coated on glass substrates were prepared using a simple sol-gel and dip-coating method. The Ag chemical state was investigated through X-ray diffractometry and X-ray photoelectron spectroscopy. Results showed that the Ag mainly exists in metallic state in the Ag-TiO2 film. Ag-TiO2/Ag exhibits higher photocatalytic activity than individual Ag-TiO2 and TiO2/Ag films. This enhanced photocatalytic activity was attributed to high surface plasmon resonance effects and separation rates of photoinduced electron-hole pairs of Ag nanoparticles. Results were verified by photoluminescence and UV-Vis spectroscopy.

  5. Pressureless Bonding Using Sputtered Ag Thin Films

    Science.gov (United States)

    Oh, Chulmin; Nagao, Shijo; Suganuma, Katsuaki

    2014-12-01

    To improve the performance and reliability of power electronic devices, particularly those built around next-generation wide-bandgap semiconductors such as SiC and GaN, the bonding method used for packaging must change from soldering to solderless technology. Because traditional solders are problematic in the harsh operating conditions expected for emerging high-temperature power devices, we propose a new bonding method in this paper, namely a pressureless, low-temperature bonding process in air, using abnormal grain growth on sputtered Ag thin films to realize extremely high temperature resistance. To investigate the mechanisms of this bonding process, we characterized the microstructural changes in the Ag films over various bonding temperatures and times. We measured the bonding properties of the specimens by a die-shear strength test, as well as by x-ray diffraction measurements of the residual stress in the Ag films to show how the microstructural developments were essential to the bonding technology. Sound bonds with high die strength can be achieved only with abnormal grain growth at optimum bonding temperature and time. Pressureless bonding allows for production of reliable high-temperature power devices for a wide variety of industrial, energy, and environmental applications.

  6. Magnetic properties of Fe20Ag80 granular films

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Mørup, Steen; Jonsson, T.

    1997-01-01

    Fe20Ag80 granular films prepared by ion-beam cosputtering have been investigated by Mossbauer spectrocopy and dc susceptibility measurements. The as-sputtered Fe20Ag80 films consist of small magnetic particles embedded in the Ag matrix. The system is in a superparamagnetic state at temperatures a...... above 30 K. Below 30 K, the films begins to show slow magnetic relaxation and by further lowering the temperature, a super-spin-glass phase is formed around 20 K....

  7. Electrodeposition of thin Pd-Ag films

    International Nuclear Information System (INIS)

    Hasler, P.; Allmendinger, T.

    1993-01-01

    Thin Pd-Ag layers were electroplated preferably on brass and on nickel substrates using a two-compartment cell separated by an anion exchange membrane. The weakly alkaline electrolyte contained glycine-glycinate as the major complexing agents. The plating experiments were usually carried out without stirring, at different potentials and temperatures and in the absence or in the presence of sodium benzaldehyde-2,4-disulphonate (BDS). The samples were characterized by scanning electron microscopy and light microscopy. Their compositions were determined analytically by the inductively coupled plasma technique. In addition, the film porosity was tested. Electrodeposition in almost limiting current conditions for both components and without simultaneous hydrogen evolution led to deposits with compositions being in good agreement with the molar metal ratio in the electrolyte (77:23). The best results were achieved between 0 and -50 mV with respect to a reversible hydrogen electrode at 0 C in the presence of BDS. These deposits were bright, had good adherence and exhibited no pores at a film thickness of 1.2 μm. At too negative potentials, the deposits became black and powdery. (orig.)

  8. Low thermal emissivity surfaces using AgNW thin films

    Science.gov (United States)

    Pantoja, Elisa; Bhatt, Rajendra; Liu, Anping; Gupta, Mool C.

    2017-12-01

    The properties of silver nanowire (AgNW) films in the optical and infrared spectral regime offer an interesting opportunity for a broad range of applications that require low-emissivity coatings. This work reports a method to reduce the thermal emissivity of substrates by the formation of low-emissivity AgNW coating films from solution. The spectral emissivity was characterized by thermal imaging with an FLIR camera, followed by Fourier transform infrared spectroscopy. In a combined experimental and simulation study, we provide fundamental data of the transmittance, reflectance, haze, and emissivity of AgNW thin films. Emissivity values were finely tuned by modifying the concentration of the metal nanowires in the films. The simulation models based on the transfer matrix method developed for the AgNW thin films provided optical values that show a good agreement with the measurements.

  9. Anomalous photoelectric emission from Ag on zinc-phthalocyanine film

    International Nuclear Information System (INIS)

    Tanaka, Senku; Otani, Tomohiro; Fukuzawa, Ken; Hiromitsu, Ichiro; Ogawa, Koji; Azuma, Junpei; Yamamoto, Isamu; Takahashi, Kazutoshi; Kamada, Masao

    2014-01-01

    Photoelectric emission from organic and metal thin films is generally observed with irradiation of photon energy larger than 4 eV. In this paper, however, we report photoelectric emission from Ag on a zinc-phthalocyanine (ZnPc) layer at a photon energy of 3.4 eV. The threshold energy for this photoelectric emission is much smaller than the work function of Ag estimated by conventional photoelectron spectroscopy. The photoelectric emission by low-energy photons is significant for Ag thicknesses of less than 1 nm. Photoelectron spectroscopy and morphological study of the Ag/ZnPc suggest that the anomalous photoelectric emission from the Ag surface is caused by a vacuum level shift at the Ag/ZnPc interface and by surface plasmons of the Ag nanoparticles

  10. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaohong, E-mail: yxhong1981_2004@126.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian (China); Xu, Wenzheng, E-mail: xwz8199@126.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Huang, Fenglin, E-mail: windhuang325@163.com [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China); Chen, Dongsheng, E-mail: mjuchen@126.com [Faculty of Clothing and Design, Minjiang University, Fuzhou 350121, Fujian (China); Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn [Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu (China)

    2016-12-30

    Highlights: • Ag/ZnO composite film was successfully deposited on polyester fabric by magnetron sputtering technique. • Ag film was easily oxidized into Ag{sub 2}O film in high vacuum oxygen environment. • The zinc film coated on the surface of Ag film before RF reactive sputtering could protect the silver film from oxidation. • Polyester fabric coated with Ag/ZnO composite film can obtained structural color. • The anti-ultraviolet and antistatic properties of polyester fabric coated with Ag/ZnO composite film all were good. - Abstract: Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag{sub 2}O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  11. Controlled preparation of Ag nanoparticle films by a modified photocatalytic method on TiO{sub 2} films with Ag seeds for surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xin; Pan, Lujun, E-mail: lpan@dlut.edu.cn; Li, Shuai; Wang, Qiao; Qin, Jun; Huang, Yingying

    2016-02-15

    Graphical abstract: - Highlights: • Uniform Ag nanoparticle films were synthesized by a modified photocatalytic method on TiO{sub 2} films with Ag seeds for surface-enhanced Raman scattering. • This modified photocatalytic method combine the advantages of the spurting method (high nucleation density) and the traditional photocatalytic method (suitable particle size). • The Raman enhancement of as-prepared Ag NP films was calculated by finite-difference time-domain to validate the experiment data. - Abstract: Uniform Ag nanoparticle (NP) films were synthesized by a modified photocatalytic method on TiO{sub 2} films with Ag seeds for surface-enhanced Raman scattering, which combine the advantages of the spurting method (high nucleation density) and the traditional photocatalytic method (suitable particle size). The Ag seeds were prepared by magnetron sputtering with different time, which would adjust the distribution and transfer of electrons on the surface of TiO{sub 2} film in the process of photocatalytic reduction. The distribution and morphology of Ag NP films can be adjusted by the sputtering time and the UV irradiation time. The Raman enhancement of as-prepared Ag NP films was calculated by finite-difference time-domain to validate the experiment data. It is found that the Ag NP films synthesized on TiO{sub 2} films with suitable pre-deposited Ag seeds exhibit a much higher Raman enhancement activity than the optimum Ag NP film synthesized directly on the TiO{sub 2} film without Ag seeds.

  12. Oxygen-induced giant grain growth in Ag films

    Science.gov (United States)

    Birnbaum, A. J.; Thompson, C. V.; Steuben, J. C.; Iliopoulos, A. P.; Michopoulos, J. G.

    2017-10-01

    Thin film crystallites typically exhibit normal or abnormal growth with maximum grain size limited by energetic and geometric constraints. Although epitaxial methods have been used to produce large single crystal regions, they impose limitations that preclude some compelling applications. The generation of giant grain thin film materials has broad implications for fundamental property analysis and applications. This work details the production of giant grains in Ag films (2.5 μm-thick), ranging in size from ≈50 μm to 1 mm, on silicon nitride films upon silicon substrates. The presence of oxygen during film deposition plays a critical role in controlling grain size and orientation.

  13. Tribological properties of CrAgN thin films

    Directory of Open Access Journals (Sweden)

    Peter Jurči

    2013-02-01

    Full Text Available CrN and CrAgN thin films were magnetron sputtered onto the substrate made from Vanadis 6 cold work tool steel. The films were examined on tribological properties using a high temperature Pin-on-disc tribometer. Obtained results show that there is almost no effect of Ag addition on the friction coefficient when tested at a room temperature against alumina. The testing against the same counterpart at higher temperature gave positive effect of the silver addition on the m. The testing against 100Cr6 ball bearing steel gave higher friction coefficient than that against alumina while the testing against CuSn6-bronze led to much lower m. When tested at a room temperature, the wear performance of the films was positively affected only in the case of the CrAg3N film developed at 500 oC. On the other hand, addition of 3 wt% Ag into the CrN increased the wear performance at elevated temperatures while the addition of 15 wt% Ag has made the film too soft and sensitive to wear.

  14. Ag induced suppression of irradiation response in YBCO/Ag composite thin films

    International Nuclear Information System (INIS)

    Behera, D.; Mohanty, T.; Mohanta, D.; Patnaik, K.; Mishra, N.C.; Senapati, L.; Kanjilal, D.; Mehta, G.K.; Pinto, R.

    1999-01-01

    Practical application of cuprate superconductors in radiation environment demands that these systems remain insensitive to the irradiation induced defects. The cuprate superconductors however are many orders of magnitude more sensitive than the conventional low T c superconductors. To suppress the irradiation sensitivity of cuprates we consider a crystal engineering approach where metal ions as Ag is made to occupy inter and intra-granular sites of YBa 2 Cu 3 O 7 thin films. We show that superconducting and normal state properties of YBCO/Ag composite thin films prepared by laser ablation remain unchanged under 140 MeV Si ion irradiation up to fluence of 8 x 10 14 ions/cm 2 . The inter- and intra-granular occupancy of Ag is shown to induce microstructural modifications and rigidity to the CuO chains respectively which in turn lead to the radiation insensitivity of the composite films. (author)

  15. DC magnetron sputtering prepared Ag-C thin film anode for thin film lithium ion microbatteries

    International Nuclear Information System (INIS)

    Li, Y.; Tu, J.P.; Shi, D.Q.; Huang, X.H.; Wu, H.M.; Yuan, Y.F.; Zhao, X.B.

    2007-01-01

    An Ag-C thin film was prepared by DC magnetron co-sputtering, using pure silver and graphite as the targets. The microstructure and morphology of the deposited thin film were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Electrochemical performances of the Ag-C thin film anode were investigated by means of discharge/charge and cyclic voltammogram (CV) tests in model cells. The electrochemical impedance spectrum (EIS) characteristics and the chemical diffusion coefficient, D Li of the Ag-C thin film electrode at different discharging states were discussed. It was believed that the excellent cycling performance of the Ag-C electrode was ascribed to the good conductivity of silver and the volume stability of the thin film

  16. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    Science.gov (United States)

    Yuan, Xiaohong; Xu, Wenzheng; Huang, Fenglin; Chen, Dongsheng; Wei, Qufu

    2016-12-01

    Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag2O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  17. Alloying behaviour of electroplated Ag film with its underlying Pd/Ti film stack for low resistivity interconnect metallization

    Energy Technology Data Exchange (ETDEWEB)

    Ezawa, Hirokazu, E-mail: hirokazu.ezawa@toshiba.co.jp [Toshiba Corporation, Semiconductor and Storage Products Company (Japan); The Graduate School of Information, Production and Systems, Waseda University (Japan); Miyata, Masahiro [Toshiba Corporation, Semiconductor and Storage Products Company (Japan); Tatsumi, Kohei [The Graduate School of Information, Production and Systems, Waseda University (Japan)

    2014-02-25

    Highlights: • Alloying behavior of Ag/Pd/Ti film stack was studied by annealing at 400-800 °C. • The Ag film resistivity decreased with increasing annealing temperature. • Formation of the Pd-Ti intermetallics was found to be dominant over Ag-Pd alloying. • The excess Ti was consumed to form Ti oxides, which inhibited Ti alloying with Ag. -- Abstract: In this paper, viability of electroplated Ag film into device application was studied. Alloying behavior of the Ag film with its underlying Pd(50 nm)/Ti(100 nm) film stack was investigated with respect to heat treatment at different temperatures from 400 °C to 800 °C in an argon ambient. After annealing at 400 °C, the electrical resistivity of the Ag film increased due to Pd alloying with Ag. Formation of Pd–Ti intermetallic phases became dominant over Ag–Pd alloying with increasing annealing temperature, leading to the resistivity decrease of the Ag film. The resistivity of the 800 °C annealed Ag film approached that of its as-plated Ag film. The excess Ti atoms which were not consumed to form the intermetallic phases with the Pd atoms migrated to the Ag film surface to form Ti oxides along the Ag grain boundaries on the topmost film surface. The Ag/Pd/Ti film stack has been confirmed to maintain the resistivity of the Ag film at as-plated low levels after high temperature annealing. This paper also discusses process integration issues to enable the Ag metallization process for future scaled and three dimensionally chip stacked devices.

  18. Alloying behaviour of electroplated Ag film with its underlying Pd/Ti film stack for low resistivity interconnect metallization

    International Nuclear Information System (INIS)

    Ezawa, Hirokazu; Miyata, Masahiro; Tatsumi, Kohei

    2014-01-01

    Highlights: • Alloying behavior of Ag/Pd/Ti film stack was studied by annealing at 400-800 °C. • The Ag film resistivity decreased with increasing annealing temperature. • Formation of the Pd-Ti intermetallics was found to be dominant over Ag-Pd alloying. • The excess Ti was consumed to form Ti oxides, which inhibited Ti alloying with Ag. -- Abstract: In this paper, viability of electroplated Ag film into device application was studied. Alloying behavior of the Ag film with its underlying Pd(50 nm)/Ti(100 nm) film stack was investigated with respect to heat treatment at different temperatures from 400 °C to 800 °C in an argon ambient. After annealing at 400 °C, the electrical resistivity of the Ag film increased due to Pd alloying with Ag. Formation of Pd–Ti intermetallic phases became dominant over Ag–Pd alloying with increasing annealing temperature, leading to the resistivity decrease of the Ag film. The resistivity of the 800 °C annealed Ag film approached that of its as-plated Ag film. The excess Ti atoms which were not consumed to form the intermetallic phases with the Pd atoms migrated to the Ag film surface to form Ti oxides along the Ag grain boundaries on the topmost film surface. The Ag/Pd/Ti film stack has been confirmed to maintain the resistivity of the Ag film at as-plated low levels after high temperature annealing. This paper also discusses process integration issues to enable the Ag metallization process for future scaled and three dimensionally chip stacked devices

  19. Directional solidification of YBaCuO thick films deposited by screen printing on Ag and Ag-Pd tapes

    Science.gov (United States)

    Piñol, S.; Najib, M.; Puig, T.; Obradors, X.; Xuriguera, H.; Segarra, M.

    2002-08-01

    Textured tapes of Ag{1 1 0} and polycrystalline tapes of Ag-Pd(0.5-12.5%) alloys have been prepared by cold rolling as possible substrates for deposition of high critical current density YBCO films. The Ag{1 1 0} texture with some twins was promoted by recrystallization after cold rolling from ingots prepared by melting and solidification of Ag powders. Nevertheless, no textured tapes were obtained by cold rolling from Ag-Pd alloys with Pd>0.5%. YBCO thick films (10-30 μm) were deposited on the metallic tapes by screen printing using organic inks. Biaxially textured superconducting thick films were observed on the Ag{1 1 0} substrates at low solidification rates. Nevertheless, uniaxial texture with some biaxial colonies of YBCO grains were found on Ag-Pd alloys when the superconducting phase was solidified at high rate.

  20. Characterization of AZO and Ag based films prepared by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Dagang [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Jiang, Shouxiang, E-mail: kinor.j@polyu.edu.hk [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Zhao, Hongmei [Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao (China); Shang, Songmin; Chen, Zhuoming [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China)

    2014-12-15

    Highlights: • Highly infrared reflective AZO and Ag based films were prepared. • Ag showed better crystallization on AZO film than on glass substrate. • Infrared reflection rate was inversely proportional to the film sheet resistance. • Film with infrared reflection of 97% in FIR region was acquired. - Abstract: Ag, AZO/Ag, Ag/AZO and AZO/Ag/AZO films were prepared on glass substrates by radio frequency (RF) magnetron sputtering technology. The prepared films were systematically investigated by X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), UV–visible spectrophotometer, a four-point probe system and Fourier Transform Infrared Spectroscopy. The results indicated that Ag inner layer starts forming a continuous film at the thickness of 10 nm and Ag layer presents superior crystallization on AZO substrate than that on glass substrate. The continuous Ag inner layer film provided the highest average visible transmittance of 85.4% (AZO/Ag/AZO). The lowest sheet resistance of 3.21 Ω/sq and the highest infrared reflection rate of 97% in FIR region can be obtained on AZO/Ag (15 nm)/AZO film. The high infrared reflection property of the AZO/Ag/AZO coating makes it a promising candidate for solar control films.

  1. AgSbSe2 and AgSb(S,Se)2 thin films for photovoltaic applications

    International Nuclear Information System (INIS)

    Garza, J.G.; Shaji, S.; Rodriguez, A.C.; Das Roy, T.K.; Krishnan, B.

    2011-01-01

    Silver antimony selenide (AgSbSe 2 ) thin films were prepared by heating sequentially deposited multilayers of antimony sulphide (Sb 2 S 3 ), silver selenide (Ag 2 Se), selenium (Se) and silver (Ag). Sb 2 S 3 thin film was prepared from a chemical bath containing SbCl 3 and Na 2 S 2 O 3 , Ag 2 Se from a solution containing AgNO 3 and Na 2 SeSO 3 and Se thin films from an acidified solution of Na 2 SeSO 3 , at room temperature on glass substrates. Ag thin film was deposited by thermal evaporation. The annealing temperature was 350 deg. C in vacuum (10 -3 Torr) for 1 h. X-ray diffraction analysis showed that the thin films formed were polycrystalline AgSbSe 2 or AgSb(S,Se) 2 depending on selenium content in the precursor films. Morphology and elemental analysis of these films were done using scanning electron microscopy and energy dispersive X-ray spectroscopy. Optical band gap was evaluated from the UV-visible absorption spectra of these films. Electrical characterizations were done using Hall effect and photocurrent measurements. A photovoltaic structure: glass/ITO/CdS/AgSbSe 2 /Al was formed, in which CdS was deposited by chemical bath deposition. J-V characteristics of this structure showed V oc = 435 mV and J sc = 0.08 mA/cm 2 under illumination using a tungsten halogen lamp. Preparation of a photovoltaic structure using AgSbSe 2 as an absorber material by a non-toxic selenization process is achieved.

  2. Preparation and thermomechanical properties of Ag-PVA nanocomposite films

    International Nuclear Information System (INIS)

    Gautam, Anurag; Ram, S.

    2010-01-01

    Metal-polymer hybrid nanocomposites have been prepared from an aqueous solution of polyvinyl alcohol (PVA) and silver nitrate (AgNO 3 ). The silver nanoparticles were generated in PVA matrix by the reduction of silver ions with PVA molecule at 60-70 deg. C over magnetic stirrer. UV-vis analysis, X-ray diffraction studies, transmission electron microscopy, scanning electron microscopy and current-voltage analysis were used to characterize the nanocomposite films prepared. The X-ray diffraction analysis reveals that silver metal is present in face centered cubic (fcc) crystal structure. Average crystallite size of silver nanocrystal is 19 nm, which increases to 22 nm on annealing the film at 150 deg. C in air. This result is in good agreement with the result obtained from TEM. The UV-vis spectrum shows a single peak at 433 nm, arising from the surface plasmon absorption of silver nanocolloids. This result clearly indicates that silver nanoparticles are embedded in PVA. An improvement of mechanical properties (storage modulus) was also noticed due to a modification of PVA up to 0.5 wt% of silver content. The current-voltage (I-V) characteristic of nanocomposite films shows increase in current drawn with increasing Ag-content in the films.

  3. Two different mechanisms on UV emission enhancement in Ag-doped ZnO thin films

    International Nuclear Information System (INIS)

    Xu, Linhua; Zheng, Gaige; Zhao, Lilong; Pei, Shixin

    2015-01-01

    Ag-doped ZnO thin films were prepared by a sol–gel method. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV–vis and photoluminescence spectra. The results show that the Ag in the ZnO thin films annealed at 500 °C for 1 h substitutes for Zn and exists in the form of Ag + ion (Ag Zn ) while the Ag in the ZnO thin films without a post-annealing mainly exists in the form of simple substance (Ag 0 ). The incorporation of Ag indeed can improve the ultraviolet emission of ZnO thin films and suppress the visible emissions at the same time. However, the mechanisms on the ultraviolet emission enhancement in the annealed and unannealed Ag-doped ZnO thin films are very different. As for the post-annealed Ag-doped ZnO thin films, the UV emission enhancement maybe mainly results from more electron–hole pairs (excitons) due to Ag-doping while for the unannealed Ag-doped ZnO thin films; the UV emission enhancement is attributed to the resonant coupling between exciton emission in ZnO and localized surface plasmon in Ag nanoparticles. - Highlights: • Ag-doped ZnO thin films have been prepared by the sol–gel method. • Ag-doping can enhance ultraviolet emission of ZnO thin films and depress the visible emissions at the same time. • There are two different mechanisms on UV emission enhancement in Ag-doped ZnO thin films. • The UV emission enhancement from the resonant coupling between excitonic emissions and localized surface plasmon in Ag nanoparticle is very attractive

  4. In situ fabrication of AgI films on various substrates

    International Nuclear Information System (INIS)

    Zheng, Z.; Liu, A.R.; Wang, S.M.; Huang, B.J.; Ma, X.M.; Zhao, H.X.; Li, D.P.; Zhang, L.Z.

    2008-01-01

    A facile solution-phase chemical route is developed to directly construct silver iodide (AgI) films/crystals on various substrates including silver foil, silicon wafer and glass, etc. The resulting AgI films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The AgI films with different morphologies can be obtained by controlling the reaction parameters. This method is a simple and fast way for in situ deposition of AgI crystals/films on different substrates. These films may be applied in chemical sensing systems and solid-state batteries as solid electrolytes

  5. Synthesis of Ag-doped hydrogenated carbon thin films by a hybrid ...

    Indian Academy of Sciences (India)

    At higher Ar concentration in plasma, Ag content increased whereas deposition rate of the film decreased. FTIR study showed that the films contained a significant amount of hydrogen and, as a result of an increase in the Ag content in the hydrogenated DLC film, s p 2 bond content also increased. The TEM cross sectional ...

  6. OBTAINING AND PROPERTIES OF AgInS2 FILMS

    Directory of Open Access Journals (Sweden)

    M. A. Abdullaev

    2016-01-01

    Full Text Available Aim. The aim is to obtain AgInS2 films and study their electrical and optical properties.Methods. The samples of thin AgInS2 films for measurement were obtained by the method of magnetron sputtering with direct current. The structure, phase and elemental composition were studied using DRON-2 X-ray diffractometer (СuKа - radiation and the microscope LEO-1450 with EDS attachment for X-ray microanalysis. The optical transmittance and absorption were examined using MDR-2 monochromator in the wavelength range of 400-800 nm with the Keitley electrometer and FD-10G; we applied the spectral resolution of ± 1 meV. The electrical conductivity, Hall effect was measured by the four-point probe method with indium ohmic contacts. Measurements were carried out in the temperature range of 77-400 K.Findings. We obtained indium disulfide and silver films with the thickness of up to 1 μm on quartz substrates by magnetron sputtering. It is shown that increasing the substrate temperature to about 450 0С allows to obtain single phase film with a chalcopyrite structure with a band gap of 1.88 eV and high absorption coefficient (>104см-1.Conclusions. The possibility of obtaining films in a wide range of the electrical resistance and variation of the electrical parameters at constant stoichiometry is of interest for efficient technologies of phototransduction.

  7. Transparent Conducting Film Fabricated by Metal Mesh Method with Ag and Cu@Ag Mixture Nanoparticle Pastes

    Directory of Open Access Journals (Sweden)

    Hyun Min Nam

    2017-05-01

    Full Text Available Transparent conducting electrode film is highly desirable for application in touch screen panels (TSPs, flexible and wearable displays, sensors, and actuators. A sputtered film of indium tin oxide (ITO shows high transmittance (90% at low sheet resistance (50 Ω/cm2. However, ITO films lack mechanical flexibility, especially under bending stress, and have limitation in application to large-area TSPs (over 15 inches due to the trade-off in high transmittance and low sheet resistance properties. One promising solution is to use metal mesh-type transparent conducting film, especially for touch panel application. In this work, we investigated such inter-related issues as UV imprinting process to make a trench layer pattern, the synthesis of core-shell-type Ag and Cu@Ag composite nanoparticles and their paste formulation, the filling of Ag and Cu@Ag mixture nanoparticle paste to the trench layer, and touch panel fabrication processes.

  8. Ferromagnetic resonance study of Fe50Ag50 granular film

    International Nuclear Information System (INIS)

    Sarmiento, G.; Fdez-Gubieda, M.L.; Siruguri, V.; Lezama, L.; Orue, I.

    2007-01-01

    Fe 50 Ag 50 granular film, produced by the pulsed laser deposition technique, has been studied using ferromagnetic resonance (FMR) at temperatures ranging from 4 to 300K. Three different resonance modes are well observed in the whole temperature range. We have also studied the angular evolution of the resonance peaks at three different temperatures T=150, 250, 300K. The thermal and the angular evolution of the three resonance fields has been interpreted on the basis of the existence of different magnetic coupling between the Fe nanoparticles and a weakly magnetized interface

  9. Effects of Excess Cu Addition on Photochromic Properties of AgCl-Urethane Resin Composite Films

    Directory of Open Access Journals (Sweden)

    Hidetoshi Miyazaki

    2013-01-01

    Full Text Available AgCl-resin photochromic composite films were prepared using AgNO3, HCl-EtOH, CuCl2 ethanol solutions, and a urethane resin as starting materials. The AgCl particle size in the composite films, which was confirmed via TEM observations, was 23–43 nm. The AgCl composite films showed photochromic properties: coloring induced by UV-vis irradiation and bleaching induced by cessation of UV-vis irradiation. The coloring and bleaching speed of the composite film increases with increasing CuCl2 mixing ratio.

  10. The Effect of Cu:Ag Atomic Ratio on the Properties of Sputtered Cu–Ag Alloy Thin Films

    Directory of Open Access Journals (Sweden)

    Janghsing Hsieh

    2016-11-01

    Full Text Available Cu–Ag thin films with various atomic ratios were prepared using a co-sputtering technique, followed by rapid thermal annealing at various temperatures. The films’ structural, mechanical, and electrical properties were then characterized using X-ray diffractometry (XRD, atomic force microscopy (AFM, FESEM, nano-indentation, and TEM as functions of compositions and annealing conditions. In the as-deposited condition, the structure of these films transformed from a one-phase to a dual-phase state, and the resistivity shows a twin-peak pattern, which can be explained in part by Nordheim’s Rule and the miscibility gap of Cu–Ag alloy. After being annealed, the films’ resistivity followed the mixture rule in general, mainly due to the formation of a dual-phase structure containing Ag-rich and Cu-rich phases. The surface morphology and structure also varied as compositions and annealing conditions changed. The recrystallization of these films varied depending on Ag–Cu compositions. The annealed films composed of 40 at % to 60 at % Cu had higher hardness and lower roughness than those with other compositions. Particularly, the Cu50Ag50 film had the highest hardness after being annealed. From the dissolution testing, it was found that the Cu-ion concentration was about 40 times higher than that of Ag. The galvanic effect and over-saturated state could be the cause of the accelerated Cu dissolution and the reduced dissolution of the Ag.

  11. Studies of plasmonic hot-spot translation by a metal-dielectric layered superlens

    DEFF Research Database (Denmark)

    Thoreson, Mark D.; Nielsen, Rasmus Bundgaard; West, Paul R.

    2011-01-01

    We have studied the ability of a lamellar near-field superlens to transfer an enhanced electromagnetic field to the far side of the lens. In this work, we have experimentally and numerically investigated superlensing in the visible range. By using the resonant hot-spot field enhancements from...... optical nanoantennas as sources, we investigated the translation of these sources to the far side of a layered silver-silica superlens operating in the canalization regime. Using near-field scanning optical microscopy (NSOM), we have observed evidence of superlens-enabled enhanced-field translation...... at a wavelength of about 680 nm. Specifically, we discuss our recent experimental and simulation results on the translation of hot spots using a silver-silica layered superlens design. We compare the experimental results with our numerical simulations and discuss the perspectives and limitations of our approach....

  12. Disorders influences on the focusing effect of all-dielectric photonic crystal slab superlens

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xiaoyong; Xin Cheng [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Gong Qihuang [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China)], E-mail: qhgong@pku.edu.cn

    2009-04-13

    The influences of structure disorders on the subwavelength focusing properties of an all-dielectric photonic crystal slab superlens are theoretically studied. The structure disorders are considered as randomly perturbing the position or diameter of air holes of the photonic crystal slab. The results show that the photonic crystal slab superlens can tolerate within 10% degree of positional disorder or 15% degree of diameter disorder without destroying the focusing function.

  13. Disorders influences on the focusing effect of all-dielectric photonic crystal slab superlens

    International Nuclear Information System (INIS)

    Hu Xiaoyong; Xin Cheng; Gong Qihuang

    2009-01-01

    The influences of structure disorders on the subwavelength focusing properties of an all-dielectric photonic crystal slab superlens are theoretically studied. The structure disorders are considered as randomly perturbing the position or diameter of air holes of the photonic crystal slab. The results show that the photonic crystal slab superlens can tolerate within 10% degree of positional disorder or 15% degree of diameter disorder without destroying the focusing function.

  14. Preparation of TiO2/Ag/TiO2 (TAT) multilayer films with optical and electrical properties enhanced by using Cr-added Ag film

    Science.gov (United States)

    Loka, Chadrasekhar; Lee, Kee-Sun

    2017-09-01

    The dielectric-metal-dielectric tri-layer films have attracted much attention by virtue of their low-cost and high quality device performance as a transparent conductive electrode. Here, we report the deposition of Cr doped Ag films sandwiched between thin TiO2 layers and investigation on the surface microstructure, optical and electrical properties depending on the thickness of the Ag(Cr). The activation energy (1.18 eV) for grain growth of Ag was calculated from the Arrhenius plot using the law Dn -D0n = kt , which was comparable to the bulk diffusion of Ag. This result indicated the grain growth of Ag was effectively retarded by the Cr addition, which was presumed to related with blocking the surface and grain boundary diffusion due to Cr segregation. Based on thermal stability of Cr added Ag film, we deposited TiO2/Ag(Cr)/TiO2 (TAT) multilayer thin films and with a 10 nm thick Ag(Cr), the TAT films showed high optical transmittance in the visible region (94.2%), low electrical resistivity (8.66 × 10-5 Ω cm), and hence the high figure of merit 57.15 × 10-3 Ω-1 was achieved. The high transmittance of the TAT film was believed to be attributed to the low optical loss due to a reduction in the Ag layer thickness, the surface plasmon effect, and the electron scattering reduced by the Ag layer with a low electrical resistivity.

  15. Atom beam sputtered Ag-TiO{sub 2} plasmonic nanocomposite thin films for photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jaspal; Sahu, Kavita [School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, NewDelhi 110078 (India); Pandey, A. [Solid State Physics Laboratory, Defence Research and Development Organization, Timarpur, Delhi 110054 (India); Kumar, Mohit [Institute of Physics, Sachivalaya Marg, Bhubaneswar, Odisha 751005 (India); Ghosh, Tapas; Satpati, B. [Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata 700064 (India); Som, T.; Varma, S. [Institute of Physics, Sachivalaya Marg, Bhubaneswar, Odisha 751005 (India); Avasthi, D.K. [Amity Institute of Nanotechnology, Noida 201313, Uttar Pradesh (India); Mohapatra, Satyabrata, E-mail: smiuac@gmail.com [School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, NewDelhi 110078 (India)

    2017-07-31

    The development of nanocomposite coatings with highly enhanced photocatalytic activity is important for photocatalytic purification of water and air. We report on the synthesis of Ag-TiO{sub 2} nanocomposite thin films with highly enhanced photocatalytic activity by atom beam co-sputtering technique. The effects of Ag concentration on the structural, morphological, optical, plasmonic and photocatalytic properties of the nanocomposite thin films were investigated. UV–visible DRS studies revealed the presence of surface plasmon resonance (SPR) peak characteristic of Ag nanoparticles together with the excitonic absorption peak originating from TiO{sub 2} nanoparticles in the nanocomposites. XRD studies showed that the nanocomposite thin films consist of Ag nanoparticles and rutile TiO{sub 2} nanoparticles. The synthesized Ag-TiO{sub 2} nanocomposite thin films with 5 at% Ag were found to exhibit highly enhanced photocatalytic activity for sun light driven photocatalytic degradation of methylene blue in water, indicating their potential application in water purification.

  16. Microstructure and tribological properties of NbN-Ag composite films by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hongbo; Xu, Junhua, E-mail: jhxu@just.edu.cn

    2015-11-15

    Highlights: • NbN-Ag films were deposited by reactive magnetron sputtering. • The fcc-NbN, hcp-NbN and fcc-Ag coexisted in NbN-Ag films. • The incorporation of Ag into NbN matrix led to the decrease of hardness. • The films (9.2–13.5 at.% Ag) were found to be optimized for wear resistance tools. - Abstract: Recently, the chameleon thin films were developed with the purpose of adjusting their chemistry at self-mating interfaces in response to environmental changes at a wide temperature range. However, very few studies have focused on what state the lubricious noble metal exists in the films and the tribological properties at room temperature (RT). Composite NbN-Ag films with various Ag content (Ag/(Nb + Ag)) were deposited using reactive magnetron sputtering to investigate the crystal structure, mechanical and tribological properties. A combination of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) analyses showed that face-centered cubic (fcc) NbN, hexagonal close-packed (hcp) NbN and fcc silver coexisted in NbN-Ag films. The incorporation of soft Ag into NbN matrix led to the hardness decrease from 29.6 GPa at 0 at.% Ag to 11.3 GPa at 19.9 at.% Ag. Tribological properties of NbN-Ag films performed using dry pin-on-disc wear tests against Al{sub 2}O{sub 3} depended on Ag content to a large extent. The average friction coefficient and wear rate of NbN-Ag films decreased as Ag content increased from 4.0 to 9.2 at.%. With a further increase of Ag content, the average friction coefficient further decreased, while the wear rate increased gradually. The optimal Ag content was found to be 9.2–13.5 at.%, which showed low average friction coefficient values of 0.46–0.40 and wear rate values of 1.1 × 10{sup −8} to 1.7 × 10{sup −8} mm{sup 3}/(mm N). 3D Profiler and Raman spectroscopy measurements revealed that the lubricant tribo-film AgNbO{sub 3} detected on the surface of the

  17. Influence of the surface properties on bactericidal and fungicidal activity of magnetron sputtered Ti–Ag and Nb–Ag thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wojcieszak, D., E-mail: damian.wojcieszak@pwr.edu.pl [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Mazur, M.; Kaczmarek, D. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Mazur, P. [Institute of Experimental Physics, University of Wrocław, Max Born 9, 50-204 Wrocław (Poland); Szponar, B. [Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53–114 Wrocław (Poland); Domaradzki, J. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Kepinski, L. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland)

    2016-05-01

    In this study the comparative investigations of structural, surface and bactericidal properties of Ti–Ag and Nb–Ag thin films have been carried out. Ti–Ag and Nb–Ag coatings were deposited on silicon and fused silica substrates by magnetron co-sputtering method using innovative multi-target apparatus. The physicochemical properties of prepared thin films were examined with the aid of X-ray diffraction, grazing incidence X-ray diffraction, scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy methods. Moreover, the wettability of the surface was determined. It was found that both, Ti–Ag and Nb–Ag thin films were nanocrystalline. In the case of Ag–Ti film presence of AgTi{sub 3} and Ag phases was identified, while in the structure of Nb–Ag only silver occurred in a crystal form. In both cases the average size of crystallites was ca. 11 nm. Moreover, according to scanning electron microscopy and atomic force microscopy investigations the surface of Nb–Ag thin films was covered with Ag-agglomerates, while Ti–Ag surface was smooth and devoid of silver particles. Studies of biological activity of deposited coatings in contact with Bacillus subtilis, Pseudomonas aeruginosa, Enterococcus hirae, Klebisiella pneumoniae, Escherichia coli, Staphylococcus aureus and Candida albicans were performed. It was found that prepared coatings were bactericidal and fungicidal even in a short term-contact, i.e. after 2 h. - Highlights: • Surface and biological properties of Ti–Ag and Nb–Ag thin films were examined. • Ag content was related to sputtering yields and nucleation of Ti and Nb. • For Nb–Ag film the agglomeration of silver at the surface was observed. • Composition and surface topography had an impact on antimicrobial properties. • Fine-grained surface was important in Ag ions release process.

  18. Tribological behavior of in situ Ag nanoparticles/polyelectrolyte composite molecular deposition films

    International Nuclear Information System (INIS)

    Guo Yanbao; Wang Deguo; Liu Shuhai

    2010-01-01

    Multilayer polyelectrolyte films containing silver ions were obtained by molecular deposition method on a glass plate or a quartz substrate. The in situ Ag nanoparticles were synthesized in the multilayer polyelectrolyte films which were put into fresh NaBH 4 aqueous solution. The structure and surface morphology of composite molecular deposition films were observed by UV-vis spectrophotometer, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Tribological characteristic was investigated by AFM and micro-tribometer. It was found that the in situ Ag nanoparticles/polyelectrolyte composite molecular deposition films have lower coefficient of friction and higher anti-wear life than pure polyelectrolyte molecular deposition films.

  19. RBS and ion channeling studies of Ag-doped YBa2Cu3O7-δ targets and films

    International Nuclear Information System (INIS)

    Li Yupu; Liu, J.R.; Cui, X.T.; Chu, W.K.

    1998-01-01

    The location of Ag in Ag-doped YBa 2 Cu 3 O 7-δ (YBCO) films and other high-T c materials (such as Ag-doped BiSrCaCuO films and Ag-sheathed textured BiSrCaCuO wires) is a very important issue for improving high-T c materials. In this work, laser ablated and DC magnetron sputtered YBCO films on (100) LaAlO 3 and (100) SrTiO 3 were prepared from sintered Ag-YBCO composite targets (nominally containing 5 wt% Ag) and studied by Rutherford backscattering spectrometry (RBS) and ion channeling techniques using 2.0 MeV 4 He + and 7 Li + beams. We have found that the Ag-YBCO targets contain about 3 wt% Ag and most of the retained Ag atoms form some small size Ag precipitates with a typical size smaller than a few microns. We have demonstrated that in very good single crystalline YBCO films, the percentage of retained Ag in substitutional sites can be estimated by ion channeling technique. For example, we have found that about 1.2 wt% Ag atoms remain in the laser ablated Ag-doped films prepared from the Ag-YBCO target and about two-thirds of the retained Ag atoms occupy substitutional sites. The sputtered films contain less retained Ag atoms since the deposition temperature is higher and deposition time is longer than those for laser ablated films. (orig.)

  20. Enhanced photocurrent and photocatalytic properties of porous ZnO thin film by Ag nanoparticles

    Science.gov (United States)

    Lv, Jianguo; Zhu, Qianqian; Zeng, Zheng; Zhang, Miao; Yang, Jin; Zhao, Min; Wang, Wenhao; Cheng, Yuebing; He, Gang; Sun, Zhaoqi

    2017-12-01

    ZnO thin films were deposited using an electrodeposition method and porous morphologies could be achieved by annealing treatment. A variety of Ag nanoparticles were loaded on the surface of the ZnO thin films. Surface morphology, chemical composition, crystal phase and optical properties were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), UV-vis spectrophotometer and micro-Raman spectroscopy. Evidence of Ag nanoparticles on the Ag-4/ZnO thin film was be verified by the SEM and XPS measurements. The XRD results indicated that the Ag nanoparticles had little effect on crystallinity of the thin films. The photoresponse and photocatalytic results indicated that the photocurrent and photocatalytic performance could be enhanced by moderate Ag nanoparticles modification on the surface of the ZnO thin film. The best photoresponse and photocatalytic activity in Ag-4/ZnO thin film results from the moderate Ag nanoparticles on the surface of ZnO thin film, which could enhanced separation and suppressed recombination of photogenerated electron-hole pairs.

  1. Biosynthesis and Characterization of AgNPs–Silk/PVA Film for Potential Packaging Application

    Directory of Open Access Journals (Sweden)

    Gang Tao

    2017-06-01

    Full Text Available Bionanocomposite packaging materials have a bright future for a broad range of applications in the food and biomedical industries. Antimicrobial packaging is one of the bionanocomposite packaging materials. Silver nanoparticle (AgNP is one of the most attractive antimicrobial agents for its broad spectrum of antimicrobial activity against microorganisms. However, the traditional method of preparing AgNPs-functionalized packaging material is cumbersome and not environmentally friendly. To develop an efficient and convenient biosynthesis method to prepare AgNPs-modified bionanocomposite material for packaging applications, we synthesized AgNPs in situ in a silk fibroin solution via the reduction of Ag+ by the tyrosine residue of fibroin, and then prepared AgNPs–silk/poly(vinyl alcohol (PVA composite film by blending with PVA. AgNPs were synthesized evenly on the surface or embedded in the interior of silk/PVA film. The prepared AgNPs–silk/PVA film exhibited excellent mechanical performance and stability, as well as good antibacterial activity against both Gram-negative and Gram-positive bacteria. AgNPs–silk/PVA film offers more choices to be potentially applied in the active packaging field.

  2. Biosynthesis and Characterization of AgNPs–Silk/PVA Film for Potential Packaging Application

    Science.gov (United States)

    Tao, Gang; Cai, Rui; Wang, Yejing; Song, Kai; Guo, Pengchao; Zhao, Ping; Zuo, Hua; He, Huawei

    2017-01-01

    Bionanocomposite packaging materials have a bright future for a broad range of applications in the food and biomedical industries. Antimicrobial packaging is one of the bionanocomposite packaging materials. Silver nanoparticle (AgNP) is one of the most attractive antimicrobial agents for its broad spectrum of antimicrobial activity against microorganisms. However, the traditional method of preparing AgNPs-functionalized packaging material is cumbersome and not environmentally friendly. To develop an efficient and convenient biosynthesis method to prepare AgNPs-modified bionanocomposite material for packaging applications, we synthesized AgNPs in situ in a silk fibroin solution via the reduction of Ag+ by the tyrosine residue of fibroin, and then prepared AgNPs–silk/poly(vinyl alcohol) (PVA) composite film by blending with PVA. AgNPs were synthesized evenly on the surface or embedded in the interior of silk/PVA film. The prepared AgNPs–silk/PVA film exhibited excellent mechanical performance and stability, as well as good antibacterial activity against both Gram-negative and Gram-positive bacteria. AgNPs–silk/PVA film offers more choices to be potentially applied in the active packaging field. PMID:28773026

  3. Dependence of the organic nonvolatile memory performance on the location of ultra-thin Ag film

    International Nuclear Information System (INIS)

    Jiao Bo; Wu Zhaoxin; He Qiang; Mao Guilin; Hou Xun; Tian Yuan

    2010-01-01

    We demonstrated organic nonvolatile memory devices based on 4,4',4''-tris[N-(3-methylphenyl)-N-phenylamino] triphenylamine (m-MTDATA) inserted by an ultra-thin Ag film. The memory devices with different locations of ultra-thin Ag film in m-MTDATA were investigated, and it was found that the location of the Ag film could affect the performance of the organic memory, such as ON/OFF ratio, retention time and cycling endurance. When the Ag film was located at the ITO/m-MTDATA interface, the largest ON/OFF ratio (about 10 5 ) could be achieved, but the cycling endurance was poor. When the Ag film was located in the middle region of the m-MTDATA layer, the ON/OFF ratios came down by about 10 3 , but better performance of cycling endurance was exhibited. When the Ag film was located close to the Al electrode, the ON/OFF ratios and the retention time of this device decreased sharply and the bistable phenomenon almost disappeared. Our works show a simple approach to improve the performance of organic memory by adjusting the location of the metal film.

  4. Effect of Substrates on the Dynamic Properties of Inkjet-Printed Ag Thin Films

    Directory of Open Access Journals (Sweden)

    Deokman Kim

    2018-01-01

    Full Text Available The dynamic properties of inkjet-printed Ag thin films on flexible substrates were measured using flexural wave propagation. The Ag nanoparticle suspension was inkjet-printed on polyimide (PI, silicon wafer, and glass. The effects of flexible substrates on the dynamic properties of the films were investigated. Beam-shaped Ag-printed substrates were fabricated by pico-second laser pulse cutting. The wave approach was presented to analyze the vibrations of the thin film on the substrates. The Young’s modulus and loss factor of the Ag thin films with the substrates were represented by the combined bending stiffness of the bilayer beam. The vibration response of the base-excited cantilever was measured using an accelerometer and laser Doppler vibrometer (LDV. Vibration transfers were analyzed to obtain dynamic characteristics of the Ag-printed bilayer beam. The substrate affects the reduction of the Ag thin film thickness during the sintering process and surface roughness of the film. The proposed method based on the wave approach allows measurement of the dynamic properties regardless of the ratio of the modulus between the thin film and substrate.

  5. Flexible, Transparent, and Conductive Film Based on Random Networks of Ag Nanowires

    Directory of Open Access Journals (Sweden)

    Shunhua Wang

    2013-01-01

    Full Text Available Flexible, transparent, and conductive films based on random networks of Ag nanowires were prepared by vacuum-filtrating method. The size of Ag nanowires prepared by hydrothermal method is uniform, with a relatively smaller diameter and a longer length, thereby achieving a high aspect ratio (>1000. The films fabricated by Ag nanowires exhibit the excellent transparency with a 92% optical transmittance and a low surface resistivity of 11 Ωsq−1. Importantly, both the transmittance and sheet resistance decrease with the increasing of the Ag nanowires contents. When the contents of Ag nanowires are up to 200 mg/m2 especially, the surface resistivity quickly falls below 5 Ωsq−1. Also, these films are robust, which have almost no change in sheet resistance after the repeating bends over 200 cycles. These encouraging results may have a potential application in flexible and transparent electronics and other heating systems.

  6. Studies on Magnetron Sputtered ZnO-Ag Films: Adhesion Activity of S. aureus

    Science.gov (United States)

    Geetha, S. R.; Dhivya, P.; Raj, P. Deepak; Sridharan, M.; Princy, S. Adline

    Zinc oxide (ZnO) thin films have been deposited onto thoroughly cleaned stainless steel (AISI SS 304) substrates by reactive direct current (dc) magnetron sputtering and the films were doped with silver (Ag). The prepared thin films were analyzed using X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM) to investigate the structural and morphological properties. The thickness values of the films were in the range of 194 to 256nm. XRD results revealed that the films were crystalline with preferred (002) orientation. Grain size values of pure ZnO films were found to be 19.82-23.72nm. On introducing Ag into ZnO film, the micro-structural properties varied. Adhesion test was carried out with Staphylococcus aureus (S. aureus) in order to know the adherence property of the deposited films. Colony formation units (CFU) were counted manually and bacterial adhesion inhibition (BAI) was calculated. We observed a decrease in the CFU on doping Ag in the ZnO films. BAI of the film deposited at - 100 V substrate bias was found to be increased on Ag doping from 69 to 88%.

  7. Optical Properties of DLC:SiOx and Ag Multilayer Films: Surface Plasmon Resonance Effect

    Directory of Open Access Journals (Sweden)

    Arvydas ČIEGIS

    2016-11-01

    Full Text Available Diamond like carbon films containing silicon (DLC:SiOx and „conventional“ hydrogenated diamond like carbon (DLC films were deposited by direct ion beam using anode layer ion source. Ag films were grown by unbalanced direct current magnetron sputtering. Structure of DLC:SiOx films was investigated by Raman scattering spectroscopy. In the case of DLC:SiOx film deposited on Ag layer surface enhanced Raman scattering effect was observed. Optical properties of the different diamond like carbon and silver multilayers were studied. Annealing effects were investigated. Influence of the thickness of the diamond like carbon and Ag layers was investigated. Position of the plasmonic absorbance peak maximum of DLC:SiOx and multilayers in all cases was redshifted in comparison with “conventional” diamond like nanocomposite films containing silver nanoclusters. It was explained by increase of the Ag nanoparticle size and/or increased probability of the oxidation of the embedded Ag due to the higher amount of oxygen in DLC:SiOx film in comparison with “conventional” diamond like carbon film.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.13194

  8. Biosynthesis and Characterization of AgNPs-Silk/PVA Film for Potential Packaging Application.

    Science.gov (United States)

    Tao, Gang; Cai, Rui; Wang, Yejing; Song, Kai; Guo, Pengchao; Zhao, Ping; Zuo, Hua; He, Huawei

    2017-06-17

    Bionanocomposite packaging materials have a bright future for a broad range of applications in the food and biomedical industries. Antimicrobial packaging is one of the bionanocomposite packaging materials. Silver nanoparticle (AgNP) is one of the most attractive antimicrobial agents for its broad spectrum of antimicrobial activity against microorganisms. However, the traditional method of preparing AgNPs-functionalized packaging material is cumbersome and not environmentally friendly. To develop an efficient and convenient biosynthesis method to prepare AgNPs-modified bionanocomposite material for packaging applications, we synthesized AgNPs in situ in a silk fibroin solution via the reduction of Ag⁺ by the tyrosine residue of fibroin, and then prepared AgNPs-silk/poly(vinyl alcohol) (PVA) composite film by blending with PVA. AgNPs were synthesized evenly on the surface or embedded in the interior of silk/PVA film. The prepared AgNPs-silk/PVA film exhibited excellent mechanical performance and stability, as well as good antibacterial activity against both Gram-negative and Gram-positive bacteria. AgNPs-silk/PVA film offers more choices to be potentially applied in the active packaging field.

  9. Influence of Ag and Sn incorporation in In2S3 thin films

    Science.gov (United States)

    Lin, Ling-Yan; Yu, Jin-Ling; Cheng, Shu-Ying; Lu, Pei-Min

    2015-07-01

    Ag- and Sn-doped In2S3 thin films were deposited on glass substrates using the thermal evaporation technique. The doping was realized by thermal diffusion. The influences of Ag and Sn impurities on the electrical, structural, morphological, and optical properties of the In2S3 films were investigated. In all deposited samples, the x-ray diffraction spectra revealed the formation of cubic In2S3 phase. A significant increase in the crystallite size was observed after Ag doping, while the doping of Sn slightly decreased the crystallite size. The x-ray photoelectron spectroscopy verified the diffusion of Ag and Sn into the In2S3 films after annealing. The optical study illustrated that Ag doping resulted in a reduction of the optical band gap while Sn doping led to a widening of the gap. Optical properties were investigated to determine the optical constants. Besides, it was found that the resistivity decreases significantly either after Ag or Sn incorporation. The study demonstrates that the Sn-doped In2S3 thin films are more suitable for buffer layer application in solar cells than the Ag-doped In2S3 thin films. Project supported by the National Natural Science Foundation of China (Grant Nos. 61076063, 61340051, and 61306120) and the Natural Science Foundation of Fujian Province, China (Grant No. 2014J05073).

  10. Antimicrobial effect of Al2O3, Ag and Al2O3/Ag thin films on Escherichia coli and Pseudomonas putida

    International Nuclear Information System (INIS)

    Angelov, O; Stoyanova, D; Ivanova, I; Todorova, S

    2016-01-01

    The influence of Al 2 O 3 , Ag and Al 2 O 3 /Ag thin films on bacterial growth of Gramnegative bacteria Pseudomonas putida and Escherichia coli is studied. The nanostructured thin films are deposited on glass substrates without intentional heating through r.f. magnetron sputtering in Ar atmosphere of Al 2 O 3 and Ag targets or through sequential sputtering of Al 2 O 3 and Ag targets, respectively. The individual Ag thin films (thickness 8 nm) have a weak bacteriostatic effect on Escherichia coli expressed as an extended adaptive phase of the bacteria up to 5 hours from the beginning of the experiment, but the final effect is only 10 times lower bacterial density than in the control. The individual Al 2 O 3 film (20 nm) has no antibacterial effect against two strains E. coli - industrial and pathogenic. The Al 2 O 3 /Ag bilayer films (Al 2 O 3 20 nm/Ag 8 nm) have strong bactericidal effect on Pseudomonas putida and demonstrate an effective time of disinfection for 2 hours. The individual films Al2O3 and Ag have not pronounced antibacterial effect on Pseudomonas putida . A synergistic effect of Al2O3/Ag bilayer films in formation of oxidative species on the surface in contact with the bacterial suspension could be a reason for their antimicrobial effect on E. coli and P. putida . (paper)

  11. Antimicrobial effect of Al2O3, Ag and Al2O3/Ag thin films on Escherichia coli and Pseudomonas putida

    Science.gov (United States)

    Angelov, O.; Stoyanova, D.; Ivanova, I.; Todorova, S.

    2016-10-01

    The influence of Al2O3, Ag and Al2O3/Ag thin films on bacterial growth of Gramnegative bacteria Pseudomonas putida and Escherichia coli is studied. The nanostructured thin films are deposited on glass substrates without intentional heating through r.f. magnetron sputtering in Ar atmosphere of Al2O3 and Ag targets or through sequential sputtering of Al2O3 and Ag targets, respectively. The individual Ag thin films (thickness 8 nm) have a weak bacteriostatic effect on Escherichia coli expressed as an extended adaptive phase of the bacteria up to 5 hours from the beginning of the experiment, but the final effect is only 10 times lower bacterial density than in the control. The individual Al2O3 film (20 nm) has no antibacterial effect against two strains E. coli - industrial and pathogenic. The Al2O3/Ag bilayer films (Al2O3 20 nm/Ag 8 nm) have strong bactericidal effect on Pseudomonas putida and demonstrate an effective time of disinfection for 2 hours. The individual films Al2O3 and Ag have not pronounced antibacterial effect on Pseudomonas putida. A synergistic effect of Al2O3/Ag bilayer films in formation of oxidative species on the surface in contact with the bacterial suspension could be a reason for their antimicrobial effect on E. coli and P. putida.

  12. The Optical and Electrical Properties of ZnO/Ag/ZnO Films on Flexible Substrate

    Science.gov (United States)

    Yu, Xiaojing; Zhang, Dongyan; Wang, Pangpang; Murakami, Ri-Ichi; Ding, Bingjun; Song, Xiaoping

    The deposition of ZnO/Ag/ZnO film on polyethylene terephthalate (PET) substrate was fabricated by DC magnetron sputtering method. The thicknesses of ZnO layers were 30 nm and Ag films' thicknesses were changed from 1 nm to 6 nm by controlled the sputtering time. This kind of film can be used as transparent conductive oxide (TCO) materials. The electrical and optical properties of composite layers were determined by Ag films. The optimum sputtering time of Ag thin films was found to be 20 s for the high optical transmittance with good electrical conductivity. The ZnO/Ag(20 s)/ZnO layer, which has high optical transmittance of 73% at 550 nm, shows sheet resistance as low as 6.7 ohm/sq. These multilayer transparent films had low electrical resistance as the widely used transparent conductive oxide electrodes. SEM, XRD, the UV-Vis-NIR and Hall Effect measurement system were used to characterize properties of fabricated films. The reasons for the change of transmittance and resistance will also be interpreted.

  13. Ag- and Cu-doped multifunctional bioactive nanostructured TiCaPCON films

    Energy Technology Data Exchange (ETDEWEB)

    Shtansky, D.V., E-mail: shtansky@shs.misis.ru [National University of Science and Technology “MISIS”, Leninsky prospekt 4, Moscow 119049 (Russian Federation); Batenina, I.V.; Kiryukhantsev-Korneev, Ph.V.; Sheveyko, A.N.; Kuptsov, K.A. [National University of Science and Technology “MISIS”, Leninsky prospekt 4, Moscow 119049 (Russian Federation); Zhitnyak, I.Y.; Anisimova, N.Yu.; Gloushankova, N.A. [N.N. Blokhin Russian Cancer Research Center of RAMS, Kashirskoe shosse 24, Moscow 115478 (Russian Federation)

    2013-11-15

    A key property of multicomponent bioactive nanostructured Ti(C,N)-based films doped with Ca, P, and O (TiCaPCON) that can be improved further is their antibacterial effect that should be achieved without compromising the implant bioactivity and biocompatibility. The present work is focused on the study of structure, chemical, mechanical, tribological, and biological properties of Ag- and Cu-doped TiCaPCON films. The films with Ag (0.4–4 at.%) and Cu (13 at.%) contents were obtained by simultaneous sputtering of a TiC{sub 0.5}–Ca{sub 3}(PO{sub 4}){sub 2} target and either an Ag or a Cu target. The film structure was studied using X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray spectroscopy, glow discharge optical emission spectroscopy, and Raman-shift and IR spectroscopy. The films were characterized in terms of their hardness, elastic modulus, dynamic impact resistance, friction coefficient and wear rate (both in air and normal saline), surface wettability, electrochemical behavior and Ag or Cu ion release in normal saline. Particular attention was paid to the influence of inorganic bactericides (Ag and Cu ions) on the bactericidal activity against unicellular yeast fungus Saccharomyces cerevisiae and gram-positive bacteria Lactobacillus acidophilus, as well as on the attachment, spreading, actin cytoskeleton organization, focal adhesions, and early stages of osteoblastic cell differentiation. The obtained results show that the Ag-doped films are more suitable for the protection of metallic surfaces against bacterial infection compared with their Cu-doped counterpart. In particular, an excellent combination of mechanical, tribological, and biological properties makes Ag-doped TiCaPCON film with 1.2 at.% of Ag very attractive material for bioengineering and modification of load-bearing metal implant surfaces.

  14. Ag- and Cu-doped multifunctional bioactive nanostructured TiCaPCON films

    Science.gov (United States)

    Shtansky, D. V.; Batenina, I. V.; Kiryukhantsev-Korneev, Ph. V.; Sheveyko, A. N.; Kuptsov, K. A.; Zhitnyak, I. Y.; Anisimova, N. Yu.; Gloushankova, N. A.

    2013-11-01

    A key property of multicomponent bioactive nanostructured Ti(C,N)-based films doped with Ca, P, and O (TiCaPCON) that can be improved further is their antibacterial effect that should be achieved without compromising the implant bioactivity and biocompatibility. The present work is focused on the study of structure, chemical, mechanical, tribological, and biological properties of Ag- and Cu-doped TiCaPCON films. The films with Ag (0.4-4 at.%) and Cu (13 at.%) contents were obtained by simultaneous sputtering of a TiC0.5-Ca3(PO4)2 target and either an Ag or a Cu target. The film structure was studied using X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray spectroscopy, glow discharge optical emission spectroscopy, and Raman-shift and IR spectroscopy. The films were characterized in terms of their hardness, elastic modulus, dynamic impact resistance, friction coefficient and wear rate (both in air and normal saline), surface wettability, electrochemical behavior and Ag or Cu ion release in normal saline. Particular attention was paid to the influence of inorganic bactericides (Ag and Cu ions) on the bactericidal activity against unicellular yeast fungus Saccharomyces cerevisiae and gram-positive bacteria Lactobacillus acidophilus, as well as on the attachment, spreading, actin cytoskeleton organization, focal adhesions, and early stages of osteoblastic cell differentiation. The obtained results show that the Ag-doped films are more suitable for the protection of metallic surfaces against bacterial infection compared with their Cu-doped counterpart. In particular, an excellent combination of mechanical, tribological, and biological properties makes Ag-doped TiCaPCON film with 1.2 at.% of Ag very attractive material for bioengineering and modification of load-bearing metal implant surfaces.

  15. Irradiation induced improvement in crystallinity of epitaxially grown Ag thin films on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Takahiro, Katsumi; Nagata, Shinji; Yamaguchi, Sadae [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    1997-03-01

    We report the improvement in crystallinity of epitaxially grown Ag films on Si(100) substrates with ion irradiation. The irradiation of 0.5 MeV Si ions to 2x10{sup 16}/cm{sup 2} at 200degC, for example, reduces the channeling minimum yield from 60% to 6% at Ag surface. The improvement originates from the decrease of mosaic spread in the Ag thin film. In our experiments, ion energy, ion species and irradiation temperature have been varied. The better crystallinity is obtained as the higher concentration of defect is generated. The mechanism involved in the irradiation induced improvement is discussed. (author)

  16. Optical properties of silver sulphide thin films formed on evaporated Ag by a simple sulphurization method

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Calva, E., E-mail: ebc@xanum.uam.m [Departamento de Ingenieria de Procesos e hidraulica, Universidad Autonoma Metropolitana - Iztapalapa, Av. Purisima Esq. Michoacan, Col. Vicentina, Mexico, D.F., 09340 (Mexico); Ortega-Lopez, M.; Avila-Garcia, A.; Matsumoto-Kwabara, Y. [Departamento de Ingenieria Electrica, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico DF 07360 (Mexico)

    2010-01-31

    Silver sulphide (Ag{sub 2}S) thin films were grown on the surface of silver films (Ag) deposited on glass substrate by using a simple chemical sulphurization method. According to X-ray diffraction analysis, the Ag{sub 2}S thin films display low intensity peaks at 34.48{sup o}, 36.56{sup o}, and 44.28{sup o}, corresponding to diffraction from (100), (112) and (103) planes of the acanthite phase (monoclinic). A model of the type Ag{sub 2}S/Ag/glass was deduced from spectroscopic ellipsometric measurements. Also, the optical constants (n, k) of the system were determined. Furthermore, the optical properties as solar selective absorber for collector applications were assessed. The optical reflectance of the Ag{sub 2}S/Ag thin film systems exhibits the expected behavior for an ideal selective absorber, showing a low reflectance in the wavelength range below 2 {mu}m and a high reflectance for wavelengths higher than that value. An absorptance about 70% and an emittance about 3% or less were calculated for several samples.

  17. Structural, Mechanical and Tribological Properties of NbCN-Ag Nanocomposite Films Deposited by Reactive Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Fanjing Wu

    2018-01-01

    Full Text Available In this study, reactive magnetron sputtering was applied for preparing NbCN-Ag films with different Ag additions. Ag contents in the as-deposited NbCN-Ag films were achieved by adjusting Ag target power. The composition, microstructure, mechanical properties, and tribological properties were characterized using energy-dispersive X-ray spectroscopy (EDS, X-ray diffraction (XRD, field emission scanning electron microscope (FE-SEM, high resolution transmission electron microscopy (HRTEM, Raman spectrometry, nano-indentation, and high-temperature sliding wear tests. Results indicated that face-centered cubic (fcc NbN, hexagonal close-packed (hcp NbN and fcc Ag, amorphous C and amorphous CNx phase co-existed in the as-deposited NbCN-Ag films. After doping with 2.0 at.% Ag, the hardness and elastic modulus reached a maximum value of 33 GPa and 340 GPa, respectively. Tribological properties were enhanced by adding Ag in NbCN-Ag films at room temperature. When the test temperature rose from 300 to 500 °C, the addition of Ag was found beneficial for the friction properties, showing a lowest friction coefficient of ~0.35 for NbCN-12.9 at.% Ag films at 500 °C. This was mainly attributed to the existence of AgOx, NbOx, and AgNbOx lubrication phases that acted as solid lubricants to modify the wear mechanism.

  18. AgSb(SxSe1−x)2 thin films for solar cell applications

    International Nuclear Information System (INIS)

    González, J.O.; Shaji, S.; Avellaneda, D.; Castillo, A.G.; Roy, T.K. Das

    2013-01-01

    Highlights: ► AgSb(S x Se 1−x ) 2 thin films were formed by heating Na 2 SeSO 3 dipped Sb 2 S 3 /Ag layers. ► S/Se ratio was varied by changing the dipping time in Na 2 SeSO 3 solution. ► Characterized the films using XRD, XPS, SEM, Optical and electrical measurements. ► Band gap engineering of 1−1.1 eV for x = 0.51 and 0.52 respectively. ► PV Glass/FTO/CdS/AgSb(S x Se 1−x ) 2 /C were prepared showing V oc = 410 mV, J sc = 5.7 mA/cm 2 . - Abstract: Silver antimony sulfoselenide (AgSb(S x Se 1−x ) 2 ) thin films were prepared by heating glass/Sb 2 S 3 /Ag layers after selenization using sodium selenosulphate solution. First, Sb 2 S 3 thin films were deposited on glass substrates from a chemical bath containing SbCl 3 and Na 2 S 2 O 3 . Then Ag thin films were thermally evaporated onto glass/Sb 2 S 3 , followed by selenization by dipping in an acidic solution of Na 2 SeSO 3 . The duration of selenium dipping was varied as 30 min and 2 h. The heating condition was at 350 °C for 1 h in vacuum. Analysis of X-ray diffraction pattern of the thin films formed after heating showed the formation of AgSb(S x Se 1−x ) 2 . Morphology and elemental analysis were done by scanning electron microscopy and energy dispersive X-ray detection. Depth profile of composition of the thin films was performed by X-ray Photoelectron Spectroscopy. The spectral study showed the presence of Ag, Sb, S, and Se, and the corresponding binding energy analysis confirmed the formation of AgSb(S x Se 1−x ) 2 . Photovoltaic structures (PV) were prepared using AgSb(S x Se 1−x ) 2 thin films as absorber and CdS thin films as window layers on FTO coated glass substrates. The PV structures were heated at 60–80 °C in air for 1 h to improve ohmic contact. Analysis of J–V characteristics of the PV structures showed V oc from 230 to 490 mV and J sc 0.28 to 5.70 mA/cm 2 , under illumination of AM1.5 radiation using a solar simulator

  19. Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature

    Directory of Open Access Journals (Sweden)

    Ningyu Ren

    2017-05-01

    Full Text Available ITO/Ag/ITO (IAI trilayer films were deposited on glass substrate by radio frequency magnetron sputtering at room temperature. A high optical transmittance over 94.25% at the wavelength of 550 nm and an average transmittance over the visual region of 88.04% were achieved. The calculated value of figure of merit (FOM reaches 80.9 10-3 Ω-1 for IAI films with 15-nm-thick Ag interlayer. From the morphology and structural characterization, IAI films could show an excellent correlated electric and optical performance if Ag grains interconnect with each other on the bottom ITO layer. These results indicate that IAI trilayer films, which also exhibit low surface roughness, will be well used in optoelectronic devices.

  20. Optical absorption properties of Ag/SiO sub 2 composite films induced by gamma irradiation

    CERN Document Server

    Pan, A L; Yang, Z P; Liu, F X; Ding, Z J; Qian, Y T

    2003-01-01

    Mesoporous SiO sub 2 composite films with small Ag particles or clusters dispersed in them were prepared by a new method: first the matrix SiO sub 2 films were prepared by the sol-gel process combined with the dip-coating technique; then they were soaked in AgNO sub 3 solutions; this was followed by irradiation with gamma-rays at room temperature and ambient pressure. The structure of these films was examined by high-resolution transmission electron microscopy, and their optical absorption spectra were examined. It has been shown that the Ag particles grown within the porous SiO sub 2 films are very small and are highly dispersed. On increasing the soaking concentration and subjecting the samples to an additional annealing, a different peak-shift effect for the surface plasmon resonance was observed in the optical absorption measurement. Possible mechanisms of this behaviour are discussed in this paper.

  1. Photovoltaic Properties and Ultrafast Plasmon Relaxation Dynamics of Diamond-Like Carbon Nanocomposite Films with Embedded Ag Nanoparticles

    DEFF Research Database (Denmark)

    Tamulevičius, Sigitas; Meškinis, Šarūnas; Peckus, Domantas

    2017-01-01

    accordance with an increase of the DLC:Ag/Si heterojunction short circuit current and open circuit voltage with the excitation wavelength in the photovoltaic measurements. The dependence of the TAS spectra of DLC:Ag films and photovoltaic properties of DLC:Ag/Si heterostructures on the excitation wavelength......Ultrafast relaxation dynamics of diamond-like carbon (DLC) films with embedded Ag nanoparticles (DLC:Ag) and photovoltaic properties of heterojunctions consisting of DLC:Ag and crystalline silicon (DLC:Ag/Si) were investigated by means of transient absorption (TAS) spectroscopy and photovoltaic...... measurements. The heterojunctions using both p type and n type silicon were studied. It was found that TAS spectra of DLC:Ag films were dependent on the used excitation wavelength. At wavelengths where Ag nanoparticles absorbed light most intensively, only DLC signal was registered. This result is in good...

  2. Photovoltaic Properties and Ultrafast Plasmon Relaxation Dynamics of Diamond-Like Carbon Nanocomposite Films with Embedded Ag Nanoparticles.

    Science.gov (United States)

    Meškinis, Šarūnas; Peckus, Domantas; Vasiliauskas, Andrius; Čiegis, Arvydas; Gudaitis, Rimantas; Tamulevičius, Tomas; Yaremchuk, Iryna; Tamulevičius, Sigitas

    2017-12-01

    Ultrafast relaxation dynamics of diamond-like carbon (DLC) films with embedded Ag nanoparticles (DLC:Ag) and photovoltaic properties of heterojunctions consisting of DLC:Ag and crystalline silicon (DLC:Ag/Si) were investigated by means of transient absorption (TAS) spectroscopy and photovoltaic measurements. The heterojunctions using both p type and n type silicon were studied. It was found that TAS spectra of DLC:Ag films were dependent on the used excitation wavelength. At wavelengths where Ag nanoparticles absorbed light most intensively, only DLC signal was registered. This result is in good accordance with an increase of the DLC:Ag/Si heterojunction short circuit current and open circuit voltage with the excitation wavelength in the photovoltaic measurements. The dependence of the TAS spectra of DLC:Ag films and photovoltaic properties of DLC:Ag/Si heterostructures on the excitation wavelength was explained as a result of trapping of the photoexcited hot charge carriers in DLC matrix. The negative photovoltaic effect was observed for DLC:Ag/p-Si heterostructures and positive ("conventional") for DLC:Ag/n-Si ones. It was explained by the excitation of hot plasmonic holes in the Ag nanoparticles embedded into DLC matrix. Some decrease of DLC:Ag/Si heterostructures photovoltage as well as photocurrent with DLC:Ag film thickness was observed, indicating role of the interface in the charge transfer process of photocarriers excited in Ag nanoparticles.

