WorldWideScience

Sample records for filled lignocellulosic panel

  1. Thermoplastic polyolefins as formaldehyde free binders in highly filled lignocellulosic panel boards: using glycerine as a processing aid in kenaf fiber polypropylene boards

    Directory of Open Access Journals (Sweden)

    Anand Ramesh Sanadi

    2008-12-01

    Full Text Available A new technique was developed to make highly loaded (up to 95% formaldehyde free natural fiber boards. The purpose of the paper is to report a broad study on 85% kenaf boards using linear thermoplastic polymers as the binder in preparing the boards to determine if these materials have potential in commercial applications by comparing them to other commercial materials. In these materials, linear thermoplastic polymer chains act as an adhesive and the product resembles a typical wood based panel (e.g., phenol formaldehyde fiber board. The process involved the use of small amount of glycerine in the fiber to enhance processibility in a thermo-kinetic mixer followed by hot pressing. In this paper, we report the properties of 85% by weight kenaf fiber boards using polypropylene as the adhesive. A maleated polypropylene was used to improve the adhesion and stress transfer between the adhesive and kenaf fiber. The addition of 2% by weight of glycerine based on the dry weight of kenaf fiber resulted in the best properties of the boards. Differential scanning calorimetric studies suggested that the glycerine had a little effect on the percent crystallinity of the matrix. Dynamic mechanical tests of the 85% boards showed some differences compared to conventional 60% by weight kenaf-PP composites. The 85% kenaf boards had a flexural strength of 75 MPa and a flexural modulus of 6.8 GPa with a specific gravity of 1.24. These properties are comparable to standard formaldehyde free high density hardboards with flexural strengths of 48.3 MPa and flexural modulus of 5.5 GPa, and a specific gravity of 1.28. This paper gives a broad overview of an initial study of these new materials.

  2. Thermal Performance Evaluation of Walls with Gas Filled Panel Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Desjarlais, Andre Omer [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Atchley, Jerald Allen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-11-01

    Gas filled insulation panels (GFP) are very light weight and compact (when uninflated) advanced insulation products. GFPs consist of multiple layers of thin, low emittance (low-e) metalized aluminum. When expanded, the internal, low-e aluminum layers form a honeycomb structure. These baffled polymer chambers are enveloped by a sealed barrier and filled with either air or a low-conductivity gas. The sealed exterior aluminum foil barrier films provide thermal resistance, flammability protection, and properties to contain air or a low conductivity inert gas. This product was initially developed with a grant from the U.S. Department of Energy. The unexpanded product is nearly flat for easy storage and transport. Therefore, transportation volume and weight of the GFP to fill unit volume of wall cavity is much smaller compared to that of other conventional insulation products. This feature makes this product appealing to use at Army Contingency Basing, when transportation cost is significant compared to the cost of materials. The objective of this study is to evaluate thermal performance of walls, similar to those used at typical Barracks Hut (B-Hut) hard shelters, when GFPs are used in the wall cavities. Oak Ridge National Laboratory (ORNL) tested performance of the wall in the rotatable guarded hotbox (RGHB) according to the ASTM C 1363 standard test method.

  3. Development and evaluation of aerogel-filled BMI sandwich panels for thermal barrier applications

    Directory of Open Access Journals (Sweden)

    A. Dineshkumar

    2016-07-01

    Full Text Available This study details a fabrication methodology envisaged to manufacture Glass/BMI honeycomb core aerogel-filled sandwich panels. Silica aerogel granules are used as core fillers to provide thermal insulation properties with little weight increase. Experimental heat transfer studies are conducted on these panels to study the temperature distribution between their two surfaces. Numerical studies are also carried out to validate the results. Despite exhibiting good thermal shielding capabilities, the Glass/BMI sandwich panels are found to oxidise at 180 ºC if exposed directly to heat. In order to increase the temperature bearing capacity and the operating temperature range for these panels, a way of coating them from outside with high temperature spray paint was tried. With a silicone-based coating, the temperature sustainability of these sandwich panels is found to increase to 350 ºC. This proved the effectiveness of the formed manufacturing process, selected high temperature coating, the coating method as well as the envisaged sandwich panel concept.

  4. The efficiency of night insulation using aerogel-filled polycarbonate panels during the heating season

    Science.gov (United States)

    Adelsberger, Kathleen

    Energy is the basis for modern life. All modern technology from a simple coffee maker to massive industrial facilities is powered by energy. While the demand for energy is increasing, our planet is suffering from the consequences of using fossil fuels to generate electricity. Therefore, the world is looking at clean energy and solar power to minimize this effect on our environment. However, saving energy is extremely important even for clean energy. The more we save the less we have to generate. Heat retention in buildings is one step towards achieving passive heating. Therefore, efforts are made to prevent heat from escaping buildings through the glass during cold nights. Movable insulation is a way to increase the insulation value of the glass to reduce heat loss towards the outdoor. This thesis examines the performance of the aerogel-filled polycarbonate movable panels in the Ecohawks building, a building located on the west campus of The University of Kansas. Onsite tests were performed using air and surface temperature sensors to determine the effectiveness of the system. Computer simulations were run by Therm 7.2 simulation software to explore alternative design options. A cost analysis was also performed to evaluate the feasibility of utilizing movable insulation to reduce the heating bills during winter. Results showed that sealed movable insulation reduces heat loss through the glazing by 67.5%. Replacing aerogel with XPS panels reduces this percentage to 64.3%. However, it reduces the cost of the insulation material by 98%.

  5. High-performance, non-CFC-based thermal insulation: Gas filled panels

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.T.; Arasteh, D.; Selkowitz, S.

    1992-04-01

    Because of the forthcoming phase-out of CFCs and to comply with the more stringent building and appliance energy-use standards, researchers in industry and in the public sector are pursuing the development of non-CFC-based, high-performance insulation materials. This report describes the results of research and development of one alternative insulation material: highly insulating GFPs. GFPs insulate in two ways: by using a gas barrier envelope to encapsulate a low-thermal-conductivity gas or gas mixture (at atmospheric pressure), and by using low-emissivity baffles to effectively eliminate convective and radiative heat transfer. This approach has been used successfully to produce superinsulated windows. Unlike foams or fibrous insulations, GFPs are not a homogeneous material but rather an assembly of specialized components. The wide range of potential applications of GFPs (appliances, manufactured housing, site-built buildings, refrigerated transport, and so on) leads to several alternative embodiments. While the materials used for prototype GFPs are commercially available, further development of components may be necessary for commercial products. With the exception of a description of the panels that were independently tested, specific information concerning panel designs and materials is omitted for patent reasons; this material is the subject of a patent application by Lawrence Berkeley Laboratory.

  6. Production Process of Wood-based Panel Door Leaves Filled with Honeycomb Paper%蜂窝纸填充人造板门扇生产工艺

    Institute of Scientific and Technical Information of China (English)

    董明光; 李军伟

    2013-01-01

      分析了蜂窝纸填充人造板门扇的结构及用料,结合昆明红塔木业的蜂窝纸填充人造板门扇生产实际,着重阐述了人造板门扇的生产工艺,探讨了门扇生产中存在的质量问题及其解决措施。%  The structure and materials of wood-based panel door leaves filled with honeycomb paper are analyzed. Based on the actual production of wood-based panel door leaves filled with honeycomb paper of Kunming Hongta Wood Industry, focus is placed on the production process of wood-based panel door leaves and the quality problems existing in the production of wood-based panel door leaves and relevant solutions to such problems are discussed.

  7. Grass Lignocellulose

    Science.gov (United States)

    Akin, Danny E.

    Grass lignocelluloses are limited in bioconversion by aromatic constituents, which include both lignins and phenolic acids esters. Histochemistry, ultraviolet absorption microspectrophotometry, and response to microorganisms and specific enzymes have been used to determine the significance of aromatics toward recalcitrance. Coniferyl lignin appears to be the most effective limitation to biodegradation, existing in xylem cells of vascular tissues; cell walls with syringyl lignin, for example, leaf sclerenchyma, are less recalcitrant. Esterified phenolic acids, i.e., ferulic and p-coumaric acids, often constitute a major chemical limitation in nonlignified cell walls to biodegradation in grasses, especially warm-season species. Methods to improve biodegradability through modification of aromatics include: plant breeding, use of lignin-degrading white-rot fungi, and addition of esterases. Plant breeding for new cultivars has been especially effective for nutritionally improved forages, for example, bermudagrasses. In laboratory studies, selective white-rot fungi that lack cellulases delignified the lignocellulosic materials and improved fermentation of residual carbohydrates. Phenolic acid esterases released p-coumaric and ferulic acids for potential coproducts, improved the available sugars for fermentation, and improved biodegradation. The separation and removal of the aromatic components for coproducts, while enhancing the availability of sugars for bioconversion, could improve the economics of bioconversion.

  8. Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

    1995-01-01

    Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

  9. Lignocellulose-based bioproducts

    CERN Document Server

    Karimi, Keikhosro

    2015-01-01

    This volume provides the technical information required for the production of biofuels and chemicals from lignocellulosic biomass. It starts with a brief overview of the importance, applications, and production processes of different lignocellulosic products. Further chapters review the perspectives of waste-based biofuels and biochemicals; the pretreatment of lignocellulosic biomass for biofuel production; cellulolytic enzyme systems for the hydrolysis of lignocelluloses; and basic and applied aspects of the production of bioethanol, biogas, biohydrogen, and biobutanol from lignocelluloses.

  10. Development and Implementation of Team-Based Panel Management Tools: Filling the Gap between Patient and Population Information Systems.

    Science.gov (United States)

    Watts, Brook; Lawrence, Renée H; Drawz, Paul; Carter, Cameron; Shumaker, Amy Hirsch; Kern, Elizabeth F

    2016-08-01

    Effective team-based models of care, such as the Patient-Centered Medical Home, require electronic tools to support proactive population management strategies that emphasize care coordination and quality improvement. Despite the spread of electronic health records (EHRs) and vendors marketing population health tools, clinical practices still may lack the ability to have: (1) local control over types of data collected/reports generated, (2) timely data (eg, up-to-date data, not several months old), and accordingly (3) the ability to efficiently monitor and improve patient outcomes. This article describes a quality improvement project at the hospital system level to develop and implement a flexible panel management (PM) tool to improve care of subpopulations of patients (eg, panels of patients with diabetes) by clinical teams. An in-depth case analysis approach is used to explore barriers and facilitators in building a PM registry tool for team-based management needs using standard data elements (eg, laboratory values, pharmacy records) found in EHRs. Also described are factors that may contribute to sustainability; to date the tool has been adapted to 6 disease-focused subpopulations encompassing more than 200,000 patients. Two key lessons emerged from this initiative: (1) though challenging, team-based clinical end users and information technology needed to work together consistently to refine the product, and (2) locally developed population management tools can provide efficient data tracking for frontline clinical teams and leadership. The preliminary work identified critical gaps that were successfully addressed by building local PM registry tools from EHR-derived data and offers lessons learned for others engaged in similar work. (Population Health Management 2016;19:232-239).

  11. Method for pretreating lignocellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  12. Using loose-fill perlite with normal weight precast wall panels to lower the cost, time of construction projects, and to provide an alternative to lightweight concrete

    Science.gov (United States)

    Al kulabi, Ahmed Kamil

    Lightweight concrete has been used in construction because of its properties, such as thermal, and fire resistances although it is more expensive and less available than normal weight concrete. One way to save time, cost, and to provide an alternative to lightweight concrete in construction projects is to reduce the number of installed insulations on precast wall panels and to improve the properties of normal weight concrete panels, respectively. These goals can be achieved by improving the four properties of precast panels, such as thermal resistance, fire resistance, heat capacity, and sound insulation by using perlite as insulation. The main goals of this research are getting buildings constructed or modified in less time and cost by producing superior wall panels and improving the properties of normal weight panels. Superior wall panels are new panels that provide the four properties listed above. Precast panels with different cross sections, concrete type, and different amounts of perlite will be investigated to observe the impact of each factor on the mentioned properties. The cost of each panel will be studied, and analytical methods will be used to find the optimum panel that provides the four mentioned properties with least cost. Moreover, theoretical methods will be applied to calculate the four properties for each panel. The preliminary theoretical calculations approved a good improvement in the four properties. In summary, the four properties of precast panels can be improved, time, and cost of construction can be reduced by using perlite as insulation.

  13. Performance of powder-filled evacuated panel insulation in a manufactured home roof cavity: Tests in the Large Scale Climate Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, T.W.; Kosny, J.; Childs, P.W.

    1996-03-01

    A full-scale section of half the top of a single-wide manufactured home has been studied in the Large Scale Climate Simulator (LSCS) at the Oak Ridge National Laboratory. A small roof cavity with little room for insulation at the eaves is often the case with single-wide units and limits practical ways to improve thermal performance. The purpose of the current tests was to obtain steady-state performance data for the roof cavity of the manufactured home test section when the roof cavity was insulated with fiberglass batts, blown-in rock wool insulation or combinations of these insulations and powder-filled evacuated panel (PEP) insulation. Four insulation configurations were tested: (A) a configuration with two layers of nominal R{sub US}-7 h {center_dot} ft{sup 2} {center_dot} F/BTU (R{sub SI}-1.2 m{sup 2} {center_dot} K/W) fiberglass batts; (B) a layer of PEPs and one layer of the fiberglass batts; (C) four layers of the fiberglass batts; and (D) an average 4.1 in. (10.4 cm) thick layer of blown-in rock wool at an average density of 2.4 lb/ft{sup 3} (38 kg/m{sup 3}). Effects of additional sheathing were determined for Configurations B and C. With Configuration D over the ceiling, two layers of expanded polystyrene (EPS) boards, each about the same thickness as the PEPs, were installed over the trusses instead of the roof. Aluminum foils facing the attic and over the top layer of EPS were added. The top layer of EPS was then replaced by PEPs.

  14. Biogas from lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Berglund Odhner, Peter; Schabbauer, Anna [Grontmij AB, Stockholm (Sweden); Sarvari Horvath, Ilona; Mohseni Kabir, Maryam [Hoegskolan i Boraas, Boraas (Sweden)

    2012-01-15

    Grontmij AB has cooperated with the University of Boraas to evaluate the technological and economical possibilities for biogas production from substrates containing lignocellulose, such as forest residues, straw and paper. The state of knowledge regarding biogas production from cellulosic biomass has been summarized. The research in the field has been described, especially focusing on pretreatment methods and their results on increased gas yields. An investigation concerning commercially available pretreatment methods and the cost of these technologies has been performed. An economic evaluation of biogas production from lignocellulosic materials has provided answers to questions regarding the profitability of these processes. Pretreatment with steam explosion was economically evaluated for three feedstocks - wood, straw and paper - and a combination of steam explosion and addition of NaOH for paper. The presented costs pertain to costs for the pretreatment step as it, in this study, was assumed that the pretreatment would be added to an existing plant and the lignocellulosic substrates would be part of a co-digestion process. The results of the investigation indicate that it is difficult to provide a positive net result when comparing the cost of pretreatment versus the gas yield (value) for two of the feedstocks - forest residues and straw. This is mainly due to the high cost of the raw material. For forest residues the steam pretreatment cost exceeded the gas yield by over 50 %, mainly due to the high cost of the raw material. For straw, the production cost was similar to the value of the gas. Paper showed the best economic result. The gas yield (value) for paper exceeded the pretreatment cost by 15 %, which makes it interesting to study paper further.

  15. Enzymatic Hydrolysis of Lignocelluloses

    DEFF Research Database (Denmark)

    Kolasa, Marta; Ahring, Birgitte Kiær; Lübeck, Peter Stephensen

    2010-01-01

    bonds. Cellulose can be degraded to simple sugar components by means of enzymatic hydrolysis. However, due to its complex, crystalline structure it is difficult to break it down and the cooperative action of a variety of cellulolytic enzymes is necessary. Fungi are known to have potential in production......Lignocellulosic materials form a huge part of the plant biomass from agricultural and forestry wastes. They consist of three major components: cellulose, hemicellulose and lignin. Cellulose, the main constituent of plant cell wall, is a polymer of D–glucopyranose units linked by β-1,4-glucosidic...... of a variety of cellulolytic enzymes. The aim of this work is to discover new thermostable and robust cellulolytic enzymes for improved enzymatic hydrolysis of biomass. For this purpose two screening methods are applied in different fungal strains with high cellulolytic activities: an expression–based method...

  16. Methods for treating lignocellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Robert; Gregoire, Claire; Travisano, Philip; Madsen, Lee; Matis, Neta; Har-Tal, Yael; Eliahu, Shay; Lawson, James Alan; Lapidot, Noa; Eyal, Aharon M.; Bauer, Timothy Allen; Sade, Hagit; McWilliams, Paul; Zviely, Michael; Carden, Adam

    2016-11-15

    The present invention relates to methods of processing lignocellulosic material to obtain hemicellulose sugars, cellulose sugars, lignin, cellulose and other high-value products. Also provided are hemicellulose sugars, cellulose sugars, lignin, cellulose, and other high-value products.

  17. Design and Construction of Wangjiahe Hydropower Station Concrete Panel Rock-fill Dam%王家河水电站混凝土面板堆石坝设计与施工

    Institute of Scientific and Technical Information of China (English)

    覃建波

    2014-01-01

    王家河水电站拦水坝为混凝土面板堆石坝,采用侧槽式溢洪道自由泄洪,工程区河床砂砾石料丰富,枢纽建筑物开挖料较少,大坝填筑料主要为上下游河床砂砾料。初步设计时趾板建在砂砾层上,在技施设计阶段,通过回填混凝土的方式将基础置于基岩上,确保了趾板的稳定性。采用河床砂砾料经筛分做垫层料,减少了施工工序。在面板堆石坝坝体填筑中,有效利用枢纽建筑物和料场开挖的风化料、软岩料。该工程的设计对于其他采用风化料建坝的类似工程具有参考价值。%Wangjiahe-Hydropower-Station-Retaining-Dam-belongs-to-concrete-panel-rock-fill-dam.Side-channel-spillway-is-adopted-for-free-flood-discharge.The-project-area-riverbed-has-rich-gravel-stone.Water-control-building-has-less-excavation.Upstream-and-downstream-riverbed-gravel-materials-are-mainly-used-for-filling-the-dam.The-toe-board-is-constructed-on-gravel-layer-during-preliminary-design.Foundation-is-placed-on-bedrock-through-the-mode-of-backfilling-concrete,thereby-ensuring-stability-of-toe-board-in-the-technical-construction-design-stage.Riverbed-gravels-are-screened-and-used-as-cushion-material-so-as-to-simplify-the-construction-process.Water-control-building-as-well-as-weathered-material-and-soft-rock-material-excavated-from-material-fields-are-effectively-utilized-in-panel-rock-fill-dam-filling.The-design-of-the-project-has-reference-value-on-other-similar-projects-adopting-weathered-material-for-constructing-dams.

  18. Pervaporation of ethanol from lignocellulosic fermentation broth

    NARCIS (Netherlands)

    Gaykawad, S.S.; Zha, Y.; Punt, P.J.; Groenestijn, J.W. van; Wielen, L.A.M. van der; Straathof, A.J.J.

    2013-01-01

    Pervaporation can be applied in ethanol production from lignocellulosic biomass. Hydrophobic pervaporation, using a commercial PDMS membrane, was employed to concentrate the ethanol produced by fermentation of lignocellulosic hydrolysate. To our knowledge, this is the first report describing this.

  19. Enzymatic conversion of lignocellulose into fermentable sugars

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Kristensen, Jan Bach; Felby, Claus

    2007-01-01

    The economic dependency on fossil fuels and the resulting effects on climate and environment have put tremendous focus on utilizing fermentable sugars from lignocellulose, the largest known renewable carbohydrate source. The fermentable sugars in lignocellulose are derived from cellulose...

  20. Biohydrogen production from lignocellulosic feedstock.

    Science.gov (United States)

    Cheng, Chieh-Lun; Lo, Yung-Chung; Lee, Kuo-Shing; Lee, Duu-Jong; Lin, Chiu-Yue; Chang, Jo-Shu

    2011-09-01

    Due to the recent energy crisis and rising concern over climate change, the development of clean alternative energy sources is of significant interest. Biohydrogen produced from cellulosic feedstock, such as second generation feedstock (lignocellulosic biomass) and third generation feedstock (carbohydrate-rich microalgae), is a promising candidate as a clean, CO2-neutral, non-polluting and high efficiency energy carrier to meet the future needs. This article reviews state-of-the-art technology on lignocellulosic biohydrogen production in terms of feedstock pretreatment, saccharification strategy, and fermentation technology. Future developments of integrated biohydrogen processes leading to efficient waste reduction, low CO2 emission and high overall hydrogen yield is discussed.

  1. [Progress in lignocellulose deconstruction by fungi].

    Science.gov (United States)

    Tian, Chaoguang; Ma, Yanhe

    2010-10-01

    Inefficient degradation of lignocellulose is one of the main barriers for the utilization of renewable plant biomass for biofuel production. The bottleneck of the biorefinery process is the generation of fermentable sugars from complicated biomass polymers. In nature, the main microbes of lignocelluloses deconstruction are fungi. Therefore, elucidating the mechanism of lignocelluloses degradation by fungi is of critical importance for the commercialization of lignocellulosic biofuels. This review focuses on the progress in lignocelluloses degradation pathways in fungi, especially on the advances made by functional genomics studies.

  2. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...... for efficient hydrolysis, enzyme stability, and the detrimental interaction between enzyme and lignin. This review provides a comprehensive overview of the various methods for enzyme recovery and recycling, for example recycling of free enzymes, readsorption to fresh material, recycling of solids, membrane...

  3. Lime pretreatment of lignocellulosic biomass

    Science.gov (United States)

    Chang, Shushien

    Lignocellulose is a valuable alternative energy source. The susceptibility of lignocellulosic biomass to enzymatic hydrolysis is constrained due to its structural features, so pretreatment is essential to enhance enzymatic digestibility. Of the chemicals used as pretreatment agents, it has been reported that alkalis improve biomass digestibility significantly. In comparison with other alkalis such as NaOH and ammonia, lime (calcium hydroxide) has many advantages; it is very inexpensive, is safe, and can be recovered by carbonating wash water. The effects of lime pretreatment were explored on switchgrass and poplar wood, representing herbaceous and woody biomass, respectively. The effects of pretreatment conditions (time, temperature, lime loading, water loading, particle size, and oxygen pressure) have been systematically studies. Lime alone enhances the digestibility of switchgrass significantly; under the recommended conditions, the 3-d total sugar (glucose + xylose) yields of lime-treated switchgrass were 7 times that of untreated sample. When treating poplar wood, lime must be combined with oxygen to achieve high digestibility; oxidative lime pretreatment increased the 3-d total sugar yield of poplar wood to 12 times that of untreated sample. In a fundamental study, to determine why lime pretreatment is effective, the effects of three structural features on enzymatic digestibility were studied: lignin content, acetyl content, and crystallinity index (CrI). Poplar wood was treated with peracetic acid, potassium hydroxide, and ball milling to produce model lignocelluloses with a broad spectrum of lignin contents, acetyl contents, and CrI, respectively. Enzymatic hydrolysis was performed on the model lignocelluloses to determine the digestibility. Correlations between lignin/carbohydrate ratio, acetyl/carbohydrate ratio, CrI and digestibility were developed. The 95% prediction intervals show that the correlations predict the 1-h and 3-d total sugar conversions of

  4. Lignocellulosic fiber reinforced rubber composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available stream_source_info John_d1_2009.pdf.txt stream_content_type text/plain stream_size 43167 Content-Encoding UTF-8 stream_name John_d1_2009.pdf.txt Content-Type text/plain; charset=UTF-8 -252- CHAPTER 10: LIGNOCELLULOSIC... FIBER REINFORCED RUBBER COMPOSITES Maya JACOB JOHN1 Rajesh D. ANANDJIWALA2 (1)CSIR Materials Science and Manufacturing, Fibres and Textiles Competence Area, P.O. Box 1124, Port Elizabeth 6000, South Africa, E-mail: mjohn@csir.co.za (2) Department...

  5. Hydrolysates of lignocellulosic materials for biohydrogen production.

    Science.gov (United States)

    Chen, Rong; Wang, Yong-Zhong; Liao, Qiang; Zhu, Xun; Xu, Teng-Fei

    2013-05-01

    Lignocellulosic materials are commonly used in bio-H2 production for the sustainable energy resource development as they are abundant, cheap, renewable and highly biodegradable. In the process of the bio-H2 production, the pretreated lignocellulosic materials are firstly converted to monosaccharides by enzymolysis and then to H2 by fermentation. Since the structures of lignocellulosic materials are rather complex, the hydrolysates vary with the used materials. Even using the same lignocellulosic materials, the hydrolysates also change with different pretreatment methods. It has been shown that the appropriate hydrolysate compositions can dramatically improve the biological activities and bio-H2 production performances. Over the past decades, hydrolysis with respect to different lignocellulosic materials and pretreatments has been widely investigated. Besides, effects of the hydrolysates on the biohydrogen yields have also been examined. In this review, recent studies on hydrolysis as well as their effects on the biohydrogen production performance are summarized.

  6. Metabolic Panel

    Science.gov (United States)

    ... basic metabolic panel (BMP) and comprehensive metabolic panel (CMP). The BMP checks your blood sugar, calcium, and ... as creatinine to check your kidney function. The CMP includes all of those tests, as well as ...

  7. Panel Analysis

    DEFF Research Database (Denmark)

    Brænder, Morten; Andersen, Lotte Bøgh

    2014-01-01

    Based on our 2013-article, ”Does Deployment to War Affect Soldiers' Public Service Motivation – A Panel Study of Soldiers Before and After their Service in Afghanistan”, we present Panel Analysis as a methodological discipline. Panels consist of multiple units of analysis, observed at two or more...

  8. Dry pretreatment of lignocellulose with extremely low steam and water usage for bioethanol production.

    Science.gov (United States)

    Zhang, Jian; Wang, Xiusheng; Chu, Deqiang; He, Yanqing; Bao, Jie

    2011-03-01

    Two rarely noticed but important parameters of the dilute sulfuric acid pretreatment of lignocellulose biomass, the feedstock filling ratio to the pretreatment reactor and the solids/liquid presoaking ratio, were extensively studied. The effects of the two parameters on the steam consumption, waste water generation, and pretreatment efficiency were investigated. At the full filling ratio and high solids/liquid presoaking ratio, this "dry" pretreatment method provided at least the following advantages: (1) the steam consumption was significantly reduced; (2) no aqueous acid containing waste water was generated; (3) high solids content of the pretreated materials were obtained and the consequent saccharification and fermentation was carried out at high solids loading easily. This method was applied to various lignocellulose feedstocks successfully and provided a practical means to produce ethanol economically feasible. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. 盘区宽进路机械化充填采矿法在焦家金矿寺庄矿区的应用%Application of mechanized back filling mining method with wide panel access in Sizhuang mining area of Jiaojia gold mine

    Institute of Scientific and Technical Information of China (English)

    董金奎; 周士霖; 张忠辉; 邱俊刚; 司呈斌

    2012-01-01

    According to the conditions of the Sizhuang mining area of Jiaojia gold mine,considering with the economical,safe,and efficient mining,Sizhuang mining area,on the basis of upwards horizontal cut-and-fill mining method,the mining method was changed into the wide panel access mechanized back filling mining method with wide panel accesses.The paper introduces corresponding configuration of this modified mining method,structure parameters,as well as stoping and back filling process.The practical application proved that this mechanized back filling mining method with wide panel access possesses higher safety,higher production capacity,etc.,and meets the mine production requirements,meanwhile provides referable experiences for mines with similar conditions,domestic and a-broad.%根据焦家金矿寺庄矿区开采技术条件,综合考虑经济效益与安全高效开采,寺庄矿区在上向水平分层充填采矿法的基础上对采矿方法改进为盘区宽进路机械化充填采矿法.文中介绍了盘区宽进路机械化充填采矿法采场布置、结构参数以及回采、充填工艺过程.生产实际应用表明,盘区宽进路机械化充填采矿法具有安全性高、生产能力大等优点,满足了矿山生产要求,同时也为国内外同类开采条件矿山提供了可借鉴的经验.

  10. Pervaporation of ethanol from lignocellulosic fermentation broth.

    Science.gov (United States)

    Gaykawad, Sushil S; Zha, Ying; Punt, Peter J; van Groenestijn, Johan W; van der Wielen, Luuk A M; Straathof, Adrie J J

    2013-02-01

    Pervaporation can be applied in ethanol production from lignocellulosic biomass. Hydrophobic pervaporation, using a commercial PDMS membrane, was employed to concentrate the ethanol produced by fermentation of lignocellulosic hydrolysate. To our knowledge, this is the first report describing this. Pervaporation carried out with three different lignocellulosic fermentation broths reduced the membrane performance by 17-20% as compared to a base case containing only 3 wt.% ethanol in water. The membrane fouling caused by these fermentation broths was irreversible. Solutions containing model lignocellulosic components were tested during pervaporation at the same conditions. A total flux decrease of 12-15%, as compared to the base case, was observed for each component except for furfural. Catechol was found to be most fouling component whereas furfural permeated through the membrane and increased the total flux. The membrane selectivity increased in the presence of fermentation broth but remained unchanged for all selected components. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Panel Analysis

    DEFF Research Database (Denmark)

    Brænder, Morten; Andersen, Lotte Bøgh

    2014-01-01

    Based on our 2013-article, ”Does Deployment to War Affect Soldiers' Public Service Motivation – A Panel Study of Soldiers Before and After their Service in Afghanistan”, we present Panel Analysis as a methodological discipline. Panels consist of multiple units of analysis, observed at two or more...... in research settings where it is not possible to distribute units of analysis randomly or where the independent variables cannot be manipulated. The greatest disadvantage in regard to using panel studies is that data may be difficult to obtain. This is most clearly vivid in regard to the use of panel surveys...

  12. Developing symbiotic consortia for lignocellulosic biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Zuroff, Trevor R.; Curtis, Wayne R. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Chemical Engineering

    2012-02-15

    The search for petroleum alternatives has motivated intense research into biological breakdown of lignocellulose to produce liquid fuels such as ethanol. Degradation of lignocellulose for biofuel production is a difficult process which is limited by, among other factors, the recalcitrance of lignocellulose and biological toxicity of the products. Consolidated bioprocessing has been suggested as an efficient and economical method of producing low value products from lignocellulose; however, it is not clear whether this would be accomplished more efficiently with a single organism or community of organisms. This review highlights examples of mixtures of microbes in the context of conceptual models for developing symbiotic consortia for biofuel production from lignocellulose. Engineering a symbiosis within consortia is a putative means of improving both process efficiency and stability relative to monoculture. Because microbes often interact and exist attached to surfaces, quorum sensing and biofilm formation are also discussed in terms of consortia development and stability. An engineered, symbiotic culture of multiple organisms may be a means of assembling a novel combination of metabolic capabilities that can efficiently produce biofuel from lignocellulose. (orig.)

  13. Lignocellulosic Biomass Pretreatment Using AFEX

    Science.gov (United States)

    Balan, Venkatesh; Bals, Bryan; Chundawat, Shishir P. S.; Marshall, Derek; Dale, Bruce E.

    Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin-hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

  14. Lignocellulosic biomass pretreatment using AFEX.

    Science.gov (United States)

    Balan, Venkatesh; Bals, Bryan; Chundawat, Shishir P S; Marshall, Derek; Dale, Bruce E

    2009-01-01

    Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin-hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

  15. Acetylation of woody lignocellulose: significance and regulation

    Directory of Open Access Journals (Sweden)

    Prashant Mohan-Anupama Pawar

    2013-05-01

    Full Text Available Non-cellulosic cell wall polysaccharides constitute approximately one quarter of usable biomass for human exploitation. In contrast to cellulose, these components are usually substituted by O-acetyl groups, which affect their properties and interactions with other polymers, thus affecting their solubility and extractability. However, details of these interactions are still largely obscure. Moreover, polysaccharide hydrolysis to constituent monosaccharides, is hampered by the presence of O-acetyl groups, necessitating either enzymatic (esterase or chemical de-acetylation, increasing the costs and chemical consumption. Reduction of polysaccharide acetyl content in planta is a way to modify lignocellulose towards improved saccharification. In this review we: 1 summarize literature on lignocellulose acetylation in different tree species, 2 present data and current hypotheses concerning the role of O-acetylation in determining woody lignocellulose properties, 3 describe plant proteins involved in lignocellulose O-acetylation, 4 give examples of microbial enzymes capable to de-acetylate lignocellulose, and 5 discuss prospects for exploiting these enzymes in planta to modify xylan acetylation.

  16. Pretreatments to enhance the digestibility of lignocellulosic biomass

    NARCIS (Netherlands)

    Hendriks, A.T.W.M.; Zeeman, G.

    2009-01-01

    Lignocellulosic biomass represents a rather unused source for biogas and ethanol production. Many factors, like lignin content, crystallinity of cellulose, and particle size, limit the digestibility of the hemicellulose and cellulose present in the lignocellulosic biomass. Pretreatments have as a

  17. Laccase Application for Upgrading of Lignocellulose Fibers

    Directory of Open Access Journals (Sweden)

    Maja Vaukner Gabrič

    2015-04-01

    Full Text Available Laccases have the ability to oxidize both phenolic and trough mediators non-phenolic lignin related compounds. When reacting on lignin, they can display both ligninolytic and polymerizing (cross-inking abilities, which makes them very useful for their application in industries based on lignocellulose material. Most of the published papers and applications of laccase and laccase-mediator systems on lignocellulose material relate to the pulp, paper and textile industry. Recent research has been done in terms of laccase assisted biografting of phenols and other compounds on wood surface and use of laccase for adhesion enhancement in fiberboard production. They can be introduced to wood technology as environmentally friendly enzymes. The paper reviews the application of laccases in industries based on lignocellulose material and discusses the future outlook and development in the above mentioned fields.

  18. GENETICALLY MODIFIED LIGNOCELLULOSIC BIOMASS FOR IMPROVEMENT OF ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Qijun Wang

    2010-02-01

    Full Text Available Production of ethanol from lignocellulosic feed-stocks is of growing interest worldwide in recent years. However, we are currently still facing significant technical challenges to make it economically feasible on an industrial scale. Genetically modified lignocellulosic biomass has provided a potential alternative to address such challenges. Some studies have shown that genetically modified lignocellulosic biomass can increase its yield, decreasing its enzymatic hydrolysis cost and altering its composition and structure for ethanol production. Moreover, the modified lignocellulosic biomass also makes it possible to simplify the ethanol production procedures from lignocellulosic feed-stocks.

  19. Engineering sugar utilization and microbial tolerance toward lignocellulose conversion

    Directory of Open Access Journals (Sweden)

    Lizbeth M. Nieves

    2015-02-01

    Full Text Available Production of fuels and chemicals through a fermentation-based manufacturing process that uses renewable feedstock such as lignocellulosic biomass is a desirable alternative to petrochemicals. Although it is still in its infancy, synthetic biology offers great potential to overcome the challenges associated with lignocellulose conversion. In this review, we will summarize the identification and optimization of synthetic biological parts used to enhance the utilization of lignocellulose-derived sugars and to increase the biocatalyst tolerance for lignocellulose-derived fermentation inhibitors. We will also discuss the ongoing efforts and future applications of synthetic integrated biological systems used to improve lignocellulose conversion.

  20. Anaerobic digestion of lignocellulosic biomass: challenges and opportunities.

    Science.gov (United States)

    Sawatdeenarunat, Chayanon; Surendra, K C; Takara, Devin; Oechsner, Hans; Khanal, Samir Kumar

    2015-02-01

    Anaerobic digestion (AD) of lignocellulosic biomass provides an excellent opportunity to convert abundant bioresources into renewable energy. Rumen microorganisms, in contrast to conventional microorganisms, are an effective inoculum for digesting lignocellulosic biomass due to their intrinsic ability to degrade substrate rich in cellulosic fiber. However, there are still several challenges that must be overcome for the efficient digestion of lignocellulosic biomass. Anaerobic biorefinery is an emerging concept that not only generates bioenergy, but also high-value biochemical/products from the same feedstock. This review paper highlights the current status of lignocellulosic biomass digestion and discusses its challenges. The paper also discusses the future research needs of lignocellulosic biomass digestion.

  1. Switched mode piezo-panel driver

    NARCIS (Netherlands)

    Slakhorst, R.J.

    2007-01-01

    Abstract The subject of this thesis is the design of a system which can drive piezo-panels. This system is called the piezo driver. The piezo-panels are used for an Active Noise Cancelling (ANC) system which is being developed to be used inside the cabin of airplanes. The piezo driver fills the gap

  2. Panel Session

    DEFF Research Database (Denmark)

    Bertelsen, Olav Wedege

    2004-01-01

    In this panel session, four researchers will discuss the role of a theoretical foundation, in particular AT, in the design of information technology based artefacts. The general discussion will take of from a specific examination of the ActAD approach.......In this panel session, four researchers will discuss the role of a theoretical foundation, in particular AT, in the design of information technology based artefacts. The general discussion will take of from a specific examination of the ActAD approach....

  3. Lignin pyrolysis for profitable lignocellulosic biorefineries

    NARCIS (Netherlands)

    Wild, de P.J.; Gosselink, R.J.A.; Huijgen, W.J.J.

    2014-01-01

    Bio-based industries (pulp and paper and biorefineries) produce > 50 Mt/yr of lignin that results from fractionation of lignocellulosic biomass. Lignin is world's second biopolymer and a major potential source for production of performance materials and aromatic chemicals. Lignin valorization is

  4. Semantic text mining support for lignocellulose research.

    Science.gov (United States)

    Meurs, Marie-Jean; Murphy, Caitlin; Morgenstern, Ingo; Butler, Greg; Powlowski, Justin; Tsang, Adrian; Witte, René

    2012-04-30

    Biofuels produced from biomass are considered to be promising sustainable alternatives to fossil fuels. The conversion of lignocellulose into fermentable sugars for biofuels production requires the use of enzyme cocktails that can efficiently and economically hydrolyze lignocellulosic biomass. As many fungi naturally break down lignocellulose, the identification and characterization of the enzymes involved is a key challenge in the research and development of biomass-derived products and fuels. One approach to meeting this challenge is to mine the rapidly-expanding repertoire of microbial genomes for enzymes with the appropriate catalytic properties. Semantic technologies, including natural language processing, ontologies, semantic Web services and Web-based collaboration tools, promise to support users in handling complex data, thereby facilitating knowledge-intensive tasks. An ongoing challenge is to select the appropriate technologies and combine them in a coherent system that brings measurable improvements to the users. We present our ongoing development of a semantic infrastructure in support of genomics-based lignocellulose research. Part of this effort is the automated curation of knowledge from information on fungal enzymes that is available in the literature and genome resources. Working closely with fungal biology researchers who manually curate the existing literature, we developed ontological natural language processing pipelines integrated in a Web-based interface to assist them in two main tasks: mining the literature for relevant knowledge, and at the same time providing rich and semantically linked information.

  5. High-throughput Saccharification assay for lignocellulosic materials.

    Science.gov (United States)

    Gomez, Leonardo D; Whitehead, Caragh; Roberts, Philip; McQueen-Mason, Simon J

    2011-07-03

    Polysaccharides that make up plant lignocellulosic biomass can be broken down to produce a range of sugars that subsequently can be used in establishing a biorefinery. These raw materials would constitute a new industrial platform, which is both sustainable and carbon neutral, to replace the current dependency on fossil fuel. The recalcitrance to deconstruction observed in lignocellulosic materials is produced by several intrinsic properties of plant cell walls. Crystalline cellulose is embedded in matrix polysaccharides such as xylans and arabinoxylans, and the whole structure is encased by the phenolic polymer lignin, that is also difficult to digest (1). In order to improve the digestibility of plant materials we need to discover the main bottlenecks for the saccharification of cell walls and also screen mutant and breeding populations to evaluate the variability in saccharification (2). These tasks require a high throughput approach and here we present an analytical platform that can perform saccharification analysis in a 96-well plate format. This platform has been developed to allow the screening of lignocellulose digestibility of large populations from varied plant species. We have scaled down the reaction volumes for gentle pretreatment, partial enzymatic hydrolysis and sugar determination, to allow large numbers to be assessed rapidly in an automated system. This automated platform works with milligram amounts of biomass, performing ball milling under controlled conditions to reduce the plant materials to a standardised particle size in a reproducible manner. Once the samples are ground, the automated formatting robot dispenses specified and recorded amounts of material into the corresponding wells of 96 deep well plate (Figure 1). Normally, we dispense the same material into 4 wells to have 4 replicates for analysis. Once the plates are filled with the plant material in the desired layout, they are manually moved to a liquid handling station (Figure 2

  6. Catalytic fast pyrolysis of lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  7. Photovoltaic panel clamp

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert

    2013-03-19

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  8. Microsphere Insulation Panels

    Science.gov (United States)

    Mohling, R.; Allen, M.; Baumgartner, R.

    2006-01-01

    Microsphere insulation panels (MIPs) have been developed as lightweight, longlasting replacements for the foam and vacuum-jacketed systems heretofore used for thermally insulating cryogenic vessels and transfer ducts. The microsphere core material of a typical MIP consists of hollow glass bubbles, which have a combination of advantageous mechanical, chemical, and thermal-insulation properties heretofore available only separately in different materials. In particular, a core filling of glass microspheres has high crush strength and low density, is noncombustible, and performs well in soft vacuum.

  9. Photovoltaic panel clamp

    Science.gov (United States)

    Mittan, Margaret Birmingham; Miros, Robert H. J.; Brown, Malcolm P.; Stancel, Robert

    2012-06-05

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  10. Sandwich Panels

    Directory of Open Access Journals (Sweden)

    N. Ramachandran

    1963-05-01

    Full Text Available This introductory article give an insight into the different methods employed in the construction of Sandwich panels, their limitations and future design application for defence use as a structural element with one of the highest strength-weight ratios yet devised.

  11. Panel Sessions.

    Science.gov (United States)

    Proceedings of the ASIS Mid-Year Meeting, 1992

    1992-01-01

    Lists the speakers and summarizes the issues addressed for 12 panel sessions on topics related to networking, including libraries and national networks, federal national resources and energy programs, multimedia issues, telecommuting, remote image serving, accessing the Internet, library automation, scientific information, applications of Z39.50,…

  12. Ethanolic fermentation of pentoses in lignocellulose hydrolysates

    Energy Technology Data Exchange (ETDEWEB)

    Hahn-Haegerdal, B.; Linden, T.; Senac, T.; Skoog, K. [Lund Univ. Chemical Center (Sweden)

    1991-12-31

    In the fermentation of lignocellulose hydrolysates to ethanol, two major problems are encountered: the fermentation of the pentose sugar xylose, and the presence of microbial inhibitors. Xylose can be directly fermented with yeasts; such as Pachysolen tannophilus, Candida shehatae, and Pichia stipis, or by isomerization of xylose to xylulose with the enzyme glucose (xylose) isomerase, and subsequent fermentation with bakers yeast, Saccharomyces cerevisiae. The direct fermentation requires low, carefully controlled oxygenation, as well as the removal of inhibitors. Also, the xylose-fermenting yeasts have a limited ethanol tolerance. The combined isomerization and fermentation with XI and S. cerevisiae gives yields and productivities comparable to those obtained in hexose fermentations without oxygenation and removal of inhibitors. However, the enzyme is not very stable in a lignocellulose hydrolysate, and S. cerevisiae has a poorly developed pentose phosphate shunt. Different strategies involving strain adaptation, and protein and genetic engineering adopted to overcome these different obstacles, are discussed.

  13. Laccase Enzymology in Relation to Lignocellulose Processing

    DEFF Research Database (Denmark)

    Sitarz, Anna Katarzyna

    -to-glucose conversion is to either get rid of the inhibitory substances or to alter them in a way, so they no longer decrease the action of cellulases. The main focus in the present work was the investigation of the influence of the enzymes that are being expressed from the white-rot fungi when lignin was present...... for their ability to grow on lignocellulosic material, such as sugarcane bagasse – a competitive substrate for grain bioethanol. From this investigation, four white-rot fungi (Ganoderma lucidum, Trametes versicolor, Polyporus brumalis, and Polyporus ciliatus), were selected for the growth on lignin (lignin alkaline......) and investigated for production of enzymes under such conditions (Paper I). G. lucidum was found to produce high amounts of laccase which corresponded to its exceptional growth on lignocellulosic substrate and lignin. This observation led to a hypothesis that this particular laccase might act in a synergistic way...

  14. Hydrolysates of lignocellulosic materials for biohydrogen production

    Directory of Open Access Journals (Sweden)

    Rong Chen

    2013-05-01

    Full Text Available Lignocellulosic materials are commonly used in bio-H2 productionfor the sustainable energy resource development asthey are abundant, cheap, renewable and highly biodegradable.In the process of the bio-H2 production, the pretreated lignocellulosicmaterials are firstly converted to monosaccharidesby enzymolysis and then to H2 by fermentation. Since thestructures of lignocellulosic materials are rather complex, thehydrolysates vary with the used materials. Even using the samelignocellulosic materials, the hydrolysates also change withdifferent pretreatment methods. It has been shown that the appropriatehydrolysate compositions can dramatically improvethe biological activities and bio-H2 production performances.Over the past decades, hydrolysis with respect to differentlignocellulosic materials and pretreatments has been widelyinvestigated. Besides, effects of the hydrolysates on the biohydrogenyields have also been examined. In this review, recentstudies on hydrolysis as well as their effects on the biohydrogenproduction performance are summarized. [BMBReports 2013; 46(5: 244-251

  15. Profiling microbial lignocellulose degradation and utilization by emergent omics technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rosnow, Joshua J. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Anderson, Lindsey N. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Nair, Reji N. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Baker, Erin S. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Wright, Aaron T. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA

    2016-07-20

    The use of plant materials to generate renewable biofuels and other high-value chemicals is the sustainable and preferable option, but will require considerable improvements to increase the rate and efficiency of lignocellulose depolymerization. This review highlights novel and emergent technologies that are being developed and deployed to characterize the process of lignocellulose degradation. The review will also illustrate how microbial communities deconstruct and metabolize lignocellulose by identifying the necessary genes and enzyme activities along with the reaction products. These technologies include multi-omic measurements, cell sorting and isolation, nuclear magnetic resonance spectroscopy (NMR), activity-based protein profiling, and direct measurement of enzyme activity. The recalcitrant nature of lignocellulose necessitates the need to characterize the methods microbes employ to deconstruct lignocellulose to inform new strategies on how to greatly improve biofuel conversion processes. New technologies are yielding important insights into microbial functions and strategies employed to degrade lignocellulose, providing a mechanistic blueprint to advance biofuel production.

  16. Engineering microbial surfaces to degrade lignocellulosic biomass

    Science.gov (United States)

    Huang, Grace L; Anderson, Timothy D; Clubb, Robert T

    2014-01-01

    Renewable lignocellulosic plant biomass is a promising feedstock from which to produce biofuels, chemicals, and materials. One approach to cost-effectively exploit this resource is to use consolidating bioprocessing (CBP) microbes that directly convert lignocellulose into valuable end products. Because many promising CBP-enabling microbes are non-cellulolytic, recent work has sought to engineer them to display multi-cellulase containing minicellulosomes that hydrolyze biomass more efficiently than isolated enzymes. In this review, we discuss progress in engineering the surfaces of the model microorganisms: Bacillus subtilis, Escherichia coli, and Saccharomyces cerevisiae. We compare the distinct approaches used to display cellulases and minicellulosomes, as well as their surface enzyme densities and cellulolytic activities. Thus far, minicellulosomes have only been grafted onto the surfaces of B. subtilis and S. cerevisiae, suggesting that the absence of an outer membrane in fungi and Gram-positive bacteria may make their surfaces better suited for displaying the elaborate multi-enzyme complexes needed to efficiently degrade lignocellulose. PMID:24430239

  17. Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives

    Directory of Open Access Journals (Sweden)

    Mehdi Dashtban, Heidi Schraft, Wensheng Qin

    2009-01-01

    Full Text Available The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases and β-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains.

  18. Plant biotechnology for lignocellulosic biofuel production.

    Science.gov (United States)

    Li, Quanzi; Song, Jian; Peng, Shaobing; Wang, Jack P; Qu, Guan-Zheng; Sederoff, Ronald R; Chiang, Vincent L

    2014-12-01

    Lignocelluloses from plant cell walls are attractive resources for sustainable biofuel production. However, conversion of lignocellulose to biofuel is more expensive than other current technologies, due to the costs of chemical pretreatment and enzyme hydrolysis for cell wall deconstruction. Recalcitrance of cell walls to deconstruction has been reduced in many plant species by modifying plant cell walls through biotechnology. These results have been achieved by reducing lignin content and altering its composition and structure. Reduction of recalcitrance has also been achieved by manipulating hemicellulose biosynthesis and by overexpression of bacterial enzymes in plants to disrupt linkages in the lignin-carbohydrate complexes. These modified plants often have improved saccharification yield and higher ethanol production. Cell wall-degrading (CWD) enzymes from bacteria and fungi have been expressed at high levels in plants to increase the efficiency of saccharification compared with exogenous addition of cellulolytic enzymes. In planta expression of heat-stable CWD enzymes from bacterial thermophiles has made autohydrolysis possible. Transgenic plants can be engineered to reduce recalcitrance without any yield penalty, indicating that successful cell wall modification can be achieved without impacting cell wall integrity or plant development. A more complete understanding of cell wall formation and structure should greatly improve lignocellulosic feedstocks and reduce the cost of biofuel production.

  19. Can lignocellulosic hydrocarbon liquids rival lignocellulose-derived ethanol as a future transport fuel?

    Directory of Open Access Journals (Sweden)

    Yao Ding

    2012-11-01

    Full Text Available Although transport fuels are currently obtained mainly from petroleum, alternative fuels derived from lignocellulosic biomass (LB have drawn much attention in recent years in light of the limited reserves of crude oil and the associated environmental issues. Lignocellulosic ethanol (LE and lignocellulosic hydrocarbons (LH are two typical representatives of the LB-derived transport fuels. This editorial systematically compares LE and LB from production to their application in transport fuels. It can be demonstrated that LH has many advantages over LE relative to such uses. However, most recent studies on the production of the LB-derived transport fuels have focused on LE production. Hence, it is strongly recommended that more research should be aimed at developing an efficient and economically viable process for industrial LH production.

  20. Processes for converting lignocellulosics to reduced acid pyrolysis oil

    Science.gov (United States)

    Kocal, Joseph Anthony; Brandvold, Timothy A

    2015-01-06

    Processes for producing reduced acid lignocellulosic-derived pyrolysis oil are provided. In a process, lignocellulosic material is fed to a heating zone. A basic solid catalyst is delivered to the heating zone. The lignocellulosic material is pyrolyzed in the presence of the basic solid catalyst in the heating zone to create pyrolysis gases. The oxygen in the pyrolysis gases is catalytically converted to separable species in the heating zone. The pyrolysis gases are removed from the heating zone and are liquefied to form the reduced acid lignocellulosic-derived pyrolysis oil.

  1. About Dental Amalgam Fillings

    Science.gov (United States)

    ... and Medical Procedures Dental Devices Dental Amalgam About Dental Amalgam Fillings Share Tweet Linkedin Pin it More ... should I have my fillings removed? What is dental amalgam? Dental amalgam is a dental filling material ...

  2. Pretreatments to enhance the digestibility of lignocellulosic biomass

    NARCIS (Netherlands)

    Hendriks, A.T.W.M.; Zeeman, G.

    2009-01-01

    Lignocellulosic biomass represents a rather unused source for biogas and ethanol production. Many factors, like lignin content, crystallinity of cellulose, and particle size, limit the digestibility of the hemicellulose and cellulose present in the lignocellulosic biomass. Pretreatments have as a go

  3. Bacterial biodegradation and bioconversion of industrial lignocellulosic streams.

    Science.gov (United States)

    Mathews, Stephanie L; Pawlak, Joel; Grunden, Amy M

    2015-04-01

    Lignocellulose is a term for plant materials that are composed of matrices of cellulose, hemicellulose, and lignin. Lignocellulose is a renewable feedstock for many industries. Lignocellulosic materials are used for the production of paper, fuels, and chemicals. Typically, industry focuses on transforming the polysaccharides present in lignocellulose into products resulting in the incomplete use of this resource. The materials that are not completely used make up the underutilized streams of materials that contain cellulose, hemicellulose, and lignin. These underutilized streams have potential for conversion into valuable products. Treatment of these lignocellulosic streams with bacteria, which specifically degrade lignocellulose through the action of enzymes, offers a low-energy and low-cost method for biodegradation and bioconversion. This review describes lignocellulosic streams and summarizes different aspects of biological treatments including the bacteria isolated from lignocellulose-containing environments and enzymes which may be used for bioconversion. The chemicals produced during bioconversion can be used for a variety of products including adhesives, plastics, resins, food additives, and petrochemical replacements.

  4. Genetic manipulation of lignocellulosic biomass for bioenergy.

    Science.gov (United States)

    Wang, Peng; Dudareva, Natalia; Morgan, John A; Chapple, Clint

    2015-12-01

    Lignocellulosic biomass represents an abundant and sustainable raw material for biofuel production. The recalcitrance of biomass to degradation increases the estimated cost of biofuel production and limits its competitiveness in the market. Genetic engineering of lignin, a major recalcitrance factor, improves saccharification and thus the potential yield of biofuels. Recently, our understanding of lignification and its regulation has been advanced by new studies in various systems, all of which further enhances our ability to manipulate the biosynthesis and deposition of lignin in energy crops for producing cost-effective second generation biofuels.

  5. SOIL FUNGI: POTENTIAL MYCOREMEDIATORS OF LIGNOCELLULOSIC WASTE

    Directory of Open Access Journals (Sweden)

    Y. Avasn Maruthi

    2010-05-01

    Full Text Available The continual expansion of urbanization and industrial activity has led to the accumulation of a large quantity of lignocellulosic residues throughout the world. In particular, large quantities of paper and bagasse are largely produced in Visakhapatnam. In this work we present the study of the degradability of these substrates with fungi. Three cultures of soil fungi were screened for their ability to degrade cellulose. Aspergillus flavus degraded the most, as shown by the highest CO2 release. Further, Aspergillus flavus was tested with the standard fungus Phanerochaete chrysosporium for cellulose degradation, which showed nearly equivalent potential.

