WorldWideScience

Sample records for filamentary infrared-dark cloud

  1. A Virialized Filamentary Infrared Dark Cloud

    CERN Document Server

    Hernandez, Audra K; Kainulainen, Jouni; Caselli, Paola; Butler, Michael J; Jimenez-Serra, Izaskun; Fontani, Francesco

    2012-01-01

    The initial conditions of massive star and star cluster formation are expected to be cold, dense and high column density regions of the interstellar medium, which can reveal themselves via near, mid and even far-infrared absorption as Infrared Dark Clouds (IRDCs). Elucidating the dynamical state of IRDCs thus constrains theoretical models of these complex processes. In particular, it is important to assess whether IRDCs have reached virial equilibrium, where the internal pressure balances that due to the self-gravitating weight of the cloud plus the pressure of the external environmental. We study this question for the filamentary IRDC G035.39-00.33 by deriving mass from combined NIR & MIR extinction maps and velocity dispersion from C18O (1-0) & (2-1) line emission. In contrast to our previous moderately super-virial results based on 13CO emission and MIR-only extinction mapping, with improved mass measurements we now find that the filament is consistent with being in virial equilibrium, at least in ...

  2. The "Nessie" Nebula: Cluster Formation in a Filamentary Infrared Dark Cloud

    CERN Document Server

    Jackson, James M; Chambers, Edward T; Rathborne, Jill M; Simon, Robert

    2010-01-01

    The "Nessie" Nebula is a filamentary infrared dark cloud (IRDC) with a large aspect ratio of over 150:1 (1.5 degrees x 0.01 degrees, or 80 pc x 0.5 pc at a kinematic distance of 3.1 kpc). Maps of HNC (1-0) emission, a tracer of dense molecular gas, made with the Australia Telescope National Facility Mopra telescope, show an excellent morphological match to the mid-IR extinction. Moreover, because the molecular line emission from the entire nebula has the same radial velocity to within +/- 3.4 km/s, the nebula is a single, coherent cloud and not the chance alignment of multiple unrelated clouds along the line of sight. The Nessie Nebula contains a number of compact, dense molecular cores which have a characteristic projected spacing of ~ 4.5 pc along the filament. The theory of gravitationally bound gaseous cylinders predicts the existence of such cores, which, due to the "sausage" or "varicose" fluid instability, fragment from the cylinder at a characteristic length scale. If turbulent pressure dominates over...

  3. Mapping Large-Scale CO Depletion in a Filamentary Infrared Dark Cloud

    CERN Document Server

    Hernandez, Audra K; Caselli, Paola; Butler, Michael J; Jimenez-Serra, Izaskun; Fontani, Francesco; Barnes, Peter

    2011-01-01

    Infrared Dark Clouds (IRDCs) are cold, high mass surface density and high density structures, likely to be representative of the initial conditions for massive star and star cluster formation. CO emission from IRDCs has the potential to be useful for tracing their dynamics, but may be affected by depleted gas phase abundances due to freeze-out onto dust grains. Here we analyze C18O J=1-0 and J=2-1 emission line data, taken with the IRAM 30m telescope, of the highly filamentary IRDC G035.39.-0033. We derive the excitation temperature as a function of position and velocity, with typical values of ~7K, and thus derive total mass surface densities, Sigma_C18O, assuming standard gas phase abundances and accounting for optical depth in the line, which can reach values of ~1. The mass surface densities reach values of ~0.07 g/cm^2. We compare these results to the mass surface densities derived from mid-infrared (MIR) extinction mapping, Sigma_SMF, by Butler & Tan, which are expected to be insensitive to the dust...

  4. Star Formation Activity in the Long, Filamentary Infrared Dark Cloud G53.2

    OpenAIRE

    Kim, Hyun-Jeong; Koo, Bon-Chul; Davis, Christopher J.

    2015-01-01

    We present star formation activity in the infrared dark cloud (IRDC) G53.2, a remarkable IRDC located at Galactic coordinates $(l,b)\\sim(53^{\\circ}.2,\\,0^{\\circ}.0)$ based on the census of young stellar object (YSO) candidates. IRDC G53.2 was previously identified as several IRDCs in mid-IR images, but it is in fact a long ($\\gtrsim$45 pc) cloud, well consistent with a CO cloud at $v\\sim23$ \\kms\\ (or at $d\\sim$1.7 kpc). We present a point-source catalog of IRDC G53.2 that contains $\\sim$370 s...

  5. Star Formation Activity in the Long, Filamentary Infrared Dark Cloud G53.2

    CERN Document Server

    Kim, Hyun-Jeong; Davis, Christopher J

    2015-01-01

    We present star formation activity in the infrared dark cloud (IRDC) G53.2, a remarkable IRDC located at Galactic coordinates $(l,b)\\sim(53^{\\circ}.2,\\,0^{\\circ}.0)$ based on the census of young stellar object (YSO) candidates. IRDC G53.2 was previously identified as several IRDCs in mid-IR images, but it is in fact a long ($\\gtrsim$45 pc) cloud, well consistent with a CO cloud at $v\\sim23$ \\kms\\ (or at $d\\sim$1.7 kpc). We present a point-source catalog of IRDC G53.2 that contains $\\sim$370 sources from our photometry of the {\\it Spitzer} MIPS 24 \\um\\ data and Galactic Legacy Infrared Mid-Plane Survey Extraordinaire Catalog. The classification of the identified sources based on their spectral index and control field analysis to remove field star contamination reveals that IRDC G53.2 is an active star-forming region with $\\sim$300 YSO candidates. We compare the YSO classification based on spectral index, mid-IR colors, and the wavelength range used, which results in consistent classification, except for flat-s...

  6. A molecular line study of the filamentary infrared dark cloud G304.74+01.32

    CERN Document Server

    Miettinen, Oskari

    2012-01-01

    The aim of this study is to better understand the physical and chemical properties of the filamentary IRDC G304.74+01.32. In particular, we aim to investigate the kinematics and dynamical state of the cloud and clumps within it, and the amount of CO depletion. All the submillimetre peak positions in the cloud identified from our previous LABOCA 870-micron map were observed in C17O(2-1) with APEX. Selected positions were also observed in the 13CO(2-1), SiO(5-4), and CH3OH(5_k-4_k) transitions at ~1 mm wavelength. The C17O lines were detected towards all target positions at similar radial velocities, indicating that G304.74 is a coherent filamentary structure. CO does not appear to be significantly depleted in the clumps. Two- to three methanol 5_k-4_k lines near ~241.8 GHz were detected towards all selected target positions, whereas SiO(5-4) was seen in only one of these positions. The 13CO(2-1) lines show blue asymmetric profiles, indicating large-scale infall motions. The clumps show trans- to supersonic non...

  7. Deuteration in infrared dark clouds

    CERN Document Server

    Lackington, Matias; Pineda, Jaime E; Garay, Guido; Peretto, Nicolas; Traficante, Alessio

    2015-01-01

    Much of the dense gas in molecular clouds has a filamentary structure but the detailed structure and evolution of this gas is poorly known. We have observed 54 cores in infrared dark clouds (IRDCs) using N$_2$H$^+$ (1-0) and (3-2) to determine the kinematics of the densest material, where stars will form. We also observed N$_2$D$^+$ (3-2) towards 29 of the brightest peaks to analyse the level of deuteration which is an excellent probe of the quiescent of the early stages of star formation. There were 13 detections of N$_2$D$^+$ (3-2). This is one of the largest samples of IRDCs yet observed in these species. The deuteration ratio in these sources ranges between 0.003 and 0.14. For most of the sources the material traced by N$_2$D$^+$ and N$_2$H$^+$ (3-2) still has significant turbulent motions, however three objects show subthermal N$_2$D$^+$ velocity dispersion. Surprisingly the presence or absence of an embedded 70 $\\mu$m source shows no correlation with the detection of N$_2$D$^+$ (3-2), nor does it correl...