  3. Tailoring the surface chemical bond states of the NbN films by doping Ag: Achieving hard hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ping; Zhang, Kan; Du, Suxuan [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Meng, Qingnan [College of Construction Engineering, Jilin University, Changchun, 130026 (China); He, Xin [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Wang, Shuo [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Wen, Mao, E-mail: wenmao225@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Zheng, Weitao, E-mail: WTZheng@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China)

    2017-06-15

    Highlights: • Intrinsically hydrophilic NbN films can transfer to hydrophobic Nb-Ag-N films by doping Ag atoms into NbN sublattice. • Solute Ag can promote that the hydrophobic Ag{sub 2}O groups formed on the Nb-Ag-N film surface through self-oxidation. • The present work may provide a straightforward approach for the production of robust hydrophobic ceramic surfaces. - Abstract: Robust hydrophobic surfaces based on ceramics capable of withstanding harsh conditions such as abrasion, erosion and high temperature, are required in a broad range of applications. The metal cations with coordinative saturation or low electronegativity are commonly chosen to achieve the intrinsically hydrophobic ceramic by reducing Lewis acidity, and thus the ceramic systems are limited. In this work, we present a different picture that robust hydrophobic surface with high hardness (≥20 GPa) can be fabricated through doping Ag atoms into intrinsically hydrophilic ceramic film NbN by reactive co-sputtering. The transition of wettability from hydrophilic to hydrophobic of Nb-Ag-N films induced by Ag doping results from the appearance of Ag{sub 2}O groups on the films surfaces through self-oxidation, because Ag cations (Ag{sup +}) in Ag{sub 2}O are the filled-shell (4d{sup 10}5S{sup 0}) electronic structure with coordinative saturation that have no tendency to interact with water. The results show that surface Ag{sub 2}O benefited for hydrophobicity comes from the solute Ag atoms rather than precipitate metal Ag, in which the more Ag atoms incorporated into Nb-sublattice are able to further improve the hydrophobicity, whereas the precipitation of Ag nanoclusters would worsen it. The present work opens a window for fabricating robust hydrophobic surface through tailoring surface chemical bond states by doping Ag into transition metal nitrides.

  4. Silver films over silica microspheres (AgFOSM) as SERS substrates

    Science.gov (United States)

    Flores-Romero, E.; Rodríguez-Sevilla, E.; Cheang-Wong, J. C.

    2018-02-01

    Through the years, nanosphere lithography (NSL) has attracted a growing interest because of its potential to manufacture a wide variety of homogeneous arrays of nanostructures. In this work, NSL was used for the fabrication of Surface-Enhanced Raman Spectroscopy (SERS) substrates. The proposed Raman-SERS substrates consist of 50 nm or 120 nm thick silver thin films evaporated over a monolayer of silica microspheres (AgFOSM) onto silicon or quartz substrates. The samples were tested as SERS substrates using Rhodamine 6G as analyte. As a comparison and to determine the Raman enhancement factor, not only the AgFOSM samples were measured, but also we studied similar samples obtained when the Ag film is directly deposited onto the silicon or quartz substrate. Our results show that the R6G Raman signal is always more intense by two or three orders of magnitude for the AgFOSM samples than for the Ag maskless ones. In the case of the 120 nm thick Ag films, the calculated enhancement factors for the AgFOSM samples are of the order of 104 for both silicon and quartz substrates.

  5. The optical and mechanical properties of PVA-Ag nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    El-Shamy, A.G.; Attia, W.; Abd El-Kader, K.M., E-mail: kamalmarei@yahoo.com

    2014-03-25

    Highlights: • We prepared PVA -Ag composite films which used in different filed of applications. • The XRD results showed Ag nanoparticles entering the polymer PVA matrix. • Optical band gap as a result of doping has been found to be reduced significantly. • Young's modulus increases while the strain decreases due to increasing Ag content. -- Abstract: Poly (vinyl alcohol) (PVA) loaded silver (Ag) nanoparticles were successfully prepared by chemical reduction methods. The synthesized nanoparticles are characterized using UV–visible spectrophotometer, X-ray diffractometer (XRD) and Transmission electron microscope (TEM). The contents of the inorganic phase in the nanocomposites were determined by using atomic absorption spectroscopy (AA) for silver, and were found to be 0.2, 0.4, 0.8 and 1.5 wt.%. Optical absorption studies in the wavelength range 190–900 nm showed additional peak at 420 nm for differently doped films, in addition to the peak at 200 nm for undoped PVA film. There is observable change in the absorbed intensity at 420 nm with filling levels. This is due to the link between the Ag metal ion and the polymer OH- groups. The indirect energy gaps were calculated. It was found that Young’s modulus and the strength at the break increase, while the energy gaps and the strain decrease as the concentration of Ag content is increased. The XRD results showed that the Ag nanoparticles entering the polymer PVA matrix and the crystallinity was strongly influenced by the amount of Ag nanoparticles. The electron diffraction image for the highest concentration sample shows the crystalline nature of the silver metal nanoparticles. TEM of the nanocomposite films revealed the presence of Ag particles with average diameter of 12 nm.

  6. Photodegradation properties and optics of Ag/TiO2 films

    International Nuclear Information System (INIS)

    Tirado G, S.; Valenzuela Z, M. A.

    2016-10-01

    In the thin semiconductor films of Ag/TiO 2 the topographic properties were recorded by atomic force microscopy and the main parameters of roughness were determined; the optical properties were also recorded when determining their transmittance degree, their refractive indexes, their thickness and the bandwidth of the semiconductor Eg, both for pure TiO 2 films and the modified Ag/TiO 2 films with various layers of the Ag catalyst. The Ag/TiO 2 films that were grown by sol-gel and repeated immersion, chemical technique that has been used in the development of thin film technology, were carried out in photo catalysis, when are used in photo degradation of methyl orange at an aqueous concentration of 14 ppm, once they are characterized with several techniques required to be able to explain the possible photo catalytic reactions at the solid-aqueous interface, when irradiated with UV; with the possible application in water treatment. The photoluminescence spectra of the prepared Ag/TiO 2 samples are reported, which resulted in a green emission, characteristic of the visible, in addition to emissions in the UV range. (Author)

  7. Ag induced modifications on WO3 films studied by AFM, Raman and x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bittencourt, C; Llobet, E; Ivanov, P; Vilanova, X; Correig, X; Silva, M A P; Nunes, L A O; Pireaux, J J

    2004-01-01

    In this paper, the morphology, vibrational spectra and electronic properties of WO 3 films loaded with different levels of Ag, prepared by screen printing onto Si substrates and annealed in air at 600 deg. C were investigated. AFM micrography showed that the films are grain-like, and the grain size increases with an increase in the Ag loading level. Raman spectroscopy results showed the formation of a AgWO 3 bronze structure that results in a more stable film. X-ray photoelectron spectroscopy results showed that the Ag concentration is 1.8 times higher than the nominal concentration indicating that Ag diffuses to the WO 3 grain surface. No strong electronic interaction between the Ag clusters and the WO 3 grains was found. Sensors fabricated with the WO 3 : Ag films exhibited a significant increase in their sensitivity and selectivity towards NO 2 detection

  8. The influence of PdO content on circular photocurrent in resistive Ag/Pd films

    Science.gov (United States)

    Saushin, A. S.; Zonov, R. G.; Mikheev, K. G.; Aleksandrovich, E. V.; Mikheev, G. M.

    2016-09-01

    We have studied the influence of PdO content in resistive Ag/Pd films (consisting of this oxide and Ag-Pd solid solution) on photocurrent dependent on the sign of circular polarization of the exciting radiation. The photocurrent was excited by nanosecond pulsed laser radiation with a 532 nm wavelength and measured in the direction perpendicular to the plane of laser beam incidence onto the film. The content of PdO in the film was varied by electrolytic reduction of Pd from PdO in sulfuric acid solution. Raman spectroscopy and X-ray diffraction measurements showed that reduced PdO content in the film leads to nonlinear decrease in the magnitude of photocurrent. It is established that photocurrent is also observed when PdO is fully absent on the film surface. The obtained results suggest that the nature of photocurrent in Ag/Pd films is related to the structure of Ag-Pd solid solution.

  9. TEM investigation of the topotactic reaction of (001) and (111) Ag films and Te

    International Nuclear Information System (INIS)

    Safran, G.; Geszti, O.; Radnoczi, G.

    2002-01-01

    The formation, structure and morphology of Ag 2 Te phase developed by the reaction of single crystalline Ag films with subsequently vacuum deposited Te vapour was investigated. Silver films 30-40 nm in thickness were deposited at 85-120 grad C by thermal evaporation in vacuum at a base pressure of 4x10 -5 mbar. The NaCl substrates were cleaved and saw-cut in order to achieve (001) and (111) surfaces, respectively. The surfaces were treated with water and chlorine prior to Ag deposition. This preparation resulted in single crystalline Ag films of (001) and (111) orientation. Tellurium was deposited onto the silver at a rate about 0.1 nm/s at 200 grad C i.e. above the temperature of the polymorphic phase transformation from monoclinic to fcc (T c =150 grad C). The Ag-Te reaction occurred during the Te deposition. The samples were investigated by TEM and SAED in a 200 kV Philips CM 20 electron microscope equipped with a Ge detector Noran EDS system. In the fully tellurized layers, however, the monoclinic (low temperature) Ag 2 Te phase was found. It exhibited large single crystals consisting of strictly oriented mosaic grains of 1-2 mm size. Surprisingly, the orientation of the telluride was identical (010) on both the (001) and (111) Ag parent films. It is suggested that the final orientation appears during the polymorphic phase transition while cooling to room temperature, regardless to Ag orientation, due to the lower surface energy of the (010) orientation of monoclinic phase nuclei. (Authors)

  10. Synthesis and characterization of Ag doped TiO{sub 2} heterojunction films and their photocatalytic performances

    Energy Technology Data Exchange (ETDEWEB)

    Demirci, Selim, E-mail: selim.demirci@marmara.edu.tr [Marmara University, Department of Metallurgical and Materials Engineering, Kadiköy, 34722 Istanbul (Turkey); Dikici, Tuncay [Izmir Katip Celebi University, Department of Materials Science and Engineering, Cigli, 35620 Izmir (Turkey); Yurddaskal, Metin [Department of Metallurgical and Materials Engineering, Dokuz Eylul University, 35390 Izmir (Turkey); Center for Fabrication and Application of Electronic Materials, Dokuz Eylul University, 35390 Izmir (Turkey); Gultekin, Serdar [Department of Nanoscience and Nanoengineering, Dokuz Eylul University, 35390 İzmir (Turkey); Experimental Science Applications and Research Center, Celal Bayar University, 45140 Manisa (Turkey); Toparli, Mustafa; Celik, Erdal [Department of Metallurgical and Materials Engineering, Dokuz Eylul University, 35390 Izmir (Turkey); Department of Nanoscience and Nanoengineering, Dokuz Eylul University, 35390 İzmir (Turkey); Center for Fabrication and Application of Electronic Materials, Dokuz Eylul University, 35390 Izmir (Turkey)

    2016-12-30

    Highlights: • Ag doped TiO{sub 2} films were successfully synthesized by sol–gel spin coating method. • Ag in TiO{sub 2} lattice enters in intermediate states to decrease TiO{sub 2} bandgap energy. • Ag dopants increase the photoactivity and superhydrophilicity. • The degradation kinetics of methylene blue was studied. • The 0.7 mol% of Ag was found to be the optimum concentration. - Abstract: In this study, undoped and silver (Ag) doped titanium dioxide (TiO{sub 2}) films were successfully synthesized by sol-gel spin coating technique on the Si substrates. Photocatalytic activities of the TiO{sub 2} films with different Ag content were investigated for the degradation of methylene blue (MB) under UV light irradiation. The crystal phase structure, surface morphology, chemical and optical properties of Ag-doped TiO{sub 2} films were characterized using an X-ray diffractometer (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV–vis spectrophotometer, and FTIR spectrophotometer. The results showed that the Ag-doped TiO{sub 2} films calcined at 500 °C had the crystalline anatase phases and the surface morphologies with some cracks. Ag substitution into TiO{sub 2} matrix enhanced the photocatalytic activity of TiO{sub 2} films under UV light irradiation as compared to the undoped TiO{sub 2} film. Furthermore, the results indicated that the 0.7% Ag doped TiO{sub 2} film exhibited a superior photocatalytic activity than that of undoped and other Ag-doped TiO{sub 2} films. This study demonstrated the potential of an application of Ag doped films to efficiently treat dissolved organic contaminants in water.

  11. Structural and optical properties of (Ag,Cu)(In,Ga)Se2 polycrystalline thin film alloys

    International Nuclear Information System (INIS)

    Boyle, J. H.; Shafarman, W. N.; Birkmire, R. W.; McCandless, B. E.

    2014-01-01

    The structural and optical properties of pentenary alloy (Ag,Cu)(In,Ga)Se 2 polycrystalline thin films were characterized over the entire compositional range at a fixed (Cu + Ag)/(In + Ga) ratio. Films deposited at 550 °C on bare and molybdenum coated soda-lime glass by elemental co-evaporation in a single-stage process with constant incident fluxes exhibit single phase chalcopyrite structure, corresponding to 122 spacegroup (I-42d) over the entire compositional space. Unit cell refinement of the diffraction patterns show that increasing Ag substitution for Cu, the refined a o lattice constant, (Ag,Cu)-Se bond length, and anion displacement increase in accordance with the theoretical model proposed by Jaffe, Wei, and Zunger. However, the refined c o lattice constant and (In,Ga)-Se bond length deviated from theoretical expectations for films with mid-range Ag and Ga compositions and are attributed to influences from crystallographic bond chain ordering or cation electronegativity. The optical band gap, derived from transmission and reflection measurements, widened with increasing Ag and Ga content, due to influences from anion displacement and cation electronegativity, as expected from theoretical considerations for pseudo-binary chalcopyrite compounds.

  12. Production of porous PTFE-Ag composite thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kecskeméti, Gabriella; Hopp, Béla; Smausz, Tomi; Tóth, Zsolt; Szabó, Gábor

    2012-01-01

    The suitability of pulsed laser deposition technique for preparation of polytetrafluoroethylene (PTFE) and silver (Ag) composite thin films was demonstrated. Disk-shaped targets combined from silver and Teflon with various percentages were ablated with pulses of an ArF excimer laser. The chemical composition of the deposited layers was estimated based on deposition rates determined for the pure PTFE and Ag films. EDX and SEM analyses using secondary electron and backscattered electron images proved that the morphology of the layers is determined by the PTFE which is the main constituent and it is transferred mostly in form of grains and clusters forming a sponge-like structure with high specific surface. The Ag content is distributed over the surface of the PTFE structure. Contact angle measurements showed that with increasing the amount of Ag in the deposited layers the surface significantly enhanced the wetting properties. Conductivity experiments demonstrated that when the average silver content of the layers was increased from 0.16 to 3.28 wt% the resistance of our PTFE-Ag composite films decreased with about three orders of magnitudes (from ∼10 MΩ to ∼10 kΩ). The properties of these films suggest as being a good candidate for future electrochemical sensor applications.

  13. Effect of deposition time of sputtering Ag-Cu thin film on mechanical and antimicrobial properties

    Science.gov (United States)

    Purniawan, A.; Hermastuti, R.; Purwaningsih, H.; Atmono, T. M.

    2018-04-01

    Metallic implants are important components in biomedical treatment. However, post-surgery infection often occurs after installation of implant. The infections are usually treated by antibiotics, but it still causes several secondary problems. As a prevention treatment, the surgical instruments and implants must be in a sterile condition. This action is still not optimal too because the material still can attract the bacteria. From material science point of view, it can be anticipated by developing a type of material which has antibacterial properties or called antimicrobial material. Silver (Ag) and Copper (Cu) have antimicrobial properties to prevent the infection. In this research, the influence of deposition time of Ag-Cu thin film deposition process as antimicrobial material with Physical Vapor Deposition (PVD) RF Sputtering method was analyzed. Deposition time used were for 10, 15 and 20 minutes in Argon gas pressure around 3 x 10-2 mbar in during deposition process. The morphology and surface roughness of Ag-Cu thin film were characterized using SEM and AFM. Based on the results, the deposition time influences the quality morphology that the thin films have good homogeneity and complete structure for longer deposition time. In addition, from roughness measurement results show that increase deposition time decrease the roughness of thin film. Antimicrobial performance was analyzed using Kirby Bauer Test. The results show that all of sample have good antimicrobial inhibition. Adhesion quality was evaluated using Rockwell C Indentation Test. However, the results indicate that the Ag-Cu thin film has low adhesion strength.

  14. Two-step flash light sintering process for crack-free inkjet-printed Ag films

    International Nuclear Information System (INIS)

    Park, Sung-Hyeon; Kim, Hak-Sung; Jang, Shin; Lee, Dong-Jun; Oh, Jehoon

    2013-01-01

    In this paper, a two-step flash light sintering process for inkjet-printed Ag films is investigated with the aim of improving the quality of sintered Ag films. The flash light sintering process is divided into two steps: a preheating step and a main sintering step. The preheating step is used to remove the organic binder without abrupt vaporization. The main sintering step is used to complete the necking connections among the silver nanoparticles and achieve high electrical conductivity. The process minimizes the damage on the polymer substrate and the interface between the sintered Ag film and polymer substrate. The electrical conductivity is calculated by measuring the resistance and cross-sectional area with an LCR meter and 3D optical profiler, respectively. It is found that the resistivity of the optimal flash light-sintered Ag films (36.32 nΩ m), which is 228.86% of that of bulk silver, is lower than that of thermally sintered ones (40.84 nΩ m). Additionally, the polyimide film used as the substrate is preserved with the inkjet-printed pattern shape during the flash light sintering process without delamination or defects. (paper)

  15. Fabrication of Ag, FeNi, Cu Thin Film for Magnetic Sensor

    International Nuclear Information System (INIS)

    Subarkah; Trimarji Atmono

    2003-01-01

    It has been fabricated a Ag, FeNi, Cu thin film by sputtering method. The thin film material is deposited on the glass substrate heated from 100 o C to 400 o C having dimensions of 2.5 x 1 cm 2 . The sputtering time of Ag, FeNi and Cu materials are 10 minutes respectively operating voltage is 2.5 kV and electrode distance 2.5 cm. The FeNi material is alloy having ratio 70% : 30%, that is the best composition formed by previous observer. On the glass substrate, there are four layers such as: the first is FeNi, second Cu, third FeNi, and the fourth, Ag. During the sputtering process the power was 40 Watts (2 kV, 20 mA). The thin film Ag, FeNi, CuFeNi was varied for variation of sputtering to get the optimum conditions of parameter process. From the sputtering result, it was produced thin films having resistivity R o in range of 5 to 48 Ohm (magnetron operating varied magnetic field). To measure resistance influenced the external magnetic field the thin film yields was put on the external magnetic field included four points probe system. The result showed that there was some changes of the resistances (R o - R)/ R o % between 10 to 14 % with error 7 - 10 %. (author)

  16. Structural and Mechanical Properties of Nanostructured C-Ag Thin Films Synthesized by Thermionic Vacuum Arc Method

    Directory of Open Access Journals (Sweden)

    Rodica Vladoiu

    2018-01-01

    Full Text Available Nanostructured C-Ag thin films of 200 nm thickness were successfully synthesized by the Thermionic Vacuum Arc (TVA method. The influence of different substrates (glass, silicon wafers, and stainless steel on the microstructure, morphology, and mechanical properties of nanostructured C-Ag thin films was characterized by High-Resolution Transmission Electron Microscopy (HRTEM, Scanning Electron Microscopy (SEM, Atomic Force Microscopy (AFM, and TI 950 (Hysitron nanoindenter equipped with Berkovich indenter, respectively. The film’s hardness deposited on glass (HC-Ag/Gl = 1.8 GPa was slightly lower than in the case of the C-Ag film deposited on a silicon substrate (HC-Ag/Si = 2.2 GPa. Also the apparent elastic modulus Eeff was lower for C-Ag/Gl sample (Eeff = 100 GPa than for C-Ag/Si (Eeff = 170 GPa, while the values for average roughness are Ra=2.9 nm (C-Ag/Si and Ra=10.6 (C-Ag/Gl. Using the modulus mapping mode, spontaneous and indentation-induced aggregation of the silver nanoparticles was observed for both C-Ag/Gl and C-Ag/Si samples. The nanocomposite C-Ag film exhibited not only higher hardness and effective elastic modulus, but also a higher fracture resistance toughness to the silicon substrate compared to the glass substrate.

  17. Nano-galvanic coupling for enhanced Ag+ release in ZrCN-Ag films : Antibacterial application

    NARCIS (Netherlands)

    Calderon, S.; Ferreri, I.; Henriques, M.; De Hosson, J. T. M.; Cavaleiro, A.; Carvalho, S.

    2016-01-01

    The antibacterial properties of materials developed for medical devices with embedded silver nanoparticles are enhanced by controlling the release of silver ions. In this study, a simple experimental procedure for the augmentation of the silver ion release from ZrCN-Ag coatings is described. The

  18. Spontaneous nano-gap formation in Ag film using NaCl sacrificial layer for Raman enhancement

    Science.gov (United States)

    Min, Kyungchan; Jeon, Wook Jin; Kim, Youngho; Choi, Jae-Young; Yu, Hak Ki

    2018-03-01

    We report the method of fabrication of nano-gaps (known as hot spots) in Ag thin film using a sodium chloride (NaCl) sacrificial layer for Raman enhancement. The Ag thin film (20–50 nm) on the NaCl sacrificial layer undergoes an interfacial reaction due to the AgCl formed at the interface during water molecule intercalation. The intercalated water molecules can dissolve the NaCl molecules at interfaces and form the ionic state of Na+ and Cl‑, promoting the AgCl formation. The Ag atoms can migrate by the driving force of this interfacial reaction, resulting in the formation of nano-size gaps in the film. The surface-enhanced Raman scattering activity of Ag films with nano-size gaps has been investigated using Raman reporter molecules, Rhodamine 6G (R6G).

  19. Ag-Cu nanoalloyed film as a high-performance cathode electrocatalytic material for zinc-air battery

    OpenAIRE

    Lei, Yimin; Chen, Fuyi; Jin, Yachao; Liu, Zongwen

    2015-01-01

    A novel Ag50Cu50 film electrocatalyst for oxygen reduction reaction (ORR) was prepared by pulsed laser deposition (PLD) method. The electrocatalyst actually is Ag-Cu alloyed nanoparticles embedded in amorphous Cu film, based on transmission electron microscopy (TEM) characterization. The rotating disk electrode (RDE) measurements provide evidence that the ORR proceed via a four-electron pathway on the electrocatalysts in alkaline solution. And it is much more efficient than pure Ag catalyst. ...

  20. Magnetotransport and coupling in nanostructured Co/Ag thin films

    International Nuclear Information System (INIS)

    Bracho Rodriguez, G.J.; Pereira, L.G.; Miranda, M.G.M.; Antunes, A.B.; Baibich, M.N.

    2000-01-01

    We have studied the electrical resistivity and giant magnetoresistance (GMR) of [Co(15 A)/Ag(45 A)] 20 /Ag(45 A) multilayers treated at different annealing temperatures. A simulation based on a formal solution of the Boltzmann equation for the electrical resistivity was performed, and the results compared to the experimental results from 4.2 to 300 K. The simulation shows that both the mean free paths and the transmission coefficients are affected by the breaking of the magnetic layers: at lower annealing temperatures, on account of stress relief and other related processes, the mean free paths increase, but the minority spin mean free path for electrons decreases for anneals above 324 deg. C. A simple parameter to measure the coupling present in spin valve systems is proposed. This shows a decrease of the coupling in the first stages of the anneals, with a sudden increase in coupling upon breaking the magnetic layers

  1. Magnetotransport and coupling in nanostructured Co/Ag thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bracho Rodriguez, G.J.; Pereira, L.G.; Miranda, M.G.M.; Antunes, A.B.; Baibich, M.N. E-mail: mbaibich@if.ufrgs.br

    2000-05-01

    We have studied the electrical resistivity and giant magnetoresistance (GMR) of [Co(15 A)/Ag(45 A)]{sub 20}/Ag(45 A) multilayers treated at different annealing temperatures. A simulation based on a formal solution of the Boltzmann equation for the electrical resistivity was performed, and the results compared to the experimental results from 4.2 to 300 K. The simulation shows that both the mean free paths and the transmission coefficients are affected by the breaking of the magnetic layers: at lower annealing temperatures, on account of stress relief and other related processes, the mean free paths increase, but the minority spin mean free path for electrons decreases for anneals above 324 deg. C. A simple parameter to measure the coupling present in spin valve systems is proposed. This shows a decrease of the coupling in the first stages of the anneals, with a sudden increase in coupling upon breaking the magnetic layers.

  2. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    Directory of Open Access Journals (Sweden)

    Ruijin Hong

    2017-01-01

    Full Text Available Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD, optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B molecules based on the Au/graphene oxide/Ag sandwich nanostructure substrate were obviously enhanced due to the bimetal layer and GO layer with tunable absorption intensity and fluorescence quenching effects.

  3. Fabrication of flexible superhydrophobic films by lift-up soft-lithography and decoration with Ag nanoparticles

    International Nuclear Information System (INIS)

    Yao Tongjie; Wang Chuanxi; Lin Quan; Li Xiao; Chen Xiaolu; Wu Jie; Zhang Junhu; Yang Bai; Yu Kui

    2009-01-01

    Superhydrophobic films with excellent flexibility have been fabricated by combining the lift-up soft-lithography technique and chemical reduction of [Ag(NH 3 ) 2 ] + ions to Ag nanoparticles (NPs) on the surface of silica spheres which are patterned on the polydimethylsiloxane (PDMS) films. Scanning electron microscopy (SEM) images reveal the presence of raspberry-like hierarchical structures on the PDMS films. The influence of the amount of Ag NPs and the size of the silica spheres on the wettability of the soft films is investigated carefully. Because PDMS films are elastomeric materials, our superhydrophobic films offer great flexibility. The resulting films can be easily transferred from one substrate surface to another without destroying their superhydrophobicity. These flexible and superhydrophobic films can be used repeatedly to satisfy a wide range of applications.

  4. Morphology and N₂ Permeance of Sputtered Pd-Ag Ultra-Thin Film Membranes.

    Science.gov (United States)

    Fernandez, Ekain; Sanchez-Garcia, Jose Angel; Viviente, Jose Luis; van Sint Annaland, Martin; Gallucci, Fausto; Tanaka, David A Pacheco

    2016-02-10

    The influence of the temperature during the growth of Pd-Ag films by PVD magnetron sputtering onto polished silicon wafers was studied in order to avoid the effect of the support roughness on the layer growth. The surfaces of the Pd-Ag membrane films were analyzed by atomic force microscopy (AFM), and the results indicate an increase of the grain size from 120 to 250-270 nm and film surface roughness from 4-5 to 10-12 nm when increasing the temperature from around 360-510 K. After selecting the conditions for obtaining the smallest grain size onto silicon wafer, thin Pd-Ag (0.5-2-µm thick) films were deposited onto different types of porous supports to study the influence of the porous support, layer thickness and target power on the selective layer microstructure and membrane properties. The Pd-Ag layers deposited onto ZrO₂ 3-nm top layer supports (smallest pore size among all tested) present high N₂ permeance in the order of 10(-6) mol·m(-2)·s(-1)·Pa(-1) at room temperature.

  5. Morphology and N2 Permeance of Sputtered Pd-Ag Ultra-Thin Film Membranes

    Directory of Open Access Journals (Sweden)

    Ekain Fernandez

    2016-02-01

    Full Text Available The influence of the temperature during the growth of Pd-Ag films by PVD magnetron sputtering onto polished silicon wafers was studied in order to avoid the effect of the support roughness on the layer growth. The surfaces of the Pd-Ag membrane films were analyzed by atomic force microscopy (AFM, and the results indicate an increase of the grain size from 120 to 250–270 nm and film surface roughness from 4–5 to 10–12 nm when increasing the temperature from around 360–510 K. After selecting the conditions for obtaining the smallest grain size onto silicon wafer, thin Pd-Ag (0.5–2-µm thick films were deposited onto different types of porous supports to study the influence of the porous support, layer thickness and target power on the selective layer microstructure and membrane properties. The Pd-Ag layers deposited onto ZrO2 3-nm top layer supports (smallest pore size among all tested present high N2 permeance in the order of 10−6 mol·m−2·s−1·Pa−1 at room temperature.

  6. The role of the interface on the magnetic behaviour of granular Fe50Ag50 film

    International Nuclear Information System (INIS)

    Fdez-Gubieda, M.L.; Sarmiento, G.; Fernandez Barquin, L.; Orue, I.

    2007-01-01

    The magnetic behaviour of a Fe 50 Ag 50 granular thin film has been studied by means of AC and DC magnetic measurements. Exchange coupling between magnetic nanoparticles appears at T=<200K decreasing the coercive field of the sample. Additionally, an exchange bias is observed at low temperature related to the existence of a spin disordered interface around the nanoparticles

  7. Synthesis of Ag and Au nanoparticles embedded in carbon film: Optical, crystalline and topography analysis

    Science.gov (United States)

    Gholamali, Hediyeh; Shafiekhani, Azizollah; Darabi, Elham; Elahi, Seyed Mohammad

    2018-03-01

    Atomic force microscopy (AFM) images give valuable information about surface roughness of thin films based on the results of power spectral density (PSD) through the fast Fourier transform (FFT) algorithms. In the present work, AFM data are studied for silver and gold nanoparticles (Ag NPs a-C: H and Au NPs a-C: H) embedded in amorphous hydrogenated carbon films and co-deposited on glass substrate via of RF-Sputtering and RF-Plasma Enhanced Chemical Vapor Deposition methods. Here, the working gas is acetylene and the targets are Ag and Au. While time and power are constant, the only variable parameter in this study is initial pressure. In addition, the crystalline structure of Ag NPs a-C: H and Au NPs a-C: H are studied using X-ray diffraction (XRD). UV-visible spectrophotometry will also investigate optical properties and localized surface plasmon resonance (LSPR) of samples.

  8. Deposition of Pd–Ag thin film membranes on ceramic supports for hydrogen purification/separation

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.I. [Centre of Physics, University of Minho, Campus Azurém, 4800-058 (Portugal); Pérez, P.; Rodrigues, S.C.; Mendes, A.; Madeira, L.M. [LEPAE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Tavares, C.J., E-mail: ctavares@fisica.uminho.pt [Centre of Physics, University of Minho, Campus Azurém, 4800-058 (Portugal)

    2015-01-15

    Highlights: • Thin film Pd–Ag membranes have been produced for hydrogen selectivity. • Magnetron sputtering yields Pd–Ag compact films for atomic H diffusion. • The thin film Pd–Ag membranes yielded a selectivity of α (H{sub 2}/N{sub 2}) = 10. - Abstract: Pd–Ag based membranes supported on porous α-Al{sub 2}O{sub 3} (doped with yttria-stabilized zirconia) were studied for hydrogen selective separation. Magnetron sputtering technique was employed for the synthesis of thin film membranes. The hydrogen permeation flux is affected by the membrane columnar structure, which is formed during deposition. From scanning electron microscopy analysis, it was observed that different sputtering deposition pressures lead to distinct columnar structure growth. X-ray diffraction patterns provided evidence of a Pd–Ag solid solution with an average crystallite domain size of 21 nm, whose preferential growth can be altered by the deposition pressure. The gas-permeation results have shown that the Pd–Ag membrane supported on porous α-Al{sub 2}O{sub 3} is selective toward H{sub 2}. For optimized membrane synthesis conditions, the permeance toward N{sub 2} is 0.076 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1} at room temperature, whereas for a pressure difference of 300 kPa the H{sub 2}-flux is of the order of ca. 0.21 mol m{sup −2} s{sup −1}, which corresponds to a permeance of 0.71 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1}, yielding a selectivity of α (H{sub 2}/N{sub 2}) = 10. These findings suggest that the membrane has a reasonable capacity to selectively permeate this gas.

  9. Deposition of Pd–Ag thin film membranes on ceramic supports for hydrogen purification/separation

    International Nuclear Information System (INIS)

    Pereira, A.I.; Pérez, P.; Rodrigues, S.C.; Mendes, A.; Madeira, L.M.; Tavares, C.J.

    2015-01-01

    Highlights: • Thin film Pd–Ag membranes have been produced for hydrogen selectivity. • Magnetron sputtering yields Pd–Ag compact films for atomic H diffusion. • The thin film Pd–Ag membranes yielded a selectivity of α (H 2 /N 2 ) = 10. - Abstract: Pd–Ag based membranes supported on porous α-Al 2 O 3 (doped with yttria-stabilized zirconia) were studied for hydrogen selective separation. Magnetron sputtering technique was employed for the synthesis of thin film membranes. The hydrogen permeation flux is affected by the membrane columnar structure, which is formed during deposition. From scanning electron microscopy analysis, it was observed that different sputtering deposition pressures lead to distinct columnar structure growth. X-ray diffraction patterns provided evidence of a Pd–Ag solid solution with an average crystallite domain size of 21 nm, whose preferential growth can be altered by the deposition pressure. The gas-permeation results have shown that the Pd–Ag membrane supported on porous α-Al 2 O 3 is selective toward H 2 . For optimized membrane synthesis conditions, the permeance toward N 2 is 0.076 × 10 −6 mol m −2 s −1 Pa −1 at room temperature, whereas for a pressure difference of 300 kPa the H 2 -flux is of the order of ca. 0.21 mol m −2 s −1 , which corresponds to a permeance of 0.71 × 10 −6 mol m −2 s −1 Pa −1 , yielding a selectivity of α (H 2 /N 2 ) = 10. These findings suggest that the membrane has a reasonable capacity to selectively permeate this gas

  10. Thin film galvanic cell with RbAg4I5 solid electrolyte

    International Nuclear Information System (INIS)

    Bodnaruk, L.I.; Danilov, A.V.; Kulinkovich, V.E.; Aleskovskij, V.B.

    1975-01-01

    In order to decrease the size and weight and to increase the specific capacity and energy of galvanic cells, some solid electrolytes in the form of thin films are proposed. The galvanic cells were prepared by a combined method: the cathodic and anodic materials (Te and Ag) were evaporated under vacuo to cover an electrolyte layer, the latter being obtained by impregnating the porous materials with RbAg 4 I 5 acetonic solution. The most specific charge curves of the galvanic cells at various current densities are given: specific energy of the samples was 0.2 to 0.7 watt-h/kg, their capacity being 0.1 to 0.2 mah. Behaviour of the cells when stored (that of Ag(RbAg 4 I 5 ) interface in particular) was investigated, namely, the effect of the storage time on the capacity and internal resistance of the galvanic cell

  11. Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging.

    Science.gov (United States)

    Sarwar, Muhammad Salman; Niazi, Muhammad Bilal Khan; Jahan, Zaib; Ahmad, Tahir; Hussain, Arshad

    2018-03-15

    Antimicrobial packaging is an area of emerging interest and is rapidly expanding with application of nanotechnology. The present work investigates the effect of nanocellulose (NC) and Ag NPs on the physical, mechanical and thermal properties of PVA nanocomposite films. The tensile strength of PVA was improved from 5.52 ± 0.27 MPa to 12.32 ± 0.61 MPa when filled with 8 wt% of NC. Nanocomposite films exhibited strong antibacterial activity against both Staphylococcus aureus (MRSA) and Escherichia coli (DH5-alpha). The maximum inhibition zone at 0.5 g Ag NPs with 12 wt% NC against DH5-alpha was 14 ± 0.70 mm. While, the maximum inhibition zone at 0.3 g Ag NPs for 16 wt% NC was 13.6 ± 0.68 mm against MRSA. Moreover, nanocomposites films have no cytotoxicity effect on HepG2 and cell viability was more than 90%. Based on mechanical properties and antibacterial potential of the developed nanocomposite films, it can be envisaged to use these films for packaging applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Growth and characterization of ultrathin epitaxial MnO film on Ag(001)

    Science.gov (United States)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2016-07-01

    We present here a comprehensive growth procedure to obtain a well-ordered MnO(001) ultrathin film on Ag(001) substrate. Depending upon the oxygen partial pressure during the growth, different phases of manganese oxide have been detected by Low Energy Electron Diffraction (LEED) and X-ray Photoelectron Spectroscopic (XPS) studies. A modified growth scheme has been adopted to get well-ordered and stoichiometric MnO(001) ultrathin film. The detailed growth mechanism of epitaxial MnO film on Ag(001) has been studied step by step, using LEED and XPS techniques. Observation of sharp (1 × 1) LEED pattern with a low inelastic background, corresponds to a long-range atomic order with low defect densities indicating the high structural quality of the film. The Mn 2p and Mn 3s core-level spectra confirm the oxidation state as well as the stoichiometry of the grown MnO films. Apart from the growth optimization, the evolution of strain relaxation of the MnO(001) film with film thickness has been explored.

  13. Helicity-dependent photocurrent in the resistive Ag/Pd films excited by IR laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mikheev, G M; Saushin, A S; Vanyukov, V V [Institute of Mechanics, Ural Branch of the Russian Academy of Sciences, Izhevsk (Russian Federation)

    2015-07-31

    It is shown that in resistive Ag/Pd films manufactured according to the thick-film technology, in the case of oblique incidence of laser radiation of nanosecond duration at a wavelengths of 1350 – 2100 nm, a photon-drag photocurrent arises in the direction perpendicular to the plane of incidence, dependent on the ellipticity and sign of circular polarisation of incident radiation. This photocurrent consists of the so-called circular and linear contributions, which are, respectively, dependent on and independent of the sign of circular polarisation. In this wavelength range, the amplitude of the circular contribution is many times greater than that of the linear contribution. The results allow the use of resistive Ag/Pd films for the development and manufacture of innovative sensors of the sign of circular polarisation of pulsed laser radiation, operating in a wide spectral range. (interaction of laser radiation with matter. laser plasma)

  14. A silicon superlens with a simple design working at visible wavelengths

    Science.gov (United States)

    Fu, Liwei; Frenner, Karsten; Li, Huiyu; Osten, Wolfgang

    2016-04-01

    Nano-imaging has imposed a fundamental impact on the development of nanoscience and technology. The demands for direct subwavelength imaging in far field have been significantly increased. Such a superlens needs first to be able to collect the near field information, and then transform it into the far field with magnification and low image distortion. In this contribution we demonstrate a superlens with a novel design for far field observation at visible wavelengths. The lens is based on a silicon half cylinder with several micrometers in size. Without any structuring, the silicon semicylinder can already work as a lens with high resolving power due to its high refractive index. A distance of 280 nm between two incoherent dipoles immersed in water can be well resolved at a wavelength of 640 nm. Deep subwavelength imaging with magnification can be achieved when the flat surface of the semi-cylinder is structured with periodic plasmonic grating. When a ridge of the grating is centered at the optical axis of the lens, a local magnification factor of 10 can be obtained and the smallest resolvable distance between two point dipoles in water is around 120 nm at 640 nm wavelength. Moreover, this superlens also works at other visible wavelengths with a similar performance.

  15. Crystal and electronic structure study of AgAu and AgCu bimetallic alloy thin films by X-ray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ozkendir, O. Murat, E-mail: ozkendir@gmail.com [Mersin University, Faculty of Technology, Energy Systems Engineering, Tarsus (Turkey); Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Cengiz, E. [Karadeniz Technical University, Faculty of Science, Department of Physics, Trabzon (Turkey); Yalaz, E. [Mersin University, Institute of Natural Science, Department of Nanotechnology and Advanced Materials, Mersin (Turkey); Söğüt, Ö.; Ayas, D.H. [Kahramanmaraş Sütçü İmam Üniversitesi, Faculty of Science and Letters, Department of Physics, Kahramanmaraş (Turkey); Thammajak, B. Nirawat [Synchrotron Light Research Institute (Public Organisation), 111 University Avenue, T. Suranaree, A. Muang, Nakhon Ratchasima 30000 (Thailand)

    2016-05-15

    Highlights: • Crystal and electronic properties of bimetallic AgCu and AgAu alloy thin films were studied. • Both AgCu and AgAu bimetallic samples were determined to have cubic crystal geometry. • Strong influence of Cu and Au atoms on the electronic structure of the Ag atoms were determined. - Abstract: Crystal and electronic structure properties of bimetallic AgAu and AgCu alloy thin films were investigated by X-ray spectroscopic techniques. The aim of this study is to probe the influence of Au or Cu atoms on the electronic behaviors of Ag ions in bimetallic alloy materials that yields different crystal properties. To identify the mechanisms causing crystal phase transitions, study were supported by the collected EXAFS (Extended X-ray Absorption Fine Structure) data. Crystal structures of both Cu and Au doped bimetallic Ag samples were determined mainly in cubic geometry with “Fm3m” space group. Through the Ag–Au and Ag–Cu molecular interactions during bimetallic alloy formations, highly overlapped electronic levels that supports large molecular band formations were observed with different ionization states. Besides, traces of the d–d interactions in Au rich samples were determined as the main interplay in the broad molecular bond formations. The exact atomic locations and types in the samples were determined by EXAFS studies and supported by the performed calculations with FEFF scientific code.

  16. Atomic scale analysis of phase formation and diffusion kinetics in Ag/Al multilayer thin films

    Science.gov (United States)

    Aboulfadl, Hisham; Gallino, Isabella; Busch, Ralf; Mücklich, Frank

    2016-11-01

    Thin films generally exhibit unusual kinetics leading to chemical reactions far from equilibrium conditions. Binary metallic multilayer thin films with miscible elements show some similar behaviors with respect to interdiffusion and phase formation mechanisms. Interfacial density, lattice defects, internal stresses, layer morphologies and deposition conditions strongly control the mass transport between the individual layers. In the present work, Ag/Al multilayer thin films are used as a simple model system, in which the effects of the sputtering power and the bilayer period thickness on the interdiffusion and film reactions are investigated. Multilayers deposited by DC magnetron sputtering undergo calorimetric and microstructural analyses. In particular, atom probe tomography is extensively used to provide quantitative information on concentration gradients, grain boundary segregations, and reaction mechanisms. The magnitude of interdiffusion was found to be inversely proportional to the period thickness for the films deposited under the same conditions, and was reduced using low sputtering power. Both the local segregation at grain boundaries as well as pronounced non-equilibrium supersaturation effects play crucial roles during the early stages of the film reactions. For multilayers with small periods of 10 nm supersaturation of the Al layers with Ag precedes the polymorphic nucleation and growth of the hcp γ-Ag2Al phase. In larger periods the γ phase formation is triggered at junctions between grain boundaries and layers interfaces, where the pathway to heterogeneous nucleation is local supersaturation. Other Ag-rich phases also form as intermediate phases due to asymmetric diffusion rates of parent phases in the γ phase during annealing.

  17. Conformable Skin-Like Conductive Thin Films with AgNWs Strips for Flexible Electronic Devices

    Directory of Open Access Journals (Sweden)

    Yuhang SUN

    2015-08-01

    Full Text Available Keeping good conductivity at high stretching strain is one of the main requirements for the fabrication of flexible electronic devices. The elastic nature of siloxane-based elastomers enables many innovative designs in wearable sensor devices and non-invasive insertion instruments, including skin-like tactile sensors. Over the last few years, polydimethylsiloxane (PDMS thin films have been widely used as the substrates in the fabrication of flexible electronic devices due to their good elasticity and outstanding biocompatibility. However, these kind of thin films usually suffer poor resistance to tearing and insufficient compliance to curved surfaces, which limits their applications. Currently no three-dimensionally mountable tactile sensor arrays have been reported commercially available. In this work, we developed a kind of mechanically compliant skin-like conductive thin film by patterning silver nano wire traces in strip-style on Dragon Skin® (DS substrates instead of PDMS. High cross- link quality was achieved then. To further improve the conductivity, a thin gold layer was coated onto the silver nanowires (AgNWs strips. Four different gold deposition routines have been designed and investigated by using different E-beam and spin coating processing methods. Owning to the intrinsically outstanding physical property of the Dragon Skin material and the uniform embedment built in the gold deposition processes, the DS/AgNWs thin films showed convincible advantages over PDMS/AgNWs thin films in both mechanical capability and conductive stability. Through experimental tests, the DS/AgNWs electrode thin films were proven to be able to maintain high conductivity following repeated linear deformations.

  18. Preparation of mesoporous Ag-containing TiO{sub 2} heterojunction film and its photocatalytic property

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q. Y., E-mail: wangqingyao0532@163.com [Ludong University, School of Chemistry and Materials Science (China); Qiao, J. L. [Jilin Agricultural University, College of Horticulture (China); Cui, X. Y. [Mudanjiang Medical University, School of Public Health (China); Zhong, J. S. [Hangzhou Dianzi University, College of Materials and Environmental Engineering (China); Xu, Y. B.; Zhang, S. H.; Zhang, Q. H.; Chang, P.; Li, M.; Zhang, C.; Gao, S. M., E-mail: gaosm@ustc.edu [Ludong University, School of Chemistry and Materials Science (China)

    2015-03-15

    Mesoporous Ag/TiO{sub 2} heterojunction films (Ag-MTHF) with enhanced photocatalytic activity were synthesized by a three-step approach including an electrochemical anodization technique followed by successive ionic layer adsorption and reaction (SILAR) and solvothermal methods. The distribution of Ag nanoparticles on the inner structure of the mesoporous TiO{sub 2} film was confirmed by field emission scanning electron (FE-SEM) and transmission electron microscopes (TEM). The formation progress of the novel mesoporous Ag/TiO{sub 2} nanojunction film with Ag average diameter of 17 nm was illuminated. The formed nanojunction between Ag and TiO{sub 2} nanoparticles largely enhanced the photocatalytic degradation of methyl orangey (MO), and the corresponding mechanism was proposed.

  19. Structural and Solar Cell Properties of a Ag-Containing Cu2ZnSnS4Thin Film Derived from Spray Pyrolysis.

    Science.gov (United States)

    Nguyen, Thi Hiep; Kawaguchi, Takato; Chantana, Jakapan; Minemoto, Takashi; Harada, Takashi; Nakanishi, Shuji; Ikeda, Shigeru

    2018-02-14

    A silver (Ag)-incorporated kesterite Cu 2 ZnSnS 4 (CZTS) thin film was fabricated by a facile spray pyrolysis method. Crystallographic analyses indicated successful incorporation of various amounts of Ag up to a Ag/(Ag + Cu) ratio of ca. 0.1 into the crystal lattice of CZTS in a homogeneous manner without formation of other impurity compounds. From the results of morphological investigations, Ag-incorporated films had larger crystal grains than the CZTS film. The sample with a relatively low Ag content (Ag/(Ag + Cu) of ca. 0.02) had a compact morphology without appreciable voids and pinholes. However, an increase in the Ag content in the CZTS film (Ag/(Ag + Cu) ca. 0.10) induced the formation of a large number of pinholes. As can be expected from these morphological properties, the best sunlight conversion efficiency was obtained by the solar cell based on the film with Ag/(Ag + Cu) of ca. 0.02. Electrostructural analyses of the devices suggested that the Ag-incorporated film in the device achieved reduction in the amounts of unfavorable copper on zinc antisite defects compared to the bare CZTS film. Moreover, the use of a Ag-incorporated film improved band alignment at the CdS(buffer)-CZTS interface. These alterations should also contribute to enhancement of device properties.

  20. Optical nonlinearities in Ag/BaTiO{sub 3} multi-layer nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Yang Guang [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)], E-mail: gyang@hust.edu.cn; Zhou Youhua [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Physics and Information Engineering, Jianghan University, Wuhan 430056 (China); Long Hua; Li Yuhua; Yang Yifa [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2007-07-31

    The multi-layer structure of barium titanate composite thin films containing Ag nanoparticles were grown on MgO (100) substrates using pulsed laser deposition technique under the nitrogen pressure of 7.4 Pa. The X-ray photoelectron spectroscopy analysis indicated that the samples were composed of metal Ag embedded in the BaTiO{sub 3} matrices. The optical absorption properties were measured from 300 nm to 800 nm, and the absorption peaks due to the surface plasmon resonance of Ag particles were observed. With the increasing of Ag concentration in composite films, the peak absorption increased and shifted to longer wavelength (red-shift). Furthermore, the third-order optical nonlinearities of the films were determined by z-scan method and the nonlinear refractive index, n{sub 2}, and nonlinear absorption coefficient, {beta}, were determined to be about - 1.91 x 10{sup -13} m{sup 2}/W and - 5.80 x 10{sup -7} m/W, respectively.

  1. Characterization of chemically deposited Ag/sub 2/S thin films

    International Nuclear Information System (INIS)

    Choudhury, M.G.M.; Rahman, M.M; Shahjahan, M.; Hossain, M.S.; Muhibbullah, M.; Uddin, M.A.; Banu, D.A.

    2001-01-01

    Silver Sulphide (Ag/sub 2/S) thin films were prepared by the chemical deposition method on glass substrates. Films of different thickness were deposited at room temperature. The films obtained were found to the uniform, pin-hole free and strongly adherent to the substrates. Films were characterized by X-$D, Hall effect, dc conductivity, thermoelectric power and optical measurements. X-RD revealed that as deposited films are amorphous with some microcrystalline structure. Hall effect measurement shows that the material deposited is n-type semiconductor with carrier concentration of the order of 10/sup 14/ cm/sup -3/. The dc dark conductivity shows two distinct conduction regions. The conductivity increases quite sharply above a transition temperature. Tt and below Tt the conductivity is weakly activated process with hopping via localized states. Above Tt the activation energy is quite high and the conduction may be due to impurity states to extended states. From the nature of variation of thermoelectric power with temperature it was found that in this material the position of Fermi level lie above the conduction band for thicker films and below the conduction band for relatively thinner films. The optical band gap of the films has been calculated from the transmittance spectra. The evaluated optical band gap E/sup opt/ was found to be about 1.1 eV and the value do not change much with film thickness. The refractive index, extinction coefficient and dielectric constants have also been evaluated from the transmission measurements. (author)

  2. Structuring of DLC:Ag nanocomposite thin films employing plasma chemical etching and ion sputtering

    Science.gov (United States)

    Tamulevičius, Tomas; Tamulevičienė, Asta; Virganavičius, Dainius; Vasiliauskas, Andrius; Kopustinskas, Vitoldas; Meškinis, Šarūnas; Tamulevičius, Sigitas

    2014-12-01

    We analyze structuring effects of diamond like carbon based silver nanocomposite (DLC:Ag) thin films by CF4/O2 plasma chemical etching and Ar+ sputtering. DLC:Ag films were deposited employing unbalanced reactive magnetron sputtering of silver target with Ar+ in C2H2 gas atmosphere. Films with different silver content (0.6-12.9 at.%) were analyzed. The films (as deposited and exposed to plasma chemical etching) were characterized employing scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDS), optical microscopy, ultraviolet-visible light (UV-VIS) spectroscopy and Fourier transform infrared (FTIR) spectroscopy. After deposition, the films were plasma chemically etched in CF4/O2 mixture plasma for 2-6 min. It is shown that optical properties of thin films and silver nano particle size distribution can be tailored during deposition changing the magnetron current and C2H2/Ar ratio or during following plasma chemical etching. The plasma etching enabled to reveal the silver filler particle size distribution and to control silver content on the surface that was found to be dependent on Ostwald ripening process of silver nano-clusters. Employing contact lithography and 4 μm period mask in photoresist or aluminum the films were patterned employing CF4/O2 mixture plasma chemical etching, direct Ar+ sputtering or combined etching processes. It is shown that different processing recipes result in different final grating structures. Selective carbon etching in CF4/O2 gas mixture with photoresist mask revealed micrometer range lines of silver nanoparticles, while Ar+ sputtering and combined processing employing aluminum mask resulted in nanocomposite material (DLC:Ag) micropatterns.

  3. Combinatorial magnetron sputtering of AgFeO2 thin films with the delafossite structure

    OpenAIRE

    Mao, Fang; Nyberg, Tomas; Thersleff, Thomas; Andersson, Anna; Jansson, Ulf

    2016-01-01

    The main objective of this study is to demonstrate the strength of the combinatorial approach to rapidly and effectively identify suitable process parameters for the synthesis of AgFeO2 filmswith layered delafossite structure. (00l)- textured delafossite AgFeO2 thin films have been successfully deposited for the first time without post-annealing by magnetron sputtering from elemental silver and iron targets in a reactive Ar-O-2 atmosphere. Gradient filmswith a wide composition range were depo...

  4. Electrically tunable window based on microwrinkled ZnO/Ag thin film

    Science.gov (United States)

    Shrestha, Milan; Asundi, Anand; Lau, Gih-Keong

    2017-04-01

    Micro-winkling can turn a transparent thin-film of zinc oxide (ZnO) to be `opaque' that can be reversed by unfolding to restore back to the clear state. This principle was previously used to make a mechanically tunable window device. However, ZnO thin film cannot make a compliant electrode to enable electrical unfolding due to its insulator nature. This paper reports the use of multilayer thin films of 10nm silver (Ag) and 30nm thick ZnO to form a compliant electrode with electrically tunable transmittance. A dielectric elastomer actuator (DEA) with a pair of such compliant Ag/ZnO thin films on both sides of a polyacrylate elastomeric membrane (3M VHB 4910) makes an electrically tunable window device. The DEA without radial compression of the elastomer has wrinkle-free electrode. Hence, it is clear with a 47% in-line transmittance (for 550nm wavelength light). In the wrinkled form, under 10% radial compression, it becomes opaque (with less than 1% transmittance). A voltage induced areal expansion of 10% radial strain enables the electrical unfolding of the initial wrinkles. In addition, this device continues to work after 4000 cycles of unfolding and microwrinkling of Ag/ZnO. The performance of electrically tunable window device is comparable to the existing smart window technologies.

  5. Photodegradation properties and optics of Ag/TiO{sub 2} films; Propiedades de fotodegradacion y opticas de peliculas Ag/TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tirado G, S. [IPN, Escuela Superior de Fisica y Matematicas, San Pedro Zacatenco, 07738 Ciudad de Mexico (Mexico); Valenzuela Z, M. A., E-mail: tirado@esfm.ipn.mx [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Laboratorio de Catalisis y Materiales, San Pedro Zacatenco, 07738 Ciudad de Mexico (Mexico)

    2016-10-15

    In the thin semiconductor films of Ag/TiO{sub 2} the topographic properties were recorded by atomic force microscopy and the main parameters of roughness were determined; the optical properties were also recorded when determining their transmittance degree, their refractive indexes, their thickness and the bandwidth of the semiconductor Eg, both for pure TiO{sub 2} films and the modified Ag/TiO{sub 2} films with various layers of the Ag catalyst. The Ag/TiO{sub 2} films that were grown by sol-gel and repeated immersion, chemical technique that has been used in the development of thin film technology, were carried out in photo catalysis, when are used in photo degradation of methyl orange at an aqueous concentration of 14 ppm, once they are characterized with several techniques required to be able to explain the possible photo catalytic reactions at the solid-aqueous interface, when irradiated with UV; with the possible application in water treatment. The photoluminescence spectra of the prepared Ag/TiO{sub 2} samples are reported, which resulted in a green emission, characteristic of the visible, in addition to emissions in the UV range. (Author)

  6. MOCVD ZnO/Screen Printed Ag Back Reflector for Flexible Thin Film Silicon Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Amornrat Limmanee

    2014-01-01

    Full Text Available We have prepared Ag back electrode by screen printing technique and developed MOCVD ZnO/screen printed Ag back reflector for flexible thin film silicon solar cell application. A discontinuity and poor contact interface between the MOCVD ZnO and screen printed Ag layers caused poor open circuit voltage (Voc and low fill factor (FF; however, an insertion of a thin sputtered ZnO layer at the interface could solve this problem. The n type hydrogenated amorphous silicon (a-Si:H film is preferable for the deposition on the surface of MOCVD ZnO film rather than the microcrystalline film due to its less sensitivity to textured surface, and this allowed an improvement in the FF. The n-i-p flexible amorphous silicon solar cell using the MOCVD ZnO/screen printed Ag back reflector showed an initial efficiency of 6.2% with Voc=0.86 V, Jsc=12.4 mA/cm2, and FF = 0.58 (1 cm2. The identical quantum efficiency and comparable performance to the cells using conventional sputtered Ag back electrode have verified the potential of the MOCVD ZnO/screen printed Ag back reflector and possible opportunity to use the screen printed Ag thick film for flexible thin film silicon solar cells.

  7. Optical chirality in AgCl-Ag thin films through formation of laser-induced planar crossed-chain nanostructures

    Science.gov (United States)

    Nahal, Arashmid; Kashani, Somayeh

    2017-09-01

    Irradiation of AgCl-Ag thin films by a linearly polarized He-Ne laser beam results in the formation of self-organized periodic nanostructures. As a result of secondary irradiation of the initially exposed sample by the same linearly polarized He-Ne laser beam, but with different orientations of polarization, a complex crossed-chain nanostructure forms. We found that such a complex nanostructure has noticeable chirality and increased optical anisotropy, resulting in optical activity of the sample. Double exposure produces two gratings, crossing each other with angle α, which leads to the formation of crossed building blocks with chiroptical effects. It is established that the amount and the sign of the angle between the two laser-induced gratings (±α) determine the amount and the direction of rotation of the linearly polarized probe beam, respectively. We have also observed an induced anisotropy-dependent ellipticity for the probe light, which is passed through the sample. It is shown that the amount of ellipticity depends on the angle α.

  8. Physical properties and characterization of Ag doped CdS thin films

    International Nuclear Information System (INIS)

    Shah, N.A.; Nazir, A.; Mahmood, W.; Syed, W.A.A.; Butt, S.; Ali, Z.; Maqsood, A.

    2012-01-01

    Highlights: ► CdS thin films were grown. ► By ion exchange, Ag was doped. ► Physical properties were investigated. - Abstract: Thin films of cadmium sulfide with very well defined preferential orientation and relatively high absorption coefficient were fabricated by thermal evaporation technique. The research is focused to the fabrication and characterization of the compositional data of CdS thin films obtained by using X-ray diffraction, scanning electron microscope along with energy dispersive X-ray spectroscopy. The optical properties were studied by using a UV-VIS-NIR spectrophotometer. The effects of silver-doping by ion exchange process on the properties of as-deposited CdS thin films have been investigated.

  9. Synthesis of Ag ion-implanted TiO{sub 2} thin films for antibacterial application and photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xinggang, E-mail: hou226@mail.tjnu.edu.cn [Department of Physics, Tianjin Normal University, Tianjin 300387 (China); Ma, Huiyan; Liu, Feng; Deng, Jianhua; Ai, Yukai; Zhao, Xinlei; Mao, Dong; Li, Dejun [Department of Physics, Tianjin Normal University, Tianjin 300387 (China); Liao, Bin [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China)

    2015-12-15

    Highlights: • Implanted TiO{sub 2} films with excellent antibacterial and photocatalytic ability was prepared. • Bactericidal effect of released Ag ions was confirmed using VC as radical scavenger. • Excitation of TiO{sub 2} to visible region is attributed to subtitutional Ag. • Synergetic effect of Ag{sup 3+} and Ag{sup +} accounts for the enhanced ability of TiO{sub 2}. - Abstract: TiO{sub 2} thin films were deposited by spin coating method. Silver ions were implanted into the films using a Metal Vapor Vacuum Arc implanter. The antibacterial ability of implanted films was tested using Escherichia coli removal under fluorescent irradiation and in the dark. The concentration of E. coli was evaluated by plating technique. The photocatalytic efficiency of the implanted films was studied by degradation of methyl orange under fluorescent illumination. The surface free energy of the implanted TiO{sub 2} films was calculated by contact angle testing. Vitamin C was used as radical scavengers to explore the antibacterial mechanism of the films. The results supported the model that both generation of reactive oxygen species and release of silver ions played critical roles in the toxic effect of implanted films against E. coli. XPS experimental results demonstrated that a portion of the Ag(Ag{sup 3+}) ions were doped into the crystalline lattice of TiO{sub 2}. As demonstrated by density functional theory calculations, the impurity energy level of subtitutional Ag was responsible for enhanced absorption of visible light. Ag ion-implanted TiO{sub 2} films with excellent antibacterial efficiency against bacteria and decomposed ability against organic pollutants could be potent bactericidal surface in moist environment.

  10. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    Science.gov (United States)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  11. The effect of hydrogen on the conductivity of Ag-Pd thick film resistors

    Science.gov (United States)

    Aleksandrov, V. A.; Kalyuzhnyi, D. G.; Aleksandrovich, E. V.

    2013-01-01

    The resistance of silver-palladium thick film resistors decreases and their surface conduction type changes upon heating in a flow of hydrogen at temperatures within 50-100°C or hydrogenation in an aqueous acid electrolyte at room temperature. These effects are due to the reduction of PdO (present in the Ag-Pd film) to Pd by hydrogen entering into the resistor material. In the electrolyte, the resistance of samples starts decreasing at the moment of the current being switched on.

  12. Morphology and grain structure evolution during epitaxial growth of Ag films on native-oxide-covered Si surface

    International Nuclear Information System (INIS)

    Hur, Tae-Bong; Kim, Hong Koo; Perello, David; Yun, Minhee; Kulovits, Andreas; Wiezorek, Joerg

    2008-01-01

    Epitaxial nanocrystalline Ag films were grown on initially native-oxide-covered Si(001) substrates using radio-frequency magnetron sputtering. Mechanisms of grain growth and morphology evolution were investigated. An epitaxially oriented Ag layer (∼5 nm thick) formed on the oxide-desorbed Si surface during the initial growth phase. After a period of growth instability, characterized as kinetic roughening, grain growth stagnation, and increase of step-edge density, a layer of nanocrystalline Ag grains with a uniform size distribution appeared on the quasi-two-dimensional layer. This hierarchical process of film formation is attributed to the dynamic interplay between incoming energetic Ag particles and native oxide. The cyclic interaction (desorption and migration) of the oxide with the growing Ag film is found to play a crucial role in the characteristic evolution of grain growth and morphology change involving an interval of grain growth stagnation

  13. Ag-Incorporated Organic-Inorganic Perovskite Films and Planar Heterojunction Solar Cells.

    Science.gov (United States)

    Chen, Qi; Chen, Lei; Ye, Fengye; Zhao, Ting; Tang, Feng; Rajagopal, Adharsh; Jiang, Zheng; Jiang, Shenlong; Jen, Alex K-Y; Xie, Yi; Cai, Jinhua; Chen, Liwei

    2017-05-10

    Controlled doping for adjustable material polarity and charge carrier concentration is the basis of semiconductor materials and devices, and it is much more difficult to achieve in ionic semiconductors (e.g., ZnO and GaN) than in covalent semiconductors (e.g., Si and Ge), due to the high intrinsic defect density in ionic semiconductors. The organic-inorganic perovskite material, which is frenetically being researched for applications in solar cells and beyond, is also an ionic semiconductor. Here we present the Ag-incorporated organic-inorganic perovskite films and planar heterojunction solar cells. Partial substitution of Pb 2+ by Ag + leads to improved film morphology, crystallinity, and carrier dynamics as well as shifted Fermi level and reduced electron concentration. Consequently, in planar heterojunction photovoltaic devices with inverted stacking structure, Ag incorporation results in an enhancement of the power conversion efficiency from 16.0% to 18.4% in MAPbI 3 based devices and from 11.2% to 15.4% in MAPbI 3-x Cl x based devices. Our work implies that Ag incorporation is a feasible route to adjust carrier concentrations in solution-processed perovskite materials in spite of the high concentration of intrinsic defects.

  14. Preparation and Properties of Double-Sided AgNWs/PVC/AgNWs Flexible Transparent Conductive Film by Dip-Coating Process.

    Science.gov (United States)

    Chen, Cui-Yu; Jing, Mao-Xiang; Pi, Zhi-Chao; Zhu, Sheng-Wen; Shen, Xiang-Qian

    2015-12-01

    The double-sided transparent conductive films of AgNWs/PVC/AgNWs using the silver nanowires and PVC substrate were fabricated by the dip-coating process followed by mechanical press treatment. The morphological and structural characteristics were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM), the photoelectric properties and mechanical stability were measured by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer, four-point probe technique, 3M sticky tape test, and cyclic bending test. The results indicate that the structure and photoelectric performances of the AgNWs films were mainly affected by the dipping and lifting speeds. At the optimized dipping speed of 50 mm/min and lifting speed of 100 mm/min, the AgNWs are evenly distributed on the surface of the PVC substrate, and the sheet resistance of AgNWs film on both sides of PVC is about 60 Ω/sq, and the optical transmittance is 84.55 % with the figure of merit value up to 35.8. The film treated with the 10 MPa pressure shows excellent adhesion and low surface roughness of 17.8 nm and maintains its conductivity with the sheet resistance change of 17 % over 10,000 cyclic bends.

  15. Preparation and Properties of Double-Sided AgNWs/PVC/AgNWs Flexible Transparent Conductive Film by Dip-Coating Process

    Science.gov (United States)

    Chen, Cui-yu; Jing, Mao-xiang; Pi, Zhi-chao; Zhu, Sheng-wen; Shen, Xiang-qian

    2015-08-01

    The double-sided transparent conductive films of AgNWs/PVC/AgNWs using the silver nanowires and PVC substrate were fabricated by the dip-coating process followed by mechanical press treatment. The morphological and structural characteristics were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM), the photoelectric properties and mechanical stability were measured by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer, four-point probe technique, 3M sticky tape test, and cyclic bending test. The results indicate that the structure and photoelectric performances of the AgNWs films were mainly affected by the dipping and lifting speeds. At the optimized dipping speed of 50 mm/min and lifting speed of 100 mm/min, the AgNWs are evenly distributed on the surface of the PVC substrate, and the sheet resistance of AgNWs film on both sides of PVC is about 60 Ω/sq, and the optical transmittance is 84.55 % with the figure of merit value up to 35.8. The film treated with the 10 MPa pressure shows excellent adhesion and low surface roughness of 17.8 nm and maintains its conductivity with the sheet resistance change of 17 % over 10,000 cyclic bends.

  16. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    Science.gov (United States)

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-07-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet-visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films.

  17. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, S., E-mail: fujii.s.ap@m.titech.ac.jp [Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8522 (Japan); Department of Information and Communication System Engineering, National Institute of Technology, Okinawa College, Nago, Okinawa 905-2192 (Japan); Kawamura, S.; Maitani, M. M.; Suzuki, E.; Wada, Y. [Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8522 (Japan); Mochizuki, D. [Interdisciplinary Cluster for Cutting Edge Research, Center for Energy and Environmental Science, Shinshu University, Ueda, Nagano 386-8567 (Japan)

    2015-12-15

    Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  18. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    Directory of Open Access Journals (Sweden)

    S. Fujii

    2015-12-01

    Full Text Available Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  19. Large third-order optical nonlinearity in vertically oriented mesoporous silica thin films embedded with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Min; Liu, Qiming, E-mail: qmliu@whu.edu.cn [Wuhan University, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology (China)

    2016-12-15

    Taking advantage of the channel confinement of mesoporous films to prevent the agglomeration of Ag nanoparticles to achieve large third-order optical nonlinearity in amorphous materials, Ag-loaded composite mesoporous silica film was prepared by the electrochemical deposition method on ITO substrate. Ag ions were firstly transported into the channels of mesoporous film by the diffusion and binding force of channels, which were reduced to nanoparticles by applying suitable voltage. The existence and uniform distribution of Ag nanoparticles ranging in 1–10 nm in the mesoporous silica thin films were exhibited by UV spectrophotometer, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The third-order optical nonlinearity induced by Ag nanoparticles was studied by the Z-scan technique. Due to the local field surface plasmon resonance, the maximum third-order nonlinear optical susceptibility of Ag-loaded composite mesoporous silica film is 1.53×10{sup −10} esu, which is 1000 times larger than that of the Ag-contained chalcogenide glasses which showed large nonlinearity in amorphous materials.

  20. Circular photocurrent in Ag/Pd resistive films upon excitation by femtosecond laser pulses

    Science.gov (United States)

    Mikheev, G. M.; Saushin, A. S.; Vanyukov, V. V.; Mikheev, K. G.; Svirko, Yu. P.

    2016-11-01

    This paper presents the results of the experimental investigation of the generation of nanosecond photocurrent pulses in silver-palladium (Ag/Pd) resistive films under excitation by laser pulses with a duration of 120 fs at a wavelength of 795 nm. The photocurrent was detected in the direction perpendicular to the plane of incidence of the laser beam on the film. The 20-μm-thick films under investigation were a porous polycrystalline material consisting predominantly of nanocrystallites of the palladium oxide PdO and the Ag-Pd solid solution. The direction of the photocurrent observed in the films depends on the sign of the circular polarization of the incident radiation. It was found that the observed photocurrent depends on the angle of incidence in accordance with the odd law and consists of the circular and linear contributions, which are dependent on and independent of the sign of the circular polarization, respectively. It was shown that the circular photocurrent is significantly higher than the linear photocurrent. It was established that, for both the circular and linear polarizations, the photocurrent is directly proportional to the power of the excitation radiation. For the linearly polarized laser radiation, the photocurrent depends on the polarization angle in accordance with the odd law. The regularities revealed are consistent with the mechanism of the generation of transverse photocurrent with the photon drag effect.

  1. Transport properties and magnetic disorder/order transition in FexAg100-x films

    International Nuclear Information System (INIS)

    Bisero, D.; Angeli, E.; Pizzo, L.; Spizzo, F.; Vavassori, P.; Ronconi, F.

    2003-01-01

    We have studied the magnetic disorder/order transition in Fe x Ag 100-x films, with x varying from 10 to 30, focusing our attention on the interplay between transport and magnetic properties. The samples have been deposited by DC magnetron co-sputtering and analyzed by magneto-optic Kerr effect and magnetoresistance measurements, with external magnetic field applied both in and out of the film plane. Magnetization and magnetoresistive results indicate that for low Fe content (x<20) the system can be described as a granular isotropic superparamagnet. In the high concentration range (20< x≤30) the effect of local magnetic ordering emerges and the films can no longer be considered as granular. The presence of magnetic coherence on different length scales in this regime is discussed and related to coalescence of magnetic particles and clusters formation, with increasing Fe concentration above 20%. This value appears as a critical iron content around which the magnetic disorder/order transition occurs

  2. Synthesis of Ag ion-implanted TiO2 thin films for antibacterial application and photocatalytic performance.

    Science.gov (United States)

    Hou, Xinggang; Ma, Huiyan; Liu, Feng; Deng, Jianhua; Ai, Yukai; Zhao, Xinlei; Mao, Dong; Li, Dejun; Liao, Bin

    2015-12-15

    TiO2 thin films were deposited by spin coating method. Silver ions were implanted into the films using a Metal Vapor Vacuum Arc implanter. The antibacterial ability of implanted films was tested using Escherichia coli removal under fluorescent irradiation and in the dark. The concentration of E. coli was evaluated by plating technique. The photocatalytic efficiency of the implanted films was studied by degradation of methyl orange under fluorescent illumination. The surface free energy of the implanted TiO2 films was calculated by contact angle testing. Vitamin C was used as radical scavengers to explore the antibacterial mechanism of the films. The results supported the model that both generation of reactive oxygen species and release of silver ions played critical roles in the toxic effect of implanted films against E. coli. XPS experimental results demonstrated that a portion of the Ag(Ag(3+)) ions were doped into the crystalline lattice of TiO2. As demonstrated by density functional theory calculations, the impurity energy level of subtitutional Ag was responsible for enhanced absorption of visible light. Ag ion-implanted TiO2 films with excellent antibacterial efficiency against bacteria and decomposed ability against organic pollutants could be potent bactericidal surface in moist environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Ultraflexible Transparent Film Heater Made of Ag Nanowire/PVA Composite for Rapid-Response Thermotherapy Pads.