  6. Panel discussion

    Energy Technology Data Exchange (ETDEWEB)

    No Author Given

    1975-01-01

    Panel discussion: summation and future projections. Introductory remarks by panelists followed by questions and comments from the floor. Panelists: Dr. Joseph Barnea (former director of Resources and Transport for the United Nations; energy consultant to the United Nations Institute for Training and Research (UNITAR)); the Honorable Clyde F. Bel, Jr. (member of the Louisiana House of Representatives representing District 90 and New Orleans); Dr. David Lombard (acting chief of the Advanced Systems Branch of the Division of Geothermal Energy Research and Technology, Energy Research and Development Administration (ERDA)); Fred C. Repper (vice-president of Central Power and Light Company in Corpus Christi, Texas); Dr. Hans Suter (environmental consultant in Corpus Christi, Texas; environmental columnist for the Corpus Christi Caller Times). Session chairman: Herbert Woodson.

  7. Getting a prescription filled

    Science.gov (United States)

    ... are located inside of a grocery or large "chain" store. It is best to fill all prescriptions ... be used for long-term medicines and medical supplies. The website should have clear directions for filling ...

  8. Sustainable Process Design of Lignocellulose based Biofuel

    DEFF Research Database (Denmark)

    Mangnimit, Saranya; Malakul, Pomthong; Gani, Rafiqul

    the production and use of alternative and sustainable energy sources as rapidly as possible. Biofuel is a type of alternative energy that can be produced from many sources including sugar substances (such as sugarcane juice and molasses), starchy materials (such as corn and cassava), and lignocellulosic...... available, and are also non-food crops. In this respect, Cassava rhizome has several characteristics that make it a potential feedstock for fuel ethanol production. It has high content of cellulose and hemicelluloses . The objective of this paper is to present a study focused on the sustainable process...... design of bioethanol production from cassava rhizome using various computer aided tools through a systematic and effiicient work-flow, The study includes process simulation, sustainability analysis, economic evaluation and life cycle assessment (LCA) according to a well-defined workflow that guarantees...

  9. Superhydrophobic lignocellulosic wood fiber/mineral networks.

    Science.gov (United States)

    Mirvakili, Mehr Negar; Hatzikiriakos, Savvas G; Englezos, Peter

    2013-09-25

    Lignocellulosic wood fibers and mineral fillers (calcium carbonate, talc, or clay) were used to prepare paper samples (handsheets), which were then subjected to a fluorocarbon plasma treatment. The plasma treatment was performed in two steps: first using oxygen plasma to create nanoscale roughness on the surface of the handsheet, and second fluorocarbon deposition plasma to add a layer of low surface energy material. The wetting behavior of the resulting fiber/mineral network (handsheet) was determined. It was found the samples that were subjected to oxygen plasma etching prior to fluorocarbon deposition exhibit superhydrophobicity with low contact angle hysteresis. On the other hand, those that were only treated by fluorocarbon plasma resulted in "sticky" hydrophobicity behavior. Moreover, as the mineral content in the handsheet increases, the hydrophobicity after plasma treatment decreases. Finally, it was found that although the plasma-treated handsheets show excellent water repellency they are not good water vapor barriers.

  10. Extrusion Pretreatment of Lignocellulosic Biomass: A Review

    Directory of Open Access Journals (Sweden)

    Jun Zheng

    2014-10-01

    Full Text Available Bioconversion of lignocellulosic biomass to bioethanol has shown environmental, economic and energetic advantages in comparison to bioethanol produced from sugar or starch. However, the pretreatment process for increasing the enzymatic accessibility and improving the digestibility of cellulose is hindered by many physical-chemical, structural and compositional factors, which make these materials difficult to be used as feedstocks for ethanol production. A wide range of pretreatment methods has been developed to alter or remove structural and compositional impediments to (enzymatic hydrolysis over the last few decades; however, only a few of them can be used at commercial scale due to economic feasibility. This paper will give an overview of extrusion pretreatment for bioethanol production with a special focus on twin-screw extruders. An economic assessment of this pretreatment is also discussed to determine its feasibility for future industrial cellulosic ethanol plant designs.

  11. Enhancing biogas production from recalcitrant lignocellulosic residue

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis

    Lignocellulosic substrates are abundant in agricultural areas around the world and lately, are utilized for biogas production in full-scale anaerobic digesters. However, the anaerobic digestion (AD) of these substrates is associated with specific difficulties due to their recalcitrant nature which...... solution for augmented biomass solubilization without causing inhibition to the mandatory anaerobic methanogenic community. Based on the initial microbial analysis, the bioaugmentation with the typically abundant in AD systems C. thermocellum was examined in biogas reactors fed with wheat straw...... be periodically applied in biogas reactors in order to extract the residual methane from the amassing materials and avoid potential accumulation. Additionally, the facultative anaerobic Melioribacter roseus was inoculated in a replicate CSTR following different bioaugmentation strategies, either strictly...

  12. Enhancing biogas production from recalcitrant lignocellulosic residue

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis

    and lignocellulosic silage was assessed in continuous stirred tank reactors (CSTR). Addition of mechanically pretreated silage in the feedstock positively affected the methane yield (+16%) and in parallel, reduced the risk of ammonia inhibition compared to mono-digestion of pig manure. Furthermore, metagenomic...... analysis was performed to determine differences among the microbial communities in CSTRs operating under mono- and co-digestion. Species similar to Clostridium thermocellum, with increased cellulolytic activity, were detected to be adherent to the solid fraction of digested feedstock and concluded...... be periodically applied in biogas reactors in order to extract the residual methane from the amassing materials and avoid potential accumulation. Additionally, the facultative anaerobic Melioribacter roseus was inoculated in a replicate CSTR following different bioaugmentation strategies, either strictly...

  13. Fermentation of lignocellulosic hydrolysates: Inhibition and detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Palmqvist, E.

    1998-02-01

    The ethanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as weak acids, furans and phenolic compounds produced during hydrolysis. Evaluation of the effect of various biological, physical and chemical detoxification treatments by fermentation assays using Saccharomyces cerevisiae was used to characterise inhibitors. Inhibition of fermentation was decreased after removal of the non-volatile compounds, pre-fermentation by the filamentous fungus Trichoderma reesei, treatment with the lignolytic enzyme laccase, extraction with ether, and treatment with alkali. Yeast growth in lignocellulosic hydrolysates was inhibited below a certain fermentation pH, most likely due to high concentrations of undissociated weak acids. The effect of individual compounds were studied in model fermentations. Furfural is reduced to furfuryl alcohol by yeast dehydrogenases, thereby affecting the intracellular redox balance. As a result, acetaldehyde accumulated during furfural reduction, which most likely contributed to inhibition of growth. Acetic acid (10 g 1{sup -1}) and furfural (3 g 1{sup -1}) interacted antagonistically causing decreased specific growth rate, whereas no significant individual or interaction effects were detected by the lignin-derived compound 4-hydroxybenzoic acid (2 g 1{sup -1}). By maintaining a high cell mass density in the fermentor, the process was less sensitive to inhibitors affecting growth and to fluctuations in fermentation pH, and in addition the depletion rate of bioconvertible inhibitors was increased. A theoretical ethanol yield and high productivity was obtained in continuous fermentation of spruce hydrolysate when the cell mass concentration was maintained at a high level by applying cell recirculation 164 refs, 16 figs, 5 tabs

  14. Functional and Comparative Genomics of Lignocellulose Degradation by Schizophyllum commune

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin A.; Lee, Hanbyul; Park, Hongjae; Brewer, Heather M.; Carver, Akiko; Copeland, Alex; Grimwood, Jane; Lindquist, Erika; Lipzen, Anna; Martin, Joel; Purvine, Samuel O.; Schackwitz, Wendy; Tegelaar, Martin; Tritt, Andrew; Baker, Scott; Choi, In-Geol; Lugones, Luis G.; Wosten, Han A. B.; Grigoriev, Igor V.

    2014-03-14

    The Basidiomycete fungus Schizophyllum commune is a wood-decaying fungus and is used as a model system to study lignocellulose degradation. Version 3.0 of the genome assembly filled 269 of 316 sequence gaps and added 680 kb of sequence. This new assembly was reannotated using RNAseq transcriptomics data, and this resulted in 3110 (24percent) more genes. Two additional S. commune strains with different wood-decaying properties were sequenced, from Tattone (France) and Loenen (The Netherlands). Sequence comparison shows remarkably high sequence diversity between the strains. The overall SNP rate of > 100 SNPs/kb is among the highest rates of within-species polymorphisms in Basidiomycetes. Some well-described proteins like hydrophobins and transcription factors have less than 70percent sequence identity among the strains. Some chromosomes are better conserved than others and in some cases large parts of chromosomes are missing from one or more strains. Gene expression on glucose, cellulose and wood was analyzed in two S. commune strains. Overall, gene expression correlated between the two strains, but there were some notable exceptions. Of particular interest are CAZymes (carbohydrate-active enzymes) that are regulated in different ways in the different strains. In both strains the transcription factor Fsp1 was strongly up-regulated during growth on cellulose and wood, when compared to glucose. Over-expression of Fsp1 using a constitutive promoter resulted in higher cellulose and xylose-degrading enzyme activity, which suggests that Fsp1 is involved in regulating CAZyme gene expression. Two CAZyme genes (of family GH61 and GH11) were shown to be strongly up-regulated during growth on cellulose, compared to glucose. Proteomics on the secreted proteins in the growth medium confirmed this. A promoter analysis revealed the shortest active promoters for these two genes, as well as putative transcription factor binding sites.

  15. Renewable biofuels bioconversion of lignocellulosic biomass by microbial community

    CERN Document Server

    Rana, Vandana

    2017-01-01

    This book offers a complete introduction for novices to understand key concepts of biocatalysis and how to produce in-house enzymes that can be used for low-cost biofuels production. The authors discuss the challenges involved in the commercialization of the biofuel industry, given the expense of commercial enzymes used for lignocellulose conversion. They describe the limitations in the process, such as complexity of lignocellulose structure, different microbial communities’ actions and interactions for degrading the recalcitrant structure of lignocellulosic materials, hydrolysis mechanism and potential for bio refinery. Readers will gain understanding of the key concepts of microbial catalysis of lignocellulosic biomass, process complexities and selection of microbes for catalysis or genetic engineering to improve the production of bioethanol or biofuel.

  16. Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges.

    Science.gov (United States)

    Jin, Mingjie; Slininger, Patricia J; Dien, Bruce S; Waghmode, Suresh; Moser, Bryan R; Orjuela, Andrea; Sousa, Leonardo da Costa; Balan, Venkatesh

    2015-01-01

    Although single-cell oil (SCO) has been studied for decades, lipid production from lignocellulosic biomass has received substantial attention only in recent years as biofuel research moves toward producing drop-in fuels. This review gives an overview of the feasibility and challenges that exist in realizing microbial lipid production from lignocellulosic biomass in a biorefinery. The aspects covered here include biorefinery technologies, the microbial oil market, oleaginous microbes, lipid accumulation metabolism, strain development, process configurations, lignocellulosic lipid production, technical hurdles, lipid recovery, and technoeconomics. The lignocellulosic SCO-based biorefinery will be feasible only if a combination of low- and high-value lipids are coproduced, while lignin and protein are upgraded to high-value products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Green methods of lignocellulose pretreatment for biorefinery development.

    Science.gov (United States)

    Capolupo, Laura; Faraco, Vincenza

    2016-11-01

    Lignocellulosic biomass is the most abundant, low-cost, bio-renewable resource that holds enormous importance as alternative source for production of biofuels and other biochemicals that can be utilized as building blocks for production of new materials. Enzymatic hydrolysis is an essential step involved in the bioconversion of lignocellulose to produce fermentable monosaccharides. However, to allow the enzymatic hydrolysis, a pretreatment step is needed in order to remove the lignin barrier and break down the crystalline structure of cellulose. The present manuscript is dedicated to reviewing the most commonly applied "green" pretreatment processes used in bioconversion of lignocellulosic biomasses within the "biorefinery" concept. In this frame, the effects of different pretreatment methods on lignocellulosic biomass are described along with an in-depth discussion on the benefits and drawbacks of each method, including generation of potentially inhibitory compounds for enzymatic hydrolysis, effect on cellulose digestibility, and generation of compounds toxic for the environment, and energy and economic demand.

  18. Molecular microbial ecology of lignocellulose mobilisation as a ...

    African Journals Online (AJOL)

    driniev

    The community structure of complex microbial consortia which develop in lignocellulose packed passive treatment systems for acid mine ... dant biological polymers on earth. ... anaerobic degradation of aromatic compounds (Burland and.

  19. Ray Tracing Modelling of Reflector for Vertical Bifacial Panel

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    Bifacial solar panels have recently become a new attractive building block for PV systems. In this work we propose a reflector system for a vertical bifacial panel, and use ray tracing modelling to model the performance. Particularly, we investigate the impact of the reflector volume being filled...

  20. Proceedings: photovoltaics user review panel. March 6 and 7, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, S.

    1979-08-01

    The discussions, recommendations, and conclusions of the Photovoltaics User Review Panel are presented. The purpose of the panel discussions was to determine the Technical Information Dissemination (TID) needs for target audiences, to reach agreement on what informational products could fill these needs and who should produce the materials, and to establish priorities for the need for the TID products.

  1. LIGNOCELLULOSIC BIOMASS: A POTENTIAL FEEDSTOCK TO REPLACE PETROLEUM

    OpenAIRE

    Lucian A. Lucia

    2008-01-01

    Sustainability considerations for product and energy production in a future US economy can be met with lignocellulosic biomass. The age of petroleum as the key resource to meet the US economy requirements is rapidly dwindling, given the limited resources of petroleum, the growing global population, and concurrent detrimental effects on environmental safety. The use of natural and renewable feedstocks such as trees and switchgrass is becoming more attractive; indeed, lignocellulosic biomass i...

  2. Ray Tracing Modelling of Reflector for Vertical Bifacial Panel

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    Bifacial solar panels have recently become a new attractive building block for PV systems. In this work we propose a reflector system for a vertical bifacial panel, and use ray tracing modelling to model the performance. Particularly, we investigate the impact of the reflector volume being filled...... with a refractive medium, and shows the refractive medium improves the reflector performance since it directs almost all the light incident on the incoming plane into the PV panel....

  3. Cellulase-lignin interactions in the enzymatic hydrolysis of lignocellulose

    Energy Technology Data Exchange (ETDEWEB)

    Rahikainen, J.

    2013-11-01

    Today, the production of transportation fuels and chemicals is heavily dependent on fossil carbon sources, such as oil and natural gas. Their limited availability and the environmental concerns arising from their use have driven the search for renewable alternatives. Lignocellulosic plant biomass is the most abundant, but currently underutilised, renewable carbon-rich resource for fuel and chemical production. Enzymatic degradation of structural polysaccharides in lignocellulose produces soluble carbohydrates that serve as ideal precursors for the production of a vast amount of different chemical compounds. The difficulty in full exploitation of lignocellulose for fuel and chemical production lies in the complex and recalcitrant structure of the raw material. Lignocellulose is mainly composed of structural polysaccharides, cellulose and hemicellulose, but also of lignin, which is an aromatic polymer. Enzymatic degradation of cellulose and hemicellulose is restricted by several substrate- and enzyme-related factors, among which lignin is considered as one of the most problematic issues. Lignin restricts the action of hydrolytic enzymes and enzyme binding onto lignin has been identified as a major inhibitory mechanism preventing efficient hydrolysis of lignocellulosic feedstocks. In this thesis, the interactions between cellulase enzymes and lignin-rich compounds were studied in detail and the findings reported in this work have the potential to help in controlling the harmful cellulase-lignin interactions, and thus improve the biochemical processing route from lignocellulose to fuels and chemicals.

  4. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  5. Hyperthermophilic endoglucanase for in planta lignocellulose conversion

    Directory of Open Access Journals (Sweden)

    Klose Holger

    2012-08-01

    Full Text Available Abstract Background The enzymatic conversion of lignocellulosic plant biomass into fermentable sugars is a crucial step in the sustainable and environmentally friendly production of biofuels. However, a major drawback of enzymes from mesophilic sources is their suboptimal activity under established pretreatment conditions, e.g. high temperatures, extreme pH values and high salt concentrations. Enzymes from extremophiles are better adapted to these conditions and could be produced by heterologous expression in microbes, or even directly in the plant biomass. Results Here we show that a cellulase gene (sso1354 isolated from the hyperthermophilic archaeon Sulfolobus solfataricus can be expressed in plants, and that the recombinant enzyme is biologically active and exhibits the same properties as the wild type form. Since the enzyme is inactive under normal plant growth conditions, this potentially allows its expression in plants without negative effects on growth and development, and subsequent heat-inducible activation. Furthermore we demonstrate that the recombinant enzyme acts in high concentrations of ionic liquids and can therefore degrade α-cellulose or even complex cell wall preparations under those pretreatment conditions. Conclusion The hyperthermophilic endoglucanase SSO1354 with its unique features is an excellent tool for advanced biomass conversion. Here we demonstrate its expression in planta and the possibility for post harvest activation. Moreover the enzyme is suitable for combined pretreatment and hydrolysis applications.

  6. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  7. Hyperthermophilic endoglucanase for in planta lignocellulose conversion

    Science.gov (United States)

    2012-01-01

    Background The enzymatic conversion of lignocellulosic plant biomass into fermentable sugars is a crucial step in the sustainable and environmentally friendly production of biofuels. However, a major drawback of enzymes from mesophilic sources is their suboptimal activity under established pretreatment conditions, e.g. high temperatures, extreme pH values and high salt concentrations. Enzymes from extremophiles are better adapted to these conditions and could be produced by heterologous expression in microbes, or even directly in the plant biomass. Results Here we show that a cellulase gene (sso1354) isolated from the hyperthermophilic archaeon Sulfolobus solfataricus can be expressed in plants, and that the recombinant enzyme is biologically active and exhibits the same properties as the wild type form. Since the enzyme is inactive under normal plant growth conditions, this potentially allows its expression in plants without negative effects on growth and development, and subsequent heat-inducible activation. Furthermore we demonstrate that the recombinant enzyme acts in high concentrations of ionic liquids and can therefore degrade α-cellulose or even complex cell wall preparations under those pretreatment conditions. Conclusion The hyperthermophilic endoglucanase SSO1354 with its unique features is an excellent tool for advanced biomass conversion. Here we demonstrate its expression in planta and the possibility for post harvest activation. Moreover the enzyme is suitable for combined pretreatment and hydrolysis applications. PMID:22928996

  8. Water-filled telescopes

    CERN Document Server

    Antonello, E

    2014-01-01

    In this short note we discuss the case of the thought experiments on water-filled telescopes and their realizations during 18th and 19th century. The story of those instruments shows that the scientific progress occurs in a curious way, since there was no stringent reason for the construction of a water-filled telescope.

  9. Bioethanol from lignocellulosics: Status and perspectives in Canada.

    Science.gov (United States)

    Mabee, W E; Saddler, J N

    2010-07-01

    Canada has invested significantly in the development of a domestic bioethanol industry, and it is expected that bioethanol from lignocellulosics will become more desirable to the industry as it expands. Development of the Canadian industry to date is described in this paper, as are examples of domestic research programs focused on both bioconversion and thermochemical conversion to generate biofuels from lignocellulosic biomass. The availability of lignocellulosic residues from agricultural and forestry operations, and the potential biofuel production associated with these residues, is described. The policy tools used to develop the domestic bioethanol industry are explored. A residue-based process could greatly extend the potential of the bioethanol industry in Canada. It is estimated that bioethanol production from residual lignocellulosic feedstocks could provide up to 50% of Canada's 2006 transportation fuel demand, given ideal conversion and full access to these feedstocks. Utilizing lignocellulosic biomass will extend the geographic range of the bioethanol industry, and increase the stability and security of this sector by reducing the impact of localized disruptions in supply. Use of disturbance crops could add 9% to this figure, but not in a sustainable fashion. If pursued aggressively, energy crops ultimately could contribute bioethanol at a volume double that of Canada's gasoline consumption in 2006. This would move Canada towards greater transportation fuel independence and a larger role in the export of bioethanol to the global market.

  10. Adaptation of Dekkera bruxellensis to lignocellulose-based substrate.

    Science.gov (United States)

    Tiukova, Ievgeniia A; de Barros Pita, Will; Sundell, David; Haddad Momeni, Majid; Horn, Svein Jarle; Ståhlberg, Jerry; de Morais, Marcos Antonio; Passoth, Volkmar

    2014-01-01

    Adaptation of Dekkera bruxellensis to lignocellulose hydrolysate was investigated. Cells of D. bruxellensis were grown for 72 and 192 H in batch and continuous culture, respectively (adapted cells). Cultivations in semisynthetic medium were run as controls (nonadapted cells). To test the adaptation, cells from these cultures were reinoculated in the lignocellulose medium, and growth and ethanol production characteristics were monitored. Cells adapted to lignocellulose hydrolysate had a shorter lag phase, grew faster, and produced a higher ethanol concentration as compared with nonadapted cells. A stability test showed that after cultivation in rich medium, cells partially lost the adapted phenotype but still showed faster growth and higher ethanol production as compared with nonadapted cells. Because alcohol dehydrogenase genes have been described to be involved in the adaptation to furfural in Saccharomyces cerevisiae, an analogous mechanism of adaptation to lignocelluloses hydrolysate of D. bruxellensis was hypothesized. However, gene expression analysis showed that genes homologous to S. cerevisiae ADH1 were not involved in the adaptation to lignocelluloses hydrolysate in D. bruxellensis. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  11. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass

    NARCIS (Netherlands)

    Luque, L.; Westerhof, Roel Johannes Maria; van Rossum, G.; Oudenhoven, Stijn; Kersten, Sascha R.A.; Berruti, F.; Rehmann, L.

    2014-01-01

    This paper evaluates a novel biorefinery approach for the conversion of lignocellulosic biomass from pinewood. A combination of thermochemical and biochemical conversion was chosen with the main product being ethanol. Fast pyrolysis of lignocellulosic biomasss with fractional condensation of the

  12. Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach

    NARCIS (Netherlands)

    Zha, Y.; Westerhuis, J.A.; Muilwijk, B.; Overkamp, K.M.; Nijmeijer, B.M.; Coulier, L.; Smilde, A.K.; Punt, P.J.

    2014-01-01

    Background: Inhibitors are formed that reduce the fermentation performance of fermenting yeast during the pretreatment process of lignocellulosic biomass. An exometabolomics approach was applied to systematically identify inhibitors in lignocellulosic biomass hydrolysates.Results: We studied the com

  13. Advancing lignocellulose bioconversion through direct assessment of enzyme action on insoluble substrates

    DEFF Research Database (Denmark)

    Goacher, Robyn E.; Selig, Michael J.; Master, Emma R.

    2014-01-01

    Microbial utilization of lignocellulose from plant cell walls is integral to carbon cycling on Earth. Correspondingly, secreted enzymes that initiate lignocellulose depolymerization serve a crucial step in the bioconversion of lignocellulosic biomass to fuels and chemicals. Genome and metagenome ....... In this context, the development and application of imaging, physicochemical, and spectromicroscopic techniques that allow direct assessment of enzyme action on relevant lignocellulosic substrates is reviewed.......Microbial utilization of lignocellulose from plant cell walls is integral to carbon cycling on Earth. Correspondingly, secreted enzymes that initiate lignocellulose depolymerization serve a crucial step in the bioconversion of lignocellulosic biomass to fuels and chemicals. Genome and metagenome...... sequencing efforts that span the past decade reveal the diversity of enzymes that have evolved to transform lignocellulose from wood, herbaceous plants and grasses. Nevertheless, there are relatively few examples where ‘omic’ technologies have identified novel enzyme activities or combinations thereof...

  14. Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach

    NARCIS (Netherlands)

    Y. Zha; J.A. Westerhuis; B. Muilwijk; K.M. Overkamp; B.M. Nijmeijer; L. Coulier; A.K. Smilde; P.J. Punt

    2014-01-01

    BACKGROUND: Inhibitors are formed that reduce the fermentation performance of fermenting yeast during the pretreatment process of lignocellulosic biomass. An exometabolomics approach was applied to systematically identify inhibitors in lignocellulosic biomass hydrolysates. RESULTS: We studied the co

  15. PRETREATMENT TECHNOLOGIES IN BIOETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS

    Directory of Open Access Journals (Sweden)

    Vanja Janušić

    2008-07-01

    Full Text Available Bioethanol is today most commonly produced from corn grain and sugar cane. It is expected that there will be limits to the supply of these raw materials in the near future. Therefore, lignocellulosic biomass, namely agricultural and forest waste, is seen as an attractive feedstock for future supplies of ethanol. Lignocellulosic biomass consists of lignin, hemicellulose and cellulose. Indeed, complexicity of the lignocellulosic biomass structure causes a pretreatment to be applied prior to cellulose and hemicellulose hydrolysis into fermentable sugars. Pretreatment technologies can be physical (mechanical comminution, pyrolysis, physico-chemical (steam explosion, ammonia fiber explosion, CO2 explosion, chemical (ozonolysis, acid hydrolysis, alkaline hydrolysis, oxidative delignification, organosolvent process and biological ones.

  16. Antinuclear antibody panel

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003535.htm Antinuclear antibody panel To use the sharing features on this page, please enable JavaScript. The antinuclear antibody panel is a blood test that looks at ...

  17. Hepatitis virus panel

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003558.htm Hepatitis virus panel To use the sharing features on this page, please enable JavaScript. The hepatitis virus panel is a series of blood tests used ...

  18. Methods for producing extracted and digested products from pretreated lignocellulosic biomass

    Science.gov (United States)

    Chundawat, Shishir; Sousa, Leonardo Da Costa; Cheh, Albert M.; Balan; , Venkatesh; Dale, Bruce

    2017-05-16

    Methods for producing extracted and digested products from pretreated lignocellulosic biomass are provided. The methods include converting native cellulose I.sub..beta. to cellulose III.sub.I by pretreating the lignocellulosic biomass with liquid ammonia under certain conditions, and performing extracting or digesting steps on the pretreated/converted lignocellulosic biomass.

  19. Rheology of Lignocellulose Suspensions and Impact of Hydrolysis: A Review.

    Science.gov (United States)

    Nguyen, Tien Cuong; Anne-Archard, Dominique; Fillaudeau, Luc

    2015-01-01

    White biotechnologies have several challenges to overcome in order to become a viable industrial process. Achieving highly concentrated lignocellulose materials and releasing fermentable substrates, with controlled kinetics in order to regulate micro-organism activity, present major technical and scientific bottlenecks. The degradation of the main polymeric fractions of lignocellulose into simpler molecules is a prerequisite for an integrated utilisation of this resource in a biorefinery concept. The characterisation methods and the observations developed for rheology, morphology, etc., that are reviewed here are strongly dependent on the fibrous nature of lignocellulose, are thus similar or constitute a good approach to filamentous culture broths. This review focuses on scientific works related to the study of the rheological behaviour of lignocellulose suspensions and their evolution during biocatalysis. In order to produce the targeted molecules (synthon), the lignocellulose substrates are converted by enzymatic degradation and are then metabolised by micro-organisms. The dynamics of the mechanisms is limited by coupled phenomena between flow, heat and mass transfers in regard to diffusion (within solid and liquid phases), convection (mixing, transfer coefficients, homogeneity) and specific inhibitors (concentration gradients). As lignocellulose suspensions consist of long entangled fibres for the matrix of industrial interest, they exhibit diverse and complex properties linked to this fibrous character (rheological, morphological, thermal, mechanical and biochemical parameters). Among the main variables to be studied, the rheological behaviour of such suspensions appears to be determinant for process efficiency. It is this behaviour that will determine the equipment to be used and the strategies applied (substrate and biocatalysis feed, mixing, etc.). This review provides an overview of (i) the rheological behaviour of fibrous materials in suspension, (ii) the

  20. Filling a Conical Cavity

    Science.gov (United States)

    Nye, Kyle; Eslam-Panah, Azar

    2016-11-01

    Root canal treatment involves the removal of infected tissue inside the tooth's canal system and filling the space with a dense sealing agent to prevent further infection. A good root canal treatment happens when the canals are filled homogeneously and tightly down to the root apex. Such a tooth is able to provide valuable service for an entire lifetime. However, there are some examples of poorly performed root canals where the anterior and posterior routes are not filled completely. Small packets of air can be trapped in narrow access cavities when restoring with resin composites. Such teeth can cause trouble even after many years and lead the conditions like acute bone infection or abscesses. In this study, the filling of dead-end conical cavities with various liquids is reported. The first case studies included conical cavity models with different angles and lengths to visualize the filling process. In this investigation, the rate and completeness at which a variety of liquids fill the cavity were observed to find ideal conditions for the process. Then, a 3D printed model of the scaled representation of a molar with prepared post spaces was used to simulate the root canal treatment. The results of this study can be used to gain a better understanding of the restoration for endodontically treated teeth.

  1. [Application of process engineering to remove lignocellulose fermentation inhibitors].

    Science.gov (United States)

    Wang, Lan; Xia, Menglei; Chen, Hongzhang

    2014-05-01

    Fermentation inhibitors are toxic to cells, which is one of the bottlenecks for lignocellulose bio-refinery process. How to remove those inhibitors serves a key role in the bioconversion of lignocellulose. This article reviews the sources and the types of the inhibitors, especially the updated removal strategies including physical methods, chemical methods, biological methods and inhibitor-tolerant strain construction strategies. Based on these, we introduce a new bio-refinery model named "fractional conversion", which reduces the production of inhibitors at pretreatment stage, and a novel in situ detoxification method named "fermentation promoter exploitation technology". This review could provide new research ideas on the removal of fermentation inhibitors.

  2. Integration of Lignocellulosic Biomass into Renewable Energy Generation Concepts

    Directory of Open Access Journals (Sweden)

    KUSCH Sigrid

    2009-08-01

    Full Text Available In all European countries various lignocellulosic biomasses such as agricultural residues (straw, strawcontaining dung or fractions from municipal solid waste are available in large amounts, but currently hardly any of thispotential is being used for energy generation. This paper reviews the different options for including lignocellulosicbiomass into renewable energy generation schemes. Not all wastes are suitable to be treated by principally availabletechniques such as anaerobic digestion, ethanol production or thermal valorisation. The present paper gives an overviewof utilisation options for lignocellulosic biomass to either produce biofuels or to integrate such biomass into anaerobicdigestion. Biorefinery concepts are discussed as well.

  3. Concentration of lignocellulosic hydrolyzates by solar membrane distillation.

    Science.gov (United States)

    Zhang, Lin; Wang, Yafei; Cheng, Li-Hua; Xu, Xinhua; Chen, Huanlin

    2012-11-01

    A small solar energy collector was run to heat lignocellulosic hydrolyzates through an exchanger, and the heated hydrolyzate was concentrated by vacuum membrane distillation (VMD). Under optimal conditions of velocity of 1.0m/s and 65°C, glucose rejection was 99.5% and the flux was 8.46Lm(-2)h(-1). Fermentation of the concentrated hydrolyzate produced 2.64 times the amount of ethanol as fermentation using the original hydrolyzate. The results of this work indicated the possibility to decrease the thermal energy consumption of lignocellulosic ethanol through using VMD.

  4. Production of Bioethanol From Lignocellulosic Biomass Using Thermophilic Anaerobic Bacteria

    DEFF Research Database (Denmark)

    Georgieva, Tania I.

    2006-01-01

    are residual lignocellulose (wastes) created from forest industries or from agricultural food crops (wheat straw, corn stover, rice straw). The lignocellulose contains lignin, which binds carbohydrate polymers (cellulose and hemicellulose) forming together a rather resistant structure. In this regards, a pre...... xylose conversion, effective glucose/xylose co-fermentation, and ethanol productivity of 1 g/l/h required for an economically viable bioethanol process. Furthermore, the fermentation of two undetoxified feed streams of industrial interest (acid hydrolyzed corn stover and wet-exploded wheat straw...

  5. Hepatic (Liver) Function Panel

    Science.gov (United States)

    ... 1- to 2-Year-Old Blood Test: Hepatic (Liver) Function Panel KidsHealth > For Parents > Blood Test: Hepatic (Liver) Function Panel Print A A A What's in ... Is The hepatic function panel, also known as liver function tests, is a group of seven tests ...

  6. TRMM Solar Array Panels

    Science.gov (United States)

    1998-01-01

    This final report presents conclusions/recommendations concerning the TRMM Solar Array; deliverable list and schedule summary; waivers and deviations; as-shipped performance data, including flight panel verification matrix, panel output detail, shadow test summary, humidity test summary, reverse bias test panel; and finally, quality assurance summary.

  7. STRUCTURAL ANALYSIS OF WOOD-LEATHER PANELS BY RAMAN SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Tilman Grünewald,

    2012-02-01

    Full Text Available Besides other ligno-cellulosic materials such as straw, rice husks, or bagasse, wet blue particles from leather production are a promising new raw material stock for wood-based panels, as they offer not only a high availability, but increase the properties of the panel with regard to fire resistance or mechanical characteristics. A panel with a mixture of 42.5% wood fibers, 42.5% wet blue leather particles, and 15% lignin adhesive was produced, and an inhomogeneous sample was prepared. An area of 9 x 10 mm was rasterized and scanned by means of Raman Spectroscopy. Furthermore, the reference spectra of the constituents, i.e. wood fiber, wet blue leather particle, and lignin powder were recorded. The obtained data were treated and analyzed using chemometric methods (principal components analysis PCA and cluster analysis. An important finding was that the reference data were not directly represented in the panels’ spectra, and the correlation matrix of the PCA was not applicable to the panel data. This indicated that chemical changes might take place during the pressing. After processing the panel Raman spectra with the help of PCA and cluster analysis, three distinctive clusters were obtained, discriminating wood, leather, and mixed regions. With the assigned spectral information, it was possible to create a spectral image of the surface.

  8. Transient Thermal Testing and Analysis of a Thermally Insulating Structural Sandwich Panel

    Science.gov (United States)

    Blosser, Max L.; Daryabeigi, Kamran; Bird, Richard K.; Knutson, Jeffrey R.

    2015-01-01

    A core configuration was devised for a thermally insulating structural sandwich panel. Two titanium prototype panels were constructed to illustrate the proposed sandwich panel geometry. The core of one of the titanium panels was filled with Saffil(trademark) alumina fibrous insulation and the panel was tested in a series of transient thermal tests. Finite element analysis was used to predict the thermal response of the panel using one- and two-dimensional models. Excellent agreement was obtained between predicted and measured temperature histories.

  9. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes.

    Science.gov (United States)

    Bhalla, Aditya; Bansal, Namita; Kumar, Sudhir; Bischoff, Kenneth M; Sani, Rajesh K

    2013-01-01

    Second-generation feedstock, especially nonfood lignocellulosic biomass is a potential source for biofuel production. Cost-intensive physical, chemical, biological pretreatment operations and slow enzymatic hydrolysis make the overall process of lignocellulosic conversion into biofuels less economical than available fossil fuels. Lignocellulose conversions carried out at ≤ 50 °C have several limitations. Therefore, this review focuses on the importance of thermophilic bacteria and thermostable enzymes to overcome the limitations of existing lignocellulosic biomass conversion processes. The influence of high temperatures on various existing lignocellulose conversion processes and those that are under development, including separate hydrolysis and fermentation, simultaneous saccharification and fermentation, and extremophilic consolidated bioprocess are also discussed.

  10. THE THERMOELECTRIC SOLAR PANELS

    Directory of Open Access Journals (Sweden)

    R. Ahiska

    2016-07-01

    Full Text Available In this study, load characteristics of thermoelectric and photovoltaic solar panels are investigated and compared with each other with experiments. Thermoelectric solar panels converts the heat generated by sun directly to electricity; while, photovoltaic solar pales converts photonic energy from sun to electricity. In both types, maximum power can be obtained when the load resistance is equal to internal resistance. According to experimental results, power generated from unit surface with thermoelectric panel is 30 times greater than the power generated by photovoltaic panel. From a panel surface of 1 m2, thermoelectric solar panel has generated 4 kW electric power, while from the same surface, photovoltaic panel has generated 132 W only.

  11. Sophorolipid production from lignocellulosic biomass feedstocks

    Science.gov (United States)

    Samad, Abdul

    The present study investigated the feasibility of production of sophorolipids (SLs) using yeast Candida bombicola grown on hydrolysates derived lignocellulosic feedstock either with or without supplementing oil as extra carbon source. Several researchers have reported using pure sugars and various oil sources for producing SLs which makes them expensive for scale-up and commercial production. In order to make the production process truly sustainable and renewable, we used feedstocks such as sweet sorghum bagasse, corn fiber and corn stover. Without oil supplementation, the cell densities at the end of day-8 was recorded as 9.2, 9.8 and 10.8 g/L for hydrolysate derived from sorghum bagasse, corn fiber, and corn fiber with the addition of yeast extract (YE) during fermentation, respectively. At the end of fermentation, the SL concentration was 3.6 g/L for bagasse and 1.0 g/L for corn fiber hydrolysate. Among the three major sugars utilized by C. bombicola in the bagasse cultures, glucose was consumed at a rate of 9.1 g/L-day; xylose at 1.8 g/L-day; and arabinose at 0.98 g/L-day. With the addition of soybean oil at 100 g/L, cultures with bagasse hydrolysates, corn fiber hydrolysates and standard medium had a cell content of 7.7 g/L; 7.9 g/L; and 8.9 g/L, respectively after 10 days. The yield of SLs from bagasse hydrolysate was 84.6 g/L and corn fiber hydrolysate was15.6 g/L. In the same order, the residual oil in cultures with these two hydrolysates was 52.3 g/L and 41.0 g/L. For this set of experiment; in the cultures with bagasse hydrolysate; utilization rates for glucose, xylose and arabinose was recorded as 9.5, 1.04 and 0.08 g/L-day respectively. Surprisingly, C. bombicola consumed all monomeric sugars and non-sugar compounds in the hydrolysates and cultures with bagasse hydrolysates had higher yield of SLs than those from a standard medium which contained pure glucose at the same concentration. Based on the SL concentrations and considering all sugars consumed

  12. Process Simulation of Biobutanol Production from Lignocellulosic Feedstocks

    NARCIS (Netherlands)

    Procentese, A.; Guida, T.; Raganati, F.; Olivieri, G.; Salatino, P.; Marzocchella, A.

    2014-01-01

    A potential flowsheet to produce butanol production by conversion of a lignocellulosic biomass has been simulated by means of the software Aspen Plus®. The flowsheet has included upstream, fermentation, and downstream sections and the attention has been focused on the upstream section. The proposed

  13. Inhibitory Compounds in Lignocellulosic Biomass Hydrolysates during Hydrolysate Fermentation Processes

    NARCIS (Netherlands)

    Zha, Y.; Muilwijk, B.; Coulier, L.C.; Punt, P.J.

    2012-01-01

    To compare the composition and performance of various lignocellulosic biomass hydrolysates as fermentation media, 8 hydrolysates were generated from a grass-like and a wood biomass. The hydrolysate preparation methods used were 1) dilute acid, 2) mild alkaline, 3) alkaline/peracetic acid, and 4) con

  14. Lignocellulosic biomass utilization toward biorefinery using meshophilic Clostridial species

    NARCIS (Netherlands)

    Tamaru, Yutaka; Lopez Contreras, A.M.

    2013-01-01

    Lignocellulosic biomass such as agricultural, industrial, and forestry residues as well as
    dedicated crops constitute renewable and abundant resources with great potential for a lowcost
    and uniquely sustainable bioconversion to value-added bioproducts. Thus, many
    organic fuels and chemic

  15. Effects of lactic acid bacteria contamination on lignocellulosic ethanol fermentation

    Science.gov (United States)

    Slower fermentation rates, mixed sugar compositions, and lower sugar concentrations may make lignocellulosic fermentations more susceptible to contamination by lactic acid bacteria (LAB), which is a common and costly problem to the corn-based fuel ethanol industry. To examine the effects of LAB con...

  16. Rapid and Complete Enzyme Hydrolysis of Lignocellulosic Nanofibrils

    Science.gov (United States)

    Raquel Martin-Sampedro; Ilari Filpponen; Ingrid C. Hoeger; J.Y. Zhu; Janne Laine; Orlando J. Rojas

    2012-01-01

    Rapid enzymatic saccharification of lignocellulosic nanofibrils (LCNF) was investigated by monitoring nanoscale changes in mass via quartz crystal microgravimetry and also by measuring reducing sugar yields. In only a few minutes LCNF thin films were completely hydrolyzed upon incubation in multicomponent enzyme systems. Conversion to sugars and oligosaccharides of...

  17. Lignocellulose pretreatment in a fungus-cultivating termite

    Science.gov (United States)

    Hongjie Li; Daniel J. Yelle; Chang Li; Mengyi Yang; Jing Ke; Ruijuan Zhang; Yu Liu; Na Zhu; Shiyou Liang; Xiaochang Mo; John Ralph; Cameron R. Currie; Jianchu Mo

    2017-01-01

    Depolymerizing lignin, the complex phenolic polymer fortifying plant cell walls, is an essential but challenging starting point for the lignocellulosics industries. The variety of ether– and carbon–carbon interunit linkages produced via radical coupling during lignification limit chemical and biological depolymerization efficiency. In an ancient fungus-cultivating...

  18. Biohydrogen Production from Lignocellulosic Biomass: Technology and Sustainability

    Directory of Open Access Journals (Sweden)

    Anoop Singh

    2015-11-01

    Full Text Available Among the various renewable energy sources, biohydrogen is gaining a lot of traction as it has very high efficiency of conversion to usable power with less pollutant generation. The various technologies available for the production of biohydrogen from lignocellulosic biomass such as direct biophotolysis, indirect biophotolysis, photo, and dark fermentations have some drawbacks (e.g., low yield and slower production rate, etc., which limits their practical application. Among these, metabolic engineering is presently the most promising for the production of biohydrogen as it overcomes most of the limitations in other technologies. Microbial electrolysis is another recent technology that is progressing very rapidly. However, it is the dark fermentation approach, followed by photo fermentation, which seem closer to commercialization. Biohydrogen production from lignocellulosic biomass is particularly suitable for relatively small and decentralized systems and it can be considered as an important sustainable and renewable energy source. The comprehensive life cycle assessment (LCA of biohydrogen production from lignocellulosic biomass and its comparison with other biofuels can be a tool for policy decisions. In this paper, we discuss the various possible approaches for producing biohydrogen from lignocellulosic biomass which is an globally available abundant resource. The main technological challenges are discussed in detail, followed by potential solutions.

  19. Lignocellulosic biomass utilization toward biorefinery using meshophilic Clostridial species

    NARCIS (Netherlands)

    Tamaru, Yutaka; Lopez Contreras, A.M.

    2013-01-01

    Lignocellulosic biomass such as agricultural, industrial, and forestry residues as well as
    dedicated crops constitute renewable and abundant resources with great potential for a lowcost
    and uniquely sustainable bioconversion to value-added bioproducts. Thus, many
    organic fuels and

  20. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process

    Directory of Open Access Journals (Sweden)

    H. V. Lee

    2014-01-01

    Full Text Available Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate’s application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein.

  1. Microbial lipid based lignocellulosic biorefinery: feasibility and challenges

    Science.gov (United States)

    Although single cell oil (SCO) has been studied for decades, lipid production from lignocellulosic biomass has only received substantial attention in recent years as biofuel research moves toward producing drop-in fuels. This review article gives an overview of the feasibility and challenges that ex...

  2. Evaluation of lignocellulosic wastes for production of edible mushrooms.

    Science.gov (United States)

    Rani, P; Kalyani, N; Prathiba, K

    2008-12-01

    The degradation of lignocellulosic wastes such as paddy straw, sorghum stalk, and banana pseudostem was investigated during solid-state fermentation by edible mushrooms Pleurotus eous and Lentinus connotus. Biological efficiency of 55-65% was observed in paddy straw followed by sorghum stalk (45%) and banana pseudostem (33%) for both fungal species. The activity of extracellular enzymes, namely cellulase, polyphenol oxidase, and laccase, together with the content of cellulose, lignin, and phenols, was studied in spent substrates on seventh, 17th, and 27th days of spawning, and these values were used as indicators of the extent of lignocellulosic degradation by mushroom. Both the mushroom species proved to be efficient degraders of lignocellulosic biomass of paddy straw and sorghum stalk, and the extent of cellulose degradation was 63-72% of dry weight (d.w.), and lignin degradation was 23-30% of the d.w. In banana pseudostem, the extent of the degradation was observed to be only 15-22% of the d.w. for both lignin and cellulose. Preferential removal of cellulose during initial growth period and delayed degradation of lignin were observed in all three substrates. This is associated with decrease in activity of cellulase and polyphenol oxidase and increase in laccase activity with spawn aging in spent substrates. Thus, bioconversion of lignocellulosic biomass by P. eous and L. connotus offers a promising way to convert low-quality biomass into an improved human food.

  3. Ionic liquid-facilitated preparation of lignocellulosic composites

    Science.gov (United States)

    Lignocellulosic composites (LCs) were prepared by partially dissolving cotton along with steam exploded Aspen wood and burlap fabric reinforcements utilizing an ionic liquid (IL) solvent. Two methods of preparation were employed. In the first method, a controlled amount of IL was added to preassembl...

  4. The suitability evaluation of lignocellulosic substrate as growing ...

    African Journals Online (AJOL)

    SAM

    2014-04-02

    Apr 2, 2014 ... Author(s) agree that this article remain permanently open access under the terms of the Creative ... generally residual materials such as wood waste, coconut coir, rice .... of all lignocellulosic substrate (sample : distilled water ratio of 1:5) ..... Reuse of waste materials as growing media for ornamental plants.

  5. Oyster mushrooms (Pleurotus) are useful for utilizing lignocellulosic ...

    African Journals Online (AJOL)

    DR. ADEBAYO

    2015-01-07

    Jan 7, 2015 ... industrial lignocellulosic wastes due to their production of ligninolytic and ... technologies developed between oyster mushrooms and. Adebayo ..... The cost of mushroom is directly dependent on the substrate ... Coconut leaves. 31. 585 ..... poultry and as additives to wheat flour for improving the quality of ...

  6. Fungal treated lignocellulosic biomass as ruminant feed ingredient: A review

    NARCIS (Netherlands)

    Kuijk, van S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W.

    2015-01-01

    In ruminant nutrition, there is an increasing interest for ingredients that do not compete with human nutrition. Ruminants are specialists in digesting carbohydrates in plant cell walls; therefore lignocellulosic biomass has potential in ruminant nutrition. The presence of lignin in biomass,

  7. Pretreatment of lignocellulose with biological acid recycling (the Biosulfurol process)

    NARCIS (Netherlands)

    Groenestijn, van J.; Hazewinkel, O.; Bakker, R.R.C.

    2006-01-01

    A biomass pretreatment process is being developed based on contacting lignocellulosic biomass with 70% sulfuric acid and subsequent hydrolysis by adding water. In this process, the hydrolysate can be fermented yielding ethanol, while the sulfuric acid is partly recovered by anion-selective membranes

  8. Liquefaction of lignocellulose: process parameter study to minimize heavy ends

    NARCIS (Netherlands)

    Kumar, S.; Lange, Jean Paul; van Rossum, G.; Kersten, Sascha R.A.

    2014-01-01

    Lignocellulosic feedstock can be converted to bio-oil by direct liquefaction in a phenolic solvent such as guaiacol with an oil yield of >90 C% at 300–350 °C without the assistance of catalyst or reactive atmosphere. Despite good initial performance, the liquefaction was rapidly hindered by the form

  9. [Anaerobic digestion of lignocellulosic biomass with animal digestion mechanisms].

    Science.gov (United States)

    Wu, Hao; Zhang, Pan-Yue; Guo, Jian-Bin; Wu, Yong-Jie

    2013-02-01

    Lignocellulosic material is the most abundant renewable resource in the earth. Herbivores and wood-eating insects are highly effective in the digestion of plant cellulose, while anaerobic digestion process simulating animal alimentary tract still remains inefficient. The digestion mechanisms of herbivores and wood-eating insects and the development of anaerobic digestion processes of lignocellulose were reviewed for better understanding of animal digestion mechanisms and their application in design and operation of the anaerobic digestion reactor. Highly effective digestion of lignocellulosic materials in animal digestive system results from the synergistic effect of various digestive enzymes and a series of physical and biochemical reactions. Microbial fermentation system is strongly supported by powerful pretreatment, such as rumination of ruminants, cellulase catalysis and alkali treatment in digestive tract of wood-eating insects. Oxygen concentration gradient along the digestive tract may stimulate the hydrolytic activity of some microorganisms. In addition, the excellent arrangement of solid retention time, digesta flow and end product discharge enhance the animal digestion of wood cellulose. Although anaerobic digestion processes inoculated with rumen microorganisms based rumen digestion mechanisms were developed to treat lignocellulose, the fermentation was more greatly limited by the environmental conditions in the anaerobic digestion reactors than that in rumen or hindgut. Therefore, the anaerobic digestion processes simulating animal digestion mechanisms can effectively enhance the degradation of wood cellulose and other organic solid wastes.

  10. Paneling architectural freeform surfaces

    KAUST Repository

    Eigensatz, Michael

    2010-07-26

    The emergence of large-scale freeform shapes in architecture poses big challenges to the fabrication of such structures. A key problem is the approximation of the design surface by a union of patches, socalled panels, that can be manufactured with a selected technology at reasonable cost, while meeting the design intent and achieving the desired aesthetic quality of panel layout and surface smoothness. The production of curved panels is mostly based on molds. Since the cost of mold fabrication often dominates the panel cost, there is strong incentive to use the same mold for multiple panels. We cast the major practical requirements for architectural surface paneling, including mold reuse, into a global optimization framework that interleaves discrete and continuous optimization steps to minimize production cost while meeting user-specified quality constraints. The search space for optimization is mainly generated through controlled deviation from the design surface and tolerances on positional and normal continuity between neighboring panels. A novel 6-dimensional metric space allows us to quickly compute approximate inter-panel distances, which dramatically improves the performance of the optimization and enables the handling of complex arrangements with thousands of panels. The practical relevance of our system is demonstrated by paneling solutions for real, cutting-edge architectural freeform design projects. © 2010 ACM.

  11. Paneling architectural freeform surfaces

    KAUST Repository

    Eigensatz, Michael

    2010-07-25

    The emergence of large-scale freeform shapes in architecture poses big challenges to the fabrication of such structures. A key problem is the approximation of the design surface by a union of patches, so-called panels, that can be manufactured with a selected technology at reasonable cost, while meeting the design intent and achieving the desired aesthetic quality of panel layout and surface smoothness. The production of curved panels is mostly based on molds. Since the cost of mold fabrication often dominates the panel cost, there is strong incentive to use the same mold for multiple panels. We cast the major practical requirements for architectural surface paneling, including mold reuse, into a global optimization framework that interleaves discrete and continuous optimization steps to minimize production cost while meeting user-specified quality constraints. The search space for optimization is mainly generated through controlled deviation from the design surface and tolerances on positional and normal continuity between neighboring panels. A novel 6-dimensional metric space allows us to quickly compute approximate inter-panel distances, which dramatically improves the performance of the optimization and enables the handling of complex arrangements with thousands of panels. The practical relevance of our system is demonstrated by paneling solutions for real, cutting-edge architectural freeform design projects.

  12. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica.

    Science.gov (United States)

    Ehsanipour, Mandana; Suko, Azra Vajzovic; Bura, Renata

    2016-06-01

    A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M. thermoacetica can effectively ferment xylose and glucose in hydrolysates from wheat straw, forest residues, switchgrass, and sugarcane straw to acetic acid. Xylose and glucose were completely utilized, with xylose being consumed first. M. thermoacetica consumed up to 62 % of arabinose, 49 % galactose and 66 % of mannose within 72 h of fermentation in the mixture of lignocellulosic sugars. The highest acetic acid yield was obtained from sugarcane straw hydrolysate, with 71 % of theoretical yield based on total sugars (17 g/L acetic acid from 24 g/L total sugars). The lowest acetic acid yield was observed in forest residues hydrolysate, with 39 % of theoretical yield based on total sugars (18 g/L acetic acid from 49 g/L total sugars). Process derived compounds from steam explosion pretreatment, including 5-hydroxymethylfurfural (0.4 g/L), furfural (0.1 g/L) and total phenolics (3 g/L), did not inhibit microbial growth and acetic acid production yield. This research identified two major factors that adversely affected acetic acid yield in all hydrolysates, especially in forest residues: (i) glucose to xylose ratio and (ii) incomplete consumption of arabinose, galactose and mannose. For efficient bioconversion of lignocellulosic sugars to acetic acid, it is imperative to have an appropriate balance of sugars in a hydrolysate. Hence, the choice of lignocellulosic biomass and steam pretreatment design are fundamental steps for the industrial application of this process.

  13. Titanium honeycomb panel testing

    Science.gov (United States)

    Richards, W. L.; Thompson, Randolph C.

    The paper describes the procedures of thermal mechanical tests carried out at the NASA Dryden Flight Research Facility on two tianium honeycomb wing panels bonded using liquid interface diffusion (LID) technique, and presents the results of these tests. The 58.4 cm square panels consisted of two 0.152-cm-thick Ti 6-2-4-2 face sheets LID-bonded to a 1.9-cm-thick honeycomb core, with bearing plates fastened to the perimeter of the upper and the lower panel surfaces. The panels were instrumented with sensors for measuring surface temperature, strain, and deflections to 315 C and 482 C. Thermal stress levels representative of those encountered during aerodynamic heating were produced by heating the upper panel surface and restraining all four edges. After more than 100 thermal cycles from room temperature to 315 C and 50 cycles from room temperature to 482 C, no significant structural degradation was detected in the panels.

  14. REINFORCED COMPOSITE PANEL

    DEFF Research Database (Denmark)

    2003-01-01

    A composite panel having front and back faces, the panel comprising facing reinforcement, backing reinforcement and matrix material binding to the facing and backing reinforcements, the facing and backing reinforcements each independently comprising one or more reinforcing sheets, the facing...... by matrix material, the facing and backing reinforcements being interconnected to resist out-of-plane relative movement. The reinforced composite panel is useful as a barrier element for shielding structures, equipment and personnel from blast and/or ballistic impact damage....