  8. Chemistry in Infrared Dark Clouds

    CERN Document Server

    Vasyunina, T; Henning, Th; Zinchenko, I; Beuther, H; Voronkov, M

    2010-01-01

    Massive stars play an important role in shaping the structure of galaxies. Infrared dark clouds (IRDCs), with their low temperatures and high densities, have been identified as the potential birthplaces of massive stars. In order to understand the formation processes of massive stars the physical and chemical conditions in infrared dark clouds have to be characterized. The goal of this paper is to investigate the chemical composition of a sample of southern infrared dark clouds. One important aspect of the observations is to check, if the molecular abuncances in IRDCs are similar to the low-mass pre-stellar cores, or whether they show signatures of more evolved evolutionary stages. We performed observations toward 15 IRDCs in the frequency range between 86 and 93 GHz using the 22-m Mopra radio telescope. We detect HNC, HCO$^+$ and HNC emission in all clouds and N$_2$H$^+$ in all IRDCs except one. In some clouds we detect SiO emission. Complicated shapes of the HCO$^+$ emission line profile are found in all IR...

  9. Atomic carbon in an infrared dark cloud

    NARCIS (Netherlands)

    Ossenkopf, Volker; Ormel, Chris W.; Simon, Robert; Sun, Kefeng; Stutzki, Jürgen

    2010-01-01

    Infrared dark clouds (IRDCs) are potential sites of massive star formation, dark in the near-infrared, but in many cases already with indications of active star-formation from far-infrared and submm observations. They are an ideal test bed to study the role of internal and external heating on the

  10. The Midcourse Space Experiment Infrared-Dark Cloud Catalog

    Science.gov (United States)

    Carey, S. J.; Egan, M. P.; Kuchar, T. A.; Mizuno, D.; Feldman, P. A.; Redman, R. O.; Price, S. D.

    2000-12-01

    We present a preliminary catalog of infrared-dark clouds (IRDCs) that were identified in the Midcourse Space Experiment (MSX) Galactic Plane Survey images. These objects are clearly visible as absorption features against the diffuse Galactic emission in the 8.3 micron MSX images. IRDCs are cold (T CS, C18O and HCO+. IRDC have a wide variety of shapes from globule-like to filamentary. We will present the filling factors, fractal dimension and other morphological identifiers for the IRDCs. In particular, the fractal dimension will be compared to the dimensions of other components of the ISM including GMCs and infrared cirrus. Few IRDCs are associated with previously observed star formation tracers such as far-infrared point sources and maser emission. The catalog will be cross-referenced with published observations of star formation tracers and the properties of previously identified star forming regions will be contrasted with the new objects detected by MSX.

  11. Physical properties of Southern infrared dark clouds

    Science.gov (United States)

    Vasyunina, T.; Linz, H.; Henning, Th.; Stecklum, B.; Klose, S.; Nyman, L.-Å.

    2009-05-01

    Context: What are the mechanisms by which massive stars form? What are the initial conditions for these processes? It is commonly assumed that cold and dense Infrared Dark Clouds (IRDCs) represent the birth-sites of massive stars. Therefore, these clouds have been receiving an increasing amount of attention, and their analysis offers the opportunity to tackle the afore mentioned questions. Aims: To enlarge the sample of well-characterised IRDCs in the southern hemisphere, where ALMA will play a major role in the near future, we have developed a program to study the gas and dust of southern infrared dark clouds. The present paper attempts to characterize the continuum properties of this sample of IRDCs. Methods: We cross-correlated 1.2 mm continuum data from SIMBA bolometer array mounted on SEST telescope with Spitzer/GLIMPSE images to establish the connection between emission sources at millimeter wavelengths and the IRDCs that we observe at 8 μm in absorption against the bright PAH background. Analysing the dust emission and extinction enables us to determine the masses and column densities, which are important quantities in characterizing the initial conditions of massive star formation. We also evaluated the limitations of the emission and extinction methods. Results: The morphology of the 1.2 mm continuum emission is in all cases in close agreement with the mid-infrared extinction. The total masses of the IRDCs were found to range from 150 to 1150 M_⊙ (emission data) and from 300 to 1750 M_⊙ (extinction data). We derived peak column densities of between 0.9 and 4.6 × 1022 cm-2 (emission data) and 2.1 and 5.4 × 1022 cm-2 (extinction data). We demonstrate that the extinction method is unreliable at very high extinction values (and column densities) beyond AV values of roughly 75 mag according to the Weingartner & Draine (2001) extinction relation RV = 5.5 model B (around 200 mag when following the common Mathis (1990, ApJ, 548, 296) extinction calibration

  12. Organic Species in Infrared Dark Clouds

    Science.gov (United States)

    Vasyunina, T.; Vasyunin, A. I.; Herbst, Eric; Linz, Hendrik; Voronkov, Maxim; Britton, Tui; Zinchenko, Igor; Schuller, Frederic

    2014-01-01

    It is currently assumed that infrared dark clouds (IRDCs) represent the earliest evolutionary stages of high-mass stars (>8 M ⊙). Submillimeter and millimeter-wave studies performed over the past 15 yr show that IRDCs possess a broad variety of properties, and hence a wide range of problems and questions that can be tackled. In this paper, we report an investigation of the molecular composition and chemical processes in two groups of IRDCs. Using the Mopra, APEX, and IRAM radio telescopes over the last four years, we have collected molecular line data for CO, H2CO, HNCO, CH3CCH, CH3OH, CH3CHO, CH3OCHO, and CH3OCH3. For all of these species we estimated molecular abundances. We then undertook chemical modeling studies, concentrating on the source IRDC028.34+0.06, and compared observed and modeled abundances. This comparison showed that to reproduce observed abundances of complex organic molecules, a zero-dimensional gas-grain model with constant physical conditions is not sufficient. We achieved greater success with the use of a warm-up model, in which warm-up from 10 K to 30 K occurs following a cold phase. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. The 22 m Mopra antenna is part of the Australia Telescope, which is funded by the Commonwealth of Australia for operations as a National Facility managed by CSIRO. The University of New South Wales Digital Filter Bank used for the observations with the Mopra Telescope was provided with support from the Australian Research Council.

  13. Infrared Dark Clouds in the Small Magellanic Cloud?

    CERN Document Server

    Lee, Min-Young; Ott, Jürgen; van Loon, Jacco Th; Bolatto, Alberto D; Jones, Paul A; Cunningham, Maria R; Devine, Kathryn E; Oliveira, Joana M

    2009-01-01

    We have applied the unsharp-masking technique to the 24 $\\mu$m image of the Small Magellanic Cloud (SMC), obtained with the Spitzer Space Telescope, to search for high-extinction regions. This technique has been used to locate very dense and cold interstellar clouds in the Galaxy, particularly infrared dark clouds (IRDCs). Fifty five candidate regions of high-extinction, namely high-contrast regions (HCRs), have been identified from the generated decremental contrast image of the SMC. Most HCRs are located in the southern bar region and mainly distributed in the outskirts of CO clouds, but most likely contain a significant amount of H2. HCRs have a peak-contrast at 24 $\\mu$m of 2 - 2.5 % and a size of 8 - 14 pc. This corresponds to the size of typical and large Galactic IRDCs, but Galactic IRDCs are 2 - 3 times darker at 24 $\\mu$m than our HCRs. To constrain the physical properties of the HCRs, we have performed NH3, N2H+, HNC, HCO+, and HCN observations toward one of the HCRs, HCR LIRS36-EAST, using the Aust...

  14. Infrared dark clouds on the far side of the Galaxy

    CERN Document Server

    Giannetti, A; Leurini, S; Urquhart, J; Csengeri, T; Menten, K M; Bronfman, L; van der Tak, F F S

    2015-01-01

    Context: Infrared dark clouds are the coldest and densest portions of giant molecular clouds. The most massive ones represent some of the most likely birthplaces for the next generation of massive stars in the Milky Way. Because a strong mid-IR background is needed to make them appear in absorption, they are usually assumed to be nearby. Aims: We use THz absorption spectroscopy to solve the distance ambiguity associated with kinematic distances for the IR-dark clouds in the TOP100 ATLASGAL sample, a flux-limited selection of massive clumps in different evolutionary phases of star formation. Methods: The para-H2O ground state transition at 1113.343 GHz, observed with Herschel/HIFI, was used to investigate the occurrence of foreground absorption along the line of sight directly towards infrared-dark clouds. Additional consistency checks were performed using MALT90 and HiGAL archival data and targeted Mopra and APEX spectroscopic observations. Results: We report the first discovery of five IRDCs in the TOP100 ly...