    Science.gov (United States)

    Lan, Wei; Chen, Youxin; Yang, Zhiwei; Han, Weihua; Zhou, Jinyuan; Zhang, Yue; Wang, Junya; Tang, Guomei; Wei, Yupeng; Dou, Wei; Su, Qing; Xie, Erqing

    2017-02-22

    Ultraflexible transparent film heaters have been fabricated by embedding conductive silver (Ag) nanowires into a thin poly(vinyl alcohol) film (AgNW/PVA). A cold-pressing method was used to rationally adjust the sheet resistance of the composite films and thus the heating powers of the AgNW/PVA film heaters at certain biases. The film heaters have a favorable optical transmittance (93.1% at 26 Ω/sq) and an outstanding mechanical flexibility (no visible change in sheet resistance after 10 000 bending cycles and at a radius of curvature ≤1 mm). The film heaters have an environmental endurance, and there is no significant performance degradation after being kept at high temperature (80 °C) and high humidity (45 °C, 80% humidity) for half a year. The efficient Joule heating can increase the temperature of the film heaters (20 Ω/sq) to 74 °C in ∼20 s at a bias of 5 V. The fast-heating characteristics at low voltages (a few volts) associated with its transparent and flexibility properties make the poly(dimethylsiloxane)/AgNW/PVA composite film a potential candidate in medical thermotherapy pads.

  4. Microstructure and thermoelectric properties of screen-printed thick-films of misfit-layered cobalt oxides with Ag addition

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Samson, Alfred Junio; Pryds, Nini

    2012-01-01

    Thermoelectric properties of thick (~60 μm) films prepared by a screen-printing technique using p-type misfit-layered cobalt oxide Ca3Co4O9+δ with Ag addition have been studied. The screen-printed films were sintered in air at various temperatures ranging from 973 K to 1223 K. After each sintering...

  5. Optical and Electrical Properties of Ag-Doped In2S3 Thin Films Prepared by Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Peijie Lin

    2014-01-01

    Full Text Available Ag-doped In2S3 (In2S3:Ag thin films have been deposited onto glass substrates by a thermal evaporation method. Ag concentration is varied from 0 at.% to 4.78 at.%. The structural, optical, and electrical properties are characterized using X-ray diffraction (XRD, spectrophotometer, and Hall measurement system, respectively. The XRD analysis confirms the existence of In2S3 and AgIn5S8 phases. With the increase of the Ag concentration, the band gap of the films is decreased gradually from 2.82 eV to 2.69 eV and the resistivity drastically is decreased from ~103 to 5.478×10-2 Ω·cm.

  6. Tunable Anisotropic Absorption of Ag-Embedded SiO2 Thin Films by Oblique Angle Deposition

    International Nuclear Information System (INIS)

    Xiu-Di, Xiao; Guo-Ping, Dong; Jian-Da, Shao; Zheng-Xiu, Fan; Hong-Bo, He; Hong-Ji, Qi

    2009-01-01

    Ag-embedded SiO 2 thin films are prepared by oblique angle deposition. Through field emission scanning electron microscopy (SEM), an orientated slanted columnar structure is observed. Energy-dispersive x-ray (EDX) analysis shows the Ag concentration is about 3% in the anisotropic SiO 2 matrix. Anisotropic surface plasma resonance (SPR) absorption is observed in the Ag-embedded SiO 2 thin films, which is dependent on polarization state and incidence angle of two orthogonal polarized lights and the deposition angle. This means that optical properties and anisotropic SPR absorption can be tunable in Ag-embedded SiO 2 thin films. Broadband polarization splitting is also observed and the transmission ratio T p /T s between p- and s-polarized lights is up to 2.7 for thin films deposited at α = 70°, which means that Ag-embedded SiO 2 thin films are a promising candidate for thin film polarizers. (condensed matter: structure, mechanical and thermal properties)

  7. Optical and structural properties of Cr and Ag thin films deposited on glass substrate

    Science.gov (United States)

    Rauf, A.; Ahmed, K.; Nasim, F.; Khan, A. N.; Gul, A.

    2016-08-01

    Most of the rotating or noting patterns are being developed by using silver plating through chemical coating. Silver layers deteriorate with the passage of time and become less reflective while undergo through cleaning process due to its softness and the results become unpredictable. In this paper an alternate method for development of above mentioned pattern has been demonstrated. Chromium (Cr) and Silver (Ag) thin films of 200nm and 160nm thick respectively have been realized using electron beam evaporation (PVD technique) on quartz substrate. Structural analysis has been carried out by XRD and SEM while optical transmission/reflection has been studied using spectrophotometer. XRD analysis shows that Ag coated thin films exhibit FCC structure while Cr coated thin films reveals a BCC structure. SEM analysis shows almost smooth and uniform surfaces in both cases. After passing through high and low temperature cycles it was found that the results of pattern structures developed by chromium coating were more reliable than obtained through silver platting process.

  8. Locally formation of Ag nanoparticles in chalcogenide phase change thin films induced by nanosecond laser pulses

    International Nuclear Information System (INIS)

    Huang, Huan; Zhang, Lei; Wang, Yang; Han, Xiaodong; Wu, Yiqun; Zhang, Ze; Gan, Fuxi

    2012-01-01

    A simple method to optically synthesize Ag nanoparticles in Ge 2 Sb 2 Te 5 phase change matrix is described. The fine structures of the locally formed phase change chalcogenide nanocomposite are characterized by high-resolution transmission electron microscopy. The formation mechanism of the nanocomposite is discussed with temperature evolution and distribution simulations. This easy-prepared metal nano-particle-embedded phase change microstructure will have great potential in nanophotonics applications, such as for plasmonic functional structures. This also provides a generalized approach to the preparation of well-dispersed nanoparticle-embedded composite thin films in principle. -- Highlights: ► We describe a method to prepare chalcogenide microstructures with Ag nanoparticles. ► We give the fine structural images of phase change nanocomposites. ► We discuss the laser-induced fusion mechanism by temperature simulation. ► This microstructure will have great potential in nanophotonics applications.

  9. Ion beam sputter deposition of Ag films: Influence of process parameters on electrical and optical properties, and average grain sizes

    International Nuclear Information System (INIS)

    Bundesmann, C.; Feder, R.; Gerlach, J.W.; Neumann, H.

    2014-01-01

    Ion beam sputter deposition is used to grow several sets of Ag films under systematic variation of ion beam parameters, such as ion species and ion energy, and geometrical parameters, such as ion incidence angle and polar emission angle. The films are characterized concerning their thickness by profilometry, their electrical properties by 4-point-probe-measurements, their optical properties by spectroscopic ellipsometry, and their average grain sizes by X-ray diffraction. Systematic influences of the growth parameters on film properties are revealed. The film thicknesses show a cosine-like angular distribution. The electrical resistivity increases for all sets with increasing emission angle and is found to be considerably smaller for Ag films grown by sputtering with Xe ions than for the Ag films grown by sputtering with Ar ions. Increasing the ion energy or the ion incidence angle also increases the electrical resistivity. The optical properties, which are the result of free charge carrier absorption, follow the same trends. The observed trends can be partly assigned to changes in the average grain size, which are tentatively attributed to different energetic and angular distributions of the sputtered and back-scattered particles. - Highlights: • Ion beam sputter deposition under systematic variation of process parameters. • Film characterization: thickness, electrical, optical and structural properties. • Electrical resistivity changes considerably with ion species and polar emission angle. • Electrical and optical data reveal a strong correlation with grain sizes. • Change of film properties related to changing properties of film-forming particles

  10. Effect of Ag doping on opto-electrical properties of CdS thin films for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Adnan, E-mail: adnan.nazir@iit.it [Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova (Italy); School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad (Pakistan); Toma, Andrea [Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova (Italy); Shah, Nazar Abbas [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Panaro, Simone [Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova (Italy); Butt, Sajid [Department of Materials Science and Engineering, Institute of Space Technology (IST), Islamabad 44000 (Pakistan); School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad (Pakistan); Sagar, Rizwan ur Rehman [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Raja, Waseem [Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova (Italy); Rasool, Kamran [Micro and Nano Devices Group, Department of Metallurgy and Materials Engineering Pakistan, Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 45650 (Pakistan); Maqsood, Asghari [Department of Physics, Air University, Islamabad (Pakistan)

    2014-10-01

    Highlights: • Polycrystalline CdS thin films are fabricated by means of Close Spaced Sublimation technique. • Ag is doped by simple ion-exchange technique in order to reduce resistivity of CdS thin films. • Remarkable reduction in resistivity without introducing many transparency losses. - Abstract: Cadmium sulfide (CdS) polycrystalline thin films of different thicknesses (ranging from 370 nm to 750 nm) were fabricated on corning glass substrates using Close Spaced Sublimation (CSS) technique. Optical and electrical investigation revealed that CdS thin films show an appreciable transparency (50–70% transmission) in visible range and a highly resistive behavior (10{sup 6} Ω cm). Samples were doped by silver (Ag) at different concentrations, using ion exchange technique, in order to reduce the resistivity of CdS thin films and to improve their efficiency as a window layer for solar cell application. The doping of Ag in pure CdS thin films resulted into an increase of surface roughness and a decrease both in electrical resistivity and in transparency. By optimizing annealing parameters, we were able to properly control the optical properties of the present system. In fact, the Ag doping of pure CdS films has led to a decrease of the sample resistivity by three orders of magnitude (10{sup 3} Ω cm) against a 20% cut in optical transmission.

  11. Synthesis of Ag doped SnO2 thin films for the evaluation of H2S gas sensing properties

    Science.gov (United States)

    Kolhe, Pankaj S.; Koinkar, Pankaj M.; Maiti, Namita; Sonawane, Kishor M.

    2017-11-01

    The Tin Oxide (SnO2) based thin films doped with 1.5, 3.0 and 4.5 mol% of Ag were deposited on the glass substrates using the advanced chemical spray pyrolysis technique. All the films were deposited at temperature 400 °C. The crystalline structure of the samples was analyzed by X-ray diffraction (XRD). All the XRD patterns of the films showed a well-defined polycrystalline phase, fitting well with the SnO2 tetragonal rutile type structure. The optical properties of the Ag doped SnO2 films were studied using UV-Visible absorption spectroscopy. The surface morphological analysis of as-synthesized Ag doped SnO2 films have been carried out using scanning electron microscope (SEM). The sensor response was estimated by the change in the electrical resistance of the film in the absence and presence of H2S gas. The sensor response and sensitivity in relation to, operation temperature and the gas concentration have been systematically studied. A significant response (∼ 1.38) and with a short response and recovery time (46 s, 110 s) towards 450 ppm H2S at 100 °C operating temperature is observed for the 3 mol% Ag-doped SnO2 film. This method offers a highly promising candidate for development of materials sensors due to facile fabrication route and desirable sensing performance.

  12. Temperature dependence of GMR and effect of annealing on electrodeposited Co-Ag granular films

    International Nuclear Information System (INIS)

    Garcia-Torres, Jose; Valles, Elisa; Gomez, Elvira

    2010-01-01

    The magnetoresistance of Co-Ag granular films composed of superparamagnetic and ferromagnetic particles was studied at different temperatures. The increase in the GMR values while decreasing temperature down to 20 K was quantified. The non-saturating behaviour of the MR(H) curves was retained even at the lowest measurement temperature, which was mainly attributed to the dipolar interaction among the superparamagnetic particles. The influence of the annealing conditions on the magnetoresistance was also studied. In all conditions, a decrease in the GMR values was measured being attributed to an increase in the particle size.

  13. Anisotropic flexible transparent films from remaining wood microstructures for screen protection and AgNW conductive substrate.

    Science.gov (United States)

    Tang, Qiheng; Fang, Lu; Wang, YunFei; Zou, Miao; Guo, Wenjing

    2018-03-01

    Flexible transparent conductive films or substrates prepared from plastics or cellulose are widely used in optoelectronic devices. However, all of these films or substrates are fabricated by complex and expensive methods, which consume much energy and time. In this work, we report for the first time a remarkably facile and effective approach for fabricating flexible transparent films directly from wood. The resulting films exhibit an array of exceptional optical and mechanical properties. The well-aligned cell structures in natural wood are maintained during delignification, leading to anisotropic films with high transparency (≈90% transmittance). These anisotropic films with well-aligned cell structures show mechanical tensile strengths higher than those of the original wood, and can be used as screen protection films for cellphones. Furthermore, ultrathin, highly transparent, and outstandingly conductive films have been prepared from such films and silver nanowires (AgNWs) using the Meyer technique. A conductive film with an optimal area density (341 mg m -2 ) of AgNWs showed outstanding synergistic properties, with a transmittance of 80% and a sheet resistance of 11 Ω sq -1 , equal to the conductivity of ITO. Of importance here is that the low-cost anisotropic transparent wood film shows promising potential for electronics applications in solar cells, flexible displays, and other products.

  14. Polypyrrole-poly(3,4-ethylenedioxythiophene)-Ag (PPy-PEDOT-Ag) nanocomposite films for label-free electrochemical DNA sensing.

    Science.gov (United States)

    Radhakrishnan, S; Sumathi, C; Umar, Ahmad; Jae Kim, Sang; Wilson, J; Dharuman, V

    2013-09-15

    The electrochemical DNA hybridization sensing of bipolymer polypyrrole and poly(3,4-ethylenedioxythiophene) (PPy-PEDOT) nanotubes functionalized with Ag nanoparticles has been investigated. The bipolymer nanotubes are prepared by simple chemical route and silver nanoparticles (Ag) further deposited over the PPy-PEDOT nanotubes to form PPy-PEDOT-Ag nanocomposite films. DNA labeled at 5'end using 6-mercapto-1-hexhane (HS-ssDNA) is immobilized on the PPy-PEDOT-Ag surface to form PPy-PEDOT-Ag-S-ssDNA and hybridization sensing is done in phosphate buffer. The presence of Ag nanoparticles (~28±5nm) well dispersed in the polymer composite with high surface area, high electrical conductivity and catalytic activity provides desirable microenvironment for the immobilization of probe DNA with controlled orientation leading to increased hybridization efficiency with target DNA. The morphological and structural characterizations by a scanning electron microscope (SEM) and X-ray diffraction (XRD) confirm the nanotube structure of composite polymer while Raman measurements indicate the efficient interactions between the PPy, PEDOT, Ag and HS-ssDNA. The sensor effectively discriminates different target DNA sequences with PPy-PEDOT-Ag-S-ssDNA substrate. The observed dynamic detection range is found between 1×10(-11)M and 1×10(-14)M with the lowest detection limit (3 σ/b) of 5.4×10(-15)M. This observed value is of higher sensitivity than that for MWCNT-Ag, PANi-Au, MWCNT-PPy-Au and PPy-PANi-Au composites reported previously. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Self-assembled thin films of Fe3O4-Ag composite nanoparticles for spintronic applications

    Science.gov (United States)

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W. T.

    2017-10-01

    Controlled self-assembly of multi-component magnetic nanoparticles could lead to nanomaterial-based magnetic devices with novel structures and intriguing properties. Herein, self-assembled thin films of Fe3O4-Ag composite nanoparticles (CNPs) with hetero-dimeric shapes were fabricated using interfacial assembly method. The CNP-assembled thin films were further transferred to patterned silicon substrates followed by vacuum annealing, producing CNP-based magnetoresistive (MR) devices. Due to the presence of intra-particle interfaces and inter-particle barriers, an enhanced MR ratio and a non-linear current-voltage relation were observed in the device. The results of this work can potentially pave the way to the future exploration and development of spintronic devices built from composite nanomaterials.

  16. Influence of γ-irradiation on the optical properties of AgSbSe2 thin films

    Science.gov (United States)

    Abdul-Kader, A. M.; El-Gendy, Y. A.

    2013-06-01

    Amorphous AgSbSe2 thin films were deposited onto glass substrates using electron beam evaporation. The effect of γ-irradiation on the optical properties of the deposited AgSbSe2 films was studied in the wavelength range 550-2500 nm. A red shift in the transmission spectra was observed with increasing γ-irradiation dose. The refractive index of the deposited films was determined as a function of γ-dose. It was established that exposure of the deposited films to γ-radiation leads to increased refractive index in the whole spectral region. The refractive index dispersion of the deposited films is adequately described by the single oscillator model, whereby, the values of the oscillator parameters were determined as a function of γ-dose. Analysis of the optical absorption coefficient revealed the presence of an indirect optical transition with band gap value decreases with increasing γ-dose.

  17. Spreadability of Ag Layer on Oxides and High Performance of AZO/Ag/AZO Sandwiched Transparent Conductive Film

    Directory of Open Access Journals (Sweden)

    Yuchao Niu

    2017-01-01

    Full Text Available Single layers of indium tin oxide (ITO, aluminum-doped zinc oxide (AZO, and Ag, bilayers of ITO/Ag and AZO/Ag, and sandwiched layers of ITO/Ag/ITO (IAI and AZO/Ag/AZO (ZAZ were fabricated on ordinary glass substrates using magnetron sputtering. The surface morphologies of single layers and bilayers were measured. The sheet resistance and transmittance of the sandwiched layers were investigated. The results showed that the spreadability of the Ag on the AZO was significantly better than that on the ITO or bare glass substrate. The spreadability of Ag on underlayers influences obviously the performance of transparent conductive oxide/Ag/transparent conductive oxides (TCO/Ag/TCO or TAT. The sheet resistance and transmittance of the ZAZ sandwiched layer with the matching of 35 nm AZO (35 nm/Ag (9 nm/AZO (35 nm fabricated in this paper were low to 3.84 Ω/sq and up to 85.55% at 550 nm, respectively. Its maximum Haacke figure of merit was 0.05469 Ω−1, higher than that of IAI multilayer.

  18. Swift heavy ions induced surface modifications in Ag-polypyrrole composite films synthesized by an electrochemical route

    International Nuclear Information System (INIS)

    Kumar, Vijay; Ali, Yasir; Sharma, Kashma; Kumar, Vinod; Sonkawade, R.G.; Dhaliwal, A.S.; Swart, H.C.

    2014-01-01

    Highlights: • Two steps electrochemical synthesis for the fabrication of Ag-polypyrrole composite films. • Surface modifications by swift heavy ion beam. • SEM image shows the formation of craters and humps after irradiation. • Detailed structural analysis by Raman spectroscopy. - Abstract: The general aim of this work was to study the effects of swift heavy ions on the properties of electrochemically synthesized Ag-polypyrrole composite thin films. Initially, polypyrrole (PPy) films were electrochemically synthesized on indium tin oxide coated glass surfaces using a chronopotentiometery technique, at optimized process conditions. The prepared PPy films have functioned as working electrodes for the decoration of submicron Ag particles on the surface of the PPy films through a cyclicvoltammetry technique. Towards probing the effect of swift heavy ion irradiation on the structural and morphological properties, the composite films were subjected to a 40 MeV Li 3+ ion beam irradiation for various fluences (1 × 10 11 , 1 × 10 12 and 1 × 10 13 ions/cm 2 ). Comparative microstructural investigations were carried out after the different ion fluences using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy and micro-Raman spectroscopy techniques. Raman and SEM studies revealed that the structure of the films became disordered after irradiation. The SEM studies of irradiated composite films show significant changes in their surface morphologies. The surface was smoother at lower fluence but craters were observed at higher fluence

  19. Swift heavy ions induced surface modifications in Ag-polypyrrole composite films synthesized by an electrochemical route

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: vijays_phy@rediffmail.com [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Ali, Yasir [Department of Physics, Sant Longowal Institute of Engineering and Technology, Longowal, District Sangrur 148106, Punjab (India); Sharma, Kashma [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Department of Chemistry, Shoolini University of Biotechnology and Management Sciences, Solan 173212 (India); Kumar, Vinod [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Sonkawade, R.G. [Inter University Accelerator Center, Aruna Asif Ali Marg, New Delhi 110067 (India); Dhaliwal, A.S. [Department of Physics, Sant Longowal Institute of Engineering and Technology, Longowal, District Sangrur 148106, Punjab (India); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa)

    2014-03-15

    Highlights: • Two steps electrochemical synthesis for the fabrication of Ag-polypyrrole composite films. • Surface modifications by swift heavy ion beam. • SEM image shows the formation of craters and humps after irradiation. • Detailed structural analysis by Raman spectroscopy. - Abstract: The general aim of this work was to study the effects of swift heavy ions on the properties of electrochemically synthesized Ag-polypyrrole composite thin films. Initially, polypyrrole (PPy) films were electrochemically synthesized on indium tin oxide coated glass surfaces using a chronopotentiometery technique, at optimized process conditions. The prepared PPy films have functioned as working electrodes for the decoration of submicron Ag particles on the surface of the PPy films through a cyclicvoltammetry technique. Towards probing the effect of swift heavy ion irradiation on the structural and morphological properties, the composite films were subjected to a 40 MeV Li{sup 3+} ion beam irradiation for various fluences (1 × 10{sup 11}, 1 × 10{sup 12} and 1 × 10{sup 13} ions/cm{sup 2}). Comparative microstructural investigations were carried out after the different ion fluences using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy and micro-Raman spectroscopy techniques. Raman and SEM studies revealed that the structure of the films became disordered after irradiation. The SEM studies of irradiated composite films show significant changes in their surface morphologies. The surface was smoother at lower fluence but craters were observed at higher fluence.

  20. Ag/BiOBr Film in a Rotating-Disk Reactor Containing Long-Afterglow Phosphor for Round-the-Clock Photocatalysis.

    Science.gov (United States)

    Yin, Haibo; Chen, Xiaofang; Hou, Rujing; Zhu, Huijuan; Li, Shiqing; Huo, Yuning; Li, Hexing

    2015-09-16

    Ag/BiOBr film coated on the glass substrate was synthesized by a solvothermal method and a subsequent photoreduction process. Such a Ag/BiOBr film was then adhered to a hollow rotating disk filled with long-afterglow phosphor inside the chamber. The Ag/BiOBr film exhibited high photocatalytic activity for organic pollutant degradation owing to the improved visible-light harvesting and the separation of photoinduced charges. The long-afterglow phosphor could absorb the excessive daylight and emit light around 488 nm, activating the Ag/BiOBr film to realize round-the-clock photocatalysis. Because the Ag nanoparticles could extend the light absorbance of the Ag/BiOBr film to wavelengths of around 500 nm via a surface plasma resonance effect, they played a key role in realizing photocatalysis induced by long-afterglow phosphor.

  1. Ag-Cu nanoalloyed film as a high-performance cathode electrocatalytic material for zinc-air battery

    Science.gov (United States)

    Lei, Yimin; Chen, Fuyi; Jin, Yachao; Liu, Zongwen

    2015-04-01

    A novel Ag50Cu50 film electrocatalyst for oxygen reduction reaction (ORR) was prepared by pulsed laser deposition (PLD) method. The electrocatalyst actually is Ag-Cu alloyed nanoparticles embedded in amorphous Cu film, based on transmission electron microscopy (TEM) characterization. The rotating disk electrode (RDE) measurements provide evidence that the ORR proceed via a four-electron pathway on the electrocatalysts in alkaline solution. And it is much more efficient than pure Ag catalyst. The catalytic layer has maximum power density of 67 mW cm-2 and an acceptable cell voltage at 0.863 V when current densities increased up to 100 mA cm-2 in the Ag50Cu50-based primary zinc-air battery. The resulting rechargeable zinc-air battery exhibits low charge-discharge voltage polarization of 1.1 V at 20 mAcm-2 and high durability over 100 cycles in natural air.

  2. Formation of complex wedding-cake morphologies during homoepitaxial film growth of Ag on Ag(111): atomistic, step-dynamics, and continuum modeling

    Science.gov (United States)

    Li, Maozhi; Han, Yong; Thiel, P. A.; Evans, J. W.

    2009-02-01

    An atomistic lattice-gas model is developed which successfully describes all key features of the complex mounded morphologies which develop during deposition of Ag films on Ag(111) surfaces. We focus on this homoepitaxial thin film growth process below 200 K. The unstable multilayer growth mode derives from the presence of a large Ehrlich-Schwoebel step-edge barrier, for which we characterize both the step-orientation dependence and the magnitude. Step-dynamics modeling is applied to further characterize and elucidate the evolution of the vertical profiles of these wedding-cake-like mounds. Suitable coarse-graining of these step-dynamics equations leads to instructive continuum formulations for mound evolution.

  3. Formation of complex wedding-cake morphologies during homoepitaxial film growth of Ag on Ag(111): atomistic, step-dynamics, and continuum modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li Maozhi [Department of Physics, Renmin University of China, Beijing 100872 (China); Han, Yong [Institute of Physical Research and Technology, Iowa State University, Ames, IA 50011 (United States); Thiel, P A [Departments of Chemistry and Materials Science and Engineering and Ames Laboratory-USDOE, Iowa State University, Ames, IA 50011 (United States); Evans, J W [Department of Mathematics and Ames Laboratory-USDOE, Iowa State University, Ames, IA 50010 (United States)

    2009-02-25

    An atomistic lattice-gas model is developed which successfully describes all key features of the complex mounded morphologies which develop during deposition of Ag films on Ag(111) surfaces. We focus on this homoepitaxial thin film growth process below 200 K. The unstable multilayer growth mode derives from the presence of a large Ehrlich-Schwoebel step-edge barrier, for which we characterize both the step-orientation dependence and the magnitude. Step-dynamics modeling is applied to further characterize and elucidate the evolution of the vertical profiles of these wedding-cake-like mounds. Suitable coarse-graining of these step-dynamics equations leads to instructive continuum formulations for mound evolution.

  4. Formation of complex wedding-cake morphologies during homoepitaxial film growth of Ag on Ag(111): atomistic, step-dynamics, and continuum modeling

    International Nuclear Information System (INIS)

    Li Maozhi; Han, Yong; Thiel, P A; Evans, J W

    2009-01-01

    An atomistic lattice-gas model is developed which successfully describes all key features of the complex mounded morphologies which develop during deposition of Ag films on Ag(111) surfaces. We focus on this homoepitaxial thin film growth process below 200 K. The unstable multilayer growth mode derives from the presence of a large Ehrlich-Schwoebel step-edge barrier, for which we characterize both the step-orientation dependence and the magnitude. Step-dynamics modeling is applied to further characterize and elucidate the evolution of the vertical profiles of these wedding-cake-like mounds. Suitable coarse-graining of these step-dynamics equations leads to instructive continuum formulations for mound evolution.

  5. Annealing-Induced Modifications in Physicochemical and Optoelectronic Properties of Ag-Doped Nanostructured CdS Thin Films

    Directory of Open Access Journals (Sweden)

    Vidya S. Taur

    2012-01-01

    Full Text Available The Ag-doped nanostructured CdS thin films are grown by simple, cost effective chemical ion exchange technique at room temperature on ITO-coated glass substrate. These as grown thin films are annealed at 100, 200, 300, and 400°C in air atmosphere for 1 hour. To study the effect of annealing on physicochemical and optoelectronic properties, these as grown and annealed thin films are characterized for structural, compositional, morphological, optical, and electrical properties. X-ray diffraction (XRD pattern reveals polycrystalline nature of these thin films with increase in crystallite size from 6.4 to 11.2 nm, from XRD the direct identification of Ag doping in CdS thin films cannot be judged, while shift in characteristics peak position of CdS is observed. The Raman spectrum represents increase in full width at half maxima and intensity of characteristic peak, confirming the material modification upon annealing treatment. Presence of Cd, Ag, and S in energy dispersive X-ray analysis spectra (EDAX confirms expected elemental composition in thin films. Scanning electron microscopy (SEM images represent grain growth and agglomeration upon annealing. Red shift in optical absorbance strength and energy band gap values from 2.28 to 2.14 eV is obtained. I-V response obtained from as grown and annealed thin films shows an enhancement in photosensitivity from 72% to 96% upon illumination to 100 mW/cm2 light source.

  6. Microstructure and magnetic properties of FePt:Ag nanocomposite films on SiO2/Si(1 0 0)

    International Nuclear Information System (INIS)

    Wang Hao; Yang, F.J.; Wang, H.B.; Cao, X.; Xue, S.X.; Wang, J.A.; Gao, Y.; Huang, Z.B.; Yang, C.P.; Chiah, M.F.; Cheung, W.Y.; Wong, S.P.; Li, Q.; Li, Z.Y.

    2006-01-01

    FePt:Ag nanocomposite films were prepared by pulsed filtered vacuum arc deposition system and subsequent rapid thermal annealing on SiO 2 /Si(1 0 0) substrates. The microstructure and magnetic properties were investigated. A strong dependence of coercivity and ordering of the face-central tetragonal structure on both Ag concentration and annealing temperature was observed. With Ag concentration of 22% in atomic ratio, the coercivity got to 6.0 kOe with a grain size of 6.7 nm when annealing temperature was 400 deg. C

  7. Fabrication and Characterization of a Stabilized Thin Film Ag/AgCl Reference Electrode Modified with Self-Assembled Monolayer of Alkane Thiol Chains for Rapid Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Tanzilur Rahman

    2017-10-01

    Full Text Available The fabrication of miniaturized electrical biosensing devices can enable the rapid on-chip detection of biomarkers such as miRNA molecules, which is highly important in early-stage cancer detection. The challenge in realizing such devices remains in the miniaturization of the reference electrodes, which is an integral part of electrical detection. Here, we report on a novel thin film Ag/AgCl reference electrode (RE that has been fabricated on top of a Au-sputtered glass surface, which was coated with a self-assembled monolayer (SAM of 6-mercepto-1-hexanol (MCH. The electrode showed very little measurement deviation (−1.5 mv from a commercial Ag/AgCl reference electrode and exhibited a potential drift of only ± 0.2 mV/h. In addition, the integration of this SAM-modified microfabricated thin film RE enabled the rapid detection (<30 min of miRNA (let-7a. The electrode can be integrated seamlessly into a microfluidic device, allowing the highly stable and fast measurement of surface potential and is expected to be very useful for the development of miniature electrical biosensors.

  8. Embedded layer of Ag nanoparticles prepared by a combined PECVD/PVD process producing SiOxCy-Ag nanocomposite thin films.

    Science.gov (United States)

    Bedel, Laurent; Cayron, Cyril; Jouve, Michel; Maury, Francis

    2012-01-13

    Structural properties of SiO(x)C(y)-Ag nanocomposite thin films prepared by a dual process PVD-PECVD in the same reactor have been investigated. The experimental results have demonstrated the influence of a PECVD process carried out at room temperature for the growth of a dielectric matrix on the size and the distribution density of Ag nanoparticles (NPs) deposited beforehand by magnetron sputtering. The plasma during the growth of the encapsulation SiO(x)C(y) layer caused a diffusion of silver from NPs through the SiO(x)C(y) matrix associated with a decrease in the average size of nanoparticles and an increase of their distribution density. Silver diffusion is blocked at a barrier interface to form a buried layer of individual Ag NPs which, for instance, can find plasmonic applications. Silver also diffuses toward the outer surface inducing antibacterial properties. In both cases initial Ag NPs act as reservoirs for multifunctional properties of advanced nanostructured films.

  9. Development of the α-IGZO/Ag/α-IGZO Triple-Layer Structure Films for the Application of Transparent Electrode.

    Science.gov (United States)

    Chen, Kun-Neng; Yang, Cheng-Fu; Wu, Chia-Ching; Chen, Yu-Hsin

    2017-02-24

    We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO) triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□) and high optical transmittance (88.1%) at room temperature without postannealing processing on the deposited thin films.

  10. Development of the α-IGZO/Ag/α-IGZO Triple-Layer Structure Films for the Application of Transparent Electrode

    Directory of Open Access Journals (Sweden)

    Kun-Neng Chen

    2017-02-01

    Full Text Available We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□ and high optical transmittance (88.1% at room temperature without postannealing processing on the deposited thin films.

  11. Roll-to-roll slot-die coating of 400 mm wide, flexible, transparent Ag nanowire films for flexible touch screen panels.

    Science.gov (United States)

    Kim, Dong-Ju; Shin, Hae-In; Ko, Eun-Hye; Kim, Ki-Hyun; Kim, Tae-Woong; Kim, Han-Ki

    2016-09-28

    We report fabrication of large area Ag nanowire (NW) film coated using a continuous roll-to-roll (RTR) slot die coater as a viable alternative to conventional ITO electrodes for cost-effective and large-area flexible touch screen panels (TSPs). By controlling the flow rate of shear-thinning Ag NW ink in the slot die, we fabricated Ag NW percolating network films with different sheet resistances (30-70 Ohm/square), optical transmittance values (89-90%), and haze (0.5-1%) percentages. Outer/inner bending, twisting, and rolling tests as well as dynamic fatigue tests demonstrated that the mechanical flexibility of the slot-die coated Ag NW films was superior to that of conventional ITO films. Using diamond-shape patterned Ag NW layer electrodes (50 Ohm/square, 90% optical transmittance), we fabricated 12-inch flexible film-film type and rigid glass-film-film type TSPs. Successful operation of flexible TSPs with Ag NW electrodes indicates that slot-die-coated large-area Ag NW films are promising low cost, high performance, and flexible transparent electrodes for cost-effective large-area flexible TSPs and can be substituted for ITO films, which have high sheet resistance and are brittle.

  12. Roll-to-roll slot-die coating of 400 mm wide, flexible, transparent Ag nanowire films for flexible touch screen panels

    Science.gov (United States)

    Kim, Dong-Ju; Shin, Hae-In; Ko, Eun-Hye; Kim, Ki-Hyun; Kim, Tae-Woong; Kim, Han-Ki

    2016-09-01

    We report fabrication of large area Ag nanowire (NW) film coated using a continuous roll-to-roll (RTR) slot die coater as a viable alternative to conventional ITO electrodes for cost-effective and large-area flexible touch screen panels (TSPs). By controlling the flow rate of shear-thinning Ag NW ink in the slot die, we fabricated Ag NW percolating network films with different sheet resistances (30-70 Ohm/square), optical transmittance values (89-90%), and haze (0.5-1%) percentages. Outer/inner bending, twisting, and rolling tests as well as dynamic fatigue tests demonstrated that the mechanical flexibility of the slot-die coated Ag NW films was superior to that of conventional ITO films. Using diamond-shape patterned Ag NW layer electrodes (50 Ohm/square, 90% optical transmittance), we fabricated 12-inch flexible film-film type and rigid glass-film-film type TSPs. Successful operation of flexible TSPs with Ag NW electrodes indicates that slot-die-coated large-area Ag NW films are promising low cost, high performance, and flexible transparent electrodes for cost-effective large-area flexible TSPs and can be substituted for ITO films, which have high sheet resistance and are brittle.

  13. Highly conductive and anticorrosion Ag/CNTs/NDs hybrid films on molecular-grafted PET substrate for flexible electrodes

    Science.gov (United States)

    Zhang, Yang; Kang, Zhixin

    2018-01-01

    We reported an approach of preparing highly conductive, anticorrosion, flexible Ag hybrid films enhanced by multi-walled carbon nanotubes (CNTs) and nanodaimonds (NDs) on molecular-grafted PET substrate by spin-spray for flexible electronics. we studied in this paper and found that even an outstanding enhancement on conductivity of Ag films, CNTs have a negative effect on anticorrosion property. Meanwhile, NDs decreased the conductivity of Ag/CNTs hybrids, but it remained a relatively high conductivity property and even was affirmed a distinctly boost improvement on anticorrosion, microhardness and tensile strength, which meant a better mechanical chemical stabilization and practicability in real flexible electronics. To obtain the strong adhesive strength of films/substrate, molecular-grafting technology was applied, which was affirmed by XPS and cross-cut test. What's more, we evaluated anticorrosion property by electrochemistry test, including Tafel measurements and electrochemical impedance spectroscopy measurements, proving the positive effect of NDs on Ag/CNTs hybrid films. For practical application, a flexible light-emitting diode (LED) circuit was successfully structured and remained steady under bending, folding and twisting. Besides, after 1000000 cycles inner/outer bending deformation, the hybrid films showed a mechanical compliance, fatigue stability and practicability in real flexible electronics.

  14. Selective etching characteristics of the AgInSbTe phase-change film in laser thermal lithography

    International Nuclear Information System (INIS)

    Li, Hao; Geng, Yongyou; Wu, Yiqun

    2012-01-01

    In the current work, the etching selectivity of the AgInSbTe phase-change film in laser thermal lithography is reported for the first time. Film phase change induced by laser irradiation and etching selectivity to crystalline and amorphous states in different etchants, including hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, sodium hydroxide, sodium sulfide, ammonium sulfide and ammonium hydroxide, are investigated. The results indicated that ammonium sulfide solvent (2.5 mol/L) had excellent etching selectivity to crystalline and amorphous states of the AgInSbTe film, and the etching characteristics were strongly influenced by the laser power density and laser irradiation time. The etching rate of the crystalline state of the AgInSbTe film was 40.4 nm/min, 20 times higher than that of the amorphous state under optimized irradiation conditions (power density: 6.63 mW/μm 2 and irradiation time: 330 ns), with ammonium sulfide solvent (2.5 mol/L) as etchant. The step profile produced in the selective etching was clear, and smooth surfaces remained both on the step-up and step-down with a roughness of less than 4 nm (10 x 10 μm). The excellent performance of the AgInSbTe phase-change film in selective etching is significant for fabrication of nanostructures with super-resolution in laser thermal lithography. (orig.)

  15. Deciphering the potential of guar gum/Ag-Cu nanocomposite films as an active food packaging material.

    Science.gov (United States)

    Arfat, Yasir Ali; Ejaz, Mohammed; Jacob, Harsha; Ahmed, Jasim

    2017-02-10

    Guar gum (GG) based nanocomposite (NC) films were prepared by incorporating silver-copper alloy nanoparticles (Ag-Cu NPs) through solution casting method. Effect of NP loadings (0.5-2%) on the thermo-mechanical, optical, spectral, oxygen barrier and antimicrobial properties of the GG/Ag-Cu NC films were investigated. Tensile testing showed an improvement in the mechanical strength, and a decrease in elongation at break for all NP loadings. NP incorporation into GG films showed a marked influence on the color values. The NC films showed excellent UV, light and oxygen barrier capability. Thermal properties of the NC films were improved as evidenced from the differential scanning calorimetry and the thermal conductivity data. NC films became rough and coarse over neat GG film as visualized through the scanning electron microscopy. A strong antibacterial activity was exhibited by NC films against both Gram-positive and Gram-negative bacteria, and therefore, the film could be considered as an active food packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Particle growth mechanisms in Ag-ZrO2 and Au-ZrO2 granular films obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Konstantinovic, Zorica; Muro, Montserrat Garcia del; Varela, Manuel; Batlle, Xavier; Labarta, AmIlcar

    2006-01-01

    Thin films consisting of Ag and Au nanoparticles embedded in amorphous ZrO 2 matrix were grown by pulsed laser deposition in a wide range of metal volume concentrations in the dielectric regime (0.08 Ag Au c (Ag)∼0.28 and x c (Au)∼0.52)

  17. Deposition and characterization of layer-by-layer sputtered AgGaSe{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Karaagac, H. [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey); Parlak, M., E-mail: parlak@metu.edu.tr [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey)

    2011-04-15

    Sputtering technique has been used for the deposition of AgGaSe{sub 2} thin films onto soda-lime glass substrates using sequential layer-by-layer deposition of GaSe and Ag thin films. The analysis of energy dispersive analysis of X-ray (EDXA) indicated a Ga-rich composition for as-grown samples and there was a pronounce effect of post-annealing on chemical composition of AgGaSe{sub 2} thin film. X-ray diffraction (XRD) measurements revealed that Ag metallic phase exists in the amorphous AgGaSe{sub 2} structure up to annealing temperature 450 deg. C and then the structure turned to the single phase AgGaSe{sub 2} with the preferred orientation along (1 1 2) direction with the annealing temperature at 600 deg. C. The surface morphology of the samples was analyzed by scanning electron microscopy (SEM) measurements. The structural parameters related to chalcopyrite compounds have been calculated. Optical properties of AgGaSe{sub 2} thin films were studied by carrying out transmittance and reflectance measurements in the wavelength range of 325-1100 nm at room temperature. The absorption coefficient and the band gap values for as-grown and annealed samples were evaluated as 1.55 and 1.77 eV, respectively. The crystal-field and spin-orbit splitting levels were resolved. These levels (2.03 and 2.30 eV) were also detected from the photoresponse measurements almost at the same energy values. As a result of the temperature dependent resistivity and mobility measurements in the temperature range of 100-430 K, it was found that the decrease in mobility and the increase in carrier concentration following to the increasing annealing temperature attributed to the structural defects (tetragonal distortion, vacancies and interstitials).

  18. Influence of growth temperature on formation of continuous Ag thin film on ZnO surface by ultra-high vacuum deposition

    International Nuclear Information System (INIS)

    Zhang, T C; Mei, Z X; Guo, Y; Xue, Q K; Du, X L

    2009-01-01

    Growth of an Ag film on a ZnO (0 0 0 1) surface by ultra-high vacuum deposition has been investigated by field emission scanning electron microscopy. It is revealed that the growth temperature has a considerable effect on the formation of a continuous Ag thin film on a ZnO surface. At room temperature or above, the formation of continuous Ag films with small thickness was found to be difficult due to an upstepping mechanism, whereas a continuous Ag film as thin as 30 nm was achieved at 140 K, resulting from the reduced migration length of silver atoms and the increased saturated island density at low temperature. Coalescence between the islands occurred and predominated over upstepping during subsequent deposition, which is favourable for the formation of a continuous Ag film with a smaller thickness.

  19. High-temperature fabrication of Ag(In,Ga)Se{sub 2} thin films for applications in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xianfeng [International Center for Science and Engineering Programs, Waseda University, Tokyo (Japan); Yamada, Akira [Department of Physical Electronics, Tokyo Institute of Technology, Tokyo (Japan); Kobayashi, Masakazu [Department of Electrical Engineering and Bioscience, Waseda University, Tokyo (Japan); Kagami Memorial Research Institute for Materials Science, Waseda University, Tokyo (Japan)

    2017-10-15

    Molecular beam epitaxy was used to fabricate Ag(In,Ga)Se{sub 2} (AIGS) thin films. To improve the diffusion of Ag, high-temperature deposition and high-temperature annealing methods were applied to fabricate AIGS films. The as-grown AIGS thin films were then used to make AIGS solar cells. We found that grain size and crystallinity of AIGS films were considerably improved by increasing the deposition and annealing temperature. For high-temperature deposition, temperatures over 600 C led to decomposition of the AIGS film, desorption of In, and deterioration of its crystallinity. The most appropriate deposition temperature was 590 C and a solar cell with a power conversion efficiency of 4.1% was obtained. High-temperature annealing of the AIGS thin films showed improved crystallinity as annealing temperature was increased and film decomposition and In desorption were prevented. A solar cell based on this film showed the highest conversion efficiency of 6.4% when annealed at 600 C. When the annealing temperature was further increased to 610 C, the performance of the cell deteriorated due to loss of the out-of-plane Ga gradient. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling

    Science.gov (United States)

    Kehr, S.C.; Liu, Y.M.; Martin, L.W.; Yu, P.; Gajek, M.; Yang, S.-Y.; Yang, C.-H.; Wenzel, M.T.; Jacob, R.; von Ribbeck, H.-G.; Helm, M.; Zhang, X.; Eng, L.M.; Ramesh, R.

    2011-01-01

    A planar slab of negative-index material works as a superlens with sub-diffraction-limited resolution, as propagating waves are focused and, moreover, evanescent waves are reconstructed in the image plane. Here we demonstrate a superlens for electric evanescent fields with low losses using perovskites in the mid-infrared regime. The combination of near-field microscopy with a tunable free-electron laser allows us to address precisely the polariton modes, which are critical for super-resolution imaging. We spectrally study the lateral and vertical distributions of evanescent waves around the image plane of such a lens, and achieve imaging resolution of λ/14 at the superlensing wavelength. Interestingly, at certain distances between the probe and sample surface, we observe a maximum of these evanescent fields. Comparisons with numerical simulations indicate that this maximum originates from an enhanced coupling between probe and object, which might be applicable for multifunctional circuits, infrared spectroscopy and thermal sensors. PMID:21427720

  1. Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells

    International Nuclear Information System (INIS)

    Paetzold, Ulrich W.; Meier, Matthias; Moulin, Etienne; Smirnov, Vladimir; Pieters, Bart E.; Rau, Uwe; Carius, Reinhard

    2013-01-01

    In this work, we investigate the light trapping of thin-film silicon solar cells which apply plasmonic Ag back contacts with non-ordered Ag nanostructures. The preparation, characterization and three-dimensional electromagnetic simulations of these back contacts with various distributions of non-ordered Ag nanostructures are presented. The measured reflectance spectra of the Ag back contacts with non-ordered nanostructures in air are well reproduced in reflectance spectra derived from the three-dimensional electromagnetic simulations of isolated nanostructures on Ag back contacts. The light–matter interaction of these nanostructures is given by localized surface plasmons and, thus, the measured diffuse reflectance of the back contacts is attributed to plasmon-induced light scattering. A significant plasmonic light-trapping effect in n-i-p substrate-type μc-Si:H thin-film solar cell prototypes which apply a Ag back contact with non-ordered nanostructures is identified when compared with flat reference solar cells

  2. Effect of pH on optic and structural characterization of chemical deposited AgI thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tezel, Fatma Meydaneri [Department of Metallurgy and Materials Engineering, Karabük University (Turkey); Kariper, İshak Afşin [Department of Science Education, Faculty of Education, Erciyes University, Kayseri (Turkey)

    2017-11-15

    AgI thin films were grown on amorphous commercial glass substrates with chemical bath deposition (CBD) at different pH values (2, 3, 4, 5, 6), 6 hours deposition time and 60 °C. The structure of the nanocrystals was characterized by X-ray diffraction (XRD). The ratio of Ag{sup +} and I{sup -} ions changed the crystalline structures. The presence of the Ag{sup +} ions produces the γ-phase of AgI and excess of iodine concentration produces β-phase of AgI. The pH: 4 was like a transition pH for these phases. The number of crystallites per unit area has maximum value at pH: 5, as the structure is re-crystallization to hexagonal phase. Also, the thicknesses of produced thin films were decreased with increased pH values. Therefore, transmission, reflection, extinction coefficients and refractive index of the materials were affected by thicknesses, and calculated to be 32, 35, 3, 11, 9 (%) - 27, 25, 61, 45, 49 (%) - 0.036, 0.032, 0.067, 0.107, 0.075 and 3.21, 3.02, 5.16, 8.35, 5.70 in 550 nm at pH: 2-3-4-5-6 values, respectively. The exciton peaks of AgI were observed at between 320 and 420 nm. Surface properties were investigated by using scanning electron microscopy (SEM). (author)

  3. Synthesis of 3D Printable Cu-Ag Core-Shell Materials: Kinetics of CuO Film Removal

    Science.gov (United States)

    Hong, Seongik; Kim, Namsoo

    2015-03-01

    In this research, Cu-Ag core-shell particles were synthesized as a functional and 3D printable material. Using the solid-liquid method, Cu-Ag core-shell particles were simply synthesized, and different particle sizes of 100 nm and 2 μm were used to confirm the size effect in the synthesis and reaction control of the Cu-Ag core-shell particles. In addition, highly viscous Cu-Ag core-shell particle paste was also prepared, and its electrical conductivity was measured. As a result, the reaction rate in the case of the 2 μm Cu particles was controlled by film diffusion, whereas for the 100 nm Cu particles, the reaction rate was controlled by CuO film produced before reacting with Ag ions in solution, and limited by chemical reaction control. Through the solid-liquid method, dendrite-shaped Cu-Ag core-shell particles were formed. Also, the electrical conductivity increased with increasing sintering temperature and core-shell particle concentration.

  4. Plasmonic metamaterial-based chemical converted graphene/TiO2/Ag thin films by a simple spray pyrolysis technique

    Science.gov (United States)

    Kumar, Promod; Swart, H. C.

    2018-04-01

    Graphene based hybrid nanostructures have received special attention in both the scientific and technological development due to their unique physicochemical behavior, which make them attractive in various applications such as, batteries, supercapacitors, fuel cells, solar cells, photovoltaic devices and bio-sensors. In the present study, the role of plasmonic metamaterials in light trapping photovoltaics for inorganic semiconducting materials by a simple and low cost spray pyrolysis technique has been studied. The plasmonic metamaterials thin film has been fabricated by depositing chemically converted graphene (CCG) onto TiO2-Ag nanoparticles which has a low resistivity and a low electron-hole recombination probability. The localized surface plasmon resonance at the metal-dielectric interface for the Ag nanoparticles has been observed at 403 nm after depositing chemical converted graphene (CCG) on the TiO2-Ag thin film. The results suggest that the stacking order of the CCG/TiO2/Ag plasmonic metamaterials samples did not change the band gap of TiO2 while it changed the conductivity of the film. Thus the diffusion of the noble metals in the glass and TiO2 matrices based thin films can trap the light of a particular wavelength by mean of plasmonic resonance and may be useful for superior photovoltaic and optoelectronic applications.

  5. Growth of Ag thin films on ZnO(0 0 0 -1) investigated by AES and STM

    Energy Technology Data Exchange (ETDEWEB)

    Duriau, E. [Interuniversity Microelectronic Center (IMEC), SPDT-MCA, Kapeldreef 75, B-3001 Leuven (Belgium); Agouram, S. [Dpto. Fisica Aplicada y Electromagnetismo c/Dr. Moliner no. 50, 46100 Burjassot, Valencia (Spain); Laboratoire de Physique des Materiaux Electroniques (LPME), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Morhain, C. [Centre de Recherche sur l' HeteroEpitaxie et ses Applications (CRHEA), CNRS, Rue Bernard Gregory, F-06560 Valbonne Sophia-Antipolis (France); Seldrum, T. [Laboratoire de Physique des Materiaux Electroniques (LPME), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Sporken, R. [Laboratoire de Physique des Materiaux Electroniques (LPME), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Dumont, J. [Laboratoire de Physique des Materiaux Electroniques (LPME), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium)]. E-mail: jacques.dumont@fundp.ac.be

    2006-11-15

    The growth of Ag films on ZnO(0 0 0 -1) has been investigated by Auger electron spectroscopy (AES) and scanning tunneling microscopy (STM). A high density of islands is nucleated at the earliest stages of the growth. An upstepping mechanism causes these islands to coalesce while the uncovered fraction of the ZnO surface remains constant (30%)

  6. Highly flexible transparent and conductive ZnS/Ag/ZnS multilayer films prepared by ion beam assisted deposition

    Science.gov (United States)

    Yu, Zhinong; Leng, Jian; Xue, Wei; Zhang, Ting; Jiang, Yurong; Zhang, Jie; Zhang, Dongpu

    2012-01-01

    ZnS/Ag/ZnS (ZAZ) multilayer films were prepared on polyethene terephthalate (PET) by ion beam assisted deposition at room temperature. The structural, optical and electrical characteristics of ZAZ multilayers dependent on the thickness of silver layer were investigated. The ZAZ multilayers exhibit a low sheet resistance of about 10 Ω/sq., a high transmittance of 92.1%, and the improved resistance stabilities when subjected to bending. When the inserted Ag thickness is over 12 nm, the ZAZ multilayers show good resistance stabilities due to the existence of a ductile Ag metal layer. The results suggest that ZAZ film has better optoelectrical and anti-deflection characteristics than conventional indium tin oxide (ITO) single layer.

  7. Nonlinear optical activity in Ag-SiO{sub 2} nanocomposite thin films with different silver concentration

    Energy Technology Data Exchange (ETDEWEB)

    Scalisi, A.A.; Compagnini, G.; D' Urso, L.; Puglisi, O

    2004-03-15

    Silica thin films ({approx}1 {mu}m) have been obtained with embedded Ag nanoparticles with a controlled size distribution, using a chemical approach. Our method is able to give Ag concentration in the range of 0-15% in weight. Several characterization techniques reveal that the particle average size is independent of silver concentration. In this paper, we report a detailed analysis of the nonlinear optical properties of these nanocomposite thin films as a function of the Ag cluster density. These analyses are made in the nanosecond regime at 532 nm. We find two different nonlinear regimes by changing the silver concentration. At low particle density we observe an optical limiting effect, while at higher density values the nonlinear absorption coefficient changes its sign due to a saturable absorption (SA) process. A tentative explanation of the observed phenomenology is given in terms of particle-particle interaction.

  8. Characterization of Ag-Doped p-Type SnO Thin Films Prepared by DC Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Hoai Phuong Pham

    2017-01-01

    Full Text Available Crystalline structure and optoelectrical properties of silver-doped tin monoxide thin films with different dopant concentrations prepared by DC magnetron sputtering are investigated. The X-ray diffraction patterns reveal that the tetragonal SnO phase exhibits preferred orientations along (101 and (110 planes. Our results indicate that replacing Sn2+ in the SnO lattice with Ag+ ions produces smaller-sized crystallites, which may lead to enhanced carrier scattering at grain boundaries. This causes a deterioration in the carrier mobility, even though the carrier concentration improves by two orders of magnitude due to doping. In addition, the Ag-doped SnO thin films show a p-type semiconductor behavior, with a direct optical gap and decreasing transmittance with increasing Ag dopant concentration.

  9. Crystallization dynamics of as-deposited amorphous AgInSbTe thin film induced by picosecond laser pulses

    Science.gov (United States)

    Huang, Huan; Zuo, Fangyuan; Zhai, Fengxiao; Wang, Yang; Lai, Tianshu; Wu, Yiqun; Gan, Fuxi

    2010-05-01

    The time-resolved crystallization dynamics of as-deposited amorphous AgInSbTe thin films induced by single picosecond laser pulses has been studied. The crystallization process was shown to be a threshold-dependent multi-stage process. For the same film structure, the total crystallization time does not change significantly with different fluences in a broad fluence range. The total crystallization time can be effectively shortened by an additional thermally conductive silver underlayer. After the film has been primed with a low-fluence single ~30 ps laser pulse, the crystallization process can be simplified to be a monotonic process with a markedly reduced crystallization time.

  10. Electrochemical and structural characterization of nanocomposite Agy:TiNx thin films for dry bioelectrodes: the effect of the N/Ti ratio and Ag content

    International Nuclear Information System (INIS)

    Pedrosa, P.; Machado, D.; Fiedler, P.; Alves, E.; Barradas, N.P.; Haueisen, J.; Vaz, F.; Fonseca, C.

    2015-01-01

    Highlights: • Ag y :TiN x thin films were sputtered with different N/Ti atomic ratios and Ag contents. • The electroactive area increases (1000-fold) with increasing N/Ti atomic ratios. • The films display impedances <10 kΩ at the 1–50 Hz interval (EEG range). • No Ag surface segregation was visible in the under-stoichiometric samples. • The samples with N/Ti atomic ratio = 0.3 (15 at.% Ag) and 0.7 (32 at.% Ag) are the most appropriate for bioelectrode applications. - ABSTRACT: Ag y :TiN x nanocomposite thin films sputtered with different N/Ti atomic ratios and Ag atomic contents were characterized from the structural and morphological points of view. Their electrochemical behaviour was studied in a synthetic sweat solution, aiming at selecting a suitable material for biolectrode applications. An increase of the N/Ti atomic ratio, which is accompanied by an increase of the Ag atomic content, leads to a substantial increase of the roughness and porosity of the samples, especially for N/Ti ratios >0.2. For N/Ti atomic ratios up to 0.3 (15 at.% Ag) no metallic Ag segregation is visible in the TiN x matrix. Hence, the possible formation of TiAg and Ti 2 Ag intermetallics or even a Ag/TiAg/Ti 2 Ag phase mixture, although not demonstrated, should not be disregarded. As for the N/Ti atomic ratio = 0.7 (32 at.% Ag) sample, the Ag phases are predominantly concentrated near the interface with the substrate. The amount of Ag phases at the surface of the films remains somewhat low for all TiN under-stoichiometric films, even for Ag atomic contents up to 32 at.%. When the TiN x matrix reaches the stoichiometric condition (sample with N/Ti atomic ratio = 1 and 20 at.% Ag), Ag segregation occurs and metallic Ag aggregates are visible at the surface of the film, leading to a substantially different electrochemical behaviour. The impedance of the Ag y :TiN x films in synthetic sweat solution is mainly ruled by the roughness/porosity variation, thus the higher the N

  11. Determination of the compositions of the DIGM zone in nanocrystalline Ag/Au and Ag/Pd thin films by secondary neutral mass spectrometry

    Directory of Open Access Journals (Sweden)

    Gábor Y. Molnár

    2016-03-01

    Full Text Available Alloying by grain boundary diffusion-induced grain boundary migration is investigated by secondary neutral mass spectrometry depth profiling in Ag/Au and Ag/Pd nanocrystalline thin film systems. It is shown that the compositions in zones left behind the moving boundaries can be determined by this technique if the process takes place at low temperatures where solely the grain boundary transport is the contributing mechanism and the gain size is less than the half of the grain boundary migration distance. The results in Ag/Au system are in good accordance with the predictions given by the step mechanism of grain boundary migration, i.e., the saturation compositions are higher in the slower component (i.e., in Au or Pd. It is shown that the homogenization process stops after reaching the saturation values and further intermixing can take place only if fresh samples with initial compositions, according to the saturation values, are produced and heat treated at the same temperature. The reversal of the film sequence resulted in the reversal of the inequality of the compositions in the alloyed zones, which is in contrast to the above theoretical model, and explained by possible effects of the stress gradients developed by the diffusion processes itself.

  12. The growth of thin silver nanowires bundle using RbAg4I5 crystal grain thin film and the ionic conductivity of the thin film

    International Nuclear Information System (INIS)

    Shi Shuo; Sun Jialin; Zhang Guosheng; Guo Jihua; Wang Zhengping

    2005-01-01

    We present a novel method for preparing thin silver nanowires bundle by superionic conductor RbAg 4 I 5 crystal grain thin film (CGTF). Under the conditions of room temperature, without any template, when a direct current (DC) electric field of 60 V/m was applied to the silver electrodes deposited on both ends of a strip of RbAg 4 I 5 CGTF, the silver ions congregated at the edge of cathode to form silver nanowires ranging from 50 to 100 nm in diameter. The silver ionic conductivity of this RbAg 4 I 5 CGTF under room temperature was also measured. The experiment proved that the main charge carriers in the RbAg 4 I 5 CGTF under room temperature are silver ions

  13. A chemical bath deposition route to facet-controlled Ag{sub 3}PO{sub 4} thin films with improved visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Gunjakar, Jayavant L.; Jo, Yun Kyung; Kim, In Young; Lee, Jang Mee; Patil, Sharad B. [Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760 (Korea, Republic of); Pyun, Jae-Chul [Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul (Korea, Republic of); Hwang, Seong-Ju, E-mail: hwangsju@ewha.ac.kr [Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760 (Korea, Republic of)

    2016-08-15

    A facile, economic, and reproducible chemical bath deposition (CBD) method is developed for the fabrication of facet-controlled Ag{sub 3}PO{sub 4} thin films with enhanced visible light photocatalytic activity. The fine-control of bath temperature, precursor, complexing agent, substrate, and solution pH is fairly crucial in preparing the facet-selective thin film of Ag{sub 3}PO{sub 4} nanocrystal. The change of precursor from silver nitrate to silver acetate makes possible the tailoring of the crystal shape of Ag{sub 3}PO{sub 4} from cube to rhombic dodecahedron and also the bandgap tuning of the deposited films. The control of [Ag{sup +}]/[phosphate] ratio enables to maximize the loading amount of Ag{sub 3}PO{sub 4} crystals per the unit area of the deposited film. All the fabricated Ag{sub 3}PO{sub 4} thin films show high photocatalytic activity for visible light-induced degradation of organic molecules, which can be optimized by tailoring the crystal shape of the deposited crystals. This CBD method is also useful in preparing the facet-controlled hybrid film of Ag{sub 3}PO{sub 4}–ZnO photocatalyst. The present study clearly demonstrates the usefulness of the present CBD method for fabricating facet-controlled thin films of metal oxosalt and its nanohybrid. - Highlights: • The crystal facet of Ag{sub 3}PO{sub 4} films can be tuned by chemical bath deposition. • The crystal shape of Ag{sub 3}PO{sub 4} is tailorable from cube to rhombic dodecahedron. • Facet-tuned Ag{sub 3}PO{sub 4} film shows enhanced visible light photocatalyst activity.

  14. A chemical bath deposition route to facet-controlled Ag3PO4 thin films with improved visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Gunjakar, Jayavant L.; Jo, Yun Kyung; Kim, In Young; Lee, Jang Mee; Patil, Sharad B.; Pyun, Jae-Chul; Hwang, Seong-Ju

    2016-01-01

    A facile, economic, and reproducible chemical bath deposition (CBD) method is developed for the fabrication of facet-controlled Ag 3 PO 4 thin films with enhanced visible light photocatalytic activity. The fine-control of bath temperature, precursor, complexing agent, substrate, and solution pH is fairly crucial in preparing the facet-selective thin film of Ag 3 PO 4 nanocrystal. The change of precursor from silver nitrate to silver acetate makes possible the tailoring of the crystal shape of Ag 3 PO 4 from cube to rhombic dodecahedron and also the bandgap tuning of the deposited films. The control of [Ag + ]/[phosphate] ratio enables to maximize the loading amount of Ag 3 PO 4 crystals per the unit area of the deposited film. All the fabricated Ag 3 PO 4 thin films show high photocatalytic activity for visible light-induced degradation of organic molecules, which can be optimized by tailoring the crystal shape of the deposited crystals. This CBD method is also useful in preparing the facet-controlled hybrid film of Ag 3 PO 4 –ZnO photocatalyst. The present study clearly demonstrates the usefulness of the present CBD method for fabricating facet-controlled thin films of metal oxosalt and its nanohybrid. - Highlights: • The crystal facet of Ag 3 PO 4 films can be tuned by chemical bath deposition. • The crystal shape of Ag 3 PO 4 is tailorable from cube to rhombic dodecahedron. • Facet-tuned Ag 3 PO 4 film shows enhanced visible light photocatalyst activity.

  15. The kinetics of the formation of a solid solution in an Ag-Pd polycrystalline film system

    Science.gov (United States)

    Kryshtal, A. P.; Bogatyrenko, S. I.; Sukhov, R. V.; Minenkov, A. A.

    2014-09-01

    The kinetics of homogenization of an Ag-Pd film system with a total thickness of 120 nm and a grain size of 5-10 nm has been studied by means of in situ TEM heating. The film system has been formed by the sequential deposition of components in a vacuum on the substrate at room temperature. It has been shown that diffusion processes are activated, starting from the temperature 453 K, resulting in complete homogenization of the film system at 573 K with preservation of its fine-grained structure. The effective diffusion coefficient in the Ag-Pd system was measured as 10-17-10-18 m2/s at 553 K. A possible mechanism of homogenization is discussed.

  16. Growth behavior and field emission property of ZnO nanowire arrays on Au and Ag films

    Directory of Open Access Journals (Sweden)

    Sung Hyun Kim

    2013-09-01

    Full Text Available We propose a facile method to control the growth and areal density of zinc-oxide (ZnO nanowire arrays using gold or silver films deposited on aluminum-doped ZnO (AZO layers coated on glass substrates. Nanowires exceeding 5 μm in length grew on both the glass/AZO-layer and on the glass/AZO-layer/Au-film where the areal array density was controlled primarily by changing the annealing temperature. In contrast, the nanowire arrays grew only on the AZO surface but not on the Ag film owing to the formation of an Ag-oxide layer. We fabricated field emitter devices with density controlled ZnO nanowire arrays and low turn-on electric field of ∼6 V/μm and a field enhancement factor of up to 1188 were obtained with density controlled ZnO nanowire arrays.

  17. Scanning tunneling microscopy/spectroscopy of picene thin films formed on Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yasuo, E-mail: yyoshida@issp.u-tokyo.ac.jp; Yokosuka, Takuya; Hasegawa, Yukio, E-mail: hasegawa@issp.u-tokyo.ac.jp [The Institute of Solid State Physics, The University of Tokyo, Kashiwa 277-8581 (Japan); Yang, Hung-Hsiang [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Huang, Hsu-Sheng; Guan, Shu-You; Su, Wei-Bin; Chang, Chia-Seng [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Yanagisawa, Susumu [Department of Physics and Earth Science Department, University of the Ryukyus, 1 Nishihara, Okinawa 903-0213 (Japan); Lin, Minn-Tsong [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Hoffmann, Germar [The Institute of Solid State Physics, The University of Tokyo, Kashiwa 277-8581 (Japan); Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-09-21

    Using ultrahigh-vacuum low-temperature scanning tunneling microscopy and spectroscopy combined with first principles density functional theory calculations, we have investigated structural and electronic properties of pristine and potassium (K)-deposited picene thin films formed in situ on a Ag(111) substrate. At low coverages, the molecules are uniformly distributed with the long axis aligned along the [112{sup ¯}] direction of the substrate. At higher coverages, ordered structures composed of monolayer molecules are observed, one of which is a monolayer with tilted and flat-lying molecules resembling a (11{sup ¯}0) plane of the bulk crystalline picene. Between the molecules and the substrate, the van der Waals interaction is dominant with negligible hybridization between their electronic states; a conclusion that contrasts with the chemisorption exhibited by pentacene molecules on the same substrate. We also observed a monolayer picene thin film in which all molecules were standing to form an intermolecular π stacking. Two-dimensional delocalized electronic states are found on the K-deposited π stacking structure.

  18. Reversible migration of silver on memorized pathways in Ag-Ge40S60 films

    Directory of Open Access Journals (Sweden)

    J. Orava

    2015-07-01

    Full Text Available Reversible and reproducible formation and dissolution of silver conductive filaments are studied in Ag-photodoped thin-film Ge40S60 subjected to electric fields. A tip-planar geometry is employed, where a conductive-atomic-force microscopy tip is the tip electrode and a silver patch is the planar electrode. We highlight an inherent “memory” effect in the amorphous chalcogenide solid-state electrolyte, in which particular silver-ion migration pathways are preserved “memorized” during writing and erasing cycles. The “memorized” pathways reflect structural changes in the photodoped chalcogenide film. Structural changes due to silver photodoping, and electrically-induced structural changes arising from silver migration, are elucidated using Raman spectroscopy. Conductive filament formation, dissolution, and electron (reduction efficiency in a lateral device geometry are related to operation of the nano-ionic Programmable Metallization Cell memory and to newly emerging chalcogenide-based lateral geometry MEMS technologies. The methods in this work can also be used for qualitative multi-parameter sampling of metal/amorphous-chalcogenide combinations, characterizing the growth/dissolution rates, retention and endurance of fractal conductive filaments, with the aim of optimizing devices.

  19. Characterization of Ag-doped vanadium oxide (AgxV2O5) thin film for cathode of thin film battery

    International Nuclear Information System (INIS)

    Hwang, H.S.; Oh, S.H.; Kim, H.S.; Cho, W.I.; Cho, B.W.; Lee, D.Y.

    2004-01-01

    The effect of silver co-sputtering on the characteristics of amorphous V 2 O 5 films, grown by dc reactive sputtering, is investigated. The co-sputtering process influences the growth mechanism as well as the characteristics of the V 2 O 5 films. X-ray diffraction (XRD), Inductively coupled plasma-atomic emission spectrometry (ICP-AES), field emission-scanning electron microscopy (FE-SEM), Fourier transform infrared spectrometry (FT-IR) and X-ray photoelectron spectrometry (XPS) results indicate that the microstructure of the V 2 O 5 films is affected by the rf power of the co-sputtered silver. In addition, an all-solid-state thin film battery with full cell structure of Li/LiPON/Ag x V 2 O 5 /Pt has been fabricated. It is found that the silver co-sputtered V 2 O 5 cathode film exhibits better cycle performance than an undoped one

  20. A Solid-State Thin-Film Ag/AgCl Reference Electrode Coated with Graphene Oxide and Its Use in a pH Sensor

    Directory of Open Access Journals (Sweden)

    Tae Yong Kim

    2015-03-01

    Full Text Available In this study, we describe a novel solid-state thin-film Ag/AgCl reference electrode (SSRE that was coated with a protective layer of graphene oxide (GO. This layer was prepared by drop casting a solution of GO on the Ag/AgCl thin film. The potential differences exhibited by the SSRE were less than 2 mV for 26 days. The cyclic voltammograms of the SSRE were almost similar to those of a commercial reference electrode, while the diffusion coefficient of Fe(CN63− as calculated from the cathodic peaks of the SSRE was 6.48 × 10−6 cm2/s. The SSRE was used in conjunction with a laboratory-made working electrode to determine its suitability for practical use. The average pH sensitivity of this combined sensor was 58.5 mV/pH in the acid-to-base direction; the correlation coefficient was greater than 0.99. In addition, an integrated pH sensor that included the SSRE was packaged in a secure digital (SD card and tested. The average sensitivity of the chip was 56.8 mV/pH, with the correlation coefficient being greater than 0.99. In addition, a pH sensing test was also performed by using a laboratory-made potentiometer, which showed a sensitivity of 55.4 mV/pH, with the correlation coefficient being greater than 0.99.

  1. A comparative study of the effects of Ag2S films prepared by MPD and HRTD methods on the performance of polymer solar cells

    International Nuclear Information System (INIS)

    Zhai, Yong; Li, Fumin; Ling, Lanyun; Chen, Chong

    2016-01-01

    Highlights: • Ag 2 S nanocrystals are directly synthesized on ITO substrate by MPD and HRTD methods. • The Ag 2 S films prepared by HRTD method have lower roughness and better uniformity. • The solar cells with the Ag 2 S (HRTD, n) films show better device performance. - Abstract: In this work, the Ag 2 S nanocrystalline thin films are deposited on ITO glass via molecular precursor decomposition (MPD) method and newly developed HRTD method for organic solar cells (ITO/Ag 2 S/P3HT:PCBM/MoO 3 /Au) as an electron selective layer and a light absorption material. The surface morphology, structure characterization, and optical property of the Ag 2 S films prepared by these two methods were compared and the effect of the prepared Ag 2 S film on the device performance is investigated. It is found that the Ag 2 S films prepared by HRTD method have lower roughness and better uniformity than the corresponding films prepared by the MPD method. In addition, a more effective and rapid transporting ability for the electrons and holes in the ITO/Ag 2 S(HRTD, n)/P3HT:PCBM/MoO 3 /Au cells is found, which reduces the charge recombination, and thus, improves the device performance. The highest efficiency of 3.21% achieved for the ITO/Ag 2 S(HRTD, 50)/P3HT:PCBM/MoO 3 /Au cell is 93% higher than that of the ITO/Ag 2 S(MPD, 2)/P3HT:PCBM/MoO 3 /Au cell.