  15. REINFORCED COMPOSITE PANEL

    DEFF Research Database (Denmark)

    2003-01-01

    A composite panel having front and back faces, the panel comprising facing reinforcement, backing reinforcement and matrix material binding to the facing and backing reinforcements, the facing and backing reinforcements each independently comprising one or more reinforcing sheets, the facing rein...... by matrix material, the facing and backing reinforcements being interconnected to resist out-of-plane relative movement. The reinforced composite panel is useful as a barrier element for shielding structures, equipment and personnel from blast and/or ballistic impact damage....

  16. FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    F.D. Guffey; R.C. Wingerson

    2002-10-01

    PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to

  17. Automatic outdoor monitoring system for photovoltaic panels

    Science.gov (United States)

    Stefancich, Marco; Simpson, Lin; Chiesa, Matteo

    2016-05-01

    Long-term acquisition of solar panel performance parameters, for panels operated at maximum power point in their real environment, is of critical importance in the photovoltaic research sector. However, few options exist for the characterization of non-standard panels such as concentrated photovoltaic systems, heavily soiled or shaded panels or those operating under non-standard spectral illumination; certainly, it is difficult to find such a measurement system that is flexible and affordable enough to be adopted by the smaller research institutes or universities. We present here an instrument aiming to fill this gap, autonomously tracking and maintaining any solar panel at maximum power point while continuously monitoring its operational parameters and dissipating the produced energy without connection to the power grid. The instrument allows periodic acquisition of current-voltage curves to verify the employed maximum power point tracking approach. At the same time, with hardware schematics and software code being provided, it provides a flexible open development environment for the monitoring of non-standard generators like concentrator photovoltaic systems and to test novel power tracking approaches. The key issues, and the corresponding solutions, encountered in the design are analyzed in detail and the relevant schematics presented.

  18. Automatic outdoor monitoring system for photovoltaic panels.

    Science.gov (United States)

    Stefancich, Marco; Simpson, Lin; Chiesa, Matteo

    2016-05-01

    Long-term acquisition of solar panel performance parameters, for panels operated at maximum power point in their real environment, is of critical importance in the photovoltaic research sector. However, few options exist for the characterization of non-standard panels such as concentrated photovoltaic systems, heavily soiled or shaded panels or those operating under non-standard spectral illumination; certainly, it is difficult to find such a measurement system that is flexible and affordable enough to be adopted by the smaller research institutes or universities. We present here an instrument aiming to fill this gap, autonomously tracking and maintaining any solar panel at maximum power point while continuously monitoring its operational parameters and dissipating the produced energy without connection to the power grid. The instrument allows periodic acquisition of current-voltage curves to verify the employed maximum power point tracking approach. At the same time, with hardware schematics and software code being provided, it provides a flexible open development environment for the monitoring of non-standard generators like concentrator photovoltaic systems and to test novel power tracking approaches. The key issues, and the corresponding solutions, encountered in the design are analyzed in detail and the relevant schematics presented.

  19. Automatic outdoor monitoring system for photovoltaic panels

    Energy Technology Data Exchange (ETDEWEB)

    Stefancich, Marco [Consiglio Nazionale delle Ricerce, Istituto dei Materiali per l’Elettronica ed il Magnetismo (CNR-IMEM), Parco Area delle Scienze 37/A, 43124 Parma, Italy; Simpson, Lin [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA; Chiesa, Matteo [Masdar Institute of Science and Technology, P.O. Box 54224, Masdar City, Abu Dhabi, United Arab Emirates

    2016-05-01

    Long-term acquisition of solar panel performance parameters, for panels operated at maximum power point in their real environment, is of critical importance in the photovoltaic research sector. However, few options exist for the characterization of non-standard panels such as concentrated photovoltaic systems, heavily soiled or shaded panels or those operating under non-standard spectral illumination; certainly, it is difficult to find such a measurement system that is flexible and affordable enough to be adopted by the smaller research institutes or universities. We present here an instrument aiming to fill this gap, autonomously tracking and maintaining any solar panel at maximum power point while continuously monitoring its operational parameters and dissipating the produced energy without connection to the power grid. The instrument allows periodic acquisition of current-voltage curves to verify the employed maximum power point tracking approach. At the same time, with hardware schematics and software code being provided, it provides a flexible open development environment for the monitoring of non-standard generators like concentrator photovoltaic systems and to test novel power tracking approaches. The key issues, and the corresponding solutions, encountered in the design are analyzed in detail and the relevant schematics presented.

  20. Microstructure Filled Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thomas, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reese, T. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-24

    We propose replacing the gas fill in a hohlraum with a low average density, variable uniformity 3D printed structure. This creates a bimodal hohlraum which acts like a vacuum hohlraum initially during the picket, but could protect the capsule from glint or direct illumination, and then once expanded, homogenizes to behave like a variable z gas-fill during peak portion of the drive. This is motivated by a two main aims: 1) reduction of the Au bubble velocity to improve inner beam propagation, and 2) the introduction of a low density, high-Z, x-ray converter to improve x-ray production in the hohlraum and uniformity of the radiation field seen by the capsule.

  1. Complications of Dermal Filling

    Directory of Open Access Journals (Sweden)

    Sajad Ahmad Salati

    2011-11-01

    Full Text Available Dermal fillers have globally become sought after drugs due to the desire of aging population to regain the youthful looks without any surgical operations. But like other procedures, dermal filling can become complicated. Besides the profitability have introduced the factor of malpractice which can bring in misery rather than beauty and youthful body contours. This article briefly reviews the common adverse effects of dermal fillers.

  2. Production of Bioethanol From Lignocellulosic Biomass Using Thermophilic Anaerobic Bacteria

    DEFF Research Database (Denmark)

    Georgieva, Tania I.

    2006-01-01

    are residual lignocellulose (wastes) created from forest industries or from agricultural food crops (wheat straw, corn stover, rice straw). The lignocellulose contains lignin, which binds carbohydrate polymers (cellulose and hemicellulose) forming together a rather resistant structure. In this regards, a pre...... be readily fermented to ethanol by yeast strains such as Saccharomyces cerevisiae and bacterial strains of Zymomonas mobilis, xylose is more difficult to ferment because of a lack of industrially suitable microorganism able to rapidly and efficiently produce high concentrations of ethanol from xylose...... hydrolysates, and out of the screening test, one particular strain (A10) was selected for the best performance. The strain was morphologically and physiologically characterized as Thermoanaerobacter mathranii strain A10. Unlike other thermophilic anaerobic bacteria, the wild-type strain Thermoanaerobacter...

  3. Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks.

    Science.gov (United States)

    Kawaguchi, Hideo; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2016-12-01

    The feedstocks used for the production of bio-based chemicals have recently expanded from edible sugars to inedible and more recalcitrant forms of lignocellulosic biomass. To produce bio-based chemicals from renewable polysaccharides, several bioprocessing approaches have been developed and include separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), and consolidated bioprocessing (CBP). In the last decade, SHF, SSF, and CBP have been used to generate macromolecules and aliphatic and aromatic compounds that are capable of serving as sustainable, drop-in substitutes for petroleum-based chemicals. The present review focuses on recent progress in the bioprocessing of microbially produced chemicals from renewable feedstocks, including starch and lignocellulosic biomass. In particular, the technological feasibility of bio-based chemical production is discussed in terms of the feedstocks and different bioprocessing approaches, including the consolidation of enzyme production, enzymatic hydrolysis of biomass, and fermentation.

  4. Canonical correlations between chemical and energetic characteristics of lignocellulosic wastes

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2012-09-01

    Full Text Available Canonical correlation analysis is a statistical multivariate procedure that allows analyzing linear correlation that may exist between two groups or sets of variables (X and Y. This paper aimed to provide canonical correlation analysis between a group comprised of lignin and total extractives contents and higher heating value (HHV with a group of elemental components (carbon, hydrogen, nitrogen and sulfur for lignocellulosic wastes. The following wastes were used: eucalyptus shavings; pine shavings; red cedar shavings; sugar cane bagasse; residual bamboo cellulose pulp; coffee husk and parchment; maize harvesting wastes; and rice husk. Only the first canonical function was significant, but it presented a low canonical R². High carbon, hydrogen and sulfur contents and low nitrogen contents seem to be related to high total extractives contents of the lignocellulosic wastes. The preliminary results found in this paper indicate that the canonical correlations were not efficient to explain the correlations between the chemical elemental components and lignin contents and higher heating values.

  5. Wheat straw: An inefficient substrate for rapid natural lignocellulosic composting.

    Science.gov (United States)

    Zhang, Lili; Jia, Yangyang; Zhang, Xiaomei; Feng, Xihong; Wu, Jinjuan; Wang, Lushan; Chen, Guanjun

    2016-06-01

    Composting is a promising method for the management of agricultural wastes. However, results for wheat straw composts with different carbon-to-nitrogen ratios revealed that wheat straw was only partly degraded after composting for 25days, with hemicellulose and cellulose content decreasing by 14% and 33%, respectively. No significant changes in community structure were found after composting according to 454-pyrosequencing. Bacterial communities were represented by Proteobacteria and Bacteroidetes throughout the composting process, including relatively high abundances of pathogenic microbes such as Pseudomonas and Flexibacter, suggesting that innocent treatment of the composts had not been achieved. Besides, the significant lignocellulose degrader Thermomyces was not the exclusively dominant fungus with relative abundance only accounting for 19% of fungal communities. These results indicated that comparing with maize straw, wheat straw was an inefficient substrate for rapid natural lignocellulose-based composting, which might be due to the recalcitrance of wheat straw.

  6. Adsorption of Congo Red onto Lignocellulose/Montmorillonite Nanocomposite

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yahong; XUE Zhenhua; WANG Ximing; WANG Li; WANG Aiqin

    2012-01-01

    Lignocellulose/montmorillonite (LNC/MMT) nanocomposites were prepared and characterized by FTIR and XRD.The adsorption of congo red (CR) on LNC/MMT nanocomposite was studied in detail.The effects of contact temperature,pH value of the dye solutions,contact time and concentration of dye solutions on the adsorption capacities of lignocellulose (LNC),montmorillonite (MMT) and the nanocomposite were investigated.The adsorption kinetics and isotherms and adsorption thermodynamics of the nanocomposite for CR were also studied.The results show that the adsorption capacity of LNC/MMT nanocomosite is higher than that of LNC and MMT.All the adsorption processes fit very well with the pseudo-second-order and the Langmuir equation.From thermodynamic studies,it is seen that the adsorption is spontaneous and endothermic.

  7. Flow-through biological conversion of lignocellulosic biomass

    Science.gov (United States)

    Herring, Christopher D.; Liu, Chaogang; Bardsley, John

    2014-07-01

    The present invention is directed to a process for biologically converting carbohydrates from lignocellulosic biomass comprising the steps of: suspending lignocellulosic biomass in a flow-through reactor, passing a reaction solution into the reactor, wherein the solution is absorbed into the biomass substrate and at least a portion of the solution migrates through said biomass substrate to a liquid reservoir, recirculating the reaction solution in the liquid reservoir at least once to be absorbed into and migrate through the biomass substrate again. The biological converting of the may involve hydrolyzing cellulose, hemicellulose, or a combination thereof to form oligosaccharides, monomelic sugars, or a combination thereof; fermenting oligosaccharides, monomelic sugars, or a combination thereof to produce ethanol, or a combination thereof. The process can further comprise removing the reaction solution and processing the solution to separate the ethanol produced from non-fermented solids.

  8. Flow-through biological conversion of lignocellulosic biomass

    Science.gov (United States)

    Herring, Christopher D.; Liu, Chaogang; Bardsley, John

    2014-07-01

    The present invention is directed to a process for biologically converting carbohydrates from lignocellulosic biomass comprising the steps of: suspending lignocellulosic biomass in a flow-through reactor, passing a reaction solution into the reactor, wherein the solution is absorbed into the biomass substrate and at least a portion of the solution migrates through said biomass substrate to a liquid reservoir, recirculating the reaction solution in the liquid reservoir at least once to be absorbed into and migrate through the biomass substrate again. The biological converting of the may involve hydrolyzing cellulose, hemicellulose, or a combination thereof to form oligosaccharides, monomelic sugars, or a combination thereof; fermenting oligosaccharides, monomelic sugars, or a combination thereof to produce ethanol, or a combination thereof. The process can further comprise removing the reaction solution and processing the solution to separate the ethanol produced from non-fermented solids.

  9. Non-linear Behavior of Curved Sandwich Panels

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Jolma, P.; Karjalainen, J. P.;

    2003-01-01

    In this paper the non-linear behavior of curved sandwich panels is investigated both numerically and experimentally. Focus is on various aspects of finite element modeling and calculation procedures. A simply supported, singly curved, CFRP/PVC sandwich panel is analyzed under uniform pressure load...... and results are compared to test data. A novel test arrangement utilizing a water filled cushion to create the uniform pressure load on curved panel specimen is used to obtain the experimental data. The panel is modeled with three different commercial finite element codes. Two implicit and one explicit code...... are used with various element types, modeling approaches and material models. The results show that the theoretical and experimental methods generally show fair agreement in panel non-linear behavior before collapse. It is also shown that special attention to detail has to be taken, because the predicted...

  10. STEAM EXPLOSION : PROCESS AND IMPACT ON LIGNOCELLULOSIC MATERIAL

    OpenAIRE

    Jacquet, Nicolas; Vanderghem, Caroline; Danthine, Sabine; Blecker, Christophe; Paquot, Michel

    2012-01-01

    Steam explosion is a thermomechanochemical process which allows the breakdown of lignocellulosic structural components by steam heating, hydrolysis of glycosidic bonds by organic acid formed during the process and shearing forces due to the expansion of the moisture. The process is composed of two distinct stages: vapocracking and explosive decompression. Cumul effects of both phases include modification of the physical properties of the material (specific surface area, water retention capaci...

  11. Properties of ligno-cellulose ficus religiosa leaf fibers

    CSIR Research Space (South Africa)

    Reddy, KO

    2010-04-01

    Full Text Available Religiosa Leaf Fibers International Journal of Polymers and Technologies • 2(1) January-April 2010 29 I J P T © Serials Publications * Corresponding author: E-mail: arajulu@rediffmail.com Properties of Ligno-cellulose Ficus Religiosa Leaf Fibers K. Obi... was also studied and the results are reported in this paper. MATERIALS AND METHODS Materials Extracted ficus leaf fibers, sodium hydroxide pellets (Merk, India), benzene, sodium chlorite, acetic acid, sodium bisulphate and ethanol (S...

  12. Catalytic Pretreatment and Microwave Assisted Hydrolysis of Lignocellulosic Raw Materials

    OpenAIRE

    Hakola, Maija

    2013-01-01

    There is nowadays a strong concern about decreasing oil supplies and global warming leading to ever increasing interest in biobased fuels and chemical production. The utilization of lignocellulosic raw materials for liquid biofuels and chemicals is a challenging task due to raw materials rigid structure which is resistant towards any actions to break it. Thus the raw materials should be pretreated to reach an economically vital process. Catalytic and alkaline oxidation presented here ar...

  13. Lignocellulosic biomass utilization toward biorefinery : technologies, products and perspectives

    OpenAIRE

    Mussatto, Solange I.

    2014-01-01

    Lignocellulosic biomass wastes (LBW) are generated and accumulated in large amounts around the world every year. The disposal of large amounts of such wastes in the nature may cause environmental problems, affecting the quality of the soil, lakes and rivers. In order to avoid these problems, efforts have been directed to use LBW in a biorefinery to maximize the reutilization of these wastes with minimal or none production of residual matter. Through biorefiner...

  14. Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review

    OpenAIRE

    Gary Brodeur; Elizabeth Yau; Kimberly Badal; John Collier; Ramachandran, K.B.; Subramanian Ramakrishnan

    2011-01-01

    Overcoming the recalcitrance (resistance of plant cell walls to deconstruction) of lignocellulosic biomass is a key step in the production of fuels and chemicals. The recalcitrance is due to the highly crystalline structure of cellulose which is embedded in a matrix of polymers-lignin and hemicellulose. The main goal of pretreatment is to overcome this recalcitrance, to separate the cellulose from the matrix polymers, and to make it more accessible for enzymatic hydrolysis. Reports have sh...

  15. Technoeconomic assessment of lignocellulosic ethanol production via DME hydrocarbonylation

    OpenAIRE

    García Haro, Pedro; Ollero de Castro, Pedro Antonio; Villanueva Perales, Ángel Luis; Reyes Valle, Carmen Maria

    2012-01-01

    In this study, a new thermochemical route to produce lignocellulosic ethanol based on DME (dimethyl ether) hydrocarbonylation is proposed and economically assessed. The process is designed and evaluated using current kinetic laboratory data for hydrocarbonylation reactions. Only available technologies or those expected to be available in the short term are considered for the process design, which involves biomass pretreatment and gasification (indirect circulating fluidized bed), gas clean-up...

  16. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review.

    Science.gov (United States)

    van Kuijk, S J A; Sonnenberg, A S M; Baars, J J P; Hendriks, W H; Cone, J W

    2015-01-01

    In ruminant nutrition, there is an increasing interest for ingredients that do not compete with human nutrition. Ruminants are specialists in digesting carbohydrates in plant cell walls; therefore lignocellulosic biomass has potential in ruminant nutrition. The presence of lignin in biomass, however, limits the effective utilization of cellulose and hemicellulose. Currently, most often chemical and/or physical treatments are used to degrade lignin. White rot fungi are selective lignin degraders and can be a potential alternative to current methods which involve potentially toxic chemicals and expensive equipment. This review provides an overview of research conducted to date on fungal pretreatment of lignocellulosic biomass for ruminant feeds. White rot fungi colonize lignocellulosic biomass, and during colonization produce enzymes, radicals and other small compounds to breakdown lignin. The mechanisms on how these fungi degrade lignin are not fully understood, but fungal strain, the origin of lignocellulose and culture conditions have a major effect on the process. Ceriporiopsis subvermispora and Pleurotus eryngii are the most effective fungi to improve the nutritional value of biomass for ruminant nutrition. However, conclusions on the effectiveness of fungal delignification are difficult to draw due to a lack of standardized culture conditions and information on fungal strains used. Methods of analysis between studies are not uniform for both chemical analysis and in vitro degradation measurements. In vivo studies are limited in number and mostly describing digestibility after mushroom production, when the fungus has degraded cellulose to derive energy for fruit body development. Optimization of fungal pretreatment is required to shorten the process of delignification and make it more selective for lignin. In this respect, future research should focus on optimization of culture conditions and gene expression to obtain a better understanding of the mechanisms

  17. Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach

    CSIR Research Space (South Africa)

    Abraham, E

    2011-06-01

    Full Text Available -1 Carbohydrate Polymers Volume 86, Issue 4, 15 October 2011, Pages 1468-1475 Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach E. Abrahama, B. Deepaa, L.A. Pothana, , , M. Jacobc, S. Thomasb, U. Cvelbard, R. Anandjiwalac a... Department of Chemistry, Bishop Moore College, Mavelikkara 690 101, Kerala, India b School of Chemical Sciences, Mahatma Gandhi university, Kottayam 686 560, Kerala, India c Fibres and Textiles Competence Area, CSIR, Materials Science and Manufacturing...

  18. Effect of Lignocellulose Related Compounds on Microalgae Growth and Product Biosynthesis: A Review

    Directory of Open Access Journals (Sweden)

    Krystian Miazek

    2014-07-01

    Full Text Available Microalgae contain valuable compounds that can be harnessed for industrial applications. Lignocellulose biomass is a plant material containing in abundance organic substances such as carbohydrates, phenolics, organic acids and other secondary compounds. As growth of microalgae on organic substances was confirmed during heterotrophic and mixotrophic cultivation, lignocellulose derived compounds can become a feedstock to cultivate microalgae and produce target compounds. In this review, different treatment methods to hydrolyse lignocellulose into organic substrates are presented first. Secondly, the effect of lignocellulosic hydrolysates, organic substances typically present in lignocellulosic hydrolysates, as well as minor co-products, on growth and accumulation of target compounds in microalgae cultures is described. Finally, the possibilities of using lignocellulose hydrolysates as a common feedstock for microalgae cultures are evaluated.

  19. Thermophysical Properties of Lignocellulose: A Cell-scale Study down to 41K

    CERN Document Server

    Cheng, Zhe; Zhang, Lei; Wang, Xinwei

    2014-01-01

    Thermal energy transport is of great importance in lignocellulose pyrolysis for bio-fuels. The thermophysical properties of lignocellulose significantly affect the overall properties of bio-composites and the related thermal transport. In this work, cell-scale lignocellulose (mono-layer plant cells) is prepared to characterize their thermal properties from room temperature down to 41 K. The thermal conductivities of cell-scale lignocellulose along different directions show a little anisotropy due to the cell structure anisotropy. It is found that with temperature going down, the volumetric specific heat of the lignocellulose shows a slower decreasing trend against temperature than that of microcrystalline cellulose, and its value is always higher than that of microcrystalline cellulose. The thermal conductivity of lignocellulose decreases with temperature from 243 K to 317 K due to increasing phonon-phonon scatterings. From 41 K to 243 K, the thermal conductivity rises with temperature and its change mainly d...

  20. Thermophysical properties of lignocellulose: a cell-scale study down to 41 K.

    Directory of Open Access Journals (Sweden)

    Zhe Cheng

    Full Text Available Thermal energy transport is of great importance in lignocellulose pyrolysis for biofuels. The thermophysical properties of lignocellulose significantly affect the overall properties of bio-composites and the related thermal transport. In this work, cell-scale lignocellulose (mono-layer plant cells is prepared to characterize their thermal properties from room temperature down to ∼ 40 K. The thermal conductivities of cell-scale lignocellulose along different directions show a little anisotropy due to the cell structure anisotropy. It is found that with temperature going down, the volumetric specific heat of the lignocellulose shows a slower decreasing trend against temperature than microcrystalline cellulose, and its value is always higher than that of microcrystalline cellulose. The thermal conductivity of lignocellulose decreases with temperature from 243 K to 317 K due to increasing phonon-phonon scatterings. From 41 K to 243 K, the thermal conductivity rises with temperature and its change mainly depends on the heat capacity's change.

  1. A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights.

    Science.gov (United States)

    Ren, Nan-Qi; Zhao, Lei; Chen, Chuan; Guo, Wan-Qian; Cao, Guang-Li

    2016-09-01

    With the increasing energy crisis and rising concern over climate change, the development of clean alternative energy sources is of great importance. Biohydrogen produced from lignocellulosic biomass is a promising candidate, because of its positives such as readily available, no harmful emissions, environment friendly, efficient, and renewable. However, obstacles still exist to enable the commercialization of biological hydrogen production from lignocellulosic biomass. Thus the objective of this work is to provide update information about the recent progress on lignocellulosic hydrogen conversion via dark fermentation. In this review, the most important technologies associated with lignocellulosic hydrogen fermentation were covered. Firstly, pretreatment methods for better utilization of lignocellulosic biomass are presented, at the same time, hydrolysis methods assisting to achieve efficient hydrogen fermentation were discussed. Afterwards, issues related to bioprocesses for hydrogen production purposes were presented. Additionally, the paper gave challenges and new insights of lignocellulosic biohydrogen production.

  2. Proteins for breaking barriers in lignocellulosic bioethanol production.

    Science.gov (United States)

    Ulaganathan, Kandasamy; Goud, Burragoni S; Reddy, Mettu M; Kumar, Vanaparthi P; Balsingh, Jatoth; Radhakrishna, Surabhi

    2015-01-01

    Reduction in fossil fuel consumption by using alternate sources of energy is a major challenge facing mankind in the coming decades. Bioethanol production using lignocellulosic biomass is the most viable option for addressing this challenge. Industrial bioconversion of lignocellulosic biomass, though possible now, is not economically viable due to presence of barriers that escalate the cost of production. As cellulose and hemicellulose are the major constituents of terrestrial biomass, which is available in massive quantities, hydrolysis of cellulose and hemicellulose by the microorganisms are the most prominent biochemical processes happening in the earth. Microorganisms possess different categories of proteins associated with different stages of bioethanol production and a number of them are already found and characterized. Many more of these proteins need to be identified which suit the specificities needed for the bioethanol production process. Discovery of proteins with novel specificities and application of genetic engineering technologies to harvest the synergies existing between them with the aim to develop consolidated bioprocess is the major direction of research in the future. In this review, we discuss the different categories of proteins used for bioethanol production in the context of breaking the barriers existing for the economically feasible lignocellulosic bioethanol production.

  3. Unlocking the potential of lignocellulosic biomass through plant science.

    Science.gov (United States)

    Marriott, Poppy E; Gómez, Leonardo D; McQueen-Mason, Simon J

    2016-03-01

    The aim of producing sustainable liquid biofuels and chemicals from lignocellulosic biomass remains high on the sustainability agenda, but is challenged by the costs of producing fermentable sugars from these materials. Sugars from plant biomass can be fermented to alcohols or even alkanes, creating a liquid fuel in which carbon released on combustion is balanced by its photosynthetic capture. Large amounts of sugar are present in the woody, nonfood parts of crops and could be used for fuel production without compromising global food security. However, the sugar in woody biomass is locked up in the complex and recalcitrant lignocellulosic plant cell wall, making it difficult and expensive to extract. In this paper, we review what is known about the major polymeric components of woody plant biomass, with an emphasis on the molecular interactions that contribute to its recalcitrance to enzymatic digestion. In addition, we review the extensive research that has been carried out in order to understand and reduce lignocellulose recalcitrance and enable more cost-effective production of fuel from woody plant biomass.

  4. Techno-economic analysis of lignocellulosic ethanol: A review.

    Science.gov (United States)

    Gnansounou, Edgard; Dauriat, Arnaud

    2010-07-01

    Lignocellulosic ethanol is expected to be commercialised during the next decade as renewable energy for transport. Competiveness with first generation bioethanol and with gasoline is commonly considered in techno-economic analyses for commercial stage. Several existing reviews conclude about the high spread of current and projected production costs of lignocellulosic ethanol due to the significant differences in assumptions concerning the following factors: composition and cost of feedstock, process design, conversion efficiency, valorisation of co-products, and energy conservation. Focusing on the studies in the United States of America and in Europe, the present review investigates the different natures of the techno-economic evaluations during the development process of the supply chain i.e., standard costing with respect to Value Engineering, and Target Costing based on the projected market price. The paper highlights the significant contribution of feedstock to the lignocellulosic ethanol production cost and the need to consider competition between different uses for resources. It is recommended the use of a value-based approach that considers sustainability characteristics and potential competition for resources complementarily to Target Costing and Value Engineering.

  5. The chemistry involved in the steam treatment of lignocellulosic materials

    Directory of Open Access Journals (Sweden)

    Luiz Pereira Ramos

    2003-12-01

    Full Text Available Pretreatment of lignocellulosic materials is essential for bioconversion because of the various physical and chemical barriers that greatly inhibit their susceptibility to bioprocesses such as hydrolysis and fermentation. The aim of this article is to review some of the most important pretreatment methods developed to date to enhance the conversion of lignocellulosics. Steam explosion, which precludes the treatment of biomass with high-pressure steam under optimal conditions, is presented as the pretreatment method of choice and its mode of action on lignocellulosics is discussed. The optimal pretreatment conditions for a given plant biomass are defined as those in which the best substrate for hydrolysis is obtained with the least amount of soluble sugars lost to side reactions such as dehydration. Therefore, pretreatment optimization results from a compromise between two opposite trends because hemicellulose recovery in acid hydrolysates can only be maximized at lower pretreatment severities, whereas the development of substrate accessibility requires more drastic pretreatment conditions in which sugar losses are inevitable. To account for this heterogeneity, the importance of several process-oriented parameters is discussed in detail, such as the pretreatment temperature, residence time into the steam reactor, use of an acid catalyst, susceptibility of the pretreated biomass to bioconversion, and process design.

  6. Make Your Own Solar Panel.

    Science.gov (United States)

    Suzuki, David

    1992-01-01

    Presents an activity in which students make a simulated solar panel to learn about the principles behind energy production using solar panels. Provides information about how solar panels function to produce energy. (MCO)

  7. Make Your Own Solar Panel.

    Science.gov (United States)

    Suzuki, David

    1992-01-01

    Presents an activity in which students make a simulated solar panel to learn about the principles behind energy production using solar panels. Provides information about how solar panels function to produce energy. (MCO)

  8. Cellulose solvent- and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks.

    Science.gov (United States)

    Sathitsuksanoh, Noppadon; Zhu, Zhiguang; Zhang, Y-H Percival

    2012-08-01

    Developing feedstock-independent biomass pretreatment would be vital to second generation biorefineries that would fully utilize diverse non-food lignocellulosic biomass resources, decrease transportation costs of low energy density feedstock, and conserve natural biodiversity. Cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) was applied to a variety of feedstocks, including Miscanthus, poplar, their mixture, bagasse, wheat straw, and rice straw. Although non-pretreated biomass samples exhibited a large variation in enzymatic digestibility, the COSLIF-pretreated biomass samples exhibited similar high enzymatic glucan digestibilities and fast hydrolysis rates. Glucan digestibilities of most pretreated feedstocks were ∼93% at five filter paper units per gram of glucan. The overall glucose and xylose yields for the Miscanthus:poplar mixture at a weight ratio of 1:2 were 93% and 85%, respectively. These results suggested that COSLIF could be regarded as a feedstock-independent pretreatment suitable for processing diverse feedstocks by adjusting pretreatment residence time only.

  9. Study of Lignocellulose/Epoxy Composites for Carbon-neutral Insulation Materials

    Science.gov (United States)

    Komiya, Gen; Hayami, Tokusuke; Murayama, Kiyoko; Sato, Junichi; Kinoshita, Susumu; Todo, Yoko; Amano, Yoshihiko

    Carbon-neutral materials, which do not affect the density of CO2 in the atmosphere even if they burn, have attracted much attention form the viewpoint of environmental friendliness. In this study, lignocellulose/epoxy composites were newly prepared as carbon-neutral insulation materials, and their properties were evaluated. Hydrothermal reaction lignocellulose, which is composed of lignin and crystalline cellulose, was prepared by a treatment of corncob under high-pressure hot water at 190°C, 1.8 MPa for 10min. The 13C-NMR spectra showed that the amounts of non-crystalline cellulose in the hydrothermal reaction lignocellulose were less than those of non-hydrothermal reaction lignocellulose. Moreover, hydrothermal reaction and oligoesterification lignocellulose was obtained by a reaction of maleic anhydride and glycidyl ether with the hydrothermal reaction lignocellulose. The epoxy resin containing the hydrothermal reaction and oligoesterification lignocellulose had lower water absorption and viscosity than those of the epoxy resin containing the non-hydrothermal reaction lignocellulose. The epoxy resin containing the hydrothermal reaction and oligoesterification lignocellulose with SiO2 fillers showed an insulation breakdown strength as same as conventional material (an epoxy resin containing SiO2 fillers). In addition, mechanical and thermal properties of the epoxy-based composite were also comparable with a conventional material. Therefore, the epoxy-based composite seems to be a candidate as practical carbon neutral insulation materials.

  10. A novel convenient process to obtain a raw decaffeinated tea polyphenol fraction using a lignocellulose column.

    Science.gov (United States)

    Sakanaka, Senji

    2003-05-07

    Lignocellulose prepared from sawdust was investigated for its potential application in obtaining a raw decaffeinated tea polyphenol fraction from tea extract. Tea polyphenols having gallate residues, namely, (-)epigallocatechin gallate (EGCg) and (-)epicatechin gallate (ECg), were adsorbed on the lignocellulose column, while caffeine was passed through it. Adsorbed polyphenols were eluted with 60% ethanol, and the elute was found to consist mainly of EGCg and ECg. The caffeine/EGCg ratio was 0.696 before lignocellulose column treatment, but it became 0.004 after the column treatment. These results suggest that the lignocellulose column provides a useful and convenient process of purification of tea polyphenol fraction accompanied by decaffeination.

  11. POPOVER Review Panel report

    Energy Technology Data Exchange (ETDEWEB)

    Davito, A.; Baker, C.J.; King, C.J.; Costerus, B.; Nelson, T.; Prokosch, D.; Pastrnak, J.; Grace, P.

    1996-04-10

    The POPOVER series of high explosive (HE) certification tests was conducted at the Big Explosives Experimental Facility (BEEF) in Area 4 of the Nevada Test Site (NTS). The two primary objectives of POPOVER were to certify that: (1) BEEF meets DOE requirements for explosives facilities and is safe for personnel-occupied operations during testing of large charges of conventional HE. (2) Facility structures and equipment will function as intended when subjected to the effects of these charges. After careful analysis of test results, the POPOVER Review Panel concludes that the POPOVER series met both objectives. Further details on the Review Panel`s conclusions are included in Section 7--Findings and Recommendations.

  12. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for

  13. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for

  14. Panel 4: Report of the Microbiology Panel

    Science.gov (United States)

    Barenkamp, Stephen J.; Chonmaitree, Tasnee; Hakansson, Anders P.; Heikkinen, Terho; King, Samantha; Nokso-Koivisto, Johanna; Novotny, Laura A.; Patel, Janak A.; Pettigrew, Melinda; Swords, W. Edward

    2017-01-01

    Objective To perform a comprehensive review of the literature from July 2011 until June 2015 on the virology and bacteriology of otitis media in children. Data Sources PubMed database of the National Library of Medicine. Review Methods Two subpanels comprising experts in the virology and bacteriology of otitis media were created. Each panel reviewed the relevant literature in the fields of virology and bacteriology and generated draft reviews. These initial reviews were distributed to all panel members prior to meeting together at the Post-symposium Research Conference of the 18th International Symposium on Recent Advances in Otitis Media, National Harbor, Maryland, in June 2015. A final draft was created, circulated, and approved by all panel members. Conclusions Excellent progress has been made in the past 4 years in advancing our understanding of the microbiology of otitis media. Numerous advances were made in basic laboratory studies, in animal models of otitis media, in better understanding the epidemiology of disease, and in clinical practice. Implications for Practice (1) Many viruses cause acute otitis media without bacterial coinfection, and such cases do not require antibiotic treatment. (2) When respiratory syncytial virus, metapneumovirus, and influenza virus peak in the community, practitioners can expect to see an increase in clinical otitis media cases. (3) Biomarkers that predict which children with upper respiratory tract infections will develop otitis media may be available in the future. (4) Compounds that target newly identified bacterial virulence determinants may be available as future treatment options for children with otitis media. PMID:28372529

  15. Autoimmune liver disease panel

    Science.gov (United States)

    Liver disease test panel - autoimmune ... Autoimmune disorders are a possible cause of liver disease. The most common of these diseases are autoimmune hepatitis and primary biliary cholangitis (formerly called primary biliary cirrhosis). This group of tests ...

  16. Blue Ribbon Panel Report

    Science.gov (United States)

    An NCI Cancer Currents blog by the NCI acting director thanking the cancer community for contributing to the Cancer Moonshot Blue Ribbon Panel report, which was presented to the National Cancer Advisory Board on September 7.

  17. Pop-Art Panels

    Science.gov (United States)

    Alford, Joanna

    2012-01-01

    James Rosenquist's giant Pop-art panels included realistic renderings of well-known contemporary foods and objects, juxtaposed with famous people in the news--largely from the 1960s, '70s and '80s--and really serve as visual time capsules. In this article, eighth-graders focus on the style of James Rosenquist to create their own Pop-art panel that…

  18. Equal Opportunities Advisory Panel

    CERN Multimedia

    HR Department

    2006-01-01

    At its meeting on 7 December 2006, the Standing Concertation Committee took note of the appointment of four new members of the Panel: Wisla Carena, Pierre Charrue, Sue Foffano and Markus Nordberg. The present composition of the Panel (appointed ad personam) is as follows: Tiziano Camporesi (Chairperson), Wisla Carena, Pierre Charrue, Sue Foffano, Josi Schinzel (Equal Opportunities Officer), Markus Nordberg, Christine Petit-Jean-Genaz et Elena Wildner. Human Resources Department Tel. 74480

  19. THE THERMOELECTRIC SOLAR PANELS

    OpenAIRE

    R. Ahiska; Nykyruy, L. I.; Omer, G.; G. D. Mateik

    2016-01-01

    In this study, load characteristics of thermoelectric and photovoltaic solar panels are investigated and compared with each other with experiments. Thermoelectric solar panels converts the heat generated by sun directly to electricity; while, photovoltaic solar pales converts photonic energy from sun to electricity. In both types, maximum power can be obtained when the load resistance is equal to internal resistance. According to experimental results, power generated from unit surface with th...

  20. Pop-Art Panels

    Science.gov (United States)

    Alford, Joanna

    2012-01-01

    James Rosenquist's giant Pop-art panels included realistic renderings of well-known contemporary foods and objects, juxtaposed with famous people in the news--largely from the 1960s, '70s and '80s--and really serve as visual time capsules. In this article, eighth-graders focus on the style of James Rosenquist to create their own Pop-art panel that…

  1. Tension-filled Governance?

    DEFF Research Database (Denmark)

    Celik, Tim Holst

    Since the crisis-engrossed 1970s, and especially the 1990s, ‘governance’ has become a dominant concern and concept; notably, within particularly political science, a certain diagnosis explicitly or implicitly focused on a shift ‘from government to governance’ has become increasingly popular....... This study examines the governance phenomenon of the post-1970/1990s period from a state-situated and historically informed perspective. Specifically, taking initial analytical departure in an approach of the early 1970s associated with James O’Connor, Jürgen Habermas and Claus Offe focused...... on the statesituated tension-filled functional relationship between legitimation and accumulation, the study both historically and theoretically reworks this approach and reapplies it for the post-1970s/1990s governance period. It asks whether and to what extent governance has served as a distinctive post- 1970s/1990s...

  2. Preparing for faster filling

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Following the programmed technical stop last week, operators focussed on preparing the machine for faster filling, which includes multibunch injection and a faster pre-cycle phase.   The LHC1 screen shot during the first multibunch injection operation. The LHC operational schedule incorporates a technical stop for preventive maintenance roughly every six weeks of stable operation, during which several interventions on the various machines are carried out. Last week these included the replacement of a faulty magnet in the SPS pre-accelerator, which required the subsequent re-setting of the system of particle extraction and transfer to the LHC. At the end of last week, all the machines were handed back for operation and work could start on accommodating all the changes made into the complex systems in order for normal operation to be resumed. These ‘recovery’ operations continued through the weekend and into this week. At the beginning of this week, operators succeeded in pro...

  3. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel;

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  4. Heat pipes made of roll bond panels

    Science.gov (United States)

    Moeller, M.; Heil, K.

    1983-06-01

    The use of large surfaced aluminum roll bond panels with an integral flow system as heat pipes is studied. With a suitable flow system e.g., parallel passages with a cross-connection, one single filling procedure is required for the operating medium. Adequate materials for the manufacture of heat pipes are Al 99,3; AlMn1, 5 and AlMn1, 5Sil,5. Peel, creep and burst tests as well as corrosion tests were made on specimens and structural elements of these materials. Results show that the use of such panels for heat pipe manufacturing is appropriate for limited maximum temperature applications. Prototypes of heat pipes and their characteristic features are described in view of their use as absorbers in solar collectors. Good heat exchange performances obtained.

  5. Thermodynamic and economic analysis of integrating lignocellulosic bioethanol production in a Danish combined heat and power unit

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik; Clausen, Lasse Røngaard

    Integrating lignocellulosic bioethanol production with combined heat and power (CHP) production in polygeneration systems is considered an efficient and competitive way to produce a sustainable fuel for the transportation sector. This study assessed the energy economy of integrating lignocellulosic...

  6. Thermotolerant Yeasts for Bioethanol Production Using Lignocellulosic Substrates

    Science.gov (United States)

    Pasha, Chand; Rao, L. Venkateswar

    No other sustainable option for production of transportation fuels can match ethanol made from lignocellulosic biomass with respect to its dramatic environmental, economic, strategic and infrastructure advantages. Substantial progress has been made in advancing biomass ethanol (bioethanol) production technology to the point that it now has commercial potential, and several firms are engaged in the demanding task of introducing first-of-a-kind technology into the marketplace to make bioethanol a reality in existing fuel-blending markets. In order to lower pollution India has a long-term goal to use biofuels (bioethanol and biodiesel). Ethanol may be used either in pure form, or as a blend in petrol in different proportions. Since the cost of raw materials, which can account up to 50 % of the total production cost, is one of the most significant factors affecting the economy of alcohol, nowadays efforts are more concentrated on using cheap and abundant raw materials. Several forms of biomass resources exist (starch or sugar crops, weeds, oil plants, agricultural, forestry and municipal wastes) but of all biomass cellulosic resources represent the most abundant global source. The lignocellulosic materials include agricultural residues, municipal solid wastes (MSW), pulp mill refuse, switchgrass and lawn, garden wastes. Lignocellulosic materials contain two types of polysaccharides, cellulose and hemicellulose, bound together by a third component lignin. The principal elements of the lignocellulosic research include: i) evaluation and characterization of the waste feedstock; ii) pretreatment including initial clean up or dewatering of the feedstock; and iii) development of effective direct conversion bioprocessing to generate ethanol as an end product. Pre-treatment of lignocellulosic materials is a step in which some of the hemicellulose dissolves in water, either as monomeric sugars or as oligomers and polymers. The cellulose cannot be enzymatically hydrolyzed to

  7. The fermentation of lignocellulose hydrolysates with xylose isomerases and yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Linden, T.

    1992-01-01

    Untreated spent sulphite liquor (SSL) was fermented with Canida tropicalis, Pichia stipitis, Pachysolen tannophilus, Schizosaccharomyces pombe, Saccharomyces cerevisiae and a co-culture of P. Tannophilus and A. cerevisiae, in the presence of xylose isomerases and 4.6 mM azide. The highest yield of ethanol, 0.41 g/g total sugar was obtained with S. cerevisiae, C. tropicalis, and P. tannophilus produced considerble amounts of polyoles, mainly xylitol. With P. stipitis sugar uptake was rapidly inhibited in untreated SSL. The presence of azide contributed to the yield by about 0.04. The fermentation of hydrogen fluoride-pretreated and acid-hydrolysed wheat straw with S. cerevisiae, xylose isomerase, and azide gave a yield of 0.40 g ethanol/g total sugar. In this substrate the xylose utilisation was 84% compared with 51% in SSL. In the concentration range appropriate for enzymatic xylose isomerization, xylulose was measured in a lignocellulose hydrolysate using HPLC with two hydrogen loaded ion exchange columns in series. SSL was used as a model for lignocellulose hydrolysates. The enzymatic isomerization of xylose to xylulose was followed directly in SSL, providing a method for the direct determination of xylose isomerase activity in lignocellulose hydrolysates. Three different xylose isomerase preparations of L. brevis whole cells were compared with a commercial enzyme preparation Maxazyme GI-immob., with respect to activity and stability. From a continuous SSL fermentation plant, two species of yeasts were isolated, S. cerevisiae and Pichia membranaefaciens. One of the isolates of S. cerevisiae, no. 3 was heavily flocculating. Without acetic acid present, both bakers' yeast and isolate no. 3 showed catabolite repression and fermented glucose and galactose sequentially. Galactose fermentation with bakers' yeast was strongly inhibited by acetic acid at pH values below 6. Isolate no. 3 fermented galactose, glucose and mannose, in the presence of acetic acid

  8. The fermentation of lignocellulose hydrolysates with xylose isomerases and yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Linden, T.

    1992-09-01

    Untreated spent sulphite liquor (SSL) was fermented with Canida tropicalis, Pichia stipitis, Pachysolen tannophilus, Schizosaccharomyces pombe, Saccharomyces cerevisiae and a co-culture of P. Tannophilus and A. cerevisiae, in the presence of xylose isomerases and 4.6 mM azide. The highest yield of ethanol, 0.41 g/g total sugar was obtained with S. cerevisiae, C. tropicalis, and P. tannophilus produced considerble amounts of polyoles, mainly xylitol. With P. stipitis sugar uptake was rapidly inhibited in untreated SSL. The presence of azide contributed to the yield by about 0.04. The fermentation of hydrogen fluoride-pretreated and acid-hydrolysed wheat straw with S. cerevisiae, xylose isomerase, and azide gave a yield of 0.40 g ethanol/g total sugar. In this substrate the xylose utilisation was 84% compared with 51% in SSL. In the concentration range appropriate for enzymatic xylose isomerization, xylulose was measured in a lignocellulose hydrolysate using HPLC with two hydrogen loaded ion exchange columns in series. SSL was used as a model for lignocellulose hydrolysates. The enzymatic isomerization of xylose to xylulose was followed directly in SSL, providing a method for the direct determination of xylose isomerase activity in lignocellulose hydrolysates. Three different xylose isomerase preparations of L. brevis whole cells were compared with a commercial enzyme preparation Maxazyme GI-immob., with respect to activity and stability. From a continuous SSL fermentation plant, two species of yeasts were isolated, S. cerevisiae and Pichia membranaefaciens. One of the isolates of S. cerevisiae, no. 3 was heavily flocculating. Without acetic acid present, both bakers` yeast and isolate no. 3 showed catabolite repression and fermented glucose and galactose sequentially. Galactose fermentation with bakers` yeast was strongly inhibited by acetic acid at pH values below 6. Isolate no. 3 fermented galactose, glucose and mannose, in the presence of acetic acid even at pH.

  9. A process for producing a fermentation product from a lignocellulose-containing material

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to the production of hydrolyzates from a lignocellulose-containing material, and to fermentation of the hydrolyzates. More specifically, the present invention relates to the detoxification of phenolic inhibitors and toxins formed during the processing of lignocellulose......-containing material by enzymatically sulfating the phenolic inhibitors and toxins using aryl sulfotranseferases....

  10. Surface properties correlate to the digestibility of hydrothermally pretreated lignocellulosic Poaceae biomass feedstocks

    DEFF Research Database (Denmark)

    Tristan Djajadi, Demi; Hansen, Aleksander R.; Jensen, Anders

    2017-01-01

    in response to hydrothermal pretreatment at different severities are still not sufficiently understood. Results: Potentially important lignocellulosic feedstocks for biorefining, corn stover (Zea mays subsp. mays L.), stalks of Miscanthus × giganteus, and wheat straw (Triticum aestivum L.) were systematically...... lignocellulosic biomass and may help design new approaches to overcome biomass recalcitrance....

  11. Isolation and characterization of Cupriavidus basilensis HMF14 for biological removal of inhibitors from lignocellulosic hydrolysatembt

    NARCIS (Netherlands)

    Wierckx, N.; Koopman, F.; Bandounas, L.; Winde, J.H.de; Ruijssenaars, H.J.

    2010-01-01

    The formation of toxic fermentation inhibitors such as furfural and 5-hydroxy-2-methylfurfural (HMF) during acid (pre-)treatment of lignocellulose, calls for the efficient removal of these compounds. Lignocellulosic hydrolysates can be efficiently detoxified biologically with microorganisms that spe

  12. Liquefaction of lignocellulose in light cycle oil: A process concept study

    NARCIS (Netherlands)

    Kumar, S.; Segins, A.; Lange, J.P.; Rossum, van G.; Kersten, S.R.A.

    2016-01-01

    Lignocellulosic biocrude can be produced by direct liquefaction of lignocellulosic biomass, which can be further upgraded into biofuels in an oil refinery. Refinery streams, namely vacuum gas oil (VGO) and light cycle oil (LCO), were found suitable liquefaction solvents in our previous study. This p

  13. Isolation and characterization of Cupriavidus basilensis HMF14 for biological removal of inhibitors from lignocellulosic hydrolysatembt

    NARCIS (Netherlands)

    Wierckx, N.; Koopman, F.; Bandounas, L.; Winde, J.H.de; Ruijssenaars, H.J.

    2010-01-01

    The formation of toxic fermentation inhibitors such as furfural and 5-hydroxy-2-methylfurfural (HMF) during acid (pre-)treatment of lignocellulose, calls for the efficient removal of these compounds. Lignocellulosic hydrolysates can be efficiently detoxified biologically with microorganisms that spe

  14. Removal of inhibitors from lignocellulosic hydrolyzates by vacuum membrane distillation.

    Science.gov (United States)

    Chen, Jingwen; Zhang, Yaqin; Wang, Yafei; Ji, Xiaosheng; Zhang, Lin; Mi, Xigeng; Huang, He

    2013-09-01

    In this study, vacuum membrane distillation (VMD) was used to remove two prototypical fermentation inhibitors (acetic acid and furfural) from lignocellulose hydrolyzates. The effect of operating parameters, such as feed temperature and feed velocity, on the removal efficiencies of inhibitors was investigated. Under optimal conditions, more than 98% of furfural could be removed by VMD. However, the removal efficiency of acetic acid was considerably lower. After furfural and acetic acid were selectively removed from hydrolyzates by VMD, ethanol production efficiency increased by 17.8% compared to original hydrolyzates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A comparative study of the hydrolysis of gamma irradiated lignocelluloses

    Directory of Open Access Journals (Sweden)

    E. Betiku

    2009-06-01

    Full Text Available The effect of high-dose irradiation as a pretreatment method on two common lignocellulosic materials; hardwood (Khaya senegalensis and softwood (Triplochiton scleroxylon were investigated by assessing the potential of cellulase enzyme derived from Aspergillus flavus Linn isolate NSPR 101 to hydrolyse the materials. The irradiation strongly affected the materials, causing the enzymatic hydrolysis to increase by more than 3 fold. Maximum digestibility occurred in softwood at 40kGy dosage of irradiation, while in hardwood it was at 90kGy dosage. The results also showed that, at the same dosage levels (p < 0.05, hardwood was hydrolysed significantly better compared to the softwood.

  16. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate

    Energy Technology Data Exchange (ETDEWEB)

    Binder, Thomas [Archer Daniels Midland Company, Decatur, IL (United States); Erpelding, Michael [Archer Daniels Midland Company, Decatur, IL (United States); Schmid, Josef [Archer Daniels Midland Company, Decatur, IL (United States); Chin, Andrew [Archer Daniels Midland Company, Decatur, IL (United States); Sammons, Rhea [Archer Daniels Midland Company, Decatur, IL (United States); Rockafellow, Erin [Archer Daniels Midland Company, Decatur, IL (United States)

    2015-04-10

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. The purpose of Archer Daniels Midlands Integrated Biorefinery (IBR) was to demonstrate a modified acetosolv process on corn stover. It would show the fractionation of crop residue to distinct fractions of cellulose, hemicellulose, and lignin. The cellulose and hemicellulose fractions would be further converted to ethanol as the primary product and a fraction of the sugars would be catalytically converted to acrylic acid, with butyl acrylate the final product. These primary steps have been demonstrated.

  17. Dynamic Changes of Microbial Community for Degradation of Lignocellulose

    Institute of Scientific and Technical Information of China (English)

    LI Wenzhe; LIU Shuang; WANG Chunying; ZHENG Guoxiang

    2010-01-01

    Dynamic changes of a microbial community for lignocellulose degradation were explored in details.Community composition and development were investigated by the means of denaturing gradient gel electrophoresis(DGGE),and results showed that the microbial community was constituted of 14 kinds of bacteria and presented the fluctuation in some degrees with fermentation.Furthmore,the result of cluster analysis of DGGE pattern was accordant with growth curve,and the degradation process was divided into three stages: initial stage(0-12 h),intermediate stage(24-144 h)and end stage(144-216 h).

  18. Mixed Enzyme Systems for Delignification of Lignocellulosic Biomass

    Directory of Open Access Journals (Sweden)

    Elisa M. Woolridge

    2014-01-01

    Full Text Available The application of enzymes such as laccase and xylanase for the preparation of cellulose from lignocellulosic material is an option for those industries seeking to reduce the use of chlorine-containing bleach agents, thus minimizing the environmental impact of their processes. Mixed hydrolytic and oxidative enzyme systems have been well described in the context of biopulping, and thus provide good precedent regarding effectiveness, despite the susceptibility of xylanase to inactivation by laccase-generated oxidants. This paper examines the progress towards development of sequential and simultaneous mixed enzyme systems to accomplish delignification.

  19. Recent updates on lignocellulosic biomass derived ethanol - A review

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-03-01

    Full Text Available Lignocellulosic (or cellulosic biomass derived ethanol is the most promising near/long term fuel candidate. In addition, cellulosic biomass derived ethanol may serve a precursor to other fuels and chemicals that are currently derived from unsustainable sources and/or are proposed to be derived from cellulosic biomass. However, the processing cost for second generation ethanol is still high to make the process commercially profitable and replicable. In this review, recent trends in cellulosic biomass ethanol derived via biochemical route are reviewed with main focus on current research efforts that are being undertaken to realize high product yields/titers and bring the overall cost down.

  20. Dynamic modeling and validation of a lignocellulosic enzymatic hydrolysis process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Sin, Gürkan

    2013-01-01

    The enzymatic hydrolysis process is one of the key steps in second generation biofuel production. After being thermally pretreated, the lignocellulosic material is liquefied by enzymes prior to fermentation. The scope of this paper is to evaluate a dynamic model of the hydrolysis process......; a comprehensive pH model; and viscosity estimations during the course of reaction. The model is evaluated against real data extracted from a demonstration scale biorefinery throughout several days of operation. All measurements are within predictions uncertainty and, therefore, the model constitutes a valuable...... tool to support process optimization, performance monitoring, diagnosis and process control at full-scale studies....

  1. Enhancing Cellulase Commercial Performance for the Lignocellulosic Biomass Industry

    Energy Technology Data Exchange (ETDEWEB)

    Jarnigan, Alisha [Danisco, US Inc., Copenhagen (Denmark)

    2016-06-07

    Cellulase enzyme loading (Bt-G) for the economic conversion of lignocellulosic biomass to ethanol is on of the key challenges identified in the Biomass Program of DOE/EERE. The goal of Danisco’s project which ran from 2008 to 2012, was to address the technical challenge by creating more efficient enzyme that could be used at lower doses, thus reducing the enzymes’ cost contribution to the conversio process. We took the approach of protein engineering of cellulase enzymes to overcome the enzymati limitations in the system of cellulosic-hydrolyzing enzymes to improve performance in conversion o biomass, thereby creating a more effective enzyme mix.

  2. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    Science.gov (United States)

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from

  3. Green Composites Using Lignocellulosic Waste and Cellulosic Fibers from Corn Husks

    Directory of Open Access Journals (Sweden)

    Tumolva Terence P.