  15. X-Ray Shadowing Experiments Toward Infrared Dark Clouds

    Science.gov (United States)

    Anderson, L. E.; Snowden, S.; Bania, T. M.

    2009-01-01

    We searched for X-ray shadowing toward two infrared dark clouds (IRDCs) using the MOS detectors on XMM-Newton to learn about the Galactic distribution of X-ray emitting plasma. IRDCs make ideal X-ray shadowing targets of 3/4 keY photons due to their high column densities, relatively large angular sizes, and known kinematic distances. Here we focus on two clouds near 30 deg Galactic longitude at distances of 2 and 5 kpc from the Sun. We derive the foreground and background column densities of molecular and atomic gas in the direction of the clouds. We find that the 3/4 ke V emission must be distributed throughout the Galactic disk. It is therefore linked to the structure of the cooler material of the ISM, and to the birth of stars.

  16. Two Massive, Low-Luminosity Cores Toward Infrared Dark Clouds

    CERN Document Server

    Swift, Jonathan J

    2009-01-01

    This article presents high-resolution interferometric mosaics in the 850 micron waveband of two massive, quiescent infrared dark clouds. The two clouds were chosen based on their likelihood to represent environments preceding the formation of massive stars. The brightest compact sources detected in each cloud have masses of approximately 110 and 60 solar masses with radii < 0.1 pc, implying mean volume densities of approximately 1 million particles per cubic centimeter and mean column densities of about 1 gram per square centimeter. Supplementary data show these cores to be cold and inactive. Low upper limits to their bolometric luminosities and temperatures place them at a very early stage of evolution while current models of massive star formation suggest they have the potential to form massive stars.

  17. Fragmentation in filamentary molecular clouds

    CERN Document Server

    Contreras, Yanett; Rathborne, Jill M; Sanhueza, Patricio

    2015-01-01

    Recent surveys of dust continuum emission at sub-mm wavelengths have shown that filamentary molecular clouds are ubiquitous along the Galactic plane. These structures are inhomogeneous, with over-densities that are sometimes associated with infrared emission and active of star formation. To investigate the connection between filaments and star formation, requires an understanding of the processes that lead to the fragmentation of filaments and a determination of the physical properties of the over-densities (clumps). In this paper, we present a multi-wavelength study of five filamentary molecular clouds, containing several clumps in different evolutionary stages of star formation. We analyse the fragmentation of the filaments and derive the physical properties of their clumps. We find that the clumps in all filaments have a characteristic spacing consistent with the prediction of the `sausage' instability theory, regardless of the complex morphology of the filaments or their evolutionary stage. We also find t...

  18. High CO depletion in southern infrared-dark clouds

    CERN Document Server

    Fontani, F; Beltran, M T; Dodson, R; Rioja, M; Brand, J; Caselli, P; Cesaroni, R

    2012-01-01

    Infrared-dark high-mass clumps are among the most promising objects to study the initial conditions of the formation process of high-mass stars and rich stellar clusters. In this work, we have observed the (3-2) rotational transition of C18O with the APEX telescope, and the (1,1) and (2,2) inversion transitions of NH3 with the Australia Telescope Compact Array in 21 infrared-dark clouds already mapped in the 1.2 mm continuum, with the aim of measuring basic chemical and physical parameters such as the CO depletion factor (fD), the gas kinetic temperature and the gas mass. In particular, the C18O (3-2) line allows us to derive fD in gas at densities higher than that traced by the (1-0) and (2-1) lines, typically used in previous works. We have detected NH3 and C18O in all targets. The clumps possess mass, H2 column and surface densities consistent with being potentially the birthplace of high-mass stars. We have measured fD in between 5 and 78, with a mean value of 32 and a median of 29. These values are, to o...

  19. Magnetic Fields in High-Mass Infrared Dark Clouds

    CERN Document Server

    Pillai, Thushara; Tan, Jonathan; Goldsmith, Paul; Carey, Sean; Menten, Karl

    2014-01-01

    High-mass Stars are cosmic engines known to dominate the energetics in the Milky Way and other galaxies. However, their formation is still not well understood. Massive, cold, dense clouds, often appearing as Infrared Dark Clouds (IRDCs), are the nurseries of massive stars. No measurements of magnetic fields in IRDCs in a state prior to the onset of high-mass star formation (HMSF) have previously been available, and prevailing HMSF theories do not consider strong magnetic fields. Here, we report observations of magnetic fields in two of the most massive IRDCs in the Milky Way. We show that IRDCs G11.11-0.12 and G0.253+0.016 are strongly magnetized and that the strong magnetic field is as important as turbulence and gravity for HMSF. The main dense filament in G11.11-0.12 is perpendicular to the magnetic field, while the lower density filament merging onto the main filament is parallel to the magnetic field. The implied magnetic field is strong enough to suppress fragmentation sufficiently to allow HMSF. Other ...

  20. MAGNETIC FIELDS IN HIGH-MASS INFRARED DARK CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, T.; Kauffmann, J. [California Institute of Technology, Cahill Center for Astronomy and Astrophysics, Pasadena, CA 91125 (United States); Tan, J. C. [University of Florida, Gainesville, FL 32611 (United States); Goldsmith, P. F. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Carey, S. J. [Spitzer Science Center, California Institute of Technology, 1200 East California Boulevard, MC 314-6, Pasadena, CA 91125 (United States); Menten, K. M., E-mail: tpillai.astro@gmail.com [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2015-01-20

    High-mass stars are cosmic engines known to dominate the energetics in the Milky Way and other galaxies. However, their formation is still not well understood. Massive, cold, dense clouds, often appearing as infrared dark clouds (IRDCs), are the nurseries of massive stars. No measurements of magnetic fields in IRDCs in a state prior to the onset of high-mass star formation (HMSF) have previously been available, and prevailing HMSF theories do not consider strong magnetic fields. Here, we report observations of magnetic fields in two of the most massive IRDCs in the Milky Way. We show that IRDCs G11.11–0.12 and G0.253+0.016 are strongly magnetized and that the strong magnetic field is as important as turbulence and gravity for HMSF. The main dense filament in G11.11–0.12 is perpendicular to the magnetic field, while the lower density filament merging onto the main filament is parallel to the magnetic field. The implied magnetic field is strong enough to suppress fragmentation sufficiently to allow HMSF. Other mechanisms reducing fragmentation, such as the entrapment of heating from young stars via high-mass surface densities, are not required to facilitate HMSF.

  1. Magnetically Dominated Parallel Interstellar Filaments at the Infrared Dark Cloud G14.225-0.506

    CERN Document Server

    Santos, Fabio P; Franco, Gabriel A P; Girart, Josep M; Zhang, Qizhou

    2016-01-01

    The G14.225-0.506 infrared dark cloud (IRDC G14.2) displays a remarkable complex of parallel dense molecular filaments projected on the plane of the sky. Previous dust emission and molecular-line studies have speculated whether magnetic fields could have played an important role in the formation of such long-shaped structures, which are hosts to numerous young stellar sources. In this work we have conducted a vast polarimetric survey at optical and near-infrared wavelengths in order to study the morphology of magnetic field lines in IRDC G14.2 through the observation of background stars. The orientation of interstellar polarization, which traces magnetic field lines, is perpendicular to most of the filamentary features within the cloud. Additionally, the larger-scale molecular cloud as a whole exhibits an elongated shape also perpendicular to magnetic fields. Estimates of magnetic field strengths indicate values in the range $320 - 550\\,\\mu$G, which allows sub-alfv\\'enic conditions, but does not prevent the g...