  2. A comparative study of the effects of Ag{sub 2}S films prepared by MPD and HRTD methods on the performance of polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yong; Li, Fumin; Ling, Lanyun [Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004 (China); School of Physics and Electronics, Henan University, Kaifeng, 475004 (China); Chen, Chong, E-mail: chongchen@henu.edu.cn [Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004 (China); School of Physics and Electronics, Henan University, Kaifeng, 475004 (China)

    2016-10-30

    Highlights: • Ag{sub 2}S nanocrystals are directly synthesized on ITO substrate by MPD and HRTD methods. • The Ag{sub 2}S films prepared by HRTD method have lower roughness and better uniformity. • The solar cells with the Ag{sub 2}S (HRTD, n) films show better device performance. - Abstract: In this work, the Ag{sub 2}S nanocrystalline thin films are deposited on ITO glass via molecular precursor decomposition (MPD) method and newly developed HRTD method for organic solar cells (ITO/Ag{sub 2}S/P3HT:PCBM/MoO{sub 3}/Au) as an electron selective layer and a light absorption material. The surface morphology, structure characterization, and optical property of the Ag{sub 2}S films prepared by these two methods were compared and the effect of the prepared Ag{sub 2}S film on the device performance is investigated. It is found that the Ag{sub 2}S films prepared by HRTD method have lower roughness and better uniformity than the corresponding films prepared by the MPD method. In addition, a more effective and rapid transporting ability for the electrons and holes in the ITO/Ag{sub 2}S(HRTD, n)/P3HT:PCBM/MoO{sub 3}/Au cells is found, which reduces the charge recombination, and thus, improves the device performance. The highest efficiency of 3.21% achieved for the ITO/Ag{sub 2}S(HRTD, 50)/P3HT:PCBM/MoO{sub 3}/Au cell is 93% higher than that of the ITO/Ag{sub 2}S(MPD, 2)/P3HT:PCBM/MoO{sub 3}/Au cell.

  3. Active Chicken Meat Packaging Based on Polylactide Films and Bimetallic Ag-Cu Nanoparticles and Essential Oil.

    Science.gov (United States)

    Ahmed, Jasim; Arfat, Yasir Ali; Bher, Anibal; Mulla, Mehrajfatema; Jacob, Harsha; Auras, Rafael

    2018-04-16

    Plasticized polylactide (PLA) composite films with multifunctional properties were created by loading bimetallic silver-copper (Ag-Cu) nanoparticles (NPs) and cinnamon essential oil (CEO) into polymer matrix via compression molding technique. Rheological, structural, thermal, barrier, and antimicrobial properties of the produced films, and its utilization in the packaging of chicken meat were investigated. PLA/PEG/Ag-Cu/CEO composites showed a very complex rheological system where both plasticizing and antiplasticizing effects were evident. Thermal properties of plasticized PLA film with polyethylene glycol (PEG) enhanced considerably with the reinforcement of NPs whereas loading of CEO decreased glass transition, melting, and crystallization temperature. The barrier properties of the composite films were reduced with the increase of CEO loading (P packaging. The nanoparticles and essential oil loaded PLA composite films are capable of exhibiting antimicrobial effects against Gram (+) and (-) bacteria, and extend the shelf-life of chicken meat. The bionanocomposite films showed the potential to be manufactured commercially because of the thermal stability of the active components during the hot-press compression molding process. The developed bionanocomposites could have practical importance and open a new direction for the active food packaging to control the spoilage and the pathogenic bacteria associated with the fresh chicken meat. © 2018 Institute of Food Technologists®.

  4. Characterization of the Be-Ag interfacial region of silver films deposited onto beryllium using a hot hollow cathode discharge

    International Nuclear Information System (INIS)

    Larson, D.T.; Draper, H.L.

    1983-01-01

    Silver films are physically vapor deposited onto beryllium substrates using a hot hollow cathode discharge. To obtain high Be-Ag adhesion strengths, an atomically 'clean' surface is obtained by ion bombardment cleaning. In this investigation, the relationship of the ion cleaning parameters to contaminants in the Be-Ag interfacial region and their effect on adhesion strength were evaluated. Specimens were ion cleaned at various bombardment parameters and then flash coated with silver. In-depth film profiles were taken by sputter etching in argon and monitoring the Auger electron peak-to-peak heights. The interface was also analyzed by taking a complete spectrum at the edge of the sputter crater. Impurities found at the interface were tantalum, copper and oxygen. The results for adhesion strengths showed that a small amount of oxygen (about 2 at.%) left in the Be-Ag interface will reduce the adhesion strength of the coating. Silver films deposited in an air leak that was greater than a leak which is easily detectable by residual gas analysis contained only about 0.5 at.% O with no reduction in film adherence strengths. (Auth.)

  5. PANI-Ag-Cu Nanocomposite Thin Films Based Impedimetric Microbial Sensor for Detection of E. coli Bacteria

    Directory of Open Access Journals (Sweden)

    Huda Abdullah

    2014-01-01

    Full Text Available PANI-Ag-Cu nanocomposite thin films were prepared by sol-gel method and deposited on the glass substrate using spin coating technique. Polyaniline was synthesized by chemical oxidative polymerization of aniline monomer in the presence of nitric acid. The films were characterized using XRD, FTIR, and UV-Visible spectroscopy. The performance of the sensor was conducted using electrochemical impedance spectroscopy to obtain the change in impedance of the sensor film before and after incubation with E. coli bacteria in water. The peaks in XRD pattern confirm the presence of Ag and Cu nanoparticles in face-centered cubic structure. FTIR analysis shows the stretching of N–H in the polyaniline structure. The absorption band from UV-Visible spectroscopy shows high peaks between 400 nm and 500 nm which indicate the presence of Ag and Cu nanoparticles, respectively. Impedance analysis indicates that the change in impedance of the films decreases with the presence of E. coli. The sensitivity on E. coli increases for the sample with high concentration of Cu.

  6. Antimicrobial properties of Zr–Cu–Al–Ag thin film metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsien-Wei; Hsu, Kai-Chieh; Chan, Yu-Chen [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Lee, Jyh-Wei [Department of Materials Engineering, Ming Chi University of Technology, Taipei, Taiwan (China); Center for Thin Film Technologies and Applications, Mingchi University of Technology, Taipei, Taiwan (China); Jang, Jason Shian-Ching [Department of Mechanical Engineering, Institute of Materials Science and Engineering, National Central University, Chung-Li, Taiwan (China); Chen, Guo-Ju [Department of Materials Science and Engineering, I-Shou University, Kaohsiung, Taiwan (China)

    2014-06-30

    Metallic glass as a prominent class of structure and multifunctional materials exhibits several unique properties in mechanical, electrochemical, and thermal properties. This study aimed to realize the advantage of biomedical application and to promote the attainable size of metallic glasses by the physical vapor deposition. The Zr–Cu–Al–Ag thin film metallic glass (TFMG) was deposited on silicon wafer and SUS304 stainless steel substrates by magnetron sputtering with single target. For X-ray diffraction analysis, all TFMGs revealed typical broad peaks around the incident angle of 30 to 50°, suggesting that coatings possess amorphous structure. In addition, diffuse halo ring patterns of transmission electron microscopy indicated a fine amorphorization for TFMG via sputtering process. The variation of surface roughness showed that TFMG derived from higher power of metallic targets revealed rougher morphology. Besides, the roughness of SUS304 stainless steel substrate significantly reduced from 7 nm to about 1 nm after TFMGs were deposited. The microbes of Candida albicans, Escherichia coli, and Pseudomonas aeruginosa were used and cultivated on the TFMG coatings with medium to investigate the antimicrobial properties. In the incubation experiment, the growth of each microbe was recorded by a digital photography system and the growth area was calculated by image processing software. The growth area of the microbes on the TFMG was mostly smaller than that on SUS304 stainless steel ones within incubation time of 72 h, indicating that the TFMGs reveal better antimicrobial capability. Moreover, the coatings exhibit a particularly long-term antimicrobial effect for P. aeruginosa. In summary, the Zr–Cu–Al–Ag prepared by sputtering with a single target device presented superior glass forming ability, and coatings with copper and silver constituents revealed significantly antimicrobial properties. Besides, the surface roughness is another factor to affect the

  7. Antimicrobial properties of Zr–Cu–Al–Ag thin film metallic glass

    International Nuclear Information System (INIS)

    Chen, Hsien-Wei; Hsu, Kai-Chieh; Chan, Yu-Chen; Duh, Jenq-Gong; Lee, Jyh-Wei; Jang, Jason Shian-Ching; Chen, Guo-Ju

    2014-01-01

    Metallic glass as a prominent class of structure and multifunctional materials exhibits several unique properties in mechanical, electrochemical, and thermal properties. This study aimed to realize the advantage of biomedical application and to promote the attainable size of metallic glasses by the physical vapor deposition. The Zr–Cu–Al–Ag thin film metallic glass (TFMG) was deposited on silicon wafer and SUS304 stainless steel substrates by magnetron sputtering with single target. For X-ray diffraction analysis, all TFMGs revealed typical broad peaks around the incident angle of 30 to 50°, suggesting that coatings possess amorphous structure. In addition, diffuse halo ring patterns of transmission electron microscopy indicated a fine amorphorization for TFMG via sputtering process. The variation of surface roughness showed that TFMG derived from higher power of metallic targets revealed rougher morphology. Besides, the roughness of SUS304 stainless steel substrate significantly reduced from 7 nm to about 1 nm after TFMGs were deposited. The microbes of Candida albicans, Escherichia coli, and Pseudomonas aeruginosa were used and cultivated on the TFMG coatings with medium to investigate the antimicrobial properties. In the incubation experiment, the growth of each microbe was recorded by a digital photography system and the growth area was calculated by image processing software. The growth area of the microbes on the TFMG was mostly smaller than that on SUS304 stainless steel ones within incubation time of 72 h, indicating that the TFMGs reveal better antimicrobial capability. Moreover, the coatings exhibit a particularly long-term antimicrobial effect for P. aeruginosa. In summary, the Zr–Cu–Al–Ag prepared by sputtering with a single target device presented superior glass forming ability, and coatings with copper and silver constituents revealed significantly antimicrobial properties. Besides, the surface roughness is another factor to affect the

  8. Effect of crystallographic orientation on structural and mechanical behaviors of Ni-Ti thin films irradiated by Ag7+ ions

    Science.gov (United States)

    Kumar, Veeresh; Singhal, Rahul

    2018-04-01

    In the present study, thin films of Ni-Ti shape memory alloy have been grown on Si substrate by dc magnetron co-sputtering technique using separate sputter targets Ni and Ti. The prepared thin films have been irradiated by 100 MeV Ag7+ ions at three different fluences, which are 1 × 1012, 5 × 1012, and 1 × 1013 ions/cm2. The elemental composition and depth profile of pristine film have been investigated by Rutherford backscattering spectrometry. The changes in crystal orientation, surface morphology, and mechanical properties of Ni-Ti thin films before and after irradiation have been studied by X-ray diffraction, atomic force microscopy, field-emission scanning electron microscopy, and nanoindentation techniques, respectively. X-ray diffraction measurement has revealed the existence of both austenite and martensite phases in pristine film and the formation of precipitate on the surface of the film after irradiation at an optimized fluence of 1 × 1013 ions/cm2. Nanoindentation measurement has revealed improvement in mechanical properties of Ni-Ti thin films after ion irradiation via increasing hardness and Young modulus due to the formation of precipitate and ductile phase. The improvement in mechanical behavior could be explained in terms of precipitation hardening and structural change of Ni-Ti thin film after irradiation by Swift heavy ion irradiation.

  9. Temperature-dependent growth and XPS of Ag-doped ZnTe thin films deposited by close space sublimation method

    Energy Technology Data Exchange (ETDEWEB)

    Potlog, Tamara, E-mail: tpotlog@gmail.com [Department of Physics and Engineering, Moldova State University, MD 2009 Chisinau, Republic of Moldova (Moldova, Republic of); Duca, Dumitru [Department of Physics and Engineering, Moldova State University, MD 2009 Chisinau, Republic of Moldova (Moldova, Republic of); Dobromir, Marius [Faculty of Physics, Alexandru Ioan Cuza University, 11 Carol I Blvd., Iasi 700506 (Romania)

    2015-10-15

    Highlights: • Close space sublimation was used for deposition of ZnTe thin films at different substrate temperatures. • Crystallinity is improved evidently with increasing the substrate temperatures. • XPS analysis of Ag-doped ZnTe films by immersion proved the presence of Ag and revealed the increase of the Ag composition with the increasing of the thickness of ZnTe films. - Abstract: Zinc telluride (ZnTe) thin films were sublimated on a glass substrate using closed space sublimation (CSS) technique. The influence of the substrate temperature on the physical properties is studied. The deposited films were immersed in AgNO{sub 3} solution with different concentrations, and then annealed in air. The structure and composition are studied using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). X-ray diffraction patterns of as-deposited ZnTe thin films exhibited polycrystalline behavior. The preferred orientation of (1 1 1) having cubic phase irrespective of the substrate temperature was observed. The XPS analysis confirmed the presence of Ag in the ZnTe thin films after doping by immersion in the AgNO{sub 3} solution of different concentrations.

  10. Antimicrobial and cell viability measurement of bovine serum albumin capped silver nanoparticles (Ag/BSA) loaded collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film.

    Science.gov (United States)

    Bakare, Rotimi; Hawthrone, Samantha; Vails, Carmen; Gugssa, Ayele; Karim, Alamgir; Stubbs, John; Raghavan, Dharmaraj

    2016-03-01

    Bacterial infection of orthopedic devices has been a major concern in joint replacement procedures. Therefore, this study is aimed at formulating collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film loaded with bovine serum albumin capped silver nanoparticles (Ag/BSA NPs) to inhibit bacterial growth while retaining/promoting osteoblast cells viability. The nanoparticles loaded collagen immobilized PHBV film was characterized for its composition by X-ray Photoelectron Spectroscopy and Anodic Stripping Voltammetry. The extent of loading of Ag/BSA NPs on collagen immobilized PHBV film was found to depend on the chemistry of the functionalized PHBV film and the concentration of Ag/BSA NPs solution used for loading nanoparticles. Our results showed that more Ag/BSA NPs were loaded on higher molecular weight collagen immobilized PHEMA-g-PHBV film. Maximum loading of Ag/BSA NPs on collagen immobilized PHBV film was observed when 16ppm solution was used for adsorption studies. Colony forming unit and optical density measurements showed broad antimicrobial activity towards Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa at significantly lower concentration i.e., 0.19 and 0.31μg/disc, compared to gentamicin and sulfamethoxazole trimethoprim while MTT assay showed that released nanoparticles from Ag/BSA NPs loaded collagen immobilized PHBV film has no impact on MCTC3-E1 cells viability. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Optical, luminescence and scintillation characteristics of Bi-doped LuAG and YAG single crystalline films

    Czech Academy of Sciences Publication Activity Database

    Zorenko, Y.; Mareš, Jiří A.; Kučerková, Romana; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Nikl, Martin; Beitlerová, Alena; Jurek, Karel

    2009-01-01

    Roč. 42, č. 7 (2009), 075501/1-075501/7 ISSN 0022-3727 R&D Projects: GA ČR GA202/08/0893 Institutional research plan: CEZ:AV0Z10100521 Keywords : Bi-doped LuAG and YAG * single crystalline films * scintillation * luminescence * photoelectron yield Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.083, year: 2009

  12. The effect of Ag addition on the optical properties of Se{sub 90}Te{sub 10} films

    Energy Technology Data Exchange (ETDEWEB)

    Bekheet, A.E., E-mail: ashraf_bekheet@hotmail.com [Physics Department, Faculty of Education, Ain Shams University, El-Makrizi, Roxy, Cairo 9004 (Egypt); Hegab, N.A.; Afifi, M.A.; Atyia, H.E.; Sharaf, E.R. [Physics Department, Faculty of Education, Ain Shams University, El-Makrizi, Roxy, Cairo 9004 (Egypt)

    2009-02-01

    Se{sub 90}Te{sub 10-x}Ag{sub x} (0 {<=} x {<=} 6) compositions were prepared by quenching technique. Thin films with different thicknesses of the obtained compositions were deposited on dry clean glass substrates by thermal evaporation technique. Energy dispersive X-ray spectroscopy (EDX) indicates that samples are nearly stoichiometric. X-ray diffraction patterns indicate that they are in the amorphous state. The optical constants, the refractive index n and the absorption index k, have been calculated from transmittance T and reflectance R through the spectral range of 400-2500 nm for the studied films with different thicknesses (165-711 nm). From the analysis of refractive index n data, high frequency dielectric constant {epsilon}{sub {infinity}} was determined. Both {epsilon}{sub {infinity}} and n are found to decrease with the increase of Ag content. The optical band gap E{sub g}{sup opt} is calculated for all compositions from the absorption coefficient analysis. The effect of the Ag addition on the obtained optical parameters has been discussed. The analysis of absorption index k data, revealed the existence of allowed indirect transitions for all compositions. It is indicated also that E{sub g}{sup opt} increase with increasing Ag content.

  13. Improved current transport properties of post annealed Y1Ba2Cu3O7-x thin films using Ag doping

    DEFF Research Database (Denmark)

    Clausen, Thomas; Skov, Johannes; Jacobsen, Claus Schelde

    1996-01-01

    The influence of Ag doping on the transport properties of Y1Ba2Cu3O7–x thin films prepared by Y, BaF2, and Cu co-evaporation and optimized ex situ post annealing has been investigated. Both undoped and Ag doped films have values of Tc above 90 K, but Jc (77 K) is highly dependent on the nominal...

  14. Enhanced Jc's of YBa2Cu3O7-x-Ag ex situ annealed coevaporated films on LaAlO3 (100) substrates

    DEFF Research Database (Denmark)

    Clausen, Thomas; Ejrnæs, Mikkel; Olesen, Michael Wiinberg

    1995-01-01

    on the surface of the superconductor with only small amounts of Ag in the superconductor matrix. X-ray diffraction confirmed that the Ag-coated film was highly c-axis oriented. The increase in J(c) is believed to be due to the improved surface properties of the superconductor, indicating that a larger amount...

  15. Strain Distribution of Au and Ag Nanoparticles Embedded in Al2O3 Thin Film

    Directory of Open Access Journals (Sweden)

    Honghua Huang

    2014-01-01

    Full Text Available Au and Ag nanoparticles embedded in amorphous Al2O3 matrix are fabricated by the pulsed laser deposition (PLD method and rapid thermal annealing (RTA technique, which are confirmed by the experimental high-resolution transmission electron microscope (HRTEM results, respectively. The strain distribution of Au and Ag nanoparticles embedded in the Al2O3 matrix is investigated by the finite-element (FE calculations. The simulation results clearly indicate that both the Au and Ag nanoparticles incur compressive strain by the Al2O3 matrix. However, the compressive strain existing on the Au nanoparticle is much weaker than that on the Ag nanoparticle. This phenomenon can be attributed to the reason that Young’s modulus of Au is larger than that of Ag. This different strain distribution of Au and Ag nanoparticles in the same host matrix may have a significant influence on the technological potential applications of the Au-Ag alloy nanoparticles.

  16. Two-component spin-coated Ag/CNT composite films based on a silver heterogeneous nucleation mechanism adhesion-enhanced by mechanical interlocking and chemical grafting

    Science.gov (United States)

    Zhang, Yang; Kang, Zhixin; Bessho, Takeshi

    2017-03-01

    In this paper, a new method for the synthesis of silver carbon nanotube (Ag/CNT) composite films as conductive connection units for flexible electronic devices is presented. This method is about a two-component solution process by spin coating with an after-treatment annealing process. In this method, multi-walled carbon nanotubes (MWCNTs) act as the core of silver heterogeneous nucleation, which can be observed and analyzed by a field-emission scanning electron microscope. With the effects of mechanical interlocking, chemical grafting, and annealing, the interfacial adhesive strength between films and PET sheets was enhanced to 12 N cm-1. The tensile strength of the Ag/CNT composite films was observed to increase by 38% by adding 5 g l-1 MWCNTs. In the four-probe method, the resistivity of Ag/CNT-5 declined by 78.2% compared with pristine Ag films. The anti-fatigue performance of the Ag/CNT composite films was monitored by cyclic bending deformation and the results revealed that the growth rate of electrical resistance during the deformation was obviously retarded. As for industrial application, this method provides an efficient low-cost way to prepare Ag/CNT composite films and can be further applied to other coating systems.

  17. A novel surface plasmon resonance biosensor based on the PDA-AgNPs-PDA-Au film sensing platform for horse IgG detection

    Science.gov (United States)

    Wang, Ning; Zhang, Di; Deng, Xinyu; Sun, Ying; Wang, Xinghua; Ma, Pinyi; Song, Daqian

    2018-02-01

    Herein we report a novel polydopamine-silver nanoparticle-polydopamine-gold (PDA-AgNPs-PDA-Au) film based surface plasmon resonance (SPR) biosensor for horse IgG detection. The PDA-AgNPs-PDA-Au film sensing platform was built on Au-film via layer-by-layer self-assembly. Ag ion was reduced in situ to AgNPs in presence of PDA. The top PDA layer can prevent AgNPs from being oxidized and connect with antibody via Schiff alkali reaction directly. The morphology and thickness of the modified gold film were characterized using scanning electron microscope and Talystep. Experimental results show that the PDA-AgNPs-PDA-Au film sensing platform is stable, regenerative and sensitive for horse IgG detection. The detection limit of horse IgG obtained with the present biosensor is 0.625 μg mL- 1, which is 2-fold and 4-fold lower than that obtained with biosensor based on PDA modified Au film and conventional biosensor based on MPA, respectively. Furthermore, when challenged to real serum samples, our sensor exhibited excellent specificity to horse IgG, suggesting its potential for industrial application.

  18. Effect of mesh patterning with UV pulsed-laser on optical and electrical properties of ZnO/Ag-Ti thin films

    International Nuclear Information System (INIS)

    Kao, K.S.; Cheng, D.L.; Chang, S.H.; Hsieh, P.T.; Chin, H.S.; Lin, H.K.

    2010-01-01

    In this study, the ZnO/Ag-Ti structure for transparence conducting oxide (TCO) is investigated by optimizing the thickness of the Ag-Ti alloy and ZnO layers. The Ag-Ti thin film is deposited by DC magnetron sputtering and its thicknesses is well controlled. The ZnO thin film is prepared by sol-gel method using zinc acetate as cation source, 2-methoxiethanol as solvent and monoethanolamine as solution stabilizer. The ZnO film deposition is performed by spin-coating technique and dried at 150 deg. C on Corning 1737 glass. Due to the conductivity of ZnO/Ag-Ti is dominated by Ag-Ti, the sheet resistance of ZnO/Ag-Ti decrease dramatically as the thickness of Ag-Ti layer increases. However, the transmittances of ZnO/Ag-Ti become unacceptable for TCO application after the thickness of Ag-Ti layer beyond 6 nm. The as-deposited ZnO/Ag-Ti structure has the optical transmittance of 83% - 500 nm and the low resistivity of 1.2 x 10 -5 Ω-cm. Furthermore, for improving the optical and electrical properties of ZnO/Ag-Ti, the thermal treatment using laser is adopted. Experimental results indicate that the transmittance of ZnO/Ag-Ti is improved from 83% to 89% - 500 nm with resistivity of 1.02 x 10 -5 Ω-cm after laser drilling. The optical spectrum, the resistance, and the morphology of the ZnO/Ag-Ti will be reported in the study.

  19. One-Pot Fabrication of Antireflective/Antibacterial Dual-Function Ag NP-Containing Mesoporous Silica Thin Films.

    Science.gov (United States)

    Wang, Kaikai; He, Junhui

    2018-04-04

    Thin films that integrate antireflective and antibacterial dual functions are not only scientifically interesting but also highly desired in many practical applications. Unfortunately, very few studies have been devoted to the preparation of thin films with both antireflective and antibacterial properties. In this study, mesoporous silica (MSiO 2 ) thin films with uniformly dispersed Ag nanoparticles (Ag NPs) were prepared through a one-pot process, which simultaneously shows high transmittance, excellent antibacterial activity, and mechanical robustness. The optimal thin-film-coated glass substrate demonstrates a maximum transmittance of 98.8% and an average transmittance of 97.1%, respectively, in the spectral range of 400-800 nm. The growth and multiplication of typical bacteria, Escherichia coli ( E. coli), were effectively inhibited on the coated glass. Pencil hardness test, tape adhesion test, and sponge washing test showed favorable mechanical robustness with 5H pencil hardness, 5A grade adhesion, and functional durability of the coating, which promises great potential for applications in various touch screens, windows for hygiene environments, and optical apparatuses for medical uses such as endoscope, and so on.

  20. Preparation and optical dispersion and absorption of Ag-photodoped GexSb40-xS60 (x = 10, 20 and 30) chalcogenide glass thin films

    International Nuclear Information System (INIS)

    Marquez, E; Gonzalez-Leal, J M; Bernal-Oliva, A M; Wagner, T; Jimenez-Garay, R

    2007-01-01

    We have analysed the effect of silver content on the optical properties of Ag-photodoped amorphous Ge x Sb 40-x S 60 (with x = 10, 20 and 30 at.%) chalcogenide thin films; the chalcogenide host layers were prepared by vacuum thermal evaporation. Films of composition Ag y (Ge x Sb 40-x S 60 ) 100-y , with y ∼ g opt , decreases notably, with increasing Ag-content: for instance, in the particular case of x = 10 at.%, the smallest Ge-content, E g opt decreases from 1.97 down to 1.67 eV

  1. Fs-pulsed laser deposition of PbTe and PbTe/Ag thermoelectric thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, A. [CNR-ISM, Monterotondo Stazione, Rome (Italy); Universita di Roma Sapienza, Dipartimento di Fisica, Rome (Italy); Cappelli, E.; Trucchi, D.M. [CNR-ISM, Monterotondo Stazione, Rome (Italy); Orlando, S. [CNR-ISM, U.O.S. Tito Scalo Zona Industriale, Tito Scalo, PZ (Italy); Medici, L. [CNR-IMAA, Tito Scalo, PZ (Italy); Mezzi, A.; Kaciulis, S. [CNR -ISMN, Monterotondo Stazione, Rome (Italy); Polini, R. [Universita di Roma Tor Vergata, Dip. Scienze Tecnologie Chimiche, Rome (Italy)

    2014-10-15

    For the first time, thermoelectric thin films were fabricated by femtosecond pulsed laser deposition (fs-PLD) that represents a challenging technological solution for this application since it provides a correct film stoichiometry compared to the starting target, capability of native nanostructuring and a high deposition rate. In particular, this paper shows a preliminary work on PbTe and PbTe/Ag thin films deposited at different substrate temperatures by fs-PLD from a microcrystalline PbTe target. Structural, morphological and compositional characterizations of the deposited films were performed to demonstrate the formation of films composed by crystalline nanograins (about 35 nm size) and characterized by a correct stoichiometry. A remarkable deposition rate of 1.5 nm/s was evaluated. The electrical conductivity and the Seebeck coefficient (thermopower) were measured as a function of operating temperature to derive the thermoelectric power factor that was found to be less than a factor 2 with respect to the bulk materials. Finally, a discussion about the influence of compositional and structural properties of the deposited films on the related thermoelectric performances was presented. (orig.)

  2. Binary conductive network for construction of Si/Ag nanowires/rGO integrated composite film by vacuum-filtration method and their application for lithium ion batteries

    International Nuclear Information System (INIS)

    Tang, H.; Xia, X.H.; Zhang, Y.J.; Tong, Y.Y.; Wang, X.L.; Gu, C.D.; Tu, J.P.

    2015-01-01

    Construction of high-capacity anode is highly important for the development of next-generation high-performance lithium ion batteries (LIBs). Herein we fabricate Si/Ag nanowires/reduced graphene oxide (Si/Ag NWs/rGO) integrated composite film by introducing binary conductive networks (Ag NWs and rGO) into Si active materials with the help of a facile vacuum-filtration method. Active Si nanoparticles are homogeneously encapsulated by binary Ag NWs-rGO conductive network, in which Ag NWs are interwoven among the rGO sheets. The electrochemical properties of the integrated Si/Ag NWs/rGO composite film are thoroughly characterized as anode of LIBs. Compared to the Si/rGO composite film, the integrated Si/Ag NWs/rGO composite film exhibits enhanced electrochemical performances with higher capacity, better high-rate capability and cycling stability (1269 mAh g −1 at 50 mA g −1 up to 50 cycles). The binary conductive network plays a positive role in the enhancement of performance due to its faster ion/electron transfer, and better anti-structure degradation caused by volume expansion during the cycling process.

  3. ArF excimer laser-induced deposition of Ag/C nanocomposite thin films in the presence of n-Hexane

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, Mohammed Ashraf, E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department and Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Fajgar, Radek [Institute of Chemical Process Fundamentals, 16502 Prague (Czech Republic); Chang, Xiaofeng [Laser Research Group, Physics Department and Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Institute of Chemical Process Fundamentals, 16502 Prague (Czech Republic); College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China); Shen, Kai [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China); Xu, Qingyu [Department of Physics, Southeast University, Nanjing 211189 (China)

    2014-08-30

    Highlights: • A new excimer laser ablation process was proposed to fabricate Ag/C thin film. • The size of Ag nanoparticles is ranging from 5 to 20 nm. • The ratios of Ag to C can be controlled by adjusting the pressure of n-Hexane. • The graphite-like structure of carbonaceous products was confirmed. - Abstract: Ag/C nanocomposite thin films with different Ag/C molar ratios have been prepared using ArF excimer laser-induced ablation process and silver target under n-Hexane atmosphere. The morphology, crystal structure and composition of as-deposited Ag/C nanocomposite thin films were investigated with high resolution electronic microscopic techniques (including scanning electron microscopy and transmission electron microscopy) and energy-dispersive X-ray spectroscopy, respectively. Laser Raman spectroscopy and Fourier transform infrared spectroscopy techniques were also applied to characterize the final carbonaceous products generated from n-Hexane under laser ablation process. The optical emission of the plume caused by the interaction between excimer laser and silver target in the presence of n-Hexane was studied to understand the possible reaction process. The UV–vis absorption of as-deposited Ag/C thin films, which is attributed to the surface plasmonic excitation, was also investigated in the present work.

  4. Transmission electron microscope study of the topotactic reaction of (0 0 1), (0 1 1) and (1 1 1) Ag films and Te

    Energy Technology Data Exchange (ETDEWEB)

    Safran, G.; Geszti, O.; Radnoczi, G

    2003-09-01

    The formation, structure and morphology of silver telluride was investigated in the reaction of (0 0 1), (0 1 1) and (1 1 1) single crystalline Ag films with vacuum deposited Te. Silver films 30-40 nm in thickness were deposited by thermal evaporation onto water- and chlorine-treated NaCl. Onto this silver 1-40 nm of tellurium were deposited at 100 and 200 deg. C. The Ag-Te reaction occurred during Te deposition. Accordingly, formation of the compound phase was investigated from the nucleation stage through complete tellurization on either side of the polymorphic phase transformation temperature (T{sub c}=150 deg. C). Transmission electron microscope and selected area electron diffraction showed that monoclinic silver telluride (Ag{sub 2}Te) of different morphology and texture was always formed. The orientation of silver and monoclinic phase upon differently oriented monocrystalline Ag films and at deposition temperatures around T{sub c} is discussed.

  5. ArF excimer laser-induced deposition of Ag/C nanocomposite thin films in the presence of n-Hexane

    Science.gov (United States)

    Gondal, Mohammed Ashraf; Fajgar, Radek; Chang, Xiaofeng; Shen, Kai; Xu, Qingyu

    2014-08-01

    Ag/C nanocomposite thin films with different Ag/C molar ratios have been prepared using ArF excimer laser-induced ablation process and silver target under n-Hexane atmosphere. The morphology, crystal structure and composition of as-deposited Ag/C nanocomposite thin films were investigated with high resolution electronic microscopic techniques (including scanning electron microscopy and transmission electron microscopy) and energy-dispersive X-ray spectroscopy, respectively. Laser Raman spectroscopy and Fourier transform infrared spectroscopy techniques were also applied to characterize the final carbonaceous products generated from n-Hexane under laser ablation process. The optical emission of the plume caused by the interaction between excimer laser and silver target in the presence of n-Hexane was studied to understand the possible reaction process. The UV-vis absorption of as-deposited Ag/C thin films, which is attributed to the surface plasmonic excitation, was also investigated in the present work.

  6. Structural, optical and electrical properties of Sb doped and undoped AgIn1-xGaxSe2 and Ag(InGa)5Se8 thin films

    International Nuclear Information System (INIS)

    Jacob, Rajani; Sreenivasan, P.V.; Philip, Rachel Reena; Remillard, Stephen K.; DeYoung, Paul A.; Deshpande, Uday P.; Shripathi, T.; Ganesan, V.; Naduvath, Johns

    2014-01-01

    Antimony doped and undoped nanostructured thin films of AgIn 1 - x Ga x Se 2 and Ag(InGa) 5 Se 8 on optically flat soda lime glass substrates are prepared by a three stage co-evaporation process. Energy dispersive analysis of X-rays (EDAX) and X-ray photoelectron spectroscopy in conjunction with atomic force microscopic technique and scanning electron microscopic technique are used, respectively, for compositional and surface morphological analysis of the films. X-ray diffraction (XRD) data on the films are analysed to estimate the influence of antimony doping and indium replacement by gallium, on the structure of the films, by determining the anion-cation bond lengths and anion displacement in the thin films. The obvious dependence of band gap on the composition of the films establishes the possibility of band gap tailoring of the films. Low temperature optical absorbance measurements in the temperature regime 90-301 K are used for investigating the effect of doping on the temperature coefficient of band gaps of the films. Rutherford scattering spectra quantify the thickness of the films for conductivity (σ) measurements. The films exhibit n-type conductivity with two linear regions in the ln(σ) versus temperature inverse graphs, which indicate a defect activated conduction and intrinsic conduction, respectively, in the near room temperature and high temperature regions. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Synthesis and Characterization of BSA Conjugated Silver Nanoparticles (Ag/BSA Nanoparticles) and Evaluation of Biological Properties of Ag/BSA Nanoparticles and Ag/BSA Nanoparticles Loaded Poly(hydroxy butyrate valerate) PHBV Films

    Science.gov (United States)

    Ambaye, Almaz

    Ag/BSA nanoparticles was found to be in a range of 9-13 nm. X-ray photo electron spectroscopy measurements of argon sputtered Ag/BSA nanoparticles provided evidence that the outer and inner region of nanoparticles are mainly composed of BSA and silver, respectively. Having characterized the nanoparticles, the next phase of the study was to evaluate the antibacterial activity and cytotoxicity level of BSA stabilized silver nanoparticles. The antibacterial efficacy of Ag/BSA nanoparticles against E. coli and S. aureus was evaluated, and minimum lethal concentration was found to be 2ppm and 7ppm, respectively. E. coli showed a higher susceptibility to silver nanoparticles than S. aureus, which could be attributed to the difference in the cell wall structure. We have also investigated the cytotoxicity level of Ag/BSA nanoparticles towards MC3T3-E1 osteoblast cells. The minimum bactericidal concentration found for both strains is lower than the silver nanoparticles concentration that was toxic to the osteoblast cells. Preliminary studies of Ag/BSA nanoparticles loaded collagen immobilized PHBV film showed that the Ag/BSA nanoparticles loaded PHBV film inhibit bacterial growth. The findings of our study can be extremely useful in the design of novel scaffold to address the critical needs of bone tissue engineering community.

  8. An ultrathin, smooth, and low-loss Al-doped Ag film and its application as a transparent electrode in organic photovoltaics.

    Science.gov (United States)

    Zhang, Cheng; Zhao, Dewei; Gu, Deen; Kim, Hyunsoo; Ling, Tao; Wu, Yi-Kuei Ryan; Guo, L Jay

    2014-08-27

    An ultrathin, smooth, and low-loss Ag film without a wetting layer is achieved by co-depositing a small amount of Al into Ag. The film can be as thin as 6 nm, with a roughness below 1 nm and excellent mechanical flexibility. Organic photovoltaics that use these thin films as transparent electrode show superior efficiency to their indium tin oxide (ITO) counterparts because of improved photon management. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. XPS study of the surface chemistry of Ag-covered L-CVD SnO2 thin films

    International Nuclear Information System (INIS)

    Kwoka, M.; Ottaviano, L.; Passacantando, M.; Czempik, G.; Santucci, S.; Szuber, J.

    2008-01-01

    In this paper, we present the results of X-ray photoelectron spectroscopy characterization of SnO 2 thin films prepared by laser chemical vapour deposition (L-CVD) and subsequently covered by Ag atoms just after deposition and after long-term exposed to dry air, subsequent annealing in ultra high vacuum at 400 deg. C and dry air oxidation at 400 deg. C. Using the standard analytical procedure based on atomic sensitivity factors, the variation of surface chemistry defined in terms of the relative concentration of the main components of the films after the above-mentioned procedures has been determined. It was confirmed that after dry air exposure as well as dry air oxidation, the layers undergo an oxidation reaching almost SnO 2 stoichiometry. Besides, during ultra high vacuum annealing, the films undergo reduction to almost SnO stoichiometry. At the same time, Ag atoms deposited at the top of layers diffuse into the subsurface layers. This was confirmed by X-ray photoelectron spectroscopy depth profiling analysis

  10. Pure Cubic-Phase Hybrid Iodobismuthates AgBi2 I7 for Thin-Film Photovoltaics.

    Science.gov (United States)

    Kim, Younghoon; Yang, Zhenyu; Jain, Ankit; Voznyy, Oleksandr; Kim, Gi-Hwan; Liu, Min; Quan, Li Na; García de Arquer, F Pelayo; Comin, Riccardo; Fan, James Z; Sargent, Edward H

    2016-08-08

    Bismuth-based hybrid perovskites are candidates for lead-free and air-stable photovoltaics, but poor surface morphologies and a high band-gap energy have previously limited these hybrid perovskites. A new materials processing strategy to produce enhanced bismuth-based thin-film photovoltaic absorbers by incorporation of monovalent silver cations into iodobismuthates is presented. Solution-processed AgBi2 I7 thin films are prepared by spin-coating silver and bismuth precursors dissolved in n-butylamine and annealing under an N2 atmosphere. X-ray diffraction analysis reveals the pure cubic structure (Fd3m) with lattice parameters of a=b=c=12.223 Å. The resultant AgBi2 I7 thin films exhibit dense and pinhole-free surface morphologies with grains ranging in size from 200-800 nm and a low band gap of 1.87 eV suitable for photovoltaic applications. Initial studies produce solar power conversion efficiencies of 1.22 % and excellent stability over at least 10 days under ambient conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Respective efficiencies of nuclear collisions and electronic excitations for precipitating Ag clusters in sol-gel films

    CERN Document Server

    Pivin, J C

    2002-01-01

    The growth of silver clusters in co-sputtered SiO sub 2 :Ag films under irradiation with increasing fluences of 1.5 MeV He or 3 MeV Au ions is investigated by recording spectra of optical extinction. The analysis of surface plasmon resonances in these very small clusters on basis of Mie theory permits to estimate more precisely their mean size than TEM images. A linear increase of the mean cluster size with the energy deposited by ions in electronic excitations and little effect of collision cascades are observed. The growth kinetics is ascribed to a process of desorption/re-adsorption of Ag atoms at the surface of clusters.

  12. Electrochemical layer by layer growth and characterization of copper sulfur thin films on Ag(1 1 1)

    International Nuclear Information System (INIS)

    Innocenti, M.; Bencistà, I.; Bellandi, S.; Bianchini, C.; Di Benedetto, F.; Lavacchi, A.; Vizza, F.; Foresti, M.L.

    2011-01-01

    Copper sulfide (CuS) thin films were grown on a single crystal Ag(1 1 1) substrate by Electrochemical Atomic Layer Deposition (ECALD) method, i.e., by alternated surface limited deposition of copper and sulfur. A detailed investigation of deposition of Cu on S allowed to find the best conditions for copper deposition. The electrochemical characterization of deposits obtained with different deposition cycles suggests a 1:1 stoichiometric ratio between Cu and S corresponding to Cu monosulfide. The compositional analysis was performed by X-rays Photoelectron Spectroscopy (XPS), and the morphological was investigated by Atomic Force Microscopy (AFM) for deposits formed with 20 ECALD cycles.

  13. Bimetallic PdAg nanoparticle arrays from monolayer films of diblock copolymer micelles

    Science.gov (United States)

    Ehret, E.; Beyou, E.; Mamontov, G. V.; Bugrova, T. A.; Prakash, S.; Aouine, M.; Domenichini, B.; Cadete Santos Aires, F. J.

    2015-07-01

    The self-assembly technique provides a highly efficient route to generate well-ordered structures on a nanometer scale. In this paper, well-ordered arrays of PdAg alloy nanoparticles on flat substrates with narrow distributions of particle size (6-7 nm) and interparticle spacing (about 60 nm) were synthesized by the block copolymer micelle approach. A home-made PS-b-P4VP diblock copolymer was prepared to obtain a micellar structure in toluene. Pd and Ag salts were then successfully loaded in the micellar core of the PS-b-P4VP copolymer. A self-assembled monolayer of the loaded micelles was obtained by dipping the flat substrate in the solution. At this stage, the core of the micelles was still loaded with the metal precursor rather than with a metal. Physical and chemical reducing methods were used to reduce the metal salts embedded in the P4VP core into PdAg nanoparticles. HRTEM and EDX indicated that Pd-rich PdAg alloy nanoparticles were synthesized by chemical or physical reduction; UV-visible spectroscopy observations confirmed that metallic PdAg nanoparticles were quickly formed after chemical reduction; XPS measurements revealed that the PdAg alloy nanoparticles were in a metallic state after a short time of exposure to O2 plasma and after hydrazine reduction.

  14. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials.

    Science.gov (United States)

    Kaina, Nadège; Lemoult, Fabrice; Fink, Mathias; Lerosey, Geoffroy

    2015-09-03

    Metamaterials, man-made composite media structured on a scale much smaller than a wavelength, offer surprising possibilities for engineering the propagation of waves. One of the most interesting of these is the ability to achieve superlensing--that is, to focus or image beyond the diffraction limit. This originates from the left-handed behavior--the property of refracting waves negatively--that is typical of negative index metamaterials. Yet reaching this goal requires the design of 'double negative' metamaterials, which act simultaneously on the permittivity and permeability in electromagnetics, or on the density and compressibility in acoustics; this generally implies the use of two different kinds of building blocks or specific particles presenting multiple overlapping resonances. Such a requirement limits the applicability of double negative metamaterials, and has, for example, hampered any demonstration of subwavelength focusing using left-handed acoustic metamaterials. Here we show that these strict conditions can be largely relaxed by relying on media that consist of only one type of single resonant unit cell. Specifically, we show with a simple yet general semi-analytical model that judiciously breaking the symmetry of a single negative metamaterial is sufficient to turn it into a double negative one. We then demonstrate that this occurs solely because of multiple scattering of waves off the metamaterial resonant elements, a phenomenon often disregarded in these media owing to their subwavelength patterning. We apply our approach to acoustics and verify through numerical simulations that it allows the realization of negative index acoustic metamaterials based on Helmholtz resonators only. Finally, we demonstrate the operation of a negative index acoustic superlens, achieving subwavelength focusing and imaging with spot width and resolution 7 and 3.5 times better than the diffraction limit, respectively. Our findings have profound implications for the

  15. The Role of Annealing Process in Ag-Based BaSnO3 Multilayer Thin Films

    Science.gov (United States)

    Wu, Muying; Yu, Shihui; He, Lin; Yang, Lei; Zhang, Weifeng

    2016-08-01

    The BaSnO3/Ag/BaSnO3 multilayer structure was designed and fabricated on a quartz glass by magnetron sputtering, followed by an annealing process at a temperature from 150 to 750 °C in air. In this paper, we investigated the influence of the annealing temperature on the structural, optical, and electrical properties of the multilayers and proposed the mechanisms of conduction and transmittance. The maximum value of the figure of merit of 31.8 × 10-3 Ω-1 was achieved for the BaSnO3/Ag/BaSnO3 multilayer thin films annealed at 150 °C, while the average optical transmittance in the visible ranges was >84 %, the resistivity was 5.71 × 10-5 Ω cm, and the sheet resistance was 5.57 Ω/sq. When annealed at below 600 °C, the values of resistivity and transmittance of the multilayers were within an acceptable range (resistivity 80 %). The observed property of the multilayer film is suitable for the application of transparent conductive electrodes.

  16. Structural and optical properties of thin films porous amorphous silicon carbide formed by Ag-assisted photochemical etching

    International Nuclear Information System (INIS)

    Boukezzata, A.; Keffous, A.; Cheriet, A.; Belkacem, Y.; Gabouze, N.; Manseri, A.; Nezzal, G.; Kechouane, M.; Bright, A.; Guerbous, L.; Menari, H.

    2010-01-01

    In this work, we present the formation of porous layers on hydrogenated amorphous SiC (a-SiC: H) by Ag-assisted photochemical etching using HF/K 2 S 2 O 8 solution under UV illumination at 254 nm wavelength. The amorphous films a-SiC: H were elaborated by d.c. magnetron sputtering using a hot pressed polycrystalline 6H-SiC target. Because of the high resistivity of the SiC layer, around 1.6 MΩ cm and in order to facilitate the chemical etching, a thin metallic film of high purity silver (Ag) has been deposited under vacuum onto the thin a-SiC: H layer. The etched surface was characterized by scanning electron microscopy, secondary ion mass spectroscopy, infrared spectroscopy and photoluminescence. The results show that the morphology of etched a-SiC: H surface evolves with etching time. For an etching time of 20 min the surface presents a hemispherical crater, indicating that the porous SiC layer is perforated. Photoluminescence characterization of etched a-SiC: H samples for 20 min shows a high and an intense blue PL, whereas it has been shown that the PL decreases for higher etching time. Finally, a dissolution mechanism of the silicon carbide in 1HF/1K 2 S 2 O 8 solution has been proposed.

  17. Ag-Doped TiO2 Nanotube Arrays Composite Film as a Photoanode for Enhancing the Photoelectric Conversion Efficiency in DSSCs

    Directory of Open Access Journals (Sweden)

    Jinghua Hu

    2016-01-01

    Full Text Available A Ag-doped double-layer composite film with TiO2 nanoparticles (P25 as the underlayer and TiO2 nanotube (TNT arrays with the Ag-doped nanoparticles as the overlayer was fabricated as the photoanode in dye-sensitized solar cells (DSSCs. Five different concentrations of Ag-doped TNT arrays photoelectrode were compared with the pure TNT arrays composite photoelectrode. It is found that the photoelectric conversion efficiency of the TNT arrays composite photoanode is gradually improved from 3.00% of the pure TNT arrays composite photoanode to 6.12% of the Ag-doped TNT arrays photoanode with the increasing of the doping concentration, reaching up to the maximum in the 0.04 mol/L AgNO3 solution, and then slightly decreased to 5.43% after continuing to increase the doping concentration. The reason is mainly that the cluster structure of the Ag nanoparticles with large surface area contributes to dye adsorption and the Surface Plasmon Resonance Effect of the Ag nanoparticles improved the photocatalytic ability of the TNT arrays film.

  18. Study of 120 MeV Ni7+ ion beam irradiated SnO2/Ag/SnO2 multilayer thin films

    Science.gov (United States)

    Sharma, Vikas; Sharma, Neeru; Surbhi, Singh, Satyavir; Singh, Devendra; Makhija, Garima; Asokan, K.; Sachdev, Kanupriya

    2017-05-01

    Multilayer thin films of SnO2/Ag/SnO2 were prepared on silicon and quartz substrates by electron beam and thermal evaporation method for the SnO2 and Ag layer respectively. As prepared specimen were irradiated with 120 MeV Ni7+ ions of two fluences of 1×1012 and 5×1012 ions /cm2 to modify the structural and optical properties. These films were then systematically investigated to observe the modifications produced in the multilayer films. XRD was used for structural investigation which shows crystallinity induced by irradiation in the otherwise amorphous samples. FTIR results reveal the presence of functional groups with stretching and bending vibration. The average transmittance of the pristine multilayer film was ˜73% which shows a slight increase on irradiation. Peak positions in Raman spectra are indicative of strain in the irradiated sample. A decrease in grain size is observed after irradiation.

  19. Scintillation properties of LuAG:Ce single crystalline films grown by LPE method

    Czech Academy of Sciences Publication Activity Database

    Průša, Petr; Mareš, Jiří A.; Nikl, Martin; Kučera, M.; Nitsch, Karel; Hanus, M.

    2010-01-01

    Roč. 32, č. 10 (2010), s. 1360-1363 ISSN 0925- 3467 R&D Projects: GA AV ČR KAN300100802 Institutional research plan: CEZ:AV0Z10100521 Keywords : LuAG:Ce * LPE method * scintillation * photoelectron yield Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.679, year: 2010

  20. Characterization of AgGa{sub 0.5}In{sub 0.5}Se{sub 2} thin films deposited by electron-beam technique

    Energy Technology Data Exchange (ETDEWEB)

    Karaagac, H; Parlak, M [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey); Kaleli, M, E-mail: parlak@metu.edu.t [Department of Physics, Sueleyman Demirel University, 32260 Isparta (Turkey)

    2009-08-21

    AgGa{sub 0.5}In{sub 0.5}Se{sub 2} thin films were deposited onto a quartz substrate by the electron-beam technique. For the investigation of the annealing effect on structural, optical and electrical properties of deposited films, samples were annealed in the temperature range 300-775 {sup 0}C. The composition analyses of the deposited films carried out by energy dispersive x-ray analysis measurements have shown that the deposited AgGa{sub 0.5}In{sub 0.5}Se{sub 2} films were indium- and gallium-rich but selenium- and slightly silver-deficient and there was a remarkable change in composition with annealing. As a result of x-ray diffraction measurements, the as-deposited films were found to have an amorphous structure and after annealing at 300 {sup 0}C a polycrystalline structure with different phases was observed. However, subsequent annealing resulted in the formation of single phase AgGa{sub 0.5}In{sub 0.5}Se{sub 2} thin film at about 775 {sup 0}C. The absorption coefficient of the films was determined from the transmission spectra and the band gap values were calculated and found to vary between 1.57 and 2.43 eV following annealing in the temperature range 300-775 {sup 0}C. The refractive index (n) and extinction coefficient (k) of the films were evaluated by applying the envelope method to the transmission spectra. The spectral distributions of these quantities for both as-deposited and annealed films were determined in detail and it was observed that there has been a remarkable influence of annealing on these quantities. The electrical properties of AgGa{sub 0.5}In{sub 0.5}Se{sub 2} thin films were also investigated by means of temperature dependent conductivity measurements in the temperature range 100-460 K. The resistivity of the samples depending on the annealing temperature varied between 6.5 x 10{sup 5} and 16 {Omega} cm. As a result of the hot-probe method it was observed that the as-deposited films have indicated an n-type behaviour, while all the

  1. Ag{sup +12} ion induced modifications of structural and optical properties of ZnO-PMMA nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sarla; Vijay, Y. K. [Department of Physics, University of Rajasthan, Jaipur-302055 (India); Vyas, Rishi [Department of Physics, Malaviya National Institute of Technology, Jaipur-302017 (India)

    2013-02-05

    The influence of swift heavy ion (SHI) irradiation on structural and photoluminescence (PL) properties of ZnO-PMMA nanocomposite films, prepared by solution casting method, was studied. The ZnO-PMMA nanocomposite films were irradiated using 120 MeV Ag{sup +12} ions at different fluences varying from 1 Multiplication-Sign 10{sup 11} to 1 Multiplication-Sign 10{sup 13} ions/cm{sup 2}. The intensity of the X-ray diffraction peaks is increased at the high fluence, without evolution of any new peak. A shift in absorption edge (i.e. shift in optical band gap) towards higher wavelength was observed after irradiation and PL from ZnO-PMMA nanocomposite films is found to increase up to a critical fluence and then found to be suppressed for higher fluence (1 Multiplication-Sign 10{sup 12} ion/cm{sup 2}). The change in photoluminescence after irradiation can be attributed to the change in microstructure of PMMA matrix as well as the agglomeration of ZnO nanoparticles.

  2. Ag+12 ion induced modifications of structural and optical properties of ZnO-PMMA nanocomposite films

    International Nuclear Information System (INIS)

    Sharma, Sarla; Vijay, Y. K.; Vyas, Rishi

    2013-01-01

    The influence of swift heavy ion (SHI) irradiation on structural and photoluminescence (PL) properties of ZnO-PMMA nanocomposite films, prepared by solution casting method, was studied. The ZnO-PMMA nanocomposite films were irradiated using 120 MeV Ag +12 ions at different fluences varying from 1×10 11 to 1×10 13 ions/cm 2 . The intensity of the X-ray diffraction peaks is increased at the high fluence, without evolution of any new peak. A shift in absorption edge (i.e. shift in optical band gap) towards higher wavelength was observed after irradiation and PL from ZnO-PMMA nanocomposite films is found to increase up to a critical fluence and then found to be suppressed for higher fluence (1×10 12 ion/cm 2 ). The change in photoluminescence after irradiation can be attributed to the change in microstructure of PMMA matrix as well as the agglomeration of ZnO nanoparticles.

  3. Stabilization of polar Mn3O4(001) film on Ag(001): Interplay between kinetic and structural stability

    Science.gov (United States)

    Kundu, Asish K.; Barman, Sukanta; Menon, Krishnakumar S. R.

    2017-10-01

    Stabilization processes of polar surfaces are often very complex and interesting. Understanding of these processes is crucial as it ultimately determines the properties of the film. Here, by the combined study of Low Energy Electron Diffraction (LEED), X-ray Photoelectron Spectroscopy (XPS) and Ultraviolet Photoemission Spectroscopy (UPS) techniques we show that, although there can be many processes involved in the stabilization of the polar surfaces, in case of Mn3O4(001)/Ag(001), it goes through different reconstructions of the Mn2O4 terminated surface which is in good agreements with the theoretical predictions. The complex surface phase diagram has been probed by LEED as a function of film thickness, oxygen partial pressure and substrate temperature during growth, while their chemical compositions have been probed by XPS. Below a critical film thickness of ∼ 1 unit cell height (8 sublayers or 3 ML) of Mn3O4 and oxygen partial pressure range of 2 × 10-8 mbar 5 × 10-7 mbar) and higher temperature UHV annealing. The origin of these stripes has been explained with the help of UPS results.

  4. Controlled synthesis and characterization of Ag2S films with varied microstructures and its role as asymmetric barrier layer in trilayer junctions with dissimilar electrodes

    Science.gov (United States)

    Lekshmi, I. C.; Berera, G.; Afsar, Y.; Miao, G. X.; Nagahama, T.; Santos, T.; Moodera, J. S.

    2008-05-01

    In this study, we examine the possibility of electrode-barrier interactions in modifying the electrical characteristics and current switching behavior of a trilayer junction with silver sulfide as the barrier layer. A series of Al -Ag2S-Ag crossbar junction is fabricated by thermal evaporation technique varying the thickness (30-110Å) of the sulfide layer. Current-voltage characteristics of the junctions are studied as a function of barrier layer thickness, which can suggest any role that electrode-barrier interaction may have in tuning their electrical behavior. To fully understand the performance of the barrier layer, structure and physical properties of Ag2S films are independently investigated. The microstructure of Ag2S films strongly depends on the deposition conditions that, in turn, affect their electrical and optical characteristics. The polarization of the lattice prevalent in Ag2S is shown to affect the charge carrier conduction in their films and dominates their electrical behavior and that of the junctions.

  5. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses.

    Science.gov (United States)

    Liu, Yanhui; Padmanabhan, Jagannath; Cheung, Bettina; Liu, Jingbei; Chen, Zheng; Scanley, B Ellen; Wesolowski, Donna; Pressley, Mariyah; Broadbridge, Christine C; Altman, Sidney; Schwarz, Udo D; Kyriakides, Themis R; Schroers, Jan

    2016-05-27

    Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design.

  6. AgGaSe2 thin films grown by chemical close-spaced vapor transport for photovoltaic applications: structural, compositional and optical properties.

    Science.gov (United States)

    Merschjann, C; Mews, M; Mete, T; Karkatzinou, A; Rusu, M; Korzun, B V; Schorr, S; Schubert-Bischoff, P; Seeger, S; Schedel-Niedrig, Th; Lux-Steiner, M-Ch

    2012-05-02

    Thin films of chalcopyrite AgGaSe(2) have been successfully grown on glass and glass/molybdenum substrates using the technique of chemical close-spaced vapor transport. The high crystallinity of the samples is confirmed by grazing-incidence x-ray diffraction, scanning and transmission electron microscopy, and optical transmission/reflection spectroscopy. Here, two of the three expected direct optical bandgaps are found at 1.77(2) and 1.88(6) eV at 300 K. The lowest bandgap energy at 4 K is estimated to be 1.82(3) eV. Photoluminescence spectroscopy has further revealed the nature of the point defects within the AgGaSe(2), showing evidence for the existence of very shallow acceptor levels of 5(1) and 10(1) meV, and thus suggesting the AgGaSe(2) phase itself to exhibit a p-type conductivity. At the same time, electrical characterization by Hall, Seebeck and four-point-probe measurements indicate properties of a compensated semiconductor. The electrical properties of the investigated thin films are mainly influenced by the presence of Ag(2)Se and Ga(2)O(3) nanometer-scaled surface layers, as well as by Ag(2)Se inclusions in the bulk and Ag clusters at the layers' rear side. © 2012 IOP Publishing Ltd

  7. Structural and optical properties of ZnO nanostructures electrochemically synthesized on AZO/Ag/AZO-multilayer-film-coated polyethersulfone substrates

    International Nuclear Information System (INIS)

    Oh, Dohyun; Yoo, Chanho; No, Youngsoo; Kim, Suyoun; Kim, Taewhan; Cho, Woonjo; Kim, Jinyoung

    2012-01-01

    ZnO nanostructures were formed on Al-doped ZnO (AZO)/Ag/AZO-multilayer-film-coated flexible polyethersulfone (PES) substrates at low temperature by using an electrochemical deposition method. The resistivity of the AZO/Ag/AZO multilayer films decreased with increasing thickness of the Ag film. X-ray diffraction patterns for the ZnO nanostructures showed that the crystal structure of the ZnO was hexagonal wurtzite and that the orientation was along the c-axis perpendicular to the substrate. Scanning electron microscopy images showed that the ZnO nanostructures grown at current densities of - 1.0 and - 1.5 mA/cm 2 were ZnO nanorods with diameters of 150 nm and ZnO nanoflowers with a planar dimension, respectively. Photoluminescence spectra showed that the band-edge emission peak of the ZnO nanostructures dominantly appeared in the ultraviolet region. These results showed that ZnO nanorods and nanoflowers with high quality were synthesized on AZO/Ag/AZO-multilayer-film-coated PES substrates.

  8. Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing

    Science.gov (United States)

    Das, Sayantan; Alford, T. L.

    2013-06-01

    Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (-111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.

  9. Production and characterization of layer by layer sputtered single-phase AgInSe{sub 2} thin film by thermal selenization

    Energy Technology Data Exchange (ETDEWEB)

    Kaleli, M. [Department of Physics, Süleyman Demirel University, 32260 İsparta (Turkey); Çolakoğlu, T. [Department of Electrical Engineering, Middle East Technical University, 06800 Ankara (Turkey); Parlak, M., E-mail: parlak@metu.edu.tr [Department of Physics, Middle East Technical University, Inonu Bulv, 06800 Ankara (Turkey)

    2013-12-01

    In this study highly stoichiometric and monophase AgInSe{sub 2} thin films were prepared by selenization of Ag–InSe precursors and the effect of the annealing temperature on the structural, electrical and optical properties have been investigated. The Se incorporation during selenization process as a function of temperature and the compositions of the samples were determined by energy dispersive X-ray analysis (EDAX). As prepared and selenized films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Hall effect and photoresponse measurements at room temperature. XRD analysis depicted that the crystal structure of AgInSe{sub 2} film was monophase with preferred orientation along the (1 1 2) direction and the lattice parameters a = 6.09, b = 6.09 and c = 11.67 Å. The structural evolution was clearly diagnosed by the increase of film thickness during selenization process. It was observed from SEM measurements that the average values of grain size ranging from 0.5 to 4 μm on the surface of AgInSe{sub 2} thin films by increasing selenization temperature from 300 to 450 °C. Room temperature conductivity and carrier concentrations of selenized samples determined by means of Hall measurements were found in the range of 0.03–0.88 (Ω-cm){sup −1} and 1.35 × 10{sup 15}–7.09 × 10{sup 18} (cm{sup −3}), respectively. The band gaps of these samples were investigated by spectral photoresponse measurement under light bias in the range of 1.05–2.10 eV. The two stage selenization process is introduced as an applicable approach to fabricate pure monophase AgInSe{sub 2} thin films for the usage in thin-film solar cell applications.

  10. High Ms Fe16N2 thin film with Ag under layer on GaAs substrate

    Energy Technology Data Exchange (ETDEWEB)

    Allard Jr, Lawrence Frederick [ORNL

    2016-01-01

    (001) textured Fe16N2 thin film with Ag under layer is successfully grown on GaAs substrate using a facing target sputtering (FTS) system. After post annealing, chemically ordered Fe16N2 phase is formed and detected by X-ray diffraction (XRD). High saturation magnetization (Ms) is measured by a vibrating sample magnetometer (VSM). In comparison with Fe16N2 with Ag under layer on MgO substrate and Fe16N2 with Fe under layer on GaAs substrate, the current layer structure shows a higher Ms value, with a magnetically softer feature in contrast to the above cases. In addition, X-ray photoelectron spectroscopy (XPS) is performed to characterize the binding energy of N atoms. To verify the role of strain that the FeN layer experiences in the above three structures, Grazing Incidence X-ray Diffraction (GIXRD) is conducted to reveal a large in-plane lattice constant due to the in-plane biaxial tensile strain. INTRODUCTION

  11. Novel method for fabrication of integrated resistors on bilayer Ag/YBa2Cu3O7 films using Ni implantation

    International Nuclear Information System (INIS)

    LaGraff, J.R.; Chan, H.; Murduck, J.M.; Hong, S.H.; Ma, Q.Y.

    1997-01-01

    A novel ion implantation method is described for fabricating low inductance integrated resistors on Ag/YBa 2 Cu 3 O 7 (YBCO) bilayer thin films. Parallel high and low value resistors were simultaneously formed by patterning bilayer films into 10-μm-wide lines, then masking and implanting with Ni to selectively inhibit superconductivity in YBCO. Low value resistors (<1Ω/sq) were formed at 77 K as the supercurrent bypassed the Ni-doped nonsuperconducting YBCO and was shunted through the overlying low resistivity Ag metal. High value resistors (20 - 140 Ω/sq) were formed by removing Ag from above the implanted YBCO forcing the current through the implanted YBCO region. The sheet resistance of both types of resistors was found to increase systematically with increasing Ni implant energy. copyright 1997 American Institute of Physics

  12. Preparation of Ag/TiO{sub 2}/SiO{sub 2} films via photo-assisted deposition and adsorptive self-assembly for catalytic bactericidal application

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Baojuan, E-mail: baojuanxi@gmail.com [Department of Electrical and Computer Engineering, 10 Kent Ridge Crescent, Singapore 119260 (Singapore); Chu, Xiaona; Hu, Jiangyong [Department of Civil and Environmental Engineering, 10 Kent Ridge Crescent, Singapore 119260 (Singapore); Bhatia, Charanjit Singh; Danner, Aaron James; Yang, Hyunsoo [Department of Electrical and Computer Engineering, 10 Kent Ridge Crescent, Singapore 119260 (Singapore)

    2014-08-30

    Highlights: • We prepared controlledly the silver nanoparticles on TiO{sub 2}/SiO{sub 2} film by the facile photoreduction under the aid of structure-directing agents. • We studied the effect of silver loading on the antibactierial behavior of TiO{sub 2} film and optimized the content of silver. • We extended the route to fabricate other metals on substrates. - Abstract: The deterioration of water supply quality due to the waterborne bacteria is an environmental problem requiring the urgent attention. Due to the excellent and synergic antimicrobial capability, Ag-loaded TiO{sub 2} photocatalyst emerges as a feasible measure to guard the water. In our work, Ag nanoparticles have been prepared by the photoassisted reduction of AgNO{sub 3} on the TiO{sub 2} film fabricated by solution-based adsorptive self-assembly approach. The role of surfactant on the growth rate and size controlling of particles is also studied. In this connection, different kinds of surfactants, such as PVP, Tween-20, Tween-40 and so on, are applied in the system to investigate the formation of Ag nanoparticles. The surface profile and elemental analysis of Ag/TiO{sub 2}/SiO{sub 2} films are examined by scanning electron microscopy and attached energy-dispersive X-ray spectroscopy, respectively. In the anti-bacteria detection, Ag nanoparticles are found to enhance the bactericidal efficiency strongly comparing with the pure TiO{sub 2} film under the same condition. In addition, by comparison with Ag/TiO{sub 2}/SiO{sub 2} film in the dark environment as the reference experiment, UV–visible light plays a vital role in the improved bactericidal behavior, demonstrating the more efficient charge separation induced by metal silver. Because of the versatility of the method, the present photoreductive route is also exploited for the synthesis of Au nanoparticles on TiO{sub 2}/SiO{sub 2} films. The corresponding photocatalytical detection results demonstrate the loading of Au nanoparticles can

  13. Synthesis of Ag-doped hydrogenated carbon thin films by a hybrid ...

    Indian Academy of Sciences (India)

    Dr S Taktak is grateful to the Scientific and Technological. Research Council of Turkey (TUBITAK) for the award of the. 2219 International Post Doctoral Research Fellowship. References. Ahmed S F, Moon M W and Lee K R 2008 Appl. Phys. Lett. 92. 193502. Ahmed S F, Moon M W and Lee K R 2009 Thin Solid Films 517.

  14. Structural changes induced spin-reorientation of ultrathin Mn films grown on Ag(001)

    International Nuclear Information System (INIS)

    Ouarab, N.; Haroun, A.; Baadji, N.

    2016-01-01

    The strained body centered tetragonal (bct) Mn ultrathin film from lattice parameter a=2.89 Å to lattice value of 2.73 Å induces anti-ferromagnetic behavior between Mn layers. The magnetic easy axis of Mn film was demonstrated theoretically to switch from the in-plane to out-of-plane by magneto-optical Kerr effect investigation. By including spin–orbit coupling in full potential linearized augmented plane waves and linearized muffin-tin orbitals methods, manganese ultrathin film displays different magnetic behaviors and the spin-reorientation transition is shown to be correlated to these structural changes. The calculated magnetic moment of manganese planes are enhanced and reach a value of ~4.02 μ B . The polar magneto-optical Kerr effect is calculated for a photon energy range extended to 15 eV. It shows a pronounced peak in visible light. - Highlights: • The applied strain in Mn-bct structure induces anti-ferromagnetic behavior. • The easy magnetization axis is demonstrated to be out-of-plane. • The magnetic moment of Mn-layers are enhanced and reach a value of ~4.02 μ B . • Kerr spectra show significant polar responses for Mn films in the visible range. • The prominent structures in the Kerr spectra have been identified.

  15. On RF magnetron-sputtering preparation of Ag-Sb-S thin films

    Czech Academy of Sciences Publication Activity Database

    Gutwirth, J.; Peřina, Vratislav

    2007-01-01

    Roč. 68, 5-6 (2007), s. 835-840 ISSN 0022-3697 Institutional research plan: CEZ:AV0Z10480505 Keywords : thin films Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.899, year: 2007

  16. Structural changes induced spin-reorientation of ultrathin Mn films grown on Ag(001)

    Energy Technology Data Exchange (ETDEWEB)

    Ouarab, N., E-mail: ouarab_nourdine@yahoo.fr [Quantum Physics and Dynamical Systems Laboratory, Ferhat Abbas University of Sétif (Algeria); Semiconductor Technology Research Center for Energetic-(CRTSE), 02, Bd Frantz Fanon Algiers, BP N° 140 (Algeria); Haroun, A. [Quantum Physics and Dynamical Systems Laboratory, Ferhat Abbas University of Sétif (Algeria); Baadji, N. [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland)

    2016-12-01

    The strained body centered tetragonal (bct) Mn ultrathin film from lattice parameter a=2.89 Å to lattice value of 2.73 Å induces anti-ferromagnetic behavior between Mn layers. The magnetic easy axis of Mn film was demonstrated theoretically to switch from the in-plane to out-of-plane by magneto-optical Kerr effect investigation. By including spin–orbit coupling in full potential linearized augmented plane waves and linearized muffin-tin orbitals methods, manganese ultrathin film displays different magnetic behaviors and the spin-reorientation transition is shown to be correlated to these structural changes. The calculated magnetic moment of manganese planes are enhanced and reach a value of ~4.02 μ{sub B}. The polar magneto-optical Kerr effect is calculated for a photon energy range extended to 15 eV. It shows a pronounced peak in visible light. - Highlights: • The applied strain in Mn-bct structure induces anti-ferromagnetic behavior. • The easy magnetization axis is demonstrated to be out-of-plane. • The magnetic moment of Mn-layers are enhanced and reach a value of ~4.02 μ{sub B}. • Kerr spectra show significant polar responses for Mn films in the visible range. • The prominent structures in the Kerr spectra have been identified.