    2016-01-01

    Full Text Available This study explores the feasibility of using lignocellulosic waste and cellulosic fibers from corn husks in the production of green composites, with orthophthalic unsaturated polyester (ortho-UP resin as a matrix. Lignocellulose was extracted from corn husk fibers by alkali treatment using 1M NaOH, and the dried lignocellulose extract was characterized using FTIR spectroscopy. Composites containing varying weight fractions of lignocellulose, treated fibers and ortho-UP were fabricated, and the tensile and flexural strengths and moduli were measured. Based on the results, it was observed that the composite containing 15wt% fiber possesses the highest tensile modulus, while the one with 20wt% lignocellulose showed the highest flexural modulus. The composites were also subjected to scanning electron microscopy to examine the fracture surfaces of the composites. Furthermore, the water sorption behavior of the composites was also studied, and it was observed that all the composites obey Fickian diffusion.

  4. Chemical and ultrastructural studies of lignocellulose biodegradation during Agaricus bisporus cultivation.

    Science.gov (United States)

    Zhang, Rui; Wang, Hexiang; Liu, Qinghong; Ng, TziBun

    2014-01-01

    During Agaricus bisporus cultivation, lignocellulose degradation is the result of the activity of both the mushroom and microbial communities developed during the composting. To investigate the lignocellulose degradation in detail from the beginning to the end of the process, the functional groups of cellulose, hemicellulose, and lignin have been studied with Fourier transform infrared spectroscopy and the morphological changes of lignocelluloses were elucidated with scanning electron microscopy. The aperture of lignin and cellulose increased to enable the mycelia of A. bisporus to penetrate into the medium and to degrade lignocelluloses in a more direct way. The chemical structure changes implied a preferential use of lignin that could make for better use of cellulose to boost growth of A. bisporus. Changes in chemical structure together with ultrastructural changes induced by the microbial flora during cultivation substrate production by the composting substrate are important in promoting the utilization of lignocelluloses by A. bisporus.

  5. Blast Load Response of Steel Sandwich Panels with Liquid Encasement

    Energy Technology Data Exchange (ETDEWEB)

    Dale Karr; Marc Perlin; Benjamin Langhorst; Henry Chu

    2009-10-01

    We describe an experimental investigation of the response of hybrid blast panels for protection from explosive and impact forces. The fundamental notion is to dissipate, absorb, and redirect energy through plastic collapse, viscous dissipation, and inter-particle forces of liquid placed in sub-structural compartments. The panels are designed to absorb energy from an impact or air blast by elastic-plastic collapse of the panel substructure that includes fluid-filled cavities. The fluid contributes to blast effects mitigation by providing increased initial mass and resistance, by dissipation of energy through viscosity and fluid flow, and by redirecting the momentum that is imparted to the system from the impact and blast impulse pressures. Failure and deformation mechanisms of the panels are described.

  6. Origami of thick panels

    Science.gov (United States)

    Chen, Yan; Peng, Rui; You, Zhong

    2015-07-01

    Origami patterns, including the rigid origami patterns in which flat inflexible sheets are joined by creases, are primarily created for zero-thickness sheets. In order to apply them to fold structures such as roofs, solar panels, and space mirrors, for which thickness cannot be disregarded, various methods have been suggested. However, they generally involve adding materials to or offsetting panels away from the idealized sheet without altering the kinematic model used to simulate folding. We develop a comprehensive kinematic synthesis for rigid origami of thick panels that differs from the existing kinematic model but is capable of reproducing motions identical to that of zero-thickness origami. The approach, proven to be effective for typical origami, can be readily applied to fold real engineering structures.

  7. Panel 3 - characterization

    Energy Technology Data Exchange (ETDEWEB)

    Erck, R.A.; Erdemir, A.; Janghsing Hsieh; Lee, R.H.; Xian Zheng Pan; Deming Shu [Argonne National Lab., IL (United States); Feldman, A. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Glass, J.T. [North Carolina State Univ., Raleigh (United States); Kleimer, R. [Coors Ceramics Co., Golden, CO (United States); Lawton, E.A. [JPL/Caltech, Pasadena, CA (United States); McHargue, C.J. [Univ. of Tennessee, Knoxville (United States)

    1993-01-01

    The task of this panel was to identify and prioritize needs in the area of characterization of diamond and diamond-like-carbon (DLC) films for use in the transportation industry. Until recent advances in production of inexpensive films of diamonds and DLC, it was not feasible that these materials could be mass produced. The Characterization Panel is restricting itself to identifying needs in areas that would be most useful to manufacturers and users in producing and utilizing diamond and DLC coatings in industry. These characterization needs include in-situ monitoring during growth, relation of structure to performance, and standards and definitions.

  8. Development of a Commerical Enzyme System for Lignocellulosic Biomass Saccharification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [DSM Innovation, Incorporated, San Francisco, CA (United States)

    2011-02-14

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  9. Energy and Environmental Performance of Bioethanol from Different Lignocelluloses

    Directory of Open Access Journals (Sweden)

    Lin Luo

    2010-01-01

    Full Text Available Climate change and the wish to reduce the dependence on oil are the incentives for the development of alternative energy sources. The use of lignocellulosic biomass together with cellulosic processing technology provides opportunities to produce fuel ethanol with less competition with food and nature. Many studies on energy analysis and life cycle assessment of second-generation bioethanol have been conducted. However, due to the different methodology used and different system boundary definition, it is difficult to compare their results. To permit a direct comparison of fuel ethanol from different lignocelluloses in terms of energy use and environmental impact, seven studies conducted in our group were summarized in this paper, where the same technologies were used to convert biomass to ethanol, the same system boundaries were defined, and the same allocation procedures were followed. A complete set of environmental impacts ranging from global warming potential to toxicity aspects is used. The results provide an overview on the energy efficiency and environmental performance of using fuel ethanol derived from different feedstocks in comparison with gasoline.

  10. Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose.

    Science.gov (United States)

    Ko, Ja Kyong; Um, Youngsoon; Park, Yong-Cheol; Seo, Jin-Ho; Kim, Kyoung Heon

    2015-05-01

    Hydrothermal pretreatment using liquid hot water, steam explosion, or dilute acids enhances the enzymatic digestibility of cellulose by altering the chemical and/or physical structures of lignocellulosic biomass. However, compounds that inhibit both enzymes and microbial activity, including lignin-derived phenolics, soluble sugars, furan aldehydes, and weak acids, are also generated during pretreatment. Insoluble lignin, which predominantly remains within the pretreated solids, also acts as a significant inhibitor of cellulases during hydrolysis of cellulose. Exposed lignin, which is modified to be more recalcitrant to enzymes during pretreatment, adsorbs cellulase nonproductively and reduces the availability of active cellulase for hydrolysis of cellulose. Similarly, lignin-derived phenolics inhibit or deactivate cellulase and β-glucosidase via irreversible binding or precipitation. Meanwhile, the performance of fermenting microorganisms is negatively affected by phenolics, sugar degradation products, and weak acids. This review describes the current knowledge regarding the contributions of inhibitors present in whole pretreatment slurries to the enzymatic hydrolysis of cellulose and fermentation. Furthermore, we discuss various biological strategies to mitigate the effects of these inhibitors on enzymatic and microbial activity to improve the lignocellulose-to-biofuel process robustness. While the inhibitory effect of lignin on enzymes can be relieved through the use of lignin blockers and by genetically engineering the structure of lignin or of cellulase itself, soluble inhibitors, including phenolics, furan aldehydes, and weak acids, can be detoxified by microorganisms or laccase.

  11. The potential of lignocellulosic ethanol production in the Mediterranean Basin

    Energy Technology Data Exchange (ETDEWEB)

    Faraco, Vincenza [Department of Organic Chemistry and Biochemistry, University of Naples ' ' Federico II' ' , Naples (Italy); School of Biotechnological Sciences, University of Naples ' ' Federico II' ' , Naples (Italy); Hadar, Yitzhak [Department of Microbiology and Plant Pathology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot (Israel)

    2011-01-15

    This review provides an overview of the potential of bioethanol fuel production from lignocellulosic residues in the Mediterranean Basin. Residues from cereal crops, olive trees, and tomato and grape processing are abundant lignocellulosic wastes in France, Italy, Spain, Turkey and Egypt, where their use as raw materials for ethanol production could give rise to a potential production capacity of 13 Mtoe of ethanol. Due to the lack of sufficient amounts of agricultural residues in all of the other Mediterranean countries, use of the cellulosic content of municipal solid waste (MSW) as feedstock for ethanol fuel production is also proposed. A maximum potential production capacity of 30 Mtoe of ethanol could be achieved from 50% of the 180 million tons of waste currently produced annually in the Mediterranean Basin, the management of which has become a subject of serious concern. However, to make large-scale ethanol production from agricultural residues and MSW a medium-term feasible goal in the Mediterranean Basin, huge efforts are needed to achieve the required progress in cellulose ethanol technologies and to overcome several foreseeable constraints. (author)

  12. Utilizing thermophilic microbe in lignocelluloses based bioethanol production: Review

    Science.gov (United States)

    Sriharti, Agustina, Wawan; Ratnawati, Lia; Rahman, Taufik; Salim, Takiyah

    2017-01-01

    The utilization of thermophilic microbe has attracted many parties, particularly in producing an alternative fuel like ethanol. Bioethanol is one of the alternative energy sources substituting for earth oil in the future. The advantage of using bioethanol is that it can reduce pollution levels and global warming because the result of bioethanol burning doesn't bring in a net addition of CO2 into environment. Moreover, decrease in the reserves of earth oil globally has also contributed to the notion on searching renewable energy resources such as bioethanol. Indonesia has a high biomass potential and can be used as raw material for bioethanol. The utilization of these raw materials will reduce fears of competition foodstuffs for energy production. The enzymes that play a role in degrading lignocelluloses are cellulolytic, hemicellulolytic, and lignolytic in nature. The main enzyme with an important role in bioethanol production is a complex enzyme capable of degrading lignocelluloses. The enzyme can be produced by the thermophilik microbes of the groups of bacteria and fungi such as Trichoderma viride, Clostridium thermocellum, Bacillus sp. Bioethanol production is heavily affected by raw material composition, microorganism type, and the condition of fermentation used.

  13. Rational Design of Composite Panels

    DEFF Research Database (Denmark)

    Riber, Hans Jørgen

    1996-01-01

    panels as well as single-skin panels, the effect of shear is included. The finite difference method is used solving the system of governing plate equations. Laterally loaded panels are analysed with respect to mid-point deflections and stresses. The numerical results are discussed in the light of 'Det......A non-linear structural model for composite panels is presented. The non-linear terms in the lateral displacements are modelled as an additional set of lateral loads acting on the panel. Hence the solution is reduced to that of an equivalent panel with small displacements In order to treat sandwich...

  14. Photovoltaic-Panel Laminator

    Science.gov (United States)

    Keenan, R.

    1985-01-01

    Two-piece unit heats and presses protective layers to form laminate. Rubber diaphragm between upper and lower vacuum chambers alternates between neutral position and one that presses against solar-cell array, supplying distributed force necessary to press layers of laminate together. Encapsulation helps to protect cells from environment and to ensure long panel life while allowing efficient generation of electricity from Sunlight.

  15. Medication safety: Filling your prescription

    Science.gov (United States)

    ... medicines. Also learn what each medicine looks like. Filling Your Prescriptions Your health plan may require you to use certain pharmacies. ... standards. The website should have clear directions for filling or ... seeing you. Make sure your health plan will cover the cost of using the ...

  16. Liquid Hydrogen Regulated Low Pressure High Flow Pneumatic Panel AFT Arrow Analysis

    Science.gov (United States)

    Jones, Kelley, M.

    2013-01-01

    Project Definition: Design a high flow pneumatic regulation panel to be used with helium and hydrogen. The panel will have two circuits, one for gaseous helium (GHe) supplied from the GHe Movable Storage Units (MSUs) and one for gaseous hydrogen (GH2) supplied from an existing GH2 Fill Panel. The helium will supply three legs; to existing panels and on the higher pressure leg and Simulated Flight Tanks (SFTs) for the lower pressure legs. The hydrogen line will pressurize a 33,000 gallon vacuum jacketed vessel.

  17. Advanced solar panel designs

    Science.gov (United States)

    Ralph, E. L.; Linder, E. B.

    1996-01-01

    Solar panel designs that utilize new high-efficiency solar cells and lightweight rigid panel technologies are described. The resulting designs increase the specific power (W/kg) achievable in the near-term and are well suited to meet the demands of higher performance small satellites (smallsats). Advanced solar panel designs have been developed and demonstrated on two NASA SBIR contracts at Applied Solar. The first used 19% efficient, large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells with a lightweight rigid graphite epoxy isogrid substrate configuration. A 1,445 cm(exp 2) coupon was fabricated and tested to demonstrate 60 W/kg with a high potential of achieving 80 W/kg. The second panel design used new 22% efficiency, dual junction GaInP2/GaAs/Ge solar cells combined with a lightweight aluminum core/graphite fiber mesh facesheet substrate. A 1,445 cm(exp 2) coupon was fabricated and tested to demonstrate 105 W/kg with the potential of achieving 115 W/kg. This paper will address the construction details for the GaAs/isogrid and dual-junction GaAs/carbon mesh panel configurations. These are ultimately sized to provide 75 Watts and 119 Watts respectively for smallsats or may be used as modular building blocks for larger systems. GaAs/isogrid and dual-junction GaAs/carbon mesh coupons have been fabricated and tested to successfully demonstrate critical performance parameters and results are also provided here.

  18. Mechanics of filled carbon nanotubes

    KAUST Repository

    Monteiro, A.O.

    2014-04-01

    The benefits of filling carbon nanotubes (CNTs) with assorted molecular and crystalline substances have been investigated for the past two decades. Amongst the study of new structural phases, defects, chemical reactions and varied types of host-guest interactions, there is one fundamental characterisation aspect of these systems that continues to be overlooked: the mechanical behaviour of filled CNTs. In contrast to their empty counterparts, the mechanics of filled CNTs is a subject where reports appear far and apart, this despite being key to the application of these materials in technological devices. In the following paragraphs, we review the work that has been carried out up to the present on the mechanics of filled CNTs. The studies discussed range from experimental resonant frequency essays performed within electron microscopes to modelling, via molecular dynamics, of three-point bending of nanotubes filled with gases. (C) 2014 Elsevier B.V. All rights reserved.

  19. Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery.

    Science.gov (United States)

    Galkin, Maxim V; Samec, Joseph S M

    2016-07-07

    Current processes for the fractionation of lignocellulosic biomass focus on the production of high-quality cellulosic fibers for paper, board, and viscose production. The other fractions that constitute a major part of lignocellulose are treated as waste or used for energy production. The transformation of lignocellulose beyond paper pulp to a commodity (e.g., fine chemicals, polymer precursors, and fuels) is the only feasible alternative to current refining of fossil fuels as a carbon feedstock. Inspired by this challenge, scientists and engineers have developed a plethora of methods for the valorization of biomass. However, most studies have focused on using one single purified component from lignocellulose that is not currently generated by the existing biomass fractionation processes. A lot of effort has been made to develop efficient methods for lignin depolymerization. The step to take this fundamental research to industrial applications is still a major challenge. This review covers an alternative approach, in which the lignin valorization is performed in concert with the pulping process. This enables the fractionation of all components of the lignocellulosic biomass into valorizable streams. Lignocellulose fractions obtained this way (e.g., lignin oil and glucose) can be utilized in a number of existing procedures. The review covers historic, current, and future perspectives, with respect to catalytic lignocellulose fractionation processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Proficiency testing for sensory profile panels : measuring panel performance

    NARCIS (Netherlands)

    Mcewan, J.A.; Hunter, E.A.; Gemert, L.J. van; Lea, P.

    2002-01-01

    Proficiency testing in sensory analysis is an important step towards demonstrating that results from one sensory panel are consistent with the results of other sensory panels. The uniqueness of sensory analysis poses some specific problems for measuring the proficiency of the human instrument (panel

  1. Preparation, characterization, and microbial degradation of specifically radiolabeled [C]lignocelluloses from marine and freshwater macrophytes.

    Science.gov (United States)

    Benner, R; Maccubbin, A E; Hodson, R E

    1984-02-01

    Specifically radiolabeled [C-lignin]lignocelluloses were prepared from the aquatic macrophytes Spartina alterniflora, Juncus roemerianus, Rhizophora mangle, and Carex walteriana by using [C]phenylalanine, [C]tyrosine, and [C]cinnamic acid as precursors. Specifically radiolabeled [C-polysaccharide]lignocelluloses were prepared by using [C]glucose as precursor. The rates of microbial degradation varied among [C-lignin]lignocelluloses labeled with different lignin precursors within the same plant species. To determine the causes of these differential rates, [C-lignin]lignocelluloses were thoroughly characterized for the distribution of radioactivity in nonlignin contaminants and within the lignin macromolecule. In herbaceous plants, significant amounts (8 to 24%) of radioactivity from [C]phenylalanine and [C]tyrosine were found associated with protein, although very little (3%) radioactivity from [C]cinnamic acid was associated with protein. Microbial degradation of radiolabeled protein resulted in overestimation of lignin degradation rates in lignocelluloses derived from herbaceous aquatic plants. Other differences in degradation rates among [C-lignin]lignocelluloses from the same plant species were attributable to differences in the amount of label being associated with ester-linked subunits of peripheral lignin. After acid hydrolysis of [C-polysaccharide]lignocelluloses, radioactivity was detected in several sugars, although most of the radioactivity was distributed between glucose and xylose. After 576 h of incubation with salt marsh sediments, 38% of the polysaccharide component and between 6 and 16% of the lignin component (depending on the precursor) of J. roemerianus lignocellulose was mineralized to CO(2); during the same incubation period, 30% of the polysaccharide component and between 12 and 18% of the lignin component of S. alterniflora lignocellulose was mineralized.

  2. Solar Cell Panel and the Method for Manufacturing the Same

    Science.gov (United States)

    Richards, Benjamin C. (Inventor); Sarver, Charles F. (Inventor); Naidenkova, Maria (Inventor)

    2016-01-01

    According to an aspect of an embodiment of the present disclosure, there is provided a solar cell panel and a method for manufacturing the same. The solar cell panel comprises: a solar cell for generating electric power from sunlight; a coverglass for covering the solar cell; transparent shims, which are disposed between the solar cell and the coverglass at the points where the distance between the solar cell and the coverglass needs to be controlled, and form a space between the solar cell and the coverglass; and adhesive layer, which fills the space between the solar cell and the coverglass and has the thickness the same as that of the transparent shims.

  3. Development of assembly techniques for fire resistant aircraft interior panels

    Science.gov (United States)

    Lee, S. C. S.

    1978-01-01

    Ten NASA Type A fire resistant aircraft interior panels were fabricated and tested to develop assembly techniques. These techiques were used in the construction of a full scale lavatory test structure for flame propagation testing. The Type A panel is of sandwich construction consisting of Nomex honeycomb filled with quinone dioxime foam, and bismaleimide/glass face sheets bonded to the core with polyimide film adhesive. The materials selected and the assembly techniques developed for the lavatory test structure were designed for obtaining maximum fire containment with minimum smoke and toxic emission.

  4. FEMA DFIRM Panel Scheme Polygons

    Data.gov (United States)

    Minnesota Department of Natural Resources — This layer contains information about the Flood Insurance Rate Map (FIRM) panel areas. The spatial entities representing FIRM panels are polygons. The polygon for...

  5. LCD Panels: The Electronic Wonder.

    Science.gov (United States)

    Anderson, Glenn

    1994-01-01

    Describes Liquid Crystal Display (LCD) panels and their use in the classroom. Topics discussed include active versus passive matrix panels; the number of pixels; projectors, including transmissive or reflective overhead projectors; costs; and vendors that supply LCDs. (LRW)

  6. Improving Aspergillus carbonarius crude enzymes for lignocellulose hydrolysis

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich

    The primary aim of this thesis was to determine ways for enhancing the lignocellulose conversion potential of Aspergillus carbonarius. Approaches for enhancing the degradation of lignocellulose included: screening for fungal cellulase producers, media and growth optimization, genetic engineering....... Six different media were composed, all based on lignocellulosic waste as substrate. With regards to highest glucose release achieved in wheat straw hydrolysis by crude enzyme application, the most optimal medium was garden and park waste (GPW) supplemented by two nitrogen sources (GPW/N). The nitrogen...

  7. The conversion of lignocellulosics to fermentable sugars - A survey of current research and applications to CELSS

    Science.gov (United States)

    Petersen, Gene R.; Baresi, Larry

    1990-01-01

    This report provides an overview options for converting lignocellulosics into fermentable sugars in CELSS. A requirement for pretreatment is shown. Physical-chemical and enzymatic hydrolysis processes for producing fermentable sugars are discussed. At present physical-chemical methods are the simplest and best characterized options, but enzymatic processes will be the likely method of choice in the future. The use of pentose sugars by microorganisms to produce edibles is possible. The use of mycelial food production on pretreated but not hydrolyzed lignocellulosics is also possible. Simple trade-off analyses to regenerate waste lignocellulosics for two pathways are made, one of which is compared to complete oxidation.

  8. The conversion of lignocellulosics to fermentable sugars - A survey of current research and applications to CELSS

    Science.gov (United States)

    Petersen, Gene R.; Baresi, Larry

    1990-01-01

    This report provides an overview options for converting lignocellulosics into fermentable sugars in CELSS. A requirement for pretreatment is shown. Physical-chemical and enzymatic hydrolysis processes for producing fermentable sugars are discussed. At present physical-chemical methods are the simplest and best characterized options, but enzymatic processes will be the likely method of choice in the future. The use of pentose sugars by microorganisms to produce edibles is possible. The use of mycelial food production on pretreated but not hydrolyzed lignocellulosics is also possible. Simple trade-off analyses to regenerate waste lignocellulosics for two pathways are made, one of which is compared to complete oxidation.

  9. The application of biotechnology on the enhancing of biogas production from lignocellulosic waste.

    Science.gov (United States)

    Wei, Suzhen

    2016-12-01

    Anaerobic digestion of lignocellulosic waste is considered to be an efficient way to answer present-day energy crisis and environmental challenges. However, the recalcitrance of lignocellulosic material forms a major obstacle for obtaining maximum biogas production. The use of biological pretreatment and bioaugmentation for enhancing the performance of anaerobic digestion is quite recent and still needs to be investigated. This paper reviews the status and perspectives of recent studies on biotechnology concept and investigates its possible use for enhancing biogas production from lignocellulosic waste with main emphases on biological pretreatment and bioaugmentation techniques.

  10. Fractal-Based Research Approach for Lignocellulose-to-Ethanol Conversion

    Directory of Open Access Journals (Sweden)

    Congcong Chi

    2014-11-01

    Full Text Available The microstructure of porous lignocellulose has irregularity, which represents self-similarity within the scope of a certain scale, and the conversion process of lignocellulose to bioethanol is complex. The fractal theory appears to be well suited to be an effective tool for describing and studying such irregularity and complexity. Why not introduce the fractal theory as a potentially efficient and effective way to describe the process? Here in this paper, the research development of fractal theory and its potential application in lignocellulose microstructure and enzymatic hydrolysis kinetics are discussed.

  11. LIGNOCELLULOSE AS AN ALTERNATIVE SOURCE FOR OBTAINING OF BIOBUTANOL

    Directory of Open Access Journals (Sweden)

    S. M. Shulga

    2013-04-01

    Full Text Available Energy and environmental crisis facing the world force us to reconsider the effectiveness or find an alternative use of renewable natural resources, especially organic «waste» by using environmentally friendly technologies. Microbial conversion of renewable resources of biosphere to produce useful products, including biofuels, currently is an actual biotech problem. Anaerobic bacteria of Clostridiaceae family are known as butanol producers, but unfortunately, the microbiological synthesis is currently not economical one. In order to make cost-effective aceton-butanol-ethanol fermentation, solventproducing strains using available cheap raw materials, such as agricultural waste or plant biomass, are required. Opportunities and ways to obtaine economic and ecological processing of lignocellulosic wastes for biobutanol creation are described in the review .

  12. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications.

    Science.gov (United States)

    Brinchi, L; Cotana, F; Fortunati, E; Kenny, J M

    2013-04-15

    The use of renewables materials for industrial applications is becoming impellent due to the increasing demand of alternatives to scarce and unrenewable petroleum supplies. In this regard, nanocrystalline cellulose, NCC, derived from cellulose, the most abundant biopolymer, is one of the most promising materials. NCC has unique features, interesting for the development of new materials: the abundance of the source cellulose, its renewability and environmentally benign nature, its mechanical properties and its nano-scaled dimensions open a wide range of possible properties to be discovered. One of the most promising uses of NCC is in polymer matrix nanocomposites, because it can provide a significant reinforcement. This review provides an overview on this emerging nanomaterial, focusing on extraction procedures, especially from lignocellulosic biomass, and on technological developments and applications of NCC-based materials. Challenges and future opportunities of NCC-based materials will be are discussed as well as obstacles remaining for their large use.

  13. Porosity Assessment for Different Diameters of Coir Lignocellulosic Fibers

    Science.gov (United States)

    da Luz, Fernanda Santos; Paciornik, Sidnei; Monteiro, Sergio Neves; da Silva, Luiz Carlos; Tommasini, Flávio James; Candido, Verônica Scarpini

    2017-08-01

    The application of natural lignocellulosic fibers (LCFs) in engineering composites has increased interest in their properties and structural characteristics. In particular, the inherent porosity of an LCF markedly affects its density and the adhesion to polymer matrices. For the first time, both open and closed porosities of a natural LCF, for different diameter ranges, were assessed. Fibers extracted from the mesocarp of the coconut fruit were investigated by nondestructive methods of density measurements and x-ray microtomography (microCT). It was found that, for all diameter ranges, the closed porosity is significantly higher than the open porosity. The total porosity increases with diameter to around 60% for coir fibers with more than 503 μm in diameter. The amount and characteristics of these open and closed porosities were revealed by t test and Weibull statistics as well as by microCT.

  14. Lignocellulosic ethanol production at high-gravity: challenges and perspectives.

    Science.gov (United States)

    Koppram, Rakesh; Tomás-Pejó, Elia; Xiros, Charilaos; Olsson, Lisbeth

    2014-01-01

    In brewing and ethanol-based biofuel industries, high-gravity fermentation produces 10-15% (v/v) ethanol, resulting in improved overall productivity, reduced capital cost, and reduced energy input compared to processing at normal gravity. High-gravity technology ensures a successful implementation of cellulose to ethanol conversion as a cost-competitive process. Implementation of such technologies is possible if all process steps can be performed at high biomass concentrations. This review focuses on challenges and technological efforts in processing at high-gravity conditions and how these conditions influence the physiology and metabolism of fermenting microorganisms, the action of enzymes, and other process-related factors. Lignocellulosic materials add challenges compared to implemented processes due to high inhibitors content and the physical properties of these materials at high gravity.

  15. Efficiency improvements by geothermal heat integration in a lignocellulosic biorefinery.

    Science.gov (United States)

    Sohel, M Imroz; Jack, Michael

    2010-12-01

    In an integrated geothermal biorefinery, low-grade geothermal heat is used as process heat to allow the co-products of biofuel production to become available for higher-value uses. In this paper we consider integrating geothermal heat into a biochemical lignocellulosic biorefinery so that the lignin-enriched residue can be used either as a feedstock for chemicals and materials or for on-site electricity generation. Depending on the relative economic value of these two uses, we can maximize revenue of a biorefinery by judicious distribution of the lignin-enriched residue between these two options. We quantify the performance improvement from integrating geothermal energy for an optimized system. We then use a thermodynamic argument to show that integrating geothermal heat into a biorefinery represents an improvement in overall resource utilization efficiency in all cases considered. Finally, possible future technologies for electricity generation are considered which could improve this efficiency further.

  16. Effect of microaerobic fermentation in preprocessing fibrous lignocellulosic materials.

    Science.gov (United States)

    Alattar, Manar Arica; Green, Terrence R; Henry, Jordan; Gulca, Vitalie; Tizazu, Mikias; Bergstrom, Robby; Popa, Radu

    2012-06-01

    Amending soil with organic matter is common in agricultural and logging practices. Such amendments have benefits to soil fertility and crop yields. These benefits may be increased if material is preprocessed before introduction into soil. We analyzed the efficiency of microaerobic fermentation (MF), also referred to as Bokashi, in preprocessing fibrous lignocellulosic (FLC) organic materials using varying produce amendments and leachate treatments. Adding produce amendments increased leachate production and fermentation rates and decreased the biological oxygen demand of the leachate. Continuously draining leachate without returning it to the fermentors led to acidification and decreased concentrations of polysaccharides (PS) in leachates. PS fragmentation and the production of soluble metabolites and gases stabilized in fermentors in about 2-4 weeks. About 2 % of the carbon content was lost as CO(2). PS degradation rates, upon introduction of processed materials into soil, were similar to unfermented FLC. Our results indicate that MF is insufficient for adequate preprocessing of FLC material.

  17. Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization.

    Science.gov (United States)

    Alonso, David Martin; Hakim, Sikander H; Zhou, Shengfei; Won, Wangyun; Hosseinaei, Omid; Tao, Jingming; Garcia-Negron, Valerie; Motagamwala, Ali Hussain; Mellmer, Max A; Huang, Kefeng; Houtman, Carl J; Labbé, Nicole; Harper, David P; Maravelias, Christos; Runge, Troy; Dumesic, James A

    2017-05-01

    The production of renewable chemicals and biofuels must be cost- and performance- competitive with petroleum-derived equivalents to be widely accepted by markets and society. We propose a biomass conversion strategy that maximizes the conversion of lignocellulosic biomass (up to 80% of the biomass to useful products) into high-value products that can be commercialized, providing the opportunity for successful translation to an economically viable commercial process. Our fractionation method preserves the value of all three primary components: (i) cellulose, which is converted into dissolving pulp for fibers and chemicals production; (ii) hemicellulose, which is converted into furfural (a building block chemical); and (iii) lignin, which is converted into carbon products (carbon foam, fibers, or battery anodes), together producing revenues of more than $500 per dry metric ton of biomass. Once de-risked, our technology can be extended to produce other renewable chemicals and biofuels.

  18. Functionalized Polymers from Lignocellulosic Biomass: State of the Art

    Directory of Open Access Journals (Sweden)

    Wilfred Vermerris

    2013-05-01

    Full Text Available Since the realization that global sustainability depends on renewable sources of materials and energy, there has been an ever-increasing need to develop bio-based polymers that are able to replace petroleum-based polymers. Research in this field has shown strong potential in generating high-performance functionalized polymers from plant biomass. With the anticipated large-scale production of lignocellulosic biomass, lignin, cellulose and hemicellulosic polysaccharides will be abundantly available renewable feedstocks for biopolymers and biocomposites with physico-chemical properties that match or exceed those of petroleum-based compounds. This review examines the state of the art regarding advances and challenges in synthesis and applications of specialty polymers and composites derived from cellulose, hemicellulose and lignin, ending with a brief assessment of genetic modification as a route to tailor crop plants for specific applications.

  19. Succinic Acid Production from Lignocellulosic Hydrolysate by Basfia succiniciproducens

    Energy Technology Data Exchange (ETDEWEB)

    Salvachua, Davinia; Smith, Holly; John, Peter C.; Mohagheghi, Ali; Peterson, Darren J.; Black, Brenna A.; Dowe, Nancy; Beckham, Gregg T.

    2016-08-01

    The production of chemicals alongside fuels will be essential to enhance the feasibility of lignocellulosic biorefineries. Succinic acid (SA), a naturally occurring C4-diacid, is a primary intermediate of the tricarboxylic acid cycle and a promising building block chemical that has received significant industrial attention. Basfia succiniciproducens is a relatively unexplored SA-producing bacterium with advantageous features such as broad substrate utilization, genetic tractability, and facultative anaerobic metabolism. Here B. succiniciproducens is evaluated in high xylose-content hydrolysates from corn stover and different synthetic media in batch fermentation. SA titers in hydrolysate at an initial sugar concentration of 60 g/L reached up to 30 g/L, with metabolic yields of 0.69 g/g, and an overall productivity of 0.43 g/L/h. These results demonstrate that B. succiniciproducens may be an attractive platform organism for bio-SA production from biomass hydrolysates.

  20. Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review

    Directory of Open Access Journals (Sweden)

    Gary Brodeur

    2011-01-01

    Full Text Available Overcoming the recalcitrance (resistance of plant cell walls to deconstruction of lignocellulosic biomass is a key step in the production of fuels and chemicals. The recalcitrance is due to the highly crystalline structure of cellulose which is embedded in a matrix of polymers-lignin and hemicellulose. The main goal of pretreatment is to overcome this recalcitrance, to separate the cellulose from the matrix polymers, and to make it more accessible for enzymatic hydrolysis. Reports have shown that pretreatment can improve sugar yields to higher than 90% theoretical yield for biomass such as wood, grasses, and corn. This paper reviews different leading pretreatment technologies along with their latest developments and highlights their advantages and disadvantages with respect to subsequent hydrolysis and fermentation. The effects of different technologies on the components of biomass (cellulose, hemicellulose, and lignin are also reviewed with a focus on how the treatment greatly enhances enzymatic cellulose digestibility.

  1. Calcium-catalyzed pyrolysis of lignocellulosic biomass components.

    Science.gov (United States)

    Case, Paige A; Truong, Chi; Wheeler, M Clayton; DeSisto, William J

    2015-09-01

    The present study examines the effect of calcium pretreatment on pyrolysis of individual lignocellulosic compounds. Previous work has demonstrated that the incorporation of calcium compounds with the feedstock prior to pyrolysis has a significant effect on the oxygen content and stability of the resulting oil. The aim of this work was to further explore the chemistry of calcium-catalyzed pyrolysis. Bench-scale pyrolysis of biomass constituents, including lignin, cellulose and xylan is performed and compared to the oils produced from pyrolysis of the same components after calcium pretreatment. The resulting oils were analyzed by quantitative GC-MS and SEC. These analyses, together with data collected from previous work provide evidence which was used to develop proposed reaction pathways for pyrolysis of calcium-pretreatment biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Chemical and physicochemical pretreatment of lignocellulosic biomass: a review.

    Science.gov (United States)

    Brodeur, Gary; Yau, Elizabeth; Badal, Kimberly; Collier, John; Ramachandran, K B; Ramakrishnan, Subramanian

    2011-01-01

    Overcoming the recalcitrance (resistance of plant cell walls to deconstruction) of lignocellulosic biomass is a key step in the production of fuels and chemicals. The recalcitrance is due to the highly crystalline structure of cellulose which is embedded in a matrix of polymers-lignin and hemicellulose. The main goal of pretreatment is to overcome this recalcitrance, to separate the cellulose from the matrix polymers, and to make it more accessible for enzymatic hydrolysis. Reports have shown that pretreatment can improve sugar yields to higher than 90% theoretical yield for biomass such as wood, grasses, and corn. This paper reviews different leading pretreatment technologies along with their latest developments and highlights their advantages and disadvantages with respect to subsequent hydrolysis and fermentation. The effects of different technologies on the components of biomass (cellulose, hemicellulose, and lignin) are also reviewed with a focus on how the treatment greatly enhances enzymatic cellulose digestibility.

  3. Microbial tolerance engineering toward biochemical production: from lignocellulose to products.

    Science.gov (United States)

    Ling, Hua; Teo, Weisuong; Chen, Binbin; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-10-01

    Microbial metabolic engineering has been extensively studied for valuable chemicals synthesis, generating numerous laboratory-scale successes, and has demonstrated its potential to serve as a platform that enables large-scale manufacturing of many chemicals that are currently derived via chemical synthesis. However, the commercialization potential of microbial chemical production frequently suffers from low productivity and yields, where one key limiting factor is the inherently low tolerance of host cells against toxic compounds that are present and/or generated during biological processing. Consequently, various microbial engineering strategies have been devised to endow producer microbes with tolerance phenotypes that would be required for economically viable production of the desired chemicals. In this review, we discuss key microbial engineering strategies, devised primarily based on rational and evolutionary methodologies, that have been effective in improving cellular tolerance against fermentation inhibitors, metabolic intermediates, and valuable end-products derived from lignocellulose bioprocessing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Biorefining of lignocellulosic feedstock--Technical, economic and environmental considerations.

    Science.gov (United States)

    Luo, Lin; van der Voet, Ester; Huppes, Gjalt

    2010-07-01

    Biorefinery, an example of a multiple products system, integrates biomass conversion processes and equipment to produce fuels, power and chemicals from biomass. This study focuses on technical design, economic and environmental analysis of a lignocellulosic feedstock (LCF) biorefinery producing ethanol, succinic acid, acetic acid and electricity. As the potential worldwide demand of succinic acid and its derivatives can reach 30 million tons per year, succinic acid is a promising high-value product if production cost and market price are substantially lowered. The results of the economic analysis show that the designed refinery has great potentials compared to the single-output ethanol plant; even when the price of succinic acid is lowered or the capital investment doubled. In terms of eco-efficiency, the LCF biorefinery shows better environmental performances mainly in global warming potential due to CO(2) fixation during acid fermentation. The overall evaluation of the eco-efficiency depends on the importance attached to each impact category.

  5. Commercial feasibility of lignocellulose biodegradation: possibilities and challenges.

    Science.gov (United States)

    Taha, Mohamed; Foda, Mohamed; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Adetutu, Eric; Ball, Andrew

    2016-04-01

    The main source of energy supply worldwide is generated from fossil fuels, which undoubtedly are finite and non-environmental friendly resources. Bioethanol generated from edible resources also has economic and environmental concerns. Despite the immense attention to find an alternative (inedible) source of energy in the last two decades, the total commercial production of 1st generation biofuels is limited and equivalent only to approximately 3% of the total road transport fuel consumption. Lignocellulosic waste represents the most abundant biomass on earth and could be a suitable candidate for producing valuable products including biofuels. However, cellulosic bioethanol has not been produced on a large scale due to the technical barriers involved that make the commercial production of cellulosic bioethanol not economically feasible. This review examines some of the current barriers to commercialization of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Fuel lignocellulosic briquettes, die design and products study

    Energy Technology Data Exchange (ETDEWEB)

    Granada, E.; Miguez, J.L.; Moran, J. [Vigo Univ. (Spain). E.T.S. Ingenieros Industriales y Minas; Lopez Gonzalez, L.M. [Universidad de La Rioja (Spain). Departamento de Ingenieria Mecanica

    2002-12-01

    Briquetting of biomass can be done through various techniques. The present work describes the process of designing a taper die and its optimisation for use in a hydraulic machine. The application of an experimental design technique, and the later statistical analysis of the results is presented, applied to a laboratory hydraulic press densification process of lignocellulosic biomass. The most appropriate experiment type is determined for a first set of experiments; calculating, among other things: minimum number of tests to carry out to obtain binding conclusions, most influential factors, and search paths to improve fuel quality. Another experiment type is determined for a second set of experiments, taking account of the most influential factors (pressure, temperature and moisture content), and also the number of tests to carry out considering the improvement of density and friability. Finally, an approximation study of the best product allows conclusions to be reached on product behaviour beyond the experimental design range factors. (Author)

  7. Development of a commercial enzymes system for lignocellulosic biomass saccharification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj

    2012-12-20

    DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

  8. Lab-scale Technology for Biogas Production from Lignocellulose Wastes

    Directory of Open Access Journals (Sweden)

    Lukáš Krátký

    2012-01-01

    Full Text Available Currently-operating biogas plants are based on the treatment of lignocellulose biomass, which is included in materials such as agriculture and forestry wastes, municipal solid wastes, waste paper, wood and herbaceous energy crops. Lab-scale biogas technology was specially developed for evaluating the anaerobic biodegrability and the specific methane yields of solid organic substrates. This technology falls into two main categories – pretreatment equipments, and fermentation equipments. Pretreatment units use physical principles based on mechanical comminution (ball mills, macerator orhydrothermal treatment (liquid hot water pretreatment technology. The biochemical methane potential test is used to evaluate the specific methane yields of treated or non-treated organic substrates. This test can be performed both by lab testing units and by lab fermenter.

  9. Medical Physics Panel Discussion

    Science.gov (United States)

    Guèye, Paul; Avery, Steven; Baird, Richard; Soares, Christopher; Amols, Howard; Tripuraneni, Prabhakar; Majewski, Stan; Weisenberger, Drew

    2006-03-01

    The panel discussion will explore opportunities and vistas in medical physics research and practice, medical imaging, teaching medical physics to undergraduates, and medical physics curricula as a recruiting tool for physics departments. Panel members consist of representatives from NSBP (Paul Guèye and Steven Avery), NIH/NIBIB (Richard Baird), NIST (Christopher Soares), AAPM (Howard Amols), ASTRO (Prabhakar Tripuraneni), and Jefferson Lab (Stan Majewski and Drew Weisenberger). Medical Physicists are part of Departments of Radiation Oncology at hospitals and medical centers. The field of medical physics includes radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. It also ranges from basic researcher (at college institutions, industries, and laboratories) to applications in clinical environments.

  10. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling

    Directory of Open Access Journals (Sweden)

    Weiss Noah

    2013-01-01

    Full Text Available Abstract Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application.

  11. Chemical and radiation-chemical radical reactions in lignocellulose materials

    Energy Technology Data Exchange (ETDEWEB)

    Kuzina, Svetlana I. [Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. Semenova 1, Chernogolovka, Moscow Region, 142432 (Russian Federation); Shilova, Irina A., E-mail: ishil@icp.ac.ru [Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. Semenova 1, Chernogolovka, Moscow Region, 142432 (Russian Federation); Mikhailov, Al' fa I. [Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. Semenova 1, Chernogolovka, Moscow Region, 142432 (Russian Federation)

    2011-09-15

    Chemical and radiation-chemical radical reactions in lignocellulose materials were explored by 3-cm and 2-mm ESR spectroscopy. Background (intrinsic) singlet signals at g=2.003 from wood pulp and lignin and those arising during reaction of lignocellulose materials with acids and chlorine were attributed to radicals with conjugated C--C bonds. The 2-mm ESR signal with 3D anisotropy of g-factor from o-semiquinone radical ions formed in reaction of lignin with NaOH was recorded for the first time. The singlet signals derived from cellulose {gamma}-irradiated at 77 K and marked out during post-thermal reactions were assigned to radicals with conjugated bonds. In wetted cellulose, a triplet signal with {alpha}{sub {beta}}{sup H}{approx_equal}2.7 mT and imposed quadruplet structure (0.5-0.7 mT) from three {gamma}-protons was detected at 300 K and attributed to S{sub 4}-radicals. The triplet signals derived from S{sub 2}- and S{sub 3}-radicals in pyranose cycles of cellulose exhibited higher values of {alpha}{sub {beta}}{sup H} (3.0-3.2 mT) and lower thermal stability (up to 250 K). In radiolyzed cotton pulp, detected were ESR signals derived from formyl radicals formed upon rupture of the S{sub 5}--S{sub 6} bond in pyranose cycles. Heating up irradiated samples under O{sub 2} was accompanied by formation of peroxide radicals. Photoinduced recombination of trapped electrons with S{sub 1}-radicals was found to proceed as a chain reaction with a kinetic length of about 25 units. Photolysis ({lambda}{>=}360 nm) of radiolyzed cellulose enhanced the disclosure of pyranose cycles and, as a result, the evolution of CO{sub 2} by a factor of 2-2.5.

  12. Chemical and radiation-chemical radical reactions in lignocellulose materials

    Science.gov (United States)

    Kuzina, Svetlana I.; Shilova, Irina A.; Mikhailov, Al'fa I.

    2011-09-01

    Chemical and radiation-chemical radical reactions in lignocellulose materials were explored by 3-cm and 2-mm ESR spectroscopy. Background (intrinsic) singlet signals at g=2.003 from wood pulp and lignin and those arising during reaction of lignocellulose materials with acids and chlorine were attributed to radicals with conjugated CC bonds. The 2-mm ESR signal with 3D anisotropy of g-factor from o-semiquinone radical ions formed in reaction of lignin with NaOH was recorded for the first time. The singlet signals derived from cellulose γ-irradiated at 77 K and marked out during post-thermal reactions were assigned to radicals with conjugated bonds. In wetted cellulose, a triplet signal with αβH≅2.7 mT and imposed quadruplet structure (0.5-0.7 mT) from three γ-protons was detected at 300 K and attributed to С 4-radicals. The triplet signals derived from С 2- and С 3-radicals in pyranose cycles of cellulose exhibited higher values of αβH (3.0-3.2 mT) and lower thermal stability (up to 250 K). In radiolyzed cotton pulp, detected were ESR signals derived from formyl radicals formed upon rupture of the С 5С 6 bond in pyranose cycles. Heating up irradiated samples under О 2 was accompanied by formation of peroxide radicals. Photoinduced recombination of trapped electrons with С 1-radicals was found to proceed as a chain reaction with a kinetic length of about 25 units. Photolysis ( λ≥360 nm) of radiolyzed cellulose enhanced the disclosure of pyranose cycles and, as a result, the evolution of CO 2 by a factor of 2-2.5.

  13. Lignocellulosic ethanol: Technology design and its impact on process efficiency.

    Science.gov (United States)

    Paulova, Leona; Patakova, Petra; Branska, Barbora; Rychtera, Mojmir; Melzoch, Karel

    2015-11-01

    This review provides current information on the production of ethanol from lignocellulosic biomass, with the main focus on relationships between process design and efficiency, expressed as ethanol concentration, yield and productivity. In spite of unquestionable advantages of lignocellulosic biomass as a feedstock for ethanol production (availability, price, non-competitiveness with food, waste material), many technological bottlenecks hinder its wide industrial application and competitiveness with 1st generation ethanol production. Among the main technological challenges are the recalcitrant structure of the material, and thus the need for extensive pretreatment (usually physico-chemical followed by enzymatic hydrolysis) to yield fermentable sugars, and a relatively low concentration of monosaccharides in the medium that hinder the achievement of ethanol concentrations comparable with those obtained using 1st generation feedstocks (e.g. corn or molasses). The presence of both pentose and hexose sugars in the fermentation broth, the price of cellulolytic enzymes, and the presence of toxic compounds that can inhibit cellulolytic enzymes and microbial producers of ethanol are major issues. In this review, different process configurations of the main technological steps (enzymatic hydrolysis, fermentation of hexose/and or pentose sugars) are discussed and their efficiencies are compared. The main features, benefits and drawbacks of simultaneous saccharification and fermentation (SSF), simultaneous saccharification and fermentation with delayed inoculation (dSSF), consolidated bioprocesses (CBP) combining production of cellulolytic enzymes, hydrolysis of biomass and fermentation into one step, together with an approach combining utilization of both pentose and hexose sugars are discussed and compared with separate hydrolysis and fermentation (SHF) processes. The impact of individual technological steps on final process efficiency is emphasized and the potential for use

  14. Biodiesel from lignocellulosic biomass--prospects and challenges.

    Science.gov (United States)

    Yousuf, Abu

    2012-11-01

    Biodiesel can be a potential alternative to petroleum diesel, but its high production cost has impeded its commercialization in most parts of the world. One of the main drivers for the generation and use of biodiesel is energy security, because this fuel can be produced from locally available resources, thereby reducing the dependence on imported oil. Many countries are now trying to produce biodiesel from plant or vegetable oils. However, the consumption of large amounts of vegetable oils for biodiesel production could result in a shortage in edible oils and cause food prices to soar. Alternatively, the use of animal fat, used frying oils, and waste oils from restaurants as feedstock could be a good strategy to reduce the cost. However, these limited resources might not meet the increasing demand for clean, renewable fuels. Therefore, recent research has been focused the use of residual materials as renewable feedstock in order to lower the cost of producing biodiesel. Microbial oils or single cell oils (SCOs), produced by oleaginous microorganisms have been studied as promising alternatives to vegetable or seed oils. Various types of agro-industrial residues have been suggested as prospective nutritional sources for microbial cultures. Since the most abundant residue from agricultural crops is lignocellulosic biomass (LCB), this byproduct has been given top-priority consideration as a source of biomass for producing biodiesel. But the biological transformation of lignocellulosic materials is complicated due to their crystalline structure. So, pretreatment is required before they can be converted into fermentable sugar. This article compares and scrutinizes the extent to which various microbes can accumulate high levels of lipids as functions of the starting materials and the fermentation conditions. Also, the obstacles associated with the use of LCB are described, along with a potentially viable approach for overcoming the obstacles that currently preclude the

  15. Student Panels, Business Administration

    DEFF Research Database (Denmark)

    Rask, Morten

    The purpose of student panels is to give feedback on students’ general and overall impression with the content and teaching of the individual courses as well as the progression and relationship between the courses offered. This will provide us with a background for assessing whether we meet...... are able to understand needed changes regarding courses and studies especially in relation to change the course portfolio of a study in order to strengthen the study’s content and/or progression....

  16. Removal of root filling materials.

    LENUS (Irish Health Repository)

    Duncan, H.F. Chong, B.S.

    2011-05-01

    Safe, successful and effective removal of root filling materials is an integral component of non-surgical root canal re-treatment. Access to the root canal system must be achieved in order to negotiate to the canal terminus so that deficiencies in the original treatment can be rectified. Since a range of materials have been advocated for filling root canals, different techniques are required for their removal. The management of commonly encountered root filling materials during non-surgical re-treatment, including the clinical procedures necessary for removal and the associated risks, are reviewed. As gutta-percha is the most widely used and accepted root filling material, there is a greater emphasis on its removal in this review.

  17. Gas-filled double glazing

    Energy Technology Data Exchange (ETDEWEB)

    Goesele, K.; Schuele, W.; Lakatos, B.

    1982-01-01

    On the basis of the results of experiments the sonar and thermal properties of insulated double glazing filled with gas are tested. The sound insulation properties of double glazing can be improved by introducing a gas of a heavy specific weight, such as CO/sub 2/ or SF/sub 6/ into the hollow space. Even gases with a light specific weight produce an improvement in sound insulation; light gases diffuse outwards much more rapidly, however, and can thus be eliminated for practical purposes. The combination of a gas-filled space between the panes and the use of sufficiently heavy compound panes were tested. The thermal properties of insulated double glazing filled with specifically heavy gas gave favourable results with a lower heat transition coefficient. The use of gas to fill double glazing has a particularly favourable effect if the panes are given a heat-reflecting coating in synthetic frames.

  18. Evacuation from smoke filled corridors

    NARCIS (Netherlands)

    Janse, E.W.; Leur, P.H.E. van de; Oerle, N.J. van

    1998-01-01

    underpinning compartmentation requirements in the Dutch regulations is that people can and will go through 30 m of smoke filled space. The hypothesis leads to the requirement that corridors are divided in compartments with a maximum length of 30 meters.

  19. Panel data analysis using EViews

    CERN Document Server

    Agung, I Gusti Ngurah

    2013-01-01

    A comprehensive and accessible guide to panel data analysis using EViews software This book explores the use of EViews software in creating panel data analysis using appropriate empirical models and real datasets. Guidance is given on developing alternative descriptive statistical summaries for evaluation and providing policy analysis based on pool panel data. Various alternative models based on panel data are explored, including univariate general linear models, fixed effect models and causal models, and guidance on the advantages and disadvantages of each one is given. Panel Data Analysis

  20. Can I use a Panel? Panel Conditioning and Attrition Bias in Panel Surveys

    NARCIS (Netherlands)

    Das, J.W.M.; Toepoel, V.; van Soest, A.H.O.

    2007-01-01

    Over the past decades there has been an increasing use of panel surveys at the household or individual level, instead of using independent cross-sections. Panel data have important advantages, but there are also two potential drawbacks: attrition bias and panel conditioning effects. Attrition bias c

  1. Electrochemical detoxification of phenolic compounds in lignocellulosic hydrolysate for Clostridium fermentation.

    Science.gov (United States)

    Lee, Kyung Min; Min, Kyoungseon; Choi, Okkyoung; Kim, Ki-Yeon; Woo, Han Min; Kim, Yunje; Han, Sung Ok; Um, Youngsoon

    2015-01-01

    Lignocellulosic biomass is being preferred as a feedstock in the biorefinery, but lignocellulosic hydrolysate usually contains inhibitors against microbial fermentation. Among these inhibitors, phenolics are highly toxic to butyric acid-producing and butanol-producing Clostridium even at a low concentration. Herein, we developed an electrochemical polymerization method to detoxify phenolic compounds in lignocellulosic hydrolysate for efficient Clostridium fermentation. After the electrochemical detoxification for 10h, 78%, 77%, 82%, and 94% of p-coumaric acid, ferulic acid, vanillin, and syringaldehyde were removed, respectively. Furthermore, 71% of total phenolics in rice straw hydrolysate were removed without any sugar-loss. Whereas the cell growth and metabolite production of Clostridium tyrobutyricum and Clostridium beijerinckii were completely inhibited in un-detoxified hydrolysate, those in detoxifying rice straw hydrolysate were recovered to 70-100% of the control cultures. The electrochemical detoxification method described herein provides an efficient strategy for producing butanol and butyric acid through Clostridium fermentation with lignocellulosic hydrolysate.

  2. Boosting LPMO-driven lignocellulose degradation by polyphenol oxidase-activated lignin building blocks

    NARCIS (Netherlands)

    Frommhagen, Matthias; Mutte, Sumanth Kumar; Westphal, Adrie H.; Koetsier, Martijn J.; Hinz, Sandra W.A.; Visser, Jaap; Vincken, Jean Paul; Weijers, Dolf; Berkel, Van Willem J.H.; Gruppen, Harry; Kabel, Mirjam A.

    2017-01-01

    Background: Many fungi boost the deconstruction of lignocellulosic plant biomass via oxidation using lytic polysaccharide monooxygenases (LPMOs). The application of LPMOs is expected to contribute to ecologically friendly conversion of biomass into fuels and chemicals. Moreover, applications of

  3. [Lignocellulose degrading bacteria and their genes encoding cellulase/hemicellulase in rumen--a review].

    Science.gov (United States)

    Chen, Furong; Zhu, Yaxin; Dong, Xiuzhu; Liu, Lihua; Huang, Li; Dai, Xin

    2010-08-01

    Rumen of ruminant animals is known as a natural reactor involved in highly efficient lignocelluloses degradation. Rumen fibrolytic microbes have attracted an increasing attention for their potential value in biofuel research. Studies on rumen microbes have traditionally entailed the isolation of fibrolytic bacteria and subsequent analysis of fibrolytic enzymes. Developments in genomic and metagenomic approaches have made it possible to isolate directly genes and gene clusters encoding fibrolytic activities from rumen samples, permitting a global analysis of mechanisms of degradation of lignocellulose in rumen. Research in this field shows that lignocellulose degradation in rumen is a complex process involving a number of different microbes and is effected by a huge array of hydrolytic enzymes in a concerted fashion. This review briefly summarizes results from recent studies, especially metagenomic studies, on lignocellulose degradation in rumen.