  2. The Modelling of InfraRed Dark Clouds

    CERN Document Server

    Ormel, C W; Ossenkopf, V; Helmich, F P

    2005-01-01

    This paper presents results from modelling 450 micron and 850 micron continuum and HCO+ line observations of three distinct cores of an infrared dark cloud (IRDC) directed toward the W51 GMC. In the sub-mm continuum these cores appear as bright, isolated emission features. One of them coincides with the peak of 8.3 micron extinction as measured by the Midcourse Space Experiment satellite. Detailed radiative transfer codes are applied to constrain the cores' physical conditions to address the key question: Do these IRDC-cores harbour luminous sources? The results of the continuum model, expressed in the $\\chi^2$ quality-of-fit parameter, are also constrained by the absence of 100 micron emission from IRAS. For the sub-mm emission peaks this shows that sources of 300 solar luminosities are embedded within the cores. For the extinction peak, the combination of continuum and HCO+ line modelling indicates that a heating source is present as well. Furthermore, the line model provides constraints on the clumpiness o...

  3. 15N fractionation in infrared-dark cloud cores

    Science.gov (United States)

    Zeng, S.; Jiménez-Serra, I.; Cosentino, G.; Viti, S.; Barnes, A. T.; Henshaw, J. D.; Caselli, P.; Fontani, F.; Hily-Blant, P.

    2017-07-01

    Context. Nitrogen is one of the most abundant elements in the Universe and its 14N/15N isotopic ratio has the potential to provide information about the initial environment in which our Sun formed. Recent findings suggest that the solar system may have formed in a massive cluster since the presence of short-lived radioisotopes in meteorites can only be explained by the influence of a supernova. Aims: We seek to determine the 14N/15N ratio towards a sample of cold and dense cores at the initial stages in their evolution. Methods: We observed the J = 1 → 0 transitions of HCN, H13CN, HC15N, HN13C, and H15NC towards a sample of 22 cores in four infrared-dark clouds (IRDCs) which are believed to be the precursors of high-mass stars and star clusters. Assuming LTE and a temperature of 15 K, the column densities of HCN, H13CN, HC15N, HN13C, and H15NC are calculated and their 14N/15N ratio is determined for each core. Results: The 14N/15N ratios measured in our sample of IRDC cores range between 70 and ≥763 in HCN and between 161 and 541 in HNC. These ratios are consistent with the terrestrial atmosphere (TA) and protosolar nebula (PSN) values, and with the ratios measured in low-mass prestellar cores. However, the 14N/15N ratios measured in cores C1, C3, F1, F2, and G2 do not agree with the results from similar studies towards the same cores using nitrogen bearing molecules with nitrile functional group (-CN) and nitrogen hydrides (-NH) although the ratio spread covers a similar range. Conclusions: Relatively low 14N/15N ratios amongst the four-IRDCs were measured in IRDC G which are comparable to those measured in small cosmomaterials and protoplanetary disks. The low average gas density of this cloud suggests that the gas density, rather than the gas temperature, may be the dominant parameter influencing the initial nitrogen isotopic composition in young PSN. The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http

  4. The physical environment around IRAS 17599-2148: infrared dark cloud and bipolar nebula

    CERN Document Server

    Dewangan, L K; Zinchenko, I; Janardhan, P; Ghosh, S K; Luna, A

    2016-01-01

    We present a multi-scale and multi-wavelength study to investigate the star formation process around IRAS 17599$-$2148 that is part of an elongated filamentary structure (EFS) (extension $\\sim$21 pc) seen in the {\\it Herschel} maps. Using the {\\it Herschel} data analysis, at least six massive clumps (M$_{clump}$ $\\sim$777 -- 7024 M$_{\\odot}$) are found in the EFS with a range of temperature and column density of $\\sim$16--39~K and $\\sim$0.6--11~$\\times$~10$^{22}$ cm$^{-2}$ (A$_{V}$ $\\sim$7--117 mag), respectively. The EFS hosts cold gas regions (i.e. infrared dark cloud) without any radio detection and a bipolar nebula (BN) linked with the H\\,{\\sc ii} region IRAS 17599$-$2148, tracing two distinct environments inferred through the temperature distribution and ionized emission. Based on virial analysis and higher values of self-gravitating pressure, the clumps are found unstable against gravitational collapse. We find 474 young stellar objects (YSOs) in the selected region and $\\sim$72\\% of these YSOs are foun...

  5. The Giant Molecular Cloud Environments of Infrared Dark Clouds

    CERN Document Server

    Hernandez, Audra K

    2015-01-01

    We study the GMC environments surrounding 10 IRDCs, based on 13CO molecular line emission from the Galactic Ring Survey. Using a range of physical scales, we measure the physical properties of the IRDCs and their surrounding molecular material extending out to radii, R, of 30pc. By comparing different methods for defining cloud boundaries and for deriving mass surface densities, Sigma, and velocity dispersions, sigma, we settled on a preferred "CE,tau,G" method of "Connected Extraction" in position-velocity space along with Gaussian fitting to opacity-corrected line profiles for velocity dispersion and mass estimation. We examine how cloud definition affects measurements of the magnitude and direction of line of sight velocity gradients and velocity dispersions, including the associated dependencies on size scale. CE,tau,G-defined IRDCs and GMCs show velocity gradient versus size relations that scale approximately as dv_0/ds~s^(-1/2) and velocity dispersion versus size relations sigma~s^(1/2), which are consi...

  6. A multiwavelength observation and investigation of six infrared dark clouds

    Science.gov (United States)

    Zhang, Chuan-Peng; Yuan, Jing-Hua; Li, Guang-Xing; Zhou, Jian-Jun; Wang, Jun-Jie

    2017-02-01

    Context. Infrared dark clouds (IRDCs) are ubiquitous in the Milky Way, yet they play a crucial role in breeding newly-formed stars. Aims: With the aim of further understanding the dynamics, chemistry, and evolution of IRDCs, we carried out multiwavelength observations on a small sample. Methods: We performed new observations with the IRAM 30 m and CSO 10.4 m telescopes, with tracers HCO+, HCN, N2H+, C18O, DCO+, SiO, and DCN toward six IRDCs G031.97+00.07, G033.69-00.01, G034.43+00.24, G035.39-00.33, G038.95-00.47, and G053.11+00.05. Results: We investigated 44 cores including 37 cores reported in previous work and seven newly-identified cores. Toward the dense cores, we detected 6 DCO+, and 5 DCN lines. Using pixel-by-pixel spectral energy distribution (SED) fits of the Herschel 70 to 500 μm, we obtained dust temperature and column density distributions of the IRDCs. We found that N2H+ emission has a strong correlation with the dust temperature and column density distributions, while C18O showed the weakest correlation. It is suggested that N2H+ is indeed a good tracer in very dense conditions, but C18O is an unreliable one, as it has a relatively low critical density and is vulnerable to freezing-out onto the surface of cold dust grains. The dynamics within IRDCs are active, with infall, outflow, and collapse; the spectra are abundant especially in deuterium species. Conclusions: We observe many blueshifted and redshifted profiles, respectively, with HCO+ and C18O toward the same core. This case can be well explained by model "envelope expansion with core collapse (EECC)". The final datacubes (HCO+, HCN, N2H+, C18O) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A76

  7. The Physical Environment around IRAS 17599-2148: Infrared Dark Cloud and Bipolar Nebula

    Science.gov (United States)

    Dewangan, L. K.; Ojha, D. K.; Zinchenko, I.; Janardhan, P.; Ghosh, S. K.; Luna, A.

    2016-12-01

    We present a multiscale and multiwavelength study to investigate the star formation process around IRAS 17599-2148, which is part of an elongated filamentary structure (EFS) (extension ˜21 pc) seen in the Herschel maps. Using the Herschel data analysis, at least six massive clumps (M clump ˜ 777-7024 M ⊙) are found in the EFS with a range of temperature and column density of ˜16-39 K and ˜(0.6-11) × 1022 cm-2 (A V ˜ 7-117 mag), respectively. The EFS hosts cold gas regions (i.e., infrared dark cloud) without any radio detection and a bipolar nebula (BN) linked with the H ii region IRAS 17599-2148, tracing two distinct environments inferred through the temperature distribution and ionized emission. Based on virial analysis and higher values of self-gravitating pressure, the clumps are found unstable against gravitational collapse. We find 474 young stellar objects (YSOs) in the selected region, and ˜72% of these YSOs are found in the clusters distributed mainly toward the clumps in the EFS. These YSOs might have spontaneously formed due to processes not related to the expanding H ii region. At the edges of BN, four additional clumps are also associated with YSO clusters, which appear to be influenced by the expanding H ii region. The most massive clump in the EFS contains two compact radio sources traced in the Giant Metre-wave Radio Telescope 1.28 GHz map and a massive protostar candidate, IRS 1, prior to an ultracompact H ii phase. Using the Very Large Telescope/NACO near-infrared images, IRS 1 is resolved with a jet-like feature within a 4200 au scale.