  17. Enhanced photocatalytic activity of Ag microgrid connected TiO2 nanocrystalline films

    International Nuclear Information System (INIS)

    Pan Feng; Zhang Junying; Zhang Weiwei; Wang Tianmin; Cai Chao

    2007-01-01

    One reason for the high degree of photogenerated carrier recombination was found to be the charge accumulation caused by the uneven reaction area on the photocatalyst surface. The authors connected TiO 2 nanoparticles with conducting Ag microgrid. Obvious photocatalytic activity improvement (81%) over the pure TiO 2 was observed, which is attributed to the electron-hole pairs separation by the metal-semiconductor contact and the large specific area of metal grid, which increased the O 2 absorption and transported the electrons to the sites needed for the deoxidize reactions. This structure lowers the electron accumulation on the particles and improves the utilization ratio of the photoexcited carriers

  18. Reversible migration of silver on memorized pathways in Ag-Ge{sub 40}S{sub 60} films

    Energy Technology Data Exchange (ETDEWEB)

    Orava, J., E-mail: jo316@cam.ac.uk, E-mail: alg13@cam.ac.uk; Greer, A. L., E-mail: jo316@cam.ac.uk, E-mail: alg13@cam.ac.uk [Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kozicki, M. N. [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287-6206 (United States); Yannopoulos, S. N. [Foundation of Research and Technology Hellas - Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Patras, P. O. Box 1414 (Greece)

    2015-07-15

    Reversible and reproducible formation and dissolution of silver conductive filaments are studied in Ag-photodoped thin-film Ge{sub 40}S{sub 60} subjected to electric fields. A tip-planar geometry is employed, where a conductive-atomic-force microscopy tip is the tip electrode and a silver patch is the planar electrode. We highlight an inherent “memory” effect in the amorphous chalcogenide solid-state electrolyte, in which particular silver-ion migration pathways are preserved “memorized” during writing and erasing cycles. The “memorized” pathways reflect structural changes in the photodoped chalcogenide film. Structural changes due to silver photodoping, and electrically-induced structural changes arising from silver migration, are elucidated using Raman spectroscopy. Conductive filament formation, dissolution, and electron (reduction) efficiency in a lateral device geometry are related to operation of the nano-ionic Programmable Metallization Cell memory and to newly emerging chalcogenide-based lateral geometry MEMS technologies. The methods in this work can also be used for qualitative multi-parameter sampling of metal/amorphous-chalcogenide combinations, characterizing the growth/dissolution rates, retention and endurance of fractal conductive filaments, with the aim of optimizing devices.

  19. AgSb(S{sub x}Se{sub 1−x}){sub 2} thin films for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    González, J.O. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450, México (Mexico); Shaji, S.; Avellaneda, D. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450, México (Mexico); Universidad Autónoma de Nuevo León-CIIDIT, Apodaca, Nuevo León, México (Mexico); Castillo, A.G.; Roy, T.K. Das [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66450, México (Mexico); and others

    2013-05-15

    Highlights: ► AgSb(S{sub x}Se{sub 1−x}){sub 2} thin films were formed by heating Na{sub 2}SeSO{sub 3} dipped Sb{sub 2}S{sub 3}/Ag layers. ► S/Se ratio was varied by changing the dipping time in Na{sub 2}SeSO{sub 3} solution. ► Characterized the films using XRD, XPS, SEM, Optical and electrical measurements. ► Band gap engineering of 1−1.1 eV for x = 0.51 and 0.52 respectively. ► PV Glass/FTO/CdS/AgSb(S{sub x}Se{sub 1−x}){sub 2}/C were prepared showing V{sub oc} = 410 mV, J{sub sc} = 5.7 mA/cm{sup 2}. - Abstract: Silver antimony sulfoselenide (AgSb(S{sub x}Se{sub 1−x}){sub 2}) thin films were prepared by heating glass/Sb{sub 2}S{sub 3}/Ag layers after selenization using sodium selenosulphate solution. First, Sb{sub 2}S{sub 3} thin films were deposited on glass substrates from a chemical bath containing SbCl{sub 3} and Na{sub 2}S{sub 2}O{sub 3}. Then Ag thin films were thermally evaporated onto glass/Sb{sub 2}S{sub 3}, followed by selenization by dipping in an acidic solution of Na{sub 2}SeSO{sub 3}. The duration of selenium dipping was varied as 30 min and 2 h. The heating condition was at 350 °C for 1 h in vacuum. Analysis of X-ray diffraction pattern of the thin films formed after heating showed the formation of AgSb(S{sub x}Se{sub 1−x}){sub 2}. Morphology and elemental analysis were done by scanning electron microscopy and energy dispersive X-ray detection. Depth profile of composition of the thin films was performed by X-ray Photoelectron Spectroscopy. The spectral study showed the presence of Ag, Sb, S, and Se, and the corresponding binding energy analysis confirmed the formation of AgSb(S{sub x}Se{sub 1−x}){sub 2}. Photovoltaic structures (PV) were prepared using AgSb(S{sub x}Se{sub 1−x}){sub 2} thin films as absorber and CdS thin films as window layers on FTO coated glass substrates. The PV structures were heated at 60–80 °C in air for 1 h to improve ohmic contact. Analysis of J–V characteristics of the PV structures showed V

  20. On RF magnetron-sputtering preparation of Ag-Sb-S thin films

    Czech Academy of Sciences Publication Activity Database

    Gutwirth, J.; Wágner, T.; Kotulanová, Eva; Bezdička, Petr; Peřina, V.; Hrdlička, M.; Vlček, Milan; Drašar, Č.; Frumar, M.

    2007-01-01

    Roč. 68, 5-6 (2007), s. 835-840 ISSN 0022-3697 R&D Projects: GA MŠk LC523; GA ČR GA203/06/1368 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : optical properties * plasma deposition * thin films Subject RIV: CA - Inorganic Chemistry Impact factor: 0.899, year: 2007

  1. Facile fabrication of Ag-Pd bimetallic nanoparticles in ultrathin TiO(2)-gel films: nanoparticle morphology and catalytic activity.

    Science.gov (United States)

    He, Junhui; Ichinose, Izumi; Kunitake, Toyoki; Nakao, Aiko; Shiraishi, Yukihide; Toshima, Naoki

    2003-09-10

    Ag-Pd bimetallic nanoparticles were prepared directly in ultrathin TiO(2)-gel films by a stepwise ion-exchange/reduction approach. Ion-exchange sites were created in ultrathin films using Mg(2+) ions as template. Ag(+) ion was then incorporated by ion exchange, and converted into metallic nanoparticles by low-temperature H(2) plasma, regenerating ion-exchange sites. The same procedure was then carried out for Pd(2+) ion, producing Pd-on-Ag bimetallic nanoparticles, as TEM observation and plasmon resonance absorption indicate. By contrast, reversed metal incorporation procedure appeared to give a mixture of individual Ag and Pd nanoparticles, as confirmed by TEM, absorption spectroscopy and X-ray photoelectron spectroscopy. For hydrogenation of methyl acrylate, the catalytic activity of the Pd-on-Ag nanoparticle is 367 times as large as that of commercial Pd black and 1.6 times as large as that of Pd monometallic nanoparticle. The outstanding catalytic activity was explicable by the large fraction of the surface-exposed Pd atoms. The formation process of the bimetallic nanoparticle and their general morphological feature are discussed.

  2. A Development of Atmospheric Pressure Plasma Equipment and Its Applications for Treatment of Ag Films Formed from Nano-Particle Ink

    International Nuclear Information System (INIS)

    Itoh, H; Kubota, Y; Kashiwagi, Y; Takeda, K; Ishikawa, K; Kondo, H; Sekine, M; Toyoda, H; Hori, M

    2013-01-01

    We have developed an equipment of atmospheric pressure plasma with two microwave guide antennas, which have a discharge line with 41 slots. The antennas are set against a stage with a heater in a process chamber. A process gas, which is a 1 % H 2 gas diluted by Ar gas and its flow rate is 20 standard litter per minute (slm), flows into the micro-wave guide and goes to a process chamber through each slots. A micro-wave is introduced to the micro-wave guide and the atmospheric pressure plasma grows at each slots. We obtained the electron density of 1×10 15 cm −3 and the H radical density of 1×10 −16 cm −3 at the slot on the condition of a 10 GHz, 1.5 kWatt, pulsed micro-wave with 2.5 pulsed voltage, 4 kHz pulsed frequency, and a duty ratio of 0.16. We applied this system to improve the quality of the spin-coated Ag firm formed from Ag nano-particle ink. This Ag film showed a resistivity of 32 μΩ cm after annealing on the condition of 180 °C for 30 minutes recommended by the maker (The bulk resistivity of Ag is 1.6 μΩ cm). In order to make the annealing time shorter, we studied the effect of atmospheric plasma treatment of Ag film. We obtained the Ag film of the 5.7 μΩ cm resistivity after the atmospheric pressure plasma treatment under 180 °C for 5 min.

  3. Novel hydrophobic/hydrophilic patterning process by photocatalytic Ag nucleation on TiO2 thin film and electroless Cu deposition

    International Nuclear Information System (INIS)

    Nishimoto, Shunsuke; Kubo, Atsushi; Zhang, Xintong; Liu, Zhaoyue; Taneichi, Noriaki; Okui, Toshiki; Murakami, Taketoshi; Komine, Takashi; Fujishima, Akira

    2008-01-01

    A hydrophobic/super-hydrophilic pattern was prepared on a TiO 2 thin film by a new fabrication process. The process consists of five key steps: (1) photocatalytic reduction of Ag + to Ag (nucleation), (2) electroless Cu deposition, (3) oxidation of Cu to CuO, (4) deposition of a self-assembled monolayer (SAM), and (5) photocatalytic decomposition of selected areas of the SAM. A hydrophobic/super-hydrophilic pattern with 500-μm 2 hydrophilic areas was obtained in this process. It is particularly noteworthy that a UV irradiation time of only 1 s was sufficient for the nucleation step in the patterning process

  4. Morphology and inhibition performance of Ag thin film as antimicrobial coating deposited by RF-PVD on 316 L stainless steel

    Science.gov (United States)

    Purniawan, A.; Khrisna, Y. S. A.; Rasyida, A.; Atmono, T. M.

    2018-04-01

    Foreign body related infection (FBRIs) is caused by forming biofilm of bacterial colony of medical equipment surfaces. In many cases, the FBRIs is still happened on the surface after medical sterilization process has been performed. In order to avoid the case, surface modification by antimicrobial coating was used. In this work, we present silver (Ag) thin film on 316 L stainless steel substrate surface was deposited using Radio Frequency Sputtering PVD (RF-PVD). The morphology of Ag thin film were characterized using SEM-EDX. Surface roughness of the thin film was measured by AFM. In addition, Kirby Bauer Test in Escherichia coli (E. coli) was conducted in order to evaluate the inhibition performance of the Ag thin film antimicrobial coating. Based on SEM and AFM results show that the particle size is increased from 523 nm to 708 nm and surface roughness from 9 to 20 nm for deposition time 10 minutes to 20 minutes, respectively. In addition, the inhibition layer of the coating is about 29 mm.

  5. Fabrication and stability investigation of ultra-thin transparent and flexible Cu-Ag-Au tri-layer film on PET

    Science.gov (United States)

    Prakasarao, Ch Surya; D'souza, Slavia Deeksha; Hazarika, Pratim; Karthiselva N., S.; Ramesh Babu, R.; Kovendhan, M.; Kumar, R. Arockia; Joseph, D. Paul

    2018-04-01

    The need for transparent conducting electrodes with high transmittance, low sheet resistance and flexibility to replace Indium Tin Oxide is ever growing. We have deposited and studied the performance of ultra-thin Cu-Ag-Au tri-layer films over a flexible poly-ethylene terephthalate substrate. Scotch tape test showed good adhesion of the metallic film. Transmittance of the tri-layer was around 40 % in visible region. Optical profiler measurements were done to study the surface features. The XRD pattern revealed that film was amorphous. Sheet resistance measured by four probe technique was around 7.7 Ohm/Δ and was stable up to 423 K. The transport parameters by Hall effect showed high conductivity and carrier concentration with a mobility of 5.58 cm2/Vs. Tests performed in an indigenously designed bending unit indicated the films to be stable both mechanically and electrically even after 50,000 bending cycles.

  6. Synthesis, analytical characterization and bioactivity of Ag and Cu nanoparticles embedded in poly-vinyl-methyl-ketone films.

    Science.gov (United States)

    Cioffi, N; Ditaranto, N; Torsi, L; Picca, R A; De Giglio, E; Sabbatini, L; Novello, L; Tantillo, G; Bleve-Zacheo, T; Zambonin, P G

    2005-08-01

    The electrosynthesis of copper and silver core-shell nanoparticles (NPs) by the sacrificial anode technique, employing tetraoctylammonium (TOA) salts as base electrolyte for the first time, is described. These surfactants were selected because they combine high NP stabilizing power with useful disinfecting properties. The resulting colloids were mixed with a solution of an inert dispersing polymer and used to prepare nanostructured composite thin films. The morphologies and chemical compositions of the nanomaterials were characterized by Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The TEM reveals that the average core diameter of the metal NPs ranges between 1.7 and 6.3 nm, as a function of the nature of the metal and of the electrosynthesis conditions, and does not change significantly upon inclusion in the polymer matrix. An appreciable concentration of the metal is detected on the nanoparticle surface by XPS. High-resolution XP spectra indicate that both copper and silver are present at zero oxidation state in all of the materials (colloids and composite films). This demonstrates the high efficiency of the surfactant at controlling the morphology and the chemical composition of the nanodispersed metal in both the as-synthesized colloid and in the polymeric dispersion. The nanocoatings are shown to exert a marked inhibitory effect on the growth of eukaryote and prokaryote target microrganisms, and experimental evidence of a synergic disinfecting effect due to the surfactant and the nanodispersed metal is provided. On the basis of these stability and bioactivity results, it is clear that Cu-NPs and Ag-NPs are suitable for application in disinfecting or antifouling paint and coating formulations.

  7. Electrical and switching properties of the Se{sub 90}Te{sub 10-x}Ag{sub x} (0<=x<=6) films

    Energy Technology Data Exchange (ETDEWEB)

    Afifi, M.A.; Hegab, N.A. [Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Bekheet, A.E., E-mail: ashraf_bekheet@hotmail.co [Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Sharaf, E.R. [Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt)

    2009-08-01

    Amorphous Se{sub 90}Te{sub 10-x}Ag{sub x} (0<=x<=6) films are obtained by thermal evaporation technique under vacuum from the synthesized bulk materials on pyrographite and glass substrates. X-ray analysis shows the amorphous nature of the obtained films. The dc electrical conductivity was studied for different thicknesses (165-711 nm) as a function of temperature in the range (298-323 K) below the corresponding T{sub g} for the studied films. The obtained results show that the conduction activation energy has a single value through the investigated range of temperature which can be explained in accordance with Mott and Davis model. The I-V characteristic curves for the film compositions are found to be typical for a memory switch. The mean value of the threshold voltage V{sub th}-bar increases linearly with increasing film thickness (165-711 nm), while it decreases exponentially with increasing temperature in the investigated range for the studied compositions. The results are explained in accordance with the electrothermal model for the switching process. The effect of Ag on the studied parameters is also investigated.

  8. AFM study of combinatorial Ga sup + implanted Co sub 7 Ag sub 9 sub 3 film and its Kerr effect

    CERN Document Server

    Cai Ying Wen; Wei Lun; Li Jian Guo; Li Ai Guo; Ni Xin Bo; Zhang Gui Lin; Wang Song You; Shen Zuo Cheng; Li Jin; Chen Liang Yao

    2002-01-01

    A magneto-optic chip was prepared on Si wafer by combinatorial Ga sup + implantation into ion sputtered Co sub 7 Ag sub 9 sub 3 film. The surface morphology of each unit of the chip was detected by AFM, while their Kerr effect was measured by MOKE equipment. It is observed that the maximum Kerr rotation (MKR) occurs when the incident photon energy is around 3.8-3.9 eV. Summarisation of MKR versus implanted Ga sup + dose shows that the MKR enhancement by Ga sup + implantation can be characterized as incubation, enhancement and saturation regions. Considering the mutual solubility and surface morphology transition after annealing, it is suggested that Ga sup + tends to form CoGa and/or CoGa sub 3 intermetallic compounds. Before the formation of CoGa sub 3 compounds, no apparent MKR enhancement could be observed. While when the surface is half occupied by forest-like CoGa sub 3 compounds, MKR enhancement will be saturated. By comparison of the maximum Kerr rotation with the cone areal density, it can be induced ...

  9. Influence of silver concentration in Ag-x(Sb0.40S0.60)(100-x) thin amorphous films on photoinduced crystallization

    Czech Academy of Sciences Publication Activity Database

    Gutwirth, J.; Wágner, T.; Bezdička, Petr; Kotulanová, Eva; Vlček, Milan; Kasap, S. O.; Frumar, M.

    2007-01-01

    Roč. 9, č. 10 (2007), s. 3064-3071 ISSN 1454-4164 R&D Projects: GA MŠk LC523; GA ČR GA203/06/1368 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : Ag-Sb-S films * amorphous * photoinduced crystallization Subject RIV: CA - Inorganic Chemistry Impact factor: 0.827, year: 2007

  10. Structural and optical properties of DC magnetron sputtered ZnO films on glass substrate and their modification by Ag ions implantation

    Science.gov (United States)

    Ahmad, R.; Afzal, Naveed; Amjad, U.; Jabbar, S.; Hussain, T.; Hussnain, A.

    2017-07-01

    This work is focused on investigating the effects of deposition time and Ag ions implantation on structural and optical properties of ZnO film. The ZnO film was prepared on glass substrate by pulsed DC magnetron sputtering of pure Zn target in reactive oxygen environment for 2 h, 3 h, 4 h and 5 h respectively. X-ray diffraction results revealed polycrystalline ZnO film whose crystallinity was improved with increase of the deposition time. The morphological features indicated agglomeration of smaller grains into larger ones by increasing the deposition time. The UV-vis spectroscopy analysis depicted a small decrease in the band gap of ZnO from 3.36 eV to 3.27 eV with increase of deposition time. The Ag ions implantation in ZnO films deposited for 5 h on glass was carried out by using Pelletron Accelerator at different ions fluences ranging from 1  ×  1011 ions cm-2 to 2  ×  1012 ions cm-2. XRD patterns of Ag ions implanted ZnO did not show significant change in crystallite size by increasing ions fluence from 1  ×  1011 ions cm-2 to 5  ×  1011 ions cm-2. However, with further increase of the ions fluence, the crystallite size was decreased. The band gap of Ag ions implanted ZnO indicated anomalous variations with increase of the ions fluence.

  11. Dependence of surface-enhanced infrared absorption (SEIRA) enhancement and spectral quality on the choice of underlying substrate: a closer look at silver (Ag) films prepared by physical vapor deposition (PVD).

    Science.gov (United States)

    Killian, Michelle M; Villa-Aleman, Eliel; Sun, Zhelin; Crittenden, Scott; Leverette, Chad L

    2011-03-01

    Silver (Ag) films of varying thickness were simultaneously deposited using physical vapor deposition (PVD) onto six infrared (IR) substrates (BaF(2), CaF(2), Ge, AMTIR, KRS-5, and ZnSe) in order to correlate the morphology of the deposited film with optimal SEIRA response and spectral band symmetry and quality. Significant differences were observed in the surface morphology of the deposited silver films, the degree of enhancement provided, and the spectral appearance of para-nitrobenzoic acid (PNBA) cast films for each silver-coated substrate. These differences were attributed to each substrate's chemical properties, which dictate the morphology of the Ag film and ultimately determine the spectral appearance of the adsorbed analyte and the magnitude of SEIRA enhancement. Routine SEIRA enhancement factors (EFs) for all substrates were between 5 and 150. For single-step Ag depositions, the following ranking identifies the greatest SEIRA enhancement factor and the maximum absorption of the 1345 cm(-1) spectral marker of PNBA at the optimal silver thickness for each substrate: BaF(2) (EF = 85 ± 19, 0.059 A, 10 nm Ag) > CaF(2) (EF = 75 ± 30, 0.052 A, 10 nm Ag) > Ge (EF = 45 ± 8, 0.019 A, 5 nm Ag) > AMTIR (EF = 38 ± 8, 0.024 A, 15 nm Ag) > KRS-5 (EF = 24 ± 1, 0.015 A, 12 nm Ag) > ZnSe (EF = 9 ± 5, 0.008 A, 8 nm Ag). A two-step deposition provides 59% larger EFs than single-step depositions of Ag on CaF(2). A maximum EF of 147 was calculated for a cast film of PNBA (surface coverage = 341 ng/cm(2)) on a 10 nm two-step Ag film on CaF(2) (0.102 A, 1345 cm(-1) symmetric NO(2) stretching band). The morphology of the two-step Ag film has smaller particles and greater particle density than the single-step Ag film.

  12. Metal (Ag/Ti)-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics.

    Science.gov (United States)

    Constantinou, Marios; Nikolaou, Petros; Koutsokeras, Loukas; Avgeropoulos, Apostolos; Moschovas, Dimitrios; Varotsis, Constantinos; Patsalas, Panos; Kelires, Pantelis; Constantinides, Georgios

    2018-03-30

    This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a-C:H:Me) of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD) and Physical Vapor Deposition (PVD) technologies. The a-C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF) plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC) technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti). The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR), Raman spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a-C:H:Ag and a-C:H:Ti) exhibited enhanced nanoscratch resistance (up to +50%) and low values of friction coefficient (<0.05), properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.

  13. Metal (Ag/Ti-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics

    Directory of Open Access Journals (Sweden)

    Marios Constantinou

    2018-03-01

    Full Text Available This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a–C:H:Me of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD and Physical Vapor Deposition (PVD technologies. The a–C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti. The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR, Raman spectroscopy, Scanning Electron Microscopy (SEM, Atomic Force Microscopy (AFM, Transmission Electron Microscopy (TEM and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a–C:H:Ag and a–C:H:Ti exhibited enhanced nanoscratch resistance (up to +50% and low values of friction coefficient (<0.05, properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.

  14. Effect of 100 MeV Ag{sup +7} ion irradiation on the bulk and surface magnetic properties of Co–Fe–Si thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hysen, T., E-mail: hysenthomas@gmail.com [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India); Department of Physics, Christian College, Chengannur, Kerala 689 122 (India); Geetha, P. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India); Al-Harthi, Salim; Al-Omari, I.A. [Department of Physics, College of Science, Sultan Qaboos University, Al Khod 123 (Oman); Lisha, R. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India); Ramanujan, R.V. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639 798 (Singapore); Sakthikumar, D. [Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe (Japan); Avasthi, D.K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Anantharaman, M.R., E-mail: mra@cusat.ac.in [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India)

    2014-12-15

    Thin films of Co–Fe–Si were vacuum evaporated on pre-cleaned float glass substrates employing thermal evaporation. The films were subsequently irradiated with 100 MeV Ag{sup +7} ions at fluences of 1×10{sup 11}, 1×10{sup 12} and 1×10{sup 13} ions/cm{sup 2}. The pristine and irradiated samples were subjected to surface analysis using Atomic Force Microscopy (AFM), Vibrating Sample Magnetometry (VSM) and Magneto Optic Kerr Effect (MOKE) measurements. The as deposited film has a root mean square roughness (Rq) of 8.9 nm and an average roughness of (Ra) 5.6 nm. Irradiation of the as deposited films with 100 MeV Ag{sup 7+} ions modifies the surface morphology. Irradiating with ions at fluences of 1×10{sup 11} ions/cm{sup 2} smoothens the mesoscopic hill-like structures, and then, at 1×10{sup 12} ions/cm{sup 2} new surface structures are created. When the fluence is further increased to 1×10{sup 13} ions/cm{sup 2} an increase in the surface roughness is observed. The MOKE loop of as prepared film indicated a squareness ratio of 0.62. As the film is irradiated with fluences of 1×10{sup 11} ions/cm{sup 2}, 1×10{sup 12} ions/cm{sup 2} and 1×10{sup 13} ions/cm{sup 2} the squareness ratio changes to 0.76, 0.8 and 0.86 respectively. This enhancement in squareness ratio towards 1 is a typical feature when the exchange interaction starts to dominates the inherent anisotropies in the system. The variation in surface magnetisation is explained based on the variations in surface roughness with swift heavy ion (SHI) irradiation. - Highlights: • We have irradiated thermally evaporated Co–Fe–Si thin films on glass substrate with 100 MeV Ag{sup +7} ions using the 15 UD Pelletron Accelerator at IUAC, New Delhi, India. • Surface morphology and magnetic characteristics of the films can be altered with ion irradiation. • It was observed that the variation in surface magnetic properties correlates well with the changes in surface morphology, further reiterating the

  15. Optical and thermal investigation of GeO2–PbO thin films doped with Au and Ag nanoparticles

    International Nuclear Information System (INIS)

    Carvalho, E.A.; Carmo, A.P.; Bell, M.J.V.; Anjos, V.; Kassab, L.R.P.; Silva, D.M. da

    2012-01-01

    The present work reports on the thermo-optical study of germanate thin films doped with Au and Ag nanoparticles. Transmission Electron Microscopy images, UV–visible absorption and Micro-Raman scattering evidenced the presence of nanoparticles and the formation of collective excitations, the so called surface plasmons. Moreover, the effects of the metallic nanoparticles in the thermal properties of the films were observed. The thermal lens technique was proposed to evaluate the Thermal Diffusivity (D) of the samples. It furnishes superficial spatial resolution of about 100 μm, so it is appropriate to study inhomogeneous samples. It is shown that D may change up to a factor 3 over the surface of a film because of the differences in the nanoparticles concentration distribution.

  16. Effect of boron implantation on the electrical and photoelectrical properties of e-beam deposited Ag-In-Se thin films

    International Nuclear Information System (INIS)

    Colakoglu, T; Parlak, M; Kulakci, M; Turan, R

    2008-01-01

    In this study, e-beam evaporated Ag-In-Se (AIS) thin films were doped by the implantation of boron (B) ions at 75 keV with a dose of 1 x 10 15 ions cm -2 and a subsequent annealing process was applied to the doped AIS films at different temperatures under nitrogen atmosphere. The effects of implantation and annealing on the electrical and photoelectrical properties of AIS thin films were investigated through temperature dependent conductivity, spectral photoresponse and photoconductivity measurements under different illumination intensities. The electrical conductivity measurements showed that the room temperature conductivity values were determined as 2.4 x 10 -7 (Ω cm) -1 , 1.7 x 10 -6 (Ω cm) -1 and 8.9 x 10 -5 (Ω cm) -1 for B-doped films (B0), B-doped and annealed films at 200 deg. C (B2) and at 300 deg. C (B3), respectively. It was observed that the electrical conductivity improved as the annealing temperature increased up to 400 deg. C at which the AIS thin films showed degenerate semiconductor behaviour. The spectral distribution of the photoresponse curves indicated three local maxima located at 1.63, 1.79 and 2.01 eV for B0 type films, 1.65, 1.87 and 2.07 eV for B2 type films and 1.73, 2.02 and 2.32 eV for B3 type films at room temperature. These three different energy values were ascribed to the splitting of the valence band due to spin-orbit interaction and crystalline lattice field effects. The first energy values of each set were determined to be energy band gaps of the AIS thin films. The photoconductivity measurements as a function of temperature and illumination intensity were performed on the B-doped AIS thin films in order to determine the nature of recombination processes in the films. The photoconductivity values were found to be thermally quenched for all types of thin films and the variation of photocurrent as a function of illumination intensity showed that the dependence of photocurrent on the intensity was supralinear. The two

  17. [Quantitative surface analysis of Pt-Co, Cu-Au and Cu-Ag alloy films by XPS and AES].

    Science.gov (United States)

    Li, Lian-Zhong; Zhuo, Shang-Jun; Shen, Ru-Xiang; Qian, Rong; Gao, Jie

    2013-11-01

    In order to improve the quantitative analysis accuracy of AES, We associated XPS with AES and studied the method to reduce the error of AES quantitative analysis, selected Pt-Co, Cu-Au and Cu-Ag binary alloy thin-films as the samples, used XPS to correct AES quantitative analysis results by changing the auger sensitivity factors to make their quantitative analysis results more similar. Then we verified the accuracy of the quantitative analysis of AES when using the revised sensitivity factors by other samples with different composition ratio, and the results showed that the corrected relative sensitivity factors can reduce the error in quantitative analysis of AES to less than 10%. Peak defining is difficult in the form of the integral spectrum of AES analysis since choosing the starting point and ending point when determining the characteristic auger peak intensity area with great uncertainty, and to make analysis easier, we also processed data in the form of the differential spectrum, made quantitative analysis on the basis of peak to peak height instead of peak area, corrected the relative sensitivity factors, and verified the accuracy of quantitative analysis by the other samples with different composition ratio. The result showed that the analytical error in quantitative analysis of AES reduced to less than 9%. It showed that the accuracy of AES quantitative analysis can be highly improved by the way of associating XPS with AES to correct the auger sensitivity factors since the matrix effects are taken into account. Good consistency was presented, proving the feasibility of this method.

  18. Thin-film metallic glass: an effective diffusion barrier for Se-doped AgSbTe2 thermoelectric modules

    Science.gov (United States)

    Yu, Chia-Chi; Wu, Hsin-Jay; Deng, Ping-Yuan; Agne, Matthias T.; Snyder, G. Jeffrey; Chu, Jinn P.

    2017-03-01

    The thermal stability of joints in thermoelectric (TE) modules, which are degraded during interdiffusion between the TE material and the contacting metal, needs to be addressed in order to utilize TE technology for competitive, sustainable energy applications. Herein, we deposit a 200 nm-thick Zr-based thin-film metallic glass (TFMG), which acts as an effective diffusion barrier layer with low electrical contact resistivity, on a high-zT Se-doped AgSbTe2 substrate. The reaction couples structured with TFMG/TE are annealed at 673 K for 8-360 hours and analyzed by electron microscopy. No observable IMCs (intermetallic compounds) are formed at the TFMG/TE interface, suggesting the effective inhibition of atomic diffusion that may be attributed to the grain-boundary-free structure of TFMG. The minor amount of Se acts as a tracer species, and a homogeneous Se-rich region is found nearing the TFMG/TE interface, which guarantees satisfactory bonding at the joint. The diffusion of Se, which has the smallest atomic volume of all the elements from the TE substrate, is found to follow Fick’s second law. The calculated diffusivity (D) of Se in TFMG falls in the range of D~10-20-10-23(m2/s), which is 106~107 and 1012~1013 times smaller than those of Ni [10-14-10-17(m2/s)] and Cu [10-8-10-11(m2/s)] in Bi2Te3, respectively.

  19. High-Jc YBa2Cu3O7-x-Ag superconducting thin films synthesized through a fluorine-free MOD method

    DEFF Research Database (Denmark)

    Tang, Xiao; Yue, Zhao; Wu, W.

    2015-01-01

    Obtaining a high critical current density (Jc) remains the main challenge in developing fluorine-free metal organic deposition (MOD) methods to fabricate YBCO superconducting thin films. Silver addition was used to raise the Jc values in this research work. By reacting with propionic acid...... films at a temperature as low as 760°C. Grain growth and intergranular conductivity were also found to be improved by silver doping. After annealing under optimized conditions, a high Jc of 4.6MA/cm2 was obtained in a YBCO-Ag thin film with 10 wt% Ag....... and ammonia, AgNO3 was initially mixed with YBCO carboxylate precursors dissolved in methanol. High-temperature in situ XRD measurements on the YBCO-Ag powders revealed that silver addition lowers the incongruent melting temperature of YBCO to 760°C and resulted in a smooth surface morphology of the YBCO...

  20. Synthesis of ZnO Nanowires and Their Photovoltaic Application: ZnO Nanowires/AgGaSe2 Thin Film Core-Shell Solar Cell

    Directory of Open Access Journals (Sweden)

    Elif Peksu

    2015-01-01

    Full Text Available In this investigation, hydrothermal technique was employed for the synthesis of well-aligned dense arrays of ZnO nanowires (NWs on a wide range of substrates including silicon, soda-lime glass (SLG, indium tin oxide, and polyethylene terephthalate (PET. Results showed that ZnO NWs can be successfully grown on any substrate that can withstand the growth temperature (~90°C and precursor solution chemicals. Results also revealed that there was a strong impact of growth time and ZnO seed layer deposition route on the orientation, density, diameter, and uniformity of the synthesized nanowires. A core-shell n-ZnO NWs/p-AgGaSe2 (AGS thin film solar cell was fabricated as a device application of synthesized ZnO nanowires by decoration of nanowires with ~700 nm thick sputtering deposited AGS thin film layer, which demonstrated an energy conversion efficiency of 1.74% under 100 mW/cm2 of simulated solar illumination.

  1. Improved performance of inkjet-printed Ag source/drain electrodes for organic thin-film transistors by overcoming the coffee ring effects

    Science.gov (United States)

    Liu, Cheng-Fang; Lin, Yan; Lai, Wen-Yong; Huang, Wei

    2017-11-01

    Inkjet printing is a promising technology for the scalable fabrication of organic electronics because of the material conservation and facile patterning as compared with other solution processing techniques. In this study, we have systematically investigated the cross-sectional profile control of silver (Ag) electrode via inkjet printing. A facile methodology for achieving inkjet-printed Ag source/drain with improved profiles is developed. It is demonstrated that the printing conditions such as substrate temperature, drop spacing and printing layers affect the magnitude of the droplet deposition and the rate of evaporation, which can be optimized to greatly reduce the coffee ring effects for improving the inkjet-printed electrode profiles. Ag source/drain electrodes with uniform profiles were successfully inkjet-printed and incorporated into organic thin-film transistors (OTFTs). The resulting devices showed superior electrical performance than those without special treatments. It is noted to mention that the strategy for modulating the inkjet-printed Ag electrodes in this work does not demand the ink formulation or complicated steps, which is beneficial for scaling up the printing techniques for potential large-area/mass manufacturing.

  2. Ag nanostructures on a poly(3,4-ethylenedioxythiophene) film prepared with electrochemical route: A controllable roughened SERS substrate with high repeatability and stability

    International Nuclear Information System (INIS)

    Dogan, Üzeyir; Kaya, Murat; Cihaner, Atilla; Volkan, Mürvet

    2012-01-01

    A simple, reliable and reproducible one-step electrochemical method for the preparation of surface-enhanced Raman-active polymer-mediated silver nanoparticles (Ag NPs) on planar indium tin oxide (ITO) coated glass substrates was reported. Poly(3,4-ethylenedioxythiophene) (PEDOT) film was used as a support material for dispersing nanostructured silver nanostructures on the surface homogeneously, since 3,4-ethylenedioxythiophene (EDOT) monomer polymerizes regioregularly. The optical properties and morphologies of the silver substrates have been investigated by ultraviolet–visible (UV–vis) spectroscopy and field emission scanning electron microscopy (FE-SEM). The UV–vis and FE-SEM results revealed that the Ag nanostructures separately appeared on the PEDOT coated ITO after reduction. The effect of the thickness of PEDOT polymer film, reduction potential of silver, the concentration of silver ion solution and the amount of silver particle on the polymer film on the SERS response were studied as well as repeatability and temporal stability of prepared substrates. Brilliant cresyl blue (BCB) has been used as Raman probes to evaluate the properties of the new SERS substrates. Signals collected over multiple spots within the same substrate resulted in a relative standard deviation (RSD) of 9.34%, while an RSD of 11.05% was measured in signals collected from different substrates. The SERS-active substrates were robust and stable which lost only 5.71% of initial intensity after 1 month.

  3. Low temperature processing of single domain YBa 2Cu 3O y thick films from Y 2O 3 fabrics on Ag-Pd alloy substrates

    Science.gov (United States)

    Reddy, E. S.; Goodilin, E. A.; Tarka, M.; Zeisberger, M.; Schmitz, G. J.

    2002-08-01

    Single domain YBa 2Cu 3O y (Y123) thick films (∼100 μm) were fabricated on untextured Ag12 wt.%Pd alloy substrates from Y 2O 3 cloths by an infiltration and growth process. The process involves the infiltration of Y 2O 3 cloths placed on metallic substrates by barium cuprates and copper oxide liquids at 970 °C. The infiltrated Y 2O 3 cloth is subsequently transformed into single domain Y123 during a slow cooling schedule in the presence of a c-axis oriented Nd123 seed crystal placed at the top center of the fabric. The solidification window for single domain growth is lowered to 970-950 °C using liquid phases containing up 10 wt.% Ag and small amounts of BaF 2.

  4. Slow order-parameter fluctuations in superconducting Pb and Ag/Nb films observed using β-detected nuclear magnetic resonance

    Science.gov (United States)

    Morenzoni, E.; Saadaoui, H.; Wang, D.; Horisberger, M.; Kirk, E. C.; MacFarlane, W. A.; Morris, G. D.; Chow, K. H.; Hossain, M. D.; Levy, C. P.; Parolin, T. J.; Pearson, M. R.; Song, Q.; Kiefl, R. F.

    2012-06-01

    We report β-NMR investigations of polarized 8Li implanted in thin Pb and Ag/Nb films. At the critical superconducting temperature, we observe a singular peak in the spin relaxation rate in small longitudinal magnetic fields, which is attributed to unexpected slow fluctuations in the superconducting order parameter. The peak is several orders of magnitude larger than the prediction based on the enhancement of the dynamic electron spin susceptibility by superconducting fluctuations. The observed peak in (1)/(T1) is rapidly suppressed in a small magnetic field, indicating that it is due to remarkably slow diamagnetic fluctuations which are undetectable with conventional NMR.

  5. Hydrogen loss and its improved retention in hydrogen plasma treated a-SiNx:H films: ERDA study with 100 MeV Ag7+ ions

    Science.gov (United States)

    Bommali, R. K.; Ghosh, S.; Khan, S. A.; Srivastava, P.

    2018-05-01

    Hydrogen loss from a-SiNx:H films under irradiation with 100 MeV Ag7+ ions using elastic recoil detection analysis (ERDA) experiment is reported. The results are explained under the basic assumptions of the molecular recombination model. The ERDA hydrogen concentration profiles are composed of two distinct hydrogen desorption processes, limited by rapid molecular diffusion in the initial stages of irradiation, and as the fluence progresses a slow process limited by diffusion of atomic hydrogen takes over. Which of the aforesaid processes dominates, is determined by the continuously evolving Hydrogen concentration within the films. The first process dominates when the H content is high, and as the H concentration falls below a certain threshold (Hcritical) the irradiation generated H radicals have to diffuse through larger distances before recombining to form H2, thereby significantly bringing down the hydrogen evolution rate. The ERDA measurements were also carried out for films treated with low temperature (300 °C) hydrogen plasma annealing (HPA). The HPA treated films show a clear increase in Hcritical value, thus indicating an improved diffusion of atomic hydrogen, resulting from healing of weak bonds and passivation of dangling bonds. Further, upon HPA films show a significantly higher H concentration relative to the as-deposited films, at advanced fluences. These results indicate the potential of HPA towards improved H retention in a-SiNx:H films. The study distinguishes clearly the presence of two diffusion processes in a-SiNx:H whose diffusion rates differ by an order of magnitude, with atomic hydrogen not being able to diffuse further beyond ∼ 1 nm from the point of its creation.

  6. Preparation of Bi-Pb-Sr-Ca-Cu-O high Tc thick films on Ag or MgO substrate with superconductor paste; Bi kei ko Tc chodendo paste ni yoru Ag, MgO kibanjo eno atsumaku sakusei

    Energy Technology Data Exchange (ETDEWEB)

    Takabatake, N. [Ishikawa Technical High School, Ishikawa (Japan); Tsubota, T.; Ishikawa, T.; Ohashi, K. [Kanazawa Institute of Technology, Ishikawa (Japan)

    1995-07-15

    The following were reported on making Bi series superconducting thick films by a wet method. A paste was made by adding PSO (or ethanol solution of ethylenegrycol) of Yushiro Chemical Industry Co., Ltd. as a binder to a Bi series 2223 single-phase powder sample (blending composition Bi:Pb:Sr:Ca:Cu=1.8:0.4:2:2:3.2); the sample was then coated on an Ag (or MgO) substrate with a brush; after being dried at 105{degree}C for one hour, it was thermally decomposed at 700{degree}C for one hour; then, the process of prissurized forming (at pressure 2 to 5 ton f/cm{sup 2}) and of sintering at 845{degree}C for 20 hours or more were performed on the sample to form a thick film sample. A critical temperature Tc, critical current density Jc, etc., were measured on such thick film sample. As a result, nearly same values were obtained as Tc (93K) and Jc (84A/cm{sup 2}) which were those of a bulk sample made by using the same powder sample, pressurizing at 2 ton f/cm{sup 2} for pelletizing, and sintering at 845{degree}C for 20 hours. 6 refs., 7 figs., 1 tab.

  7. Microstructure of Co/X (X=Cu,Ag,Au) epitaxial thin films grown on Al2O3(0001) substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Akita, Yuta; Futamoto, Masaaki; Kirino, Fumiyoshi

    2007-01-01

    Epitaxial thin films of Co/X (X=Cu,Ag,Au) were prepared on Al 2 O 3 (0001) substrates at substrate temperatures of 100 and 300 degree sign C by UHV molecular beam epitaxy. A complicated microstructure was realized for the epitaxial thin films. In-situ reflection high-energy electron diffraction observation has shown that X atoms of the buffer layer segregated to the surface during Co layer deposition, and it yielded a unique epitaxial granular structure. The structure consists of small Co grains buried in the X buffer layer, where both the magnetic small Co grains and the nonmagnetic X layer are epitaxially grown on the single crystal substrate. The structure varied depending on the X element and the substrate temperature. The crystal structure of Co grains is influenced by the buffer layer material and determined to be hcp and fcc structures for the buffer layer materials of Au and Cu, respectively

  8. Electrochromic Devices Based on the Reversible Formation of Ag Nanoparticles and Clusters in PVA-Based Thin Films

    National Research Council Canada - National Science Library

    Mills, German; Cammarata, Vince; Slaten, B. L

    2004-01-01

    .... CV methods limited the reversible particle formation to only 2 reduction/oxidation cycles but galvanostatic procedures extended the reversibility to 8 cycles and produced colored small Ag nanoparticle...

  9. Cellulose nanocrystals as templates for cetyltrimethylammonium bromide mediated synthesis of Ag nanoparticles and their novel use in PLA films.

    Science.gov (United States)

    Yalcinkaya, E E; Puglia, D; Fortunati, E; Bertoglio, F; Bruni, G; Visai, L; Kenny, J M

    2017-02-10

    In the present paper, we reported how cellulose nanocrystals (CNC) from microcrystalline cellulose have the capacity to assist in the synthesis of metallic nanoparticles chains. A cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as modifier for CNC surface. Silver nanoparticles were synthesized on CNC, and nanoparticle density and size were optimized by varying concentrations of nitrate and reducing agents, and the reduction time. The experimental conditions were optimized for the synthesis and the resulting Ag grafted CNC (Ag-g-CNC) were characterized by means of TGA, SEM, FTIR and XRD, and then introduced in PLA matrix. PLA nanocomposite containing silver grafted cellulose nanocrystals (PLA/0.5Ag-g-1CNC) was characterized by optical and thermal analyses and the obtained data were compared with results from PLA nanocomposites containing 1% wt. of CNC (PLA/1CNC), 0.5% wt. of silver nanoparticles (PLA/0.5Ag) and hybrid system containing CNC and silver in the same amount (PLA/1CNC/0.5Ag). The results demonstrated that grafting of silver nanoparticles on CNC positively affected the thermal degradation process and cold crystallization processes of PLA matrix. Finally, the antibacterial activity of the different systems was studied at various incubation times and temperatures, showing the best performance for PLA/1CNC/0.5Ag based nanocomposite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Flexible Transparent Electrode of Hybrid Ag-Nanowire/Reduced-Graphene-Oxide Thin Film on PET Substrate Prepared Using H2/Ar Low-Damage Plasma

    Directory of Open Access Journals (Sweden)

    Chi-Hsien Huang

    2017-01-01

    Full Text Available We employ H2/Ar low-damage plasma treatment (H2/Ar-LDPT to reduce graphene oxide (GO coating on a polymer substrate—polyethylene terephthalate (PET—with the assistance of atomic hydrogen (Hα at low temperature of 70 °C. Four-point probing and ultraviolet-visible (UV-Vis spectroscopy demonstrate that the conductivity and transmittance can be controlled by varying the H2/Ar flow rate, treatment time, and radio-frequency (RF power. Optical emission spectroscopy reveals that the Hα intensity depends on these processing parameters, which influence the removal of oxidative functional groups (confirmed via X-ray photoelectron spectroscopy to yield reduced GO (rGO. To further improve the conductivity while maintaining high transmittance, we introduce silver nanowires (AgNWs between rGO and a PET substrate to obtain a hybrid rGO/AgNWs/PET with a sheet resistance of ~100 Ω/sq and 81% transmittance. In addition, the hybrid rGO/AgNWs thin film also shows high flexibility and durability and is suitable for flexible and wearable electronics applications.

  11. Production of BiPbSrCaCuO thin films on MgO and Ag/MgO substrates by electron beam deposition techniques

    CERN Document Server

    Varilci, A; Gorur, O; Celebi, S; Karaca, I

    2002-01-01

    Superconducting BiPbSrCaCuO thin films were prepared on MgO(001) and Ag/MgO substrates using an electron beam (e-beam) evaporation technique. The effects of annealing temperature and Ag diffusion on the crystalline structure and some superconducting properties, respectively, were investigated by X-ray diffraction, atomic force microscopy, and by measurements of the critical temperature and the critical current density. It was shown that an annealing of both types of films at 845 or 860 C resulted in the formation of mixed Bi-2223 and Bi-2212 phases with a high degree of preferential orientation with the c-axis perpendicular to the substrates. The slight increase of the critical temperature from 103 K to 105 K, the enhancement of the critical current density from 2 x 10 sup 3 to 6 x 10 sup 4 A/cm sup 2 , and the improved surface smoothness are due to a possible silver doping from the substrate. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  12. A Comparison of Modifications Induced by Li3+ and Ag14+ Ion Beam in Spectroscopic Properties of Bismuth Alumino-Borosilicate Glass Thin Films

    Directory of Open Access Journals (Sweden)

    Ravneet Kaur

    2013-01-01

    Full Text Available Ion irradiation effects on the glass network and structural units have been studied by irradiating borosilicate glass thin film samples with 50 MeV Li3+ and 180 MeV Ag14+ swift heavy ions (SHI at different fluence rates ranging from 1012 ions/cm2 to 1014 ions/cm2. Glass of the composition (65-x Bi2O3-10Al2O3-(65-y B2O3-25SiO2 (x = 45, 40; y = 20, 25 has been prepared by melt quench technique. To study the effects of ionizing radiation, the glass thin films have been prepared from these glasses and characterized using XRD, FTIR, and UV-Vis spectroscopic techniques. IR spectra are used to study the structural arrangements in the glass before and after irradiation. The values of optical band gap, Urbach energy, and refractive index have been calculated from the UV-Vis measurements. The variation in optical parameters with increasing Bi2O3 content has been analyzed and discussed in terms of changes occurring in the glass network. A comparative study of the influence of Li3+ ion beam on structural and optical properties of the either glass system with Ag14+ ion is done. The results have been explained in the light of the interaction that SHI undergo on entering the material.

  13. Visible-light activate Ag/WO3 films based on wood with enhanced negative oxygen ions production properties

    Science.gov (United States)

    Gao, Likun; Gan, Wentao; Cao, Guoliang; Zhan, Xianxu; Qiang, Tiangang; Li, Jian

    2017-12-01

    The Ag/WO3-wood was fabricated through a hydrothermal method and a silver mirror reaction. The system of visible-light activate Ag/WO3-wood was used to produce negative oxygen ions, and the effect of Ag nanoparticles on negative oxygen ions production was investigated. From the results of negative oxygen ions production tests, it can be observed that the sample doped with Ag nanoparticles, the concentration of negative oxygen ions is up to 1660 ions/cm3 after 60 min visible light irradiation. Moreover, for the Ag/WO3-wood, even after 60 min without irradiation, the concentration of negative oxygen ions could keep more than 1000 ions/cm3, which is up to the standard of the fresh air. Moreover, due to the porous structure of wood, the wood acted as substrate could promote the nucleation of nanoparticles, prevent the agglomeration of the particles, and thus lead the improvement of photocatalytic properties. And such wood-based functional materials with the property of negative oxygen ions production could be one of the most promising materials in the application of indoor decoration materials, which would meet people's pursuit of healthy, environment-friendly life.

  14. Enhancement of wettability and antibiotic loading/release of hydroxyapatite thin film modified by 100 MeV Ag7+ ion irradiation

    International Nuclear Information System (INIS)

    Elayaraja, K.; Rajesh, P.; Ahymah Joshy, M.I.; Sarath Chandra, V.; Suganthi, R.V.; Kennedy, J.; Kulriya, P.K.; Sulania, I.; Asokan, K.; Kanjilal, D.; Avasthi, D.K.; Varma, H.K.; Narayana Kalkura, S.

    2012-01-01

    Highlights: ► Reduction in particle size on irradiation leading to nanosized HAp. ► Enhancement of surface roughness and bioactivity on irradiation. ► Irradiation at lower fluence transforms the surface hydrophobic. ► The surface turned hydrophilic at higher fluence. ► Improved drug (amoxicillin) loading on irradiated samples. - Abstract: The effect of swift heavy 100 MeV Ag 7+ ions irradiation was studied on hydroxyapatite (HAp) thin film prepared by pulsed laser deposition technique (PLD). The GIXRD analysis confirmed the absence of any phase in the HAp phase due to irradiation. In addition, there was a considerable decrease in crystallinity and crystallite size on irradiation. There was no significant variation in the stoichiometry of the irradiated films. Irradiation seemed to decrease the optical band gap energy of HAp thin films. The surface roughness, wettability and bioactivity were improved on irradiation of the samples. Amount of amoxicillin loading/release increased (10%) in ion beam irradiated (1 × 10 12 ions cm −2 ) sample. Irradiated sample showed fast rate of amoxicillin (AMX) release than the pristine. Bactericidal effect was found to increase on irradiation. Surface modified and antibiotics incorporated HAp coated titanium implants may be used to prevent post-surgical infections and to promote bone-bonding of orthopedic devices.

  15. Enhancement of wettability and antibiotic loading/release of hydroxyapatite thin film modified by 100 MeV Ag{sup 7+} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Elayaraja, K. [Crystal Growth Centre, Anna University, Chennai 600 025 (India); Rajesh, P. [Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695 012 (India); Ahymah Joshy, M.I.; Sarath Chandra, V.; Suganthi, R.V. [Crystal Growth Centre, Anna University, Chennai 600 025 (India); Kennedy, J. [National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); Kulriya, P.K.; Sulania, I.; Asokan, K.; Kanjilal, D.; Avasthi, D.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Varma, H.K. [Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695 012 (India); Narayana Kalkura, S., E-mail: kalkurasn@annauniv.edu [Crystal Growth Centre, Anna University, Chennai 600 025 (India)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Reduction in particle size on irradiation leading to nanosized HAp. Black-Right-Pointing-Pointer Enhancement of surface roughness and bioactivity on irradiation. Black-Right-Pointing-Pointer Irradiation at lower fluence transforms the surface hydrophobic. Black-Right-Pointing-Pointer The surface turned hydrophilic at higher fluence. Black-Right-Pointing-Pointer Improved drug (amoxicillin) loading on irradiated samples. - Abstract: The effect of swift heavy 100 MeV Ag{sup 7+} ions irradiation was studied on hydroxyapatite (HAp) thin film prepared by pulsed laser deposition technique (PLD). The GIXRD analysis confirmed the absence of any phase in the HAp phase due to irradiation. In addition, there was a considerable decrease in crystallinity and crystallite size on irradiation. There was no significant variation in the stoichiometry of the irradiated films. Irradiation seemed to decrease the optical band gap energy of HAp thin films. The surface roughness, wettability and bioactivity were improved on irradiation of the samples. Amount of amoxicillin loading/release increased (10%) in ion beam irradiated (1 Multiplication-Sign 10{sup 12} ions cm{sup -2}) sample. Irradiated sample showed fast rate of amoxicillin (AMX) release than the pristine. Bactericidal effect was found to increase on irradiation. Surface modified and antibiotics incorporated HAp coated titanium implants may be used to prevent post-surgical infections and to promote bone-bonding of orthopedic devices.

  16. Investigation of physical properties of quaternary AgGa{sub 0.5}In{sub 0.5}Te{sub 2} thin films deposited by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Karaagac, H. [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey); Parlak, M., E-mail: parlak@metu.edu.t [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey)

    2010-08-06

    The aim of this study is to understand the structural, optical and photo-electrical properties of the quaternary chalcogenide AgGa{sub 0.5}In{sub 0.5}Te{sub 2} thin films deposited onto the glass substrates by thermal evaporation of the single crystalline powder. Energy dispersive X-ray analysis (EDXA) showed remarkable change in atomic percentage of the constituent elements after annealing. The X-ray diffraction (XRD) of the films below the annealing temperature of 300 {sup o}C indicated the polycrystalline structure with co-existence of AgGaTe{sub 2} and AgGa{sub 0.5}In{sub 0.5}Te{sub 2} phases. However, the single phase of AgGa{sub 0.5}In{sub 0.5}Te{sub 2} chalcopyrite structure was obtained at the annealing of 300 {sup o}C. The band gap values were calculated in between 1.05 and 1.37 eV depending on annealing temperature. The temperature dependent photoconductivity was measured under different illumination intensity. The nature of existing trap levels were studied by measuring the variation of photocurrent as a function of illumination intensity. The analysis showed that AgGa{sub 0.5}In{sub 0.5}Te{sub 2} thin film changes its behavior from the sublinear to supralinear photoconductivity after annealing.

  17. Synthesis of TiCuAg thick film inks for glass frit free metallization of aluminium nitride

    International Nuclear Information System (INIS)

    Adlassnig, A.; Schuster, J. C.; Smetana, W.; Reicher, R.

    1997-01-01

    A glas frit free screen printing ink for metallization of AIN was developed. Bonding to the substrate is achieved by active metal additives. The metallic component consists of Cu and Ag powder synthesized from inorganic salts by the polyol process, and Cu-Ti powder synthesized by arc melting, milling and ultracentrifugation. This ternary powder mixture was introduced to a specifically developed organic vehicle and screen printed onto AIN. The detailed development process and the results will be presented. (author)

  18. Thickness-dependent evolution of structure, electronic structure, and metal-insulator transition in ultrathin V2O3(0001) films on Ag(001)

    Science.gov (United States)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2017-05-01

    Epitaxial hexagonal V2O3(0001) films were grown on cubic Ag(001) substrate for coverages ranging from 1-20 monolayers equivalent (MLE) and have studied their structure, electronic structure and the metal-insulator transition (MIT) using Low Energy Electron Diffraction (LEED), X-ray Photoelectron Spectroscopy (XPS) and Angle-Resolved Photoemission Spectroscopy (ARPES) techniques. Detailed LEED and XPS study reveal that, for the lower film coverages (∼1 MLE), a complex (coexisting phase of) vanadium oxide is formed while from 3 MLE coverage onwards, three-dimensional crystallites of V2O3 grows epitaxially. Our LEED results also show that the hexagonal surface of V2O3(0001) is stabilizing on top of square symmetry substrate by the formation of twin-domain structure, where each domain is rotated by 90o. Our photoemission results show that the surface of V2O3 is more insulating than its bulk, similar to the case of many strongly correlated oxide surfaces which is discussed based on the valence band electronic structure with varying probing depth. Evolution of the surface electronic structure was also studied as a function of the film thickness. Further, the effect of lattice strain, film thickness and the domain formation on the metal-insulator transition (MIT) are discussed. The change in the orbital occupancy of (a1 g, egπ) and (egπ, egπ) orbitals of V 3 d, a vanishing of quasiparticle (QP) peak and opening an energy gap at the Fermi level is observed below a critical temperature as a consequence of the MIT.

  19. Effect of Ag-Nanoparticles Doped in Polyvinyl Alcohol on the Structural and Optical Properties of PVA Films

    Directory of Open Access Journals (Sweden)

    Mahshad Ghanipour

    2013-01-01

    Full Text Available The effect of silver nanoparticles doped in PVA on the structural and optical properties of composite films is studied experimentally. Samples are PVA films of 0.14 mm thickness doped with different sizes and concentrations of silver nanoparticles. Structural properties are studied using X-ray diffraction and FTIR spectrum. Using the reflectance and transmittance of samples, the effect of doped nanoparticles and their concentration on optical parameters of PVA films include absorption coefficient, optical bandgap energy, complex refractive index, complex dielectric function, complex optical conductivity, and relaxation time is extracted and discussed. The dispersion of the refractive index of films in terms of the single oscillator Wemple-DiDomenico (WD model is investigated and the dispersion parameters are calculated. Results show that by doping silver nanoparticles in PVA, number of Bragg’s planes in the structure of polymer and its crystallinity are increased noticeably. Ag–O bonds are formed in the films and the bandgap energy of samples is decreased. Calculations based on WD model confirm that by doping nanoparticles, the anion strength of PVA as a dielectric medium is decreased.

  20. Stimulation of the photoluminescent properties of CBD-CdS thin films achieved by structural modifications resulting from Ag{sup +} doping

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Pacheco, A.; Contreras-Rascon, J.I.; Castillo, S.J.; Alvarez-Ramos, M.E. [Posgrado en Nanotecnologia, Departamento de Fisica, Universidad de Sonora, Hermosillo (Mexico); Diaz-Reyes, J. [Centro de Investigacion en Biotecnologia Aplicada, Instituto Politecnico Nacional, Tepetitla, Tlaxcala (Mexico); Angel-Vicente, P.D. [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Ciudad de Mexico (Mexico); Enriquez, J.P. [Centro de Investigacion y Desarrollo Tecnologico en Energias Renovables, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutierrez (Mexico)

    2017-08-15

    The present study details the changes in photoluminescence properties stimulated by the structural changes in consequence of doping the II-VI nanocomposite thin-film semiconductor cadmium sulfide (CdS) with the IB metallic ion Ag{sup +}. The synthesis of the matrix and doped semiconductors was performed using low-temperature chemical bath deposition (CBD). The doping percentage of the CdS matrix was determined by energy-dispersive X-ray spectroscopy (EDS) with a value around 3%. The crystallographic study shows a cubic (1 1 1) preferential growth plane for the undoped material. Both X-ray and HRTEM characterizations show the presence of a polycrystalline structure for the Ag{sup +}-doped sample. Measurements of particle size from HRTEM micrographs confirm quantum confinement with a reduction of the average particle size from 5.46 to 4.12 nm in the doped sample. The photoluminescence study shows intense downshifted emissions in the green range of the visible spectrum. This could be due to the shallow electron traps formed by crystalline defects in the lattice, which are induced by the metallic ion. This study also shows higher-energy emissions due to the decrease of the particle size below the effective CdS exciton Bohr radius. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Adhesion and inactivation of Gram-negative and Gram-positive bacteria on photoreactive TiO2/polymer and Ag-TiO2/polymer nanohybrid films

    Science.gov (United States)

    Tallósy, Szabolcs Péter; Janovák, László; Nagy, Elisabeth; Deák, Ágota; Juhász, Ádám; Csapó, Edit; Buzás, Norbert; Dékány, Imre

    2016-05-01

    The aim of this study was to develop photoreactive surface coatings, possessing antibacterial properties and can be activated under visible light illumination (λmax = 405 nm) using LED-light source. The photocatalytically active titanium dioxide (TiO2) was functionalized with silver nanoparticles (Ag NPs) and immobilized in polyacrylate based nanohybrid thin film in order to facilitate visible light activity (λAg/TiO2,max = 500 nm). First, the photocatalytic activity was modelled by following ethanol vapor degradation. The plasmonic functionalization resulted in 15% enhancement of the activity compared to pure TiO2. The photoreactive antimicrobial (5 log reduction of cfu in 2 h) surface coatings are able to inactivate clinically relevant pathogen strains (methicillin resistant Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa) within short time (60-120 min) due to the formed and quantified reactive oxygen species (ROS). The existence of electrostatic interactions between the negatively charged bacteria (from -0.89 to -3.19 μeq/109 cfu) and positively charged photocatalyst particles (in the range of +0.38 and +12.3 meq/100 g) was also proven by charge titration measurements. The surface inactivation of the bacteria and the photocatalytic degradation of the cell wall component were also confirmed by fluorescence and transmission electron microscopic observations, respectively. According to the results an effective sterilizing system and prevention strategy can be developed and carried out against dangerous microorganisms in health care.

  2. Effect of laser energy on the electrical transport properties of La{sub 0.67}Ca{sub 0.33}MnO{sub 3}:Ag{sub 0.2} films by pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yalin; Chen, Qingming; Jin, Fei; Chen, Xiaohui; Li, Zhiyu; Li, Di; Zhang, Hui [Kunming University of Science and Technology, Faculty of Materials Science and Engineering, Kunming (China)

    2017-09-15

    La{sub 0.67}Ca{sub 0.33}MnO{sub 3} (LCMO):Ag{sub 0.2} films were grown on LaAlO{sub 3} (LAO) substrates (100) by pulsed laser deposition (PLD) technique with various incident laser energies. The surface morphologies and the thicknesses of the films were studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The crystal structures were analyzed by X-ray, diffraction (XRD), and the temperature dependence of the resistivity (ρ-T) of the films was studied by the standard four-probe method. It can be found that the crystal quality, surface morphology, metal-insulator transition temperature (T{sub p}), and temperature coefficient of resistance (TCR) of the LCMO:Ag{sub 0.2} films are changed with various laser energy. The highest T{sub p} 287 K is obtained with 300 mJ laser energy; meanwhile, the optimal TCR 13.5% K{sup -1} is achieved. The results suggest that the electrical transport properties of LCMO:Ag{sub 0.2} films are affected by the interface-induced compressive stress, the oxygen balance, and the double exchange between Mn{sup 3+}-O-Mn{sup 4+}. (orig.)

  3. The role of Pb.sup.2+./sup. ions in the luminescence of LuAG:Ce single crystalline films

    Czech Academy of Sciences Publication Activity Database

    Babin, V.; Gorbenko, V.; Makhov, A.; Nikl, Martin; Zazubovich, S.; Zorenko, Y.

    2007-01-01

    Roč. 4, č. 3 (2007), s. 797-800 ISSN 1862-6351 R&D Projects: GA ČR GA202/05/2471 Grant - others:INTAS(XE) 04-78-7083 Institutional research plan: CEZ:AV0Z10100521 Keywords : single crystalline films * luminiscence * decay kinetics Subject RIV: BM - Solid Matter Physics ; Magnetism

  4. New infrared-assisted method for sol-gel derived ZnO:Ag thin films: Structural and bacterial inhibition properties.

    Science.gov (United States)

    González-Penguelly, Brenely; Morales-Ramírez, Ángel de Jesús; Rodríguez-Rosales, Miriam Guadalupe; Rodríguez-Nava, Celestino Odín; Carrera-Jota, María Luz

    2017-09-01

    A new sol-gel method, based on crystallization with Infrared heating, was developed to obtain ZnO:Ag thin films. The common sol, with zinc acetate as precursor and silver nitrate as doping source (1, 3 and 5 % molar), isopropanol and distilled water as solvents and monoethanolamine as stabilizer agent; was modified with Pluronic F127 and diethylene glycol as rheological agents, and with urea as fuel to produce enough energy to the combustion and to promote the crystallization process. Later, Corning glass-substrates were dipped into the sol at a constant speed of 3mms -1 . To provide the necessary energy for obtaining the hexagonal ZnO structure of the coatings during the drying and consolidation process, instead of using the common furnace heat-treatment, the films were heated by means of an infrared (IR) ceramic lamp (800W) for 15, 30, 45, 60 and 180 minutes, and the effect of this annealing method was analyzed. The structural properties were examined by means of X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), whereas morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The examination revealed a homogeneous distribution of particles with the characteristic pores of pluronic F127, and the coating roughness had an average value of 100nm by AFM. To evaluate the effect on the number of dipping cycles and the IR-treatment on the thickness, ellipsometry results for 1, 3 and 5 deposits were analyzed and showed increments of 780, 945 and 1082nm, respectively. Finally, to test of the antibacterial activity, instead of the common one-microorganism approach, environmental microorganisms that grow with expose of the broth to the ambient conditions were employed (microbial consortium), which is a real environmental condition. The biological test was carried out by kinetic growth inhibition (optical density) of heterotrophic bacteria in culture liquid media under conditions of light, light-dark and

  5. Ag{sup 15+} and O{sup 7+} ion irradiation induced improvement in dielectric properties of the Ba(Co{sub 1/3}Nb{sub 2/3})O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bishnoi, Bhagwati [Department of Physics, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat (India); Mehta, P.K., E-mail: pkmehta_phy@yahoo.co.in [Department of Physics, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat (India); Panchal, C.J., E-mail: cjpanchal_msu@yahoo.com [Applied Physics Department, Faculty of Technology and Engineering, The M.S. University of Baroda, Vadodara 390001, Gujarat (India); Desai, M.S. [Applied Physics Department, Faculty of Technology and Engineering, The M.S. University of Baroda, Vadodara 390001, Gujarat (India); Kumar, Ravi [Material Science Division, National Institute of Technology, Hamirpur 177005, Himachal Pradesh (India); Ganesan, V. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452017, Madhya Pradesh India (India)

    2011-04-15

    Research highlights: {yields} Swift heavy ion irradiation helps in engineering the dielectric properties of conductive samples to be used as microwave device material. {yields} Irradiating the Ba(Co{sub 1/3}Nb{sub 2/3})O{sub 3} (BCN) films with O{sup 7+} or Ag{sup 15+} beams induces better alignment of grain boundaries leading to significant reduction in dielectric loss. {yields} Compared to O{sup 7+} irradiation induced point/cluster defects Ag{sup 15+} induced columnar defects are more effective in reducing/pinning trapped charges within grains their by improving overall performance of electrical devices. - Abstract: We present the preliminary results of temperature and frequency dependent dielectric measurements on Ba(Co{sub 1/3}Nb{sub 2/3})O{sub 3} (BCN) thin films. These films were prepared on indium tin oxide (ITO) coated glass substrates by the pulse laser deposition (PLD) technique. It exhibits single-phase hexagonal symmetry. These films were irradiated with Ag{sup 15+} (200 MeV) and O{sup 7+} (100 MeV) beams at the fluence 1 x 10{sup 11}, 1 x 10{sup 12}, and 1 x 10{sup 13} ions/cm{sup 2}. On irradiating these films, its dielectric constant ({epsilon}') and dielectric loss (tan {delta}) parameters improve compared to un-irradiated film. Compared to O{sup 7+} irradiation induced point/cluster defects Ag{sup 15+} induced columnar defects are more effective in reducing/pinning trapped charges within grains. The present paper highlights the role of swift heavy ion irradiation in engineering the dielectric properties of conductive samples to enable them to be useful for microwave device applications.

  6. The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si Schottky diode applications

    Directory of Open Access Journals (Sweden)

    A. Tombak

    2015-01-01

    Full Text Available In the current paper, the physical properties and microelectronic parameters of direct current (DC sputtered p-type CuO film and diode have been investigated. The film of CuO as oxide and p-type semiconductor is grown onto glass and n-Si substrates by reactive DC sputtering at 250 °C. After deposition, a post-annealing procedure is applied at various temperatures in ambient. Through this research, several parameters are determined such structural, optical and electrical magnitudes. The thickness of CuO thin films goes from 122 to 254 nm. A (111-oriented cubic crystal structure is revealed by X-ray analysis. The grain size is roughly depending on the post-annealing temperature, it increases with temperature within the 144–285 nm range. The transmittance reaches 80% simultaneously in visible and infrared bands. The optical band gap is varied between 1.99 and 2.52 eV as a result of annealing temperature while the resistivity and the charge carrier mobility decrease with an increase in temperature from 135 to 14 Ω cm and 0.92 to 0.06 cm2/Vs, respectively. The surface of samples is homogenous, bright dots are visible when temperature reaches the highest value. As a diode, Ag/CuO/n-Si exhibits a non-ideal behavior and the ideality factor is about 3.5. By Norde method, the barrier height and the series resistance are extracted and found to be 0.96 V and 86.6 Ω respectively.

  7. The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si Schottky diode applications

    Science.gov (United States)

    Tombak, A.; Benhaliliba, M.; Ocak, Y. S.; Kiliçoglu, T.

    In the current paper, the physical properties and microelectronic parameters of direct current (DC) sputtered p-type CuO film and diode have been investigated. The film of CuO as oxide and p-type semiconductor is grown onto glass and n-Si substrates by reactive DC sputtering at 250 °C. After deposition, a post-annealing procedure is applied at various temperatures in ambient. Through this research, several parameters are determined such structural, optical and electrical magnitudes. The thickness of CuO thin films goes from 122 to 254 nm. A (1 1 1)-oriented cubic crystal structure is revealed by X-ray analysis. The grain size is roughly depending on the post-annealing temperature, it increases with temperature within the 144-285 nm range. The transmittance reaches 80% simultaneously in visible and infrared bands. The optical band gap is varied between 1.99 and 2.52 eV as a result of annealing temperature while the resistivity and the charge carrier mobility decrease with an increase in temperature from 135 to 14 Ω cm and 0.92 to 0.06 cm2/Vs, respectively. The surface of samples is homogenous, bright dots are visible when temperature reaches the highest value. As a diode, Ag/CuO/n-Si exhibits a non-ideal behavior and the ideality factor is about 3.5. By Norde method, the barrier height and the series resistance are extracted and found to be 0.96 V and 86.6 Ω respectively.

  8. Surface enhanced Raman spectroscopy and structural characterization of Ag/Cu chiral nano-flower sculptured thin films

    International Nuclear Information System (INIS)

    Savaloni, Hadi; Babaei, Reza

    2013-01-01

    Silver chiral nano-flower sculptured thin films with 3-, 4- and 5-fold symmetry were produced on copper substrates using oblique angle deposition method in conjunction with rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) were employed to obtain morphologies and nano-structure of the films. Raman spectroscopy was performed on all samples that were subject to impregnation by 4,4′-bipyridine (C 10 H 8 N 2 ) solution. A high degree of enhancement of the main bands at 1610, 1297, and 1009 cm −1 that can be assigned to the C=C stretching mode, aromatic ring stretching ring and in-plane ring mode of 4,4′-bipyridine, is achieved.

  9. Surface enhanced Raman spectroscopy and structural characterization of Ag/Cu chiral nano-flower sculptured thin films

    Energy Technology Data Exchange (ETDEWEB)

    Savaloni, Hadi, E-mail: savaloni@khayam.ut.ac.ir [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of); Babaei, Reza, E-mail: reza_babaee_62@yahoo.com [Department of Physics, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of)

    2013-09-01

    Silver chiral nano-flower sculptured thin films with 3-, 4- and 5-fold symmetry were produced on copper substrates using oblique angle deposition method in conjunction with rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) were employed to obtain morphologies and nano-structure of the films. Raman spectroscopy was performed on all samples that were subject to impregnation by 4,4′-bipyridine (C{sub 10}H{sub 8}N{sub 2}) solution. A high degree of enhancement of the main bands at 1610, 1297, and 1009 cm{sup −1} that can be assigned to the C=C stretching mode, aromatic ring stretching ring and in-plane ring mode of 4,4′-bipyridine, is achieved.