  4. Improve the Anaerobic Biodegradability by Copretreatment of Thermal Alkali and Steam Explosion of Lignocellulosic Waste

    National Research Council Canada - National Science Library

    Siddhu, Muhammad Abdul Hanan; Li, Jianghao; Zhang, Jiafu; Huang, Yan; Wang, Wen; Chen, Chang; Liu, Guangqing

    2016-01-01

      Effective alteration of the recalcitrance properties like crystallization of cellulose, lignin shield, and interlinking of lignocellulosic biomass is an ideal way to utilize the full-scale potential...

  5. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass

    NARCIS (Netherlands)

    Harmsen, P.F.H.; Huijgen, W.; Bermudez, L.; Bakker, R.

    2010-01-01

    Different pretreatment technologies published in public literature are described in terms of the mechanisms involved, advantages and disadvantages, and economic assessment. Pretreatment technologies for lignocellulosic biomass include biological, mechanical, chemical methods and various combinations

  6. Application of next-generation sequencing methods for microbial monitoring of anaerobic digestion of lignocellulosic biomass.

    Science.gov (United States)

    Bozan, Mahir; Akyol, Çağrı; Ince, Orhan; Aydin, Sevcan; Ince, Bahar

    2017-08-04

    The anaerobic digestion of lignocellulosic wastes is considered an efficient method for managing the world's energy shortages and resolving contemporary environmental problems. However, the recalcitrance of lignocellulosic biomass represents a barrier to maximizing biogas production. The purpose of this review is to examine the extent to which sequencing methods can be employed to monitor such biofuel conversion processes. From a microbial perspective, we present a detailed insight into anaerobic digesters that utilize lignocellulosic biomass and discuss some benefits and disadvantages associated with the microbial sequencing techniques that are typically applied. We further evaluate the extent to which a hybrid approach incorporating a variation of existing methods can be utilized to develop a more in-depth understanding of microbial communities. It is hoped that this deeper knowledge will enhance the reliability and extent of research findings with the end objective of improving the stability of anaerobic digesters that manage lignocellulosic biomass.

  7. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass

    NARCIS (Netherlands)

    Harmsen, P.F.H.; Huijgen, W.; Bermudez, L.; Bakker, R.

    2010-01-01

    Different pretreatment technologies published in public literature are described in terms of the mechanisms involved, advantages and disadvantages, and economic assessment. Pretreatment technologies for lignocellulosic biomass include biological, mechanical, chemical methods and various combinations

  8. Investigation of adsorption kinetics and isotherm of cellulase and B-Glucosidase on lignocellulosic substrates

    Science.gov (United States)

    Clear understanding of enzyme adsorption during enzymatic hydrolysis of lignocellulosic biomass is essential to enhance the cost-efficiency of hydrolysis. However, conclusions from literatures often contradicted each other because enzyme adsorption is enzyme, biomass/pretreatment and experimental co...

  9. Preparation and Characterization of Polymer-Grafted Montmorillonite-Lignocellulose Nanocomposites by In Situ Intercalative Polymerization

    Directory of Open Access Journals (Sweden)

    Tavengwa Bunhu

    2016-01-01

    Full Text Available Lignocellulose-clay nanocomposites were synthesized using an in situ intercalative polymerization method at 60°C and a pressure of 1 atm. The ratio of the montmorillonite clay to the lignocellulose ranged from 1 : 9 to 1 : 1 (MMT clay to lignocelluloses, wt%. The adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, transmission electron microscopy (TEM, and X-ray powder diffraction (XRD. FTIR results showed that the polymers were covalently attached to the nanoclay and the lignocellulose in the nanocomposites. Both TEM and XRD analysis showed that the morphology of the materials ranged from phase-separated to intercalated nanocomposite adsorbents. Improved thermal stability, attributable to the presence of nanoclay, was observed for all the nanocomposites. The nanocomposite materials prepared can potentially be used as adsorbents for the removal of pollutants in water treatment and purification.

  10. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities.

    Science.gov (United States)

    Ravindran, Rajeev; Jaiswal, Amit Kumar

    2016-01-01

    Lignocellulose is a generic term used to describe plant biomass. It is the most abundant renewable carbon resource in the world and is mainly composed of lignin, cellulose and hemicelluloses. Most of the food and food processing industry waste are lignocellulosic in nature with a global estimate of up to 1.3 billion tons/year. Lignocellulose, on hydrolysis, releases reducing sugars which is used for the production of bioethanol, biogas, organic acids, enzymes and biosorbents. However, structural conformation, high lignin content and crystalline cellulose hinder its use for value addition. Pre-treatment strategies facilitate the exposure of more cellulose and hemicelluloses for enzymatic hydrolysis. The present article confers about the structure of lignocellulose and how it influences enzymatic degradation emphasising the need for pre-treatments along with a comprehensive analysis and categorisation of the same. Finally, this article concludes with a detailed discussion on microbial/enzymatic inhibitors that arise post pre-treatment and strategies to eliminate them.

  11. Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods

    Science.gov (United States)

    G. S. Wang; X. J. Pan; Junyong Zhu; Roland Gleisner; D. Rockwood

    2009-01-01

    This study demonstrates sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust bioconversion of hardwoods. With only about 4% sodium bisulfite charge on aspen and 30-min pretreatment at temperature 180[...

  12. CONTINUOUS PRODUCTION OF ETHANOL IN BED PACKED BIOREACTORS WITH IMMOBILIZED YEAST CELLS ON LIGNOCELLULOSIC WASTE

    National Research Council Canada - National Science Library

    LINA MARÍA AGUDELO ESCOBAR; URIEL SALAZAR ÁLVAREZ; MARIANA PEÑUELA

    2012-01-01

    .... In this work, we evaluated the continuous production of ethanol in bed packed reactors with yeast cells immobilized on lignocellulosic waste of wood shaving, cane bagasse, corn leave and corn cob...

  13. Solar assisted alkali pretreatment of garden biomass: Effects on lignocellulose degradation, enzymatic hydrolysis, crystallinity and ultra-structural changes in lignocellulose.

    Science.gov (United States)

    Gabhane, Jagdish; William, S P M Prince; Vaidya, Atul N; Das, Sera; Wate, Satish R

    2015-06-01

    A comprehensive study was carried out to assess the effectiveness of solar assisted alkali pretreatment (SAAP) on garden biomass (GB). The pretreatment efficiency was assessed based on lignocellulose degradation, conversion of cellulose into reducing sugars, changes in the ultra-structure and functional groups of lignocellulose and impact on the crystallinity of cellulose, etc. SAAP was found to be efficient for the removal of lignin and hemicellulose that facilitated enzymatic hydrolysis of cellulose. FTIR and XRD studies provided details on the effectiveness of SAAP on lignocellulosic moiety and crystallinity of cellulose. Scanning electron microscopic analysis showed ultra-structural disturbances in the microfibrils of GB as a result of pretreatment. The mass balance closer of 97.87% after pretreatment confirmed the reliability of SAAP pretreatment. Based on the results, it is concluded that SAAP is not only an efficient means of pretreatment but also economical as it involved no energy expenditure for heat generation during pretreatment.

  14. Application of steam explosion for the pretreatment of the lignocellulosic raw materials

    OpenAIRE

    Jacquet, Nicolas; Vanderghem, Caroline; Blecker, Christophe; Paquot, Michel

    2010-01-01

    Application of steam explosion for the pretreatment of the lignocellulosic raw materials. Steam explosion is a thermomechanochemical process which allows the breakdown of lignocellulosic structural components by steam heating, hydrolysis of glycosidic bonds by organic acid formed during the process and shearing forces due to the expansion of the moisture. The process is composed of two distinct stages: vapocracking and explosive decompression. Cumul effects of both phases include modification...

  15. Bacterial Community Structure and Biochemical Changes Associated With Composting of Lignocellulosic Oil Palm Empty Fruit Bunch

    OpenAIRE

    Mohd Huzairi Mohd Zainudin; Mohd Ali Hassan,; Umi Kalsom Md Shah; Norhani Abdullah; Mitsunori Tokura; Hisashi Yasueda; Yoshihito Shirai; Kenji Sakai; Azhari Samsu Baharuddin

    2013-01-01

    Bacterial community structure and biochemical changes during the composting of lignocellulosic oil palm empty bunch (EFB) and palm oil mill effluent (POME) anaerobic sludge were studied by examining the succession of the bacterial community and its association with changes in lignocellulosic components by denaturing gradient gel electrophoresis (DGGE) and the 16S rRNA gene clone library. During composting, a major reduction in cellulose after 10 days from 50% to 19% and the carbon content fro...

  16. Production of fuel range oxygenates by supercritical hydrothermal liquefaction of lignocellulosic model systems

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Rosendahl, Lasse Aistrup

    2015-01-01

    Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics, and it ......Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics...

  17. Pretreatment of Lignocellulosic Biomass with Ionic Liquids and Ionic Liquid-Based Solvent Systems

    OpenAIRE

    Qidong Hou; Meiting Ju; Weizun Li; Le Liu; Yu Chen; Qian Yang

    2017-01-01

    Pretreatment is very important for the efficient production of value-added products from lignocellulosic biomass. However, traditional pretreatment methods have several disadvantages, including low efficiency and high pollution. This article gives an overview on the applications of ionic liquids (ILs) and IL-based solvent systems in the pretreatment of lignocellulosic biomass. It is divided into three parts: the first deals with the dissolution of biomass in ILs and IL-based solvent systems; ...

  18. Occurrence of Priming in the Degradation of Lignocellulose in Marine Sediments.

    Directory of Open Access Journals (Sweden)

    Evangelia Gontikaki

    Full Text Available More than 50% of terrestrially-derived organic carbon (terrOC flux from the continents to the ocean is remineralised in the coastal zone despite its perceived high refractivity. The efficient degradation of terrOC in the marine environment could be fuelled by labile marine-derived material, a phenomenon known as "priming effect", but experimental data to confirm this mechanism are lacking. We tested this hypothesis by treating coastal sediments with 13C-lignocellulose, as a proxy for terrOC, with and without addition of unlabelled diatom detritus that served as the priming inducer. The occurrence of priming was assessed by the difference in lignocellulose mineralisation between diatom-amended treatments and controls in aerobic sediment slurries. Priming of lignocellulose degradation was observed only at the initial stages of the experiment (day 7 and coincided with overall high microbial activity as exemplified by total CO2 production. Lignocellulose mineralisation did not differ consistently between diatom treatments and control for the remaining experimental time (days 14-28. Based on this pattern, we hypothesize that the faster initiation of lignocellulose mineralisation in diatom-amended treatments is attributed to the decomposition of accessible polysaccharide components within the lignocellulose complex by activated diatom degraders. The fact that diatom-degraders contributed to lignocellulose degradation was also supported by the different patterns in 13C-enrichment of phospholipid fatty acids between treatments. Although we did not observe differences between treatments in the total quantity of respired lignocellulose at the end of the experiment, differences in timing could be important in natural ecosystems where the amount of time that a certain compound is subject to aerobic degradation before burial to deeper anoxic sediments may be limited.

  19. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.

    Science.gov (United States)

    Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu

    2016-01-01

    Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release.

  20. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions

    Directory of Open Access Journals (Sweden)

    Flávia Bottino

    2016-06-01

    Full Text Available Abstract Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40 °C. Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days. After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic. However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity and carbon release.

  1. Lignocellulosic Biomass Derived Functional Materials: Synthesis and Applications in Biomedical Engineering.

    Science.gov (United States)

    Zhang, Lei; Peng, Xinwen; Zhong, Linxin; Chua, Weitian; Xiang, Zhihua; Sun, Runcang

    2017-09-18

    The pertinent issue of resources shortage arising from global climate change in the recent years has accentuated the importance of materials that are environmental friendly. Despite the merits of current material like cellulose as the most abundant natural polysaccharide on earth, the incorporation of lignocellulosic biomass has the potential to value-add the recent development of cellulose-derivatives in drug delivery systems. Lignocellulosic biomass, with a hierarchical structure, comprised of cellulose, hemicellulose and lignin. As an excellent substrate that is renewable, biodegradable, biocompatible and chemically accessible for modified materials, lignocellulosic biomass sets forth a myriad of applications. To date, materials derived from lignocellulosic biomass have been extensively explored for new technological development and applications, such as biomedical, green electronics and energy products. In this review, chemical constituents of lignocellulosic biomass are first discussed before we critically examine the potential alternatives in the field of biomedical application. In addition, the pretreatment methods for extracting cellulose, hemicellulose and lignin from lignocellulosic biomass as well as their biological applications including drug delivery, biosensor, tissue engineering etc will be reviewed. It is anticipated there will be an increasing interest and research findings in cellulose, hemicellulose and lignin from natural resources, which help provide important directions for the development in biomedical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Concentrating photovoltaic solar panel

    Science.gov (United States)

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  3. Preparation, Characterization, and Microbial Degradation of Specifically Radiolabeled [14C]Lignocelluloses from Marine and Freshwater Macrophytes †

    OpenAIRE

    1984-01-01

    Specifically radiolabeled [14C-lignin]lignocelluloses were prepared from the aquatic macrophytes Spartina alterniflora, Juncus roemerianus, Rhizophora mangle, and Carex walteriana by using [14C]phenylalanine, [14C]tyrosine, and [14C]cinnamic acid as precursors. Specifically radiolabeled [14C-polysaccharide]lignocelluloses were prepared by using [14C]glucose as precursor. The rates of microbial degradation varied among [14C-lignin]lignocelluloses labeled with different lignin precursors within...

  4. Solar panel parallel mounting configuration

    Science.gov (United States)

    Mutschler, Jr., Edward Charles (Inventor)

    1998-01-01

    A spacecraft includes a plurality of solar panels interconnected with a power coupler and an electrically operated device to provide power to the device when the solar cells are insolated. The solar panels are subject to bending distortion when entering or leaving eclipse. Spacecraft attitude disturbances are reduced by mounting each of the solar panels to an elongated boom made from a material with a low coefficient of thermal expansion, so that the bending of one panel is not communicated to the next. The boom may be insulated to reduce its bending during changes in insolation. A particularly advantageous embodiment mounts each panel to the boom with a single mounting, which may be a hinge. The single mounting prevents transfer of bending moments from the panel to the boom.

  5. Paleovalley fills: Trunk vs. tributary

    Science.gov (United States)

    Kvale, E.P.; Archer, A.W.

    2007-01-01

    A late Mississippian-early Pennsylvanian eustatic sea level drop resulted in a complex lowstand drainage network being eroded across the Illinois Basin in the eastern United States. This drainage system was filled during the early part of the Pennsylvanian. Distinct differences can be recognized between the trunk and tributary paleovalley fills. Fills preserved within the trunk systems tend to be fluvially dominated and consist of bed-load deposits of coarse- to medium-grained sandstone and conglomerate. Conversely, the incised valleys of tributary systems tend to be filled with dark mudstone, thinly interbedded sandstones, and mudstones and siltstones. These finer grained facies exhibit marine influences manifested by tidal rhythmites, certain traces fossils, and macro- and microfauna. Examples of tributary and trunk systems, separated by no more than 7 km (4.3 mi) along strike, exhibit these styles of highly contrasting fills. Useful analogs for understanding this Pennsylvanian system include the Quaternary glacial sluiceways present in the lower Ohio, White, and Wabash river valleys of Indiana (United States) and the modern Amazon River (Brazil). Both the Amazon River and the Quaternary rivers of Indiana have (or had) trunk rivers that are (were) dominated by large quantities of bed load relative to their tributaries. The trunk valley systems of these analogs aggraded much more rapidly than their tributary valleys, which evolved into lakes because depositional rates along the trunk are (were) so high that the mouths of the tributaries have been dammed by bed-load deposits. These Holocene systems illustrate that sediment yields can significantly influence the nature of fill successions within incised valleys independent of rates of sea level changes or proximity to highstand coastlines. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  6. QENS investigation of filled rubbers

    Energy Technology Data Exchange (ETDEWEB)

    Triolo, A.; Lechner, R.E.; Desmedt, A.; Pieper, J. [CNR - Istituto per i Processi Chimico-Fisici, sez. Messina, Via La Farina 237, 98123 Messina (Italy); Lo Celso, F.; Triolo, R. [Dip. Chimica Fisica, V. le delle Scienze, Parco d' Orleans, Padiglione 17, Universita di Palermo, 90128 Palermo (Italy); Negroni, F. [Pirelli Pneumatici S.p.A, V. le Sarca 222, 20126 Milano (Italy); Arrighi, V.; Qian, H. [Chemistry School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom); Frick, B. [Institut Laue-Langevin, 6, rue Jules Horowitz, BP 156, 38042 Grenoble, Cedex 9 (France)

    2002-07-01

    The polymer segmental dynamics is investigated in a series of silica-filled rubbers. The presence of inert fillers in polymers greatly affects the mechanical and physical performance of the final materials. For example, silica has been proposed as a reinforcing agent of elastomers in tire production. Results from quasielastic neutron scattering and Dynamic Mechanical Thermal Analysis (DMTA) measurements are presented on styrene-ran-butadiene rubber filled with silica. A clear indication is obtained of the existence of a bimodal dynamics, which can be rationalized in terms of the relaxation of bulk rubber and the much slower relaxation of the rubber adsorbed on the filler surface. (orig.)

  7. QENS investigation of filled rubbers

    CERN Document Server

    Triolo, A; Desmedt, A; Pieper, J K; Lo Celso, F; Triolo, R; Negroni, F; Arrighi, V; Qian, H; Frick, B

    2002-01-01

    The polymer segmental dynamics is investigated in a series of silica-filled rubbers. The presence of inert fillers in polymers greatly affects the mechanical and physical performance of the final materials. For example, silica has been proposed as a reinforcing agent of elastomers in tire production. Results from quasielastic neutron scattering and Dynamic Mechanical Thermal Analysis (DMTA) measurements are presented on styrene-ran-butadiene rubber filled with silica. A clear indication is obtained of the existence of a bimodal dynamics, which can be rationalized in terms of the relaxation of bulk rubber and the much slower relaxation of the rubber adsorbed on the filler surface. (orig.)

  8. QENS investigation of filled rubbers

    Science.gov (United States)

    Triolo, A.; Lo Celso, F.; Negroni, F.; Arrighi, V.; Qian, H.; Lechner, R. E.; Desmedt, A.; Pieper, J.; Frick, B.; Triolo, R.

    The polymer segmental dynamics is investigated in a series of silica-filled rubbers. The presence of inert fillers in polymers greatly affects the mechanical and physical performance of the final materials. For example, silica has been proposed as a reinforcing agent of elastomers in tire production. Results from quasielastic neutron scattering and Dynamic Mechanical Thermal Analysis (DMTA) measurements are presented on styrene-ran-butadiene rubber filled with silica. A clear indication is obtained of the existence of a bimodal dynamics, which can be rationalized in terms of the relaxation of bulk rubber and the much slower relaxation of the rubber adsorbed on the filler surface.

  9. Gas-Filled Capillary Model

    Science.gov (United States)

    Steinhauer, L. C.; Kimura, W. D.

    2006-11-01

    We have developed a 1-D, quasi-steady-state numerical model for a gas-filled capillary discharge that is designed to aid in selecting the optimum capillary radius in order to guide a laser beam with the required intensity through the capillary. The model also includes the option for an external solenoid B-field around the capillary, which increases the depth of the parabolic density channel in the capillary, thereby allowing for propagation of smaller laser beam waists. The model has been used to select the parameters for gas-filled capillaries to be utilized during the Staged Electron Laser Acceleration — Laser Wakefield (STELLA-LW) experiment.

  10. Effects of Different Substrates on Lignocellulosic Enzyme Expression, Enzyme Activity, Substrate Utilization and Biological Efficiency of Pleurotus Eryngii

    Directory of Open Access Journals (Sweden)

    Chunliang Xie

    2016-09-01

    Full Text Available Background/Aims: Pleurotus eryngii is one of the most valued and delicious mushrooms which are commercially cultivated on various agro-wastes. How different substrates affect lignocellulosic biomass degradation, lignocellulosic enzyme production and biological efficiency in Pleurotus eryngii was unclear. Methods and Results: In this report, Pleurotus eryngii was cultivated in substrates including ramie stalks, kenaf stalks, cottonseed hulls and bulrush stalks. The results showed that ramie stalks and kenaf stalks were found to best suitable to cultivate Pleurotus eryngii with the biological efficiency achieved at 55% and 57%, respectively. In order to establish correlations between different substrates and lignocellulosic enzymes expression, the extracellular proteins from four substrates were profiled with high throughput TMT-based quantitative proteomic approach. 241 non-redundant proteins were identified and 74 high confidence lignocellulosic enzymes were quantified. Most of the cellulases, hemicellulases and lignin depolymerization enzymes were highly up-regulated when ramie stalks and kenaf stalks were used as carbon sources. The enzyme activities results suggested cellulases, hemicellulases and lignin depolymerization enzymes were significantly induced by ramie stalks and kenaf stalks. Conclusion: The lignocelluloses degradation, most of the lignocellulosic enzymes expressions and activities of Pleurotus eryngii had positive correlation with the biological efficiency, which depend on the nature of lignocellulosic substrates. In addition, the lignocellulosic enzymes expression profiles during Pleurotus eryngii growth in different substrates were obtained. The present study suggested that most of the lignocellulosic enzymes expressions and activities can be used as tools for selecting better performing substrates for commercial mushroom cultivation.

  11. ALDS 1978 panel review. [PNL

    Energy Technology Data Exchange (ETDEWEB)

    Hall, D.L. (ed.)

    1979-08-01

    Pacific Northwest Laboratory (PNL) is examining the analysis of large data sets (ALDS). After one year's work, a panel was convened to evaluate the project. This document is the permanent record of that panel review. It consists of edited transcripts of presentations made to the panel by the PNL staff, a summary of the responses of the panel to these presentations, and PNL's plans for the development of the ALDS project. The representations of the PNL staff described various aspects of the project and/or the philosophy surrounding the project. Supporting materials appear in appendixes. 20 figures, 4 tables. (RWR)

  12. Development of process variants for fast pyrolysis of lignocellulose in a double-lead screw reactor; Entwicklung von Verfahrensvarianten zur Schnellpyrolyse von Lignocellulose im Doppelschneckenreaktor

    Energy Technology Data Exchange (ETDEWEB)

    Kornmayer, C.; Dinjus, E.; Henrich, E.; Weirich, F. [Forschungszentrum Karlsruhe (Germany); Reimert, R. [Engler-Bunte-Inst., Univ. Karlsruhe (Germany)

    2006-07-01

    Karlsruhe Research Center (FZK) is working on a two-stage concept for synfuel production from lignocellulose. The contribution describes the process, including properties of and requirements on educts, products, and working fluids. The development of process variants is discussed on the basis of experimental results. (orig.)

  13. Validation of lignocellulosic biomass carbohydrates determination via acid hydrolysis.

    Science.gov (United States)

    Zhou, Shengfei; Runge, Troy M

    2014-11-04

    This work studied the two-step acid hydrolysis for determining carbohydrates in lignocellulosic biomass. Estimation of sugar loss based on acid hydrolyzed sugar standards or analysis of sugar derivatives was investigated. Four model substrates (starch, holocellulose, filter paper and cotton) and three levels of acid/material ratios (7.8, 10.3 and 15.4, v/w) were studied to demonstrate the range of test artifacts. The method for carbohydrates estimation based on acid hydrolyzed sugar standards having the most satisfactory carbohydrate recovery and relative standard deviation. Raw material and the acid/material ratio both had significant effect on carbohydrate hydrolysis, suggesting the acid to have impacts beyond a catalyst in the hydrolysis. Following optimal procedures, we were able to reach a carbohydrate recovery of 96% with a relative standard deviation less than 3%. The carbohydrates recovery lower than 100% was likely due to the incomplete hydrolysis of substrates, which was supported by scanning electron microscope (SEM) images.

  14. Switchable ionic liquids as delignification solvents for lignocellulosic materials.

    Science.gov (United States)

    Anugwom, Ikenna; Eta, Valerie; Virtanen, Pasi; Mäki-Arvela, Päivi; Hedenström, Mattias; Hummel, Michael; Sixta, Herbert; Mikkola, Jyri-Pekka

    2014-04-01

    The transformation of lignocellulosic materials into potentially valuable resources is compromised by their complicated structure. Consequently, new economical and feasible conversion/fractionation techniques that render value-added products are intensely investigated. Herein an unorthodox and feasible fractionation method of birch chips (B. pendula) using a switchable ionic liquid (SIL) derived from an alkanol amine (monoethanol amine, MEA) and an organic super base (1,8-diazabicyclo-[5.4.0]-undec-7-ene, DBU) with two different trigger acid gases (CO2 and SO2 ) is studied. After SIL treatment, the dissolved fractions were selectively separated by a step-wise method using an antisolvent to induce precipitation. The SIL was recycled after concentration and evaporation of anti-solvent. The composition of undissolved wood after MEA-SO2 -SIL treatment resulted in 80 wt % cellulose, 10 wt % hemicelluloses, and 3 wt % lignin, whereas MEA-CO2 -SIL treatment resulted in 66 wt % cellulose, 12 wt % hemicelluloses and 11 wt % lignin. Thus, the MEA-SO2 -SIL proved more efficient than the MEA-CO2 -SIL, and a better solvent for lignin removal. All fractions were analyzed by gas chromatography (GC), Fourier transform infrared spectroscopy (FT-IR), (13) C nuclear magnetic resonance spectroscopy (NMR) and Gel permeation chromatography (GPC).

  15. CONVERSION OF LIGNOCELLULOSIC MATERIAL TO CHEMICALS AND FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson

    2001-06-30

    A direct conversion of cellulosic wastes, including resin-bonded furniture and building waste, to levulinate esters is being investigated with the view to producing fuels, solvents, and chemical intermediates as well as other useful by-products in an inexpensive process. The acid-catalyzed reaction of cellulosic materials with ethanol or methanol at 200 C gives good yields of levulinate and formate esters, as well as useful by-products, such as a solid residue (charcoal) and a resinous lignin residue. An initial plant design showed reasonable rates of return for production of purified ethyl levulinate and by-products. In this project, investigations have been performed to identify and develop reactions that utilize esters of levulinic acid produced during the acid-catalyzed ethanolysis reaction. We wish to develop uses for levulinate esters that allow their marketing at prices comparable to inexpensive polymer intermediates. These prices will allow a sufficient rate of return to justify building plants for utilizing the waste lignocellulosics. If need is demonstrated for purified levulinate, the initial plant design work may be adequate, at least until further pilot-scale work on the process is performed.

  16. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products.

    Science.gov (United States)

    Tai, Yi-Shu; Xiong, Mingyong; Jambunathan, Pooja; Wang, Jingyu; Wang, Jilong; Stapleton, Cole; Zhang, Kechun

    2016-04-01

    Conversion of lignocellulosic biomass into value-added products provides important environmental and economic benefits. Here we report the engineering of an unconventional metabolism for the production of tricarboxylic acid (TCA)-cycle derivatives from D-xylose, L-arabinose and D-galacturonate. We designed a growth-based selection platform to identify several gene clusters functional in Escherichia coli that can perform this nonphosphorylative assimilation of sugars into the TCA cycle in less than six steps. To demonstrate the application of this new metabolic platform, we built artificial biosynthetic pathways to 1,4-butanediol (BDO) with a theoretical molar yield of 100%. By screening and engineering downstream pathway enzymes, 2-ketoacid decarboxylases and alcohol dehydrogenases, we constructed E. coli strains capable of producing BDO from D-xylose, L-arabinose and D-galacturonate. The titers, rates and yields were higher than those previously reported using conventional pathways. This work demonstrates the potential of nonphosphorylative metabolism for biomanufacturing with improved biosynthetic efficiencies.

  17. Lignocentric analysis of a carbohydrate-producing lignocellulosic biorefinery process.

    Science.gov (United States)

    Narron, Robert H; Han, Qiang; Park, Sunkyu; Chang, Hou-Min; Jameel, Hasan

    2017-10-01

    A biologically-based lignocellulosic biorefinery process for obtaining carbohydrates from raw biomass was investigated across six diverse biomasses (three hardwoods & three nonwoods) for the purpose of decoding lignin's influence on sugar production. Acknowledging that lignin could positively alter the economics of an entire process if valorized appropriately, we sought to correlate the chemical properties of lignin within the process to the traditional metrics associated with carbohydrate production-cellulolytic digestibility and total sugar recovery. Based on raw carbohydrate, enzymatic recovery ranged from 40 to 64% w/w and total recovery ranged from 70 to 87% w/w. Using nitrobenzene oxidation to quantify non-condensed lignin structures, it was found that raw hardwoods bearing increasing non-condensed S/V ratios (2.5-5.1) render increasing total carbohydrate recovery from hardwood biomasses. This finding indicates that the chemical structure of hardwood lignin influences the investigated biorefinery process' ability to generate carbohydrates from a given raw hardwood feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Using Populus as a lignocellulosic feedstock for bioethanol.

    Science.gov (United States)

    Porth, Ilga; El-Kassaby, Yousry A

    2015-04-01

    Populus species along with species from the sister genus Salix will provide valuable feedstock resources for advanced second-generation biofuels. Their inherent fast growth characteristics can particularly be exploited for short rotation management, a time and energy saving cultivation alternative for lignocellulosic feedstock supply. Salicaceae possess inherent cell wall characteristics with favorable cellulose to lignin ratios for utilization as bioethanol crop. We review economically important traits relevant for intensively managed biofuel crop plantations, genomic and phenotypic resources available for Populus, breeding strategies for forest trees dedicated to bioenergy provision, and bioprocesses and downstream applications related to opportunities using Salicaceae as a renewable resource. Challenges need to be resolved for every single step of the conversion process chain, i.e., starting from tree domestication for improved performance as a bioenergy crop, bioconversion process, policy development for land use changes associated with advanced biofuels, and harvest and supply logistics associated with industrial-scale biorefinery plants using Populus as feedstock. Significant hurdles towards cost and energy efficiency, environmental friendliness, and yield maximization with regards to biomass pretreatment, saccharification, and fermentation of celluloses and the sustainability of biorefineries as a whole still need to be overcome.

  19. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Spyridon Achinas

    2016-09-01

    Full Text Available Bioethanol production is one pathway for crude oil reduction and environmental compliance. Bioethanol can be used as fuel with significant characteristics like high octane number, low cetane number and high heat of vaporization. Its main drawbacks are the corrosiveness, low flame luminosity, lower vapor pressure, miscibility with water, and toxicity to ecosystems. One crucial problem with bioethanol fuel is the availability of raw materials. The supply of feedstocks for bioethanol production can vary season to season and depends on geographic locations. Lignocellulosic biomass, such as forest-based woody materials, agricultural residues and municipal waste, is prominent feedstock for bioethanol cause of its high availability and low cost, even though the commercial production has still not been established. In addition, the supply and the attentive use of microbes render the bioethanol production process highly peculiar. Many conversion technologies and techniques for biomass-based ethanol production are under development and expected to be demonstrated. In this work a technological analysis of the biochemical method that can be used to produce bioethanol is carried out and a review of current trends and issues is conducted.

  20. Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass.

    Science.gov (United States)

    Kim, Youngmi; Ximenes, Eduardo; Mosier, Nathan S; Ladisch, Michael R

    2011-04-01

    Liquid hot water, steam explosion, and dilute acid pretreatments of lignocellulose generate soluble inhibitors which hamper enzymatic hydrolysis as well as fermentation of sugars to ethanol. Toxic and inhibitory compounds will vary with pretreatment and include soluble sugars, furan derivatives (hydroxymethyl fulfural, furfural), organic acids (acetic, formic and, levulinic acid), and phenolic compounds. Their effect is seen when an increase in the concentration of pretreated biomass in a hydrolysis slurry results in decreased cellulose conversion, even though the ratio of enzyme to cellulose is kept constant. We used lignin-free cellulose, Solka Floc, combined with mixtures of soluble components released during pretreatment of wood, to prove that the decrease in the rate and extent of cellulose hydrolysis is due to a combination of enzyme inhibition and deactivation. The causative agents were extracted from wood pretreatment liquid using PEG surfactant, activated charcoal or ethyl acetate and then desorbed, recovered, and added back to a mixture of enzyme and cellulose. At enzyme loadings of either 1 or 25mg protein/g glucan, the most inhibitory components, later identified as phenolics, decreased the rate and extent of cellulose hydrolysis by half due to both inhibition and precipitation of the enzymes. Full enzyme activity occurred when the phenols were removed. Hence detoxification of pretreated woods through phenol removal is expected to reduce enzyme loadings, and therefore reduce enzyme costs, for a given level of cellulose conversion.

  1. Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass

    Science.gov (United States)

    Balan, Venkatesh

    2014-01-01

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be produced in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected. PMID:25937989

  2. CAN LIGNOCELLULOSE BIOSYNTHESIS BE THE KEY TO ITS ECONOMICAL DECONSTRUCTION?

    Directory of Open Access Journals (Sweden)

    Lucian A. Lucia

    2010-05-01

    Full Text Available It is ironic to think that the venerable pulp and paper industry is now considering ways to degrade cellulose. This notion can be understood as a way that the industry can face a protracted downturn in profitability and ever-mounting socio-economic pressures to enhance the efficiency of biofuels production. Many approaches have been recently taken to deconstruct cellulosic biomass, but this Editorial explores one key that may start to explain the increasing momentum in the biofuels community – biotechnology. Two approaches appear to be possible as scientists search for an effective way to unzip cellulose to its key constituents through the use of biotechnology. On the one hand, there are efforts to re-engineer the chemical composition of the tree, rendering it more digestible by enzymes and decreasing the need for mechanical or chemical pretreatment. On the other hand, what we are learning about lignocellulose biosynthesis can be of potential help in designing more efficient systems to essentially reverse that process.

  3. Enzymatic pretreatment of lignocellulosic wastes to improve biogas production.

    Science.gov (United States)

    Ziemiński, K; Romanowska, I; Kowalska, M

    2012-06-01

    The effect of enzymatic pretreatment of sugar beet pulp and spent hops prior to methane fermentation was determined in this study. These industrial residues were subjected to enzymatic digestion before anaerobic fermentation because of high fiber content (of 85.1% dry matter (DM) and 57.7% DM in sugar beet pulp and spent hops, respectively). Their 24h hydrolysis with a mix of enzymatic preparations Celustar XL and Agropect pomace (3:1, v/v), with endoglucanase, xylanase and pectinase activities, was most effective. Reducing sugars concentrations in hydrolysates of sugar beet pulp and spent hops were by 88.9% and 59.4% higher compared to undigested materials. The highest yield of biogas was obtained from the enzymatic hydrolysate of sugar beet pulp (183.39 mL/d from 1g COD at fermenter loading with organic matter of 5.43 g COD/L × d). Fermentation of sugar beet pulp gave 19% less biogas. Methane fermentation of spent hops hydrolysate yielded 121.47 mL/d biogas from 1g COD (at 6.02 g COD/L × d, 13% more than from spent hops). These results provide evidence that suitable enzymatic pretreatment of lignocellulosic wastes improve biogas yield from anaerobic fermentation.

  4. Unsteady Capillary Filling By Electrocapillarity

    Science.gov (United States)

    Kang, In Seok; Lee, Jung A.

    2016-11-01

    Unsteady filling of electrolyte solution inside a nanochannel by the electrocapillarity effect is studied. The filling rate is predicted as a function of the bulk concentration of the electrolyte, the surface potential (or surface charge density), and the cross sectional shape of the channel. Since the driving force of the flow is the electrocapillarity, it is first analyzed by using the solution of the Poisson-Boltzmann equation. From the analysis, it is found that the results for many different cross sectional shapes can be unified with good accuracy if the hydraulic radius is adopted as the characteristic length scale of the problem. Especially in the case of constant surface potential, for both limits of κh -> 0 and κh -> ∞ , it can be shown theoretically that the electrocapillarity is independent of the cross sectional shape if the hydraulic radius is the same. In order to analyze the geometric effects more systematically, we consider the regular N-polygons with the same hydraulic radius and the rectangles of different aspect ratios. Washburn's approach is then adopted to predict the filling rate of electrolyte solution inside a nanaochannel. It is found that the average filling velocity decreases as N increases in the case of regular N-polygons with the same hydraulic radius. This is because of that the regular N-polygons of the same hydraulic radius share the same inscribing circle. This work has been supported by BK21+ program.

  5. Filling in the retinal image

    Science.gov (United States)

    Larimer, James; Piantanida, Thomas

    1990-01-01

    The optics of the eye form an image on a surface at the back of the eyeball called the retina. The retina contains the photoreceptors that sample the image and convert it into a neural signal. The spacing of the photoreceptors in the retina is not uniform and varies with retinal locus. The central retinal field, called the macula, is densely packed with photoreceptors. The packing density falls off rapidly as a function of retinal eccentricity with respect to the macular region and there are regions in which there are no photoreceptors at all. The retinal regions without photoreceptors are called blind spots or scotomas. The neural transformations which convert retinal image signals into percepts fills in the gaps and regularizes the inhomogeneities of the retinal photoreceptor sampling mosaic. The filling-in mechamism plays an important role in understanding visual performance. The filling-in mechanism is not well understood. A systematic collaborative research program at the Ames Research Center and SRI in Menlo Park, California, was designed to explore this mechanism. It was shown that the perceived fields which are in fact different from the image on the retina due to filling-in, control some aspects of performance and not others. Researchers have linked these mechanisms to putative mechanisms of color coding and color constancy.

  6. Space-filling polyhedral sorbents

    Science.gov (United States)

    Haaland, Peter

    2016-06-21

    Solid sorbents, systems, and methods for pumping, storage, and purification of gases are disclosed. They derive from the dynamics of porous and free convection for specific gas/sorbent combinations and use space filling polyhedral microliths with facial aplanarities to produce sorbent arrays with interpenetrating interstitial manifolds of voids.

  7. Filling of charged cylindrical capillaries

    NARCIS (Netherlands)

    Das, Siddhartha; Chanda, Sourayon; Eijkel, J.C.T.; Tas, N.R.; Chakraborty, Suman; Mitra, Sushanta K.

    2014-01-01

    We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force on the liquid column and also causes a reduced viscous drag force because

  8. Electronic route information panels (DRIPs).

    NARCIS (Netherlands)

    2008-01-01

    Also in the Netherlands, the term Dynamic Route Information Panel (DRIP) is used for an electronic route information panel. A DRIP usually indicates whether there are queues on the various routes to a particular destination and how long they are. On certain locations DRIPS also give the estimated tr

  9. Thermal-Diode Sandwich Panel

    Science.gov (United States)

    Basiulis, A.

    1986-01-01

    Thermal diode sandwich panel transfers heat in one direction, but when heat load reversed, switches off and acts as thermal insulator. Proposed to control temperature in spacecraft and in supersonic missiles to protect internal electronics. In combination with conventional heat pipes, used in solar panels and other heat-sensitive systems.

  10. Plane and parabolic solar panels

    CERN Document Server

    Sales, J H O

    2009-01-01

    We present a plane and parabolic collector that absorbs radiant energy and transforms it in heat. Therefore we have a panel to heat water. We study how to increment this capture of solar beams onto the panel in order to increase its efficiency in heating water.

  11. Revalorizing lignocellulose for the production of natural pharmaceuticals and other high value bioproducts.

    Science.gov (United States)

    Zhang, Congqiang; Too, Heng-Phon

    2017-09-11

    Lignocellulose is the most plentiful, renewable natural resource on earth and has been successfully used for the production of biofuels. A significant challenge is to develop cost-effective, environmentally friendly and efficient processes for the conversion of lignocellulose material into suitable substrates for biotransformation. A number of approaches have been explored to convert lignocellulose into sugars, e.g. combining chemical pretreatment and enzymatic hydrolysis. In nature, there are organisms that can biotransform the complex lignocellulose efficiently, such as wood-degrading fungi (brown rot and white rot fungi), bacteria (e.g. Clostridium thermocellum), arthropods (e.g. termite) and certain animals (e.g. ruminant). Here, we highlight recent case studies of the natural degraders and the mechanisms involved, providing new utilities in biotechnology. The sugars produced from such biotransformations can be used in metabolic engineering and synthetic biology for the complete biosynthesis of natural medicine. The unique opportunities in using lignocellulose directly to produce natural drug molecules with either using mushroom and/or 'industrial workhorse' organisms (Escherichia coli and Saccharomyces cerevisiae) will be discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. VALORIZATION AND BIODECOLORIZATION OF DYE ADSORBED ON LIGNOCELLULOSICS USING WHITE ROT FUNGI

    Directory of Open Access Journals (Sweden)

    Nesrin Ozmen,

    2012-02-01

    Full Text Available Biosorption of dyes by lignocelluloses may be an effective method for removing dyes from textile effluents. However, the resulting dye-adsorbed lignocellulosic materials may constitute another pollution problem. An integrated method can solve this problem. Here, various lignocelluloses were tested for their Astrazon Black and Astrazon Blue dyes removal activities. The dye adsorbed after 30 min contact time was 90% (45 mg/L, 70% (35 mg/L, and 98% (49 mg/L for wheat bran, pine cone, and cotton stalk, respectively. These dye-adsorbed lignocellulosic wastes then were used as solid substrates to produce laccase enzyme with Funalia trogii and Trametes versicolor under solid state fermentation (SSF. Among the lignocellulosic substrates, the dye-adsorbed wheat bran served as the best solid substrate for laccase production under SSF. Therefore, it was also tested as a solid source for laccase production under submerged fermentation. During solid state fermentation, these two fungi were able to highly decolorize these dyes. While F. trogii decolorized 80% of Astrazon Black dye adsorbed onto wheat bran, T. versicolor decolorized 86%. On the other hand, the decolorization values for Astrazon Blue dye were 69% and 84%, respectively.

  13. The Comparative Life Cycle Assessment of Power Generation from Lignocellulosic Biomass

    Directory of Open Access Journals (Sweden)

    Xinhua Shen

    2015-09-01

    Full Text Available In order to solve the energy crisis and reduce emissions of greenhouse gases (GHG, renewable energy resources are exploited for power generation. Because lignocellulosic biomass resources are abundant and renewable, various technologies are applied to using lignocellulosic biomass to derive biofuel and electricity. This paper focuses on power generation from lignocellulosic biomass and comparison of the effects of different feedstocks, transportation, and power generation technologies evaluated through life cycle assessment (LCA. The inputs and boundaries of LCA vary with different feedstocks, such as forestry wood, agricultural residues, and fast-growing grass. For agricultural residues and fast-growing grass, the transportation cost from field to power plant is more critical. Three technologies for power generation are analyzed both with and without pelletization of lignocellulosic biomass. The GHG emissions also vary with different feedstocks and depend on burning technologies at different plant scales. The daily criteria pollutant emissions of power generation from different lignocellulosic biomass were evaluated with a life cycle assessment model of GREET.net 2014. It is concluded that bio-power generation is critical with the urgency of greenhouse effects.

  14. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production.

    Science.gov (United States)

    Moreno, Antonio D; Ibarra, David; Alvira, Pablo; Tomás-Pejó, Elia; Ballesteros, Mercedes

    2015-01-01

    Future biorefineries will integrate biomass conversion processes to produce fuels, power, heat and value-added chemicals. Due to its low price and wide distribution, lignocellulosic biomass is expected to play an important role toward this goal. Regarding renewable biofuel production, bioethanol from lignocellulosic feedstocks is considered the most feasible option for fossil fuels replacement since these raw materials do not compete with food or feed crops. In the overall process, lignin, the natural barrier of the lignocellulosic biomass, represents an important limiting factor in biomass digestibility. In order to reduce the recalcitrant structure of lignocellulose, biological pretreatments have been promoted as sustainable and environmentally friendly alternatives to traditional physico-chemical technologies, which are expensive and pollute the environment. These approaches include the use of diverse white-rot fungi and/or ligninolytic enzymes, which disrupt lignin polymers and facilitate the bioconversion of the sugar fraction into ethanol. As there is still no suitable biological pretreatment technology ready to scale up in an industrial context, white-rot fungi and/or ligninolytic enzymes have also been proposed to overcome, in a separated or in situ biodetoxification step, the effect of the inhibitors produced by non-biological pretreatments. The present work reviews the latest studies regarding the application of different microorganisms or enzymes as useful and environmentally friendly delignification and detoxification technologies for lignocellulosic biofuel production. This review also points out the main challenges and possible ways to make these technologies a reality for the bioethanol industry.

  15. Bacterial Community Structure and Biochemical Changes Associated With Composting of Lignocellulosic Oil Palm Empty Fruit Bunch

    Directory of Open Access Journals (Sweden)

    Mohd Huzairi Mohd Zainudin

    2013-11-01

    Full Text Available Bacterial community structure and biochemical changes during the composting of lignocellulosic oil palm empty bunch (EFB and palm oil mill effluent (POME anaerobic sludge were studied by examining the succession of the bacterial community and its association with changes in lignocellulosic components by denaturing gradient gel electrophoresis (DGGE and the 16S rRNA gene clone library. During composting, a major reduction in cellulose after 10 days from 50% to 19% and the carbon content from 44% to 27% towards the end of the 40-day composting period were observed. The C/N ratio also decreased. A drastic change in the bacterial community structure and diversity throughout the composting process was clearly observed using PCR-DGGE banding patterns. The bacterial community drastically shifted between the thermophilic and maturing stages. 16s rRNA clones belonging to the genera Bacillus, Exiguobacterium, Desemzia, and Planococcus were the dominant groups throughout composting. The species closely related to Solibacillus silvestris were found to be major contributors to changes in the lignocellulosic component. Clones identified as Thermobacillus xylanilyticus, Brachybacterium faecium, Cellulosimicrobium cellulans, Cellulomonas sp., and Thermobifida fusca, which are known to be lignocellulosic-degrading bacteria, were also detected and are believed to support the lignocellulose degradation.

  16. Mounting clips for panel installation

    Energy Technology Data Exchange (ETDEWEB)

    Cavieres, Andres; Al-Haddad, Tristan; Goodman, Joseph; Valdes, Francisco

    2017-02-14

    An exemplary mounting clip for removably attaching panels to a supporting structure comprises a base, spring locking clips, a lateral flange, a lever flange, and a spring bonding pad. The spring locking clips extend upwardly from the base. The lateral flange extends upwardly from a first side of the base. The lateral flange comprises a slot having an opening configured to receive at least a portion of one of the one or more panels. The lever flange extends outwardly from the lateral flange. The spring bonding flange extends downwardly from the lever flange. At least a portion of the first spring bonding flange comprises a serrated edge for gouging at least a portion of the one or more panels when the one or more panels are attached to the mounting clip to electrically and mechanically couple the one or more panels to the mounting clip.

  17. Cultivation of algal biofilm using different lignocellulosic materials as carriers.

    Science.gov (United States)

    Zhang, Qi; Liu, Cuixia; Li, Yubiao; Yu, Zhigang; Chen, Zhihua; Ye, Ting; Wang, Xun; Hu, Zhiquan; Liu, Shiming; Xiao, Bo; Jin, Shiping

    2017-01-01

    Algal biofilm technology is recently supposed to be a promising method to produce algal biomass as the feedstock for the production of biofuels. However, the carrier materials currently used to form algal biofilm are either difficult to be obtained at a low price or undurable. Commercialization of the biofilm technology for algal biomass production extremely requires new and inexpensive materials as biofilm carriers with high biomass production performances. Four types of lignocellulosic materials were investigated to evaluate their performance of acting as carriers for algal cells attachment and the relevant effects on the algal biomass production in this study. The cultivation of algal biofilm was processed in a self-designed flat plate photo-bioreactor. The biofilm production and chemical composition of the harvested biomass were determined. The surface physics properties of the materials were examined through a confocal laser-scanning microscopy. Algal biomass production varied significantly with the variation of the carriers (P materials showed better performances in biofilm production than poly methyl methacrylate, and the application of pine sawdust as the carrier could gain the maximum biofilm productivity of 10.92 g m(-2) day(-1) after 16-day cultivation. In addition, 20.10-23.20% total lipid, 30.35-36.73% crude proteins, and 20.29-25.93% carbohydrate were achieved from the harvested biomasses. Biomass productivity increased linearly as the increase of surface roughness, and Wenzel's roughness factor of the tested materials, and surface roughness might significantly affect the biomass production through the size of surface morphology and the area of surface (P materials can be efficient carriers for low-cost cultivation of algal biofilm and the enhancement of biomass productivity.

  18. Typical Lignocellulose-degrading Enzymes: a Synthesis of Kinetic Properties

    Science.gov (United States)

    Wang, G.; Post, W. M.; Mayes, M. A.; Frerichs, J.; Jagadamma, S.

    2011-12-01

    While soil enzymes have been explicitly included in the soil organic carbon (SOC) decomposition models, there are big concerns on the model parameterization. Our object is to study the kinetic parameters of five typical lignocellulose-degrading enzymes through literature research and data synthesis. The kinetic parameters refer to the maximum specific enzyme activity (Vmax) and half-saturation constant (Km) in the Michaelis-Menton equation. The Activation energy (Ea) and the pH optimum and sensitivity (pHopt and pHsen) were also analyzed. pHsen was estimated by curve fitting of an exponential-quadratic function. The Vmax values in different units under various conditions were converted into the same units at a reference temperature (20°C) and optimum pH. The scaling issue on Vmax and Km and the effects of soil temperature, pH, and SWC were discussed later. Major findings are summarized as follows. (i) Both Vmax and Km are log-normal distributed. (ii) No significant difference in Vmax is found between groups (ligninases and cellulases). The one-standard-deviation interval of Vmax falls within 10-1000 (mean ≈ 100) mg C mg^-1 Enz h^-1. However, there is significant difference in Km between groups. (iii) Significant difference in activation energy, i.e., 53±17 and 37±15 kJ mol^-1 is found for ligninases and cellulases, respectively. (iv) Both ligninases and cellulases prefer to acid environment. The average ratio of pHsen to pHopt ranges 0.3-0.4 and the optimum pH for ligninases is significantly lower than pHopt for cellulases. (v) A preliminary analysis of Vmax indicates a scaling factor 0.01-0.1 for transforming the Vmax from lab measurements to SOC decomposition models. This study provides useful information for the parameterization of enzyme-driven SOC decomposition models.

  19. Chemical pretreatment of lignocellulosic agroindustrial waste for methane production.

    Science.gov (United States)

    Pellera, Frantseska-Maria; Gidarakos, Evangelos

    2017-04-26

    This study investigates the effect of different chemical pretreatments on the solubilization and the degradability of different solid agroindustrial waste, namely winery waste, cotton gin waste, olive pomace and juice industry waste. Eight different reagents were investigated, i.e. sodium hydroxide (NaOH), sodium bicarbonate (NaHCO3), sodium chloride (NaCl), citric acid (H3Cit), acetic acid (AcOH), hydrogen peroxide (H2O2), acetone (Me2CO) and ethanol (EtOH), under three condition sets resulting in treatments of varying intensity, depending on process duration, reagent dosage and temperature. Results indicated that chemical pretreatment under more severe conditions is more effective on the solubilization of lignocellulosic substrates, such as those of the present study and among the investigated reagents, H3Cit, H2O2 and EtOH appeared to be the most effective to this regard. At the same time, although chemical pretreatment in general did not improve the methane potential of the substrates, moderate to high severity conditions were found to generally be the most satisfactory in terms of methane production from pretreated materials. In fact, moderate severity treatments using EtOH for winery waste, H3Cit for olive pomace and H2O2 for juice industry waste and a high severity treatment with EtOH for cotton gin waste, resulted in maximum specific methane yield values. Ultimately, the impact of pretreatment parameters on the different substrates seems to be dependent on their characteristics, in combination with the specific mode of action of each reagent. The overall energy balance of such a system could probably be improved by using lower operating powers and higher solid to liquid ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Novel Penicillium cellulases for total hydrolysis of lignocellulosics.

    Science.gov (United States)

    Marjamaa, Kaisa; Toth, Karolina; Bromann, Paul Andrew; Szakacs, George; Kruus, Kristiina

    2013-05-10

    The (hemi)cellulolytic systems of two novel lignocellulolytic Penicillium strains (Penicillium pulvillorum TUB F-2220 and P. cf. simplicissimum TUB F-2378) have been studied. The cultures of the Penicillium strains were characterized by high cellulase and β-glucosidase as well moderate xylanase activities compared to the Trichoderma reesei reference strains QM 6a and RUTC30 (volumetric or per secreted protein, respectively). Comparison of the novel Penicillium and T. reesei secreted enzyme mixtures in the hydrolysis of (ligno)cellulose substrates showed that the F-2220 enzyme mixture gave higher yields in the hydrolysis of crystalline cellulose (Avicel) and similar yields in hydrolysis of pre-treated spruce and wheat straw than enzyme mixture secreted by the T. reesei reference strain. The sensitivity of the Penicillium cellulase complexes to softwood (spruce) and grass (wheat straw) lignins was lignin and temperature dependent: inhibition of cellulose hydrolysis in the presence of wheat straw lignin was minor at 35°C while at 45°C by spruce lignin a clear inhibition was observed. The two main proteins in the F-2220 (hemi)cellulase complex were partially purified and identified by peptide sequence similarity as glycosyl hydrolases (cellobiohydrolases) of families 7 and 6. Adsorption of the GH7 enzyme PpCBH1 on cellulose and lignins was studied showing that the lignin adsorption of the enzyme is temperature and pH dependent. The ppcbh1 coding sequence was obtained using PCR cloning and the translated amino acid sequence of PpCBH1 showed up to 82% amino acid sequence identity to known Penicillium cellobiohydrolases.

  1. Fungal treatment of lignocellulosic biomass: Importance of fungal species, colonization and time on chemical composition and in vitro rumen degradability

    NARCIS (Netherlands)

    Kuijk, van S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W.

    2015-01-01

    The aim of this study is to evaluate fungal treatments to improve in vitro rumen degradability of lignocellulosic biomass. In this study four selective lignin degrading fungi, Ganoderma lucidum, Lentinula edodes, Pleurotus eryngii and Pleurotus ostreatus, were used to pre-treat lignocellulosic bioma

  2. Fungal treatment of lignocellulosic biomass: Importance of fungal species, colonization and time on chemical composition and in vitro rumen degradability

    NARCIS (Netherlands)

    Kuijk, van S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W.