  8. Spectroscopic [C I] mapping of the infrared dark cloud G48.65-0.29

    NARCIS (Netherlands)

    Ossenkopf, Volker; Ormel, C. W.; Simon, R.; Sun, K.; Stutzki, J.

    Aims. We report the first spectroscopic mapping of an atomic carbon line in an infrared dark cloud (IRDC). By observing the spatial distribution of the [Ci] emission in an IRDC, comparing it with the (13)CO emission and the known distribution of internal heating sources, we can quantify the role of

  9. Characterizing star formation activity in infrared dark cloud MSXDC G048.65-00.29

    NARCIS (Netherlands)

    van der Wiel, M. H. D.; Shipman, R. F.

    2008-01-01

    Context. Infrared dark clouds (IRDCs), condensed regions of the ISM with high column densities, low temperatures and high masses, are suspected sites of star formation. Thousands of IRDCs have already been identified. To date, it has not been resolved whether IRDCs always show star formation

  10. SDC13 infrared dark clouds: Longitudinally collapsing filaments?

    CERN Document Server

    Peretto, N; André, Ph; Arzoumanian, D; Rivilla, V M; Bardeau, S; Puertas, S Duarte; Fernandez, J P Guzman; Lenfestey, C; Li, G -X; Olguin, F A; Röck, B R; de Villiers, H; Williams, J

    2013-01-01

    Formation of stars is now believed to be tightly linked to the dynamical evolution of interstellar filaments in which they form. In this paper we analyze the density structure and kinematics of a small network of infrared dark filaments, SDC13, observed in both dust continuum and molecular line emission with the IRAM 30m telescope. These observations reveal the presence of 18 compact sources amongst which the two most massive, MM1 and MM2, are located at the intersection point of the parsec-long filaments. The dense gas velocity and velocity dispersion observed along these filaments show smooth, strongly correlated, gradients. We discuss the origin of the SDC13 velocity field in the context of filament longitudinal collapse. We show that the collapse timescale of the SDC13 filaments (from 1 Myr to 4 Myr depending on the model parameters) is consistent with the presence of Class I sources in them, and argue that, on top of bringing more material to the centre of the system, collapse could generate additional k...

  11. Star formation in infrared dark clouds: Self-gravity and dynamics

    CERN Document Server

    Peretto, Nicolas; Louvet, Fabien; Fuller, Gary A; Traficante, Alessio; Duarte-Cabral, Ana

    2016-01-01

    The role played by gravity in the transfer of interstellar matter from molecular cloud scales to protostellar scales is still highly debated. Only detailed studies on the kinematics of large samples of star-forming clouds will settle the issue. We present new IRAM 30m observations of a sample of 27 infrared dark clouds covering a large range of sizes, masses, and aspect ratios. Preliminary results suggest that gravity is regulating the dynamical evolution of these clouds on a couple of parsec scales.

  12. Rapid Circumstellar Disk Evolution and an Accelerating Star Formation Rate in the Infrared Dark Cloud M17 SWex

    CERN Document Server

    Povich, Matthew S; Robitaille, Thomas P; Broos, Patrick S; Orbin, Wesley T; King, Robert R; Naylor, Tim; Whitney, Barbara A

    2016-01-01

    We present a catalog of 840 X-ray sources and first results from a 100 ks Chandra X-ray Observatory imaging study of the filamentary infrared dark cloud G014.225$-$00.506, which forms the central regions of a larger cloud complex known as the M17 southwest extension (M17 SWex). In addition to the rich population of protostars and young stellar objects with dusty circumstellar disks revealed by Spitzer Space Telescope archival data, we discover a population of X-ray-emitting, intermediate-mass pre--main-sequence stars (IMPS) that lack infrared excess emission from circumstellar disks. We model the infrared spectral energy distributions of this source population to measure its mass function and place new constraints on the inner dust disk destruction timescales for 2-8 $M_{\\odot}$ stars. We also place a lower limit on the star formation rate (SFR) and find that it is quite high ($\\dot{M}\\ge 0.007~M_{\\odot}$ yr$^{-1}$), equivalent to several Orion Nebula Clusters in G14.225$-$0.506 alone, and likely accelerating...

  13. Far-infrared extinction mapping of infrared dark clouds

    CERN Document Server

    Lim, Wanggi

    2013-01-01

    Progress in understanding star formation requires detailed observational constraints on the initial conditions, i.e. dense clumps and cores in giant molecular clouds that are on the verge of gravitational instability. Such structures have been studied by their extinction of Near-Infrared (NIR) and, more recently, Mid-Infrared (MIR) background light. It has been somewhat more of a surprise to find that there are regions that appear as dark shadows at Far-Infrared (FIR) wavelengths as long as $\\sim$100$\\mu m$. Here we develop analysis methods of FIR images from Spitzer-MIPS and Herschel-PACS that allow quantitative measurements of cloud mass surface density, $\\Sigma$. The method builds upon that developed for MIR extinction mapping (MIREX) (Butler and Tan 2012), in particular involving a search for independent saturated, i.e. very opaque, regions that allow measurement of the foreground intensity. We focus on three massive starless core/clumps in IRDC G028.37+00.07, deriving mass surface density maps from 3.5 t...

  14. Molecular Line Observations of Infrared Dark Clouds: Seeking the Precursors to Intermediate and Massive Star Formation

    CERN Document Server

    Ragan, S E; Plume, R; Gibson, D L; Wilner, D J; O'Brien, S; Hails, E; Ragan, Sarah E.; Bergin, Edwin A.; Plume, Rene; Gibson, David L.; Wilner, David J.; Brien, Shawn O'; Hails, Erin

    2006-01-01

    We have identified 41 infrared dark clouds from the 8 micron maps of the Midcourse Space Experiment (MSX), selected to be found within one square degree areas centered on known ultracompact HII regions. We have mapped these infrared dark clouds in N2H+(1-0), CS(2-1) and C18O(1-0) emission using the Five College Radio Astronomy Observatory. The maps of the different species often show striking differences in morphologies, indicating differences in evolutionary state and/or the presence of undetected, deeply embedded protostars. We derive an average mass for these clouds using N2H+ column densities of ~2500 solar masses, a value comparable to that found in previous studies of high mass star forming cores using other mass tracers. The linewidths of these clouds are typically ~2.0 - 2.9 km/s. Based on the fact that they are dark at 8 micron, compact, massive, and have large velocity dispersions, we suggest that these clouds may be the precursor sites of intermediate and high mass star formation.

  15. The Onset of Massive Star Formation: The Evolution of Temperature and Density Structure in an Infrared Dark Cloud

    CERN Document Server

    Battersby, Cara; Bally, John; Longmore, Steve; Dunham, Miranda; Darling, Jeremy

    2014-01-01

    We present new NH3 (1,1), (2,2), and (4,4) observations from the Karl G. Jansky Very Large Array (VLA) compiled with work in the literature to explore the range of conditions observed in young, massive star-forming regions. To sample the effects of evolution independent from those of distance/resolution, abundance, and large-scale environment, we compare clumps in different evolutionary stages within a single Infrared Dark Cloud (IRDC), G32.02+0.06. We find that the early stages of clustered star formation are characterized by dense, parsec-scale filamentary structures interspersed with complexes of dense cores (~ 1 g cm^-2. Quiescent cores and filaments show smoothly varying temperatures from 10-20 K, rising to over 40 K in star-forming cores. We calculate the virial parameters for 16 cores and find that the level of support provided by turbulence is generally insufficient to support them against gravitational collapse (alpha_vir ~ 0.6). The star-forming filaments show smooth velocity fields, punctuated by d...