  10. High-resolution electron-microscopic studies of the polymorphs in Ag2±δSe films

    International Nuclear Information System (INIS)

    Okabe, Toshio; Ura, Katsuhiko

    1994-01-01

    The polymorphs that appear in the low-temperature phase of silver selenide have been studied by high-resolution electron microscopy. The specimen films are intentionally prepared with excess silver or selenium over stoichiometric composition by flash evaporation, as-depositing carbon films on both sides of the specimen films to protect them from selenium sublimation and to maintain the composition throughout the heat treatment. It is shown that four different types of low-temperature phase exist: tetragonal (a = 6.98, c = 4.96 A) for a metastable phase only formed with a small grain size of less than 50 nm; face-centred cubic (a = 10.9 A) for a non-stoichiometric phase with excess silver; monoclinic (a = 7.05, b = 8.17, c = 4.34 A, α = 101.0 ) for a non-stoichiometric phase with excess selenium; and orthorhombic (a = 7.05, b 7.82, c = 4.34 A) for the stoichiometric stable phase. The topotactic relations between the orthorhombic and monoclinic types are found to be fully coherent, having the same a and c lattice parameters. (orig.)

  11. Size- and density-controlled deposition of Ag nanoparticle films by a novel low-temperature spray chemical vapour deposition method—research into mechanism, particle growth and optical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: yang.liu@helmholtz-berlin.de; Plate, Paul, E-mail: paul.plate@helmholtz-berlin.de; Hinrichs, Volker; Köhler, Tristan; Song, Min; Manley, Phillip; Schmid, Martina [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany); Bartsch, Peter [Beuth Hochschule für Technik Berlin, Fachbereich VIII Maschinenbau, Veranstaltungstechnik, Verfahrenstechnik (Germany); Fiechter, Sebastian; Lux-Steiner, Martha Ch. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany); Fischer, Christian-Herbert [Freie Universität Berlin, Institute of Chemistry and Biochemistry (Germany)

    2017-04-15

    Ag nanoparticles have attracted interest for plasmonic absorption enhancement of solar cells. For this purpose, well-defined particle sizes and densities as well as very low deposition temperatures are required. Thus, we report here a new spray chemical vapour deposition method for producing Ag NP films with independent size and density control at substrate temperatures even below 100 °C, which is much lower than for many other techniques. This method can be used on different substrates to deposit Ag NP films. It is a reproducible, low-cost process which uses trimethylphosphine (hexafluoroacetylacetonato) silver as a precursor in alcoholic solution. By systematic variation of deposition parameters and classic experiments, mechanisms of particle growth and of deposition processes as well as the low decomposition temperature of the precursor could be explained. Using the 3D finite element method, absorption spectra of selected samples were simulated, which fitted well with the measured results. Hence, further applications of such Ag NP films for generating plasmonic near field can be predicted by the simulation.

  12. Superconducting YBa 2Cu 3O 7-δ -Ag Thin Films (TC( 0) = 90 K) by Pulsed Laser Deposition on Polycrystalline Ba 2NdNbO 6; A Novel Substrate for YBa 2Cu 3O 7-δ Films

    Science.gov (United States)

    Kurian, Jose; John, Asha; Sajith, Poo; Koshy, Jacob; Pai, Subash; Pinto, Richard

    1998-10-01

    The development and characterisation of \\ba, a novel ceramicsubstrate material for \\yb superconductor, are reported. \\ba hasa complex cubic perovskite structure [\\bb] with lattice constanta = 8.573Å. The dielectric properties of \\ba are in a rangesuitable for its use as a substrate for microwave applications.\\ba was found to have a thermal expansion coefficient of8.6× 10-6{ }\\circC-1 and a thermal conductivityof 87 W·m-1·K-1. Superconducting \\yb-Ag thin filmshave been grown in situ on polycrystalline \\ba by pulsedlaser ablation technique and the optimum conditions have beenestablished. The films exhibited (00l) orientation of anorthorhombic \\yb phase and gave a zero resistivitysuperconducting transition [TC(0)] at 90 K with atransition width of ˜1.5 K and JC ˜3×105 A/cm2 at 77 K.

  13. Microscopic insights into the sputtering of thin organic films on Ag{111} induced by C60 and Ga bombardment.

    Science.gov (United States)

    Postawa, Zbigniew; Czerwinski, Bartlomiej; Winograd, Nicholas; Garrison, Barbara J

    2005-06-23

    Molecular dynamics computer simulations have been employed to model the bombardment of Ag{111} covered with three layers of C6H6 by 15 keV Ga and C60 projectiles. The study is aimed toward examining the mechanism by which molecules are desorbed from surfaces by energetic cluster ion beams and toward elucidating the differences between cluster bombardment and atom bombardment. The results show that the impact of the cluster on the benzene-covered surface leads to molecular desorption during the formation of a mesoscopic scale impact crater via a catapulting mechanism. Because of the high yield of C6H6 with both Ga and C60, the yield enhancement is observed to be consistent with related experimental observations. Specific energy and angle distributions are shown to be associated with the catapult mechanism.

  14. The evolution of magneto-transport and magneto-optical properties of thin La{sub 0.8}Ag{sub 0.1}MnO{sub 3+{delta}} films possessing the in-plane variant structure as a function of the film thickness

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, O V [Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Sukhorukov, Yu P [Institute of Metal Physics, Ural Division of RAN, 620219 Ekaterinburg (Russian Federation); Telegin, A V [Institute of Metal Physics, Ural Division of RAN, 620219 Ekaterinburg (Russian Federation); Gan' shina, E A [Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Loshkareva, N N [Institute of Metal Physics, Ural Division of RAN, 620219 Ekaterinburg (Russian Federation); Kaul, A R [Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Gorbenko, O Yu [Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Vinogradov, A N [Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Smoljak, I B [Institute of Metal Physics, Ural Division of RAN, 620219 Ekaterinburg (Russian Federation)

    2006-04-19

    Epitaxial La{sub 0.8}Ag{sub 0.1}MnO{sub 3+{delta}} films of different thicknesses (500-1000 nm) were grown on ZrO{sub 2}(Y{sub 2}O{sub 3}) substrates. Their optical, magneto-optical and transport properties were studied in order to clarify the effect of the epitaxial variant structure and Ag ion distribution on the conductivity, magnetoresistance and infrared magnetotransmission in these films. An original method was developed for separating MR contributions related to the colossal magnetoresistance near T{sub C} and the tunnelling magnetoresistance. It was established that in the La{sub 0.8}Ag{sub 0.1}MnO{sub 3+{delta}} films spin-polarization of electrons P reached {approx}0.5. The transverse Kerr effect revealed the irregular distribution of Ag ions through the film thickness. The comparison of optical and electrical data implies lower silver content near the film-substrate boundary in relation to that in the domain volume.

  15. In situ monitoring of electrical resistance during deposition of Ag and Al thin films by pulsed laser deposition: comparative study

    Czech Academy of Sciences Publication Activity Database

    Abdellaoui, N.; Pereira, A.; Novotný, Michal; Bulíř, Jiří; Fitl, Přemysl; Lančok, Ján; Moine, B.; Pillonnet, A.

    2017-01-01

    Roč. 418, Oct (2017), s. 517-521 ISSN 0169-4332 R&D Projects: GA MŠk LO1409; GA ČR GA16-22092S; GA ČR(CZ) GA14-10279S; GA MŠk LM2015088; GA MŠk(CZ) 7AMB14FR010 Institutional support: RVO:68378271 Keywords : pulsed laser deposition * metallic thin film * in-situ resistance measurement * silver * aluminium Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.387, year: 2016

  16. Near-field Examination of Perovskite-based Superlenses and Superlens-enhanced Probe-object Coupling

    Science.gov (United States)

    2011-03-22

    resistivity in magnetoresistive La­Ca­Mn­O Films. Science 264, 413–415 (1994). 23. Ahn, C. H., Rabe, K. M. & Triscone, J.­ M. Ferroelectricity at the...D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater.  Res. 37, 589–626 (2007). 31. Schlom, D. G., Chen, L.­ Q., Pan, X

  17. Preparation and Characterization of Antimicrobial Films Based on LDPE/Ag Nanoparticles with Potential Uses in Food and Health Industries.

    Science.gov (United States)

    Olmos, Dania; Pontes-Quero, Gloria María; Corral, Angélica; González-Gaitano, Gustavo; González-Benito, Javier

    2018-01-24

    In this work, the antimicrobial effect of silver nanoparticles in polyethylene based nanocomposites has been investigated using a non-conventional processing method to produce homogeneous materials. High energy ball milling under cryogenic conditions was used to achieve a powder of well-blended low-density polyethylene and commercial silver nanoparticles. The final composites in the form of films were obtained by hot pressing. The effect of various silver nanoparticles content (0, 0.5, 1 and 2 wt %) on the properties of low-density polyethylene and the antimicrobial effectiveness of the composite against DH5α Escherichia coli were studied. The presence of silver nanoparticles did not seem to affect the surface energy and thermal properties of the materials. Apart from the inhibition of bacterial growth, slight changes in the aspect ratio of the bacteria with the content of particles were observed, suggesting a direct relationship between the presence of silver nanoparticles and the proliferation of DH5α E. coli ( Escherichia coli ) cells. Results indicate that these materials may be used to commercially produce antimicrobial polymers with potential applications in the food and health industries.

  18. Preparation and Characterization of Antimicrobial Films Based on LDPE/Ag Nanoparticles with Potential Uses in Food and Health Industries

    Science.gov (United States)

    Pontes-Quero, Gloria María; Corral, Angélica

    2018-01-01

    In this work, the antimicrobial effect of silver nanoparticles in polyethylene based nanocomposites has been investigated using a non-conventional processing method to produce homogeneous materials. High energy ball milling under cryogenic conditions was used to achieve a powder of well-blended low-density polyethylene and commercial silver nanoparticles. The final composites in the form of films were obtained by hot pressing. The effect of various silver nanoparticles content (0, 0.5, 1 and 2 wt %) on the properties of low-density polyethylene and the antimicrobial effectiveness of the composite against DH5α Escherichia coli were studied. The presence of silver nanoparticles did not seem to affect the surface energy and thermal properties of the materials. Apart from the inhibition of bacterial growth, slight changes in the aspect ratio of the bacteria with the content of particles were observed, suggesting a direct relationship between the presence of silver nanoparticles and the proliferation of DH5α E. coli (Escherichia coli) cells. Results indicate that these materials may be used to commercially produce antimicrobial polymers with potential applications in the food and health industries. PMID:29364193

  19. Effect of BaZrO3/Ag hybrid doping to the microstructure and performance of fluorine-free MOD method derived YBa2Cu3O7−x superconducting thin films

    DEFF Research Database (Denmark)

    Tang, Xiao; Yue, Zhao; Wu, W.

    2015-01-01

    It is known that BaZrO3 and Ag can improve the magnetic and transport performance of YBCO thin film through totally disparate ways. BaZrO3 plays the role of flux pinning centers and Ag improves the transparency of the YBCO grain boundaries. However, similar research is rare on the fluorine-free d...

  20. Ion mixing in Ag-films on Si-substrates induced by a high fluence sup 4 sup 0 Ar sup + beam with a flux of 0.2 mu A/cm sup 2

    CERN Document Server

    Masoud, N M; Becker, K H

    2002-01-01

    Characteristics of ion mixing in thin Ag-films deposited onto Si-substrates were studied using the Rutherford backscattering (RBS) technique. The mixing was induced by a 400 keV sup 4 sup 0 Ar sup + beam with a flux of 0.2 mu A/cm sup 2 and fluences of up to 4x10 sup 1 sup 7 ions/cm sup 2. The concentration of Ag and Si atoms and their distributions in depth within the mixed region were determined. The RBS data indicate a clear broadening of the interfacial edges of Ag and Si distributions caused by atomic intermixing of the interface for doses above 7x10 sup 1 sup 6 ions/cm sup 2. The size of the intermixed region increases with increasing Ar fluence. Experimental findings also indicated that radiation-enhanced diffusion had not been totally eliminated. The mixing efficiency and diffusivity of Si and Ag were determined. Theoretical models were used to describe the mixing process. A comparison of our data with theory revealed that Ag diffuses in Si according to a local 'thermal spike' model. The above results...

  1. Film

    OpenAIRE

    Jones, Sarah

    2002-01-01

    This book looks at the movie industry and at the labour intensive but fascinating process of making a feature film. It examines each stage in the production of a film, from initial idea through to the final cut and screening, and highlights the main activities that take place along the way. The book not only looks at the work of prominent people in the film world, such as directors and actors, but also describes the equally important but less high profile contributions of the gaffer, best boy...

  2. Film

    OpenAIRE

    Bould, M.

    2014-01-01

    A critical overview of critical-theoretical understandings of sf film, especially those promulgated by critics devoted to sf as a prose fiction form. It also considers adaptation, spectacle and special effects.

  3. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities.

    Science.gov (United States)

    Zhang, Zhijie; Wu, Yunping; Wang, Zhihua; Zou, Xueyan; Zhao, Yanbao; Sun, Lei

    2016-12-01

    Silver nanoparticle-embedded polyvinyl alcohol (PVA) nanofibers were prepared through electrospinning technique, using as antimicrobial agents and surface-enhanced Raman scattering (SERS) substrates. Ag nanoparticles (NPs) were synthesized in liquid phase, followed by evenly dispersing in PVA solution. After electrospinning of the mixed solution at room temperature, the PVA embedded with Ag NPs (Ag/PVA) composite nanofibers were obtained. The morphologies and structures of the as-synthesized Ag nanoparticles and Ag/PVA fibers were characterized by the techniques of transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Ag NPs have an average diameter of 13.8nm, were found to be uniformly dispersed in PVA nanofibers. The Ag/PVA nanofibers provided robust antibacterial activities against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) microorganisms. It's also found that Ag/PVA nanofibers make a significant contribution to the high sensitivity of SERS to 4-mercaptophenol (4-MPh) molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Enhancement of the photoelectric performance of dye-sensitized solar cells using Ag-doped TiO2 nanofibers in a TiO2 film as electrode.

    Science.gov (United States)

    Jin, En Mei; Zhao, Xing Guan; Park, Ju-Young; Gu, Hal-Bon

    2012-02-02

    For high solar conversion efficiency of dye-sensitized solar cells [DSSCs], TiO2 nanofiber [TN] and Ag-doped TiO2 nanofiber [ATN] have been extended to be included in TiO2 films to increase the amount of dye loading for a higher short-circuit current. The ATN was used on affected DSSCs to increase the open circuit voltage. This process had enhanced the exit in dye molecules which were rapidly split into electrons, and the DSSCs with ATN stop the recombination of the electronic process. The conversion efficiency of TiO2 photoelectrode-based DSSCs was 4.74%; it was increased to 6.13% after adding 5 wt.% ATN into TiO2 films. The electron lifetime of DSSCs with ATN increased from 0.29 to 0.34 s and that electron recombination was reduced.

  5. Investigation of material properties and thermal stabilities of magnetron-sputter-deposited ZnO:Al/Ag/ZnO:Al transparent conductive coatings for thin-film solar cell applications

    Science.gov (United States)

    Van Eek, Stella; Yan, Xia; Li, Weimin; Kreher, Sascha; Venkataraj, Selvaraj

    2017-08-01

    Transparent conductive oxides (TCOs) have been widely used in various optoelectronic devices. Among these TCOs, indium-tin oxide (ITO) is the most commonly used TCO material. However, owing to the scarcity of indium, there exists a strong need to replace ITO with an alternative transparent conductive coating. A TCO/metal/TCO-based multilayer structure has been considered as one promising candidate. In this work, several Al-doped ZnO (AZO) AZO/Ag/AZO samples were prepared with different Ag thicknesses. The AZO/Ag/AZO structure allows a low sheet resistance of around 10 Ω/sq and a visible transmission above 80% achieved with an overall thickness of ˜110 nm. The optimisation of front AZO thickness helps to reduce reflection via destructive interferences. We demonstrated that the adhesion strength of the stacks can be improved by modifying top AZO deposition conditions. The adhesive tape test confirms good film adhesion (i.e., peel-off strength) to the glass substrate. The annealing studies confirm good thermal stabilities of the fabricated sandwich structure.

  6. Film

    OpenAIRE

    Balint, Ruth; Dolgopolov, Greg

    2008-01-01

    From the beginning of the twentieth century, Sydney defined cosmopolitanism and modernity in the national imagination, and central to this image was the cinema: its technology, its architecture, its stars, its marketing and the stories it circulated to its audiences about Australia and the world. Though it is difficult to define a genre of Sydney film, Sydney provided the backdrop for a host of ideas about the city, and later suburbia. Sydney came to be seen as a ‘tinsel town’ of cultural ban...

  7. Coexistence of unipolar and bipolar resistive switching behaviors in NiFe2O4 thin film devices by doping Ag nanoparticles

    Science.gov (United States)

    Hao, Aize; Ismail, Muhammad; He, Shuai; Huang, Wenhua; Qin, Ni; Bao, Dinghua

    2018-02-01

    The coexistence of unipolar and bipolar resistive switching (RS) behaviors of Ag-nanoparticles (Ag-NPs) doped NiFe2O4 (NFO) based memory devices was investigated. The switching voltages of required operations in the unipolar mode were smaller than those in the bipolar mode, while ON/OFF resistance levels of both modes were identical. Ag-NPs doped NFO based devices could switch between the unipolar and bipolar modes just by preferring the polarity of RESET voltage. Besides, the necessity of identical compliance current during the SET process of unipolar and bipolar modes provided an additional advantage of simplicity in device operation. Performance characteristics and cycle-to-cycle uniformity (>103 cycles) in unipolar operation were considerably better than those in bipolar mode (>102 cycles) at 25 °C. Moreover, good endurance (>600 cycles) at 200 °C was observed in unipolar mode and excellent nondestructive retention characteristics were obtained on memory cells at 125 °C and 200 °C. On the basis of temperature dependence of resistance at low resistance state, it was believed that physical origin of the RS mechanism involved the formation/rupture of the conducting paths consisting of oxygen vacancies and Ag atoms, considering Joule heating and electrochemical redox reaction effects for the unipolar and bipolar resistive switching behaviors. Our results demonstrate that 0.5% Ag-NPs doped nickel ferrites are promising resistive switching materials for resistive access memory applications.

  8. c-Axis correlated extended defects and critical current in YBa2Cu3Ox films grown on Au and Ag-nano dot decorated substrates

    International Nuclear Information System (INIS)

    Mikheenko, P.; Sarkar, A.; Dang, V.-S.; Tanner, J.L.; Abell, J.S.; Crisan, A.

    2009-01-01

    We report measurements of critical current in YBa 2 Cu 3 O x films deposited on SrTiO 3 substrates decorated with silver and gold nanodots. An increase in critical current in these films, in comparison with the films deposited on non-decorated substrates, has been achieved. We argue that this increase comes from the c-axis correlated extended defects formed in the films and originated from the nanodots. Additionally to creating extended defects, the nanodots pin them and prevent their exit from the sample during the film growth, thus keeping a high density of defects and providing a lower rate of decrease of the critical current with the thickness of the films. The best pinning is achieved in the samples with silver nanodots by optimising their deposition temperature. The nanodots grown at a temperature of a few hundred deg. C have a small diameter of a few nanometres and a high surface density of 10 11 -10 12 particles/cm 2 . We give evidence of c-axis correlated extended defects in YBa 2 Cu 3 O x films by planar and cross-sectional atomic force microscopy, transmission electron microscopy and angle-dependent transport measurements of critical current.

  9. Scintillation efficiency and X-ray imaging with the RE-doped LuAG thin films grown by liquid phase epitaxy

    Czech Academy of Sciences Publication Activity Database

    Touš, J.; Blažek, K.; Kučera, M.; Nikl, Martin; Mareš, Jiří A.

    2012-01-01

    Roč. 47, č. 4 (2012), s. 311-314 ISSN 1350-4487 R&D Projects: GA AV ČR KAN300100802 Institutional research plan: CEZ:AV0Z10100521 Keywords : single crystal * scintillator * LuAG * X-ray radiography * LPE growth Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.861, year: 2012

  10. Memory characteristics and tunneling mechanism of Ag nanocrystal embedded HfAlOx films on Si83Ge17/Si substrate

    International Nuclear Information System (INIS)

    Qiu, X.Y.; Zhou, G.D.; Li, J.; Chen, Y.; Wang, X.H.; Dai, J.Y.

    2014-01-01

    A nano-floating gate memory capacitor consisting of a stack of 3 nm-thick HfAlO x tunneling layer, self-organized Ag nanocrystals (NCs), and a 6 nm-thick HfAlO x control layer, has been fabricated on compressively strained p-type Si 83 Ge 17 /Si(100) substrates by radio-frequency magnetron sputtering. The Ag-NCs with a size of 5–8 nm and a density of 5.7 × 10 12 /cm 2 are well dispersed in the amorphous HfAlO x matrix. Counterclockwise hysteresis capacitance–voltage curve with a memory window of ∼ 2 V, corresponding to a charge storage density of about 1.3 × 10 13 electrons/cm 2 , is observed in this memory capacitor. The accumulation capacitance of this memory capacitor has no obvious decrease during electrical stressing process within a period of 10 4 s, but the memory window gradually becomes narrower, and only 54% stored charges are retained in the Ag-NCs after 10 5 s stressing. Defect-enhanced Poole–Frenkel tunneling is found to be responsible for the degradation of memory properties. - Highlights: • Dispersed Ag nanocrystals act as memory nodes. • Realize a 2 V memory window • Illustrate the memory degradation process • Identify a defect-enhanced tunneling mechanism

  11. A comparative study about electronic structures at rubrene/Ag and Ag/rubrene interfaces

    Directory of Open Access Journals (Sweden)

    Sumona Sinha

    2015-10-01

    Full Text Available The contact between the electrode and the organic semiconductor is one of the most crucial factors in determining the organic device performance. The development and production technology of different organic devices require the understanding of different types of metal/organic semiconducting thin film interfaces. Comparisons about the electronic structures at Rubrene/Ag and Ag/Rubrene interfaces have been studied using photoemission spectroscopy. The Ag on rubrene interfaces is found to show more interesting and complex natures than its counterpart. The vacuum level (VL was shifted about 0.51 eV from push back effect for deposition of 5 Å rubrene onto Ag film whereas the electronic features of silver was only suppressed and no energy shift was resulted. While the deposition of 5 Å Ag onto rubrene film leads to the diffusion of the Ag atoms, as a cluster with quantum size effect, inside the film. Angle dependent XPS measurement indicates that diffused metal clusters were present at entire probed depth of the film. Moreover these clusters dope the uppermost surface of the rubrene film which consequences a shift of the electronic states of thick organic film towards higher binding energy. The VL was found to shift about 0.31 eV toward higher binding energy whereas the shift was around 0.21 eV for the electronic states of rubrene layer.

  12. Evolution of AgX nanowires into Ag derivative nano/microtubes for highly efficient visible-light photocatalysts.

    Science.gov (United States)

    Choi, Won San; Byun, Gyo Yeon; Bae, Tae Sung; Lee, Ha-Jin

    2013-11-13

    Our study proposes a novel strategy for the synthesis of Ag derivatives (AgX@Ag (X = Cl and Br) or Ag nano/microtubes) using the controlled chemical reduction or electron-beam irradiation of AgX nanowires (NWs), which are formed from the controlled dewetting of a AgX thin film on colloidal particles. The size of the AgX@Ag and Ag nano/microtubes can be controlled using the AgCl NWs as templates and varying the concentration of NaX. By controlling the concentration of NaBr, heterojunction-structured AgCl/AgBr NWs (H-AgCl/AgBr NWs) can be produced from the AgCl NWs due to a partial ion-exchange reaction (low concentration), and the AgBr NWs produced after a complete ion-exchange reaction between Cl- and Br- are further grown into micrometer-sized AgBr wires (high concentration). The resulting AgX NWs can be transformed into corresponding AgX@Ag or Ag nano/microtubes via a controlled chemical or physical method. The AgX derivatives (AgX@Ag nanotubes (NTs) and AgX NWs) are tested as visible-light-induced photocatalysts for decomposition of methyl orange. The AgX@Ag NTs exhibit the best photocatalytic activities due to the advantages of the core@shell structure, allowing multiple reflections of visible light within the interior cavity, providing a well-defined and clean Ag/AgX interface, and preventing direct adsorption of pollutants on AgX because of the shell structure. These advantages allow AgX@Ag NTs to maintain high catalytic performance even after multiple uses. The approach can also be used as a direct method for preparing Ag nano/microtubes with a tailored size and as a new method for incorporating a AgX NW core into a Ag nano/microtube shell. Our approach is useful for synthesizing various types of one-dimensional heterostructured NWs or metal NTs with controlled structures and properties.

  13. Improving Efficiency of Evaporated Cu2ZnSnS4 Thin Film Solar Cells by a Thin Ag Intermediate Layer between Absorber and Back Contact

    Directory of Open Access Journals (Sweden)

    Hongtao Cui

    2015-01-01

    Full Text Available A 20 nm Ag coating on Mo back contact was adopted to improve the back contact of evaporated Cu2ZnSnS4 (CZTS solar cells. The Ag layer helped reduce the thickness of MoS2 which improves fill factor (FF significantly; additionally, it reduced secondary phases ZnS and SnS2−x, which may help carrier transport; it was also involved in the doping of the absorber layer, which compensated the intrinsic p-type doping and therefore drags down the doping level. The doping involvement may enlarge the depletion region and improve lifetime of the absorber, which led to enhancing open circuit voltage (VOC, short circuit current density (JSC, and efficiency significantly. However, it degrades the crystallinity of the material slightly.

  14. N-Heterocyclic carbenes on close-packed coinage metal surfaces: bis-carbene metal adatom bonding scheme of monolayer films on Au, Ag and Cu.

    Science.gov (United States)

    Jiang, Li; Zhang, Bodong; Médard, Guillaume; Seitsonen, Ari Paavo; Haag, Felix; Allegretti, Francesco; Reichert, Joachim; Kuster, Bernhard; Barth, Johannes V; Papageorgiou, Anthoula C

    2017-12-01

    By means of scanning tunnelling microscopy (STM), complementary density functional theory (DFT) and X-ray photoelectron spectroscopy (XPS) we investigate the binding and self-assembly of a saturated molecular layer of model N -heterocyclic carbene (NHC) on Cu(111), Ag(111) and Au(111) surfaces under ultra-high vacuum (UHV) conditions. XPS reveals that at room temperature, coverages up to a monolayer exist, with the molecules engaged in metal carbene bonds. On all three surfaces, we resolve similar arrangements, which can be interpreted only in terms of mononuclear M(NHC) 2 (M = Cu, Ag, Au) complexes, reminiscent of the paired bonding of thiols to surface gold adatoms. Theoretical investigations for the case of Au unravel the charge distribution of a Au(111) surface covered by Au(NHC) 2 and reveal that this is the energetically preferential adsorption configuration.

  15. Characterization of Ag/Ag2SO4 system as reference electrode for in ...

    Indian Academy of Sciences (India)

    except the graphene nanoplatelets, carbon nanotubes, paper film and titanium foil were obtained from Sigma. Aldrich. The Ag/Ag2SO4 RE was situated between two lay- ers of the separator from the edge of the working and counter electrodes, besides these electrodes were rigor- ously positioned relative to each other to ...

  16. SERS activity of Ag decorated nanodiamond and nano-β-SiC, diamond-like-carbon and thermally annealed diamond thin film surfaces.

    Science.gov (United States)

    Kuntumalla, Mohan Kumar; Srikanth, Vadali Venkata Satya Siva; Ravulapalli, Satyavathi; Gangadharini, Upender; Ojha, Harish; Desai, Narayana Rao; Bansal, Chandrahas

    2015-09-07

    In the recent past surface enhanced Raman scattering (SERS) based bio-sensing has gained prominence owing to the simplicity and efficiency of the SERS technique. Dedicated and continuous research efforts have been made to develop SERS substrates that are not only stable, durable and reproducible but also facilitate real-time bio-sensing. In this context diamond, β-SiC and diamond-like-carbon (DLC) and other related thin films have been promoted as excellent candidates for bio-technological applications including real time bio-sensing. In this work, SERS activities of nanodiamond, nano-β-SiC, DLC, thermally annealed diamond thin film surfaces were examined. DLC and thermally annealed diamond thin films were found to show SERS activity without any metal nanostructures on their surfaces. The observed SERS activities of the considered surfaces are explained in terms of the electromagnetic enhancement mechanism and charge transfer resonance process.

  17. Reflectance improvement by thermal annealing of sputtered Ag/ZnO back reflectors in a-Si:H thin film silicon solar cells

    DEFF Research Database (Denmark)

    Haug, Franz-Josef; Söderström, Karin; Pahud, Céline

    2011-01-01

    Silver can be used as the back contact and reflector in thin film silicon solar cells. When deposited on textured substrates, silver films often exhibit reduced reflectance due to absorption losses by the excitation of surface plasmon resonances. We show that thermal annealing of the silver back...... reflector increases its reflectance drastically. The process is performed at low temperature (150°C) to allow the use of plastic sheets such as polyethylene naphthalate and increases the efficiency of single junction amorphous solar cells dramatically. We present the best result obtained on a flexible...

  18. The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si Schottky diode applications

    OpenAIRE

    A. Tombak; M. Benhaliliba; Y.S. Ocak; T. Kiliçoglu

    2015-01-01

    In the current paper, the physical properties and microelectronic parameters of direct current (DC) sputtered p-type CuO film and diode have been investigated. The film of CuO as oxide and p-type semiconductor is grown onto glass and n-Si substrates by reactive DC sputtering at 250 °C. After deposition, a post-annealing procedure is applied at various temperatures in ambient. Through this research, several parameters are determined such structural, optical and electrical magnitudes. The thick...

  19. Optical properties and structure of amorphous films Ag(As0.33S0.67-ySey)100-x

    Czech Academy of Sciences Publication Activity Database

    Krbal, M.; Wágner, T.; Vlček, Milan; Vlček, M.; Frumar, M.

    2006-01-01

    Roč. 352, 23-25 (2006), s. 2662-2666 ISSN 0022-3093. [1st Conference on Advances in Optical Materials ,,AIOM2005". Tucson, 12.10.2005-15.10.2005] Institutional research plan: CEZ:AV0Z40500505 Keywords : Raman spectroscopy * diffusion and transport * films and coatings Subject RIV: CA - Inorganic Chemistry Impact factor: 1.362, year: 2006

  20. Structural and optical characterization of Ag photo-doped thin As40S60−xSex films for non-linear applications

    International Nuclear Information System (INIS)

    Tasseva, J; Todorov, R; Babeva, Tz; Petkov, K

    2010-01-01

    This paper deals with the structure and the optical properties of thin As 40 S 60−x Se x films doped with silver. The refractive index n and the optical band gap E g opt were calculated from the transmittance and reflectance spectra. The results showed that the photo-doping leads to increase in the refractive index by about 0.25–0.27. An effect of thickness expansion was observed in the photo-doped layers. The non-linear refractive index, γ, and the two-photon absorption coefficient, β, were evaluated by applying a formula developed by Sheik-Bahae. Each of the films studied exhibits a highly non-linear refractive index at the telecommunication wavelength, 70–850 times higher than that measured for fused silica. From the Raman spectra of thin As 40 S 30 Se 30 it might be concluded that under dissolution, the silver interacts with both sulfur and selenium. The surface of the thin films was investigated by using a white light interferometric profiler. It was found that the increase in the thickness of the silver layer results in roughening of the surface of the photo-doped films

  1. Synthesis and characterizations of AgSCN nanospheres using AgCl as the precursor

    International Nuclear Information System (INIS)

    Yang Ming; Ma Jing

    2009-01-01

    Nanospheres of AgSCN with an average radius of 30-80 nm have been prepared by a simple reaction between AgCl suspension and KSCN in the presence of gelatin. Gelatin played a decisive role as an inhibitor of the direct attack of SCN - ions to AgCl surfaces and coagulation of the growing AgSCN in producing the spherical AgSCN nanoparticles. The products were characterized by X-ray powder diffraction, transmission electron microscopy and X-ray photoelectron spectra techniques. The electrical conductivity of thin films of as-prepared AgSCN nanoparticles and polyethylene oxide (PEO) at room temperature was measured. The maximum value of electrical conductivity of as-prepared AgSCN-PEO was 1.53 x 10 -5 S cm -1 .

  2. Study of the oxidation effects on isothermal solidification based high temperature stable Pt/In/Au and Pt/In/Ag thick film interconnections on LTCC substrate

    Science.gov (United States)

    Kumar, Duguta Suresh; Suri, Nikhil; Khanna, P. K.; Sharma, R. P.

    2016-03-01

    The objective of the presented paper is to determine the oxidized phase compositions of indium lead-free solders during solidification at 190 ° C under room environment with the help of X-ray diffraction (XRD) and Energy dispersive spectroscopy (EDX). Many lead-free solders alloys available oxidizes and have poor wetting properties. The oxidation of pure indium solder foil, Au, Pt, and Ag alloys were identified and investigated, in the process of isothermal solidification based solder joints construction at room environment and humidity. Both EDX and XRD characterization techniques were performed to trace out the amount of oxide levels and variety of oxide formations at solder interface respectively. The paper also aims to report the isothermal solidification technique to provide interconnections to pads on Low temperature co-fired ceramic (LTCC) substrate. It also elaborates advantages of isothermal solidification over the other methods of interconnection. Scanning electron microscope (SEM) used to identify the oxidized spots on the surface of Pt, Ag substrates and In solder. The identified oxides were reported.

  3. Study of the oxidation effects on isothermal solidification based high temperature stable Pt/In/Au and Pt/In/Ag thick film interconnections on LTCC substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Duguta Suresh, E-mail: sureshduguta@gmail.com; Khanna, P. K., E-mail: pkk@ceeri.ernet.in [CSIR – Central Electronics Engineering Research Institute, Pilani (India); Academy of Scientific and Innovative Research, New Delhi (India); Suri, Nikhil, E-mail: surinikhil@rediffmail.com [CSIR – Central Electronics Engineering Research Institute, Pilani (India); Sharma, R. P., E-mail: rpsbtti@yahoo.com [BK Birla Institute of Engineering & Technology, Pilani (India)

    2016-03-09

    The objective of the presented paper is to determine the oxidized phase compositions of indium lead-free solders during solidification at 190 ° C under room environment with the help of X-ray diffraction (XRD) and Energy dispersive spectroscopy (EDX). Many lead-free solders alloys available oxidizes and have poor wetting properties. The oxidation of pure indium solder foil, Au, Pt, and Ag alloys were identified and investigated, in the process of isothermal solidification based solder joints construction at room environment and humidity. Both EDX and XRD characterization techniques were performed to trace out the amount of oxide levels and variety of oxide formations at solder interface respectively. The paper also aims to report the isothermal solidification technique to provide interconnections to pads on Low temperature co-fired ceramic (LTCC) substrate. It also elaborates advantages of isothermal solidification over the other methods of interconnection. Scanning electron microscope (SEM) used to identify the oxidized spots on the surface of Pt, Ag substrates and In solder. The identified oxides were reported.

  4. Device application of AgGa0.5In0.5Se2 thin films deposited by thermal sequential stacked layer method

    Science.gov (United States)

    Coşkun, E.; Güllü, H. H.; Parlak, M.

    2014-12-01

    An In/n-AgGa0.5In0.5Se2/p-Si/Al heterostructure was produced by thermal sequential stacked layer deposition method and the device characteristics were investigated. The compositional analysis showed that the depositions of the intended stoichiometric composition of AgGa0.5In0.5Se2 structure were obtainable by controlling and providing the necessary deposition conditions during the deposition processes. By means of the room temperature Hall effect and transmission measurements, the carrier concentration and optical band gap values were determined as 9× {{10}15} cm-3 and 1.65 eV, respectively. In addition, temperature-dependent current-voltage (I-V) and the room temperature capacitance-voltage (C-V) measurements of this heterostructure were carried out. The rectification factor was obtained as about 104 at 1.20 V for all sample temperatures. Depending on the change in the temperature, the series and shunt resistances were calculated as 101 and 106 Ω, respectively. The studies on the current transport mechanisms showed that there were two different mechanisms at two different voltage regions: tunneling enhanced recombination mechanism in the voltage range of 0.08 and 0.30 V and the space charge limited current mechanism in the voltage range of 0.30 and 0.60 V. The barrier height, built-in potential and interface states density of the deposited heterostructure were also calculated and discussed.

  5. Ag on Si(111) from basic science to application

    Energy Technology Data Exchange (ETDEWEB)

    Belianinov, Aleksey [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    In our work we revisit Ag and Au adsorbates on Si(111)-7x7, as well as experiment with a ternary system of Pentacene, Ag and Si(111). Of particular interest to us is the Si(111)-(√3x√3)R30°}–Ag (Ag-Si-√3 hereafter). In this thesis I systematically explore effects of Ag deposition on the Ag-Si-√3 at different temperatures, film thicknesses and deposition fluxes. The generated insight of the Ag system on the Si(111) is then applied to generate novel methods of nanostructuring and nanowire growth. I then extend our expertise to the Au system on the Ag-Si(111) to gain insight into Au-Si eutectic silicide formation. Finally we explore behavior and growth modes of an organic molecule on the Ag-Si interface.

  6. Optically – Induced diffusion and dissolution of Ag into thin films of (GeS2)0,8(Ga2S3)0,2

    Czech Academy of Sciences Publication Activity Database

    Válková, S.; Wágner, T.; Bartoš, M.; Pavlišta, M.; Přikryl, J.; Vlček, Milan; Frumarová, Božena; Beneš, L.; Frumar, M.

    2011-01-01

    Roč. 13, 11-12 (2011), s. 1553-1558 ISSN 1454-4164. [5th International Conference on Amorphous and Nanostructured Chalcogenides. Bucharest - Magurele, 26.06.2011-01.07.2011] Institutional research plan: CEZ:AV0Z40500505 Keywords : chalcogenides * thin films * optically induced Subject RIV: CA - Inorganic Chemistry Impact factor: 0.457, year: 2011 http://joam.inoe.ro/index.php?option=magazine&op=view&idu=2964&catid=68

  7. Tuning of Ag-SPR band position in refractive index controlled ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Inorganic (silica-titania)–organic (polyethylene oxide) hybrid films with variable refractive index (RI) values were synthesized and Ag nanoparticles were generated in situ inside such hybrid films to develop coloured coatings specially on plastic substrates. The hybrid films and the corresponding Ag- incorporated ...

  8. p-AgCoO2/n-ZnO heterojunction diode grown by rf magnetron ...

    Indian Academy of Sciences (India)

    The AgCoO2 films grown by rf sputtering were highly -axis oriented showing only (001) reflections in the X-ray diffraction pattern unlike in the case of amorphous films grown by ... Transparent – heterojunction on glass substrate was fabricated by rf magnetron sputtering of -AgCoO2 and -type ZnO : Al thin films.

  9. Realization of forming-free Ag/ZrO2-based threshold selector with high selectivity by optimizing film thickness and scaling down electrode size

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2018-02-01

    Full Text Available The influence of the switching layer thickness and the device size on the threshold switching characteristics has been investigated in Ag/ZrO2/Pt selector device. By optimizing the switching layer thickness, excellent threshold switching characteristics such as forming-free behavior, high selectivity and good endurance was achieved. In addition, we revealed the impact of active metal electrode diffusion on the device performance as the thickness of dielectric material scaled. A two-step set behavior was also observed in the device with 80 nm switching layer under a high compliance current of 1mA. Furthermore, the selectivity was increased highly by decreasing electrode size. In particular, the selectivity was about 2×108 when the electrode size was scaled down to 300 nm.

  10. Exploring the Optical and Morphological Properties of Ag and Ag/TiO₂ Nanocomposites Grown by Supersonic Cluster Beam Deposition.

    Science.gov (United States)

    Cavaliere, Emanuele; Benetti, Giulio; Van Bael, Margriet; Winckelmans, Naomi; Bals, Sara; Gavioli, Luca

    2017-12-13

    Nanocomposite systems and nanoparticle (NP) films are crucial for many applications and research fields. The structure-properties correlation raises complex questions due to the collective structure of these systems, often granular and porous, a crucial factor impacting their effectiveness and performance. In this framework, we investigate the optical and morphological properties of Ag nanoparticles (NPs) films and of Ag NPs/TiO₂ porous matrix films, one-step grown by supersonic cluster beam deposition. Morphology and structure of the Ag NPs film and of the Ag/TiO₂ (Ag/Ti 50-50) nanocomposite are related to the optical properties of the film employing spectroscopic ellipsometry (SE). We employ a simple Bruggeman effective medium approximation model, corrected by finite size effects of the nano-objects in the film structure to gather information on the structure and morphology of the nanocomposites, in particular porosity and average NPs size for the Ag/TiO₂ NP film. Our results suggest that SE is a simple, quick and effective method to measure porosity of nanoscale films and systems, where standard methods for measuring pore sizes might not be applicable.

  11. Real-time investigations of structural and optical changes in photochromic Ag/TiO2 nanocomposite thin films under laser irradiation

    Science.gov (United States)

    Babonneau, D.; Diop, D. K.; Simonot, L.; Lamongie, B.; Blanc, N.; Boudet, N.; Vocanson, F.; Destouches, N.

    2018-03-01

    Photochromic reaction dynamics in silver nanoparticles embedded in mesoporous titanium dioxide thin films is investigated by combining real-time grazing incidence small-angle x-ray scattering (GISAXS) and optical transmission measurements during UV–visible laser exposure cycles. While GISAXS probes changes in the particle size distribution, transmittance measurements are sensitive to spectral changes induced by photo-activated processes. Our results reveal a repeatable photochromic behavior with a good correlation in terms of kinetics between the morphological and optical fluctuations. Visible laser irradiation at 532 nm induces a preferential photo-dissolution of small silver particles, which in turn causes an increase in transmittance near the excitation wavelength. Furthermore, the photo-dissolution process can be significantly accelerated and amplified by associating visible laser with x-ray irradiation. Under UV laser irradiation at 360 nm, the bleaching process can be reverted by photocatalytic reduction with the mesopores in the TiO2 film acting as molds, which have the ability to confine the nanoparticle growth. However, in the irradiation conditions used in the present study, it appears that the photocatalytic growth of silver nanoparticles is slower than the photo-dissolution process, whereas its efficiency gradually degrades throughout the exposures to UV light.

  12. Tuning of Ag-SPR band position in refractive index controlled ...

    Indian Academy of Sciences (India)

    Inorganic (silica-titania)-organic (polyethylene oxide) hybrid films with variable refractive index (RI) values were synthesized and Ag nanoparticles were generated in situ inside such hybrid films to develop coloured coatings specially on plastic substrates. The hybrid films and the corresponding Agincorporated films were ...

  13. Fibers and Conductive Films Using Silver Nanoparticles and Nanowires by Near-Field Electrospinning Process

    Directory of Open Access Journals (Sweden)

    Cheng-Tang Pan

    2015-01-01

    Full Text Available The silver nanowires (AgNWs and silver nanoparticles (AgNPs were synthesized. With near-field electrospinning (NFES process, fibers and thin films with AgNPs and AgNWs were fabricated. In the NFES process, 10 k voltage was applied and the AgNPs and AgNWs fibers can be directly orderly collected without breaking and bending. Then, the characteristics of the fibers were analyzed by four-point probe and EDS. The conductive film was analyzed. When the thickness of films with AgNWs and AgNPs was 1.6 µm, the sheet resistance of films was 0.032 Ω/sq which was superior to that of the commercial ITO. The transmissivity of films was analyzed. The transmissivity was inversely proportional to sheet resistance of the films. In the future, the fibers and films can be used as transparent conductive electrodes.

  14. Improving the efficiency of ITO/nc-TiO2/CdS/P3HT:PCBM/PEDOT:PSS/Ag inverted solar cells by sensitizing TiO2 nanocrystalline film with chemical bath-deposited CdS quantum dots.

    Science.gov (United States)

    Chen, Chong; Li, Fumin

    2013-10-31

    An improvement in the power conversion efficiency (PCE) of the inverted organic solar cell (ITO/nc-TiO2/P3HT:PCBM/PEDOT:PSS/Ag) is realized by depositing CdS quantum dots (QDs) on a nanocrystalline TiO2 (nc-TiO2) film as a light absorption material and an electron-selective material. The CdS QDs were deposited via a chemical bath deposition (CBD) method. Our results show that the best PCE of 3.37% for the ITO/nc-TiO2/CdS/P3HT:PCBM/PEDOT:PSS/Ag cell is about 1.13 times that (2.98%) of the cell without CdS QDs (i.e., ITO/nc-TiO2/P3HT:PCBM/PEDOT:PSS/Ag). The improved PCE can be mainly attributed to the increased light absorption and the reduced recombination of charge carriers from the TiO2 to the P3HT:PCBM film due to the introduced CdS QDs.

  15. Plasmonic properties of Ag nanoclusters in various polymer matrices

    International Nuclear Information System (INIS)

    Takele, H; Greve, H; Pochstein, C; Zaporojtchenko, V; Faupel, F

    2006-01-01

    Nanocomposite films containing Ag nanoparticles embedded in a polymer matrix of Teflon AF, poly(methyl methacrylate) (PMMA) and Nylon 6 were prepared by vapour phase co-deposition in high vacuum. A large variation of the particle plasmon resonance frequency in the visible region was obtained by increasing the Ag volume fraction from 4-80%. The metal volume fraction was measured by energy dispersive x-ray spectrometry (EDX) and the film thickness was measured by surface profilometry. The position, width and strength of the plasmon resonance depend strongly on the metal filling factor, cluster size and interparticle distance. The microstructure of the nanocomposites (shape, size, size distribution and interparticle separation of metal clusters) was determined by transmission electron microscopy. The effect of the surrounding dielectric medium on the optical properties of nanocomposites was investigated by comparing the Teflon AF/Ag, PMMA/Ag and Nylon/Ag composites

  16. Stability of Ag nanoparticles dispersed in amphiphilic organic matrix

    Science.gov (United States)

    Suvorova, Elena I.; Klechkovskaya, Vera V.; Kopeikin, Victor V.; Buffat, Philippe A.

    2005-02-01

    Nano- and thin-film technologies based on novel systems associating metals particles to polymer matrix open a broad range of different applications. Such composites were found to be more efficient and safe, for instance, in biomedical needs. The Ag/poly(N-vinyl-2-pyrrolidone) (Ag/PVP) composite investigated in the present work is a new bactericide mean applied in complicated cases of infected burns and purulent wounds. High-resolution transmission electron microscopy (HRTEM) and X-ray energy-dispersive (EDS) microanalysis were used to bring chemical and structural information in a study of the properties and stability of thin-film nanocomposite whih consisted of Ag nanoparticles dispersed in water-soluble organic matrix poly(N-vinyl-2-pyrrolidone). The nanostructural investigation of Ag/PVP composite by HRTEM and EDS exposed to SO 2 and H 2S from the atmosphere and some traces of S-containing substances explains the limited stability of this system by a structural modification associated with a phase change and formation of Ag 2S and Ag 2SO 3. However, formation of the hardly water-soluble Ag 2S and Ag 2SO 3 salts may play an important role in the suppression of bacterial growth. On the one hand, silver could block S-H groups in vital proteins and conduced to their destruction, in that way revealing the antibacterial power. On the other hand, antiseptic properties of Ag consist in binding the products of the protein decay.

  17. Investigation of the electrocatalytic activity for oxygen reduction of sputter deposited mixed metal films

    International Nuclear Information System (INIS)

    Schumacher, L.C.; Holzheuter, I.B.; Nucara, M.C.; Dignam, M.J.

    1989-01-01

    Sputter-deposited films of silver with lead, manganese and nickel have been studied as possible oxygen reduction electrocatalysts using cyclic voltammetry, rotating disc studies, steady-state polarization and Auger analysis. In general, the Ag-Pb and Ag-Mn films display superior electrocatalytic activity for O 2 reduction, while the Ag-Ni films' performance is inferior to that of pure Ag. For the Ag-Pb films, which show the highest electrocatalytic activity, the mixed metal films display oxidation-reduction behavior which is not simply a superposition of that of the separate metals, and suggests a mechanism for the improved behavior

  18. How Structure-Directing Agents Control Nanocrystal Shape: Polyvinylpyrrolidone-Mediated Growth of Ag Nanocubes.

    Science.gov (United States)

    Qi, Xin; Balankura, Tonnam; Zhou, Ya; Fichthorn, Kristen A

    2015-11-11

    The importance of structure-directing agents (SDAs) in the shape-selective synthesis of colloidal nanostructures has been well documented. However, the mechanisms by which SDAs actuate shape control are poorly understood. In the polyvinylpyrrolidone (PVP)-mediated growth of {100}-faceted Ag nanocrystals, this capability has been attributed to preferential binding of PVP to Ag(100). We use molecular dynamics simulations to probe the mechanisms by which Ag atoms add to Ag(100) and Ag(111) in ethylene glycol solution with PVP. We find that PVP induces kinetic Ag nanocrystal shapes by regulating the relative Ag fluxes to these facets. Stronger PVP binding to Ag(100) leads to a larger Ag flux to Ag(111) and cubic nanostructures through two mechanisms: enhanced Ag trapping by more extended PVP films on Ag(111) and a reduced free-energy barrier for Ag to cross lower-density films on Ag(111). These flux-regulating capabilities depend on PVP concentration and chain length, consistent with experiment.

  19. Exploring the Optical and Morphological Properties of Ag and Ag/TiO2 Nanocomposites Grown by Supersonic Cluster Beam Deposition

    Directory of Open Access Journals (Sweden)

    Emanuele Cavaliere

    2017-12-01

    Full Text Available Nanocomposite systems and nanoparticle (NP films are crucial for many applications and research fields. The structure-properties correlation raises complex questions due to the collective structure of these systems, often granular and porous, a crucial factor impacting their effectiveness and performance. In this framework, we investigate the optical and morphological properties of Ag nanoparticles (NPs films and of Ag NPs/TiO2 porous matrix films, one-step grown by supersonic cluster beam deposition. Morphology and structure of the Ag NPs film and of the Ag/TiO2 (Ag/Ti 50-50 nanocomposite are related to the optical properties of the film employing spectroscopic ellipsometry (SE. We employ a simple Bruggeman effective medium approximation model, corrected by finite size effects of the nano-objects in the film structure to gather information on the structure and morphology of the nanocomposites, in particular porosity and average NPs size for the Ag/TiO2 NP film. Our results suggest that SE is a simple, quick and effective method to measure porosity of nanoscale films and systems, where standard methods for measuring pore sizes might not be applicable.

  20. AGS experiments -- 1991, 1992, 1993

    International Nuclear Information System (INIS)

    Depken, J.C.

    1994-04-01

    This report contains: (1) FY 1993 AGS schedule as run; (2) FY 1994--95 AGS schedule; (3) AGS experiments ≥ FY 1993 (as of 30 March 1994); (4) AGS beams 1993; (5) AGS experimental area FY 1991 physics program; (6) AGS experimental area FY 1992 physics program; (7) AGS experimental area FY 1993 physics program; (8) AGS experimental area FY 1994 physics program (planned); (9) a listing of experiments by number; (10) two-page summaries of each experiment; (11) listing of publications of AGS experiments; and (12) listing of AGS experiments

  1. AGS experiments - 1994, 1995, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.

    1997-01-01

    This report contains the following information on the Brookhaven AGS Accelerator complex: FY 1996 AGS schedule as run; FY 1997 AGS schedule (working copy); AGS beams 1997; AGS experimental area FY 1994 physics program; AGS experimental area FY 1995 physics program; AGS experimental area FY 1996 physics program; AGS experimental area FY 1997 physics program (in progress); a listing of experiments by number; two-phage summaries of each experiment begin here, also ordered by number; listing of publications of AGS experiments begins here; and listing of AGS experimenters begins here.

  2. AGS experiments - 1994, 1995, 1996

    International Nuclear Information System (INIS)

    Depken, J.C.

    1997-01-01

    This report contains the following information on the Brookhaven AGS Accelerator complex: FY 1996 AGS schedule as run; FY 1997 AGS schedule (working copy); AGS beams 1997; AGS experimental area FY 1994 physics program; AGS experimental area FY 1995 physics program; AGS experimental area FY 1996 physics program; AGS experimental area FY 1997 physics program (in progress); a listing of experiments by number; two-phage summaries of each experiment begin here, also ordered by number; listing of publications of AGS experiments begins here; and listing of AGS experimenters begins here

  3. A study of phase transfer processes of Ag nanoparticles

    Science.gov (United States)

    Li, De-Gang; Chen, Shen-Hao; Zhao, Shi-Yong; Hou, Xian-Ming; Ma, Hou-Yi; Yang, Xue-Geng

    2002-11-01

    With the protection of sodium oleate, Ag nanoparticles are produced through the reduction of AgNO 3 with NaBH 4 in an aqueous solution. The possible mechanism of phase transfer of the Ag nanoparticles was discussed. At a suitable concentration of sodium oleate, after adding NaH 2PO 4, the oleic acid molecule can change its position on the surface of Ag nanoparticles under the effects of water and toluene and become amphipathic. So most of the nanoparticles form a film between water/toluene. For the case of a higher concentration of sodium oleate, excess sodium oleate will form a closed monolayer film on the surface of the Ag nanoparticles. After adding NaH 2PO 4, the oleic acid molecule cannot move on the Ag nanoparticles surface, thus the colloid particles are hydrophobic but not amphipathic. So most of the particles transfer to the organic phase. UV-Vis spectra, TEM and conventional metallographic microscopy are used to characterize the Ag nanoparticles and nanoparticles films.

  4. Plasticity and microstructure of epitaxial Ag/Ni multilayers; Mechanische Eigenschaften und Mikrostruktur epitaktischer Ag/Ni-Multilagenschichten

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Tobias K.

    2007-10-15

    To meet the still increasing technical demands of new materials, it is required to improve basic knowledge of thin films and multilayers. This thesis describes the microstructure and mechanical behaviour of thin epitaxial Ag/Ni-multilayers. Former investigations were only done on polycrystalline multilayers or epitaxial single layers. The manufacture of epitaxial Ag/Ni-multilayers on (111) orientated Si-substrates was performed by a magnetron sputtering technique under ultra high vacuum (UHV). The thickness of the alternating Ag- and Ni-layers varies between 100 and 400 nm, the thickness of the whole film varies between 200 and 800 nm. Hardness and flow stress of Ag/Ni-multilayers were measured with a nanoindentation technique, a substrate curvature method and by X-ray diffraction. The hardness of these multilayers varies between 1.5 and 2.0 GPa. The Ag single film hardness is 0.5 GPa and Ni film 1.8 GPa. The flow stress of the Ag/Ni-multilayers varies between 350 and 800 MPa. The Ag single layer shows a flow stress of 100 MPa and Ni of 450 MPa. Both hardness and flow stress increase with decreasing layer thickness. In situ TEM and HRTEM experiments showed a semicoherent Ag/Ni-interface. It was observed that these interfaces act as sources and sinks. Dislocation loops formed at the interface expand and shrink according to the stress state. They combine with loops from the opposite interface or with the interface itself and form threading dislocations. Dislocation loops penetrating an interface were not observed. Results were compared with various models which simulate flow stress in thin films and multilayers. The most important models are calculated by Nix-Freund, the Source-model after von Blanckenhagen and the Hall-Petch-model. (orig.)

  5. Stretchable Ag electrodes with mechanically tunable optical transmittance on wavy-patterned PDMS substrates

    Science.gov (United States)

    Ko, Eun-Hye; Kim, Hyo-Joong; Lee, Sang-Mok; Kim, Tae-Woong; Kim, Han-Ki

    2017-04-01

    We report on semi-transparent stretchable Ag films coated on a wavy-patterned polydimethylsiloxane (PDMS) substrate for use as stretchable electrodes for stretchable and transparent electronics. To improve the mechanical stretchability of the Ag films, we optimized the wavy-pattern of the PDMS substrate as a function of UV-ozone treatment time and pre-strain of the PDMS substrate. In addition, we investigated the effect of the Ag thickness on the mechanical stretchability of the Ag electrode formed on the wavy-patterned PDMS substrate. The semi-transparent Ag films formed on the wavy-patterned PDMS substrate showed better stretchability (strain 20%) than the Ag films formed on a flat PDMS substrate because the wavy pattern effectively relieved strain. In addition, the optical transmittance of the Ag electrode on the wavy-patterned PDMS substrate was tunable based on the degree of stretching for the PDMS substrate. In particular, it was found that the wavy-patterned PDMS with a smooth buckling was beneficial for a precise patterning of Ag interconnectors. Furthermore, we demonstrated the feasibility of semi-transparent Ag films on wavy-patterned PDMS as stretchable electrodes for the stretchable electronics based on bending tests, hysteresis tests, and dynamic fatigue tests.

  6. SELF-LUBRICATING THIN FILMS FOR TOOL STEELS

    Directory of Open Access Journals (Sweden)

    Peter Jurči

    2012-02-01

    Full Text Available Specimens made from Vanadis 6 cold work tool steel were machined, ground, heat processed by standard regime and finally mirror polished. After that, they were layered with CrAgN. The Ag-content in the layers was chosen to 3 wt% and 15 wt% respectively. Microstructural analysis revealed that the addition of 3 wt%Ag did not influence the growth manner of the films but the addition of 15 wt%Ag has made considerable changes in the film growth. The layer with 3 wt%Ag had excellent adhesion on the steel substrate. On the other hand, the addition of 15%Ag had strongly negative impact on the coating adhesion. Similar effect of different Ag addition has been established also to both the hardness and the Young modulus of the films, also. Both films have superior tribological properties against hard material (alumina as well as against soft counterpart (CuSn6 as-cast bronze.

  7. Multilayer silicene: clear evidence of Ag-terminated bulk silicon

    Science.gov (United States)

    Curcella, A.; Bernard, R.; Borensztein, Y.; Lazzeri, M.; Resta, A.; Garreau, Y.; Prévot, G.

    2017-06-01

    The existence of silicite, a new allotrope of silicon based on a stacking of hexagonal silicene planes, is one of the most discussed topics in the field of two-dimensional materials. Using grazing incidence x-ray diffraction (GIXD), we have followed the in situ growth of Si films on Ag(1 1 1) in the low-temperature growth regime (510-520 K). GIXD experiments demonstrate that Si films have a diamond-like structure, with an average lattice constant slightly different from that of bulk Si. The diffracted intensities associated with Si films are well reproduced by the Ag/Si(1 1 1) ≤ft(\\sqrt{3}× \\sqrt{3}\\right)R{{30}{^\\circ}} honeycomb chain model, whereas models with Ag-free Si surfaces fail to reproduce the experimental data.

  8. Preparation and Properties of Silver Nanowire-Based Transparent Conductive Composite Films

    Science.gov (United States)

    Tian, Ji-Li; Zhang, Hua-Yu; Wang, Hai-Jun

    2016-06-01

    Silver nanowire-based transparent conductive composite films with different structures were successfully prepared using various methods, including liquid polyol, magnetron sputtering and spin coating. The experimental results revealed that the optical transmittance of all different structural composite films decreased slightly (1-3%) compared to pure films. However, the electrical conductivity of all composite films had a great improvement. Under the condition that the optical transmittance was greater than 78% over the wavelength range of 400-800 nm, the AgNW/PVA/AgNW film became a conductor, while the AZO/AgNW/AZO film and the ITO/AgNW/ITO film showed 88.9% and 94% reductions, respectively, for the sheet resistance compared with pure films. In addition, applying a suitable mechanical pressure can improve the conductivity of AgNW-based composite films.

  9. @AuAg nanostructures

    Science.gov (United States)

    Singh, Rina; Soni, R. K.

    2014-09-01

    Bimetallic and trimetallic nanoparticles have attracted significant attention in recent times due to their enhanced electrochemical and catalytic properties compared to monometallic nanoparticles. The numerical calculations using Mie theory has been carried out for three-layered metal nanoshell dielectric-metal-metal (DMM) system consisting of a particle with a dielectric core (Al@Al2O3), a middle metal Ag (Au) layer and an outer metal Au (Ag) shell. The results have been interpreted using plasmon hybridization theory. We have also prepared Al@Al2O3@Ag@Au and Al@Al2O3@AgAu triple-layered core-shell or alloy nanostructure by two-step laser ablation method and compared with calculated results. The synthesis involves temporal separations of Al, Ag, and Au deposition for step-by-step formation of triple-layered core-shell structure. To form Al@Ag nanoparticles, we ablated silver for 40 min in aluminium nanoparticle colloidal solution. As aluminium oxidizes easily in water to form alumina, the resulting structure is core-shell Al@Al2O3. The Al@Al2O3 particle acts as a seed for the incoming energetic silver particles for multilayered Al@Al2O3@Ag nanoparticles is formed. The silver target was then replaced by gold target and ablation was carried out for different ablation time using different laser energy for generation of Al@Al2O3@Ag@Au core-shell or Al@Al2O3@AgAu alloy. The formation of core-shell and alloy nanostructure was confirmed by UV-visible spectroscopy. The absorption spectra show shift in plasmon resonance peak of silver to gold in the range 400-520 nm with increasing ablation time suggesting formation of Ag-Au alloy in the presence of alumina particles in the solution.

  10. A simple photolytic reactor employing Ag-doped ZnO nanowires for water purification

    Energy Technology Data Exchange (ETDEWEB)

    Udom, Innocent; Zhang, Yangyang [Clean Energy Research Center, College of Engineering, University of South Florida, Tampa, FL 33620 (United States); Ram, Manoj K., E-mail: mkram@usf.edu [Clean Energy Research Center, College of Engineering, University of South Florida, Tampa, FL 33620 (United States); Stefanakos, Elias K. [Clean Energy Research Center, College of Engineering, University of South Florida, Tampa, FL 33620 (United States); Hepp, Aloysius F. [Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Fl 33620 (United States); Elzein, Radwan; Schlaf, Rudy [Department of Electrical Engineering, University of South Florida, Tampa, Fl 33620 (United States); Goswami, D. Yogi [NASA Glenn Research Center, Research and Technology Directorate, MS 302-1, 21000 Brookpark Road, Cleveland, OH 44135 (United States)

    2014-08-01

    Well-aligned native zinc oxide (ZnO) and silver-doped ZnO (Ag-ZnO) films were deposited on borosilicate glass via a simple, low-cost, low-temperature, scalable hydrothermal process. The as-synthesized ZnO and Ag-ZnO films were characterized by X-ray diffraction; scanning electron microscopy, UV–visible spectroscopy, and Fourier transform infrared spectroscopy. A simple photolytic reactor was fabricated and later used to find the optimum experimental conditions for photocatalytic performance. The photodegradation of methyl orange in water was investigated using as-prepared ZnO and Ag-ZnO nanowires, and was compared to P25 (a commercial photocatalyst) in both visible and UV radiations. The P25 and Ag-ZnO showed a similar photodegradation performance under UV light, but Ag-ZnO demonstrated superior photocatalytic activity under visible irradiation. The optimized doping of Ag in Ag-ZnO enhanced photocatalytic activity in a simple reactor design and indicated potential applicability of Ag-ZnO for large-scale purification of water under solar irradiation. - Highlights: • Well-aligned zinc oxide (ZnO) and silver-doped ZnO (Ag-ZnO) nanowires were developed. • Simple and effective photolytic reactor was fabricated for water purification. • Ag-ZnO demonstrated superior photocatalytic activity under visible irradiation. • Amount of Ag atoms in Ag-ZnO nanowires is a key to increase photocatalytic activity.

  11. A simple photolytic reactor employing Ag-doped ZnO nanowires for water purification

    International Nuclear Information System (INIS)

    Udom, Innocent; Zhang, Yangyang; Ram, Manoj K.; Stefanakos, Elias K.; Hepp, Aloysius F.; Elzein, Radwan; Schlaf, Rudy; Goswami, D. Yogi

    2014-01-01

    Well-aligned native zinc oxide (ZnO) and silver-doped ZnO (Ag-ZnO) films were deposited on borosilicate glass via a simple, low-cost, low-temperature, scalable hydrothermal process. The as-synthesized ZnO and Ag-ZnO films were characterized by X-ray diffraction; scanning electron microscopy, UV–visible spectroscopy, and Fourier transform infrared spectroscopy. A simple photolytic reactor was fabricated and later used to find the optimum experimental conditions for photocatalytic performance. The photodegradation of methyl orange in water was investigated using as-prepared ZnO and Ag-ZnO nanowires, and was compared to P25 (a commercial photocatalyst) in both visible and UV radiations. The P25 and Ag-ZnO showed a similar photodegradation performance under UV light, but Ag-ZnO demonstrated superior photocatalytic activity under visible irradiation. The optimized doping of Ag in Ag-ZnO enhanced photocatalytic activity in a simple reactor design and indicated potential applicability of Ag-ZnO for large-scale purification of water under solar irradiation. - Highlights: • Well-aligned zinc oxide (ZnO) and silver-doped ZnO (Ag-ZnO) nanowires were developed. • Simple and effective photolytic reactor was fabricated for water purification. • Ag-ZnO demonstrated superior photocatalytic activity under visible irradiation. • Amount of Ag atoms in Ag-ZnO nanowires is a key to increase photocatalytic activity

  12. Quaternized chitosan/rectorite/AgNP nanocomposite catalyst for reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yunzhi [State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Zeng, Xianjie [School of Business Administration, South China University of Technology, Guangzhou 510640 (China); Tan, Weirui [State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Luo, Jiwen, E-mail: holdit@126.com [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Shijie, E-mail: sjliu@163.com [State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640 (China); China Department of Paper and Bioprocess Engineering, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 (United States)

    2015-10-25

    This study investigated a one-step green fabrication of exfoliated quaternized chitosan/rectorite/AgNP nanocomposites under microwave radiation method. The nanocomposites were characterized by FT-IR, XRD, XPS and TEM. The results revealed that quaternized chitosan and rectorite acted as reducing and stabilizing agents, spherical AgNPs were synthesized greenly and rapidly, meanwhile the layers of rectorite were exfoliated, and when the ratio of quaternized chitosan, rectorite and silver nitrate was 100 mg: 10 mg: 2 mmol, the AgNP content reached the maximum of 2.73%. Then, the quaternized chitosan/rectorite/AgNP nanocomposite was fabricated as a film, which was used in the catalytic reduction from 4-nitrophenol to 4-aminophenol by NaBH{sub 4}. The film showed excellent catalytic efficiency with an activation energy of 29.76 kJ mol{sup −1} and outstanding reusable performance even after catalysis for 10 times. - Graphical abstract: Quaternized chitosan/rectorite/AgNP nanocomposite catalyst was prepared greenly in one pot and fabricated as a film, which showed excellent catalytic efficiency and reusable performance. - Highlights: • Quaternized chitosan and rectorite acted as reducing and stabilizing agents. • Spherical Ag NPs were synthesized greenly and rapidly. • AgNP dispersed well on the surface and the interlayer of exfoliated rectorite. • Quaternized chitosan/rectorite/AgNP nanocomposite was prepared as a film. • The film showed excellent catalytic efficiency and reusable performance.

  13. AGS experiments: 1993 - 1994 - 1995

    International Nuclear Information System (INIS)

    Depken, J.C.

    1996-04-01

    This report contains: FY 1995 AGS Schedule as Run; FY 1996-97 AGE Schedule (working copy); AGS Beams 1995; AGS Experimental Area FY 1993 Physics Program; AGS Experimental Area FY 1994 Physics Program; AGS Experimental Area FY 1995 Physics Program; AGS Experimental Area FY 1996 Physics Program (In progress); A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Listing of publications of AGS experiments begins here; and Listing of AGS experimenters begins here. This is the twelfth edition

  14. AGS experiments: 1993 - 1994 - 1995

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.

    1996-04-01

    This report contains: FY 1995 AGS Schedule as Run; FY 1996-97 AGE Schedule (working copy); AGS Beams 1995; AGS Experimental Area FY 1993 Physics Program; AGS Experimental Area FY 1994 Physics Program; AGS Experimental Area FY 1995 Physics Program; AGS Experimental Area FY 1996 Physics Program (In progress); A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Listing of publications of AGS experiments begins here; and Listing of AGS experimenters begins here. This is the twelfth edition.

  15. Antimicrobial Properties and Cytocompatibility of PLGA/Ag Nanocomposites

    Directory of Open Access Journals (Sweden)

    Mariangela Scavone

    2016-01-01

    Full Text Available The purpose of this study was to investigate the antimicrobial properties of multifunctional nanocomposites based on poly(dl-Lactide-co-Glycolide (PLGA and increasing concentration of silver (Ag nanoparticles and their effects on cell viability for biomedical applications. PLGA nanocomposite films, produced by solvent casting with 1 wt%, 3 wt% and 7 wt% of Ag nanoparticles were investigated and surface properties were characterized by atomic force microscopy and contact angle measurements. Antibacterial tests were performed using an Escherichia coli RB and Staphylococcus aureus 8325-4 strains. The cell viability and morphology were performed with a murine fibroblast cell line (L929 and a human osteosarcoma cell line (SAOS-2 by cell viability assay and electron microscopy observations. Matrix protein secretion and deposition were also quantified by enzyme-linked immunosorbent assay (ELISA. The results suggest that the PLGA film morphology can be modified introducing a small percentage of silver nanoparticles, which induce the onset of porous round-like microstructures and also affect the wettability. The PLGA/Ag films having silver nanoparticles of more than 3 wt% showed antibacterial effects against E. coli and S. aureus. Furthermore, silver-containing PLGA films displayed also a good cytocompatibility when assayed with L929 and SAOS-2 cells; indicating the PLGA/3Ag nanocomposite film as a promising candidate for tissue engineering applications.

  16. Reversible Formation of Silver Clusters and Particles in Polymer Films

    National Research Council Canada - National Science Library

    Gaddy, G. A; Korchev, A. S; McLain, Jason L; Black, J. R; Mills, German; Bratcher, Matthew S; Slaten, B. L

    2004-01-01

    .... The formation of Ag clusters and particles is monitored using UV-VIS spectroscopy. Films treated with H2O2 exhibit bleaching of the UV-VIS signals corresponding to Ag clusters and Ag particles that were generated during the photo reduction...

  17. AGS intensity record

    International Nuclear Information System (INIS)

    Bleser, Ed

    1994-01-01

    As flashed in the September issue, this summer the Brookhaven Alternating Gradient Synchrotron (AGS) reached a proton beam intensity of 4.05 x 10 13 protons per puise, claimed as the highest intensity ever achieved in a proton synchrotron. It is, however, only two-thirds of the way to its final goal of 6 x 10 13 . The achievement is the resuit of many years of effort. The Report of the AGS II Task Force, issued in February 1984, laid out a comprehensive programme largely based on a careful analysis of the PS experience at CERN. The AGS plan had two essential components: the construction of a new booster, and major upgrades to the AGS itself.

  18. PVA/Polysaccharides Blended Films: Mechanical Properties

    OpenAIRE

    Silva, Fábio E. F.; Di-Medeiros, Maria Carolina B.; Batista, Karla A.; Fernandes, Kátia F.