    2015-01-01

    The aim of this study is to evaluate fungal treatments to improve in vitro rumen degradability of lignocellulosic biomass. In this study four selective lignin degrading fungi, Ganoderma lucidum, Lentinula edodes, Pleurotus eryngii and Pleurotus ostreatus, were used to pre-treat lignocellulosic

  3. By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for (bio)chemicals and fuels

    NARCIS (Netherlands)

    Pol, van der E.C.; Bakker, R.R.; Baets, P.; Eggink, G.

    2014-01-01

    Lignocellulose might become an important feedstock for the future development of the biobased economy. Although up to 75 % of the lignocellulose dry weight consists of sugar, it is present in a polymerized state and cannot be used directly in most fermentation processes for the production of chemica

  4. Synchrotron-based X-ray fluorescence microscopy enables multiscale spatial visualization of ions involved in fungal lignocellulose deconstruction

    Science.gov (United States)

    Grant T. Kirker; Samuel Zelinka; Sophie-Charlotte Gleber; David Vine; Lydia Finney; Si Chen; Young Pyo Hong; Omar Uyarte; Stefan Vogt; Jody Jellison; Barry Goodell; Joseph E. Jakes

    2017-01-01

    The role of ions in the fungal decay process of lignocellulose biomaterials, and more broadly fungal metabolism, has implications for diverse research disciplines ranging from plant pathology and forest ecology, to carbon sequestration. Despite the importance of ions in fungal decay mechanisms, the spatial distribution and quantification of ions in lignocellulosic cell...

  5. The conversion of lignocellulosics to fermentable sugars: A survey of current research and application to CELSS

    Science.gov (United States)

    Petersen, Gene R.; Baresi, Larry

    1990-01-01

    An overview of the options for converting lignocellulosics into fermentable sugars as applied to the Closed Ecological Life Support System (CELSS) is given. A requirement for pretreatment is shown as well as the many available options. At present, physical/chemical methods are the simplest and best characterized options, but enzymatic processes will likely be the method of choice in the future. The use of pentose sugars by microorganisms to produce edibles at levels comparable to conventional plants is shown. The possible use of mycelial food production on pretreated but not hydrolyzed lignocelluloscis is also presented. Simple tradeoff analysis among some of the many possible biological pathways to regeneration of waste lignocellulosics was undertaken. Comparisons with complete oxidation processes were made. It is suggested that the NASA Life Sciences CELSS program maintain relationships with other government agencies involved in lignocellulosic conversions and use their expertise when the actual need for such conversion technology arises rather than develop this expertise within NASA.

  6. Factors governing dissolution process of lignocellulosic biomass in ionic liquid: current status, overview and challenges.

    Science.gov (United States)

    Badgujar, Kirtikumar C; Bhanage, Bhalchandra M

    2015-02-01

    The utilisation of non-feed lignocellulosic biomass as a source of renewable bio-energy and synthesis of fine chemical products is necessary for the sustainable development. The methods for the dissolution of lignocellulosic biomass in conventional solvents are complex and tedious due to the complex chemical ultra-structure of biomass. In view of this, recent developments for the use of ionic liquid solvent (IL) has received great attention, as ILs can solubilise such complex biomass and thus provides industrial scale-up potential. In this review, we have discussed the state-of-art for the dissolution of lignocellulosic material in representative ILs. Furthermore, various process parameters and their influence for biomass dissolution were reviewed. In addition to this, overview of challenges and opportunities related to this interesting area is presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy.

    Science.gov (United States)

    Liguori, Rossana; Faraco, Vincenza

    2016-09-01

    The actualization of a circular economy through the use of lignocellulosic wastes as renewable resources can lead to reduce the dependence from fossil-based resources and contribute to a sustainable waste management. The integrated biorefineries, exploiting the overall lignocellulosic waste components to generate fuels, chemicals and energy, are the pillar of the circular economy. The biological treatment is receiving great attention for the biorefinery development since it is considered an eco-friendly alternative to the physico-chemical strategies to increase the biobased product recovery from wastes and improve saccharification and fermentation yields. This paper reviews the last advances in the biological treatments aimed at upgrading lignocellulosic wastes, implementing the biorefinery concept and advocating circular economy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    Science.gov (United States)

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad

    2016-02-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms.

  9. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review.

    Science.gov (United States)

    Singh, Joginder; Suhag, Meenakshi; Dhaka, Anil

    2015-03-06

    Lignocellulosic materials can be explored as one of the sustainable substrates for bioethanol production through microbial intervention as they are abundant, cheap and renewable. But at the same time, their recalcitrant structure makes the conversion process more cumbersome owing to their chemical composition which adversely affects the efficiency of bioethanol production. Therefore, the technical approaches to overcome recalcitrance of biomass feedstock has been developed to remove the barriers with the help of pretreatment methods which make cellulose more accessible to the hydrolytic enzymes, secreted by the microorganisms, for its conversion to glucose. Pretreatment of lignocellulosic biomass in cost effective manner is a major challenge to bioethanol technology research and development. Hence, in this review, we have discussed various aspects of three commonly used pretreatment methods, viz., steam explosion, acid and alkaline, applied on various lignocellulosic biomasses to augment their digestibility alongwith the challenges associated with their processing.

  10. The Challenge of Efficient Synthesis of Biofuels from Lignocellulose for Future Renewable Transportation Fuels

    Directory of Open Access Journals (Sweden)

    Päivi Mäki-Arvela

    2012-01-01

    Full Text Available Dehydration of sugars to 5-hydroxymethylfurfural (HMF has recently been under intensive study by a multitude of research groups. On the other hand, when lignocellulosic biomass is applied as the starting material, very few studies can be found in the open literature. The direct synthesis of HMF, in line with the idea of “one-pot” synthesis strategy from lignocellulose, is demanding since the overall process should encompass dissolution, hydrolysis, and dehydration steps in a single processing unit. Ionic liquid-assisted methods to produce hydroxymethyl-furfural directly from lignocellulosic biomass are reported here together with a short overview of the most important biofuels. In reality, HMF is not suitable to be used as a single-component fuel as such, and, consequently, methods to produce HMF derivatives suitable as liquid fuels are reported.

  11. Technoeconomic analysis of biofuels: A wiki-based platform for lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Klein-Marcuschamer, Daniel; Oleskowicz-Popiel, Piotr; Simmons, Blake A.

    2010-01-01

    We present a process model for a lignocellulosic ethanol biorefinery that is open to the biofuels academic community. Beyond providing a series of static results, the wiki-based platform provides a dynamic and transparent tool for analyzing, exploring, and communicating the impact of process...... advances and alternatives for biofuels production. The model is available for download (at http://econ.jbei.org) and will be updated based on feedback from the community of experts in biofuel-related fields. By making the assumptions and performance metrics of this model transparent, we anticipate...... this tool can provide a consensus on the energy-related, environmental, and economic performance of lignocellulosic ethanol....

  12. Pretreatment of Lignocellulosic Biomass with Ionic Liquids and Ionic Liquid-Based Solvent Systems.

    Science.gov (United States)

    Hou, Qidong; Ju, Meiting; Li, Weizun; Liu, Le; Chen, Yu; Yang, Qian

    2017-03-20

    Pretreatment is very important for the efficient production of value-added products from lignocellulosic biomass. However, traditional pretreatment methods have several disadvantages, including low efficiency and high pollution. This article gives an overview on the applications of ionic liquids (ILs) and IL-based solvent systems in the pretreatment of lignocellulosic biomass. It is divided into three parts: the first deals with the dissolution of biomass in ILs and IL-based solvent systems; the second focuses on the fractionation of biomass using ILs and IL-based solvent systems as solvents; the third emphasizes the enzymatic saccharification of biomass after pretreatment with ILs and IL-based solvent systems.

  13. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik; Clausen, Lasse Røngaard

    2014-01-01

    production. An exergy analysis is carried out for a modelled polygeneration system in which lignocellulosic ethanol production based on hydrothermal pretreatment is integrated in an existing combined heat and power (CHP) plant. The ethanol facility is driven by steam extracted from the CHP unit when feasible...... district heating production in the ethanol facility. The results suggest that the efficiency of integrating lignocellulosic ethanol production in CHP plants is highly dependent on operation, and it is therefore suggested that the expected operation pattern of such polygeneration system is taken...

  14. Bioethanol - Status report on bioethanol production from wood and other lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Scott-Kerr, Chris; Johnson, Tony; Johnson, Barbara; Kiviaho, Jukka

    2010-09-15

    Lignocellulosic biomass is seen as an attractive feedstock for future supplies of renewable fuels, reducing the dependence on imported petroleum. However, there are technical and economic impediments to the development of commercial processes that utilise biomass feedstocks for the production of liquid fuels such as ethanol. Significant investment into research, pilot and demonstration plants is on-going to develop commercially viable processes utilising the biochemical and thermochemical conversion technologies for ethanol. This paper reviews the current status of commercial lignocellulosic ethanol production and identifies global production facilities.

  15. SIMULTANEOUS PRETREATMENT OF LIGNOCELLULOSE AND HYDROLYSIS OF STARCH IN MIXTURES TO SUGARS

    OpenAIRE

    2010-01-01

    Mixtures of starch and lignocelluloses are available in many industrial, agricultural, and municipal wastes and residuals. In this work, dilute sulfuric acid was used for simultaneous pretreatment of lignocellulose and hydrolysis of starch, to obtain a maximum amount of fermentable sugar after enzymatic hydrolysis with cellulase and β-glucosidase. The acid treatment was carried out at 70-150°C with 0-1% (v/v) acid concentration and 5-15% (w/v) solids concentration for 0-40 minutes. Under the ...

  16. Functional Genomics of Lignocellulose Degradation in the Basidiomycete White Rot Schizophyllum commune

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin A. [Joint Genome Inst., Walnut Creek, CA (United States); Tegelaar, Martin [Utrecht Univ. (Netherlands); Henrissat, Bernard [Univ. of Marseille (France); Brewer, Heather M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Purvine, Samuel O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baker, Scott [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wosten, Han A. B. [Utrecht Univ. (Netherlands); Grigoriev, Igor V. [Joint Genome Inst., Walnut Creek, CA (United States); Lugones, Luis G. [Utrecht Univ. (Netherlands)

    2013-03-01

    White and brown rot fungi are among the most important wood decayers in nature. Although more than 50 genomes of Basidiomycete white and brown rots have been sequenced by the Joint Genome Institute, there is still a lot to learn about how these fungi degrade the tough polymers present in wood. In particular, very little is known about how these fungi regulate the expression of genes involved in lignocellulose degradation. Here, we used transcriptomics, proteomics, and promoter analysis in an effort to gain insight into the process of lignocellulose degradation.

  17. Exascale Workshop Panel Report Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, Mohammad A.

    2010-07-01

    The Exascale Review Panel consists of 12 scientists and engineers with experience in various aspects of high-performance computing and its application, development, and management. The Panel hear presentations by several representatives of the workshops and town meetings convened over the past few years to examine the need for exascale computation capability and the justification for a U.S. Department of Energy (DOE) program to develop such capability. This report summarizes information provided by the presenters and substantial written reports to the Panel in advance of the meeting in Washington D.C. on January 19-20, 2010. The report also summarizes the Panel's conclusions with regard to the justification of a DOE-led exascale initiative.

  18. Evaluation of proposed panel closure modifications at WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Lawrence E.; Silva, Matthew K.; Channell, James K.; Abel, John F.; Morgan, Dudley R.

    2001-12-31

    A key component in the design of the WIPP repository is the installation of concrete structures as panel seals in the intake and exhaust drifts after a panel has been filled with waste containers. As noted in the EPA final rule, the panel seal closure system is intended to block brine flow between the waste panels at the WIPP. On April 17, 2001, the DOE proposed seven modifications to the EPA concerning the design of the panel closure system. EPA approval of these modifications is necessary since the details of the panel design are specified in EPA’s final rule as a condition for WIPP certification. However, the EPA has not determined whether a rulemaking would be required for these proposed design modifications. On September 4, 2001, the DOE withdrew the request, noting that it would be resubmitted on a future date. The Environmental Evaluation Group (EEG) contracted with two engineers, Dr. John Abel and Dr. Rusty Morgan, to evaluate the proposed modifications. The EEG has accepted the conclusions and recommendations from these two experts: 1) replacement of Salado Mass Concrete with a generic salt-based concrete; 2) replacement of the explosion wall with a construction wall; 3) replacement of freshwater grouting with salt-based grouting; 4) option to allow surface or underground mixing; and 5) option to allow up to one year for completion of closure. The proposed modification to allow local carbonate river rock as aggregate is acceptable pending demonstration that no problems will exist in the resulting concrete. The proposed modification to give the contractor discretion in removal of steel forms is not supported. Instead, several recommendations are made to specifically reduce the number of forms left, thereby reducing potential migration pathways.

  19. Autohydrolysis Pretreatment of Lignocellulosic Biomass for Bioethanol Production

    Science.gov (United States)

    Han, Qiang

    Autohydrolysis, a simple and environmental friendly process, has long been studied but often abandoned as a financially viable pretreatment for bioethanol production due to the low yields of fermentable sugars at economic enzyme dosages. The introduction of mechanical refining can generate substantial improvements for autohydrolysis process, making it an attractive pretreatment technology for bioethanol commercialization. In this study, several lignocellulosic biomass including wheat straw, switchgrass, corn stover, waste wheat straw have been subjected to autohydrolysis pretreatment followed by mechanical refining to evaluate the total sugar recovery at affordable enzyme dosages. Encouraging results have been found that using autohydrolysis plus refining strategy, the total sugar recovery of most feedstock can be as high as 76% at 4 FPU/g enzymes dosages. The mechanical refining contributed to the improvement of enzymatic sugar yield by as much as 30%. Three non-woody biomass (sugarcane bagasse, wheat straw, and switchgrass) and three woody biomass (maple, sweet gum, and nitens) have been subjected to autohydrolysis pretreatment to acquire a fundamental understanding of biomass characteristics that affect the autohydrolysis and the following enzymatic hydrolysis. It is of interest to note that the nonwoody biomass went through substantial delignification during autohydrolysis compared to woody biomass due to a significant amount of p-coumaric acid and ferulic acid. It has been found that hardwood which has a higher S/V ratio in the lignin structure tends to have a higher total sugar recovery from autohydrolysis pretreatment. The economics of bioethanol production from autohydrolysis of different feedstocks have been investigated. Regardless of different feedstocks, in the conventional design, producing bioethanol and co-producing steam and power, the minimum ethanol revenues (MER) required to generate a 12% internal rate of return (IRR) are high enough to

  20. Energy Opportunities from Lignocellulosic Biomass for a Biorefinery Case Study

    Directory of Open Access Journals (Sweden)

    Franco Cotana

    2016-09-01

    Full Text Available This work presents some energy considerations concerning a biorefinery case study that has been carried out by the CRB/CIRIAF of the University of Perugia. The biorefinery is the case study of the BIT3G project, a national funded research project, and it uses the lignocellulosic biomass that is available in the territory as input materials for biochemical purposes, such as cardoon and carthamus. The whole plant is composed of several sections: the cardoon and carthamus seed milling, the oil refinement facilities, and the production section of some high quality biochemicals, i.e., bio-oils and fatty acids. The main goal of the research is to demonstrate energy autonomy of the latter section of the biorefinery, while only recovering energy from the residues resulting from the collection of the biomass. To this aim, this work presents the quantification of the energy requirements to be supplied to the considered biorefinery section, the mass flow, and the energy and chemical characterization of the biomass. Afterwards, some sustainability strategies have been qualitatively investigated in order to identify the best one to be used in this case study; the combined heat and power (CHP technology. Two scenarios have been defined and presented: the first with 6 MWt thermal input and 1.2 MWe electrical power as an output and the second with 9 MWt thermal input and 1.8 MWe electrical power as an output. The first scenario showed that 11,000 tons of residual biomass could ensure the annual production of about 34,000 MWht, equal to about the 72% of the requirements, and about 9600 MWhe, equal to approximately 60% of the electricity demand. The second scenario showed that 18,000 tons of the residual biomass could ensure the total annual production of about 56,000 MWht, corresponding to more than 100% of the requirements, and about 14,400 MWhe, equal to approximately 90% of the electricity demand. In addition, the CO2 emissions from the energy valorization

  1. Reminder - Equal Opportunities Advisory Panel

    CERN Multimedia

    HR Department

    2007-01-01

    At its meeting on 7 December 2006, the Standing Concertation Committee also took note of the nomination of a fourth new member of the Panel: Wisla Carena. The present composition of the Panel (appointed ad personam) is now as follows: Tiziano Camporesi (Chairperson), Wisla Carena, Pierre Charrue, Sue Foffano, Josi Schinzel (Equal Opportunities Officer), Markus Nordberg, Christine Petit-Jean-Genaz and Elena Wildner. Human Resources Department Tel. 74480

  2. Solar assisted alkali pretreatment of garden biomass: Effects on lignocellulose degradation, enzymatic hydrolysis, crystallinity and ultra-structural changes in lignocellulose

    Energy Technology Data Exchange (ETDEWEB)

    Gabhane, Jagdish [Solid and Hazardous Waste Management Division, National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra (India); William, S.P.M. Prince, E-mail: spmp_william@neeri.res.in [Solid and Hazardous Waste Management Division, National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra (India); Vaidya, Atul N. [Solid and Hazardous Waste Management Division, National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra (India); Das, Sera [Analytical Instrumentation Division, National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra (India); Wate, Satish R. [Solid and Hazardous Waste Management Division, National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra (India)

    2015-06-15

    Highlights: • SAAP is an efficient and economic means of pretreatment. • SAAP was found to be efficient in lignin and hemicellulose removal. • SAAP enhanced the enzymatic hydrolysis. • FTIR, XRD and SEM provided vivid understanding about the mode of action of SAAP. • Mass balance closer of 98% for pretreated GB confirmed the reliability of SAAP. - Abstract: A comprehensive study was carried out to assess the effectiveness of solar assisted alkali pretreatment (SAAP) on garden biomass (GB). The pretreatment efficiency was assessed based on lignocellulose degradation, conversion of cellulose into reducing sugars, changes in the ultra-structure and functional groups of lignocellulose and impact on the crystallinity of cellulose, etc. SAAP was found to be efficient for the removal of lignin and hemicellulose that facilitated enzymatic hydrolysis of cellulose. FTIR and XRD studies provided details on the effectiveness of SAAP on lignocellulosic moiety and crystallinity of cellulose. Scanning electron microscopic analysis showed ultra-structural disturbances in the microfibrils of GB as a result of pretreatment. The mass balance closer of 97.87% after pretreatment confirmed the reliability of SAAP pretreatment. Based on the results, it is concluded that SAAP is not only an efficient means of pretreatment but also economical as it involved no energy expenditure for heat generation during pretreatment.

  3. Vacuum insulation panels for building applications: A review and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Baetens, Ruben [Department of Building Materials and Structures, SINTEF Building and Infrastructure, NO-7465 Trondheim (Norway); Department of Civil and Transport Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Laboratory of Building Physics, Department of Civil Engineering, Catholic University of Leuven (KUL), BE-3001 Heverlee (Belgium); Jelle, Bjoern Petter [Department of Building Materials and Structures, SINTEF Building and Infrastructure, NO-7465 Trondheim (Norway); Department of Civil and Transport Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Thue, Jan Vincent [Department of Civil and Transport Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Tenpierik, Martin J. [Faculty of Architecture, Urbanism and Building Sciences, Delft University of Technology, Julianalaan 134, 2628 BL Delft (Netherlands); Grynning, Steinar; Uvsloekk, Sivert [Department of Building Materials and Structures, SINTEF Building and Infrastructure, NO-7465 Trondheim (Norway); Gustavsen, Arild [Department of Architectural Design, History and Technology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway)

    2010-02-15

    Vacuum insulation panels (VIPs) are regarded as one of the most promising high performance thermal insulation solutions on the market today. Thermal performances three to six times better than still-air are achieved by applying a vacuum to an encapsulated micro-porous material, resulting in a great potential for combining the reduction of energy consumption in buildings with slim constructions. However, thermal bridging due to the panel envelope and degradation of thermal performance through time occurs with current technology. Furthermore, VIPs cannot be cut on site and the panels are fragile towards damaging. These effects have to be taken into account for building applications as they may diminish the overall usability and thermal performance. This paper is as far as the authors know the first comprehensive review on VIPs. Properties, requirements and possibilities of foil encapsulated VIPs for building applications are studied based on available literature, emphasizing thermal bridging and degradation through time. An extension is made towards gas-filled panels and aerogels, showing that other high performance thermal insulation solutions do exist. Combining the technology of these solutions and others may lead to a new leap forward. Feasible paths beyond VIPs are investigated and possibilities such as vacuum insulation materials (VIMs) and nano insulation materials (NIMs) are proposed. (author)

  4. Experimental and Numerical Research of the Thermal Properties of a PCM Window Panel

    Directory of Open Access Journals (Sweden)

    Martin Koláček

    2017-07-01

    Full Text Available This paper reports the experimental and simulation analysis of a window system incorporating Phase Change Materials (PCMs. In this study, the latent heat storage material is exploited to increase the thermal mass of the building component. A PCM-filled window can increase the possibilities of storage energy from solar radiation and reduce the heating cooling demand. The presented measurements were performed on a specific window panel that integrates a PCM. The PCM window panel consists of four panes of safety glass with three gaps, of which the first one contains a prismatic glass, the second a krypton gas, and the last one a PCM. New PCM window panel technology uses the placement of the PCM in the whole space of the window cavity. This technology improves the thermal performance and storage mass of the window panel. The results show the incongruent melting of salt hydrates and the high thermal inertia of the PCM window panel. The simulation data showed that the PCM window panel and the double glazing panel markedly reduced the peak temperature on the interior surface, reduced the air temperature inside the room, and also considerably improved the thermal mass of the building. This means that the heat energy entering the building through the panel is reduced by 66% in the summer cycle.

  5. Filling of carbon nanotubes and nanofibres

    Directory of Open Access Journals (Sweden)

    Reece D. Gately

    2015-02-01

    Full Text Available The reliable production of carbon nanotubes and nanofibres is a relatively new development, and due to their unique structure, there has been much interest in filling their hollow interiors. In this review, we provide an overview of the most common approaches for filling these carbon nanostructures. We highlight that filled carbon nanostructures are an emerging material for biomedical applications.

  6. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review

    Science.gov (United States)

    Taherzadeh, Mohammad J.; Karimi, Keikhosro

    2008-01-01

    Lignocelluloses are often a major or sometimes the sole components of different waste streams from various industries, forestry, agriculture and municipalities. Hydrolysis of these materials is the first step for either digestion to biogas (methane) or fermentation to ethanol. However, enzymatic hydrolysis of lignocelluloses with no pretreatment is usually not so effective because of high stability of the materials to enzymatic or bacterial attacks. The present work is dedicated to reviewing the methods that have been studied for pretreatment of lignocellulosic wastes for conversion to ethanol or biogas. Effective parameters in pretreatment of lignocelluloses, such as crystallinity, accessible surface area, and protection by lignin and hemicellulose are described first. Then, several pretreatment methods are discussed and their effects on improvement in ethanol and/or biogas production are described. They include milling, irradiation, microwave, steam explosion, ammonia fiber explosion (AFEX), supercritical CO2 and its explosion, alkaline hydrolysis, liquid hot-water pretreatment, organosolv processes, wet oxidation, ozonolysis, dilute-and concentrated-acid hydrolyses, and biological pretreatments. PMID:19325822

  7. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Fernandes, T.; Klaasse Bos, G.J.; Zeeman, G.; Sanders, J.P.M.; Lier, van J.B.

    2009-01-01

    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After pre-

  8. Continuous recycling of enzymes during production of lignocellulosic bioethanol in demonstration scale

    DEFF Research Database (Denmark)

    Haven, Mai Østergaard; Lindedam, Jane; Jeppesen, Martin D.;

    2015-01-01

    Recycling of enzymes in production of lignocellulosic bioethanol has been tried for more than 30 years. So far, the successes have been few and the experiments have been carried out at conditions far from those in an industrially feasible process. Here we have tested continuous enzyme recycling a...

  9. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment

    Science.gov (United States)

    Shishir P. S. Chundawat; Bryon S. Donohoe; Leonardo da Costa Sousa; Thomas Elder; Umesh P. Agarwal; Fachuang Lu; John Ralph; Michael E. Himmel; Venkatesh Balan; Bruce E. Dale

    2011-01-01

    Deconstruction of lignocellulosic plant cell walls to fermentable sugars by thermochemical and/or biological means is impeded by several poorly understood ultrastructural and chemical barriers. A promising thermochemical pretreatment called ammonia fiber expansion (AFEX) overcomes the native recalcitrance of cell walls through subtle morphological and physicochemical...

  10. Microbial degradation of lignocellulosic fractions during drum composting of mixed organic waste

    Directory of Open Access Journals (Sweden)

    Vempalli Sudharsan Varma

    2017-11-01

    Full Text Available The study aimed to characterize the microbial population involved in lignocellulose degradation during drum composting of mixed organic waste i.e. vegetable waste, cattle manure, saw dust and dry leaves in a 550 L rotary drum composter. Lignocellulose degradation by different microbial populations was correlated by comparing results from four trials, i.e., Trial 1 (5:4, Trial 2 (6:3, Trial 3 (7:2 and Trial 4 (8:1 of varying waste combinations during 20 days of composting period. Due to proper combination of waste materials and agitation in drum composter, a maximum of 66.5 and 61.4 °C was achieved in Trial 1 and 2 by observing a temperature level of 55 °C for 4–6 d. The study revealed that combinations of waste materials had a major effect on the microbial degradation of waste material and quality of final compost due to its physical properties. However, Trial 1 was observed to have longer thermophilic phase leading to higher degradation of lignocellulosic fractions. Furthermore, Fourier transform infrared spectrometer and fluorescent spectroscopy confirmed the decrease in aliphatic to aromatic ratio and increase in polyphenolic compounds of the compost. Heterotrophic bacteria were observed predominantly due to the readily available organic matter during the initial period of composting. However, fungi and actinomycetes were active in the degradation of lignocellulosic fractions.

  11. Pre-treatment of ligno-cellulose with biological acid recycling (the Biosulfurol process)

    NARCIS (Netherlands)

    Groenestijn, van J.W.; Hazewinkel, J.H.O.; Bakker, R.R.

    2008-01-01

    A biomass pretreatment process is being developed based on contacting ligno-cellulosic biomass with 70% sulphuric acid and subsequent hydrolysis by adding water. In this process, the hydrolysate can be fermented yielding ethanol, while the sulphuric acid is partly recovered by anion-selective membra

  12. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Christian; Farwick, Alexander; Benisch, Feline; Brat, Dawid; Dietz, Heiko; Subtil, Thorsten; Boles, Eckhard [Frankfurt Univ., Frankfurt am Main (Germany). Inst. of Molecular Biosciences

    2010-07-15

    Bioalcohols produced by microorganisms from renewable materials are promising substitutes for traditional fuels derived from fossil sources. For several years already ethanol is produced in large amounts from feedstocks such as cereals or sugar cane and used as a blend for gasoline or even as a pure biofuel. However, alcohols with longer carbon chains like butanol have even more suitable properties and would better fit with the current fuel distribution infrastructure. Moreover, ethical concerns contradict the use of food and feed products as a biofuel source. Lignocellulosic biomass, especially when considered as a waste material offers an attractive alternative. However, the recalcitrance of these materials and the inability of microorganisms to efficiently ferment lignocellulosic hydrolysates still prevent the production of bioalcohols from these plentiful sources. Obviously, no known organism exist which combines all the properties necessary to be a sustainable bioalcohol producer. Therefore, breeding technologies, genetic engineering and the search for undiscovered species are promising means to provide a microorganism exhibiting high alcohol productivities and yields, converting all lignocellulosic sugars or are even able to use carbon dioxide or monoxide, and thereby being highly resistant to inhibitors and fermentation products, and easy to cultivate in huge bioreactors. In this review, we compare the properties of various microorganisms, bacteria and yeasts, as well as current research efforts to develop a reliable lignocellulosic bioalcohol producing organism. (orig.)

  13. The Chemistry and Technology of Furfural Production in Modern Lignocellulose-Feedstock Biorefineries

    NARCIS (Netherlands)

    Marcotullio, G.

    2011-01-01

    This dissertation deals with biorefinery technology development, i.e. with the development of sustainable industrial methods aimed at the production of chemicals, fuels, heat and power from lignocellulosic biomass. This work is particularly focused on the production of furfural from hemicellulose-de

  14. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-05-02

    The U.S. Department of Energy (DOE) promotes the production of ethanol and other liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in the program, the National Renewable Energy Laboratory (NREL) investigates the production economics of these fuels.

  15. Statistical prediction of biomethane potentials based on the composition of lignocellulosic biomass

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe; Spliid, Henrik; Østergård, Hanne

    2014-01-01

    Mixture models are introduced as a new and stronger methodology for statistical prediction of biomethane potentials (BPM) from lignocellulosic biomass compared to the linear regression models previously used. A large dataset from literature combined with our own data were analysed using canonical...

  16. Microelectric Current Treatment Enhanced Biodegradation of Pumpkin Lignocelluloses by Trichoderma reesei RUT-C30.

    Science.gov (United States)

    Yang, Rui; Liu, Yuqian; Zhou, Zhongkai; Sheng, Jiping; Meng, Demei

    2017-06-14

    A homemade microcurrent reactor was used to treat the fermentation of Trichoderma reesei. Results indicated that the yield of saccharides for T. reesei RUT-C30 cultivated in pumpkin lignocellulose broth reaches 38.86% (w/w) when a microcurrent treatment (20 mA, at the 48th hour for 60 min) was carried out, which is significantly higher than the control group (p < 0.05). Additionally, activities of endoglucanase, cellobiohydrolase, xylanase, and pectinase were significantly increased in days 3-7. Furthermore, the fungal growth was facilitated by microelectric treatment, showing a 0.57-fold increase of spore numbers at the sixth day of cultivation. Besides, the monosaccharide composition, including glucose (1.03 mg/mL), xylose (0.12 mg/mL), arabinose (0.31 mg/mL), and fructose (0.13 mg/mL), extracted from the reactor was higher than that without the current treatment. In this work, we improved the biodegradation of lignocellulosic wastes by applying a microcurrent to lignocellulose-degrading fungal cultures and provided a new idea for the lignocellulose material pretreatment and bioconversion.

  17. Bio-Product Recovery from Lignocellulosic Materials Derived from Poultry Manure

    Science.gov (United States)

    Champagne, Pascale; Li, Caijian

    2008-01-01

    This study examines the hydrolysis of lignocellulose extracted from poultry manure for the purpose of investigating low-cost feedstocks for ethanol production while providing an alternative solid waste management strategy for agricultural livestock manures. Poultry manure underwent various pretreatments to enhance subsequent enzymatic hydrolysis…

  18. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Fernandes, T.; Klaasse Bos, G.J.; Zeeman, G.; Sanders, J.P.M.; Lier, van J.B.

    2009-01-01

    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After

  19. Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    McAloon, Andrew [U.S. Department of Agriculture, Washington D.C. (United States); Taylor, Frank [U.S. Department of Agriculture, Washington D.C. (United States); Yee, Winnie [U.S. Department of Agriculture, Washington D.C. (United States); Ibsen, Kelly [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wooley, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2000-10-01

    This report describes the comparison of the processes, each producing 25 million annual gallons of fuel ethanol. This paper attempts to compare the two processes as mature technologies, which requires assuming that the technology improvements needed to make the lignocellulosic process commercializable are achieved, and enough plants have been built to make the design well-understood.

  20. Development of a lactic acid production process using lignocellulosic biomass as feedstock

    NARCIS (Netherlands)

    Pol, van der E.C.

    2016-01-01

    The availability of crude oil is finite. Therefore, an alternative feedstock has to be found for the production of fuels and plastics. Lignocellulose is such an alternative feedstock. It is present in large quantities in agricultural waste material such as sugarcane bagasse. In this PhD thesis, lign

  1. The Effect of Aqueous Ammonia Soaking Pretreatment on Methane Generation Using Different Lignocellulosic Biomasses

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Gavala, Hariklia N.; Skiadas, Ioannis

    2015-01-01

    In the present study aqueous ammonia soaking (AAS) has been tested as a pretreatment method for the anaerobic digestion of three lignocellulosic biomasses of different origin: one agricultural residue: sunflower straw, one perennial crop: grass and a hardwood: poplar sawdust.The methane productio...

  2. The effect of aqueous ammonia soaking pretreatment on methane generation uing different lignocellulosic feedstocks

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Jonuzaj, Suela; Gavala, Hariklia N.

    2014-01-01

    Lignocellulosic biomass including agricultural and forestry residues, perennial crops, softwoods and hardwoods, can be used as feedstock for methane production. Although being abundant and almost zero cost feedstocks, the main obstacles of their use are the low efficiencies and yields attained, due...

  3. Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of 'Biofuel'.

    Science.gov (United States)

    Chandel, Anuj K; Singh, Om V

    2011-03-01

    Lignocellulosic materials are the most abundant renewable organic resources (~200 billion tons annually) on earth that are readily available for conversion to ethanol and other value-added products, but they have not yet been tapped for the commercial production of fuel ethanol. The lignocellulosic substrates include woody substrates such as hardwood (birch and aspen, etc.) and softwood (spruce and pine, etc.), agro residues (wheat straw, sugarcane bagasse, corn stover, etc.), dedicated energy crops (switch grass, and Miscanthus etc.), weedy materials (Eicchornia crassipes, Lantana camara etc.), and municipal solid waste (food and kitchen waste, etc.). Despite the success achieved in the laboratory, there are limitations to success with lignocellulosic substrates on a commercial scale. The future of lignocellulosics is expected to lie in improvements of plant biomass, metabolic engineering of ethanol, and cellulolytic enzyme-producing microorganisms, fullest exploitation of weed materials, and process integration of the individual steps involved in bioethanol production. Issues related to the chemical composition of various weedy raw substrates for bioethanol formation, including chemical composition-based structural hydrolysis of the substrate, need special attention. This area could be opened up further by exploring genetically modified metabolic engineering routes in weedy materials and in biocatalysts that would make the production of bioethanol more efficient.

  4. Shorten fungal treatment of lignocellulosic waste with additives to improve rumen degradability

    NARCIS (Netherlands)

    Kuijk, van S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W.

    2014-01-01

    Selective lignin degrading fungi can be used as pre-treatment to make cellulose in plant cell walls accessible for rumen microbes. According to previous studies, Ceriporiopsis subvermispora and Lentinula edodes can increase the in vitro rumen degradability of lignocellulosic biomass in 7 to 8 weeks.

  5. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass

    OpenAIRE

    Harmsen, P.F.H.; Huijgen, W.; Bermudez, L.; Bakker, R.

    2010-01-01

    Different pretreatment technologies published in public literature are described in terms of the mechanisms involved, advantages and disadvantages, and economic assessment. Pretreatment technologies for lignocellulosic biomass include biological, mechanical, chemical methods and various combinations thereof. The choice of the optimum pretreatment process depends very much on the objective of the biomass pretreatment, its economic assessment and environmental impact. Only a small number of pre...

  6. Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining

    Science.gov (United States)

    J.Y. Zhu; X.S. Zhuang

    2012-01-01

    There is a lack of comprehensive information in the retrievable literature on pilot scale process and energy data using promising process technologies and commercially scalable and available capital equipment for lignocellulosic biomass biorefining. This study conducted a comprehensive review of the energy efficiency of selected sugar platform biorefinery process...

  7. Biotransformation of lignocellulosic materials into value-added products-A review.

    Science.gov (United States)

    Bilal, Muhammad; Asgher, Muhammad; Iqbal, Hafiz M N; Hu, Hongbo; Zhang, Xuehong

    2017-02-03

    In the past decade, with the key biotechnological advancements, lignocellulosic materials have gained a particular importance. In serious consideration of global economic, environmental and energy issues, research scientists have been re-directing their interests in (re)-valorizing naturally occurring lignocellulosic-based materials. In this context, lignin-modifying enzymes (LMEs) have gained considerable attention in numerous industrial and biotechnological processes. However, their lower catalytic efficiencies and operational stabilities limit their practical and multipurpose applications in various sectors. Therefore, to expand the range of natural industrial biocatalysts e.g. LMEs, significant progress related to the enzyme biotechnology has appeared. Owing to the abundant lignocellulose availability along with LMEs in combination with the scientific advances in the biotechnological era, solid-phase biocatalysts can be economically tailored on a large scale. This review article outlines first briefly on the lignocellulose materials as a potential source for biotransformation into value-added products including composites, fine chemicals, nutraceutical, delignification, and enzymes. Comprehensive information is also given on the purification and characterization of LMEs to present their potential for the industrial and biotechnological sector.

  8. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review

    Directory of Open Access Journals (Sweden)

    Keikhosro Karimi

    2008-09-01

    Full Text Available Lignocelluloses are often a major or sometimes the sole components of different waste streams from various industries, forestry, agriculture and municipalities. Hydrolysis of these materials is the first step for either digestion to biogas (methane or fermentation to ethanol. However, enzymatic hydrolysis of lignocelluloses with no pretreatment is usually not so effective because of high stability of the materials to enzymatic or bacterial attacks. The present work is dedicated to reviewing the methods that have been studied for pretreatment of lignocellulosic wastes for conversion to ethanol or biogas. Effective parameters in pretreatment of lignocelluloses, such as crystallinity, accessible surface area, and protection by lignin and hemicellulose are described first. Then, several pretreatment methods are discussed and their effects on improvement in ethanol and/or biogas production are described. They include milling, irradiation, microwave, steam explosion, ammonia fiber explosion (AFEX, supercritical CO2 and its explosion, alkaline hydrolysis, liquid hot-water pretreatment, organosolv processes, wet oxidation, ozonolysis, dilute- and concentrated-acid hydrolyses, and biological pretreatments.

  9. Unraveling substrate dynamics and identifying inhibitors in hydrolysates of lignocellulosic biomass by exometabolomics

    NARCIS (Netherlands)

    Zha, Ying

    2013-01-01

    Lignocellulosic biomass is the 2nd generation feedstock for biofuel production through fermentation processes. The material has a rigid structure, which needs to be broken down by a pretreatment procedure to expose cellulose for hydrolysis. The hydrolysis products, so called biomass hydrolysates,

  10. Exometabolomics Approaches in Studying the Application of Lignocellulosic Biomass as Fermentation Feedstock

    NARCIS (Netherlands)

    Zha, Y.; Punt, P.J.

    2013-01-01

    Lignocellulosic biomass is the future feedstock for the production of biofuel and bio-based chemicals. The pretreatment-hydrolysis product of biomass, so-called hydrolysate, contains not only fermentable sugars, but also compounds that inhibit its fermentability by microbes. To reduce the toxicity o

  11. Bio-Product Recovery from Lignocellulosic Materials Derived from Poultry Manure

    Science.gov (United States)

    Champagne, Pascale; Li, Caijian

    2008-01-01

    This study examines the hydrolysis of lignocellulose extracted from poultry manure for the purpose of investigating low-cost feedstocks for ethanol production while providing an alternative solid waste management strategy for agricultural livestock manures. Poultry manure underwent various pretreatments to enhance subsequent enzymatic hydrolysis…

  12. Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion

    NARCIS (Netherlands)

    Jiménez Avella, Diego; Korenblum, Elisa; van Elsas, Jan Dirk

    2014-01-01

    To develop a targeted metagenomics approach for the analysis of novel multispecies microbial consortia involved in the bioconversion of lignocellulose and furanic compounds, we applied replicated sequential batch aerobic enrichment cultures with either pretreated or untreated wheat straw as the sour

  13. Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses

    Directory of Open Access Journals (Sweden)

    Wang ZJ

    2013-01-01

    Full Text Available Abstract Background Nonspecific (nonproductive binding (adsorption of cellulase by lignin has been identified as a key barrier to reduce cellulase loading for economical sugar and biofuel production from lignocellulosic biomass. Sulfite Pretreatment to Overcome Recalcitrance of Lignocelluloses (SPORL is a relatively new process, but demonstrated robust performance for sugar and biofuel production from woody biomass especially softwoods in terms of yields and energy efficiencies. This study demonstrated the role of lignin sulfonation in enhancing enzymatic saccharification of lignocelluloses – lignosulfonate from SPORL can improve enzymatic hydrolysis of lignocelluloses, contrary to the conventional belief that lignin inhibits enzymatic hydrolysis due to nonspecific binding of cellulase. Results The study found that lignosulfonate from SPORL pretreatment and from a commercial source inhibits enzymatic hydrolysis of pure cellulosic substrates at low concentrations due to nonspecific binding of cellulase. Surprisingly, the reduction in enzymatic saccharification efficiency of a lignocellulosic substrate was fully recovered as the concentrations of these two lignosulfonates increased. We hypothesize that lignosulfonate serves as a surfactant to enhance enzymatic hydrolysis at higher concentrations and that this enhancement offsets its inhibitive effect from nonspecific binding of cellulase, when lignosulfonate is applied to lignocellulosic solid substrates. Lignosulfonate can block nonspecific binding of cellulase by bound lignin on the solid substrates, in the same manner as a nonionic surfactant, to significantly enhance enzymatic saccharification. This enhancement is linearly proportional to the amount of lignosulfonate applied which is very important to practical applications. For a SPORL-pretreated lodgepole pine solid, 90% cellulose saccharification was achieved at cellulase loading of 13 FPU/g glucan with the application of its

  14. Easy Attachment Of Panels To A Truss

    Science.gov (United States)

    Thomson, Mark; Gralewski, Mark

    1992-01-01

    Conceptual antenna dish, solar collector, or similar structure consists of hexagonal panels supported by truss erected in field. Truss built in increments to maintain access to panel-attachment nodes. Each panel brought toward truss at angle and attached to two nodes. Panel rotated into attachment at third node.

  15. Easy Attachment Of Panels To A Truss

    Science.gov (United States)

    Thomson, Mark; Gralewski, Mark

    1992-01-01

    Conceptual antenna dish, solar collector, or similar structure consists of hexagonal panels supported by truss erected in field. Truss built in increments to maintain access to panel-attachment nodes. Each panel brought toward truss at angle and attached to two nodes. Panel rotated into attachment at third node.

  16. Evaluating the Effect of Dental Filling Material and Filling Depth on the Strength and Deformation of Filled Teeth

    Directory of Open Access Journals (Sweden)

    Seifollah Gholampour

    2016-10-01

    Full Text Available ackground and aim: It is important to evaluate the effect of the type of filling material on deformation and strength of tooth after filling and also the effect of filling depth on quality of restoration of a decayed tooth. Material and Methods: The Orthopantomogram (OPG of the first and second molars of a 28-year-old man was made and the teeth were 3D modeled. The stress-deformation analysis was then performed on the models in the three states of normal tooth, tooth filled with amalgam and tooth filled with composite using finite element method under a distributed load of 400N equivalent to chewing force. Two values (1/2 and 1/3 of the tooth height were considered for filling depth in the analyses. Results: The results showed that the normal first molar was exposed to a 7.2% greater risk of dental injuries compared to the normal second molar and also a greater stress is created in it when it is filled with composite. The first molar filled with a composite material is 13.7% weaker than the normal tooth while it is almost as strong as a normal tooth when it is filled with amalgam. The effect of the type of filling material on the strength and deformation of the second molar was trivial. Conclusion: Amalgam is a more proper dental filling material for the first molar although a 16.7% change in drilling depth is needed for tooth preparation. Dental filling material and filling depth have a small effect on the strength and deformation of filled second molars.

  17. Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials

    Directory of Open Access Journals (Sweden)

    Murakami Katsuji

    2009-10-01

    Full Text Available Abstract Background Bioethanol isolated from lignocellulosic biomass represents one of the most promising renewable and carbon neutral alternative liquid fuel sources. Enzymatic saccharification using cellulase has proven to be a useful method in the production of bioethanol. The filamentous fungi Acremonium cellulolyticus and Trichoderma reesei are known to be potential cellulase producers. In this study, we aimed to reveal the advantages and disadvantages of the cellulase enzymes derived from these fungi. Results We compared A. cellulolyticus and T. reesei cellulase activity against the three lignocellulosic materials: eucalyptus, Douglas fir and rice straw. Saccharification analysis using the supernatant from each culture demonstrated that the enzyme mixture derived from A. cellulolyticus exhibited 2-fold and 16-fold increases in Filter Paper enzyme and β-glucosidase specific activities, respectively, compared with that derived from T. reesei. In addition, culture supernatant from A. cellulolyticus produced glucose more rapidly from the lignocellulosic materials. Meanwhile, culture supernatant derived from T. reesei exhibited a 2-fold higher xylan-hydrolyzing activity and produced more xylose from eucalyptus (72% yield and rice straw (43% yield. Although the commercial enzymes Acremonium cellulase (derived from A. cellulolyticus, Meiji Seika Co. demonstrated a slightly lower cellulase specific activity than Accellerase 1000 (derived from T. reesei, Genencor, the glucose yield (over 65% from lignocellulosic materials by Acremonium cellulase was higher than that of Accellerase 1000 (less than 60%. In addition, the mannan-hydrolyzing activity of Acremonium cellulase was 16-fold higher than that of Accellerase 1000, and the conversion of mannan to mannobiose and mannose by Acremonium cellulase was more efficient. Conclusion We investigated the hydrolysis of lignocellulosic materials by cellulase derived from two types of filamentous fungi. We

  18. Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials.

    Science.gov (United States)

    Fujii, Tatsuya; Fang, Xu; Inoue, Hiroyuki; Murakami, Katsuji; Sawayama, Shigeki

    2009-10-01

    Bioethanol isolated from lignocellulosic biomass represents one of the most promising renewable and carbon neutral alternative liquid fuel sources. Enzymatic saccharification using cellulase has proven to be a useful method in the production of bioethanol. The filamentous fungi Acremonium cellulolyticus and Trichoderma reesei are known to be potential cellulase producers. In this study, we aimed to reveal the advantages and disadvantages of the cellulase enzymes derived from these fungi. We compared A. cellulolyticus and T. reesei cellulase activity against the three lignocellulosic materials: eucalyptus, Douglas fir and rice straw. Saccharification analysis using the supernatant from each culture demonstrated that the enzyme mixture derived from A. cellulolyticus exhibited 2-fold and 16-fold increases in Filter Paper enzyme and beta-glucosidase specific activities, respectively, compared with that derived from T. reesei. In addition, culture supernatant from A. cellulolyticus produced glucose more rapidly from the lignocellulosic materials. Meanwhile, culture supernatant derived from T. reesei exhibited a 2-fold higher xylan-hydrolyzing activity and produced more xylose from eucalyptus (72% yield) and rice straw (43% yield). Although the commercial enzymes Acremonium cellulase (derived from A. cellulolyticus, Meiji Seika Co.) demonstrated a slightly lower cellulase specific activity than Accellerase 1000 (derived from T. reesei, Genencor), the glucose yield (over 65%) from lignocellulosic materials by Acremonium cellulase was higher than that of Accellerase 1000 (less than 60%). In addition, the mannan-hydrolyzing activity of Acremonium cellulase was 16-fold higher than that of Accellerase 1000, and the conversion of mannan to mannobiose and mannose by Acremonium cellulase was more efficient. We investigated the hydrolysis of lignocellulosic materials by cellulase derived from two types of filamentous fungi. We found that glucan-hydrolyzing activity of the culture

  19. High temperature structural sandwich panels

    Science.gov (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  20. Calibration of a hysteretic model for glass fiber reinforced gypsum wall panels

    Science.gov (United States)

    Janardhana, Maganti; Robin Davis, P.; Ravichandran, S. S.; Prasad, A. M.; Menon, D.

    2014-06-01

    Glass fiber reinforced gypsum (GFRG) wall panels are prefabricated panels with hollow cores, originally developed in Australia and subsequently adopted by India and China for use in buildings. This paper discusses identification and calibration of a suitable hysteretic model for GFRG wall panels filled with reinforced concrete. As considerable pinching was observed in the experimental results, a suitable hysteretic model with pinched hysteretic rule is used to conduct a series of quasi-static as inelastic hysteretic response analyses of GFRG panels with two different widths. The calibration of the pinching model parameters was carried out to approximately match the simulated and experimental responses up to 80% of the peak load in the post peak region. Interestingly, the same values of various parameters (energy dissipation and pinching related parameters) were obtained for all five test specimens.

  1. The Conservation of Panel paintings

    DEFF Research Database (Denmark)

    Until the early 17th century almost all portable paintings were created on wood supports, including masterpieces by famous painters, ranging from Giotto to Dürer to Rembrandt. The structural conservation of these paintings requires specific knowledge and skills as the supports are susceptible...... to damage caused by unstable environmental conditions. Unfortunately, past structural interventions often caused significant damage due to insufficient knowledge of the behaviour of the wood panels, glue and paint layers. Over the last fifty years, the field has developed treatment strategies based......, it is imperative to strengthen scientific research into the production methods, ageing and future behaviour of panel paintings, being an intricate interplay between different materials. A deeper understanding of the processes that adversely affect panel paintings over time will contribute to the improved care...

  2. Solar Panel based Milk Pasteurization

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Pedersen, Tom Søndergaard

    This paper treats the subject of analysis, design and development of the control system for a solar panel based milk pasteurization system to be used in small villages in Tanzania. The analysis deals with the demands for an acceptable pasteurization, the varying energy supply and the low cost, low...... complexity, simple user interface and high reliability demands. Based on these demands a concept for the pasteurization system is established and a control system is developed. A solar panel has been constructed and the energy absorption has been tested in Tanzania. Based on the test, the pasteurization...... system is dimensioned. A functional prototype of the pasteurization facility with a capacity of 200 l milk/hour has been developed and tested. The system is prepared for solar panels as the main energy source and is ready for a test in Tanzania....

  3. Solar Panel based Milk Pasteurization

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Pedersen, Tom Søndergaard

    2002-01-01

    This paper treats the subject of analysis, design and development of the control system for a solar panel based milk pasteurization system to be used in small villages in Tanzania. The analysis deals with the demands for an acceptable pasteurization, the varying energy supply and the low cost, low...... complexity, simple user interface and high reliability demands. Based on these demands a concept for the pasteurization system is established and a control system is developed. A solar panel has been constructed and the energy absorption has been tested in Tanzania. Based on the test, the pasteurization...... system is dimensioned. A functional prototype of the pasteurization facility with a capacity of 200 l milk/hour has been developed and tested. The system is prepared for solar panels as the main energy source and is ready for a test in Tanzania....

  4. NO y Blue Ribbon panel

    Science.gov (United States)

    Crosley, David R.

    1996-01-01

    Total NOy was determined on the Pacific Exploratory Mission-West A using two separate instruments, one operated by Georgia Institute of Technology and one by Nagoya University. The two data sets exhibited significant disagreement, with no systematic correlation, and differences often a factor of 2 or more. Additionally, regardless of data set chosen, the total NOy was much greater than the sum of its components measured separately. A panel was convened by NASA in July 1993 to examine these conflicting datasets and the question of "missing NOy" on this mision. This paper reports the conclusions and recommendations from the panel.

  5. Solar Panel based Milk Pasteurization

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Pedersen, Tom Søndergaard

    2002-01-01

    This paper treats the subject of analysis, design and development of the control system for a solar panel based milk pasteurization system to be used in small villages in Tanzania. The analysis deals with the demands for an acceptable pasteurization, the varying energy supply and the low cost, low...... system is dimensioned. A functional prototype of the pasteurization facility with a capacity of 200 l milk/hour has been developed and tested. The system is prepared for solar panels as the main energy source and is ready for a test in Tanzania....

  6. The "Virtual" Panel: A Computerized Model for LGBT Speaker Panels

    Science.gov (United States)

    Beasley, Christopher; Torres-Harding, Susan; Pedersen, Paula J.

    2012-01-01

    Recent societal trends indicate more tolerance for homosexuality, but prejudice remains on college campuses. Speaker panels are commonly used in classrooms as a way to educate students about sexual diversity and decrease negative attitudes toward sexual diversity. The advent of computer-delivered instruction presents a unique opportunity to…

  7. Evaluating the Effect of Dental Filling Material and Filling Depth on the Strength and Deformation of Filled Teeth

    OpenAIRE

    Seifollah Gholampour; Ghazale Zoorazma; Ehsan Shakouri

    2016-01-01

    ackground and aim: It is important to evaluate the effect of the type of filling material on deformation and strength of tooth after filling and also the effect of filling depth on quality of restoration of a decayed tooth. Material and Methods: The Orthopantomogram (OPG) of the first and second molars of a 28-year-old man was made and the teeth were 3D modeled. The stress-deformation analysis was then performed on the models in the three states of normal tooth, tooth filled with amalgam and ...

  8. Solar panel truss mounting systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2016-06-28

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  9. Solar panel truss mounting systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2015-10-20

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  10. Differential effects of mineral and organic acids on the kinetics of arabinose degradation under lignocellulose pretreatment conditions

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Mosier, N.S.; Scott, E.L.; Beeftink, H.H.; Sanders, J.P.M.

    2009-01-01

    Sugar degradation occurs during acid-catalyzed pretreatment of lignocellulosic biomass at elevated temperatures, resulting in degradation products that inhibit microbial fermentation in the ethanol production process. Arabinose, the second most abundant pentose in grasses like corn stover and wheat

  11. Feasibility study for co-locating and integrating ethanol production plants from corn starch and lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ibsen, Kelly [National Renewable Energy Lab. (NREL), Golden, CO (United States); McAloon, Andrew [U.S. Department of Agriculture, Washington, D.C. (United States); Yee, Winnie [U.S. Department of Agriculture, Washington, D.C. (United States)

    2005-01-01

    Analysis of the feasibility of co-locating corn-grain-to-ethanol and lignocellulosic ethanol plants and potential savings from combining utilities, ethanol purification, product processing, and fermentation.