  16. Distribution and characteristics of Infrared Dark Clouds using genetic forward modelling

    CERN Document Server

    Marshall, D J; Jones, A P

    2009-01-01

    Infrared Dark Clouds (IRDCs) are dark clouds seen in silhouette in mid-infrared surveys. They are thought to be the birthplace of massive stars, yet remarkably little information exists on the properties of the population as a whole (e.g. mass spectrum, spatial distribution). Genetic forward modelling is used along with the Two Micron All Sky Survey and the Besancon Galactic model to deduce the three dimensional distribution of interstellar extinction towards previously identified IRDC candidates. This derived dust distribution can then be used to determine the distance and mass of IRDCs, independently of kinematic models of the Milky Way. Along a line of sight that crosses an IRDC, the extinction is seen to rise sharply at the distance of the cloud. Assuming a dust to gas ratio, the total mass of the cloud can be estimated. The method has been successfully applied to 1259 IRDCs, including over 1000 for which no distance or mass estimate currently exists. The IRDCs are seen to lie preferentially along the spi...

  17. Distribution and Characteristics of Infrared Dark Clouds Using Genetic Forward Modelling

    Science.gov (United States)

    Marshall, D. J.; Joncas, G.; Jones, A. P.

    2009-11-01

    Infrared Dark Clouds (IRDCs) are dark clouds seen in silhouette in mid-infrared surveys. They are thought to be the birthplace of massive stars, yet remarkably little information exists on the properties of the population as a whole (e.g., mass spectrum, spatial distribution). Genetic forward modeling is used along with the Two Micron All Sky Survey and the Besançon Galactic model to deduce the three-dimensional distribution of interstellar extinction toward previously identified IRDC candidates. This derived dust distribution can then be used to determine the distance and mass of IRDCs, independently of kinematic models of the Milky Way. Along a line of sight that crosses an IRDC, the extinction is seen to rise sharply at the distance of the cloud. Assuming a dust-to-gas ratio, the total mass of the cloud can be estimated. The method has been successfully applied to 1259 IRDCs, including over 1000 for which no distance or mass estimate currently exists. The IRDCs are seen to lie preferentially along the spiral arms and in the molecular ring of the Milky Way, reinforcing the idea that they are the birthplace of massive stars. Also, their mass spectrum is seen to follow a power law with an index of -1.75 ± 0.06, steeper than giant molecular clouds (GMCs) in the inner Galaxy but comparable to clumps in GMCs. This slope suggests that the IRDCs detected using the present method are not gravitationally bound, but are rather the result of density fluctuations induced by turbulence.

  18. Mid-J CO Shock Tracing Observations of Infrared Dark Clouds III: SLED fitting

    CERN Document Server

    Pon, A; Johnstone, D; Caselli, P; Fontani, F; Butler, M J; Jiménez-Serra, I; Palau, A; Tan, J C

    2016-01-01

    Giant molecular clouds contain supersonic turbulence that can locally heat small fractions of gas to over 100 K. We run shock models for low-velocity, C-type shocks propagating into gas with densities between 10^3 and 10^5 cm^(-3) and find that CO lines are the most important cooling lines. Comparison to photodissociation region (PDR) models indicates that mid-J CO lines (J = 8-7 and higher) should be dominated by emission from shocked gas. In papers I and II we presented CO J = 3-2, 8-7, and 9-8 observations towards four primarily quiescent clumps within infrared dark clouds. Here, we fit PDR models to the combined spectral line energy distributions and show that the PDR models that best fit the low-J CO emission underpredict the mid-J CO emission by orders of magnitude, strongly hinting at a hot gas component within these clumps. The low-J CO data clearly show that the integrated intensity of both the CO J = 8-7 and 9-8 lines are anomalously high, such that the line ratio can be used to characterize the hot...

  19. Star formation in the massive "starless" infrared dark cloud G0.253$+$0.016

    CERN Document Server

    Rodriguez, L F

    2013-01-01

    G0.253+0.016 is a remarkable massive infrared dark cloud located within $\\sim$100 pc of the galactic center. With a high mass of $1.3 \\times 10^5 M_\\odot$, a compact average radius of $\\sim$2.8 pc and a low dust temperature of 23 K, it has been believed to be a yet starless precursor to a massive Arches-like stellar cluster. We present sensitive JVLA 1.3 and 5.6 cm radio continuum observations that reveal the presence on three compact thermal radio sources projected against this cloud. These radio sources are interpreted as HII regions powered by $\\sim$B0.5 ZAMS stars. We conclude that although G0.253+0.016 does not show evidence of O-type star formation, there are certainly early B-type stars embedded in it. We detect three more sources in the periphery of G0.253+0.016 with non-thermal spectral indices. We suggest that these sources may be related to the galactic center region and deserve further study.

  20. Initial Fragmentation in the Infrared Dark Cloud G28.53-0.25

    CERN Document Server

    Lu, Xing; Wang, Ke; Gu, Qiusheng

    2015-01-01

    To study the fragmentation and gravitational collapse of dense cores in infrared dark clouds (IRDCs), we have obtained submillimeter continuum and spectral line data as well as multiple inversion transitions of NH3 and H2O maser data of four massive clumps in an IRDC G28.53-0.25. Combining single dish and interferometer NH3 data, we derive the rotation temperature of G28.53. We identity 12 dense cores at 0.1 pc scale based on submillimeter continuum, and obtain their physical properties using NH3 and continuum data. By comparing the Jeans masses of cores with the core masses, we find that turbulent pressure is important in supporting the gas when 1 pc scale clumps fragment into 0.1 pc scale cores. All cores have a virial parameter smaller than 1 assuming a inverse squared radial density profile, suggesting they are gravitationally bound, and the three most promising star forming cores have a virial parameter smaller than 1 even taking magnetic field into account. We also associate the cores with star formatio...

  1. Chemistry in Infrared Dark Cloud Clumps: a Molecular Line Survey at 3 mm

    Science.gov (United States)

    Sanhueza, Patricio; Jackson, J. M.; Foster, J. B.

    2011-05-01

    We have observed 37 Infrared Dark Clouds (IRDCs) containing a total of 159 clumps with the 22-meter ATNF Mopra Telescope in Australia using high-density molecular tracers at 3 mm. We carried out single-pointing observations in the broad-band mode and detected 10 different molecular lines. The detections rates are dominated by HNC (1-0) (98%), N2H+ (1-0) (97%), and HCO+ (1-0) (88%) lines, showing similar values when we divide the sample into active and quiescent clumps (based on Spitzer IRAC and MIPS emission). However, we find differences of 30% in the detection rates for the H13CO+, HN13C, and HC3N lines. We also find that the N2H+ FWHMs of active clumps are broader than those of quiescent clumps, possibly due to ongoing star formation activity driving turbulence. Integrated intensity and abundance ratios of some molecular lines vary between quiescent and active clumps tracing chemical differences which arise from different evolutionary states.

  2. Chemistry in Infrared Dark Cloud Clumps: a Molecular Line Survey at 3 mm

    CERN Document Server

    Sanhueza, Patricio; Foster, Jonathan B; Garay, Guido; Silva, Andrea; Finn, Susanna C

    2012-01-01

    We have observed 37 Infrared Dark Clouds (IRDCs), containing a total of 159 clumps, in high-density molecular tracers at 3 mm using the 22-meter ATNF Mopra Telescope located in Australia. After determining kinematic distances, we eliminated clumps that are not located in IRDCs and clumps with a separation between them of less than one Mopra beam. Our final sample consists of 92 IRDC clumps. The most commonly detected molecular lines are (detection rates higher than 8%): N2H+, HNC, HN13C, HCO+, H13CO+, HCN, C2H, HC3N, HNCO, and SiO. We investigate the behavior of the different molecular tracers and look for chemical variations as a function of an evolutionary sequence based on Spitzer IRAC and MIPS emission. We find that the molecular tracers behave differently through the evolutionary sequence and some of them can be used to yield useful relative age information. The presence of HNC and N2H+ lines do not depend on the star formation activity. On the other hand, HC3N, HNCO, and SiO are predominantly detected i...