    2013-01-01

    Blends of polyvinyl alcohol (PVA) and angico gum (AG) and/or cashew gum (CG) were used to produce films by casting method. Morphological and mechanical properties of these films were studied and compared to the properties of a commercial collagen membrane of bovine origin (MBO). The films presented thickness varying from 70 to 140 μm (PVA/AG) and 140 to 200 μm (PVA/CG). Macroscopic analysis showed that a PVA/CG film was very similar to MBO regarding the color and transparency. The higher valu...

  19. Water-induced morphology changes in an ultrathin silver film studied by ultraviolet-visible, surface-enhanced Raman scattering spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Li Xiaoling; Xu Weiqing; Jia Huiying; Wang Xu; Zhao Bing; Li Bofu; Ozaki, Yukihiro

    2005-01-01

    Water-induced changes in the morphology and optical properties of an ultrathin Ag film (3 nm thickness) have been studied by use of ultraviolet-visible (UV-Vis) spectroscopy, atomic force microscopy (AFM) and surface-enhanced Raman scattering (SERS) spectroscopy. A confocal micrograph shows that infinite regular Ag rings with almost uniform size (4 μm) emerge on the film surface after the ultrathin Ag film was immersed into water. The AFM measurement further confirms that the Ag rings consist of some metal holes with pillared edges. The UV-Vis spectrum shows that an absorption band at 486 nm of the Ag film after the immersion in water (I-Ag film) blue shifts by 66 nm with a significant decrease in absorbance, which is attributed to the macroscopic loss of some Ag atoms and the change in the morphology of the Ag film. The polarized UV-Vis spectra show that a band at 421 nm due to the normal component of the plasmon oscillation blue shifts after immersing the ultrathin Ag film into water. This band is found to be strongly angle-dependent for p-polarized light, indicating that the optical properties of the ultrathin Ag film are changed. The I-Ag film is SERS-active, and the SERS enhancement depends on different active sites on the film surface. Furthermore, it seems that the orientation of an adsorbate is related to the morphology of the I-Ag film

  20. Electron spectroscopy studies of surface In-Ag alloy formation on the tungsten surface

    International Nuclear Information System (INIS)

    Bukaluk, A.; Trzcinski, M.; Okulewicz, K.

    2008-01-01

    XPS and UPS investigations of ultrathin films of In/Ag and Ag/In, deposited onto the W(1 1 0) surface in the ultrahigh vacuum conditions have been performed. Indium and silver films were formed by 'in-situ' evaporation on W(1 1 0) substrate. XPS and UPS studies have been performed by means of SCIENTA ESCA200 instrument. The changes of In4d core-level and Ag4d valence band emissions with increasing Ag and In coverage were monitored to observe the energy shift and shape of the spin-orbit doublet of In4d and Ag4d lines in the Ag/In/W and In/Ag/W systems. UPS (HeI and HeII) measurements were supported by XPS AlK α measurements of In3d and W4p levels, as well as by investigations of Ag3d levels. XPS and UPS data allowed to evaluate the coverage and make conclusions concerning intermixing and surface alloying in the In/Ag/W and Ag/In/W systems. W(1 1 0) substrate can be cleaned after each deposition by thermal desorption and no alloying in the In/W and Ag/W systems is observed

  1. On-the-fly green generation and dispersion of AgI nanoparticles for cloud seeding nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiuli; Zhou, Wenbo; Wang, Xizheng; Wu, Tao; Delisio, Jeffery B.; Zachariah, Michael R., E-mail: mrz@umd.edu [University of Maryland, Department of Chemical and Biomolecular Engineering (United States)

    2016-07-15

    This study reports on an on-the-fly green synthesis/dispersion of silver iodide (AgI) nanoparticles from the combustion of AgIO{sub 3}/carbon black (CB)/nitrocellulose (NC) composites, which could be used as a candidate for a cloud-seeding pyrotechnic. Films were formed by direct electrospray deposition of a mixture of synthesized silver iodate with CB and NC. The decomposition pathways of AgIO{sub 3}/CB and AgIO{sub 3}/CB/NC were evaluated by temperature jump time of flight mass spectrometry (T-jump TOFMS) and XRD, showing that AgI particles and CO{sub 2} are released from the reaction between AgIO{sub 3} and CB without other toxic residuals. The flame propagation velocity of AgIO{sub 3}/CB/NC films increases with the increasing of particle mass loading of AgIO{sub 3} and CB and peaks at 40 wt%, which is much higher than that of an AgI/AP/NC film. The mean diameter of the resultant AgI nanoparticles is from 51 to 97 nm. The mass loading of AgIO{sub 3} and CB was found to play a major role in size control of the AgI nanoparticles.

  2. Optical thin film devices

    Science.gov (United States)

    Mao, Shuzheng

    1991-11-01

    Thin film devices are applied to almost all modern scientific instruments, and these devices, especially optical thin film devices, play an essential role in the performances of the instruments, therefore, they are attracting more and more attention. Now there are numerous kinds of thin film devices and their applications are very diversified. The 300-page book, 'Thin Film Device and Applications,' by Prof. K. L. Chopra gives some general ideas, and my paper also outlines the designs, fabrication, and applications of some optical thin film devices made in my laboratory. Optical thin film devices have been greatly developed in the recent decades. Prof. A. Thelan has given a number of papers on the theory and techniques, Prof. H. A. Macleod's book, 'Thin Film Optical Filters,' has concisely concluded the important concepts of optical thin film devices, and Prof. J. A. Dobrowobski has proposed many successful designs for optical thin film devices. Recently, fully-automatic plants make it easier to produce thin film devices with various spectrum requirements, and some companies, such as Balzers, Leybold AG, Satis Vacuum AG, etc., have manufactured such kinds of coating plants for research or mass-production, and the successful example is the production of multilayer antireflection coatings with high stability and reproducibility. Therefore, it could be said that the design of optical thin film devices and coating plants is quite mature. However, we cannot expect that every problem has been solved, the R&D work still continues, the competition still continues, and new design concepts, new techniques, and new film materials are continually developed. Meanwhile, the high-price of fully-automatic coating plants makes unpopular, and automatic design of coating stacks is only the technique for optimizing the manual design according to the physical concepts and experience, in addition, not only the optical system, but also working environment should be taken into account when

  3. Antimicrobial Nanocomposites Prepared from Montmorillonite/Ag+/Quaternary Ammonium Nitrate

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2018-01-01

    Full Text Available Nanocomposites of Ag with organic montmorillonite (Ag-OMMT, Ag with montmorillonite (Ag-MMT, and organic montmorillonite (OMMT were successfully prepared via a one-step solution-intercalated method. Sodium MMT, silver nitrate, and dimethyl octadecyl hydroxy ethyl ammonium nitrate were used as precursors. X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and energy dispersive spectroscopy analyses confirmed that the MMT layers were intercalated, and Ag+ was partly reduced to silver nanoparticles with diameters within 10–20 nm in Ag-OMMT. The decomposition temperature of the organic cations in OMMT and Ag-OMMT increased to 220°C, as revealed by differential scanning calorimetry-thermogravimetric analysis. The antimicrobial activity of the nanocomposites was tested by measuring the minimum inhibitory concentration (MIC and killing rate. The MICs of Ag-OMMT against Staphylococcus aureus, Escherichia coli, and Candida albicans were 0.313, 2.5, and 0.625 mg/mL, respectively. Because of the presence of quaternary ammonium nitrate, Ag-OMMT has a better MIC against Gram-positive bacteria compared to Gram-negative bacteria and fungi. OMMT did not show antimicrobial activity against Escherichia coli and Candida albicans. In 2 h, 0.0125 mg/mL Ag-OMMT could kill 100% of S. aureus, E. coli, and C. albicans in solution, and Ag-MMT could kill 99.995% of S. aureus, 90.15% of E. coli, and 93.68% of C. albicans. These antimicrobial functional nanocomposites have the potential for application in the area of surface decoration films.

  4. Inhibitory effect of Ti-Ag alloy on artificial biofilm formation.

    Science.gov (United States)

    Nakajo, Kazuko; Takahashi, Masatoshi; Kikuchi, Masafumi; Takada, Yukyo; Okuno, Osamu; Sasaki, Keiichi; Takahashi, Nobuhiro

    2014-01-01

    Titanium-silver (Ti-Ag) alloy has been improved for machinability and mechanical properties, but its anti-biofilm properties have not been elucidated yet. Thus, this study aimed to evaluate the effects of Ti-Ag alloy on biofilm formation and bacterial viability in comparison with pure Ti, pure Ag and silver-palladium (Ag-Pd) alloy. Biofilm formation on the metal plates was evaluated by growing Streptococcus mutans and Streptococcus sobrinus in the presence of metal plates. Bactericidal activity was evaluated using a film contact method. There were no significant differences in biofilm formation between pure Ti, pure Ag and Ag-Pd alloy, while biofilm amounts on Ti-20% Ag and Ti-25% Ag alloys were significantly lower (p<0.05). In addition, Ti-Ag alloys and pure Ti were not bactericidal, although pure Ag and Ag-Pd alloy killed bacteria. These results suggest that Ti-20% Ag and Ti-25% Ag alloys are suitable for dental material that suppresses biofilm formation without disturbing healthy oral microflora.

  5. Characteristic time scales of coalescence of silver nanocomposite and nanoparticle films induced by continuous wave laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Paeng, Dongwoo; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu [Department of Mechanical Engineering, University of California Berkeley, Berkeley, California 94720-1740 (United States); Lee, Daeho [Department of Mechanical Engineering, Gachon University, Seongnam-si, Gyeonggi-do 461-701 (Korea, Republic of)

    2014-08-18

    In-situ optical probing has been performed to analyze and compare the characteristic coalescence time scales of silver ion-doped polyvinylalcohol nanocomposite (Ag-PVA NC) and polyvinylpyrrolidone-capped silver nanoparticle (Ag-PVP NP) films subjected to continuous wave laser irradiation. The Ag-PVA NC yielded conductive metallic patterns by photothermal reduction of PVA, formation of nanoparticles from silver ions and their subsequent coalescence. On the other hand, Ag-PVP NP thin films produced conductive patterns through only coalescence of nanoparticles. Upon laser irradiation, Ag-PVA NC and Ag-PVP NP films exhibited different coalescence characteristics.

  6. Magnetic relaxation effects in Fe/Ag(100) multilayers

    Science.gov (United States)

    Mørup, S.; Christiansen, G.; Koon, N. C.

    1992-02-01

    Mössbauer spectra of Fe/Ag(100) superlattice films have been analysed using a model for interacting magnetic clusters (superferromagnetism). It is found that the temperature dependence of the order parameter, deduced from the spectra, is in good agreement with the model.

  7. Interface controlled growth of nanostructures in discontinuous Ag ...

    Indian Academy of Sciences (India)

    The growth of discontinuous thin films of Ag and Au by low energy ion beam sputter deposition is reported. The study ... nance of the metal nanostructures can be tuned over a wide range of wavelengths from 400 to 700 nm by controlling the film–substrate ... on lithographic techniques such as electron beam lithogra-.

  8. Synthesis of silver nanoparticles deposited on silica by γ-irradiation and preparation of PE/Ag nano compound masterbatches

    Science.gov (United States)

    Nguyen, Thi Kim Lan; Trinh Nguyen, Thuy Ai; Phu Dang, Van; Duy Nguyen, Ngoc; Le, Anh Quoc; Hien Nguyen, Quoc

    2013-12-01

    Silver nanoparticles (AgNPs) deposited on silica were synthesized by gamma Co-60 irradiation of Ag+ dispersion in silica/ethanol/water mixture (9/80/20:w/v/v). The reduction of Ag+ is occurred by hydrated electron (e-aq) and hydrogen atom (H•) generated during radiolysis of ethanol/water. The conversion doses (Ag+ → Ag0) were determined by UV-Vis spectroscopy. The synthesized AgNPs/silica were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD), which showed the size of AgNPs to be in the range of 5-40 nm for Ag+ concentrations from 5 to 20 mM. Masterbatches of PE/AgNPs/silica compound with silver content from 250 to 1000 mg kg-1 were also prepared. These masterbatches can be suitably used for various applications such as antimicrobial food containers and packing films, etc.

  9. Tunneling-recombination luminescence between Ag0 and Ag2+ in KCl:AgCl

    International Nuclear Information System (INIS)

    Delbecq, C.J.; Dexter, D.L.; Yuster, P.H.

    1978-01-01

    Appropriate treatment of a KCl:AgCl crystal results in the trapping of electrons as silver atoms, Ag 0 , and positive holes as AgCl 4 2- , Ag 2+ , centers. Optical excitation of Ag 0 in such a crystal at T 0 and Ag 2+ pairs, similar to the Ag 0 -Cl 2 - tunneling-recombination studies we previously reported. We have shown that Ag 2+ centers are involved in the emission process by preferentially orienting the anisotropic Ag 2+ at 6 K by excitation with polarized light and observing that the afterglow is polarized. Upon warming to 50 K, where the preferentially oriented Ag 2+ can change orientation, a strong reversal in the degree of polarization occurs which finally decays to zero. The characteristics of this luminescence can be understood if we assume: (i) a tunneling-recombination mechanism in which the orientation of the electric vector of the emitted radiation depends on the position of the Ag 0 relative to the Ag 2+ and (ii) the tunneling is anisotropic and depends on the location of the Ag 0 relative to the anisotropic Ag 2+ . The latter assumption is based on the tetragonal (d-like) symmetry of the Ag 2+ complex. Good quantitative agreement between theory and experiment has been obtained on the decay kinetics, the degree of polarization, and the polarization reversal

  10. Physical and chemical characterization of Ag-doped Ti coatings produced by magnetron sputtering of modular targets

    International Nuclear Information System (INIS)

    Schmitz, Tobias; Warmuth, Franziska; Werner, Ewald; Hertl, Cornelia; Groll, Jürgen; Gbureck, Uwe; Moseke, Claus

    2014-01-01

    Silver-doped Ti films were produced using a single magnetron sputtering source equipped with a titanium target containing implemented silver modules under variation of bias voltage and substrate temperature. The Ti(Ag) films were characterized regarding their morphology, contact angle, phase composition, silver content and distribution as well as the elution of Ag + ions into cell media. SEM and AFM pictures showed that substrate heating during film deposition supported the formation of even and dense surface layers with small roughness values, an effect that could even be enforced, when a substrate bias voltage was applied instead. The deposition of both Ti and Ag was confirmed by X-ray diffraction. ICP-MS and EDX showed a clear correlation between the applied sputtering parameters and the silver content of the coatings. Surface-sensitive XPS measurements revealed that higher substrate temperatures led to an accumulation of Ag in the near-surface region, while the application of a bias voltage had the opposite effect. Additional elution measurements using ICP-MS showed that the release kinetics depended on the amount of silver located at the film surface and hence could be tailored by variation of the sputter parameters. - Highlights: • Modular targets were used to deposit Ti(Ag) films. • Ag-content is adjustable by bias voltage, sputtering power and substrate temperature. • Coating parameters significantly change film morphology and roughness. • A critical parameter for Ag release is the fraction of silver on the film surface

  11. Bi.sup.3+./sup.-Pr.sup.3+./sup. energy transfer processes and luminescent properties of LuAG:Bi,Pr and YAG:Bi,Pr single crystalline films

    Czech Academy of Sciences Publication Activity Database

    Zorenko, Y.; Gorbenko, V.; Savchyn, V.; Zorenko, T.; Nikl, Martin; Mareš, Jiří A.; Beitlerová, Alena; Jarý, Vítězslav

    2013-01-01

    Roč. 141, SEP (2013), s. 137-143 ISSN 0022-2313 Institutional support: RVO:68378271 Keywords : luminescence * energy transfer * garnets * single crystalline films * Bi 3+ and Pr 3+ ions Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.367, year: 2013 http://www.sciencedirect.com/science/article/pii/S0022231313001762

  12. Sn-In-Ag phase equilibria and Sn-In-(Ag)/Ag interfacial reactions

    International Nuclear Information System (INIS)

    Chen Sinnwen; Lee Wanyu; Hsu Chiaming; Yang Chingfeng; Hsu Hsinyun; Wu Hsinjay

    2011-01-01

    Research highlights: → Thermodynamic models of Sn-In and Sn-In-Ag are developed using the CALPHAD approach. → Reaction layer in the Sn-In-(Ag)/Ag couples at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. → Reactions in the Sn-20 wt%In-2.8 wt%Ag/Ag couples are faster than those in the Sn-20 wt%In/Ag couples. - Abstract: Experimental verifications of the Sn-In and Sn-In-Ag phase equilibria have been conducted. The experimental measurements of phase equilibria and thermodynamic properties are used for thermodynamic modeling by the CALPHAD approach. The calculated results are in good agreement with experimental results. Interfacial reactions in the Sn-In-(Ag)/Ag couples have been examined. Both Ag 2 In and AgIn 2 phases are formed in the Sn-51.0 wt%In/Ag couples reacted at 100 and 150 deg. C, and only the Ag 2 In phase is formed when reacted at 25, 50 and 75 deg. C. Due to the different growth rates of different reaction phases, the reaction layer at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. In the Sn-20.0 wt%In/Ag couples, the ζ phase is formed at 250 deg. C and ζ/AgIn 2 phases are formed at 125 deg. C. Compared with the Sn-20 wt%In/Ag couples, faster interfacial reactions are observed in the Sn-20.0 wt%In-2.8 wt%Ag/Ag couples, and minor Ag addition to Sn-20 wt%In solder increases the growth rates of the reaction phases.

  13. Role of step edges on the structure formation of α-6T on Ag(441)

    Science.gov (United States)

    Wagner, Thorsten; Fritz, Daniel Roman; Rudolfová, Zdena; Zeppenfeld, Peter

    2018-01-01

    Controlling the orientation of organic molecules on surfaces is important in order to tune the physical properties of the organic thin films and, thereby, increase the performance of organic thin film devices. Here, we present a scanning tunneling microscopy (STM) and photoelectron emission microscopy (PEEM) study of the deposition of the organic dye pigment α-sexithiophene (α-6T) on the vicinal Ag(441) surface. In the presence of the steps on the Ag(441) surface, the α-6T molecules exclusively align parallel to the step edges oriented along the [1 1 bar0]-direction of the substrate. The STM results further reveal that the adsorption of the α-6T molecules is accompanied by various restructuring of the substrate surface: Initially, the molecules prefer the Ag(551) building blocks of the Ag(441) surface. The Ag(551) termination of the terraces is then changed to a predominately Ag(331) one upon completion of the first α-6T monolayer. When closing the two layer thick wetting layer, the original ratio of Ag(331) and Ag(551) building blocks ( ≈ 1:1) is recovered, but a phase separation into microfacets, which are composed either of Ag(331) or of Ag(551) building blocks, is found.

  14. Approaches for Controlled Ag+ Ion Release: Influence of Surface Topography, Roughness, and Bactericide Content.

    Science.gov (United States)

    Sukhorukova, I V; Sheveyko, A N; Shvindina, N V; Denisenko, E A; Ignatov, S G; Shtansky, D V

    2017-02-01

    Silver is the most famous bactericidal element known from ancient times. Its antibacterial and antifungal effects are typically associated with the Ag ionization and concentration of Ag + ions in a bacterial culture. Herein we thoroughly studied the influence of surface topography and roughness on the rate of Ag + ion release. We considered two types of biocompatible and bioactive TiCaPCON-Ag films with 1 and 2 at. % of Ag and nine types of Ti surfaces with an average roughness varying in the range from 5.4 × 10 -2 to 12.6 μm and different topographic features obtained through polishing, sandblasting, laser treatment, and pulsed electrospark deposition. It is demonstrated that the Ag + ion release rates do not depend on the Ag content in the films as the main parameter, and it is other factors, such as the state of Ag agglomeration, surface topography and roughness, as well as kinetics of surface oxidation, that play a critical role. The obtained results clearly show a synergistic effect of the Ag content in the film and surface topography and roughness on Ag + ion release. By changing the surface topographical features at a constant content of bactericidal element, we showed that the Ag + ion release can be either accelerated by 2.5 times or almost completely suppressed. Despite low Ag + ion concentration in physiological solution (antibacterial effect already after 3 h of immersion in E. coli bacterial culture. Thus, our results open up new possibilities for the production of cost-effective, scalable, and biologically safe implants with pronounced antibacterial characteristics for future applications in the orthopedic field.

  15. Bi.sup.3+./sup.-Ce.sup.3+./sup. energy transfer and luminescent properties of LuAG:Bi,Ce and YAG:Bi,Ce single crystalline films

    Czech Academy of Sciences Publication Activity Database

    Zorenko, Y.; Gorbenko, V.; Voznyak, T.; Nikl, Martin; Beitlerová, Alena; Jarý, Vítězslav

    2013-01-01

    Roč. 134, FEB (2013), s. 539-543 ISSN 0022-2313 R&D Projects: GA ČR GA202/08/0893 Institutional support: RVO:68378271 Keywords : luminescence * energy transfer * garnets * single crystalline films * Bi 3+ and Ce 3+ ions Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.367, year: 2013 http://www.sciencedirect.com/science/article/pii/S0022231312004425

  16. MoO x /Ag/MoO x transparent electrode by solution process

    Science.gov (United States)

    Kan, Ryota; Yamano, Yuka; Tani, Tadaaki; Uchida, Takayuki

    2017-05-01

    We have investigated a dielectric-metal-dielectric (DMD) multilayer film, which is unique as compared with such conventional transparent conductive oxides as indium tin oxide (ITO). In this study, we have selected MoO3 and Ag as the dielectric material and metal, respectively, and employed a nano-mist method in addition to a vacuum evaporation one. The transmission spectra of the films indicated that the Ag morphology changed from isolated islands to continuous layers with increasing Ag layer thickness, and that the morphology change was enhanced by MoO3. Then, MoO3/Ag/MoO3 (MAM) multilayer-structured transparent electrodes could be fabricated by a nano-mist method as well as by a vacuum evaporation one. Comparative examination is made on the properties of MAM films fabricated by these two methods for their application.

  17. Valence band circular dichroism in non-magnetic Ag/Ru(0001) at normal emission

    Energy Technology Data Exchange (ETDEWEB)

    Mascaraque, Arantzazu [Departamento Fisica de Materiales, Universidad Complutense de Madrid, Madrid 28040 (Spain); Onur Mentes, T; Locatelli, Andrea [Sincrotrone Trieste S.C.p.A, Basovizza, Trieste 34149 (Italy); McCarty, Kevin F [Sandia National Laboratories, Livermore, CA 94550 (United States); Marco, Jose F; De la Figuera, Juan [Instituto de Quimica-Fisica Rocasolano, CSIC, Madrid 28006 (Spain); Schmid, Andreas K [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-08-03

    For the non-magnetic system of Ag films on Ru(0001), we have measured the circular dichroism of photoelectrons emitted along the surface normal, the geometry typically used in photoemission electron microscopy. Photoemission spectra were acquired from micrometer-sized regions having uniformly thick Ag films on a single, atomically flat Ru terrace. For a single Ag layer, we find a circular dichroism that exceeds 6% at the d-derived band region around 4.5 eV binding energy. The dichroism decreases as the Ag film thickness increases to three atomic layers. We discuss the origin of the circular dichroism in terms of the symmetry lowering that can occur even in normal emission.

  18. Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles.

    Science.gov (United States)

    Park, Gyeong Cheol; Song, Young Min; Ha, Jong-Hoon; Lee, Yong Tak

    2011-07-01

    We demonstrate broadband antireflective glasses with subwavelength structures (SWSs) using randomly distributed Ag nanoparticles. Ag nanoparticles formed by a thermal dewetting process were used as an etch mask for dry etching to fabricate antireflective SWSs on the glass surface. The size and shape of Ag nanoparticles are changed by the different thickness of the Ag thin film. The morphology of SWSs fabricated by using the Ag thin films is well consistent with that of the Ag nanoparticles. The single-side SWS integrated glass exhibits improved transmittance of approximately 96% at 750 nm due to the graded refractive index profiles, while the transmittance is only approximately 92.5% for the flat surface. To reduce Fresnel reflection at the other side of the glass substrate, the SWSs with optimized Ag film thickness and dry etching conditions are formed on both sides of the glass. The dual-side SWS integrated glass show an average transmittance of approximately 97.5% in a wavelength range of 350-750 nm. Transmission band shrinkage effects of the SWS integrated glass are also observed with increased average size of the Ag nanoparticles.

  19. Ti-GO-Ag nanocomposite: the effect of content level on the antimicrobial activity and cytotoxicity.

    Science.gov (United States)

    Jin, Jianfeng; Zhang, Li; Shi, Mengqi; Zhang, Yumei; Wang, Qintao

    2017-01-01

    Surface modification of titanium (Ti) implants are extensively studied in order to obtain prominent biocompatibility and antimicrobial activity, especially preventing implant-associated infection. In this study, Ti substrates surface were modified by graphene oxide (GO) thin film and silver (Ag) nanoparticles via electroplating and ultraviolet reduction methods so as to achieve this purpose. Microstructures, distribution, quantities and spectral peaks of GO and Ag loading on the Ti sheets surface were characterized. GO-Ag-Ti multiphase nanocomposite exhibited excellent antimicrobial ability and anti-adherence performance. Subsequently, morphology, membrane integrity, apoptosis and relative genes expression of bacteria incubated on the Ti samples surface were monitored to reveal the bactericidal mechanism. Additionally, the cytotoxicity of Ti substrates incorporating GO thin film and Ag nanoparticles were investigated. GO-Ag-Ti composite configuration that have outstanding antibacterial properties will provide the foundation to study bone integration in vitro and in vivo in the future.

  20. Formation of a Metastable Phase at the Interface Between Sn and Ag-Pd Substrates During Liquid-State Reaction

    Science.gov (United States)

    Lin, Hsin-fu; Chen, Chih-chi

    2014-11-01

    Ag-Pd alloys are widely used as thick-film conductors and are potential alternatives to the expensive Au bump. In this work, because Sn is the primary element in solders, we investigated Sn/Ag-Pd interfacial reactions at 250°C as a means of assessing the reliability and evaluating reflow reactions at joints between solder and Ag-Pd conductor contacts, and in the Ag bump combined with the solder cap. The experimental results showed that Sn/Ag-Pd interfacial reactions at 250°C are different from those of Sn/Ag and Sn/Pd. A metastable Sn-Ag-Pd ternary phase is formed when the amount of Pd added is 20-40 at.%. Because, in commercial applications, at least 20 wt.% Pd (~20 at.% Pd) is used in Ag-Pd alloys to eliminate the silver-migration phenomenon, assessment of the reliability of Ag bumps and the soldered joints of Ag-Pd thick film hybrid circuits must be based on Sn/Ag-Pd interfacial reactions, not those of Sn/Pd and Sn/Ag.

  1. AGS experiments: 1990, 1991, 1992

    International Nuclear Information System (INIS)

    Depken, J.C.

    1993-04-01

    This report contains a description of the following: AGS Experimental Area - High Energy Physics FY 1993 and Heavy Ion Physics FY 1993; Table of Beam Parameters and Fluxes; Experiment Schedule ''as run''; Proposed 1993 Schedule; A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Publications of AGS Experiments; and List of AGS Experimenters

  2. Electrochemical fabrication of nanoporous polypyrrole thin films

    International Nuclear Information System (INIS)

    Li Mei; Yuan Jinying; Shi Gaoquan

    2008-01-01

    Polypyrrole thin films with pores in nanometer scale were synthesized by direct electrochemical oxidation of pyrrole in a mixed electrolyte of isopropyl alcohol, boron trifluoride diethyl etherate, sodium dodecylsulfonate and poly(ethylene glycol) using well-aligned ZnO nanowires arrays as templates. The thin films exhibit high conductivity of ca. σ rt ∼ 20.5 s/cm and can be driven to bend during redox processes in 1.0 M lithium perchlorate aqueous solution. The movement rate of an actuator based on this nanoporous film was measured to be over 90 o /s at a driving potential of 0.8 V (vs. Ag/AgCl)

  3. A Facile Method for Preparing Transparent, Conductive, and Paper-Like Silver Nanowire Films

    Directory of Open Access Journals (Sweden)

    Yajie Wang

    2011-01-01

    Full Text Available Transparent, conductive, and flexible silver nanowire (AgNW films have been fabricated by a facile two-step method. Firstly, the well-dispersed AgNW suspension is vacuum filtered using mixed esters of cellulose (MCE membranes as filters. Then, the AgNW-MCE films are treated with acetone vapor. After the infiltration of acetone vapor, the white and porous MCE membranes change into transparent and pore-free, and AgNW-MCE films are obtained with extraordinary optical, conductive, and mechanical properties. An optimal result is obtained with transmittance of 85% at 550 nm and sheet resistance about 50 Ohm/sq. The flexibility of AgNW-MCE films is remarkable, which is comparable to that of the AgNW film on flexible polyethylene terephthalate (PET. More important, AgNW-MCE films show an excellent adhesion to the substrate, which causes a stable electrical conductivity even after scotch tape test and finger friction test. As a result of improved adhesion to the substrate, the sheet resistance of AgNW-MCE films is about 20% smaller than that of AgNW-PET films.

  4. Architecture of poly(o-phenylenediamine)–Ag nanoparticle composites for a hydrogen peroxide sensor

    International Nuclear Information System (INIS)

    Wang Li; Zhu Haozhi; Song Yonghai; Liu Li; He Zhifang; Wan Lingli; Chen Shouhui; Xiang Ying; Chen Shusheng; Chen Jie

    2012-01-01

    Graphical abstract: Schematic representation of the formation process of AgNPs/PoPD/GCE via a two-step procedure consisting of electropolymerization of o-PD and electrodeposition of AgNPs and their application in H 2 O 2 detection. Highlights: ► o-Phenylenediamine (o-PD) was electropolymerized on a glassy carbon electrode (GCE). ► The conductive PoPD film was three-dimensional (3D) porous structure. ► Ag NPs formed by electrodepositing and uniformly dispersed on the 3D PoPD film. ► AgNPs/PoPD/GCE displayed good electrocatalytic activity to the reduction of H 2 O 2 . - Abstract: A novel strategy to fabricate a hydrogen peroxide (H 2 O 2 ) sensor was developed by electrodepositing Ag nanoparticles (AgNPs) on a poly(o-phenylenediamine) (PoPD) film modified glassy carbon electrode (GCE). Firstly, the o-phenylenediamine was polymerized on a GCE by potential cycling to produce PoPD film. Then the AgNPs were electrodeposited on the PoPD film to form AgNPs/PoPD/GCE. The morphology of the electropolymerized PoPD film and the electrodeposited AgNPs were characterized by atomic force microscopy. The results showed the PoPD film was porous and the AgNPs dispersed uniformly on the PoPD film. Cylic voltammetry and amperometry were used to evaluate electrocatalytic properties of the AgNPs/PoPD/GCE. The electrode displayed good electrocatalytic activity in the reduction of H 2 O 2 and could be used as a sensor for H 2 O 2 detection. The sensor exhibited fast amperometric response to H 2 O 2 with high selectivity, good reproducibility and stability. The linear range was 6.0 μM to 67.3 mM with a detection limit of 1.5 μM. Thus, it is considered to be an ideal candidate for practical application.

  5. Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass

    International Nuclear Information System (INIS)

    Chiba, Kiyoshi; Takahashi, Toshiyuki; Kageyama, Takashi; Oda, Hironori

    2005-01-01

    Transparent low-emissivity (low-e) coatings comprising dielectrics of amorphous diamond-like carbon (DLC) and Ag-alloy films are investigated. All films have been prepared by dc magnetron sputtering. An index of refraction of the DLC film deposited in a gas mixture of Ar/H 2 (4%) shows n = 1.80 + 0.047i at 500 nm wavelength. A multilayer stack of DLC (70 nm thick)/Ag 87.5 Cu 12.5 -alloy (10 nm)/DLC (140 nm)/Ag 87.5 Cu 12.5 -alloy (10 nm)/DLC (70 nm) has revealed clear interference spectra with spectra selectivity. This coating performs low emittance less than 0.1 for black body radiation at 297 K, exhibiting a transparent heat mirror property embedded in DLC films

  6. Chitosan/Carboxymethylcellulose/Ionic Liquid/Ag(0 Nanoparticles Form a Membrane with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Camila Quadros

    2013-01-01

    Full Text Available Silver metal nanoparticles were immobilized in chitosan/carboxymethylcellulose/BMI.BF4(1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid (CS/CMC/IL to form polymeric membrane with 20 μm thickness. The CS/CMC/IL polymeric membrane was prepared using a simple solution blending method. Irregularly shaped Ag(0 nanoparticles with monomodal size distributions of 8.0±0.4 nm Ag(0 were immobilized in the membrane. The presence of small Ag(0 nanoparticles induced an augmentation in the CS/CMC/IL film surface areas. The CS/CMC/IL membrane containing Ag(0 showed increase antimicrobial activity the Ag(0 concentration increased up to saturation at 10 mg. CS/CMC/IL membrane that contains Ag(0 nanoparticles has enhanced durability of the membrane and exhibited stronger antimicrobial activity against Escherichia coli and Staphylococcus aureus.

  7. Observation of exchanging role of gold and silver nanoparticles in bimetallic thin film upon annealing above the glass transition temperature

    Science.gov (United States)

    Htet Kyaw, Htet; Tay Zar Myint, Myo; Hamood Al-Harthi, Salim; Maekawa, Toru; Yanagisawa, Keiichi; Sellai, Azzouz; Dutta, Joydeep

    2017-08-01

    The exchange role of gold (Au) and silver (Ag) in bimetallic films co-evaporated onto soda-lime glass substrates with Au-Ag volume ratios of 1:2, 1:1 and 2:1 have been demonstrated. Annealing of the films above the glass transition temperature in air led to non-alloying nature of the films, silver neutrals (Ag0) and gold nanoparticles (AuNPs) on the surface, along with silver nanoparticles (AgNPs) inside the glass matrix. Moreover, the size distribution and interparticle spacing of the AuNPs on the surface were governed by the Ag content in the deposited film. In contrast, the content of Au in the film played an opposite role leading to the migration of Ag ions (i.e. Ag0 being transformed to Ag ions after annealing in oxygen ambient) to form AgNPs inside the glass matrix. The higher the Au content in the film is, the more likely Ag0 to stay on the surface and impacts on the size distribution of AuNPs and consequently on the refractive index sensitivity measurements. Experimental realisation of this fact was reflected from the best performance for localized surface plasmon resonance (LSPR) sensitivity test achieved with Au-Ag ratio of 1:2. The Au/Ag/glass bimetallic dynamic results of this study can be pertinent to sensor applications integrated with optical devices.

  8. k-Carrageenan/poly vinyl pyrollidone/polyethylene glycol/silver nanoparticles film for biomedical application.

    Science.gov (United States)

    Fouda, Moustafa M G; El-Aassar, M R; El Fawal, G F; Hafez, Elsayed E; Masry, Saad Hamdy Daif; Abdel-Megeed, Ahmed

    2015-03-01

    Biopolymer composite film containing k-carrageenan (KC), polyvinyl pyrrolidone (PVP), and polyethylene glycol (PEG) was formulated by dissolving KC and PVP in water containing PEG. Silver nanoparticles (AgNPs), was produced by Honeybee and added to solution. Finally, all solutions were poured onto dishes and dried overnight at 40°C to form the final films. Tensile strength (TS) and elongation (E %) is evaluated. The water contact angle is inspected. Thermal properties (TGA) and swelling behavior for water were considered. Fungal activity is also examined. Morphology of all films was also explored using scanning electron microscope. AgNPs induced significant hydrophilicity to KC-PVP-PEG film with contact angle of 41.6 and 34.7 for KC-PVP-PEG-AgNPs. Films with AgNPs exhibited higher thermal stability and strength properties than other films without. Films with AgNPs explore lower swelling behavior than other films without. Both SEM and EDX proved the deposition of AgNPs on the surface of films. Films with AgNPs showed higher activity against pathogenic fungi compared with the chemical fungicide; fluconazole. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Ag K- and L3-edge XAFS study on Ag species in Ag/Ga2O3 photocatalysts

    International Nuclear Information System (INIS)

    Yamamoto, M; Yamamoto, N; Yoshida, T; Nomoto, T; Yamamoto, A; Yoshida, H; Yagi, S

    2016-01-01

    Ag loaded Ga 2 O 3 (Ag/Ga 2 O 3 ) shows photocatalytic activity for reduction of CO 2 with water. Ag L 3 -edge XANES and K-edge EXAFS spectra were measured for various Ag/Ga 2 O 3 samples, which suggested that structural and chemical states of Ag species varied with the loading amount of Ag and the preparation method. The Ag species were metallic Ag particles with an AgGaO 2 -like interface structure in the sample with high loading amount of Ag while predominantly Ag metal clusters in the sample with low loading amount of Ag. The XANES feature just above the edge represented the interaction between the Ag species and the Ga 2 O 3 surface, showing that the Ag metal clusters had more electrons in the d -orbitals by interacting with the Ga 2 O 3 surface, which would contribute the high photocatalytic activity. (paper)

  10. Ag transport in CrN-Ag nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, C.P. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); U.S. Army Armament Research Development and Engineering Center, Benet Laboratories, Watervliet, NY 12189 (United States); Papi, P.A. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Gall, D., E-mail: galld@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2012-09-01

    2-{mu}m-thick CrN-Ag composite coatings containing 22 at.% Ag were deposited on Si(001) by reactive co-sputtering at T{sub s} = 300, 400, and 500 Degree-Sign C. Subsequent vacuum annealing at T{sub a} = 425, 525, and 625 Degree-Sign C causes Ag transport to the surface. Auger electron spectroscopy and plan-view microscopy are used to quantify the Ag transport to the surface, which increases strongly with increasing {Delta}T = T{sub a} - T{sub s}. Compositional depth profiles and cross-sectional microscopy show that annealing causes a negligible Ag gradient through the composite layer, suggesting that the Ag transport is detachment-limited as opposed to diffusion-limited. Statistical analyses of Ag aggregate size-distributions within the matrix show that large aggregates ({>=} 50 nm) are unaffected by annealing, while the Ag in a large fraction of small aggregates (< 50 nm) moves to the surface, leaving behind 10-50 nm wide voids in the annealed composite. This indicates that the Ag from the smaller grains, with a higher chemical potential and thus a higher detachment rate, is transferred to the large grains on the surface which are 200-1000 nm wide. - Highlights: Black-Right-Pointing-Pointer CrN-Ag coatings were deposited at T{sub s} = 300-500 Degree-Sign C and annealed at T{sub a} = 425-625 Degree-Sign C. Black-Right-Pointing-Pointer Ag diffuses from aggregates in the coating to the surface, if T{sub a} > T{sub s}. Black-Right-Pointing-Pointer During annealing, aggregates < 50 nm become voids, those > 50 nm are unaffected. Black-Right-Pointing-Pointer The Ag transport is detachment rather than diffusion limited.

  11. AGS experiments -- 1995, 1996 and 1997

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.; Presti, P.L.

    1997-12-01

    This report contains (1) FY 1995 AGS schedule as run; (2) FY 1996 AGS schedule as run; (3) FY 1997 AGS schedule as run; (4) FY 1998--1999 AGS schedule (proposed); (5) AGS beams 1997; (6) AGS experimental area FY 1995 physics program; (7) AGS experimental area FY 1996 physics program; (8) AGS experimental area FY 1997 physics program; (9) AGS experimental area FY 1998--1999 physics program (proposed); (10) a listing of experiments by number; (11) two-page summaries of each experiment, in order by number; and (12) listing of publications of AGS experiments.

  12. AGS experiments - 1995, 1996 and 1997

    International Nuclear Information System (INIS)

    Depken, J.C.; Presti, P.L.

    1997-12-01

    This report contains (1) FY 1995 AGS schedule as run; (2) FY 1996 AGS schedule as run; (3) FY 1997 AGS schedule as run; (4) FY 1998--1999 AGS schedule (proposed); (5) AGS beams 1997; (6) AGS experimental area FY 1995 physics program; (7) AGS experimental area FY 1996 physics program; (8) AGS experimental area FY 1997 physics program; (9) AGS experimental area FY 1998--1999 physics program (proposed); (10) a listing of experiments by number; (11) two-page summaries of each experiment, in order by number; and (12) listing of publications of AGS experiments

  13. AGS experiments -- 1991, 1992, 1993. Tenth edition

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.

    1994-04-01

    This report contains: (1) FY 1993 AGS schedule as run; (2) FY 1994--95 AGS schedule; (3) AGS experiments {ge} FY 1993 (as of 30 March 1994); (4) AGS beams 1993; (5) AGS experimental area FY 1991 physics program; (6) AGS experimental area FY 1992 physics program; (7) AGS experimental area FY 1993 physics program; (8) AGS experimental area FY 1994 physics program (planned); (9) a listing of experiments by number; (10) two-page summaries of each experiment; (11) listing of publications of AGS experiments; and (12) listing of AGS experiments.

  14. Electrically conductive nanostructured silver doped zinc oxide (Ag:ZnO) prepared by solution-immersion technique

    Energy Technology Data Exchange (ETDEWEB)

    Afaah, A. N., E-mail: afaahabdullah@yahoo.com; Asib, N. A. M., E-mail: amierahasib@yahoo.com; Aadila, A., E-mail: aadilaazizali@gmail.com; Khusaimi, Z., E-mail: zurai142@salam.uitm.edu.my [NANO-SciTech Centre (NST), Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Mohamed, R., E-mail: ruzianamohd@pahang.uitm.edu.my [NANO-Electronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Rusop, M., E-mail: nanouitm@gmail.com [NANO-SciTech Centre (NST), Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-Electronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    p-type ZnO films have been fabricated on ZnO-seeded glass substrate, using AgNO{sub 3} as a source of silver dopant by facile solution-immersion. Cleaned glass substrate were seeded with ZnO by mist-atomisation, and next the seeded substrates were immersed in Ag:ZnO solution. The effects of Ag doping concentration on the Ag-doped ZnO have been investigated. The substrates were immersed in different concentrations of Ag dopant with variation of 0, 1, 3, 5 and 7 at. %. The surface morphology of the films was characterized by field emission scanning electron microscope (FESEM). In order to investigate the electrical properties, the films were characterized by Current-Voltage (I-V) measurement. FESEM micrographs showed uniform distribution of nanostructured ZnO and Ag:ZnO. Besides, the electrical properties of Ag-doped ZnO were also dependent on the doping concentration. The I-V measurement result indicated the electrical properties of 1 at. % Ag:ZnO thin film owned highest electrical conductivity.

  15. Electrically conductive nanostructured silver doped zinc oxide (Ag:ZnO) prepared by solution-immersion technique

    International Nuclear Information System (INIS)

    Afaah, A. N.; Asib, N. A. M.; Aadila, A.; Khusaimi, Z.; Mohamed, R.; Rusop, M.

    2016-01-01

    p-type ZnO films have been fabricated on ZnO-seeded glass substrate, using AgNO 3 as a source of silver dopant by facile solution-immersion. Cleaned glass substrate were seeded with ZnO by mist-atomisation, and next the seeded substrates were immersed in Ag:ZnO solution. The effects of Ag doping concentration on the Ag-doped ZnO have been investigated. The substrates were immersed in different concentrations of Ag dopant with variation of 0, 1, 3, 5 and 7 at. %. The surface morphology of the films was characterized by field emission scanning electron microscope (FESEM). In order to investigate the electrical properties, the films were characterized by Current-Voltage (I-V) measurement. FESEM micrographs showed uniform distribution of nanostructured ZnO and Ag:ZnO. Besides, the electrical properties of Ag-doped ZnO were also dependent on the doping concentration. The I-V measurement result indicated the electrical properties of 1 at. % Ag:ZnO thin film owned highest electrical conductivity.

  16. Novel Carrier Doping Mechanism for Transparent Conductor: Electron Donation from Embedded Ag Nanoparticles to the Oxide Matrix.

    Science.gov (United States)

    Huang, Po-Shun; Qin, Fen; Xiong, Ziye; Shim, Hyun-Woo; Gao, Tongchuan; Leu, Paul; Lee, Jung-Kun

    2017-06-14

    A trade-off between the carrier concentration and carrier mobility is an inherent problem of traditional transparent conducting oxide (TCO) films. In this study, we demonstrate that the electron concentration of TCO films can be increased without deteriorating the carrier mobility by embedding Ag nanoparticles (NPs) into Al-doped ZnO (AZO) films. An increment of Ag NP content up to 0.7 vol % in the AZO causes the electron concentration rising to 4 × 10 20 cm -3 . A dependence of the conductivity on temperature suggests that the energy barrier for the electron donation from Ag NPs at room temperature is similar to the Schottky barrier height at the Ag-AZO interface. In spite of an increase in the electron concentration, embedded Ag NPs do not compromise the carrier mobility at room temperature. This is evidence showing that this electron donation mechanism by Ag NPs is different from impurity doping, which produces both electrons and ionized scattering centers. Instead, an increase in the Fermi energy level of the AZO matrix partially neutralizes Al impurities, and the carrier mobility of Ag NP embedded AZO film is slightly increased. The optical transmittance of mixture films with resistivity less than 1 × 10 -3 Ω·cm still maintains above 85% in visible wavelengths. This opens a new paradigm to the design of alternative TCO composite materials which circumvent an inherent problem of the impurity doping.

  17. Low-haze, annealing-free, very long Ag nanowire synthesis and its application in a flexible transparent touch panel

    Science.gov (United States)

    Moon, Hyunjin; Won, Phillip; Lee, Jinhwan; Ko, Seung Hwan

    2016-07-01

    Since transparent conducting films based on silver nanowires (AgNWs) have shown higher transmittance and electrical conductivity compared to those of indium tin oxide (ITO) films, the electronics industry has recognized them as promising substitutes. However, due to the higher haze value of AgNW transparent conducting films compared to ITO films, the clarity is decreased when AgNW films are applied to optoelectronic devices. In this study, we develop a highly transparent, low-haze, very long AgNW percolation network. Moreover, we confirm that analyzed chemical roles can easily be applied to different AgNW synthesis methods, and that they have a direct impact on the nanowire shape. Consequently, the lengths of the wires are increased up to 200 μm and the diameters of the wires are decreased up to 45 nm. Using these results, we fabricate highly transparent (96%) conductors (100 Ω/sq) with low-haze (2%) without any annealing process. This electrode shows enhanced clarity compared to previous results due to the decreased diffusive transmittance and scattering. In addition, a flexible touchscreen using a AgNW network is demonstrated to show the performance of modified AgNWs.

  18. AGS polarized H- source

    International Nuclear Information System (INIS)

    Kponou, A.; Alessi, J.G.; Sluyters, T.

    1985-01-01

    The AGS polarized H - source is now operational. During a month-long experimental physics run in July 1984, pulses equivalent to 15 μA x 300 μs (approx. 3 x 10 10 protons) were injected into the RFQ preaccelerator. Beam polarization, measured at 200 MeV, was approx. 75%. After the run, a program to increase the H - yield of the source was begun and significant progress has been made. The H - current is now frequently 20 to 30 μA. A description of the source and some details of our operating experience are given. We also briefly describe the improvement program

  19. Influence of bath temperature and bath composition on Co-Ag electrodeposition

    International Nuclear Information System (INIS)

    Garcia-Torres, Jose; Valles, Elisa; Gomez, Elvira

    2010-01-01

    A study of the best conditions to prepare smooth heterogeneous Co-Ag films with low amounts of S from a thiourea-based electrolytic bath has been performed. Using a 0.01 M AgClO 4 + 0.1 M Co(ClO 4 ) 2 + 0.1 M thiourea + 0.1 M sodium gluconate + 0.3 M H 3 BO 3 + 0.1 M NaClO 4 bath, low temperature (10 o C) allowed obtaining compact and smooth deposits containing 2 wt.% sulphur. Decreasing thiourea content 0.06 M and increasing gluconate concentration up to 0.3 M, better deposits (more compact with lower sulphur content (1.2 wt.%)) were obtained. A clear influence of the species present in the bath on the film quality was observed: while gluconate favoured film cohesion, boric acid hindered hydrogen adsorption. For all films, fcc-Ag, hcp-Co and hcp-CoAg 3 phases were always detected by XRD, TEM and electron diffraction, their proportions varying with the electrodeposition conditions. Magnetic measurements revealed that the increase in the CoAg 3 led to an increase in the film coercivity. GMR values were only measured at cryogenic temperatures, they being higher for the deposits with the lowest sulphur content revealing that sulphur exerts a negative effect on magnetoresistance.

  20. Double-segregation effect in AgxPd1-x/Ru(0001) thin film nanostructures

    Science.gov (United States)

    Marten, Tobias; Hellman, Olle; Ruban, Andrei V.; Olovsson, Weine; Kramer, Charlotte; Godowski, Jan P.; Bech, Lone; Li, Zheshen; Onsgaard, Jens; Abrikosov, Igor A.

    2008-03-01

    We study the structural properties of ultrathin AgxPd1-x films on top of a Ru(0001) substrate. Effective interatomic interactions, obtained from first-principles calculations, have been used in Monte Carlo simulations to derive the distribution of the alloy components in a four-monolayer (4-ML) Ag-Pd film. Though Ag-Pd alloys show complete solubility in the bulk, the thin film geometry leads to a pronounced segregation between Ag and Pd atoms with a strong preference of Ag atoms toward the surface and Pd atoms toward the interface. The theoretical prediction of this double-segregation effect is strongly supported by photoelectron spectroscopy experiments carried out for 4-ML thin films. We also show, in an additional experiment, that even in the case where initially 1 ML Ag is buried under 6 ML Pd, the whole Ag ML segregates to the surface.

  1. PVA/Polysaccharides Blended Films: Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Fábio E. F. Silva

    2013-01-01

    Full Text Available Blends of polyvinyl alcohol (PVA and angico gum (AG and/or cashew gum (CG were used to produce films by casting method. Morphological and mechanical properties of these films were studied and compared to the properties of a commercial collagen membrane of bovine origin (MBO. The films presented thickness varying from 70 to 140 μm (PVA/AG and 140 to 200 μm (PVA/CG. Macroscopic analysis showed that a PVA/CG film was very similar to MBO regarding the color and transparency. The higher values of tensile strength (TS and elastic modulus (EM were observed in the film. On the other hand, PVA/CG and PVA/CG-AG presented the highest value of percentage of elongation (E%. Pearson’s Correlation Analysis revealed a positive correlation between TS and EM and a negative correlation between E% and EM. The PVA/CG film presented mechanical properties very similar to MBO, with the advantage of a higher E% (11.96 than MBO (2.94. The properties of the PVA blended films depended on the polysaccharide added in the blend, as well as the acid used as a catalyst. However, all produced films presented interesting mechanical characteristics which enables several biotechnological applications.

  2. HNO₃-assisted polyol synthesis of ultralarge single-crystalline Ag microplates and their far propagation length of surface plasmon polariton.

    Science.gov (United States)

    Chang, Cheng-Wei; Lin, Fan-Cheng; Chiu, Chun-Ya; Su, Chung-Yi; Huang, Jer-Shing; Perng, Tsong-Pyng; Yen, Ta-Jen

    2014-07-23

    We developed a HNO3-assisted polyol reduction method to synthesize ultralarge single-crystalline Ag microplates routinely. The edge length of the synthesized Ag microplates reaches 50 μm, and their top facets are (111). The mechanism for dramatically enlarging single-crystalline Ag structure stems from a series of competitive anisotropic growths, primarily governed by carefully tuning the adsorption of Ag(0) by ethylene glycol and the desorption of Ag(0) by a cyanide ion on Ag(100). Finally, we measured the propagation length of surface plasmon polaritons along the air/Ag interface under 534 nm laser excitation. Our single-crystalline Ag microplate exhibited a propagation length (11.22 μm) considerably greater than that of the conventional E-gun deposited Ag thin film (5.27 μm).

  3. Photocurrent and photothermal current of polypyrrole (PPy) film

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Chongjun; Wang Haihong; Jiang Zhiyu

    2003-02-28

    The photoelectrochemical properties of polypyrrole (PPy) film in aqueous solutions in the potential region of -0.7 to 0.5 V (versus Ag/AgCl) were investigated by using photocurrent, photothermal and photothermal current methods under the irradiation of laser beams with wavelength of 532 and 632.8 nm, respectively. It was found that the photocurrent at more negative potential was caused by the p-type semiconductor properties, while the photocurrent at more positive potential was caused by the local temperature rather than the semiconductor properties of the films. The effect of the film thickness on the photocurrent of PPy films was studied in detail.

  4. Photocurrent and photothermal current of polypyrrole (PPy) film

    International Nuclear Information System (INIS)

    Zhao Chongjun; Wang Haihong; Jiang Zhiyu

    2003-01-01

    The photoelectrochemical properties of polypyrrole (PPy) film in aqueous solutions in the potential region of -0.7 to 0.5 V (versus Ag/AgCl) were investigated by using photocurrent, photothermal and photothermal current methods under the irradiation of laser beams with wavelength of 532 and 632.8 nm, respectively. It was found that the photocurrent at more negative potential was caused by the p-type semiconductor properties, while the photocurrent at more positive potential was caused by the local temperature rather than the semiconductor properties of the films. The effect of the film thickness on the photocurrent of PPy films was studied in detail

  5. In-situ formation of silver nanoparticles on poly (lactic acid) film by γ-radiation induced grafting of N-vinyl pyrrolidone

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingxia; Chen, Hao; Chen, Zhuping; Chen, Yuheng; Guo, Dan; Ni, Maojun; Liu, Siyang; Peng, Chaorong, E-mail: pengchaorong_siae@163.com

    2016-06-01

    A fast, easy and novel method for preparing biodegradable polymer films with silver nanoparticles was investigated to endow the material with excellent biocompatibility and antibacterial property. Silver nanoparticles (Ag NPs) were immobilized on the surface of polylactic acid (PLA) film by gamma radiation induced grafting of N-vinyl pyrrolidone (NVP). In this method, poly (N-vinyl pyrrolidone) (PVP) was produced and grafted onto the surface of PLA film by gamma radiation polymerization of NVP. PVP acted as both a bridge to connect the Ag NPs with the PLA film, and a stabilizer to protect the Ag NPs from agglomeration. The effect of various reaction parameters, including NVP/Ag mole ratio and radiation dose, on the fabrication of PLA-g-NVP/Ag film was demonstrated. Moreover, the interaction between PVP and Ag NPs was studied by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy, that revealed the Ag NPs coordinated through the oxygen atom on the carbonyl group of PVP at 15 kGy radiation dose, but through the nitrogen atom and the oxygen atom of the amide group of PVP at 1 kGy dose. - Highlights: • PLA-graft-NVP/Ag film was produced by a simple one-step method. • Ag nanoparticles were immobilized on PLA film by gamma radiation grafting technology. • PVP acted as a bridge to connect Ag nanoparticles and PLA film. • Different content and size of Ag NPs can be reached by varying radiation dose.

  6. Biosynthesis of Silver Nanoparticles from Persimmon Byproducts and Incorporation in Biodegradable Sodium Alginate Thin Film.

    Science.gov (United States)

    Ramachandraiah, Karna; Gnoc, Nguyen Trong Bao; Chin, Koo Bok

    2017-10-01

    Fruit industrial wastes such as persimmon seed, peel, and calyx were used to synthesize silver nanoparticles (AgNPs) and their antioxidant activities were compared with byproduct powders having different granularities. The AgNPs were incorporated in sodium alginate thin films and transparency and mechanical properties of the films was analyzed. Persimmon byproduct AgNPs were characterized by ultraviolet-visible spectroscopy, dynamic light scattering, X-ray diffraction, energy-dispersive x-ray spectroscopy, and scanning electron microscopy. The byproduct AgNPs displayed higher antioxidant activities than powders of different granularities (P silver nanoparticles (AgNPs) which were incorporated in sodium alginate thin films. This study evaluated the antioxidant activities and mechanical properties of the films that could be useful in the manufacture of food packaging using biodegradable films. © 2017 Institute of Food Technologists®.

  7. Film/NotFilm

    OpenAIRE

    Willems, Gertjan

    2016-01-01

    Although Samuel Beckett (1906-1989) showed a genuine interest in audio-visual media in his fascinating and innovative radio plays and television works, and in 1936 even wrote a letter to Sergei Eisenstein to be accepted to the famous Soviet film school VGIK, the 22-minute Film (1965) was his only venture into cinema. Beckett conceived the film, wrote the screenplay, supervised the production and, as one of the film’s crew members recalled and as the director Alan Schneider himself acknowledge...

  8. Bidirectional threshold switching characteristics in Ag/ZrO2/Pt electrochemical metallization cells

    Directory of Open Access Journals (Sweden)

    Gang Du

    2016-08-01

    Full Text Available A bidirectional threshold switching (TS characteristic was demonstrated in Ag/ZrO2/Pt electrochemical metallization cells by using the electrochemical active Ag electrode and appropriate programming operation strategies The volatile TS was stable and reproducible and the rectify ratio could be tuned to ∼107 by engineering the compliance current. We infer that the volatile behavior is essentially due to the moisture absorption in the electron beam evaporated films, which remarkably improved the anodic oxidation as well as the migration of Ag+ ions. The resultant electromotive force would act as a driving force for the metal filaments dissolution, leading to the spontaneous volatile characteristics. Moreover, conductance quantization behaviors were also achieved owing to formation and annihilation of atomic scale metal filaments in the film matrix. Our results illustrate that the Ag/ZrO2/Pt device with superior TS performances is a promising candidate for selector applications in passive crossbar arrays.

  9. Bidirectional threshold switching characteristics in Ag/ZrO{sub 2}/Pt electrochemical metallization cells

    Energy Technology Data Exchange (ETDEWEB)

    Du, Gang, E-mail: dugang@hdu.edu.cn; Li, Hongxia; Mao, Qinan; Ji, Zhenguo [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wang, Chao [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Ruoshui Road 398, Suzhou 215123 (China)

    2016-08-15

    A bidirectional threshold switching (TS) characteristic was demonstrated in Ag/ZrO{sub 2}/Pt electrochemical metallization cells by using the electrochemical active Ag electrode and appropriate programming operation strategies The volatile TS was stable and reproducible and the rectify ratio could be tuned to ∼10{sup 7} by engineering the compliance current. We infer that the volatile behavior is essentially due to the moisture absorption in the electron beam evaporated films, which remarkably improved the anodic oxidation as well as the migration of Ag{sup +} ions. The resultant electromotive force would act as a driving force for the metal filaments dissolution, leading to the spontaneous volatile characteristics. Moreover, conductance quantization behaviors were also achieved owing to formation and annihilation of atomic scale metal filaments in the film matrix. Our results illustrate that the Ag/ZrO{sub 2}/Pt device with superior TS performances is a promising candidate for selector applications in passive crossbar arrays.

  10. Hydrothermal synthesis of porous Co (OH) 2 nanoflake array film ...

    Indian Academy of Sciences (India)

    ... -Co(OH)2 nanoflake array film exhibits high capacitances of 1017 F g-1 at 2Ag-1 and 890 F g-1 at 40Ag-1 as well as rather good cycling stability for supercapacitor application. The porous architecture is responsible for the enhancement of the electrochemical properties because it provides fast ion and electron transfer, ...

  11. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract

    Science.gov (United States)

    Yang, Hui; Ren, Yan-yu; Wang, Tao; Wang, Chuang

    Nano-silver and its composite materials are widely used in medicine, food and other industries due to their strong conductivity, size effect and other special performances. So far, more microbial researches have been applied, but a plant method is rarely reported. In order to open up a new way to prepare AgNP composites, pomegranate peel extract was used in this work to reduce Ag+ to prepare Ag/Ag+/Ag3+ nanoparticle composites. UV-Vis was employed to detect and track the reduction of Ag+ and the forming process of AgNPs. The composition, structure and size of the crystal were analyzed by XRD and TEM. Results showed that, under mild conditions, pomegranate peel extract reacted with dilute AgNO3 solution to produce Ag/Ag+/Ag3+ nanoparticle composites. At pH = 8 and 10 mmol/L of AgNO3 concentration, the size of the achieved composites ranged between 15 and 35 nm with spherical shapes and good crystallinity. The bactericidal experiment indicated that the prepared Ag/Ag+/Ag3+ nanoparticles had strong antibacterial activity against gram positive bacteria and gram negative bacteria. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the newly synthesized Ag/Ag+/Ag3+ nanoparticles. This provided a useful clue to further study the AgNP biosynthesis mechanism.

  12. Thin Films

    Directory of Open Access Journals (Sweden)

    M. Benmouss

    2003-01-01

    the optical absorption are consistent with the film color changes. Finally, the optical and electrochromic properties of the films prepared by this method are compared with those of our sputtered films already studied and with other works.

  13. EPIDAUROS Biotechnologie AG.

    Science.gov (United States)

    Arnold, Hans-Peter; Kluge, Peter; Mauch, Simon

    2005-07-01

    EPIDAUROS Biotechnologie AG is a leading provider of pharmacogenetic consulting, genotyping and research services to the international pharmaceutical and biotechnology industries, contract research organizations and healthcare providers. The company's mission is to improve safety, efficacy and predictability in drug development and drug therapy. EPIDAUROS determines its customers' needs in the field of pharmacogenetics using an in-depth consultancy process. The development and conduct of genotyping assays for drug-metabolizing enzymes, drug transporters and drug targets (for example, receptors)--all performed under stringent quality standards--are a major activity at EPIDAUROS. The company offers its research services to academic and industrial partners for the development of innovative diagnostic solutions by using its intellectual property.

  14. BROOKHAVEN: AGS improvements

    International Nuclear Information System (INIS)

    Bleser, Ed

    1994-01-01

    The new Booster - AGS Alternating Gradient Synchrotron complex is providing beam while machine development to enhance performance also progresses, so far on schedule. In 1991 the Booster turned on and performed as requested - attesting to a successful construction and quality control programme. In 1992 beam was provided to users while the Booster met most of its operational goals - falling slightly short of its proton intensity goal of 0.5 x 10 13 protons per pulse (ppp). This would have been inconsequential except that the Booster intensity seemed to be hitting a fairly solid brick wall of undetermined origin. Since the goal for 1993 called for a doubling of the intensity, the situation seemed serious enough to schedule three months (February - April 1993) for Booster development

  15. AGS Experiments: 1989, 1990, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule as run''; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

  16. AGS Experiments: 1989, 1990, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule ``as run``; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

  17. AGS Experiments: 1989, 1990, 1991

    International Nuclear Information System (INIS)

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule ''as run''; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here

  18. Flexible Textile-Based Organic Transistors Using Graphene/Ag Nanoparticle Electrode

    OpenAIRE

    Kim, Youn; Kwon, Yeon Ju; Lee, Kang Eun; Oh, Youngseok; Um, Moon-Kwang; Seong, Dong Gi; Lee, Jea Uk

    2016-01-01

    Highly flexible and electrically-conductive multifunctional textiles are desirable for use in wearable electronic applications. In this study, we fabricated multifunctional textile composites by vacuum filtration and wet-transfer of graphene oxide films on a flexible polyethylene terephthalate (PET) textile in association with embedding Ag nanoparticles (AgNPs) to improve the electrical conductivity. A flexible organic transistor can be developed by direct transfer of a dielectric/semiconduct...

  19. Novel Electrochemical Synthesis of Polypyrrole/Ag Nanocomposite and Its Electrocatalytic Performance towards Hydrogen Peroxide Reduction

    OpenAIRE

    Ruma Gupta; Kavitha Jayachandran; J. S. Gamare; B. Rajeshwari; Santosh K. Gupta; J. V. Kamat

    2015-01-01

    A simple electrochemical method of synthesis of polypyrrole/silver (PPy/Ag) nanocomposite is presented. The method is based on potentiodynamic polymerization of pyrrole followed by electrodeposition of silver employing a single potentiostatic pulse. The synthesized PPy film has embedded Ag nanocubes. The morphology and structure of the resulting nanocomposite were characterized by field emission scanning electron microscopy and X-ray diffraction. Electron paramagnetic resonance studies showed...

  20. Characterization of surface Ag nanoparticles in nanocomposite a-C:Ag coatings by grazing incidence X-ray diffraction at sub-critical angles of incidence

    Energy Technology Data Exchange (ETDEWEB)

    Manninen, N.K.; Oliveira, J.C.; Cavaleiro, A. [University of Coimbra, SEG-CEMUC, Mechanical Engineering Department, Coimbra (Portugal); Carvalho, S. [University of Minho, GRF-CFUM, Physics Department, Guimaraes (Portugal)

    2016-03-15

    Silver diffusion within nanocomposite films and/or toward the film surface is often observed during annealing of the silver-based nanocomposite films. In order to control and/or minimize this process, it is crucial to characterize the aggregated silver nanoparticles on the films surface. In this paper grazing incidence X-ray diffraction (GIXRD) with both sub-critical and supra-critical angles of incidence is used to characterize the Ag nanoparticles distribution, shape and structure both inside the matrix and on the nanocomposite film surface. The nanocomposite carbon coating containing Ag nanoparticles (a-C:Ag) was deposited by dc magnetron sputtering. The coatings were analyzed by GIXRD using fixed incident angles both below and above the critical angle for total reflection. By using sub-critical angles it was possible to eliminate diffraction from the bulk material allowing to estimate the size distribution of the nanoparticles sitting on the surface. The results obtained by GIXRD analysis were checked through comparison with the observations made by both TEM and SEM analysis. The proposed methodology can be used to characterized nanoparticles deposition on a surface and/or island formation during film growth as long an adequate substrate with high critical angle for total reflection is used. (orig.)

  1. Synthesis and Characterization of Ag2S Layers Formed on Polypropylene

    Directory of Open Access Journals (Sweden)

    Valentina Krylova

    2013-01-01

    Full Text Available Silver sulphide, Ag2S, layers on the surface of polypropylene (PP film was formed by chemical bath deposition method (CBD. Film samples were characterised by X-ray photoelectron spectroscopy (XPS, attenuated total reflection Fourier transform infrared (ATR-FTIR spectroscopy, scanning electron microscopy (SEM, atomic force microscopy (AFM, and X-ray diffraction analysis (XRD. The surface morphology, texture, and uniformity of the silver sulphide layers were formed on PP surface dependent on the number of polymer immersions in the precursor solution. XPS analysis confirmed that on the surface of the polypropylene film, a layer of Ag2S was formed. ATR-FTIR and FTIR spectra analysis showed that the surface of Ag2S layers is slightly oxidized. All prepared layers gave multiple XRD reflections, corresponding to monoclinic Ag2S (acanthite. The Ag2S layer on polypropylene was characterized as an Ag+ ion selective electrode in terms of potential response and detection limit. The electrode was also tested as an end-point electrode for argentometric titration of thiamine hydrochloride.

  2. Construction of Ag/AgCl nanostructures from Ag nanoparticles as high-performance visible-light photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan; Liu, Dongzhi; Wang, Tianyang; Li, Wei [Tianjin University, School of Chemical Engineering and Technology (China); Hu, Wenping [Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (China); Zhou, Xueqin, E-mail: zhouxueqin@tju.edu.cn [Tianjin University, School of Chemical Engineering and Technology (China)

    2016-11-15

    A combined strategy of in situ oxidation and assembly is developed to prepare Ag/AgCl nanospheres and nanocubes from Ag nanoparticles under room temperature. It is a new facile way to fabricate Ag/AgCl with small sizes and defined morphologies. Ag/AgCl nanospheres with an average size of 80 nm were achieved without any surfactants, while Ag/AgCl nanocubes with a mean edge length of 150 nm were obtained by introduction of N-dodecyl-N,N-dimethyl-2-ammonio-acetate. The possible formation mechanism involves the self-assembly of AgCl nanoparticles, Ostwald ripening and photoreduction of Ag{sup +} into Ag{sup 0} by the room light. The as-prepared Ag/AgCl nanospheres and nanocubes exhibit excellent photocatalytic activity and stability toward degradation of organic pollutants under visible-light irradiation. It is demonstrated that Ag/AgCl nanocubes display enhanced photocatalytic activity in comparison with Ag/AgCl nanospheres due to the more efficient charge transfer. This work may pave an avenue to construct various functional materials via the assembly strategy using nanoparticles as versatile building blocks.

  3. Sol-gel preparation of Ag-silica nanocomposite with high electrical conductivity

    Science.gov (United States)

    Ma, Zhijun; Jiang, Yuwei; Xiao, Huisi; Jiang, Bofan; Zhang, Hao; Peng, Mingying; Dong, Guoping; Yu, Xiang; Yang, Jian

    2018-04-01

    Sol-gel derived noble-metal-silica nanocomposites are very useful in many applications. Due to relatively low price, higher conductivity, and higher chemical stability of silver (Ag) compared with copper (Cu), Ag-silica has gained much more research interest. However, it remains a significant challenge to realize high loading of Ag content in sol-gel Ag-silica composite with high structural controllability and nanoparticles' dispersity. Different from previous works by using multifunctional silicon alkoxide to anchor metal ions, here we report the synthesis of Ag-silica nanocomposite with high loading of Ag nanoparticles by employing acetonitrile bi-functionally as solvent and metal ions stabilizer. The electrical conductivity of the Ag-silica nanocomposite reached higher than 6800 S/cm. In addition, the Ag-silica nanocomposite could simultaneously possess high electrical conductivity and positive conductivity-temperature coefficient by properly controlling the loading content of Ag. Such behavior is potentially advantageous for high-temperature devices (like phosphoric acid fuel cells) and inhibiting the thermal-induced increase of devices' internal resistance. The strategy proposed here is also compatible with block-copolymer directed self-assembly of mesoporous material, spin-coating of film and electrospinning of nanofiber, making it more charming in various practical applications.

  4. IR spectroscopy studies of silver and copper nano-films

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fanzhen

    2007-01-10

    The present work is focused on the infrared optical properties of thin Ag and Cu films grown on MgO(001) and the Surface-Enhanced Infrared Absorption (SEIRA) of CO on these metal films. During both the deposition of the metal films onto MgO(001) and gas exposure to the metal films at low temperatures (<100 K) in Ultra High Vacuum (UHV), infrared spectra were captured in situ in transmission or reflection geometry. Afterwards the surface morphology of the films was examined ex situ by atomic force microscopy (AFM). For the first time, an infrared reflectance minimum was found during the metal film growth. The infrared optical properties of some films can be described by the Drude-type model or the Effective Medium Model. The Ag films show different surface morphologies at different substrate temperatures and at different final thicknesses. Also the SEIRA of CO adsorbed on Ag films is strongly related to the surface morphologies. The Cu films prepared at room temperature show island like surface morphology. SEIRA of CO adsorbed on Cu films shows differences depending on the Cu island size. (orig.)