  12. Examination of lignocellulosic fibers for chemical, thermal, and separations properties: Addressing thermo-chemical stability issues

    Science.gov (United States)

    Johnson, Carter David

    Natural fiber-plastic composites incorporate thermoplastic resins with fibrous plant-based materials, sometimes referred to as biomass. Pine wood mill waste has been the traditional source of natural fibrous feedstock. In anticipation of a waste wood shortage other fibrous biomass materials are being investigated as potential supplements or replacements. Perennial grasses, agricultural wastes, and woody biomass are among the potential source materials. As these feedstocks share the basic chemical building blocks; cellulose, hemicellulose, and lignin, they are collectively called lignocellulosics. Initial investigation of a number of lignocellulosic materials, applied to fiber-plastic composite processing and material testing, resulted in varied results, particularly response to processing conditions. Less thermally stable lignocellulosic filler materials were physically changed in observable ways: darkened color and odor. The effect of biomass materials' chemical composition on thermal stability was investigated an experiment involving determination of the chemical composition of seven lignocellulosics: corn hull, corn stover, fescue, pine, soy hull, soy stover, and switchgrass. These materials were also evaluated for thermal stability by thermogravimetric analysis. The results of these determinations indicated that both chemical composition and pretreatment of lignocellulosic materials can have an effect on their thermal stability. A second study was performed to investigate what effect different pretreatment systems have on hybrid poplar, pine, and switchgrass. These materials were treated with hot water, ethanol, and a 2:1 benzene/ethanol mixture for extraction times of: 1, 3, 6, 12, and 24 hours. This factorial experiment demonstrated that both extraction time and medium have an effect on the weight percent of extractives removed from all three material types. The extracted materials generated in the above study were then subjected to an evaluation of thermal

  13. Dedicated composite fillings − inlays

    Directory of Open Access Journals (Sweden)

    Šaulić Slobodan

    2003-01-01

    Full Text Available Background. The aim of the study was to evaluate the quality and persistance of esthetics of dedicated inlay by clinical methods. Methods. The paper reviews the clinical significance and technique of preparing particular composite inlays before and after the construction of the metallic framework partial denture. On the basis of indications the total of 30 inlays were placed into cavities under relatively dry working conditions. Six, twelve eighteen and twenty-four months after the placement of filling, control check-up was carried out by Ryge criteria. Results. After two years marginal discoloration as well as the change of the colour occured in 3.3% of inlays. There was neither detectable secondary caries, nor the symtoms of pulpal damage. The requirements to be fulfilled concerning the composite materials in order that they can be implemented for this purpose, were also discussed. Conclusion. From the clinical point of view, purpouse inlays from Herculite XRV lab C8B in combination with Opti Bond System and composite cement Porcelite Dual Cure showed high functional and esthetic values in the observational period of two years.

  14. Mobile response in web panels

    NARCIS (Netherlands)

    de Bruijne, M.A.; Wijnant, A.

    2014-01-01

    This article investigates unintended mobile access to surveys in online, probability-based panels. We find that spontaneous tablet usage is drastically increasing in web surveys, while smartphone usage remains low. Further, we analyze the bias of respondent profiles using smartphones and tablets com

  15. ASIST 2003: Part II: Panels.

    Science.gov (United States)

    Proceedings of the ASIST Annual Meeting, 2003

    2003-01-01

    Forty-six panels address topics including women in information science; users and usability; information studies; reference services; information policies; standards; interface design; information retrieval; information networks; metadata; shared access; e-commerce in libraries; knowledge organization; information science theories; digitization;…

  16. Humid free efficient solar panel

    Science.gov (United States)

    Panjwani, Manoj Kumar; Panjwani, Suresh Kumar; Mangi, Fareed Hussain; Khan, Danish; Meicheng, Li

    2017-09-01

    The paper examines the impact of the humidity on the Solar panels which makes a space for the drastic variation in the power generated and makes the device less efficient. Humidity readily affects the efficiency of the solar cells and creates a minimal layer of water on its surface. It also decreases the efficiency by 10-20% of the total power output produced. Moreover, to handle this issue, all around characterized measures are required to be taken to guarantee the smooth working of the solar panels utilized in humid areas. In connection with this issue, Karachi, the biggest city of Pakistan which is located near the costal line touching Arabian Sea, was taken as a reference city to measure the humidity range. In Karachi, the average humidity lies between 25-70% (as per Pakistan Meteorological Department PMD), that indirectly leads in decreasing power acquired from a Solar Panel and develops various complexities for the solar system. The system on average experiences stability issues, such as those of power fluctuations etc., due to which, the whole solar system installed observes abnormal variations in acquired power. Silica Gel was used as a desiccant material in order to assure dryness over the solar panel. More than four experiments were conducted with the usage of water absorbent to improve the efficiency and to make system more power efficient.

  17. Microclimate boxes for panel paintings

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1998-01-01

    The use of microclimate boxes to protect vulnerable panel paintings is, therefore, not a new phenomenon of the past two or three decades. Rather, it has been a concern for conservators and curators to protect these objects of art at home and in transit since the end of the nineteenth century. The...

  18. Risk-based decisionmaking (Panel)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.H.

    1995-12-31

    By means of a panel discussion and extensive audience interaction, explore the current challenges and progress to date in applying risk considerations to decisionmaking related to low-level waste. This topic is especially timely because of the proposed legislation pertaining to risk-based decisionmaking and because of the increased emphasis placed on radiological performance assessments of low-level waste disposal.

  19. NAS Panel faults export controls

    Science.gov (United States)

    Katzoff, Judith A.

    A study prepared by a top-level panel says that current export controls on militarily sensitive U.S. technology may be “overcorrecting” previous weaknesses in that system, resulting in “a complex and confusing control system” that makes it more difficult for U.S. businesses to compete in international markets. Moreover, this control system has “an increasingly corrosive effect” on U.S. relations with allies. The panel recommended that the United States concentrate more effort on bringing about uniformity in the export control policies of countries belonging to the Coordinating Committee on Multilateral Export Controls (CoCom), i.e., most of the member nations in NATO (the North Atlantic Treaty Organization) and Japan.The 21-member panel was appointed by the Committee on Science, Engineering, and Public Policy (COSEPUP), a joint unit of the National Academy of Sciences (NAS), the National Academy of Engineering (NAE), and the Institute of Medicine (IOM). The panel, composed of administrators, researchers, and former government officials, was chaired by AGU member Lew Allen, Jr., director of the Jet Propulsion Laboratory (Pasadena, Calif.) and former chief of staff of the U.S. Air Force. Their report was supported by NAS funds, by a number of private organizations (including AGU), by the U.S. Departments of Commerce, Defense, Energy, and State, by the National Science Foundation, and by the National Aeronautics and Space Administration.

  20. EXTREMAL CONTROL FOR PHOTOVOLTAIC PANELS

    Directory of Open Access Journals (Sweden)

    Genevieve DAPHIN TANGUY

    2016-11-01

    Full Text Available In this paper a methodology for extremal control of photovoltaic panels has been designed through the use of an embedded polynomial controller using robust approaches and algorithms. Also, a framework for testing solar trackers in a hard ware in the loop (HIL configuration has been established. Efficient gradient based optimization methods were put in place in order to determine the parameters of the employed photovoltaic panel, as well as for computing the Maximum Power Point (MPP. Further a numerical RST controller has been computed in order to allow the panel to follow the movement of the sun to obtain a maximum energetic efficiency. A robustness analysis and correction procedure has been done on the RST polynomial algorithm. The hardware in the loop configuration allows for the development of a test and development platform which can be used for bringing improvements to the current design and also test different control approaches. For this, a microcontroller based solution was chosen. The achieved performances of the closed loop photovoltaic panel (PP system are validated in simulation using the MATLAB / SIMULINK environment and the WinPim & WinReg dedicated software. As it will be seen further in this paper, the extremal control of this design resides in a sequential set of computations used for obtaining the new Maximum Power Point at each change in the system.

  1. Panel: RFID Security and Privacy

    Science.gov (United States)

    Fu, Kevin

    The panel on RFID security and privacy included Ross Anderson, Jon Callas, Yvo Desmedt, and Kevin Fu. Topics for discussion included the "chip and PIN" EMV payment systems, e-Passports, "mafia" attacks, and RFID-enabled credit cards. Position papers by the panelists appear in the following pages, and the RFID-enabled credit card work appears separately in these proceedings.

  2. ASIST 2003: Part II: Panels.

    Science.gov (United States)

    Proceedings of the ASIST Annual Meeting, 2003

    2003-01-01

    Forty-six panels address topics including women in information science; users and usability; information studies; reference services; information policies; standards; interface design; information retrieval; information networks; metadata; shared access; e-commerce in libraries; knowledge organization; information science theories; digitization;…

  3. Surfaces that become isotopic after Dehn filling

    CERN Document Server

    Bachman, David; Sedgwick, Eric

    2010-01-01

    We show that after generic filling along a torus boundary component of a 3-manifold, no two closed, 2-sided, essential surfaces become isotopic, and no closed, 2-sided, essential surface becomes inessential. That is, the set of essential surfaces (considered up to isotopy) survives unchanged in all suitably generic Dehn fillings. Furthermore, for all but finitely many non-generic fillings, we show that two essential surfaces can only become isotopic in a constrained way.

  4. Photodiode forward bias to reduce temporal effects in a-Si based flat panel detectors

    Science.gov (United States)

    Mollov, Ivan; Tognina, Carlo; Colbeth, Richard

    2008-03-01

    Lag and sensitivity modulation are well known temporal artifacts of a-Si photodiode based flat panel detectors. Both effects are caused by charge carriers being trapped in the semiconductor. Trapping and releasing of these carriers is a statistical process with time constants much longer than the frame time of flat panel detectors. One way to reduce these temporal artifacts is to keep the traps filled by applying a pulse of light over the entire detector area every frame before the x-ray exposure. This paper describes an alternative method, forward biasing the a-Si photodiodes and supplying free carriers to fill the traps. The array photodiodes are forward biased and then reversed biased again every frame between the panel readout and x-ray exposure. The method requires no change to the mechanical construction of the detector, only minor modifications of the detector electronics and no image post processing. An existing flat panel detector was modified and evaluated for lag and sensitivity modulation. The required changes of the panel configuration, readout scheme and readout timing are presented in this paper. The results of applying the new technique are presented and compared to the standard mode of operation. The improvements are better than an order of magnitude for both sensitivity modulation and lag; lowering their values to levels comparable to the scintillator afterglow. To differentiate the contribution of the a-Si array, from that of the scintillator, a large area light source was used. Possible implementations and applications of the method are discussed.

  5. Effect of light concentration by flat mirror reflectors on the electrical power output of the photovoltaic panel

    Directory of Open Access Journals (Sweden)

    Sathyanarayana P.

    2014-03-01

    Full Text Available Renewable energy area is gaining more prominence in recent times. In particular, conversion of solar energy in to electricity by using PV Panel has attracted significant researchers. In this work, the effect of light concentration by reflectors and inclination of PV panel on power output of PV panel has been investigated. Flat mirror reflectors were fixed to PV panel to increase the light intensity. The panel was kept either horizontally or at 30° inclination to horizontal. The effect on I-V curve, power curve, fill factor and efficiency are discussed. A significant improvement in short circuit current, power and a small increase in efficiency is perceived with the introduction of reflectors.

  6. Use of Internet panels to conduct surveys.

    Science.gov (United States)

    Hays, Ron D; Liu, Honghu; Kapteyn, Arie

    2015-09-01

    The use of Internet panels to collect survey data is increasing because it is cost-effective, enables access to large and diverse samples quickly, takes less time than traditional methods to obtain data for analysis, and the standardization of the data collection process makes studies easy to replicate. A variety of probability-based panels have been created, including Telepanel/CentERpanel, Knowledge Networks (now GFK KnowledgePanel), the American Life Panel, the Longitudinal Internet Studies for the Social Sciences panel, and the Understanding America Study panel. Despite the advantage of having a known denominator (sampling frame), the probability-based Internet panels often have low recruitment participation rates, and some have argued that there is little practical difference between opting out of a probability sample and opting into a nonprobability (convenience) Internet panel. This article provides an overview of both probability-based and convenience panels, discussing potential benefits and cautions for each method, and summarizing the approaches used to weight panel respondents in order to better represent the underlying population. Challenges of using Internet panel data are discussed, including false answers, careless responses, giving the same answer repeatedly, getting multiple surveys from the same respondent, and panelists being members of multiple panels. More is to be learned about Internet panels generally and about Web-based data collection, as well as how to evaluate data collected using mobile devices and social-media platforms.

  7. Composite panel, wall assembly and components therefor

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.J.

    1988-12-20

    This invention is concerned with improvements in wall assemblies made of a plurality of composite wall panels, such as concrete wall panels, and components and connectors for such assemblies. The invention is also concerned with a method of making such composite wall panels by molding concrete to form a concrete panel. It is particularly applicable for the provision of upstanding walls around oil tanks and hydrocarbon storage facilities, thereby to form part of a containment structure that can satisfy safety regulations for spills around such facilities. In accordance with another aspect of the invention, there is provided a composite building product comprising a concrete panel, said panel being obtained by molding a respective concrete composition. The panel has at least one metal hinge element integrally secured at a respective peripheral edge, with said metal hinge element being secured at the panel to project sufficiently therefrom so as to present a first hinge element. Several of the panels can be connected in a corral-type wall assembly in a variety of configuration. Another aspect of the invention provides, for use in a wall assembly, a portable composite panel comprising a concrete panel body, which is obtained by molding a respective concrete composition; and a frame assembly for reinforcing the peripheral edges of said concrete panel body. The frame assembly includes at least one metal member for provision of a first hing element for connecting a plurality of said panels in a corral-type wall assembly. 7 figs.

  8. From lignocellulosic biomass to furans via 5-acetoxymethylfurfural as an alternative to 5-hydroxymethylfurfural.

    Science.gov (United States)

    Kang, Eun-Sil; Hong, Yeon-Woo; Chae, Da Won; Kim, Bora; Kim, Baekjin; Kim, Yong Jin; Cho, Jin Ku; Kim, Young Gyu

    2015-04-13

    A facile pathway to furan derivatives from lignocellulosic biomass via 5-acetoxymethylfurfural (AMF) was developed. AMF possesses advantageous properties due to its less-hydrophilic acetoxymethyl group relative to the hydroxymethyl group of 5-hydroxymethylfurfural (HMF). The hydrophobicity and chemical stability of AMF allowed practical isolation and purification to afford a highly pure product of up to 99.9 %. AMF was produced in good to excellent yields under mild conditions from 5-chloromethylfurfural (CMF) and alkylammonium acetates, both of which could be obtained directly from lignocellulosic biomass. Heterogeneous reactions with polymer-supported alkylammonium acetates were also established; this showed the feasibility of a continuous process for this pathway. AMF could be transformed into various promising furanic compounds, such as 2,5-furandicarboxylic acid (FDCA), 2,5-furandimethanol (FDM), and 5-hydroxymethyl-2-furanoic acid (HFA), in high yields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Production of cellulolytic enzymes by Pleurotus species on lignocellulosic wastes using novel pretreatments.

    Science.gov (United States)

    Singh, M P; Pandey, A K; Vishwakarma, S K; Srivastava, A K; Pandey, V K; Singh, V K

    2014-12-24

    In the present investigation three species of Pleurotus i.e. P. sajor—caju (P1), P. florida (P2) and P. flabellatus (P3) along with two lignocellulosic substrates namely paddy straw and wheat straw were selected for evaluation of production of extracellular cellulolytic enzymes. During the cultivation of three species of Pleurotus under in vivo condition, the two lignocellulosic substrates were treated with plants extracts (aqueous extracts of ashoka leaves (A) and neem oil (B)), hot water (H) and chemicals (C).Among all treatments, neem oil treated substrates supported better enzyme production followed by aqueous extract of ashoka leaves, hot water and chemical treatment. Between the two substrates paddy straw supported better enzyme production than wheat straw. P. flabellatus showed maximum activity of exoglucanase, endoglucanase and β—glucosidase followed by P. florida and P. sajor—caju.

  10. PREPARATION OF VARIOUS TYPES OF PULP FROM OIL PALM LIGNOCELLULOSIC RESIDUES

    Institute of Scientific and Technical Information of China (English)

    RyoheiTanaka; LehCheuPeng; WanRosliWanDaud

    2004-01-01

    Oil palm, Elaeis Guineensis, (Figure 1) is one of the most important plants in Malaysia. It produces palm oil and palm kernel oil, which is widely being used in food and other industries such as detergents and cosmetics. Malaysia is the world's largest producer and exporter of the oil, so that the country's economy is very much dependent on these oil products. Although oil from the palm tree is an excellent product for the country, residues from oil palm have not been used sufficiently. In this 10-15 years, development in new technologies for utilizing this lignocellulosic waste is categorized as one of the most important issues in science policy of Malaysia. Here we would like to introduce recent situation of palm oil and oil palm lignocellulosic residues at the first part of this paper. In the second part, our recent studies on the preparation of pulps for different purposes will be summarized.

  11. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms

    DEFF Research Database (Denmark)

    Rasmussen, Helena; Sørensen, Hanne R.; Meyer, Anne S.

    2014-01-01

    , several aldehydes and ketones and many different organic acids and aromatic compounds may be generated during hydrothermal treatment of lignocellulosic biomass. The reaction mechanisms are of interest because the very same compounds that are possible inhibitors for biomass processing enzymes......The degradation compounds formed during pretreatment when lignocellulosic biomass is processed to ethanol or other biorefinery products include furans, phenolics, organic acids, as well as mono- and oligomeric pentoses and hexoses. Depending on the reaction conditions glucose can be converted to 5...... and microorganisms may be valuable biobased chemicals. Hence a new potential for industrial scale synthesis of chemicals has emerged. A better understanding of the reaction mechanisms and the impact of the reaction conditions on the product formation is thus a prerequisite for designing better biomass processing...

  12. Synergistic collaboration of gut symbionts in Odontotermes formosanus for lignocellulosic degradation and bio-hydrogen production.

    Science.gov (United States)

    Mathew, Gincy Marina; Mathew, Dony Chacko; Lo, Shou-Chen; Alexios, Georgy Mathew; Yang, Jia-Cih; Sashikumar, Jagathala Mahalingam; Shaikh, Tanveer Mahamadali; Huang, Chieh-Chen

    2013-10-01

    In this work, gut microbes from the macrotermitine termite Odontotermes formosanus the cellulolytic Bacillus and fermentative Clostridium were studied in batch experiments using different carbon substrates to bio-mimic the termite gut for hydrogen production. Their fungus comb aging and the in vitro lignocellulosic degradation of the mango tree substrates by the synergistic interaction of Bacillus, Clostridium and Termitomyces were detected by Solid-state NMR. From the results, Bacillus species acted as a mutualist, by initiating an anaerobic environment for the growth of Clostridium, for bio-hydrogen production and the presence of Termitomyces enhanced the lignocellulosic degradation of substrates in vitro and in vivo. Thus, the synergistic collaboration of these three microbes can be used for termite-derived bio-fuel processing technology.

  13. Production of cellulases and hemicellulases by an anaerobic mixed culture from lignocellulosic biomass.

    Science.gov (United States)

    Tabassum, R; Rajoka, M I; Malik, K A

    1990-03-01

    A comparison of different habitats, biogas plant, rumen fluid and sewage sludge, for cellulolytic organisms indicated sewage studge was the best source. Enrichment cultura gave a mixed culture which exhibited CMCase activity as well as extracellular Avicelase, xylanase, β-glucosidase, β-xylosidase activities and cell-bound β-glucosidase, and β-xylosidase production in a synthetic medium with eleven different cellulosic and lignocellulosic substrates. The activity of extracellular β-glucosidase and β-xylosidase production was significantly higher than endogenous activities. Hemicellulases were induced better than cellulases. The anzyme system was stable under aerobic conditions. Of the different lignocellulosic substrates, kallar grass was the best inducer of extracellular enzymes.

  14. Upgrading of lignocellulosic biorefinery to value-added chemicals: Sustainability and economics of bioethanol-derivatives

    DEFF Research Database (Denmark)

    Cheali, Peam; Posada, John A.; Gernaey, Krist

    2015-01-01

    In this study, several strategies to upgrade lignocellulosic biorefineries for production of value-added chemicals are systematically generated and evaluated with respect to economic and sustainability objectives. A superstructure-based process synthesis approach under uncertainty integrated...... with a sustainability assessment method is used as evaluation tool. First, an existing superstructure representing the lignocellulosic biorefinery design network is extended to include the options for catalytic conversion of bioethanol to value-added derivatives. Second, the optimization problem for process upgrade...... of operating profit for biorefineries producing bioethanol-derived chemicals (247 MM$/a and 241 MM$/a for diethyl ether and 1,3-butadiene, respectively). Second, the optimal designs for upgrading bioethanol (i.e. production of 1,3-butadiene and diethyl ether) performed also better with respect...

  15. Covalent Immobilization of β-Glucosidase on Magnetic Particles for Lignocellulose Hydrolysis

    DEFF Research Database (Denmark)

    Alftrén, Johan; Hobley, Timothy John

    2013-01-01

    β-Glucosidase hydrolyzes cellobiose to glucose and is an important enzyme in the consortium used for hydrolysis of cellulosic and lignocellulosic feedstocks. In the present work, β-glucosidase was covalently immobilized on non-porous magnetic particles to enable re-use of the enzyme. It was found....... The performance and recyclability of immobilized β-glucosidase on more complex substrate (pretreated spruce) was also studied. It was shown that adding immobilized β-glucosidase (16 U/g dry matter) to free cellulases (8 FPU/g dry matter) increased the hydrolysis yield of pretreated spruce from ca. 44 % to ca. 65...... %. In addition, it was possible to re-use the immobilized β-glucosidase in the spruce and retain activity for at least four cycles. The immobilized enzyme thus shows promise for lignocellulose hydrolysis....

  16. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates.

    Science.gov (United States)

    Meng, Xianzhi; Ragauskas, Arthur Jonas

    2014-06-01

    Cellulose accessibility has been proposed as a key factor in the efficient bio-conversion of lignocellulosic biomass to fermentable sugars. Factors affecting cellulose accessibility can be divided into direct factors that refer to accessible surface area of cellulose, and indirect factors referring to chemical composition such as lignin/hemicellulose content, and biomass structure-relevant factors (i.e. particle size, porosity). An overview of the current pretreatment technologies special focus on the major mode of action to increase cellulose accessibility as well as multiple techniques that could be used to assess the cellulose accessibility are presented in this review. The appropriate determination of cellulose accessibility before and after pretreatment can assist to understand the effectiveness of a particular pretreatment in overcoming lignocellulosic recalcitrance to improve substrate enzymatic digestibility. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Fungal Beta-Glucosidases: A Bottleneck in Industrial Use of Lignocellulosic Materials

    Directory of Open Access Journals (Sweden)

    Peter S. Lübeck

    2013-09-01

    Full Text Available Profitable biomass conversion processes are highly dependent on the use of efficient enzymes for lignocellulose degradation. Among the cellulose degrading enzymes, beta-glucosidases are essential for efficient hydrolysis of cellulosic biomass as they relieve the inhibition of the cellobiohydrolases and endoglucanases by reducing cellobiose accumulation. In this review, we discuss the important role beta-glucosidases play in complex biomass hydrolysis and how they create a bottleneck in industrial use of lignocellulosic materials. An efficient beta-glucosidase facilitates hydrolysis at specified process conditions, and key points to consider in this respect are hydrolysis rate, inhibitors, and stability. Product inhibition impairing yields, thermal inactivation of enzymes, and the high cost of enzyme production are the main obstacles to commercial cellulose hydrolysis. Therefore, this sets the stage in the search for better alternatives to the currently available enzyme preparations either by improving known or screening for new beta-glucosidases.

  18. Probiotic activity of lignocellulosic enzyme as bioactivator for rice husk degradation

    Science.gov (United States)

    Lamid, Mirni; Al-Arif, Anam; Warsito, Sunaryo Hadi

    2017-02-01

    The utilization of lignocellulosic enzyme will increase nutritional value of rice husk. Cellulase consists of C1 (β-1, 4-glucan cellobiohydrolase or exo-β-1,4glucanase), Cc (endo-β-1,4-glucanase) and component and cellobiose (β-glucocidase). Hemicellulase enzyme consists of endo-β-1,4-xilanase, β-xilosidase, α-L arabinofuranosidase, α-D-glukuronidaseand asetil xilan esterase. This research aimed to study the activity of lignocellulosic enzyme, produced by cows in their rumen, which can be used as a bioactivator in rice husk degradation. This research resulted G6 and G7 bacteria, producing xylanase and cellulase with the activity of 0.004 U mL-1 and 0.021 U mL-1; 0.003 ( U mL-1) and 0.026 (U mL-1) respectively.

  19. Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass.

    Science.gov (United States)

    Acharjee, Tapas C; Coronella, Charles J; Vasquez, Victor R

    2011-04-01

    The equilibrium moisture content (EMC) of raw lignocellulosic biomass, along with four samples subjected to thermal pretreatment, was measured at relative humidities ranging from 11% to 97% at a constant temperature of 30 °C. Three samples were prepared by treatment in hot compressed water by a process known as wet torrefaction, at temperatures of 200, 230, and 260 °C. An additional sample was prepared by dry torrefaction at 300 °C. Pretreated biomass shows EMC below that of raw biomass. This indicates that pretreated biomass, both dry and wet torrefied, is more hydrophobic than raw biomass. The EMC results were correlated with a recent model that takes into account additional non-adsorption interactions of water, such as mixing and swelling. The model offers physical insight into the water activity in lignocellulosic biomass.

  20. Pretreatment of Lignocellulosic Biomass with Ionic Liquids and Ionic Liquid-Based Solvent Systems

    Directory of Open Access Journals (Sweden)

    Qidong Hou

    2017-03-01

    Full Text Available Pretreatment is very important for the efficient production of value-added products from lignocellulosic biomass. However, traditional pretreatment methods have several disadvantages, including low efficiency and high pollution. This article gives an overview on the applications of ionic liquids (ILs and IL-based solvent systems in the pretreatment of lignocellulosic biomass. It is divided into three parts: the first deals with the dissolution of biomass in ILs and IL-based solvent systems; the second focuses on the fractionation of biomass using ILs and IL-based solvent systems as solvents; the third emphasizes the enzymatic saccharification of biomass after pretreatment with ILs and IL-based solvent systems.

  1. Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass.

    Science.gov (United States)

    Daza Serna, L V; Orrego Alzate, C E; Cardona Alzate, C A

    2016-01-01

    One of the main drawbacks for using lignocellulosic biomass is related to its recalcitrance. The pretreatment of lignocellulosic biomass plays an important role for delignification and crystallinity reduction purposes. In this work rice husk (RH) was submitted to supercritical pretreatment at 80°C and 270 bar with the aim to determine the effect on lignin content, crystallinity as well as enzymatic digestibility. The yields obtained were compared with dilute sulfuric acid pretreatment as base case. Additionally a techno-economic and environmental comparison of the both pretreatment technologies was performed. The results show a lignin content reduction up to 90.6% for the sample with 75% moisture content using a water-ethanol mixture. The results for crystallinity and enzymatic digestibility demonstrated that no reductions were reached. Supercritical pretreatment presents the best economical and environmental performance considering the solvents and carbon dioxide recycling.

  2. Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave Atrovirens lignocellulosic biomass hydrolysis.

    Science.gov (United States)

    Sánchez-Ramírez, Jaquelina; Martínez-Hernández, José L; Segura-Ceniceros, Patricia; López, Guillermo; Saade, Hened; Medina-Morales, Miguel A; Ramos-González, Rodolfo; Aguilar, Cristóbal N; Ilyina, Anna

    2017-01-01

    In the present study, Trichoderma reesei cellulase was covalently immobilized on chitosan-coated magnetic nanoparticles using glutaraldehyde as a coupling agent. The average diameter of magnetic nanoparticles before and after enzyme immobilization was about 8 and 10 nm, respectively. The immobilized enzyme retained about 37 % of its initial activity, and also showed better thermal and storage stability than free enzyme. Immobilized cellulase retained about 80 % of its activity after 15 cycles of carboxymethylcellulose hydrolysis and was easily separated with the application of an external magnetic field. However, in this reaction, K m was increased eight times. The immobilized enzyme was able to hydrolyze lignocellulosic material from Agave atrovirens leaves with yield close to the amount detected with free enzyme and it was re-used in vegetal material conversion up to four cycles with 50 % of activity decrease. This provides an opportunity to reduce the enzyme consumption during lignocellulosic material saccharification for bioethanol production.

  3. Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, T.; Marquez, F.; Rodriguez-Morasol, J.; Rodriguez, J.J. [University of Malaga, Malaga (Spain). Dept. of Chemical Engineering

    2001-09-21

    A simple equation based on proximate analysis (volatile matter and fixed carbon contents) is presented which allows calculation of the higher heating value of lignocellulosics as well as the charcoals resulting form their carbonization. The equation has been tested with different lignocellulosic wastes and chars obtained from carbonization at different temperatures. Deviations from the experimental heating values fall in most cases below 2%. A comparison is presented with some other equations from the literature based on proximate, ultimate and chemical analysis data. As a general conclusion the equation proposed in this paper leads to comparable and in many cases more accurate predictions of heating values and has the advantage of being applicable to a wide range of carbonaceous materials, requiring only a simple rapid and cheap proximate analysis of the samples. 14 refs., 5 tabs.

  4. Enhancement of starting up anaerobic digestion of lignocellulosic substrate: fique's bagasse as an example.

    Science.gov (United States)

    Quintero, Mabel; Castro, Liliana; Ortiz, Claudia; Guzmán, Carolina; Escalante, Humberto

    2012-03-01

    In Colombia there are 20,000 ha of fique fields (Furcraea sp., family Agavaceae), that produce around 93,400 tons of fique's bagasse per year. These residuals are disposed into rivers and soil causing pollution. According to physicochemical characteristics, the lignocellulosic residues from fique crops (fique's bagasse) are appropriate carbon source to biogas production. Anaerobic digestion from fique's Bagasse (FB) requires a specialized microbial consortium capable of degrading its high lignocellulosic concentration. In this study, the capacities of seven microbial consortia for biomethane potential (BMP) from FB were evaluated. Inoculum of ruminal liquid achieved high hydrolytic activity (0.068 g COD/g VSS day), whereas pig waste sludge inoculum showed high methanogenic activity (0.146 g COD/g VSS day). Mixtures of these two inoculums (RL+PWS) showed the best yields for biomethane potential (0.3 m(3) CH4/Kg VS ad).

  5. Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications

    DEFF Research Database (Denmark)

    Sitarz, Anna K.; Mikkelsen, Jørn D.; Meyer, Anne S.

    2016-01-01

    Laccases (EC 1.10.3.2) are copper-containing oxidoreductases that have a relatively high redox potential which enables them to catalyze oxidation of phenolic compounds, including lignin-derived phenolics. The laccase-catalyzed oxidation of phenolics is accompanied by concomitant reduction of diox...... but differences in loop conformations. We also evaluate the features and regions of laccases in relation to modification and evolution of laccases for various industrial applications including lignocellulosic biomass processing....

  6. Application of steam explosion for the pretreatment of the lignocellulosic raw materials

    OpenAIRE

    Jacquet, Nicolas; Vanderghem, Caroline; Blecker, Christophe; Paquot, Michel

    2010-01-01

    Steam explosion is a thermomechanochemical process which allows the breakdown of lignocellulosic structural components by steam heating, hydrolysis of glycosidic bonds by organic acid formed during the process and shearing forces due to the expansion of the moisture. The process is composed of two distinct stages: vapocracking and explosive decompression. Cumul effects of both phases include modification of the physical properties of the material (specific surface area, water retention capaci...

  7. d-lactic acid production from renewable lignocellulosic biomass via genetically modified Lactobacillus plantarum.

    Science.gov (United States)

    Zhang, Yixing; Kumar, Amit; Hardwidge, Philip R; Tanaka, Tsutomu; Kondo, Akihiko; Vadlani, Praveen V

    2016-03-01

    d-lactic acid is of great interest because of increasing demand for biobased poly-lactic acid (PLA). Blending poly-l-lactic acid with poly-d-lactic acid greatly improves PLA's mechanical and physical properties. Corn stover and sorghum stalks treated with 1% sodium hydroxide were investigated as possible substrates for d-lactic acid production by both sequential saccharification and fermentation and simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Cellic CTec2) was used for hydrolysis of lignocellulosic biomass and an l-lactate-deficient mutant strain Lactobacillus plantarum NCIMB 8826 ldhL1 and its derivative harboring a xylose assimilation plasmid (ΔldhL1-pCU-PxylAB) were used for fermentation. The SSCF process demonstrated the advantage of avoiding feedback inhibition of released sugars from lignocellulosic biomass, thus significantly improving d-lactic acid yield and productivity. d-lactic acid (27.3 g L(-1) ) and productivity (0.75 g L(-1) h(-1) ) was obtained from corn stover and d-lactic acid (22.0 g L(-1) ) and productivity (0.65 g L(-1) h(-1) ) was obtained from sorghum stalks using ΔldhL1-pCU-PxylAB via the SSCF process. The recombinant strain produced a higher concentration of d-lactic acid than the mutant strain by using the xylose present in lignocellulosic biomass. Our findings demonstrate the potential of using renewable lignocellulosic biomass as an alternative to conventional feedstocks with metabolically engineered lactic acid bacteria to produce d-lactic acid. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:271-278, 2016.

  8. Highly thermostable xylanase production from a thermophilic Geobacillus sp. strain WSUCF1 utilizing lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Aditya eBhalla

    2015-06-01

    Full Text Available AbstractEfficient enzymatic hydrolysis of lignocellulose to fermentable sugars requires a complete repertoire of biomass deconstruction enzymes. Hemicellulases play an important role in hydrolyzing hemicellulose component of lignocellulose to xylo-oligosaccharides and xylose. Thermostable xylanases have been a focus of attention as industrially important enzymes due to their long shelf life at high temperatures. Geobacillus sp. strain WSUCF1 produced thermostable xylanase activity (crude xylanase cocktail when grown on xylan or various inexpensive untreated and pretreated lignocellulosic biomasses such as prairie cord grass and corn stover. The optimum pH and temperature for the crude xylanase cocktail were 6.5 and 70ºC, respectively. The WSUCF1 crude xylanase was found to be highly thermostable with half-lives of 18 and 12 days at 60 and 70ºC, respectively. At 70ºC, rates of xylan hydrolysis were also found to be better with the WSUCF1 secretome than those with commercial enzymes, i.e., for WSUCF1 crude xylanase, CellicHTec2, and AccelleraseXY, the percent xylan conversions were 68.9, 49.4, and 28.92, respectively. To the best of our knowledge, WSUCF1 crude xylanase cocktail is among the most thermostable xylanases produced by thermophilic Geobacillus spp. and other thermophilic microbes (optimum growth temperature ≤70ºC. High thermostability, activity over wide range of temperatures, and better xylan hydrolysis than commercial enzymes make WSUCF1 crude xylanase suitable for thermophilic lignocellulose bioconversion processes.

  9. Utilizing Anaerobic Fungi for Two-stage Sugar Extraction and Biofuel Production from Lignocellulosic Biomass.

    Science.gov (United States)

    Ranganathan, Abhaya; Smith, Olivia P; Youssef, Noha H; Struchtemeyer, Christopher G; Atiyeh, Hasan K; Elshahed, Mostafa S

    2017-01-01

    Lignocellulosic biomass is a vast and underutilized resource for the production of sugars and biofuels. However, the structural complexity of lignocellulosic biomass and the need for multiple pretreatment and enzymatic steps for sugar release renders this process economically challenging. Here, we report a novel approach for direct, single container, exogenous enzyme-free conversion of lignocellulosic biomass to sugars and biofuels using the anaerobic fungal isolate strain C1A. This approach utilizes simple physiological manipulations for timely inhibition and uncoupling of saccharolytic and fermentative capabilities of strain C1A, leading to the accumulation of sugar monomers (glucose and xylose) in the culture medium. The produced sugars, in addition to fungal hyphal lysate, are subsequently converted by Escherichia coli strain K011 to ethanol. Using this approach, we successfully recovered 17.0% (w/w) of alkali-pretreated corn stover (20.0% of its glucan and xylan content) as sugar monomers in the culture media. More importantly, 14.1% of pretreated corn stover (17.1% of glucan and xylan content) was recovered as ethanol at a final concentration of 28.16 mM after the addition of the ethanologenic strain K011. The high ethanol yield obtained is due to its accumulation as a minor fermentation end product by strain C1A during its initial growth phase, the complete conversion of sugars to ethanol by strain K011, and the possible conversion of unspecified substrates in the hyphal lysate of strain C1A to ethanol by strain K011. This study presents a novel, versatile, and exogenous enzyme-free strategy that utilizes a relatively unexplored group of organisms (anaerobic fungi) for direct biofuel production from lignocellulosic biomass.

  10. Process design and evaluation of production of bioethanol and β-lactam antibiotic from lignocellulosic biomass.

    Science.gov (United States)

    Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-11-01

    To design biorefinery processes producing bioethanol from lignocellulosic biomass with dilute acid pretreatment, biorefinery processes were simulated using the SuperPro Designer program. To improve the efficiency of biomass use and the economics of biorefinery, additional pretreatment processes were designed and evaluated, in which a combined process of dilute acid and aqueous ammonia pretreatments, and a process of waste media containing xylose were used, for the production of 7-aminocephalosporanic acid. Finally, the productivity and economics of the designed processes were compared.

  11. Draft Genome Sequence of a Chitinophaga Strain Isolated from a Lignocellulose Biomass-Degrading Consortium

    Science.gov (United States)

    Kishi, Luciano T.; Lopes, Erica M.; Fernandes, Camila C.; Fernandes, Gabriela C.; Sacco, Lais P.; Carareto Alves, Lucia M.

    2017-01-01

    ABSTRACT Chitinophaga comprises microorganisms capable of degrading plant-derived carbohydrates, serving as a source of new tools for the characterization and degradation of plant biomass. Here, we report the draft genome assembly of a Chitinophaga strain with 8.2 Mbp and 7,173 open reading frames (ORFs), isolated from a bacterial consortium that is able to degrade lignocellulose. PMID:28104646

  12. Process design and sustainability in the production of bioethanol from lignocellulosic materials

    OpenAIRE

    Scott, Felipe; Quintero,Julián; Morales,Marjorie; Conejeros, Raúl; Cardona, Carlos; Aroca, Germán

    2013-01-01

    Background: Bioethanol is produced mainly from sugar cane and corn. In the last years it has been subject of debate due to the effects in food prices and land use change. The use of lignocellulosic materials for bioethanol production, such as agroindustry, forestry and municipal residues, wood or dendroenergetic species, has been proposed as a sustainable way for producing this biofuel. The design of a sustainable process for producing bioethanol requires a methodological approach whereby eco...

  13. Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean

    OpenAIRE

    Petersson, Anneli; Thomsen, Mette Hedegaard; Hauggaard-Nielsen, Henrik; Thomsen, Anne Belinda

    2007-01-01

    To meet the increasing need for bioenergy several raw materials have to be considered for the production of e.g. bioethanol and biogas.In this study, three lignocellulosic raw materials were studied, i.e. (1) winter rye straw (Secale cereale L), (2) oilseed rape straw (Brassica napus L.) and (3) faba bean straw (Viciafaba L.). Their composition with regard to cellulose, hemicellulose, lignin, extractives and ash was evaluated, as well as their potential as raw materials for ethanol and biogas...

  14. Fermentation of lignocellulosic hydrolysate by the alternative industrial ethanol yeast Dekkera bruxellensis.

    Science.gov (United States)

    Blomqvist, J; South, E; Tiukova, I; Tiukova, L; Momeni, M H; Hansson, H; Ståhlberg, J; Horn, S J; Schnürer, J; Passoth, V

    2011-07-01

    Testing the ability of the alternative ethanol production yeast Dekkera bruxellensis to produce ethanol from lignocellulose hydrolysate and comparing it to Saccharomyces cerevisiae. Industrial isolates of D. bruxellensis and S. cerevisiae were cultivated in small-scale batch fermentations of enzymatically hydrolysed steam exploded aspen sawdust. Different dilutions of hydrolysate were tested. None of the yeasts grew in undiluted or 1:2 diluted hydrolysate [final glucose concentration always adjusted to 40 g l⁻¹ (0.22 mol l⁻¹)]. This was most likely due to the presence of inhibitors such as acetate or furfural. In 1:5 hydrolysate, S. cerevisiae grew, but not D. bruxellensis, and in 1:10 hydrolysate, both yeasts grew. An external vitamin source (e.g. yeast extract) was essential for growth of D. bruxellensis in this lignocellulosic hydrolysate and strongly stimulated S. cerevisiae growth and ethanol production. Ethanol yields of 0.42 ± 0.01 g ethanol (g glucose)⁻¹ were observed for both yeasts in 1:10 hydrolysate. In small-scale continuous cultures with cell recirculation, with a gradual increase in the hydrolysate concentration, D. bruxellensis was able to grow in 1:5 hydrolysate. In bioreactor experiments with cell recirculation, hydrolysate contents were increased up to 1:2 hydrolysate, without significant losses in ethanol yields for both yeasts and only slight differences in viable cell counts, indicating an ability of both yeasts to adapt to toxic compounds in the hydrolysate. Dekkera bruxellensis and S. cerevisiae have a similar potential to ferment lignocellulose hydrolysate to ethanol and to adapt to fermentation inhibitors in the hydrolysate. This is the first study investigating the potential of D. bruxellensis to ferment lignocellulosic hydrolysate. Its high competitiveness in industrial fermentations makes D. bruxellensis an interesting alternative for ethanol production from those substrates. © 2011 The Authors. Letters in Applied

  15. Production of a generic microbial feedstock for lignocellulose biorefineries through sequential bioprocessing

    OpenAIRE

    Chang, Chen-Wei; Webb, Colin

    2017-01-01

    Lignocellulosic materials, mostly from agricultural and forestry residues, provide a potential renewable resource for sustainable biorefineries. Reducing sugars can be produced only after a pre-treatment stage, which normally involves chemicals but can be biological. In this case, two steps are usually necessary: solid-state cultivation of fungi for deconstruction, followed by enzymatic hydrolysis using cellulolytic enzymes. In this research, the utilisation of solid-state bioprocessing using...

  16. El Salvador - Rural Electrification - Solar Panels

    Data.gov (United States)

    Millennium Challenge Corporation — This is a summative qualitative performance evaluation (PE) of the solar panel component of the solar panel component of the RE Sub-Activity. The final report will...

  17. Blue Ribbon Panel Report - BRP - Cancer Moonshot

    Science.gov (United States)

    The Blue Ribbon Panel Report outlines 10 recommendations to accelerate progress against cancer. The panel was established to ensure that the Cancer Moonshot's approaches are grounded in the best science.

  18. Blue Ribbon Panel 2016 Video Playlist

    Science.gov (United States)

    Blue Ribbon Panel members discuss recommendations from the panel report that was presented to the National Cancer Advisory Board on September 7, 2016. The playlist includes an overview video and 10 videos on the specific recommendations.

  19. Nitrogen amendment of green waste impacts microbial community, enzyme secretion and potential for lignocellulose decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chaowei [Univ. of California, Davis, CA (United States); Harrold, Duff R. [Univ. of California, Davis, CA (United States); Claypool, Joshua T. [Univ. of California, Davis, CA (United States); Simmons, Blake A. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Steven W. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Simmons, Christopher W. [Univ. of California, Davis, CA (United States); VanderGheynst, Jean S. [Univ. of California, Davis, CA (United States); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States)

    2016-11-09

    Microorganisms involved in biomass deconstruction are an important resource for organic waste recycling and enzymes for lignocellulose bioconversion. The goals of this paper were to examine the impact of nitrogen amendment on microbial community restructuring, secretion of xylanases and endoglucanases, and potential for biomass deconstruction. Communities were cultivated aerobically at 55 °C on green waste (GW) amended with varying levels of NH4Cl. Bacterial and fungal communities were determined using 16S rRNA and ITS region gene sequencing and PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was applied to predict relative abundance of genes involved in lignocellulose hydrolysis. Nitrogen amendment significantly increased secretion of xylanases and endoglucanases, and microbial activity; enzyme activities and cumulative respiration were greatest when nitrogen level in GW was between 4.13–4.56 wt% (g/g), but decreased with higher nitrogen levels. The microbial community shifted to one with increasing potential to decompose complex polymers as nitrogen increased with peak potential occurring between 3.79–4.45 wt% (g/g) nitrogen amendment. Finally, the results will aid in informing the management of nitrogen level to foster microbial communities capable of secreting enzymes that hydrolyze recalcitrant polymers in lignocellulose and yield rapid decomposition of green waste.

  20. Electrodeposition of Gold on Lignocelluloses and Graphite-Based Composite Paper Electrodes for Superior Electrical Properties

    Science.gov (United States)

    Sultana, Ishrat; Razaq, Aamir; Idrees, M.; Asif, M. H.; Ali, Hassan; Arshad, Asim; Iqbal, Shahid; Ramay, Shahid M.; Hussain, Shahzada Qamar

    2016-10-01

    Graphite-based composites are commonly used as an anode and current collector for energy storage devices; however, they have inherently limited potential for large scale rechargeable systems due to a brittle structure. In this study, flexible and light-weight graphite-based electrodes are prepared by incorporation of lignocelluloses fibers directly collected from a self-growing plant, Typha Angistifolia. Electrical properties of graphite and lignocelluloses composite sheets are enhanced by electrodeposition of gold in a three-electrode setup. Electrochemical deposition of gold on a lignocelluloses/graphite paper electrode was obtained in potentiostatic mode by the application of reduction potential -0.95 V for 2000 s, 600 s, and 100 s. The gold-deposited paper electrodes showed efficient kinetics by shifting redox peaks towards lower potentials in cyclic voltammetry measurements, whereas impedance measurements revealed seven orders of magnitude reduction in the resistive properties. Incorporated flexibility and superior electrical/electrochemical performance within presented graphite-based composites will provide cutting-edge characteristics for high-tech application of energy storage devices by keeping a focus on modern disposable technology.

  1. Exploiting the inter-strain divergence of Fusarium oxysporum for microbial bioprocessing of lignocellulose to bioethanol.

    Science.gov (United States)

    Ali, Shahin S; Khan, Mojibur; Fagan, Brian; Mullins, Ewen; Doohan, Fiona M

    2012-03-15

    Microbial bioprocessing of lignocellulose to bioethanol still poses challenges in terms of substrate catabolism. A targeted evolution-based study was undertaken to determine if inter-strain microbial variability could be exploited for bioprocessing of lignocellulose to bioethanol. The microorganism studied was Fusarium oxysporum because of its capacity to both saccharify and ferment lignocellulose. Strains of F. oxysporum were isolated and assessed for their genetic variability. Using optimised solid-state straw culture conditions, experiments were conducted that compared fungal strains in terms of their growth, enzyme activities (cellulases, xylanase and alcohol dehydrogenase) and yield of bioethanol and the undesirable by-products acetic acid and xylitol. Significant inter-strain divergence was recorded in regards to the capacity of studied F. oxysporum strains to produce alcohol from untreated straw. No correlation was observed between bioethanol synthesis and either the biomass production or microbial enzyme activity. A strong correlation was observed between both acetic acid and xylitol production and bioethanol yield. The level of diversity recorded in the alcohol production capacity among closely-related microorganism means that a targeted screening of populations of selected microbial species could greatly improve bioprocessing yields, in terms of providing both new host strains and candidate genes for the bioethanol industry.

  2. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms.

    Science.gov (United States)

    Rasmussen, Helena; Sørensen, Hanne R; Meyer, Anne S

    2014-02-19

    The degradation compounds formed during pretreatment when lignocellulosic biomass is processed to ethanol or other biorefinery products include furans, phenolics, organic acids, as well as mono- and oligomeric pentoses and hexoses. Depending on the reaction conditions glucose can be converted to 5-(hydroxymethyl)-2-furaldehyde (HMF) and/or levulinic acid, formic acid and different phenolics at elevated temperatures. Correspondingly, xylose can follow different reaction mechanisms resulting in the formation of furan-2-carbaldehyde (furfural) and/or various C-1 and C-4 compounds. At least four routes for the formation of HMF from glucose and three routes for furfural formation from xylose are possible. In addition, new findings show that biomass monosaccharides themselves can react further to form pseudo-lignin and humins as well as a wide array of other compounds when exposed to high temperatures. Hence, several aldehydes and ketones and many different organic acids and aromatic compounds may be generated during hydrothermal treatment of lignocellulosic biomass. The reaction mechanisms are of interest because the very same compounds that are possible inhibitors for biomass processing enzymes and microorganisms may be valuable biobased chemicals. Hence a new potential for industrial scale synthesis of chemicals has emerged. A better understanding of the reaction mechanisms and the impact of the reaction conditions on the product formation is thus a prerequisite for designing better biomass processing strategies and forms an important basis for the development of new biorefinery products from lignocellulosic biomass as well.

  3. Fungal Biodegradative Oxidants in Lignocellulose: Fluorescence Mapping and Correlation With Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, Kenneth E. [Univ. of Wisconsin, Madison, WI (United States); Ralph, John [Univ. of Wisconsin, Madison, WI (United States); Hunt, Christopher G. [U.S. Forest Products Lab., Madison, WI (United States); Houtman, Carl J. [U.S. Forest Products Lab., Madison, WI (United States)

    2016-09-06

    This work focused on new methods for the detection of oxidation in natural substrates during the deconstruction of lignocellulose by microoganisms. Oxidation was the focus because all known biological systems that degrade lignin are oxidative. The detection methods involved the used of (a) micrometer-scale beads carrying a fluorescent dye that is sensitive to oxidation, (b) 13C-labeled synthetic lignins whose breakdown products can be assessed using mass spectrometry and nuclear magnetic resonance spectroscopy, and (c) a fluorometric stain that is highly sensitive to incipient oxidation during microbial attack. The results showed (a) that one white rot fungus, Phanerochaete chrysosporium, produces diffusible oxidants on wood, and that the onset of oxidation is coincident with the marked up-regulation of genes that encode ligninolytic peroxidases and auxiliary oxidative enzymes; (b) that a more selectively ligninolytic white rot fungus, Ceriporiopsis subvermispora, produces a highly diastereoselective oxidative system for attack on lignin; (c) that a brown rot fungus, Serpula lacrymans, uses extracellular hydroquinone metabolites to drive the production of lignocellulose-oxidizing free radicals; (d) that both white rot and brown rot fungi produce highly diffusible mild oxidants that modify lignocellulose at the earliest stage of substrate deconstruction; and (e) that lignin degradation in a tropical soil is not inhibited as much as expected during periods of flooding-induced hypoxia, which indicates that unknown mechanisms for attack on lignin remain to be discovered.

  4. RNAseq reveals hydrophobins that are involved in the adaptation of Aspergillus nidulans to lignocellulose.

    Science.gov (United States)

    Brown, Neil Andrew; Ries, Laure N A; Reis, Thaila F; Rajendran, Ranjith; Corrêa Dos Santos, Renato Augusto; Ramage, Gordon; Riaño-Pachón, Diego Mauricio; Goldman, Gustavo H

    2016-01-01

    Sugarcane is one of the world's most profitable crops. Waste steam-exploded sugarcane bagasse (SEB) is a cheap, abundant, and renewable lignocellulosic feedstock for the next-generation biofuels. In nature, fungi seldom exist as planktonic cells, similar to those found in the nutrient-rich environment created within an industrial fermenter. Instead, fungi predominantly form biofilms that allow them to thrive in hostile environments. In turn, we adopted an RNA-sequencing approach to interrogate how the model fungus, Aspergillus nidulans, adapts to SEB, revealing the induction of carbon starvation responses and the lignocellulolytic machinery, in addition to morphological adaptations. Genetic analyses showed the importance of hydrophobins for growth on SEB. The major hydrophobin, RodA, was retained within the fungal biofilm on SEB fibres. The StuA transcription factor that regulates fungal morphology was up-regulated during growth on SEB and controlled hydrophobin gene induction. The absence of the RodA or DewC hydrophobins reduced biofilm formation. The loss of a RodA or a functional StuA reduced the retention of the hydrolytic enzymes within the vicinity of the fungus. Hence, hydrophobins promote biofilm formation on SEB, and may enhance lignocellulose utilisation via promoting a compact substrate-enzyme-fungus structure. This novel study highlights the importance of hydrophobins to the formation of biofilms and the efficient deconstruction of lignocellulose.

  5. Bio-ethanol from lignocellulose: Status, perspectives and challenges in Malaysia.

    Science.gov (United States)

    Goh, Chun Sheng; Tan, Kok Tat; Lee, Keat Teong; Bhatia, Subhash

    2010-07-01

    The present study reveals the perspective and challenges of bio-ethanol production from lignocellulosic materials in Malaysia. Malaysia has a large quantity of lignocellulosic biomass from agriculture waste, forest residues and municipal solid waste. In this work, the current status in Malaysia was laconically elucidated, including an estimation of biomass availability with a total amount of 47,402 dry kton/year. Total capacity and domestic demand of second-generation bio-ethanol production in Malaysia were computed to be 26,161 ton/day and 6677 ton/day, respectively. Hence, it was proven that the country's energy demand can be fulfilled with bio-ethanol if lignocellulosic biomass were fully converted into bio-ethanol and 19% of the total CO(2) emissions in Malaysia could be avoided. Apart from that, an integrated national supply network was proposed together with the collection, storage and transportation of raw materials and products. Finally, challenges and obstacles in legal context and policies implementation were elaborated, as well as infrastructures shortage and technology availabilities.

  6. Utilization of selected biorenewable resources: solubilization of lignocellulosics and conjugation of soybean oil

    Energy Technology Data Exchange (ETDEWEB)

    Oshel, Reed E. [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    In recent years, concern has risen over the use of fossil fuels due to their contribution to global warming, and to our dependence on imports of petroleum from nations that could pose a threat to national security. As a result, it has become increasingly important to develop technologies to replace fossil fuel based products with biorenewable alternatives. In this thesis nearly quantitative solubilization of lignocellulosic materials using phosphite esters has been realized, and is presented as a potential pretreatment for production of fermentable sugars for use in manufacturing commodity chemicals, specifically ethanol. Water solubilization of lignocellulosics using phosphite esters will enhance digestibility by disrupting the lignocellulose structure, changing cellulose morphology, and cleaving some glycosidic bonds. In a second project, soybean oil, which contains un-conjugated polyunsaturated fatty acid esters, is isomerized into oil containing conjugated polyunsaturates. The process is carried out under photochemical conditions using iodine as a catalyst in a hexanes solution to achieve 99% conjugation. The resulting conjugated soybean oil is demonstrated to have enhanced drying properties for use in alkyd resins.