  3. A Molecular Line Observation toward Massive Clumps Associated with Infrared Dark Clouds

    CERN Document Server

    Sakai, Takeshi; Kamegai, Kazuhisa; Hirota, Tomoya; Yamaguchi, Nobuyuki; Shiba, Shoichi; Yamamoto, Satoshi

    2008-01-01

    We have surveyed the N2H+ J=1-0, HC3N J=5-4, CCS J_N=4_3-3_2, NH3 (J, K) = (1, 1), (2, 2), (3, 3), and CH3OH J=7-6 lines toward the 55 massive clumps associated with infrared dark clouds by using the Nobeyama Radio Observatory 45 m telescope and the Atacama Submillimeter Telescope Experiment 10 m telescope. The N2H+, HC3N, and NH3 lines are detected toward most of the objects. On the other hand, the CCS emission is detected toward none of the objects. The [CCS]/[N2H+] ratios are found to be mostly lower than unity even in the Spitzer 24 micron dark objects. This suggests that most of the massive clumps are chemically more evolved than the low-mass starless cores. The CH3OH emission is detected toward 18 out of 55 objects. All the CH3OH-detected objects are associated with the Spitzer 24 micron sources, suggesting that star formation has already started in all the CH3OH-detected objects. The velocity widths of the CH3OH J_K=7_0-6_0 A+ and 7_{-1}-6_{-1} E lines are broader than those of N2H+ J=1-0. The CH3OH J_...

  4. Radio Properties of Young Stellar Objects in the Core of the Serpens South Infrared Dark Cloud

    CERN Document Server

    Kern, Nicholas; Tobin, John; Mead, Adrian; Gutermuth, Robert

    2015-01-01

    We present deep radio continuum observations of the star-forming core of the Serpens South Infrared Dark Cloud with the Karl G. Jansky Very Large Array (VLA). Observations were conducted in two bands centered at 7.25 GHz (4.14 cm) and 4.75 GHz (6.31 cm) with an rms of 8.5 and 11.1 microJy/beam, respectively. We also use 2MASS, Spitzer and Herschel data to put our radio observations in the context of young stellar populations characterized by near and far infrared observations. Within a 5 arcmin x 5 arcmin region of interest around the central cluster, we detect roughly eighteen radio sources, seven of which we determine are protostellar in nature due to their radio spectral indices and their association with infrared sources. We find evidence for a previously undetected embedded Class 0 protostar and reaffirm Class 0 protostellar classifications determined by previous millimeter wavelength continuum studies. We use our infrared data to derive mid-infrared luminosities for three of our protostellar sources and...

  5. The mass distribution of clumps within infrared dark clouds. A Large APEX Bolometer Camera study

    CERN Document Server

    Gomez, Laura; Schuller, Frederic; Menten, Karl; Ballesteros-Paredes, Javier

    2013-01-01

    We present an analysis of the dust continuum emission at 870 um in order to investigate the mass distribution of clumps within infrared dark clouds (IRDCs). We map six IRDCs with the Large APEX BOlometer CAmera (LABOCA) at APEX, reaching an rms noise level of 28-44 mJy/beam. The dust continuum emission coming from these IRDCs was decomposed by using two automated algorithms, Gaussclumps and Clumpfind. Moreover, we carried out single-pointing observations of the N_2H^+ (3-2) line toward selected positions to obtain kinematic information. The mapped IRDCs are located in the range of kinematic distances of 2.7-3.2 kpc. We identify 510 and 352 sources with Gaussclumps and Clumpfind, respectively, and estimate masses and other physical properties assuming a uniform dust temperature. The mass ranges are 6-2692 Msun (Gaussclumps) and 7-4254 Msun (Clumpfind) and the ranges in effective radius are around 0.10-0.74 pc (Gaussclumps) and 0.16-0.99 pc (Clumpfind). The mass distribution, independent of the decomposition me...

  6. Spitzer's mid-infrared view on an outer Galaxy Infrared Dark Cloud candidate toward NGC 7538

    CERN Document Server

    Frieswijk, W F; Shipman, R F; Teyssier, D; Carey, S J; Tielens, A G G M

    2008-01-01

    Infrared Dark Clouds (IRDCs) represent the earliest observed stages of clustered star formation, characterized by large column densities of cold and dense molecular material observed in silhouette against a bright background of mid-IR emission. Up to now, IRDCs were predominantly known toward the inner Galaxy where background infrared emission levels are high. We present Spitzer observations with the Infrared Camera Array toward object G111.80+0.58 (G111) in the outer Galactic Plane, located at a distance of ~3 kpc from us and ~10 kpc from the Galactic center. Earlier results show that G111 is a massive, cold molecular clump very similar to IRDCs. The mid-IR Spitzer observations unambiguously detect object G111 in absorption. We have identified for the first time an IRDC in the outer Galaxy, which confirms the suggestion that cluster-forming clumps are present throughout the Galactic Plane. However, against a low mid-IR back ground such as the outer Galaxy it takes some effort to find them.

  7. A multi-wavelength observation and investigation of six infrared dark clouds

    CERN Document Server

    Zhang, Chuan-Peng; Li, Guang-Xing; Zhou, Jian-Jun; Wang, Jun-Jie

    2016-01-01

    Context. Infrared dark clouds (IRDCs) are ubiquitous in the Milky Way, yet they play a crucial role in breeding newly-formed stars. Aims. With the aim of further understanding the dynamics, chemistry, and evolution of IRDCs, we carried out multi-wavelength observations on a small sample. Methods. We performed new observations with the IRAM 30 m and CSO 10.4 m telescopes, with tracers ${\\rm HCO^+}$, HCN, ${\\rm N_2H^+}$, ${\\rm C^{18}O}$, DCO$^+$, SiO, and DCN toward six IRDCs G031.97+00.07, G033.69-00.01, G034.43+00.24, G035.39-00.33, G038.95-00.47, and G053.11+00.05. Results. We investigated 44 cores including 37 cores reported in previous work and seven newly-identified cores. Toward the dense cores, we detected 6 DCO$^+$, and 5 DCN lines. Using pixel-by-pixel spectral energy distribution (SED) fits of the $\\textit{Herschel}$ 70 to 500 $\\mu$m, we obtained dust temperature and column density distributions of the IRDCs. We found that ${\\rm N_2H^+}$ emission has a strong correlation with the dust temperature and...

  8. The Sequential Growth of Star Formation Seeds in the Galactic Snake : Infrared Dark Cloud G11.11-0.12

    NARCIS (Netherlands)

    Wang, Ke; Zhang, Qizhou; Testi, Leonardo; Wu, Yuefang; Zhang, Huawei; van der Tak, Floris; Pillai, Thushara; Wyrowski, Friedrich; Carey, Sean; Ragan, Sarah; Henning, Thomas

    2013-01-01

    We present Submillimeter Array (SMA) 1.3 and 0.88 mm broad band observations, and Very Large Array (VLA) observations in NH3 (J,K) = (1,1) up to (5,5), as well as H2O and CH3OH maser lines toward the two most massive molecular clumps in Infrared Dark Cloud (IRDC) G11.11-0.12, also known as the Snake

  9. Hierarchical fragmentation and differential star formation in the Galactic `Snake': infrared dark cloud G11.11-0.12

    NARCIS (Netherlands)

    Wang, Ke; Zhang, Qizhou; Testi, Leonardo; van der Tak, Floris; Wu, Yuefang; Zhang, Huawei; Pillai, Thushara; Wyrowski, Friedrich; Carey, Sean; Ragan, Sarah E.; Henning, Thomas

    2014-01-01

    We present Submillimeter Array (SMA) λ = 0.88 and 1.3 mm broad-band observations, and Very Large Array (VLA) observations in NH3 (J, K) = (1,1) up to (5,5), H2O and CH3OH maser lines towards the two most massive molecular clumps in infrared dark cloud (IRDC) G11.11-0.12. Sensitive high-resolution im

  10. The Sequential Growth of Star Formation Seeds in the Galactic Snake: Infrared Dark Cloud G11.11-0.12

    NARCIS (Netherlands)

    Wang, Ke; Zhang, Qizhou; Testi, Leonardo; Wu, Yuefang; Zhang, Huawei; van der Tak, Floris; Pillai, Thushara; Wyrowski, Friedrich; Carey, Sean; Ragan, Sarah; Henning, Thomas

    2013-01-01

    We present Submillimeter Array (SMA) 1.3 and 0.88 mm broad band observations, and Very Large Array (VLA) observations in NH3 (J,K) = (1,1) up to (5,5), as well as H2O and CH3OH maser lines toward the two most massive molecular clumps in Infrared Dark Cloud (IRDC) G11.11-0.12, also known as the Snake

  11. Mid-J CO Shock Tracing Observations of Infrared Dark Clouds. III. SLED Fitting

    Science.gov (United States)

    Pon, A.; Kaufman, M. J.; Johnstone, D.; Caselli, P.; Fontani, F.; Butler, M. J.; Jiménez-Serra, I.; Palau, A.; Tan, J. C.