  5. Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A Review

    Directory of Open Access Journals (Sweden)

    Liu Mei Lee

    2013-01-01

    Full Text Available This paper reviews the function and importance of Sn-Ag-Cu solder alloys in electronics industry and the interfacial reaction of Sn-Ag-Cu/Cu solder joint at various solder forms and solder reflow conditions. The Sn-Ag-Cu solder alloys are examined in bulk and in thin film. It then examines the effect of soldering conditions to the formation of intermetallic compounds such as Cu substrate selection, structural phases, morphology evolution, the growth kinetics, temperature and time is also discussed. Sn-Ag-Cu lead-free solder alloys are the most promising candidate for the replacement of Sn-Pb solders in modern microelectronic technology. Sn-Ag-Cu solders could possibly be considered and adapted in miniaturization technologies. Therefore, this paper should be of great interest to a large selection of electronics interconnect materials, reliability, processes, and assembly community.

  6. Self-assembly monolayer of mercaptopropyltrimethoxysilane for electroless deposition of Ag

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhengchun; He Quanguo; Xiao Pengfeng; Liang Bo; Tan Jianxin; He Nongyue; Lu Zuhong

    2003-11-15

    Mercaptopropyltrimethoxysilane (MPTS) was used to form self-assembly monolayers (SAMs) on glass slides, which was verified by using X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES). Electroless plating of Ag was performed on the SAMs-modified glass slide. XPS study showed that Ag colloids formed in solution were successfully and hard anchored on SAMs through chemical bonds. Scanning electron microscopy (SEM) analysis illustrated that Ag film on the SAMs-modified glass showed more predominant in durability of temperature than that on conventionally modified glass.

  7. Plasmonic properties of silver nanoparticles embedded in diamond like carbon films: Influence of structure and composition

    Energy Technology Data Exchange (ETDEWEB)

    Meškinis, Š., E-mail: sarunas.meskinis@fei.lt [Kaunas University of Technology, Institute of Materials Science, Savanoriu Ave. 271, Kaunas LT-50131 (Lithuania); Čiegis, A.; Vasiliauskas, A.; Tamulevičienė, A.; Šlapikas, K. [Kaunas University of Technology, Institute of Materials Science, Savanoriu Ave. 271, Kaunas LT-50131 (Lithuania); Juškėnas, R.; Niaura, G. [Institute of Chemistry, Center for Physical Sciences and Technology, Goštauto Str. 9, Vilnius LT-01108 (Lithuania); Tamulevičius, S. [Kaunas University of Technology, Institute of Materials Science, Savanoriu Ave. 271, Kaunas LT-50131 (Lithuania)

    2014-10-30

    Highlights: • Optical properties of DLC films containing silver (DLC:Ag) depends on substrate bias. • Position of the plasmonic peak depends on composition of DLC:Ag films. • Position of the plasmonic peak depends on structure of Ag nanoclusters. • Influence of composition prevails influence of the structure of DLC matrix. - Abstract: In the present study optical properties of hydrogenated diamond like carbon nanocomposite films containing silver nanoparticles (DLC:Ag) deposited by direct current (DC) unbalanced reactive magnetron sputtering were studied in 180–1100 nm range. Different substrate bias was used during deposition of the films. Structure of the films was investigated by multiwavelength Raman scattering spectroscopy and X-ray diffractometry (XRD). Chemical composition of the samples was studied by X-ray photoelectron spectroscopy (XPS), surface morphology was investigated by atomic force microscopy (AFM). Red shift of the surface plasmon resonance peak of DLC:Ag films with the increase of Ag atomic concentration was observed. It was found that high atomic concentration of oxygen in DLC:Ag films results in some redshift of the plasmonic peak, too. Such a behavior is explained by increase of the refractive index of the dielectric medium surrounding silver nanoparticle due to possible presence of the silver oxide interlayer at the Ag nanocluster and diamond like carbon matrix interface. It was demonstrated that influence of the increased Ag atomic concentration on position of the surface plasmon resonance peak of DLC:Ag films clearly prevails influence of the increased sp{sup 3}/sp{sup 2} ratio of the diamond like carbon matrix. Correlation between the structure of Ag nanocrystallites studied by XRD and position of the surface plasmon resonance peak position was observed.

  8. Bioceres: AG Biotechnology from Argentina

    Directory of Open Access Journals (Sweden)

    Roberto Feeney

    2016-04-01

    Full Text Available In this case we present a business decision-making situation in which the CEO of an Argentine Ag Biotech company, Bioceres, has to decide the best way to commercialize a new drought-tolerant transgenic technology. The company was founded by twenty three farmers, who shared a common dream that Argentina could become a benchmark in the development of Ag biotechnology. The case has strategic and financial implications, as well as decision-making situation involving a joint venture with an American biotechnology company. It also introduces to discussion the business models of Ag biotechnology companies in developing countries.

  9. Neutrino physics at the AGS

    International Nuclear Information System (INIS)

    Sokolsky, P.

    1978-01-01

    The AGS neutrino beam is the last low energy (1 to 2 GeV) neutrino beam left. As more work is done at higher energies and as the whole realm of new physics (whose threshold seems barely attainable at AGS ν energies) is explored in increasing detail, it is appropriate to ask what physics remains to be done here. To answer this question, current theory and experiment are confronted, not in an attempt to confirm or refute theoretical (or experimental) prejudices, but to ask if present experiments at low energies are good enough. In the process, the recent AGS neutrino experimental program are reviewed

  10. Preparation of palladium-silver alloy films by a dual-sputtering technique and its application in hydrogen separation membrane

    NARCIS (Netherlands)

    Tong, D.H.; van den Berg, Albert; van den Berg, A.H.J.; Gardeniers, Johannes G.E.; Jansen, Henricus V.; Gielens, F.C.; Elwenspoek, Michael Curt

    2005-01-01

    Submicron thick palladium–silver alloy films with 23 wt.% of silver (Pd–Ag23) have been synthesized by simultaneous sputtering from pure targets of Pd and Ag. Full characterization of the deposited films was performed by using X-ray photoelectron spectroscopy, high-resolution scanning electron

  11. Silver buffer layers for YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J. [Tel Aviv Univ. (Israel). Center for Technol. Education Holon

    1999-09-01

    A simple economical conventional vacuum system was used for evaporation of YBCO thin films on as-deposited unbuffered Ag layers on MgO substrates. The subsequent heat treatment was carried out in low oxygen partial pressure at a relative low temperature and short dwelling time. The films thus obtained were characterized for electrical properties using dc four probe electrical measurements and inspected for structural properties and chemical composition by scanning electron microscopy (SEM). (orig.)

  12. Preparation and characterization of bio-nanocomposite films of agar and silver nanoparticles: laser ablation method.

    Science.gov (United States)

    Rhim, Jong-Whan; Wang, Long-Feng; Lee, Yonghoon; Hong, Seok-In

    2014-03-15

    Silver nanoparticles (AgNPs) were prepared by a laser ablation method and composite films with the AgNPs and agar were prepared by solvent casting method. UV-vis absorbance test and transmission electron microscopy (TEM) analysis results revealed that non-agglomerated spherical AgNPs were formed by the laser ablation method. The surface color of the resulting agar/AgNPs films exhibited the characteristic plasmonic effect of the AgNPs with the maximum absorption peaks of 400-407 nm. X-ray diffraction (XRD) test results also exhibited characteristic AgNPs crystals with diffraction peaks observed at 2θ values of 38.39°, 44.49°, and 64.45°, which were corresponding to (111), (200), and (220) crystallographic planes of face-centered cubic (fcc) silver crystals, respectively. Thermogravimetric analysis (TGA) results showed that thermal stability of the agar/AgNPs composite films was increased by the inclusion of metallic silver. Water vapor barrier properties and surface hydrophobicity of the agar/AgNPs films increased slightly with the increase in AgNPs content but they were not statistically significant (p>0.05), while mechanical strength and stiffness of the composite films decreased slightly (pfilms exhibited distinctive antimicrobial activity against both Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli O157:H7) bacterial pathogens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Rattle-type hierarchical particles containing multilevel cores (Ag@AgCl@SiO2 and Au/Ag@AgCl@SiO2) as versatile catalysts.

    Science.gov (United States)

    Huy, Do Xuan; Lee, Ha-Jin; Lee, Young Boo; Choi, Won San

    2014-07-01

    A protocol for the synthesis of rattle-type core@shell particles containing Ag@AgCl or Au/Ag@AgCl core structures was developed, and the use of these particles as catalysts for the decomposition of toxic materials was demonstrated. A monometallic Ag or bimetallic Au/Ag core was incorporated into the interior of SiO2 capsules via controlled heat treatment of metal nanoparticle/SiO2-coated polymer particles, resulting in the formation of rattle-type core@shell structures. By appropriate treatments, it was possible to transform the Ag or Au/Ag core into multilevel cores (Ag@AgCl or Au/Ag@AgCl) within the SiO2 capsules (Ag@AgCl@SiO2 or Au/Ag@AgCl@SiO2). This method for the synthesis of rattle-type core@shell particles is useful for further introducing AgCl fused with plasmonic materials into the capsule structures. The rattle-type core@shell structures were used as photocatalysts for the decomposition of organic pollutants such as methyl orange. Furthermore, these nanocatalysts containing semiconductors such as AgCl were also applied toward the reduction of nitrophenol (NPh) to aminophenol (APh). The Ag@AgCl@SiO2 or Au/Ag@AgCl@SiO2 catalysts showed excellent catalytic properties in the decomposition of toxic substances in terms of their activity and reusability. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Morphological and thermal properties of photodegradable biocomposite films

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2013-07-01

    Full Text Available wt % of titanium dioxide (TiO2) and Ag-TiO2 (silver nanoparticles decorated TiO2) nanoparticles to impart the photodegradable properties. The films were exposed to UV radiation for different time periods and morphology of the composite films before...

  15. Functional properties of edible agar-based and starch-based films for food quality preservation.

    Science.gov (United States)

    Phan, The D; Debeaufort, F; Luu, D; Voilley, A

    2005-02-23

    Edible films made of agar (AG), cassava starch (CAS), normal rice starch (NRS), and waxy (glutinous) rice starch (WRS) were elaborated and tested for a potential use as edible packaging or coating. Their water vapor permeabilities (WVP) were comparable with those of most of the polysaccharide-based films and with some protein-based films. Depending on the environmental moisture pressure, the WVP of the films varies and remains constant when the relative humidity (RH) is >84%. Equilibrium sorption isotherms of these films have been measured; the Guggenheim-Anderson-de Boer (GAB) model was used to describe the sorption isotherm and contributed to a better knowledge of hydration properties. Surface hydrophobicity and wettability of these films were also investigated using the sessile drop contact angle method. The results obtained suggested the migration of the lipid fraction toward evaporation surface during film drying. Among these polysaccharide-based films, AG-based film and CAS-based film displayed more interesting mechanical properties: they are transparent, clear, homogeneous, flexible, and easily handled. NRS- and WRS-based films were relatively brittle and have a low tension resistance. Microstructure of film cross section was observed by environmental scanning electron microscopy to better understand the effect of the structure on the functional properties. The results suggest that AG-based film and CAS-based films, which show better functional properties, are promising systems to be used as food packaging or coating instead of NRS- and WRS-based films.

  16. Recovery of silver from waste photographic x-ray films

    International Nuclear Information System (INIS)

    Nartey, V.K.; Donkor, A.; Fianko, J.R.

    2005-01-01

    In this work, metallic silver has been recovered from disused X-ray films by leaching the silver (Ag) with 50% and 70% nitric acid(HNO 3 ) aqueous solutions. The films were collected from four hospitals in Accra. This method of retrieving Ag is more environmentally friendly compared with the current traditional technique employing dilute sulfuric acid (33%) by the indigenous population to win Ag. More so, the traditional method is characterized by the emission of toxic fuming gases (e.g. sulfur dioxide) and particulates (e.g. lead and arsenic compounds) during the refining of the Ag while reporting.Average yield of recovered Ag was 50.6% following the traditional method whereas 77.0% and 82.9% were obtained using 50% and 70% HNO 3 respectively. (au)

  17. Morphology and oxygen incorporation effect on antimicrobial activity of silver thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rebelo, Rita, E-mail: ritarebelo@det.uminho.pt [2C2T, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); GRF-CFUM, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); CEB, Center for Biological Engineering, LIBRO—Laboratório de Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-335 Braga (Portugal); Manninen, N.K. [GRF-CFUM, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); SEG-CEMUC, University of Coimbra, 3030-788 Coimbra (Portugal); Fialho, Luísa [GRF-CFUM, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Henriques, Mariana [CEB, Center for Biological Engineering, LIBRO—Laboratório de Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-335 Braga (Portugal); Carvalho, Sandra [GRF-CFUM, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); SEG-CEMUC, University of Coimbra, 3030-788 Coimbra (Portugal)

    2016-05-15

    Highlights: • Ag and Ag{sub x}O thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering. • Coatings were characterized chemically, physically and structurally. • In order to verify the antibacterial behavior of the coatings, halo inhibition zone tests were realized for Staphylococcus epidermidis and Staphylococcus aureus. • Ag{sub x}O coating presented antibacterial behavior. - Abstract: Ag and Ag{sub x}O thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering, respectively, with the final propose of functionalizing the SS316L substrate with antibacterial properties. The coatings were characterized chemically, physically and structurally. The coatings nanostructure was assessed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while the coatings morphology was determined by scanning electron microscopy (SEM). The XRD and XPS analyses suggested that Ag thin film is composed by metallic Ag, which crystallizes in fcc-Ag phase, while the Ag{sub x}O thin film showed both metallic Ag and Ag−O bonds, which crystalize in fcc-Ag and silver oxide phases. The SEM results revealed that Ag thin film formed a continuous layer, while Ag{sub x}O layer was composed of islands with hundreds of nanometers surrounded by small nanoparticles with tens of nanometers. The surface wettability and surface tension parameters were determined by contact angle measurements, being found that Ag and Ag{sub x}O surfaces showed very similar behavior, with all the surfaces showing a hydrophobic character. In order to verify the antibacterial behavior of the coatings, halo inhibition zone tests were realized for Staphylococcus epidermidis and Staphylococcus aureus. Ag coatings did not show antibacterial behavior, contrarily to Ag{sub x}O coating, which presented antibacterial properties against the studied bacteria. The presence of silver oxide phase along with the development of different morphology was

  18. Morphology and oxygen incorporation effect on antimicrobial activity of silver thin films

    International Nuclear Information System (INIS)

    Rebelo, Rita; Manninen, N.K.; Fialho, Luísa; Henriques, Mariana; Carvalho, Sandra

    2016-01-01

    Highlights: • Ag and Ag x O thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering. • Coatings were characterized chemically, physically and structurally. • In order to verify the antibacterial behavior of the coatings, halo inhibition zone tests were realized for Staphylococcus epidermidis and Staphylococcus aureus. • Ag x O coating presented antibacterial behavior. - Abstract: Ag and Ag x O thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering, respectively, with the final propose of functionalizing the SS316L substrate with antibacterial properties. The coatings were characterized chemically, physically and structurally. The coatings nanostructure was assessed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while the coatings morphology was determined by scanning electron microscopy (SEM). The XRD and XPS analyses suggested that Ag thin film is composed by metallic Ag, which crystallizes in fcc-Ag phase, while the Ag x O thin film showed both metallic Ag and Ag−O bonds, which crystalize in fcc-Ag and silver oxide phases. The SEM results revealed that Ag thin film formed a continuous layer, while Ag x O layer was composed of islands with hundreds of nanometers surrounded by small nanoparticles with tens of nanometers. The surface wettability and surface tension parameters were determined by contact angle measurements, being found that Ag and Ag x O surfaces showed very similar behavior, with all the surfaces showing a hydrophobic character. In order to verify the antibacterial behavior of the coatings, halo inhibition zone tests were realized for Staphylococcus epidermidis and Staphylococcus aureus. Ag coatings did not show antibacterial behavior, contrarily to Ag x O coating, which presented antibacterial properties against the studied bacteria. The presence of silver oxide phase along with the development of different morphology was pointed as the main factors in the

  19. New Chitosan/Ag/Carbacylamidophosphate nanocomposites: Preparation and antibacterial study

    Directory of Open Access Journals (Sweden)

    Nasrin Oroujzadeh

    2017-09-01

    Full Text Available Two new Chitosan-based nanocomposite films were prepared: Chitosan /7% Ag nanoparticles (NPs (NC1 and Chitosan/7% Ag NPs/5%Carbacylamidophosphate(NC2, in which the carbacylamidophosphate derivitive is N-Nicotinyl-N′,N″- bis(hexamethylenyl phosphorictriamide (NHE with the formula: C5H4NC(ONHP(O(NC6H122. X-ray Powder Diffraction (XRD, Field Emission Scanning Electron Microscopy (FE-SEM and Energy Dispersive X-ray Spectroscopy (EDS methods were used to characterize and confirm the prepared frameworkrs. XRD graph of the two nanocomposites showed all the characteristic peaks of NHE, Ag NPs, and chitosan, indicating the fact that the preparing process has not made any changes in the phases of the nanocomposites components. All the SEM micrographs and EDS analysis results also confirmed the desired structures. To study the effect of the additive NHE on the antibacterial activity of the films, in vitro antibacterial tests were done on the prepared nanocomposites against two Gram-positive (Staphylococcus aureus, Bacillus cereus and two Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa in Brain-Heart Infusion(BHI medium. Results showed that the antibacterial effects of the nanocomposite containing NHE on each of the four bacteria is stronger than those for the nanocomposite without NHE.

  20. Submonolayer growth of copper-phthalocyanine on Ag(111)

    Science.gov (United States)

    Kröger, Ingo; Stadtmüller, Benjamin; Stadler, Christoph; Ziroff, Johannes; Kochler, Mario; Stahl, Andreas; Pollinger, Florian; Lee, Tien-Lin; Zegenhagen, Jörg; Reinert, Friedrich; Kumpf, Christian

    2010-08-01

    The growth of high-quality thin films is a key issue in the ability to design electronic devices based on organic materials and to tune their properties. In this context, the interfaces between metals and organic films play a decisive role. Here, we report on the interface formation between copper-phthalocyanine (CuPc) and an Ag(111) surface using various complementary methods. High-resolution low-energy electron diffraction revealed a rich phase diagram for this system with disordered (two-dimensional (2D)-gas-like) and ordered structures (commensurate and point-on-line). In particular, a continuous change in lattice parameters with increasing coverage was found for long-range ordered structures, indicating a substrate-mediated repulsive intermolecular interaction similar to the case of tin-phthalocyanine/Ag(111). Chemisorptive bonding to the substrate was found by x-ray standing waves and ultraviolet photoelectron spectroscopy, and this weakened with increasing coverage at low temperature. This remarkable effect is correlated to a shift in the highest occupied molecular orbital (HOMO) and a HOMO-1 split off band to higher binding energies. Based on our experimental results, we present a comprehensive study of the adsorption behavior of CuPc/Ag(111), including the mechanisms for phase formation and molecular interaction.

  1. Plasmonic modes in thin films: quo vadis?

    Directory of Open Access Journals (Sweden)

    Antonio ePolitano

    2014-07-01

    Full Text Available Herein, we discuss the status and the prospect of plasmonic modes in thin films. Plasmons are collective longitudinal modes of charge fluctuation in metal samples excited by an external electric field. Surface plasmons (SPs are waves that propagate along the surface of a conductor with applications in magneto-optic data storage, optics, microscopy, and catalysis. In thin films the electronic response is influenced by electron quantum confinement. Confined electrons modify the dynamical screening processes at the film/substrate interface by introducing novel properties with potential applications and, moreover, they affect both the dispersion relation of SP frequency and the damping processes of the SP.Recent calculations indicate the emergence of acoustic surface plasmons (ASP in Ag thin films exhibiting quantum well states and in graphene films. The slope of the dispersion of ASP decreases with film thickness. We also discuss open issues in research on plasmonic modes in graphene/metal interfaes.

  2. The mechanism of ionic conductivity in superionic conductors AgI, Ag2S and Ag3SI

    International Nuclear Information System (INIS)

    Polyakov, V.I.

    1997-01-01

    The conductivity channels are studied and the conductivity model by silver ions in superionic conductors AgI, Ag 2 S, Ag 3 SI is proposed. It is shown the Ag + ions migration is of retardation-rotational character by annular crossing orbits, forming the flow channels near the crystallographic positions of tetrahedral, octohedral and triangular types. It is established that the most stable positions of Ag + ions are determined of vertexes of the Dirichlet polyhedron of stationary sublattice

  3. One-pot synthesis and transfer of PMMA/Ag photonic nanocomposites by pulsed laser deposition

    Science.gov (United States)

    Karoutsos, V.; Koutselas, I.; Orfanou, P.; Mpatzaka, Th.; Vasileiadis, M.; Vassilakopoulou, A.; Vainos, N. A.; Perrone, A.

    2015-08-01

    Nanocomposite films comprising metallic nanoparticles in polymer matrices find increasing use in emerging photonic, electronic and microsystem applications owing to their tailored advanced functionalities. The versatile development of such films based on poly-methyl-methacrylate (PMMA) matrix having embedded Ag nanoparticles is addressed here. Two low-cost one-pot chemical methods for the synthesis of bulk target nanocomposite materials are demonstrated. These nanocomposites are subsequently transferred via pulsed laser deposition using 193 nm ArF excimer laser radiation, producing films maintaining the structural and functional properties. Both target- and laser-deposited materials have been thoroughly characterized using microscopic, spectroscopic and thermal analysis methods. Infrared spectra demonstrated the close molecular PMMA chain similarity for both target and film materials, though structural alterations identified by thermal analysis proved the enhanced characteristics of films grown. High-resolution electron microscopy proved the transfer of Ag nanoparticles sized 10-50 nm. Visible absorption peaked in the spectral range of 430-440 nm and attributed to the Ag nanocomposite plasmonic response verifying the transfer of the functional performance from target to film.

  4. High conductive and scalable Ag nanowires flexible transparent electrode by nanowelding with physical methods

    Science.gov (United States)

    He, W. W.; Yan, X. H.; Long, Y. F.; Liang, Y. M.; Pan, C.; Zhao, J. L.; Liu, Q. X.

    2017-09-01

    Transparent electrodes (TEs) are very important for electronic devices. At present, ITO is gaining the largest market share but will be reduced. Ag nanowires (AgNWs) TEs is acknowledged as one of the most potential alternative to ITO. However, AgNWs TEs still have electrical problems because of the low contact between the AgNWs. In this paper, we report three physics methods to increase the conductivity of AgNWs TEs by nanowelding the contact of nanowires. For heat-resistant materials, 200 °C heat-nanowelding can help to reduce the sheet resistance by 96.7%. For pressure resistant materials, 20MPa pressure-nanowelding can help to increase the conductivity by 98.7%. And the transmittance (>90%) remains constant during the above process. Yet, both of these methods cannot improve the adhesion between nanowires and the substrates. Luckily, tight adhesion can be obtained by overcoating a PEDOT: PSS lalyer on AgNWs film which can reduce the sheet resistance by 87.8%. This means that things are usually not perfect, and they have their own advantages and lay the foundation for the popularization and application of AgNWs TEs. In a word, these three nano-welding methods are all suit for manufacture on a large scale for high conductive AgNWs TEs.

  5. Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jia [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Xu, Shicai [Shandong Provincial Key Laboratory of Biophysics, College of Physics and Electronic Information, Dezhou University, Dezhou 253023 (China); Liu, Xiaoyun; Li, Zhe; Hu, Litao; Li, Zhen; Chen, Peixi; Ma, Yong [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Jiang, Shouzhen, E-mail: jiang_sz@126.com [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Shandong Provincial Key Laboratory of Optics and Photonic Device, Jinan 250014 (China); Ning, Tingyin [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Shandong Provincial Key Laboratory of Optics and Photonic Device, Jinan 250014 (China)

    2017-02-28

    Highlights: • We directly grown AgNPs on substrate by annealing method in the quartz tube. Compare with spin-coating Ag nanoparticles solution method, we got more uniform distribution of AgNPs and the AgNPs better adsorption on the substrate. • We use a simple and lost-cost method to obtain the pyramidal silicon (PSi). The PSi possessing well-separated pyramid arrays can make contribution to the homogeneity and sensitivity of the substrate. • In our work, graphene oxide (GO) film is uniformly deposited on AgNPs and PSi by using a spin-coating method. The GO films endow the hybrid system a good stability and enhance the homogeneity and sensitivity of the substrate. - Abstract: In our work, few layers graphene oxide (GO) were directly synthesized on Ag nanoparticles (AgNPs) by spin-coating method to fabricate a GO-AgNPs hybrid structure on a pyramidal silicon (PSi) substrate for surface-enhanced Raman scattering (SERS). The GO-AgNPs-PSi substrate showed excellent Raman enhancement effect, the minimum detected concentration for Rhodamine 6G (R6G) can reach 10{sup −12} M, which is one order of magnitude lower than the AgNPs-PSi substrate and two order of magnitude lower than the GO-AgNPs-flat-Si substrate. The linear fit calibration curve with error bars is presented and the value of R{sup 2} of 612 and 773 cm{sup −1} can reach 0.986 and 0.980, respectively. The excellent linear response between the Raman intensity and R6G concentrations prove that the prepared GO-AgNPs-PSi substrates can serve as good SERS substrate for molecule detection. The maximum deviations of SERS intensities from 20 positions of the GO-AgNPs-PSi substrate are less than 8%, revealing the high homogeneity of the SERS substrate. The excellent homogeneity of the enhanced Raman signals can be attributed to well-separated pyramid arrays of PSi, the uniform morphology of AgNPs and multi-functions of GO layer. Besides, the uniform GO film can effectively protect AgNPs from oxidation and endow

  6. Domain morphology in ultrathin ferromagnetic films with perpendicular magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, B. [Department of Secondary Science and Mathematics Education, University of Mersin, Yenisehir Campus, 33169 Mersin (Turkey)]. E-mail: bengukaplan@yahoo.com

    2006-03-15

    We determine the minimal domain structure for the equilibrium thickness of stripes as well as for the minimal energy of the domain configuration in ultrathin films of ferromagnetically coupled spins, where the easy direction of magnetization is perpendicular to the film. It is found that the equilibrium thickness of stripes and walls depend on the exchange energy. The normalized anisotropy, f, depends on interplay between the magnetic and anisotropy energies and is almost independent of the exchange energy inside the wall. The results are compared with the experimental data for thin Ag/Fe/Ag (0 0 1) films and a good coincidence is obtained between both results.

  7. Effect of Post-annealing on the Electrochromic Properties of Layer-by-Layer Arrangement FTO-WO3-Ag-WO3-Ag

    Science.gov (United States)

    Hoseinzadeh, S.; Ghasemiasl, R.; Bahari, A.; Ramezani, A. H.

    2018-03-01

    In the current study, composites of tungsten trioxide (W03) and silver (Ag) are deposited in a layer-by-layer electrochromic (EC) arrangement onto a fluorine-doped tin oxide coated glass substrate. Tungsten oxide nanoparticles are an n-type semiconductor that can be used as EC cathode material. Nano-sized silver is a metal that can serve as an electron trap center that facilitates charge departure. In this method, the WO3 and Ag nanoparticle powder were deposited by physical vapor deposition onto the glass substrate. The fabricated electrochromic devices (ECD) were post-annealed to examine the effect of temperature on their EC properties. The morphology of the thin film was characterized by scanning electron microscopy and atomic force microscopy. Structural analysis showed that the addition of silver dopant increased the size of the aggregation of the film. The film had an average approximate roughness of about 17.8 nm. The electro-optical properties of the thin film were investigated using cyclic voltammetry and UV-visible spectroscopy to compare the effects of different post-annealing temperatures. The ECD showed that annealing at 200°C provided better conductivity (maximum current of about 90 mA in the oxidation state) and change of transmittance (ΔT = 90% at the continuous switching step) than did the other thin films. The optical band gaps of the thin film showed that it allowed direct transition at 3.85 eV. The EC properties of these combinations of coloration efficiency and response time indicate that the WO3-Ag-WO3-Ag arrangement is a promising candidate for use in such ECDs.

  8. Size-controlled in situ synthesis and photo-responsive properties of silver/poly(methyl methacrylate) nanocomposite films with high silver content

    Energy Technology Data Exchange (ETDEWEB)

    Chen Cheng; Li Junguo [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Luo Guoqiang, E-mail: qhy2013@163.com [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Xiong Yuanlu; Zhang Qiang; Shen Lianmeng [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Ag/PMMA nanocomposite films with high silver content are prepared by in situ synthesis. Black-Right-Pointing-Pointer The size of Ag nanoparticles can be controlled by reaction time. Black-Right-Pointing-Pointer The electrical properties of Ag/PMMA nanocomposites films shows enhancement compared with the pure PMMA. Black-Right-Pointing-Pointer The recycle photo-responsive properties of Ag/PMMA nanocomposite films are proposed. - Abstract: Ag/PMMA nanocomposites have attracted much attention due to its superior mechanical, optical and electrical properties. In this article, Ag/PMMA nanocomposite films with high silver content (20 wt%) have been successfully in situ synthesized. UV-vis analysis, transmission electron microscopy (TEM), current-voltage (I-V) analysis, hall effect measurement system and electrochemical workstation are used to characterize the nanocomposite films. The results reveal that silver nanoparticles (NPs) homogeneously distribute in PMMA films and the particles size of silver NPs which has been controlled from 1.68 to 6.98 nm. Ag/PMMA nanocomposite films show electrical properties due to the conduction paths created by Ag nanoparticles. With the increasing diameter of silver NPs, the current density decreases and resistivity increases, respectively. Photo-responsive properties of Ag/PMMA nanocomposite films indicate that conduction paths could be destroyed by illumination and rebuilt in dark condition.

  9. Size-controlled in situ synthesis and photo-responsive properties of silver/poly(methyl methacrylate) nanocomposite films with high silver content

    International Nuclear Information System (INIS)

    Chen Cheng; Li Junguo; Luo Guoqiang; Xiong Yuanlu; Zhang Qiang; Shen Lianmeng

    2012-01-01

    Highlights: ► Ag/PMMA nanocomposite films with high silver content are prepared by in situ synthesis. ► The size of Ag nanoparticles can be controlled by reaction time. ► The electrical properties of Ag/PMMA nanocomposites films shows enhancement compared with the pure PMMA. ► The recycle photo-responsive properties of Ag/PMMA nanocomposite films are proposed. - Abstract: Ag/PMMA nanocomposites have attracted much attention due to its superior mechanical, optical and electrical properties. In this article, Ag/PMMA nanocomposite films with high silver content (20 wt%) have been successfully in situ synthesized. UV–vis analysis, transmission electron microscopy (TEM), current–voltage (I–V) analysis, hall effect measurement system and electrochemical workstation are used to characterize the nanocomposite films. The results reveal that silver nanoparticles (NPs) homogeneously distribute in PMMA films and the particles size of silver NPs which has been controlled from 1.68 to 6.98 nm. Ag/PMMA nanocomposite films show electrical properties due to the conduction paths created by Ag nanoparticles. With the increasing diameter of silver NPs, the current density decreases and resistivity increases, respectively. Photo-responsive properties of Ag/PMMA nanocomposite films indicate that conduction paths could be destroyed by illumination and rebuilt in dark condition.

  10. In Situ Synthesis of Silver Nanoparticles on the Polyelectrolyte-Coated Sericin/PVA Film for Enhanced Antibacterial Application.

    Science.gov (United States)

    Cai, Rui; Tao, Gang; He, Huawei; Guo, Pengchao; Yang, Meirong; Ding, Chaoxiang; Zuo, Hua; Wang, Lingyan; Zhao, Ping; Wang, Yejing

    2017-08-18

    To develop silk sericin (SS) as a potential antibacterial biomaterial, a novel composite of polyelectrolyte multilayers (PEMs) coated sericin/poly(vinyl alcohol) (SS/PVA) film modified with silver nanoparticles (AgNPs) has been developed using a layer-by-layer assembly technique and ultraviolet-assisted AgNPs synthesis method. Ag ions were enriched by PEMs via the electrostatic attraction between Ag ions and PEMs, and then reduced to AgNPs in situ with the assistance of ultraviolet irradiation. PEMs facilitated the high-density growth of AgNPs and protected the synthesized AgNPs due to the formation of a 3D matrix, and thus endowed SS/PVA film with highly effective and durable antibacterial activity. Scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry, Fourier transfer infrared spectroscopy, water contact angle, mechanical property and thermogravimetric analysis were applied to characterize SS/PVA, PEMs-SS/PVA and AgNPs-PEMs-SS/PVA films, respectively. AgNPs-PEMs-SS/PVA film has exhibited good mechanical performance, hydrophilicity, water absorption capability as well as excellent and durable antibacterial activity against Escherichia coli , Staphylococcus aureus and Pseudomonas aeruginosa and good stability and degradability. This study has developed a simple method to design and prepare AgNPs-PEMs-SS/PVA film for potential antibacterial application.

  11. Temperature-controlled transparent-film heater based on silver nanowire-PMMA composite film

    Science.gov (United States)

    He, Xin; Liu, A.'lei; Hu, Xuyang; Song, Mingxia; Duan, Feng; Lan, Qiuming; Xiao, Jundong; Liu, Junyan; Zhang, Mei; Chen, Yeqing; Zeng, Qingguang

    2016-11-01

    We fabricated a high-performance film heater based on a silver nanowire and polymethyl methacrylate (Ag NW-PMMA) composite film, which was synthesized with the assistance of mechanical lamination and an in situ transfer method. The films exhibit excellent conductivity, high figure of merit, and strong adhesion of percolation network to substrate. By controlling NW density, we prepared the films with a transmittance of 44.9-85.0% at 550 nm and a sheet resistance of 0.13-1.40 Ω sq-1. A stable temperature ranging from 130 °C-40 °C was generated at 3.0 V within 10-30 s, indicating that the resulting film heaters show a rapid thermal response, low driving voltage and stable temperature recoverability. Furthermore, we demonstrated the applications of the film heater in defrosting and a physical therapeutic instrument. A fast defrosting on the composite film with a transmittance of 88% was observed by applying a 9 V driving voltage for 20 s. Meanwhile, we developed a physical therapeutic instrument with two modes of thermotherapy and electronic-pulse massage by using the composite films as two electrodes, greatly decreasing the weight and power consumption compared to a traditional instrument. Therefore, Ag NW-PMMA film can be a promising candidate for diversified heating applications.

  12. Antimicrobial effect of TiO2 doped with Ag and Cu on Escherichia coli and Pseudomonas putida

    Science.gov (United States)

    Angelov, O.; Stoyanova, D.; Ivanova, I.

    2016-10-01

    Antimicrobial effect of TiO2 doped with Ag and Cu on Gram-negative bacteria Escherichia coli and Pseudomonas putida is studied. The thin films are deposited on glass substrates without heating during the deposition by r.f. magnetron co-sputtering of TiO2 target and pieces of Ag and Cu. The studied films, thickness about 65 nm, were as deposited and annealed (5200C, 4h, N2+5%H2, 4Pa). The as deposited thin films TiO2:Ag:Cu have band gap energy of 3.56 eV little higher than the band gap of crystalline anatase TiO2 which can be explained with the quantum effect of the granular structure of r.f. magnetron sputtered films. The annealed samples have band gap of 2.52 eV due to formation of donor levels from Ag and Cu atoms near the bottom of the conduction band. The toxic effect was determined through the classical Koch's method and the optical density measurements at λ=610 nm. The as deposited TiO2:Ag:Cu thin films demonstrate stronger inhibition effect - bactericidal for P. putida and bacteriostatic for E. coli (up to the 6th hour) in comparison with the annealed samples. The both methods of study show the same trends of the bacterial growth independently of their different sensitivity which confirms the observed effect.

  13. Neutron resonance spectroscopy of 107Ag and 109Ag

    International Nuclear Information System (INIS)

    Lowie, L.Y.; Mitchell, G.E.; Stephenson, S.L.; Bowman, J.D.; Knudson, J.N.; Penttila, S.I.; Seestrom, S.J.; Yen, Y.; Yuan, V.W.; Crawford, B.E.; Roberson, N.R.; Delheij, P.P.; Haseyama, T.; Masaike, A.; Matsuda, Y.; Postma, H.; Sharapov, E.I.

    1997-01-01

    Parity violation has been observed in a number of previously unreported neutron resonances in silver. Analysis of these parity violation data requires improved neutron resonance spectroscopy. The neutron total cross section for natural silver was measured for E n =10 - 800 eV with the time-of-flight method at the Los Alamos Neutron Scattering Center. The neutron capture reaction was studied with both a natural silver target and a highly enriched sample (98.29%) of 107 Ag. A total of 38 previously unreported resonances were observed. The combination of the two measurements allowed assignment of the newly observed resonances to 107 Ag or to 109 Ag. Resonance parameters were determined for almost all of the neutron resonances observed. copyright 1997 The American Physical Society

  14. Ruhrgas AG. Business report 2000; Ruhrgas AG. Geschaeftsbericht 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    A detailed account of the situation of the international gas market provides the basis of the status report of Ruhrgas AG and the group of affiliated companies. Emphasis is placed on gas procurement aspects, sales volumes, the construction and operation of natural gas distribution systems, and on development, utilization and application aspects. The activities and situation of major Ruhrgas AG holding companies are described, and the annual financial statements are documented. (orig.) [German] Ausgehend von einer eingehenden Beschreibung des internationalen Gasmarktes wird ein Lagebericht des Konzerns sowie der Ruhrgas AG gegeben. Dabei wird insbesondere auf Fragen der Gasbeschaffung, des Gasabsatzes, des Baus und Betriebs von Erdgasverteilungsnetzen, sowie der Entwicklung und der Anwendungstechnik eingegangen. Ferner wird ueber den Geschaeftsverlauf wesentlicher Ruhrgas-Beteiligungsgesellschaften berichtet. Abschliessend wird der Jahresabschluss dokumentiert. (orig.)

  15. How Ag Nanospheres Are Transformed into AgAu Nanocages

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, Liane M.; Schurman, Charles A.; Kewalramani, Sumit; Shahjamali, Mohammad M.; Mirkin, Chad A.; Bedzyk, Michael J. (NWU)

    2017-08-23

    Bimetallic hollow, porous noble metal nanoparticles are of broad interest for biomedical, optical and catalytic applications. The most straightforward method for preparing such structures involves the reaction between HAuCl4 and well-formed Ag particles, typically spheres, cubes, or triangular prisms, yet the mechanism underlying their formation is poorly understood at the atomic scale. By combining in situ nanoscopic and atomic-scale characterization techniques (XAFS, SAXS, XRF, and electron microscopy) to follow the process, we elucidate a plausible reaction pathway for the conversion of citrate-capped Ag nanospheres to AgAu nanocages; importantly, the hollowing event cannot be explained by the nanoscale Kirkendall effect, nor by Galvanic exchange alone, two processes that have been previously proposed. We propose a modification of the bulk Galvanic exchange process that takes into account considerations that can only occur with nanoscale particles. This nanoscale Galvanic exchange process explains the novel morphological and chemical changes associated with the typically observed hollowing process.

  16. Self-standing corrugated Ag and Au-nanorods for plasmonic applications

    DEFF Research Database (Denmark)

    Habouti, S.; Mátéfi-Tempfli, M.; Solterbeck, C.-H.

    2011-01-01

    We use home-made Si-supported anodized alumina thin film templates for the electrodeposition of large area self-standing Ag- and Au-nanorod (Au-NR) arrays. The deposition conditions chosen, i.e. electrolyte composition and deposition voltage, lead to a corrugated rod morphology, particularly for Au...

  17. Current–voltage characteristics of Ag, Al, Ni–(n)CdTe junctions

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Schottky barriers of Ag, Al, Ni–(n)CdTe structures have been prepared and studied. The films were prepared by rf sputtering and doped with Cd metal. Diode ideality factor of these junctions are greater than unity and barrier height varies from 0⋅6–0⋅7 eV and are affected by room illumination. Photovoltaic effect of.

  18. Ag2S deposited on oxidized polypropylene as composite material for solar light absorption

    NARCIS (Netherlands)

    Krylovaa, V.; Milbrat, Alexander; Embrachts, A.; Baltrusaitis, Jonas

    2014-01-01

    Thin film metal chalcogenides are superior solar light absorbers and can be combined into a functional material when deposited on polymeric substrates. Ag2S composite materials were synthesized on oxidized polypropylene using chemical bath deposition method and their properties were explored using

  19. Level structure of 105Ag

    International Nuclear Information System (INIS)

    Dewanjee, M.K.; Okon, O.B.; Bakhru, H.; Preiss, I.L.

    1979-01-01

    The excited lvels of 105 Ag have been investigated from the decay of 105 Cd with high-resolution Ge(Li) and Si(Li) detectors as well as with standard scintillation counters. 105 Cd was produced via 106 Cd (n,2n) 105 Cd and 102 Pd (α,n) 105 Cd reactions. Levels of the following energies (in keV) have been established in 105 Ag: 25.5, 53.2, 111.5, 198.0, 973.6, 1014.7, 1032.2, 1096.8, 1364.3, 1413.4, 1635.2, 1670.1, 1718.9, 1923.7, 1933.5, 1986.2, 2144.6, 2257.1, 2326.8, 2333.4, 2419.5, 2449.5, 2472.6, and 2582.0. The use of two Ge(Li) detectors in connection with the PDP-8/I computer and a program for two-dimensional analysis with a 4096-dual analog-to-digital converter revealed the presence of several previously unreported transitions in 105 Ag. Based on the γ-γ and β-γ coincidence results, a consistent lvel scheme for 105 Ag is given. The spin and parity assignments of levels of 105 Ag are discussed. (author)

  20. Conducting mechanism of Ag-diffused Bi-Te based resistive switching devices

    Science.gov (United States)

    Liu, N.; Yan, P.; Li, Y.; Lu, K.; Sun, H. J.; Ji, H. K.; Xue, K. H.; Miao, X. S.

    2018-02-01

    The forming-free resistive switching (RS) and conducting mechanism of Ag-diffused BiTe chalcogenide thin film has been investigated. The mutual diffusion of Ag, Bi and Te elements at the interface is proved to suppress the crystallization of the as-deposited BiTe film. The amorphization of BiTe and the Schottky barrier between Ag and BiTe contribute to high resistance state (HRS) of the switching devices. When switched to low resistance state (LRS), the coexistence of metallic conduction and variable-range hopping is found to be the dominant conduction mechanism. The temperature dependence of LRS exhibits an interesting transport behavior, so that a positive temperature coefficient becomes a negative one at 24 K. Our results help to further understand the conduction mechanism and promote the design for future nonvolatile memory applications.

  1. Highly energetic nonequilibrium microstructure fabricated by ion beam manipulation in the Ag-Pd system

    CERN Document Server

    Li, Z C

    2003-01-01

    An artificial ordered layered structure of high energy was obtained by a form of ion beam manipulation, namely interface-assisted ion beam mixing, of appropriately designed nano-sized Ag-Pd multilayered films, in which the interfacial free energy elevated the Ag-Pd multilayered films to near to the corresponding highly energetic state. Diffraction analysis suggested that the ordered layered structure consisted of two overlapped face-centred-cubic lattices with lattice constants smaller than those of both pure Ag and pure Pd. The growth mechanism was also discussed in terms of a dynamic atomic collision, followed by a relaxation lasting for an extremely short time, involved in the irradiation process.

  2. Highly energetic nonequilibrium microstructure fabricated by ion beam manipulation in the Ag Pd system

    Science.gov (United States)

    Li, Z. C.; Liu, B. X.

    2003-03-01

    An artificial ordered layered structure of high energy was obtained by a form of ion beam manipulation, namely interface-assisted ion beam mixing, of appropriately designed nano-sized Ag-Pd multilayered films, in which the interfacial free energy elevated the Ag-Pd multilayered films to near to the corresponding highly energetic state. Diffraction analysis suggested that the ordered layered structure consisted of two overlapped face-centred-cubic lattices with lattice constants smaller than those of both pure Ag and pure Pd. The growth mechanism was also discussed in terms of a dynamic atomic collision, followed by a relaxation lasting for an extremely short time, involved in the irradiation process.

  3. Nuclear films

    International Nuclear Information System (INIS)

    Malone, Peter.

    1985-01-01

    This booklet is a resource for the study of feature films that highlight the theme of nuclear war. It provides basic credits and brief indication of the theme, treatment, quality and particular notable aspects; and a series of questions raised by the film. Seventy feature films and thirty documentaries are examined

  4. Flexible transparent conductive films combining flexographic printed silver grids with CNT coating

    International Nuclear Information System (INIS)

    Mo, Lixin; Fang, Yi; Zhai, Qingbin; Li, Luhai; Ran, Jun; Yang, Li

    2016-01-01

    A high-performance ITO-free transparent conductive film (TCF) has been made by combining high resolution Ag grids with a carbon nanotube (CNT) coating. Ag grids printed with flexography have a 20 μm line width at a grid interval of 400 μm. The Ag grid/CNT hybrid film exhibits excellent overall performance, with a typical sheet resistance of 14.8 Ω/□ and 82.6% light transmittance at room temperature. This means a 23.98% reduction in sheet resistance and only 2.52% loss in transmittance compared to a pure Ag grid film. Analysis indicates that filling areas between the Ag grids and interconnecting the silver nanoparticles with the CNT coating are the primary reasons for the significantly improved conductivity of the hybrid film that also exhibits excellent flexibility and mechanical strength compared to an ITO film. The hybrid film may fully satisfy the requirements of different applications, e.g. use as the anode of polymer solar cells (PSCs). The J–V curve shows that the power conversion efficiency (PCE) of the PSCs using the Ag grid/CNT hybrid anode is 0.61%, which is 24.5% higher than that of the pure Ag grids with a PCE of 0.49%. Further investigations to improve the performance of the solar cells based on the printed hybrid TCFs are ongoing. (paper)

  5. Compare the photocatalytic properties of nanocomposites with tandem n (AgBr)-n (Ag2CO3) and p (AgCl)-n (Ag2CO3) heterojunctions

    Science.gov (United States)

    Asadollahi, A.; Sohrabnezhad, Sh.; Ansari, R.

    2017-07-01

    In this work, Ag2CO3 nanoparticles (NPs) (as a n-type semiconductor) incorporated in mordenite zeolite (MOR) by a facile precipitation method. Silver halides, AgCl (as a p-type semiconductor) and AgBr (as a n-type semiconductor), with different weight percentage (20%, 40% and 50%) were coupled into Ag2CO3-MOR nanocomposite (NC) and producing a series of novel AgCl/Ag2CO3 (p-n heterojunction)-MOR and AgBr/Ag2CO3 (n-n heterojunction)-MOR NCs. The effects of silver halides on the Ag2CO3-MOR catalyst for the photocatalytic degradation of methyl blue (MB) under visible light irradiation have been investigated. The structure, composition and optical properties of NCs were investigated by UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM). The prepared AgX/Ag2CO3-MOR NCs with the optimal content of AgX (50 wt%) indicated higher photocatalytic activity than that of the Ag2CO3-MOR and Ag2CO3. The cycle experiments on the heterojuctions NCs indicated that photocatalytic stability of AgBr/Ag2CO3-MOR NC was more than AgCl/Ag2CO3-MOR NC in all cycles. On the basis of the experimental results, a possible mechanism for the enhanced photocatalytic activity and photoinduced stability of silver compounds was proposed.

  6. Studies on plasmon characteristics and the local density of states of Au and Ag based nanoparticles

    Science.gov (United States)

    Vinod, M.; Biju, V.; Gopchandran, K. G.

    2016-01-01

    Knowledge about the conductive properties and the local density of states of chemically pure Au, Ag, Ag@Au core-shell and Au-Ag bimetallic nanoparticles is technologically important. Herein, the I-V characteristics and the density of states derived from scanning tunneling microscopy measurements made under atmospheric conditions is reported. The nanoparticles in thin film form used in this study were prepared by laser ablation in water followed by drop and evaporation. The morphology of the surface of the nanostructures was observed from optimizing tunneling current in each case. The monometallic Au and Ag particles shows almost similar current characteristics as well as discrete energy states but the slope of I-V characteristics was different for bimetallic structures. An attempt has also been made to compare the current measurements done in the nanoscale with the surface plasmon characteristics.

  7. Nano-silver mediated polymerization of pyrrole: synthesis and gas sensing properties of polypyrrole (PPy)/Ag nano-composite.

    Science.gov (United States)

    Kate, Kunal H; Damkale, Shubhangi R; Khanna, P K; Jain, G H

    2011-09-01

    Thermal polymerization of pyrrole was performed using silver nitrate as source of silver ions followed by its conversion to Polypyrrole (PPy)/Ag nano-comoposites without using any external oxidizing agent or solvent. The formation of PPy was monitored by UV-Visible absorption spectroscopy showing a band at approximately 464 nm. XRD measurement confirmed characteristic peaks for face centered cubic (fcc) silver and presence of PPy at 2 theta of approximately 23 degrees suggesting the formation of PPy/Ag nanocomposite. Transmission electron microscopy (TEM) images showed non-aggregated spherical Ag nano-particles of about 5-10 nm. PPy/Ag thick film acts as a NH3 sensor at 100 degrees C, a H2S sensor at 250 degrees C and CO2 sensor at 350 degrees C. The thick films showed capability to recognize various gases at different operating temperature.

  8. One-pot synthesis of Ag-SiO2-Ag sandwich nanostructures

    International Nuclear Information System (INIS)

    Li Chaorong; Mei Jie; Li Shuwen; Lu Nianpeng; Wang Lina; Chen Benyong; Dong Wenjun

    2010-01-01

    Ag-SiO 2 -Ag sandwich nanostructures were prepared by a facile one-pot synthesis method. The Ag core, SiO 2 shell and Ag nanoparticle shell were all synthesized with polyvinylpyrrolidone, catalysed by ammonia, in the one-pot reaction. The polyvinylpyrrolidone, acting as a smart reducing agent, reduced the Ag + to Ag cores and Ag shells separately. Furthermore, the polyvinylpyrrolidone served as a protective agent to prevent the silver cores from aggregating. The SiO 2 shell and outer layer Ag nanoparticles were obtained when tetraethyl orthosilicate and ammonia were added to the silver core solution. Ammonia, acting as the catalyst, accelerated the hydrolysis of the tetraethyl orthosilicate to SiO 2 , which coated the silver cores. Furthermore, Ag(NH 3 ) 2 + ions were formed when aqueous ammonia was added to the solution, which increased the reduction capability. Then the polyvinylpyrrolidone reduced the Ag(NH 3 ) 2 + ions to small Ag nanoparticles on the surface of the Ag-SiO 2 and formed Ag-SiO 2 -Ag sandwich structures with a standard deviation of less than 4%. This structure effectively prevented the Ag nanoparticles on the silica surface from aggregating. Furthermore, the Ag-SiO 2 -Ag sandwich structures showed good catalysis properties due to the large surface area/volume value and activity of surface atoms of Ag particles.

  9. Electrochemical fabrication of nanoporous polypyrrole thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li Mei [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China); Yuan Jinying [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China)], E-mail: yuanjy@mail.tsinghua.edu.cn; Shi Gaoquan [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China)], E-mail: gshi@mail.tsinghua.edu.cn

    2008-04-30

    Polypyrrole thin films with pores in nanometer scale were synthesized by direct electrochemical oxidation of pyrrole in a mixed electrolyte of isopropyl alcohol, boron trifluoride diethyl etherate, sodium dodecylsulfonate and poly(ethylene glycol) using well-aligned ZnO nanowires arrays as templates. The thin films exhibit high conductivity of ca. {sigma}{sub rt} {approx} 20.5 s/cm and can be driven to bend during redox processes in 1.0 M lithium perchlorate aqueous solution. The movement rate of an actuator based on this nanoporous film was measured to be over 90{sup o}/s at a driving potential of 0.8 V (vs. Ag/AgCl)

  10. Silver Doped TiO2 Nanostructure Composite Photocatalyst Film Synthesized by Sol-Gel Spin and Dip Coating Technique on Glass

    Directory of Open Access Journals (Sweden)

    Mojtaba Nasr-Esfahani

    2008-01-01

    Full Text Available New composite films (P25SGF-MC-Ag, MPC500SGF-MC-Ag, and ANPSGF-MC-Ag have been synthesized by a modified sol-gel method using different particle sizes of TiO2 powder and silver addition. Nanostructure TiO2/Ag composite thin films were prepared by a sol-gel spin and dip coating technique. while, by introducing methyl cellulose (MC porous, TiO2/Ag films were obtained after calcining at a temperature of 500°C. The as-prepared TiO2 and TiO2/Ag films were characterized by X-ray diffractometry, and scanning electron microscopy to reveal the structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methyl orange (MO under UV irradiation. After 500°C calcination, the microstructure of MC-TiO2 film without Ag addition exhibited a microstructure, while significant sintering effect was noticed with Ag additions and the films exhibited a porous microstructure. Nanostructure anatase-phase TiO2 can be observed with respect to the sharpening of XRD diffraction peaks. The photodegradation of porous TiO2 deposited with 5×10−4 mol Ag exhibited the best photocatalytic efficiency, where 69% methyl orange can be decomposed after UV exposure for 1 hour.

  11. Improved galvanic replacement growth of Ag microstructures on Cu micro-grid for enhanced SERS detection of organic molecules

    International Nuclear Information System (INIS)

    Guo, Tian-Long; Li, Ji-Guang; Sun, Xudong; Sakka, Yoshio

    2016-01-01

    Galvanic growth of Ag nano/micro-structures on Cu micro-grid was systematically studied for surface-enhanced Raman scattering (SERS) applications. Detailed characterizations via FE-SEM and HR-TEM showed that processing parameters, (reaction time, Ag + concentration, and PVP addition) all substantially affect thermodynamics/kinetics of the replacement reaction to yield substrates of significantly different microstructures/homogeneities and thus varied SERS performances (sensitivity, enhancement factor, and reproducibility) of the Ag substrates in the detection of R6G analyte. PVP as an additive was shown to notably alter nucleation/growth behaviors of the Ag crystals and promote the deposition of dense and uniform Ag films of nearly monodisperse polyhedrons/nanoplates through suppressing dendrites crystallization. Under optimized synthesis (50 mM of Ag + , 30 s of reaction, and 700 wt.% of PVP), Ag substrates exhibiting a high Raman signal enhancement factor of ~ 1.1 × 10 6 and a low relative standard deviation of ~ 0.13 in the repeated detection of 10 μM R6G were obtained. The facile deposition and excellent performance reported in this work may allow the Ag microstructures to find wider SERS applications. Moreover, growth mechanisms of the different Ag nano/micro-structures were discussed based on extensive FE-SEM and HR-TEM analysis. - Highlights: • A facile synthetic technique of growing SERS active Ag substrates onto Cu micro-grid has been systematically studied. • Changing processing parameters has yielded Ag crystals of various morphologies and SERS performances. • PVP additive was observed to suppress Ag dendrite crystallization for nearly monodispersed Ag polyhedrons/nanoplates. • PVP modified SERS substrate exhibits excellent EF and RSD values in the repeated detection of 10 μM R6G analyte.

  12. Physico-chemical and microstructural properties of fish gelatin/agar bio-based blend films.

    Science.gov (United States)

    Mohajer, Setareh; Rezaei, Masoud; Hosseini, Seyed Fakhreddin

    2017-02-10

    This study was conducted with the aim of improving the physico-chemical properties of fish gelatin (FG) based films. For this purpose, FG was blended with agar (AG) in different compositions to acquire biodegradable films (100:0, 80:20, 60:40, 50:50 & 0:100, FG:AG). The obtained results showed that the AG addition strongly increased the film rigidity and resistance to fracture, while reducing the film stretchability, mainly at 50FG: 50AG ratio. AG incorporation greatly reduced the water vapor permeability (WVP) and solubility of gelatin films, as this decline for the blend film with a 50:50 ratio of biopolymers has been about 41% and 66%, respectively (pfilms are the reduction of the UV-transmittance. Both polymers showed good compatibility, as demonstrated by scanning electron microscopy (SEM) and atomic force microscopy (AFM) images. Therefore, the blend composition influenced the properties of FG/AG bio-based films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic); Goncharova, I. [Department of Analytical Chemistry, Institute of Chemical Technology, Prague (Czech Republic); Rimpelova, S. [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague (Czech Republic); Kolarova, K.; Svanda, J.; Svorcik, V. [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic)

    2015-04-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag{sup +} had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag{sup +} doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching.

  14. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    International Nuclear Information System (INIS)

    Lyutakov, O.; Goncharova, I.; Rimpelova, S.; Kolarova, K.; Svanda, J.; Svorcik, V.

    2015-01-01

    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag + had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag + doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching

  15. Brush-paintable and highly stretchable Ag nanowire and PEDOT:PSS hybrid electrodes.

    Science.gov (United States)

    Lim, Ji-Eun; Lee, Sang-Mok; Kim, Seok-Soon; Kim, Tae-Woong; Koo, Hyun-Woo; Kim, Han-Ki

    2017-10-31

    Highly transparent and stretchable Ag nanowire (NW)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hybrid electrodes were prepared on stretchable polyurethane substrates by using simple and cost-effective brush painting technique. The optimized Ag NW/PEDOT:PSS hybrid electrode showed a sheet resistance of 19.7 Ohm/square and a high optical transmittance of 88.64% comparable to conventional ITO electrode. It was found that shear stress of the paintbrush led to an effective lateral alignment of the Ag NWs into the PEDOT:PSS matrix during brush painting process. In addition, we investigated mechanical properties of the brush painted Ag NW/PEDOT:PSS hybrid electrode using inner/outer bending test, stretching tests, twisting test and rolling test in detail. The optimized brush painted Ag NW/PEDOT:PSS electrode showed a higher strain (~30%) than brush painted Ag NW or sputtered ITO electrode. Furthermore, we demonstrated the outstanding stretchability of brush painted Ag NW/PEDOT:PSS hybrid electrode in two applications: stretchable interconnectors and stretchable electrodes for stretchable and wearable thin film heaters. These results provide clear evidence for its potential and widespread applications in next-generation, stretchable displays, solar cells, and electronic devices.

  16. Microstructure, Surface Characterization, and Electrochemical Behavior of New Ti-Zr-Ta-Ag Alloy in Simulated Human Electrolyte

    Science.gov (United States)

    Vasilescu, Cora; Drob, Silviu Iulian; Osiceanu, Petre; Moreno, Jose Maria Calderon; Prodana, Mariana; Ionita, Daniela; Demetrescu, Ioana; Marcu, Maria; Popovici, Ion Alexandru; Vasilescu, Ecaterina

    2017-01-01

    A new Ti-20Zr-5Ta-2Ag alloy was elaborated and characterized regarding its microstructure, its native passive film composition and thickness, its surface wettability, its electrochemical behavior in Ringer solution of different pH values, and its ion release. The new alloy has a bi-phase, α + β, acicular, homogeneous microstructure (scanning electron microscopy (SEM)). Its native passive film (12-nm thicknesses) consists of the protective TiO2, ZrO2, and Ta2O5 oxides, Ti and Ta suboxides, and metallic Ag (X-ray photoelectron spectroscopy (XPS) data). The alloy possesses high hydrophilic properties. The main electrochemical parameters of the new alloy are superior to those of Ti as a result of the beneficial influence of Zr, Ta, and Ag alloying elements, which reinforce its native passive film. Electrochemical impedance spectroscopy (EIS) spectra in Ringer solutions for the new alloy displayed better values of impedances and phase angles, proving a more insulate passive film than that on the Ti surface. The main corrosion parameters for the new Ti-20Zr-5Ta-2Ag alloy are more favorable by about 25 to 38 times than those of Ti, confirming extremely resistant passive film. The new Ti-20Zr-5Ta-2Ag alloy releases into Ringer solution low quantities of Ti4+, Zr4+ metallic ions (inductively coupled plasma-mass spectroscopy (ICP-MS)). The Ag+ ions are released in low quantity, conferring to this alloy's low antibacterial activity. All experimental results show that the new Ti-20Zr-5Ta-2Ag alloy fulfills the requirements for biocompatibility, corrosion resistance, and antibacterial protection.

  17. Preparation and application of agar/alginate/collagen ternary blend functional food packaging films.

    Science.gov (United States)

    Wang, Long-Feng; Rhim, Jong-Whan

    2015-09-01

    Ternary blend agar/alginate/collagen (A/A/C) hydrogel films with silver nanoparticles (AgNPs) and grapefruit seed extract (GSE) were prepared. Their performance properties, transparency, tensile strength (TS), water vapor permeability (WVP), water contact angle (CA), water swelling ratio (SR), water solubility (WS), and antimicrobial activity were determined. The A/A/C film was highly transparent, and both AgNPs and GSE incorporated blend films (A/A/C(AgNPs) and A/A/C(GSE)) exhibited UV-screening effect, especially, the A/A/C(GSE) film had high UV-screening effect without sacrificing the transmittance. In addition, the A/A/C blend films formed efficient hydrogel film with the water holding capacity of 23.6 times of their weight. Both A/A/C(AgNPs) and A/A/C(GSE) composite films exhibited strong antimicrobial activity against both Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli) food-borne pathogenic bacteria. The test results of fresh potatoes packaging revealed that all the A/A/C ternary blend films prevented forming of condensed water on the packaged film surface, both A/A/C(AgNPs) and A/A/C(GSE) composite films prevented greening of potatoes during storage. The results indicate that the ternary blend hydrogel films incorporated with AgNPs or GSE can be used not only as antifogging packaging films for highly respiring fresh agriculture produce, but also as an active food packaging system utilizing their strong antimicrobial activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. AGS experiments---1987, 1988, 1989

    International Nuclear Information System (INIS)

    Depken, J.C.

    1989-04-01

    This report contains: Experimental Areas Layout; Table of Beam Parameters and Fluxes; Experiment Schedule ''as run''; Experiment Long Range Schedule; A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Publications of AGS experiments; and List of experimenters

  19. AGS 20th anniversary celebration

    Energy Technology Data Exchange (ETDEWEB)

    Baggett, N.V. (ed.)

    1980-05-22

    On May 22, 1980, a symposium was held at Brookhaven to celebrate the 20th birthday of the AGS, to recall its beginnings, and to review major discoveries that have been made with its beams. The talks at the symposium are recorded in this volume.

  20. AGS experiments, 1988, 1989, 1990

    International Nuclear Information System (INIS)

    Depken, J.C.

    1991-04-01

    This report contains: experimental areas layout; table of beam parameters and fluxes; experiment schedule ''as run''; experiment long range schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS experiments; and list of experimenters

  1. AGS experiments: 1985, 1986, 1987

    International Nuclear Information System (INIS)

    Depken, J.C.

    1987-01-01

    This report contains: Experimental areas layout, table of beam parameters and fluxes, experiment schedule ''as run,'' experiment long range schedule, a listing of experiments by number, two-page summaries of each experiment, also ordered by number, and publications of AGS experiments, 1982-1987

  2. AGS 20th anniversary celebration

    International Nuclear Information System (INIS)

    Baggett, N.V.

    1980-01-01

    On May 22, 1980, a symposium was held at Brookhaven to celebrate the 20th birthday of the AGS, to recall its beginnings, and to review major discoveries that have been made with its beams. The talks at the symposium are recorded in this volume

  3. Nanostructured films of metal particles obtained by laser ablation

    International Nuclear Information System (INIS)

    Muniz-Miranda, M.; Gellini, C.; Giorgetti, E.; Margheri, G.; Marsili, P.; Lascialfari, L.; Becucci, L.; Trigari, S.; Giammanco, F.

    2013-01-01

    Colloidal dispersions of silver and gold nanoparticles were obtained in pure water by ablation with nanosecond pulsed laser. Then, by filtration of the metal particles on alumina, we fabricated nanostructured films, whose surface morphology was examined by atomic force microscopy (AFM) and related to surface-enhanced Raman scattering (SERS) after adsorption of adenine. - Highlights: • Ag and Au colloidal nanoparticles were obtained by laser ablation. • Nanostructured Ag and Au films were fabricated by filtration of metal nanoparticles. • Surface morphology of metal films was investigated by atomic force microscopy. • Surface-enhanced Raman spectra (SERS) of adenine on metal films were obtained. • SERS enhancements were related to the surface roughness of the metal films

  4. Quasi-Instantaneous Bacterial Inactivation on Cu-Ag Nanoparticulate 3D Catheters in the Dark and Under Light: Mechanism and Dynamics.

    Science.gov (United States)

    Rtimi, Sami; Sanjines, Rosendo; Pulgarin, Cesar; Kiwi, John

    2016-01-13

    The first evidence for Cu-Ag (50%/50%) nanoparticulate hybrid coatings is presented leading to a complete and almost instantaneous bacterial inactivation in the dark (≤5 min). Dark bacterial inactivation times on Cu-Ag (50%/50%) were observed to coincide with the times required by actinic light irradiation. This provides the evidence that the bimetal Cu-Ag driven inactivation predominates over a CuO/Cu2O and Ag2O oxides inducing a semiconductor driven behavior. Cu- or Ag-coated polyurethane (PU) catheters led to bacterial inactivation needing about ∼30 min. The accelerated bacterial inactivation by Cu-Ag coated on 3D catheters sputtered was investigated in a detailed way. The release of Cu/Ag ions during bacterial inactivation was followed by inductively coupled plasma mass-spectrometry (ICP-MS) and the amount of Cu and Ag-ions released were below the cytotoxicity levels permitted by the sanitary regulations. By stereomicroscopy the amount of live/dead cells were followed during the bacterial inactivation time. By Fourier transform infrared spectroscopy (FTIR), the systematic shift of the -(CH2) band stretching of the outer lipo-polysaccharide bilayer (LPS) was followed to monitor the changes leading to cell lysis. A hydrophobic to hydrophilic transformation of the Cu-Ag PU catheter surface under light was observed within 30 min followed concomitantly to a longer back transformation to the hydrophobic initial state in the dark. Physical insight is provided for the superior performance of Cu-Ag films compared to Cu or Ag films in view of the drastic acceleration of the bacterial inactivation observed on bimetal Cu-Ag films coating PU catheters. A mechanism of bacterial inactivation is suggested that is consistent with the findings reported in this study.

  5. Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers

    KAUST Repository

    Pang, Maolin

    2010-08-11

    Ag2S and Ag are important functional materials that have received considerable research interest in recent years. In this work, we develop a solution-based synthetic method to combine these two materials into hollow/solid Ag2S/Ag heterodimers at room temperature. Starting from monodisperse Cu2O solid spheres, CuS hollow spheres can be converted from Cu2O through a modified Kirkendall process, and the obtained CuS can then be used as a solid precursor for preparation of the Ag2S/Ag heterodimers through ion exchange and photo-assisted reduction. We have found that formation of the Ag2S/Ag heterodimers is instantaneous, and the size of Ag nanocrystals on the hollow spheres of Ag2S can be controlled by changing the concentration and power of reducing agents in the synthesis. The growth of Ag nanoparticles on hollow spheres of Ag2S in the dimers is along the [111] direction of the silver crystal; the light absorption properties have also been investigated. Furthermore, coupling or tripling of Ag2S/Ag heterodimers into dumbbell-like trimers ((Ag 2S)2/Ag, linear) and triangular tetramers ((Ag 2S)3/Ag, coplanar) can also be attained at 60°C by adding the bidentate ligand ethylenediamine as a cross-linking agent. To test the applicability of this highly asymmetric dipolar composite, photocatalytic inactivation of Escherichia coli K-12 in the presence of the as-prepared Ag 2S/Ag heterodimers has been carried out under UV irradiation. The added Ag2S/Ag heterodimers show good chemical stability under prolonged UV irradiation, and no appreciable solid dissolution is found. Possible mechanisms regarding the enhanced antibacterial activity have also been addressed. © 2010 American Chemical Society.

  6. Theoretical and experimental study of metastable solid solutions and phase stability within the immiscible Ag-Mo binary system

    Science.gov (United States)

    Sarakinos, K.; Greczynski, G.; Elofsson, V.; Magnfält, D.; Högberg, H.; Alling, B.

    2016-03-01

    Metastable solid solutions are phases that are synthesized far from thermodynamic equilibrium and offer a versatile route to design materials with tailor-made functionalities. One of the most investigated classes of metastable solid solutions with widespread technological implications is vapor deposited ternary transition metal ceramic thin films (i.e., nitrides, carbides, and borides). The vapor-based synthesis of these ceramic phases involves complex and difficult to control chemical interactions of the vapor species with the growing film surface, which often makes the fundamental understanding of the composition-properties relations a challenging task. Hence, in the present study, we investigate the phase stability within an immiscible binary thin film system that offers a simpler synthesis chemistry, i.e., the Ag-Mo system. We employ magnetron co-sputtering to grow Ag1-xMox thin films over the entire composition range along with x-ray probes to investigate the films structure and bonding properties. Concurrently, we use density functional theory calculations to predict phase stability and determine the effect of chemical composition on the lattice volume and the electronic properties of Ag-Mo solid solutions. Our combined theoretical and experimental data show that Mo-rich films (x ≥ ˜0.54) form bcc Mo-Ag metastable solid solutions. Furthermore, for Ag-rich compositions (x ≤ ˜0.21), our data can be interpreted as Mo not being dissolved in the Ag fcc lattice. All in all, our data show an asymmetry with regards to the mutual solubility of Ag and Mo in the two crystal structures, i.e., Ag has a larger propensity for dissolving in the bcc-Mo lattice as compared to Mo in the fcc-Ag lattice. We explain these findings in light of isostructural short-range clustering that induces energy difference between the two (fcc and bcc) metastable phases. We also suggest that the phase stability can be explained by the larger atomic mobility of Ag atoms as compared to that

  7. Networks of ultra-fine Ag nanocrystals in a Teflon AF (registered) matrix by vapour phase e-beam-assisted deposition

    International Nuclear Information System (INIS)

    Biswas, A; Bayer, I S; Marken, B; Pounds, T D; Norton, M G

    2007-01-01

    We have fabricated nanocomposite thin films comprising silver (Ag) nanoparticles dispersed in a Teflon AF (registered) polymer matrix using electron-beam-assisted physical vapour deposition. Four different Ag nanoparticle volume fillings (20%, 35%, 70% and 75%) were achieved by varying the relative metal-polymer evaporation rates with the formation of highly crystalline Ag nanoparticles regardless of the filling ratio. The present fabrication technique allowed full control over dispersion uniformity of nanoparticles in the polymer network. At 20% and 35% metal volume fillings, the nanocomposite film morphology consists of a uniformly dispersed assembly of equiaxed isolated Ag nanoparticles. At higher metal volume fractions the nanocomposite structures displayed two different and unique Ag nanoparticle arrangements within the polymer matrix. In particular, at 70% metal filling, the formation of irregularly shaped clusters of individually assembled nanocrystals was observed. At a slightly higher volume filling (75%), larger irregularly shaped Ag nanocrystals that appeared to be the result of coalescence and grain growth were observed. Finally, a composite theory developed by Tandon and Weng was used to estimate various elastic properties of the nanocomposite films. At high metal filling, the reinforcing effect of the Ag nanoparticles was reflected as approximately a sixfold increase in the elastic modulus compared to the virgin polymer film. Possible applications of such ultra-fine metal nanoparticles networks are discussed