  7. Growth and expression of relevant metabolic genes of Clostridium thermocellum cultured on lignocellulosic residues.

    Science.gov (United States)

    Leitão, Vanessa O; Noronha, Eliane F; Camargo, Brenda R; Hamann, Pedro R V; Steindorff, Andrei S; Quirino, Betania F; de Sousa, Marcelo Valle; Ulhoa, Cirano J; Felix, Carlos R

    2017-06-01

    The plant cell wall is a source of fermentable sugars in second-generation bioethanol production. However, cellulosic biomass hydrolysis remains an obstacle to bioethanol production in an efficient and low-cost process. Clostridium thermocellum has been studied as a model organism able to produce enzymatic blends that efficiently degrade lignocellulosic biomass, and also as a fermentative microorganism in a consolidated process for the conversion of lignocellulose to bioethanol. In this study, a C. thermocellum strain (designated B8) isolated from goat rumen was characterized for its ability to grow on sugarcane straw and cotton waste, and to produce cellulosomes. We also evaluated C. thermocellum gene expression control in the presence of complex lignocellulosic biomasses. This isolate is capable of growing in the presence of microcrystalline cellulose, sugarcane straw and cotton waste as carbon sources, producing free enzymes and residual substrate-bound proteins (RSBP). The highest growth rate and cellulase/xylanase production were detected at pH 7.0 and 60 °C, after 48 h. Moreover, this strain showed different expression levels of transcripts encoding cellulosomal proteins and proteins with a role in fermentation and catabolic repression.

  8. Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents.

    Science.gov (United States)

    Tang, Xing; Zuo, Miao; Li, Zheng; Liu, Huai; Xiong, Caixia; Zeng, Xianhai; Sun, Yong; Hu, Lei; Liu, Shijie; Lei, Tingzhou; Lin, Lu

    2017-07-10

    The scientific community has been seeking cost-competitive and green solvents with good dissolving capacity for the valorization of lignocellulosic biomass. At this point, deep eutectic solvents (DESs) are currently emerging as a new class of promising solvents that are generally liquid eutectic mixtures formed by self-association (or hydrogen-bonding interaction) of two or three components. DESs are attractive solvents for the fractionation (or pretreatment) of lignocellulose and the valorization of lignin, owing to the high solubility of lignin in DESs. DESs are also employed as effective media for the modification of cellulose to afford functionalized cellulosic materials, such as cellulose nanocrystals. More interestingly, biomassderived carbohydrates, such as fructose, can be used as one of the constituents of DESs and then dehydrated to 5-hydroxymethylfurfural in high yield. In this review, a comprehensive summary of recent contribution of DESs to the processing of lignocellulosic biomass and its derivatives is provided. Moreover, further discussion about the challenges of the application of DESs in biomass processing is presented. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review

    Directory of Open Access Journals (Sweden)

    Keikhosro Karimi

    2007-01-01

    Full Text Available Bioethanol is nowadays one of the main actors in the fuel market. It is currently produced from sugars and starchy materials, but lignocelluloses can be expected to be major feedstocks for ethanol production in the future. Two processes are being developed in parallel for conversion of lignocelluloses to ethanol, “acid-based” and “enzyme-based” processes. The current article is dedicated to review of progress in the “acid-based-hydrolysis” process. This process was used industrially in the 1940s, during wartime, but was not economically competitive afterward. However, intensive research and development on its technology during the last three decades, in addition to the expanding ethanol market, may revive the process in large scale once again. In this paper the ethanol market, the composition of lignocellulosic materials, concentrated- and dilute-acid pretreatment and hydrolysis, plug-flow, percolation, counter-current and shrinking-bed hydrolysis reactors, fermentation of hexoses and pentoses, effects of fermentation inhibitors, downstream processing, wastewater treatment, analytical methods used, and the current commercial status of the acid-based ethanol processes are reviewed.

  10. Saccharification of Lignocelluloses by Carbohydrate Active Enzymes of the White Rot Fungus Dichomitus squalens

    Science.gov (United States)

    Rytioja, Johanna; Hildén, Kristiina; Mäkinen, Susanna; Vehmaanperä, Jari; Hatakka, Annele; Mäkelä, Miia R.

    2015-01-01

    White rot fungus Dichomitus squalens is an efficient lignocellulose degrading basidiomycete and a promising source for new plant cell wall polysaccharides depolymerizing enzymes. In this work, we focused on cellobiohydrolases (CBHs) of D. squalens. The native CBHI fraction of the fungus, consisting three isoenzymes, was purified and it maintained the activity for 60 min at 50°C, and was stable in acidic pH. Due to the lack of enzyme activity assay for detecting only CBHII activity, CBHII of D. squalens was produced recombinantly in an industrially important ascomycete host, Trichoderma reesei. CBH enzymes of D. squalens showed potential in hydrolysis of complex lignocellulose substrates sugar beet pulp and wheat bran, and microcrystalline cellulose, Avicel. Recombinant CBHII (rCel6A) of D. squalens hydrolysed all the studied plant biomasses. Compared to individual activities, synergistic effect between rCel6A and native CBHI fraction of D. squalens was significant in the hydrolysis of Avicel. Furthermore, the addition of laccase to the mixture of CBHI fraction and rCel6A significantly enhanced the amount of released reducing sugars from sugar beet pulp. Especially, synergy between individual enzymes is a crucial factor in the tailor-made enzyme mixtures needed for hydrolysis of different plant biomass feedstocks. Our data supports the importance of oxidoreductases in improved enzyme cocktails for lignocellulose saccharification. PMID:26660105

  11. Grounds of two positions photovoltaic panels

    OpenAIRE

    Castán Fortuño, Fernando

    2008-01-01

    The objective of this Master Thesis is to find the optimum positioning for a two positions photovoltaic panel. Hence, it will be implemented a model in order to optimize the energy of the sun that the photovoltaic panel is receiving by its positioning. Likewise this project will include the comparison with other photovoltaic panel systems as the single position photovoltaics panels. Ultimately, it is also going to be designed a system array for the optimized model of two positions photovoltai...

  12. Lightweight composites for modular panelized construction

    Science.gov (United States)

    Vaidya, Amol S.

    Rapid advances in construction materials technology have enabled civil engineers to achieve impressive gains in the safety, economy, and functionality of structures built to serve the common needs of society. Modular building systems is a fast-growing modern, form of construction gaining recognition for its increased efficiency and ability to apply modern technology to the needs of the market place. In the modular construction technique, a single structural panel can perform a number of functions such as providing thermal insulation, vibration damping, and structural strength. These multifunctional panels can be prefabricated in a manufacturing facility and then transferred to the construction site. A system that uses prefabricated panels for construction is called a "panelized construction system". This study focuses on the development of pre-cast, lightweight, multifunctional sandwich composite panels to be used for panelized construction. Two thermoplastic composite panels are proposed in this study, namely Composite Structural Insulated Panels (CSIPs) for exterior walls, floors and roofs, and Open Core Sandwich composite for multifunctional interior walls of a structure. Special manufacturing techniques are developed for manufacturing these panels. The structural behavior of these panels is analyzed based on various building design codes. Detailed descriptions of the design, cost analysis, manufacturing, finite element modeling and structural testing of these proposed panels are included in this study in the of form five peer-reviewed journal articles. The structural testing of the proposed panels involved in this study included flexural testing, axial compression testing, and low and high velocity impact testing. Based on the current study, the proposed CSIP wall and floor panels were found satisfactory, based on building design codes ASCE-7-05 and ACI-318-05. Joining techniques are proposed in this study for connecting the precast panels on the construction

  13. Selective filling of Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Noordegraaf, Danny; Sørensen, Thorkild

    2005-01-01

    A model for calculating the time necessary for filling one or more specific holes in a photonic crystal fibre is made. This model is verified for water, and its enabling potential is illustrated by a polymer application. Selective filling of the core in an air-guide photonic crystal fibre...

  14. Influence of template fill in graphoepitaxy DSA

    Science.gov (United States)

    Doise, Jan; Bekaert, Joost; Chan, Boon Teik; Hong, SungEun; Lin, Guanyang; Gronheid, Roel

    2016-03-01

    Directed self-assembly (DSA) of block copolymers (BCP) is considered a promising patterning approach for the 7 nm node and beyond. Specifically, a grapho-epitaxy process using a cylindrical phase BCP may offer an efficient solution for patterning randomly distributed contact holes with sub-resolution pitches, such as found in via and cut mask levels. In any grapho-epitaxy process, the pattern density impacts the template fill (local BCP thickness inside the template) and may cause defects due to respectively over- or underfilling of the template. In order to tackle this issue thoroughly, the parameters that determine template fill and the influence of template fill on the resulting pattern should be investigated. In this work, using three process flow variations (with different template surface energy), template fill is experimentally characterized as a function of pattern density and film thickness. The impact of these parameters on template fill is highly dependent on the process flow, and thus pre-pattern surface energy. Template fill has a considerable effect on the pattern transfer of the DSA contact holes into the underlying layer. Higher fill levels give rise to smaller contact holes and worse critical dimension uniformity. These results are important towards DSA-aware design and show that fill is a crucial parameter in grapho-epitaxy DSA.

  15. Selective filling of Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Noordegraaf, Danny; Sørensen, Thorkild

    2005-01-01

    A model for calculating the time necessary for filling one or more specific holes in a photonic crystal fibre is made. This model is verified for water, and its enabling potential is illustrated by a polymer application. Selective filling of the core in an air-guide photonic crystal fibre is demo...

  16. Giant Magnetostrictive Material Exciter for Panel Loudspeaker

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; ZHANG Yong-fa

    2008-01-01

    The exciter component in a panel loudspeaker has a profound effect on the overall performance of the system.The equivalent circuit analysis of the combination of giant magnetostrictive material exciter and distributed mode panel is introduced and how exciter parameters influence panel lffudspeaker's performance is discussed.NumericaI predictions are given in order to show how these influences are manifested.

  17. Recent Discoveries on Antwerp Panel Makers' Marks

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1993-01-01

    There still exist today uncertainties and misunderstandings in our interpretation of panel makers' marks from early 17th century Antwerp. In the future, panel marks and the panels on which they can be found will certainly render much more information concerning the technology of that time. Still...

  18. Bamboo-based Panels for Structural Applications

    Institute of Scientific and Technical Information of China (English)

    CHENXuhe; WANGZheng

    2005-01-01

    With technical assistance from INBAR and the Research Institute of Wood Industry of the Chinese Academy of Forestry, the construction of the Pingbian Primary School was completed in 2004,where bamboo plywood panels and laminated beams were used for the roof trusses, sheathing boards and wall panels. This is the first time that bamboo-based panels are used for structural applications.

  19. Technology sandwich panels with mineral wool insulation

    OpenAIRE

    Tyulenev M.; Burtzeva M.; Mednikova E.

    2016-01-01

    Sandwich panel — self–supporting structure consisting of metal cladding and thermal insulation core. As a heat–insulating core used mineral wool, foamed plastics. Production of sandwich panels with insulation mineral wool performed on modular lines for the production of aggregate or conveyer scheme. Sandwich panels are used as load–bearing elements of the facades, as well as a roof covering.

  20. Noise reduction in double-panel structures by cavity and panel resonance control

    NARCIS (Netherlands)

    Ho, J.-H.; Berkhoff, A.P

    2011-01-01

    This paper presents an investigation of the cavity and the panel resonance control in a double‐panel structure. The double‐panel structure, which consists of two panels with air in the gap, is widely adopted in many applications such as aerospace due to its light weight and effective transmission‐lo

  1. The polystyrene microsphere filling with hydrogen isotopes through the fill tube with consequent freezing

    Science.gov (United States)

    Izgorodin, V. M.; Solomatina, E. Y.; Pepelyaev, A. P.; Rogozhina, M. A.; Osetrov, E. I.

    2016-09-01

    Process of spherical polystyrene capsules filling with hydrogen isotopes through the fill tube for the purpose of a cryogenic target building is described. The scheme of the stand for researches and a technique of carrying out of experiments is represented. Results of capsules filling and subsequent freezing for protium, deuterium and protium- deuterium mixture are shown.

  2. Panel 4 - applications to transportation

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, F. [Argonne National Lab., IL (United States); Au, J. [Sundstrand Aerospace, Rockford, IL (United States); Bhattacharya, R. [Universal Energy Systems, Inc., Dayton, OH (United States); Bhushan, B. [Ohio State Univ., Columbus (United States); Blunier, D. [Caterpillar, Inc., Peoria, IL (United States); Boardman, B. [Deere & Co., Moline, IL (United States); Brombolich, L. [Compu-Tec Engineering, Chesterfield, MO (United States); Davidson, J. [Vanderbilt Univ., Nashville, TN (United States); Graham, M. [Northwestern Univ., Evanston, IL (United States); Hakim, N. [Detroit Diesel Corp., MI (United States); Harris, K. [Dubbeldee Harris Diamond Corp., Mt. Arlington, NJ (United States); Hay, R. [Norton Diamond Film, Northboro, MA (United States); Herk, L. [Southwest Research Inst., Southfield, MI (United States); Hojnacki, H.; Rourk, D. [Intelligent Structures Incorporated, Canton, MI (United States); Kamo, R. [Adiabatics, Inc., Columbus, IN (United States); Nieman, B. [Allied-Signal Inc., Des Plaines, IL (United States); O`Neill, D. [3M, St. Paul, MN (United States); Peterson, M.B. [Wear Sciences, Arnold, MD (United States); Pfaffenberger, G. [Allison Gas Turbine, Indianapolis, IN (United States); Pryor, R.W. [Wayne State Univ., Detroit, MI (United States); Russell, J. [Superconductivity Publications, Inc., Somerset, NJ (United States); Syniuta, W. [Advanced Mechanical Technology, Inc., Newton, MA (United States); Tamor, M. [Ford Motor Co., Dearborn, MI (United States); Vojnovich, T. [Dept. of Energy, Washington, DC (United States); Yarbrough, W. [Pennsylvania State Univ., University Park (United States); Yust, C.S. [Oak Ridge National Lab., TN (United States)

    1993-01-01

    The aim of this group was to compile a listing of current and anticipated future problem areas in the transportation industry where the properties of diamond and DLC films make them especially attractive and where the panel could strongly endorse the establishment of DOE/Transportation Industry cooperative research efforts. This section identifies the problem areas for possible applications of diamond/DLC technology and presents indications of current approaches to these problems.

  3. Solar Cells and Solar Panels

    Science.gov (United States)

    1977-04-01

    TO CATALOG THIS DATA IN THE FORM OF A MODELo THE PRESENT DATA CAN BE MADE TO FIT A P-N JUNCTION WITH PHOTOCONDUCTIVE SERIES AND SHUNT RESISTANCES...TO THE SUN. ANALYSIS OF THE APPARENT MOTION OF THE SUN, WIND EFFECTS, PANEL ORIENTATION, SUN SENSING , AND BASIC SYSTEM CONFIGURATIONS ARE INCLUDED IN...DESIGN REQUIREMENTS LED TO SPECIFICATION OF A TWO-DEGREE-OF- FREEDOM GEARLESS MECHANISM INCORPORATING SUN SENSING , DIRECT SHAFT TORQUINGs AND POWER

  4. Striations in Plasma Display Panel

    Institute of Scientific and Technical Information of China (English)

    OUYANG Ji-Ting; CAO Jing; MIAO Jin-Song

    2005-01-01

    @@ The phenomenon of striation has been investigated experimentally in a macroscopic ac-plasma display panel (PDP). The relationship between the characteristics of striation and the operation conditions including voltage, frequency, rib, and electrode configuration, etc is obtained experimentally. The origin of the striations is considered to be the ionization waves in the transient positive column near the dielectric surface in the anode area during the discharge, and the perturbation is caused by resonance kinetic effects in inert gas.

  5. [Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8].

    Science.gov (United States)

    Li, Hong-ya; Li, Shu-na; Wang, Shu-xiang; Wang, Quan; Xue, Yin-yin; Zhu, Bao-cheng

    2015-05-01

    Microbial degradation of lignocellulose is one of the key problems that need to be solved urgently in the process of utilizing biomass resource. Bacillus amyloliquefaciens MN-8 is our previously isolated bacterium capable of degrading lignin. To determine the capability of strain MN-8 to degrade lignocellulose of corn straw, B. amyloliquefaciens MN-8 was inoculated and fermented with solid-state corn straw powder-MSM culture medium. The changes in the enzyme activity and degradation products of lignocellulose were monitored in the process of fermentation using the FTIR and GC/MS. The results showed that B. amyloliquefaciens MN-8 could produce lignin peroxidase, manganese peroxidase, cellulase and hemicellulase enzymes. The activities of all these enzymes reached the peak after being incubated for 10-16 days, and the highest enzyme activities were 55.0, 16.7, 45.4 and 60.5 U · g(-1), respectively. After 24 d of incubation, the degradation percentages of lignin, cellulose and hemicellulose were up to 42.9%, 40.6% and 27.1%, respectively. The spectroscopic data by FTIR indicated that the intensities of characteristic absorption peaks of lignin, cellulose and hemicellulose of the corn straw were decreased, indicating that the lignocellulose was degraded partly after being fermented by B. amyloliquefaciens MN-8. GC/MS analysis also demonstrated that strain MN-8 could degrade lignocellulose efficiently. It could depolymerize lignin into some monomeric compounds with retention of phenylpropane structure unit, such as amphetamine, benzene acetone and benzene propanoic acids, by the rupture of β-O-4 bond connected between lignin monomer, and it further oxidized some monomer compounds into Cα carbonyl compounds, such as 2-amino-1-benzeneacetone and 4-hydroxy-3,5-dimethoxy-acetophenone. The GC/MS analysis of the degradation products of cellulose and hemicellulose showed that there were not only monosaccharide compounds, such as glucose, mannose and galactose, but also some

  6. Panel urges cloning ethics boards

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, E.

    1997-01-03

    A 7-month review of the system that guides U.S. policy on the ethical, legal, and social issues (ELSI) of the Human Genome Project has concluded that it is time for a radical overhaul. A report completed last month recommends that a high-level policy board be created in the office of the Secretary of Health and Human Services to help develop policies on such sensitive issues as genetic privacy, antidiscrimination legislation, public education on genetic risks, and the regulation of genetic testing. If accepted, the proposal-from a review panel chaired by attorney Mark Rothstein of the University of Houston and geneticist M. Anne Spence of the University of California, Irvine-would create a new panel of 15 to 18 members to serve as {open_quotes}a public forum for discussion of ... critical issues.{close_quotes} This panel would replace the current advisory body, known as the ELSI Working Group, and end what the report calls a {open_quotes}discordance{close_quotes} between the broad scope of the Working Group and the {open_quotes}very limited focus{close_quotes} of the research program under which it operates.

  7. Droplet Measurement below Single-Layer Grid Fill

    Directory of Open Access Journals (Sweden)

    Vitkovic Pavol

    2016-01-01

    Full Text Available The main part of the heat transfer in a cooling tower is in a fill zone. This one is consist of a cooling fill. For the cooling tower is used a film fill or grid fill or splash fill in the generally. The grid fill has lower heat transfer performance like film fill usually. But their advantage is high resistance to blockage of the fill. The grid fill is consisted with independent layers made from plastic usually. The layers consist of several bars connected to the different shapes. For experiment was used the rhombus shape. The drops diameter was measured above and below the Grid fill.

  8. Curricular priorities for business ethics in medical practice and research: recommendations from Delphi consensus panels.

    Science.gov (United States)

    DuBois, James M; Kraus, Elena M; Gursahani, Kamal; Mikulec, Anthony; Bakanas, Erin

    2014-11-15

    No published curricula in the area of medical business ethics exist. This is surprising given that physicians wrestle daily with business decisions and that professional associations, the Institute of Medicine, Health and Human Services, Congress, and industry have issued related guidelines over the past 5 years. To fill this gap, the authors aimed (1) to identify the full range of medical business ethics topics that experts consider important to teach, and (2) to establish curricular priorities through expert consensus. In spring 2012, the authors conducted an online Delphi survey with two heterogeneous panels of experts recruited in the United States. One panel focused on business ethics in medical practice (n = 14), and 1 focused on business ethics in medical research (n = 12). Panel 1 generated an initial list of 14 major topics related to business ethics in medical practice, and subsequently rated 6 topics as very important or essential to teach. Panel 2 generated an initial list of 10 major topics related to business ethics in medical research, and subsequently rated 5 as very important or essential. In both domains, the panel strongly recommended addressing problems that conflicts of interest can cause, legal guidelines, and the goals or ideals of the profession. The Bander Center for Medical Business Ethics at Saint Louis University will use the results of the Delphi panel to develop online curricular resources for each of the highest rated topics.

  9. High Strength Wood-based Sandwich Panels Reinforced with Fiberglass and Foam

    Directory of Open Access Journals (Sweden)

    Jinghao Li

    2014-02-01

    Full Text Available Mechanical analysis is presented for new high-strength sandwich panels made from wood-based phenolic impregnated laminated paper assembled with an interlocking tri-axial ribbed core. Four different panel configurations were tested, including panels with fiberglass fabric bonded to both outside faces with self-expanding urethane foam used to fill the ribbed core. The mechanical behaviors of the sandwich panels were strength tested via flatwise compression, edgewise compression, and third-point load bending. Panels with fiberglass exhibited significantly increased strength and apparent MOE in edgewise compression and bending, but there were no noticeable effects in flatwise compression. The foam provided improved support that resisted both rib buckling and face buckling for both compression and bending tests. Post-failure observation indicated that core buckling dominated the failures for all configurations used. It is believed that using stiffer foam or optimizing the dimension of the core might further improve the mechanical performance of wood-based sandwich panels.

  10. Design and fabrication of a skin stringer discrete tube actively cooled structural panel

    Science.gov (United States)

    Anthony, F. M.

    1978-01-01

    The design optimization and practical implementation of actively cooled structural panel concepts was investigated. The desired actively cooled structural panel consisted of the cooled skin and a substructure. The primary load carrying components were fabricated from 2024-T3 aliminum alloy. The 3003-H14 coolant passage tubing was chosen because of its excellent corrosion resistance, workability needed to obtain the desired cross sectional shape, and strength. The Epon 951 adhesive was selected for its excellent structural properties and is the thinnest of available films, 0.064 mm. The Eccobond 58C silver filled epoxy was chosen because of its high thermal conductivity, and the alumina filled Epon 828 was chosen for structural and expansion characteristics.

  11. Analytical comparison of three stiffened panel concepts

    Science.gov (United States)

    Maloney, Jill M.; Wu, K. Chauncey; Robinson, James C.

    1995-01-01

    Three stiffened panel concepts are evaluated to find optimized designs for integral stiffeners in the barrels of Reusable Launch Vehicle fuel tanks. The three panel concepts considered are a T-stiffened panel, a panel with one blade stiffener centered between each pair of T-stiffeners, and a panel with two blade stiffeners equally spaced between each pair of T-stiffeners. The panels are optimized using PASCO for a range of compressive loads, and the computed areal weight for each panel is used to compare the concepts and predict tank weights. The areal weight of the T-stiffened panel with one blade is up to seven-percent lower than the other panel concepts. Two tank construction methods are compared for a representative tank design with three barrels. In the first method, 45-degree circumferential sections of a barrel are each designed to carry the same maximum load in the barrel. In the second method, each barrel section is designed for the maximum load in that section. Representative tanks designed with the first method are over 250 lb heavier than tanks designed using the second method. Optimized panel designs and areal weights are also computed for variation of the nominal panel length and skin thickness.

  12. Highly stretchable, transparent ionic touch panel

    Science.gov (United States)

    Kim, Chong-Chan; Lee, Hyun-Hee; Oh, Kyu Hwan; Sun, Jeong-Yun

    2016-08-01

    Because human-computer interactions are increasingly important, touch panels may require stretchability and biocompatibility in order to allow integration with the human body. However, most touch panels have been developed based on stiff and brittle electrodes. We demonstrate an ionic touch panel based on a polyacrylamide hydrogel containing lithium chloride salts. The panel is soft and stretchable, so it can sustain a large deformation. The panel can freely transmit light information because the hydrogel is transparent, with 98% transmittance for visible light. A surface-capacitive touch system was adopted to sense a touched position. The panel can be operated under more than 1000% areal strain without sacrificing its functionalities. Epidermal touch panel use on skin was demonstrated by writing words, playing a piano, and playing games.

  13. Flat panel display - Impurity doping technology for flat panel displays

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Toshiharu [Advanced Technology Planning, Sumitomo Eaton Nova Corporation, SBS Tower 9F, 10-1, Yoga 4-chome, Setagaya-ku, 158-0097 Tokyo (Japan)]. E-mail: suzuki_tsh@senova.co.jp

    2005-08-01

    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified.

  14. Enhanced hydrolysis of lignocellulosic biomass: Bi-functional enzyme complexes expressed in Pichia pastoris improve bioethanol production from Miscanthus sinensis.

    Science.gov (United States)

    Shin, Sang Kyu; Hyeon, Jeong Eun; Kim, Young In; Kang, Dea Hee; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2015-12-01

    Lignocellulosic biomass is the most abundant utilizable natural resource. In the process of bioethanol production from lignocellulosic biomass, an efficient hydrolysis of cellulose and hemicellulose to release hexose and pentose is essential. We have developed a strain of Pichia pastoris that can produce ethanol via pentose and hexose using an assembly of enzyme complexes. The use of enzyme complexes is one of the strategies for effective lignocellulosic biomass hydrolysis. Xylanase XynB from Clostridium cellulovorans and a chimeric endoglucanase cCelE from Clostridium thermocellum were selected as enzyme subunits, and were bound to a recombinant scaffolding protein mini-CbpA from C. cellulovorans to assemble the enzyme complexes. These complexes efficiently degraded xylan and carboxymethylcellulose (CMC), producing approximately 1.18 and 1.07 g/L ethanol from each substrate, respectively, which is 2.3-fold and 2.7-fold higher than that of the free-enzyme expressing strain. Miscanthus sinensis was investigated as the lignocellulosic biomass for producing bioethanol, and 1.08 g/L ethanol was produced using our recombinant P. pastoris strain, which is approximately 1.9-fold higher than that of the wild-type strain. In future research, construction of enzyme complexes containing various hydrolysis enzymes could be used to develop biocatalysts that can completely degrade lignocellulosic biomass into valuable products such as biofuels.

  15. Phenolic compounds: Strong inhibitors derived from lignocellulosic hydrolysate for 2,3-butanediol production by Enterobacter aerogenes.

    Science.gov (United States)

    Lee, Sang Jun; Lee, Ju Hun; Yang, Xiaoguang; Kim, Sung Bong; Lee, Ja Hyun; Yoo, Hah Young; Park, Chulhwan; Kim, Seung Wook

    2015-12-01

    Lignocellulosic biomass are attractive feedstocks for 2,3-butanediol production due to their abundant supply and low price. During the hydrolysis of lignocellulosic biomass, various byproducts are formed and their effects on 2,3-butanediol production were not sufficiently studied compared to ethanol production. Therefore, the effects of compounds derived from lignocellulosic biomass (weak acids, furan derivatives and phenolics) on the cell growth, the 2,3-butanediol production and the enzymes activity involved in 2,3-butanediol production were evaluated using Enterobacter aerogenes ATCC 29007. The phenolic compounds showed the most toxic effects on cell growth, 2,3-butanediol production and enzyme activity, followed by furan derivatives and weak acids. The significant effects were not observed in the presence of acetic acid and formic acid. Also, feasibility of 2,3-butanediol production from lignocellulosic biomass was evaluated using Miscanthus as a feedstock. In the fermentation of Miscanthus hydrolysate, 11.00 g/L of 2,3-butanediol was obtained from 34.62 g/L of reducing sugar. However, 2,3-butanediol was not produced when the concentration of total phenolic compounds in the hydrolysate increased to more than 1.5 g/L. The present study provides useful information to develop strategies for biological production of 2,3-butanediol and to establish biorefinery for biochemicals from lignocellulosic biomass.

  16. Production of Ethanol from Sugars and Lignocellulosic Biomass by Thermoanaerobacter J1 Isolated from a Hot Spring in Iceland

    Directory of Open Access Journals (Sweden)

    Jan Eric Jessen

    2012-01-01

    Full Text Available Thermophilic bacteria have gained increased attention as candidates for bioethanol production from lignocellulosic biomass. This study investigated ethanol production by Thermoanaerobacter strain J1 from hydrolysates made from lignocellulosic biomass in batch cultures. The effect of increased initial glucose concentration and the partial pressure of hydrogen on end product formation were examined. The strain showed a broad substrate spectrum, and high ethanol yields were observed on glucose (1.70 mol/mol and xylose (1.25 mol/mol. Ethanol yields were, however, dramatically lowered by adding thiosulfate or by cocultivating strain J1 with a hydrogenotrophic methanogen with acetate becoming the major end product. Ethanol production from 4.5 g/L of lignocellulosic biomass hydrolysates (grass, hemp stem, wheat straw, newspaper, and cellulose pretreated with acid or alkali and the enzymes Celluclast and Novozymes 188 was investigated. The highest ethanol yields were obtained on cellulose (7.5 mM·g−1 but the lowest on straw (0.8 mM·g−1. Chemical pretreatment increased ethanol yields substantially from lignocellulosic biomass but not from cellulose. The largest increase was on straw hydrolysates where ethanol production increased from 0.8 mM·g−1 to 3.3 mM·g−1 using alkali-pretreated biomass. The highest ethanol yields on lignocellulosic hydrolysates were observed with hemp hydrolysates pretreated with acid, 4.2 mM·g−1.

  17. Physico-Chemical Alternatives in Lignocellulosic Materials in Relation to the Kind of Component for Fermenting Purposes

    Directory of Open Access Journals (Sweden)

    Alberto Coz

    2016-07-01

    Full Text Available The complete bioconversion of the carbohydrate fraction is of great importance for a lignocellulosic-based biorefinery. However, due to the structure of the lignocellulosic materials, and depending basically on the main parameters within the pretreatment steps, numerous byproducts are generated and they act as inhibitors in the fermentation operations. In this sense, the impact of inhibitory compounds derived from lignocellulosic materials is one of the major challenges for a sustainable biomass-to-biofuel and -bioproduct industry. In order to minimise the negative effects of these compounds, numerous methodologies have been tested including physical, chemical, and biological processes. The main physical and chemical treatments have been studied in this work in relation to the lignocellulosic material and the inhibitor in order to point out the best mechanisms for fermenting purposes. In addition, special attention has been made in the case of lignocellulosic hydrolysates obtained by chemical processes with SO2, due to the complex matrix of these materials and the increase in these methodologies in future biorefinery markets. Recommendations of different detoxification methods have been given.

  18. Differential Proteomic Profiles of Pleurotus ostreatus in Response to Lignocellulosic Components Provide Insights into Divergent Adaptive Mechanisms.

    Science.gov (United States)

    Xiao, Qiuyun; Ma, Fuying; Li, Yan; Yu, Hongbo; Li, Chengyun; Zhang, Xiaoyu

    2017-01-01

    Pleurotus ostreatus is a white rot fungus that grows on lignocellulosic biomass by metabolizing the main constituents. Extracellular enzymes play a key role in this process. During the hydrolysis of lignocellulose, potentially toxic molecules are released from lignin, and the molecules are derived from hemicellulose or cellulose that trigger various responses in fungus, thereby influencing mycelial growth. In order to characterize the mechanism underlying the response of P. ostreatus to lignin, we conducted a comparative proteomic analysis of P. ostreatus grown on different lignocellulose substrates. In this work, the mycelium proteome of P. ostreatus grown in liquid minimal medium with lignin, xylan, and carboxymethyl cellulose (CMC) was analyzed using the complementary two-dimensional gel electrophoresis (2-DE) approach; 115 proteins were identified, most of which were classified into five types according to their function. Proteins with an antioxidant function that play a role in the stress response were upregulated in response to lignin. Most proteins involving in carbohydrate and energy metabolism were less abundant in lignin. Xylan and CMC may enhanced the process of carbohydrate metabolism by regulating the level of expression of various carbohydrate metabolism-related proteins. The change of protein expression level was related to the adaptability of P. ostreatus to lignocellulose. These findings provide novel insights into the mechanisms underlying the response of white-rot fungus to lignocellulose.

  19. Efficacy of singular and stacked brown midrib 6 and 12 in the modification of lignocellulose and grain chemistry.

    Science.gov (United States)

    Sattler, Scott E; Funnell-Harris, Deanna L; Pedersen, Jeffrey F

    2010-03-24

    In sorghum, brown midrib (bmr) 6 and 12 impair the last two steps of monolignol synthesis. bmr genes were introduced into grain sorghum to improve the digestibility of lignocellulosic tissues for grazing or bioenergy uses following grain harvest. Near-isogenic grain sorghum hybrids (AWheatland x RTx430) were developed containing bmr6, bmr12, and the bmr6 bmr12 double mutant (stacked), and their impacts were assessed in a two-year field study. The bmr genes did not significantly impact grain or lignocellulosic tissue yield. Lignocellulosic tissue from bmr6, bmr12, and stacked hybrids had reduced lignin content and increased in vitro dry matter digestibility (IVDMD) compared to those of the wild type (WT). The lignin content of the stacked lignocellulosic tissue was further reduced compared to that of bmr6 or bmr12. Surprisingly, bmr12 modestly increased carbohydrates in lignocellulosic tissue, and bmr6 increased fiber and lignin content in grain. These data indicate that bmr6 and bmr12 have broader effects on plant composition than merely lignin content, which has promising implications for both livestock utilization and bioenergy conversion.

  20. Blast Protection Shelter by Using Hollow Steel Filled with Recycled Concrete

    Institute of Scientific and Technical Information of China (English)

    LI Jianchun; HUANG Xin; MA Guowei

    2008-01-01

    Under extreme loading condition, a shelter will provide a safe place to protect people from injury caused by blast wave and fragments.In order to save resource and reuse waste materials, a new design concept for blast protection shelter was explored.The new construction was composed of I-section steel panel or C-channel steel panel filled with recycled concrete aggregate.The compaction process of the recycled concrete aggregate filled in the steel construction was experimentally investigated.A single storey shelter based on the proposed design concept was numerically simulated by using LS-DYNA software.In the 3D numerical model, three walls were designed using I-section steel and one wall using C-channel steel, and all of the four walls were filled with recycled concrete aggregate.The penetration analysis was done by using ConWep.Some penetration tests were also carried out by using a gas gun.It is found that the proposed shelter based on the design concept is effective for blast protection.

  1. Gas-filled separators - An overview

    CERN Document Server

    Leino, M

    2003-01-01

    Gas-filled recoil separators have been used in nuclear physics studies since the early fifties. Most notably, they have found use in the separation of evaporation residues of heavy and very heavy elements from unwanted background. Gas-filled separators, alone or coupled to a detector array, offer an efficient, fast, compact and relatively inexpensive solution for nuclear structure studies. A new application is the use of a gas-filled device as a pre-separator in the study of chemical properties of the heaviest elements. Other uses include systematic study of fusion evaporation cross sections and accelerator mass spectrometry. In this contribution, an overview on gas-filled recoil separators, their characteristics, fields of application and possible future developments is given.

  2. Experimental Analysis of solar panel efficiency with different modes of cooling

    Directory of Open Access Journals (Sweden)

    B.Koteswararao

    2016-06-01

    Full Text Available The new capital2 area of andhrapradesh1 having huge power demand. We can meet up to certain requirement throughout the year by using renewable energy4 resources like solar5 energy. Because this is the place where the sun intensity3 available much more. Our paper gives better utilization6 methods of sun energy through these methods. Even though we are having plenty amount of solar energy availability but we are unable to utilize solar energy effectively due to temperature variation from time to time. We can maintain constant power generation by the help of cooling .Our paper suggests the best cooling method for solar PVC panels among two cooling methods that is water and air. In water cooling cross flow and parallel flow used. Thermal sensor automatically switches on the motor after reaching panel over heat. The efficiency of the panel and Fill Factor measured in all the conditions.

  3. Matériaux ligno-cellulosiques : "Élaboration et caractérisation"

    OpenAIRE

    Privas, Edwige

    2013-01-01

    This work aims at developing new ligno-cellulosic biomass based materials as a way for giving added value to this raw material. This study aimed at developing three different new ways of using ligno-cellulosic components to get a large overview of the possible technical materials. The first way deals with the preparation of natural fibres filled lignin fibreboard panels. Improvements in panels forming have been achieved by using either chemical treatment or novel compatibilisation to improve ...

  4. Contraction stresses of composite resin filling materials.

    Science.gov (United States)

    Hegdahl, T; Gjerdet, N R

    1977-01-01

    The polymerization shrinkage of composite resin filling materials and the tensile stresses developed when the shrinkage is restrained were measured in an in vitro experiment. This allows an estimation to be made of the forces exerted upon the enamel walls of cavities filled with the resin in the acid etch technique. The results indicate that the stresses acting on the enamel are low compared to the tensile strength of the enamel.

  5. Automated solar panel assembly line

    Science.gov (United States)

    Somberg, H.

    1981-01-01

    The initial stage of the automated solar panel assembly line program was devoted to concept development and proof of approach through simple experimental verification. In this phase, laboratory bench models were built to demonstrate and verify concepts. Following this phase was machine design and integration of the various machine elements. The third phase was machine assembly and debugging. In this phase, the various elements were operated as a unit and modifications were made as required. The final stage of development was the demonstration of the equipment in a pilot production operation.

  6. The Conservation of Panel paintings

    DEFF Research Database (Denmark)

    Until the early 17th century almost all portable paintings were created on wood supports, including masterpieces by famous painters, ranging from Giotto to Dürer to Rembrandt. The structural conservation of these paintings requires specific knowledge and skills as the supports are susceptible...... to damage caused by unstable environmental conditions. Unfortunately, past structural interventions often caused significant damage due to insufficient knowledge of the behaviour of the wood panels, glue and paint layers. Over the last fifty years, the field has developed treatment strategies based...

  7. Optimum design of composite panel with photovoltaic-thermo module. Absorbing effect of cooling panel; Hikari netsu fukugo panel no saiteki sekkei. Reikyaku panel no kyunetsu koka

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Kikuchi, S.; Tani, T. [Science University of Tokyo, Tokyo (Japan); Kadotani, K.; Imaizumi, H. [Komatsu Ltd., Tokyo (Japan)

    1996-10-27

    The composite panel with photovoltaic-thermo module becomes higher in energy-saving than the conventional air-conditioning system by the independent radiational heating and cooling effect obtained when the generating panel using a solar cell module is combined with the heating and cooling panel using a thermo-element module. The output of a solar cell module can be directly used because the solar cell module operates in AC. This paper reports the relation between the absorbed value and power consumption of the cooling panel, while paying attention to the cooling panel. The performance coefficient of the maximum absorbed value from an non-absorbing substance to a cooling panel is 2 to 3. Assume that the cooling panel during non-adiabatic operation is operated using a solar cell module of 800 W/m{sup 2} in solar intensity and 15% in conversion efficiency. The cooling-surface temperature difference is 12.12 K, and the maximum absorbed value of a non-absorbing substance to a cooling panel is 39.12 W/m{sup 2}. The absorbed value of the outer temperature to the cooling panel is 74.4 W/m{sup 2}, and each performance coefficient is 3.26 and 0.62. The absorbed value must be calculated for evaluation from the cooling-surface temperature difference measured directly from the cooling panel. 4 refs., 8 figs., 1 tab.

  8. Blank Panel Design of Integral Wing Skin Panels Based on Feature Mapping Methods

    Institute of Scientific and Technical Information of China (English)

    Wang; Junbiao; Zhang; Xianjie

    2007-01-01

    A blank panel design algorithm based on feature mapping methods for integral wing skin panels with supercritical airfoil surface is presented.The model of a wing panel is decomposed into features,and features of the panel are decomposed into information of location,direction,dimension and Boolean types.Features are mapped into the plane through optimal surface development algorithm.The plane panel is modeled by rebuilding the mapped features.Blanks of shot-peen forming panels are designed to identify the effectiveness of the methods.

  9. Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house

    Directory of Open Access Journals (Sweden)

    Macrelli Stefano

    2009-07-01

    Full Text Available Abstract Background Improvement of the process of cellulase production and development of more efficient lignocellulose-degrading enzymes are necessary in order to reduce the cost of enzymes required in the biomass-to-bioethanol process. Results Lignocellulolytic enzyme complexes were produced by the mutant Trichoderma atroviride TUB F-1663 on three different steam-pretreated lignocellulosic substrates, namely spruce, wheat straw and sugarcane bagasse. Filter paper activities of the enzymes produced on the three materials were very similar, while β-glucosidase and hemicellulase activities were more dependent on the nature of the substrate. Hydrolysis of the enzyme preparations investigated produced similar glucose yields. However, the enzymes produced in-house proved to degrade the xylan and the xylose oligomers less efficiently than a commercial mixture of cellulase and β-glucosidase. Furthermore, accumulation of xylose oligomers was observed when the TUB F-1663 supernatants were applied to xylan-containing substrates, probably due to the low β-xylosidase activity of the enzymes. The efficiency of the enzymes produced in-house was enhanced by supplementation with extra commercial β-glucosidase and β-xylosidase. When the hydrolytic capacities of various mixtures of a commercial cellulase and a T. atroviride supernatant produced in the lab were investigated at the same enzyme loading, the glucose yield appeared to be correlated with the β-glucosidase activity, while the xylose yield seemed to be correlated with the β-xylosidase level in the mixtures. Conclusion Enzyme supernatants produced by the mutant T. atroviride TUB F-1663 on various pretreated lignocellulosic substrates have good filter paper activity values combined with high levels of β-glucosidase activities, leading to cellulose conversion in the enzymatic hydrolysis that is as efficient as with a commercial cellulase mixture. On the other hand, in order to achieve good xylan

  10. 2nd generation lignocellulosic bioethanol: is torrefaction a possible approach to biomass pretreatment?

    Energy Technology Data Exchange (ETDEWEB)

    Chiaramonti, David; Rizzo, Andrea Maria; Prussi, Matteo [University of Florence, CREAR - Research Centre for Renewable Energy and RE-CORD, Florence (Italy); Tedeschi, Silvana; Zimbardi, Francesco; Braccio, Giacobbe; Viola, Egidio [ENEA - Laboratory of Technology and Equipment for Bioenergy and Solar Thermal, Rotondella (Italy); Pardelli, Paolo Taddei [Spike Renewables s.r.l., Florence (Italy)

    2011-03-15

    Biomass pretreatement is a key and energy-consuming step for lignocellulosic ethanol production; it is largely responsible for the energy efficiency and economic sustainability of the process. A new approach to biomass pretreatment for the lignocellulosic bioethanol chain could be mild torrefaction. Among other effects, biomass torrefaction improves the grindability of fibrous materials, thus reducing energy demand for grinding the feedstock before hydrolysis, and opens the biomass structure, making this more accessible to enzymes for hydrolysis. The aim of the preliminary experiments carried out was to achieve a first understanding of the possibility to combine torrefaction and hydrolysis for lignocellulosic bioethanol processes, and to evaluate it in terms of sugar and ethanol yields. In addition, the possibility of hydrolyzing the torrefied biomass has not yet been proven. Biomass from olive pruning has been torrefied at different conditions, namely 180-280 C for 60-120 min, grinded and then used as substrate in hydrolysis experiments. The bioconversion has been carried out at flask scale using a mixture of cellulosolytic, hemicellulosolitic, {beta}-glucosidase enzymes, and a commercial strain of Saccharomyces cerevisiae. The experiments demonstrated that torrefied biomass can be enzymatically hydrolyzed and fermented into ethanol, with yields comparable with grinded untreated biomass and saving electrical energy. The comparison between the bioconversion yields achieved using only raw grinded biomass or torrefied and grinded biomass highlighted that: (1) mild torrefaction conditions limit sugar degradation to 5-10%; and (2) torrefied biomass does not lead to enzymatic and fermentation inhibition. Energy consumption for ethanol production has been preliminary estimated, and three different pretreatment steps, i.e., raw biomass grinding, biomass-torrefaction grinding, and steam explosion were compared. Based on preliminary results, steam explosion still has a

  11. Identification of a laccase from Ganoderma lucidum CBS 229.93 having potential for enhancing cellulase catalyzed lignocellulose degradation

    DEFF Research Database (Denmark)

    Sitarz, Anna Katarzyna; Mikkelsen, Jørn Dalgaard; Højrup, Peter

    2013-01-01

    . Addition of the laccase-rich G. lucidum broth to lignocellulosic biomass (pretreated sugar cane bagasse) together with a state-of-the-art cellulase enzyme preparation (Cellic™CTec1) produced significantly increased cellulolytic yields, which were also better than those obtained with a T. versicolor laccase...... extract or minimal media supplemented with alkali lignin. When grown on malt extract or minimal medium supplemented with lignocellulose (sugar cane bagasse), the crude G. lucidum protein extract exhibited high laccase activity, ∼3U/mL toward syringaldazine. This activity was 13–17 fold higher than...... addition, indicating that the laccase from G. lucidum has unique properties that may be momentous in lignocellulosic biomass conversion....

  12. A multi-scale biomechanical model based on the physiological structure and lignocellulose components of wheat straw.

    Science.gov (United States)

    Chen, Longjian; Li, Aiwei; He, Xueqin; Han, Lujia

    2015-11-20

    Biomechanical behavior is a fundamental property for the efficient utilization of wheat straw in such applications as fuel and renewable materials. Tensile experiments and lignocellulose analyses were performed on three types of wheat straw. A multi-scale finite element model composed of the microscopic model of the microfibril equivalent volume element and the macroscopic model of straw tissue was proposed based on the physiological structure and lignocellulose components of wheat straw. The tensile properties of wheat straw were simulated by ANSYS software. The predicted stress-strain data were compared with the observed data, and good correspondence was achieved for all three types of wheat straw. The validated multi-scale finite-element (FE) model was then used to investigate the effect of the lignocellulose components on the biomechanical properties of wheat straw. More than 80% of stress is carried by the cellulose fiber, whereas the strain is mainly carried by the amorphous cellulose.

  13. Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use.

    Science.gov (United States)

    Gerbrandt, Kelsey; Chu, Pei Lin; Simmonds, Allison; Mullins, Kimberley A; MacLean, Heather L; Griffin, W Michael; Saville, Bradley A

    2016-04-01

    Lignocellulosic ethanol has potential for lower life cycle greenhouse gas emissions compared to gasoline and conventional grain-based ethanol. Ethanol production 'pathways' need to meet economic and environmental goals. Numerous life cycle assessments of lignocellulosic ethanol have been published over the last 15 years, but gaps remain in understanding life cycle performance due to insufficient data, and model and methodological issues. We highlight key aspects of these issues, drawing on literature and a case study of corn stover ethanol. Challenges include the complexity of feedstock/ecosystems and market-mediated aspects and the short history of commercial lignocellulosic ethanol facilities, which collectively have led to uncertainty in GHG emissions estimates, and to debates on LCA methods and the role of uncertainty in decision making.

  14. High selective delignification using oxidative ionic liquid pretreatment at mild conditions for efficient enzymatic hydrolysis of lignocellulose.

    Science.gov (United States)

    Pang, Zhiqiang; Lyu, Wenkang; Dong, Cuihua; Li, Hongxing; Yang, Guihua

    2016-08-01

    Herein, the oxidative ionic liquid (IL) pretreatment for overcoming recalcitrance of lignocellulose with selective delignification was investigated, and the subsequent enzymatic hydrolysis was evaluated. IL pretreatment incorporating oxygen delignification could enhance lignin extraction with high selectivity at low carbohydrate loss. The dual-action of oxidative decomposition and dissolution by 1-butyl-3-methlimidazolium chloride (BmimCl) on biomass were synergistically acted, accounting for efficient recalcitrance removal. In addition, the mild oxidative IL treatment only slightly converted crystalline cellulose into amorphous structure, and the extensive extraction of the amorphous lignin and carbohydrate resulted to the expose of cellulose with high susceptibility. Correspondingly, the enzymatic hydrolysis of the pretreated lignocellulose was greatly enhanced. The oxidative IL treatment at mild conditions, collaborating BmimCl treatment with oxygen delignification is a promising and effective system for overcoming the robust structure of lignocellulose.

  15. THE EFFECTS OF VARIOUS LIGNOCELLULOSIC BASED WASTE ON THE YIELD PROPERTIES OF PLEUROTUS OSTREATUS

    Directory of Open Access Journals (Sweden)

    Ergün BAYSAL

    2000-03-01

    Full Text Available With thıs study it was aimed to produce Pleurotus ostreatus from the lignocellulosic materials which are hiighly potential and no reuse in other means. It was found that using substrates in mixtures with a predetermined ratio had better effects on the yield of the product (Pleurotus ostreatus than they were used as a single phase. The mixtures studied were hazelnut leaves (HL, wood waste (WW and wheat straw (WS from which HL+waste paper (WP (1: 1 weight basis mixture showed the high yieldst (54.4 wt. % in wet state.

  16. Bioethanol from biomass containing lignocellulose - potential and technologies; Bioethanol aus lignocellulosehaltiger Biomasse - Potenziale und Technologien

    Energy Technology Data Exchange (ETDEWEB)

    Faulstich, M.; Schieder, D.; Wagner, U.; Staudenbauer, W.; Igelspacher, R.; Schwarz, W.H.; Meyer-Pittroff, R.; Antoni, D. [Technische Univ. Muenchen (Germany); Prechtl, S. [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany); Bauer, W.P.; Kroner, T. [ia GmbH, Wissensmanagement und Ingenieurleistungen, Muenchen (Germany)

    2004-07-01

    The EU biofuels directive and the tax exemption of biogenic fuels have established a new market for bioethanol in the transport sector. Low-cost lignocellulose biomass (LCB) may be an option for broadening the raw materials base for bioethanol production and to meet the increasing demand for biogenic fuels. Appropriate conversion technologies have been the subject of much research worldwide during the past few years. Against this background, the Bavarian State Minister of Agriculture and Forestry initiated a feasibility study on ethanol production by bioconversion in Bavaria. (orig.)

  17. Biochemical characterization of thermophilic lignocellulose degrading enzymes and their potential for biomass bioprocessing

    Directory of Open Access Journals (Sweden)

    Vasudeo Zambare, Archana Zambare, Kasiviswanath Muthukumarappan, Lew P. Christopher

    2011-01-01

    Full Text Available A thermophilic microbial consortium (TMC producing hydrolytic (cellulolytic and xylanolytic enzymes was isolated from yard waste compost following enrichment with carboxymethyl cellulose and birchwood xylan. When grown on 5% lignocellulosic substrates (corn stover and prairie cord grass at 600C, the thermophilic consortium produced more xylanase (up to 489 U/l on corn stover than cellulase activity (up to 367 U/l on prairie cord grass. Except for the carboxymethyl cellulose-enriched consortium, thermo-mechanical extrusion pretreatment of these substrates had a positive effect on both activities with up to 13% and 21% increase in the xylanase and cellulase production, respectively. The optimum temperatures of the crude cellulase and xylanase were 600C and 700C with half-lives of 15 h and 18 h, respectively, suggesting higher thermostability for the TMC xylanase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the crude enzyme exhibited protein bands of 25-77 kDa with multiple enzyme activities containing 3 cellulases and 3 xylanases. The substrate specificity declined in the following descending order: avicel>birchwood xylan>microcrystalline cellulose>filter paper>pine wood saw dust>carboxymethyl cellulose. The crude enzyme was 77% more active on insoluble than soluble cellulose. The Km and Vmax values were 36.49 mg/ml and 2.98 U/mg protein on avicel (cellulase, and 22.25 mg/ml and 2.09 U/mg protein, on birchwood xylan (xylanase. A total of 50 TMC isolates were screened for cellulase and xylanase secretion on agar plates. All single isolates showed significantly lower enzyme activities when compared to the thermophilic consortia. This is indicative of the strong synergistic interactions that exist within the thermophilic microbial consortium and enhance its hydrolytic capabilities. It was further demonstrated that the thermostable enzyme-generated lignocellulosic hydrolyzates can be fermented to bioethanol by a recombinant strain of

  18. Impact of nitrogenous alkaline agent on continuous HTL of lignocellulosic biomass and biocrude upgrading

    DEFF Research Database (Denmark)

    Jensen, Claus Uhrenholt; Rosendahl, Lasse Aistrup; Olofsson, Göran

    2017-01-01

    Continuous hydrothermal liquefaction (CHTL) of lignocellulosic biomass with subsequent hydrotreating is carried out to study the effect of NH3 versus NaOH as alkaline HTL catalyst. Product analysis include Py-GCxGC–MS, simulated distillation and fractional distillation. Ammonia enhances biocrude...... of a hydrotreatable biocrude, stable TOC levels during aqueous phase recirculation and mass, carbon and energy balance closure. Hydrotreating eliminates the TAN, reduces oxygen to 2–3 wt.% and produces a promising fuel bio-blendstock with ultra-low sulphur and a diesel fraction equal to 43%....

  19. Liquefaction of Lignocellulose in Fluid Catalytic Cracker Feed: A Process Concept Study.

    Science.gov (United States)

    Kumar, Shushil; Lange, Jean-Paul; Van Rossum, Guus; Kersten, Sascha R A

    2015-12-07

    We report a process concept for lignocellulose liquefaction in a refinery stream that will be coprocessed with the resulting biocrude and that, therefore, does not require the recovery and recycling of the liquefaction solvent. Light cycle oil and vacuum gas oil were found to be the two most promising solvents. Both refinery streams could provide a liquid yield of 58 C % (64 % energy yield). A techno-economic assessment indicates that the biocrude could be produced at an energy-equivalent crude oil price of 51-64 $ per barrel at a wood cost of 85 $ per dry ton.

  20. Process for whole cell saccharification of lignocelluloses to sugars using a dual bioreactor system

    Science.gov (United States)

    Lu, Jue; Okeke, Benedict

    2012-03-27

    The present invention describes a process for saccharification of lignocelluloses to sugars using whole microbial cells, which are enriched from cultures inoculated with paper mill waste water, wood processing waste and soil. A three-member bacterial consortium is selected as a potent microbial inocula and immobilized on inedible plant fibers for biomass saccharification. The present invention further relates the design of a dual bioreactor system, with various biocarriers for enzyme immobilization and repeated use. Sugars are continuously removed eliminating end-product inhibition and consumption by cell.