    2016-08-01

    Giant molecular clouds contain supersonic turbulence that can locally heat small fractions of gas to over 100 K. We run shock models for low-velocity, C-type shocks propagating into gas with densities between 103 and 105 cm-3 and find that CO lines are the most important cooling lines. Comparison to photodissociation region (PDR) models indicates that mid-J CO lines (J = 8 \\to 7 and higher) should be dominated by emission from shocked gas. In Papers I and II we presented CO J = 3 \\to 2, 8 \\to 7, and 9 \\to 8 observations toward four primarily quiescent clumps within infrared dark clouds. Here we fit PDR models to the combined spectral line energy distributions and show that the PDR models that best fit the low-J CO emission underpredict the mid-J CO emission by orders of magnitude, strongly hinting at a hot gas component within these clumps. The low-J CO data clearly show that the integrated intensities of both the CO J = 8 \\to 7 and 9 \\to 8 lines are anomalously high, such that the line ratio can be used to characterize the hot gas component. Shock models are reasonably consistent with the observed mid-J CO emission, with models with densities near {10}4.5 cm-3 providing the best agreement. Where this mid-J CO is detected, the mean volume filling factor of the hot gas is 0.1%. Much of the observed mid-J CO emission, however, is also associated with known protostars and may be due to protostellar feedback.

  12. Magnetic fields in the Perseus Spiral Arm and in Infrared Dark Clouds

    Science.gov (United States)

    Hoq, Sadia

    2017-04-01

    The magnetic (B) field is ubiquitous throughout the Milky Way. Several fundamental questions about the B-field in the cool, star-forming interstellar medium (ISM) remain unanswered. In this dissertation, near-infrared (NIR) polarimetric observations are used to study the large-scale Galactic B-field in the cool ISM in a spiral arm and to determine the role of B-fields in the formation of Infrared Dark Clouds (IRDCs). NIR polarimetry of 31 star clusters, located in and around the Perseus spiral arm, were obtained to determine the orientation of the plane-of-sky B-field in the outer Galaxy, and whether the presence of a spiral arm influenced B-field properties. Cluster distances, which provide upper limits to the B-field probed by observations, were estimated by developing a maximum likelihood method to fit theoretical stellar isochrones to stars in cluster color-magnitude diagrams (CMDs). Using the distance estimates, the cluster locations relative to the Perseus arm were found. The cluster polarization percentages and orientations were compared between clusters foreground to the arm and clusters inside or behind the arm. The cluster polarization orientations are predominantly parallel to the Galactic plane. Clusters inside and behind the arm have larger polarization percentages, likely a result of more polarizing material along the line of sight. The cluster polarization data were also compared to optical, inner Galaxy NIR, and Planck submm polarimetry data, and showed agreement with all three data sets. The polarimetric properties of one IRDC, G28.23, were determined using deep NIR observations. The polarization orientations relative to the cloud major axis were found to change directions with distance from the cloud axis. The B-field strength was estimated to be 10 to 100microG. Despite these large inferred B-field strengths, the B-field was found not to be the dominant force in the formation of the IRDC, though the B-field morphology was influenced by the cloud

  13. INITIAL FRAGMENTATION IN THE INFRARED DARK CLOUD G28.53−0.25

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xing; Gu, Qiusheng [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Wang, Ke, E-mail: xlu@cfa.harvard.edu [European Southern Observatory, Karl-Schwarzschild-Str.2, D-85748 Garching bei München (Germany)

    2015-06-01

    To study the fragmentation and gravitational collapse of dense cores in infrared dark clouds (IRDCs), we have obtained submillimeter continuum and spectral line data as well as multiple inversion transitions of NH{sub 3} and H{sub 2}O maser data of four massive clumps in IRDC G28.53−0.25. Combining single-dish and interferometer NH{sub 3} data, we derive a rotation temperature of G28.53. We identity 12 dense cores at a 0.1 pc scale based on submillimeter continuum, and obtain their physical properties using NH{sub 3} and continuum data. By comparing the Jeans masses of cores with the core masses, we find that turbulent pressure is important for supporting the gas when 1 pc scale clumps fragment into 0.1 pc scale cores. All cores have a virial parameter that is smaller than 1 if we assume an inverse squared radial density profile, suggesting they are gravitationally bound, and the three most promising star-forming cores have a virial parameter that is smaller than 1 even when taking the magnetic field into account. We also associate the cores with star formation activities revealed by outflows, masers, or infrared sources. Unlike what previous studies have suggested, MM1 turns out to harbor a few star-forming cores and is likely a progenitor of a high-mass star cluster. MM5 is intermediate while MM7/8 are quiescent in terms of star formation, but they also harbor gravitationally bound dense cores and have the potential for forming stars, as in MM1.

  14. Maser Emission toward the Infrared Dark Cloud G359.94+0.17 Seen in Silhouette against the Galactic Center

    CERN Document Server

    Deguchi, S; Shino, N

    2011-01-01

    The infrared dark cloud G359.94+0.17 is a conspicuous, opaque cloud, which is seen in silhouette against the Galactic center. We found unexpectedly strong (~50 Jy) maser emission of CH3OH at 44 GHz with additional weak 22 GHz H2O maser and 43 GHz SiO thermal emissions toward this cloud. Detections of these molecular lines indicate that strong star forming activities are proceeding in this cloud, which were not reported previously despite of numerous works toward the Galactic center.The line profiles of the NH3 inversion lines at 23 GHz indicate that G359.94+0.17 is composed of three clouds with V(lsr)= 0, 15 and ~80 km/s overlapped on the line of sight. The maser emission is associated with the 15 km/s cloud, suggesting that it is located at the Norma spiral arm.

  15. Physical characteristics of a dark cloud in an early stage of star formation toward NGC 7538 - An outer Galaxy infrared dark cloud?

    NARCIS (Netherlands)

    Frieswijk, W. W. F.; Spaans, M.; Shipman, R. F.; Teyssier, D.; Hily-Blant, P.

    2007-01-01

    Context. In the inner parts of the Galaxy the Infrared Dark Clouds (IRDCs) are presently believed to be the progenitors of massive stars and star clusters. Many of them are predominantly devoid of active star formation and for now they represent the earliest observed stages of massive star formation

  16. Structure and radial equilibrium of filamentary molecular clouds

    CERN Document Server

    Contreras, Yanett; Garay, Guido

    2013-01-01

    Recent dust continuum surveys have shown that filamentary structures are ubiquitous along the Galactic plane. While the study of their global properties has gained momentum recently, we are still far from fully understanding their origin and stability. Theories invoking magnetic field have been formulated to help explain the stability of filaments; however, observations are needed to test their predictions. In this paper, we investigate the structure and radial equilibrium of five filamentary molecular clouds with the aim of determining the role that magnetic field may play. To do this, we use continuum and molecular line observations to obtain their physical properties (e.g. mass, temperature and pressure). We find that the filaments have lower lineal masses compared to their lineal virial masses. Their virial parameters and shape of their dust continuum emission suggests that these filaments may be confined by a toroidal dominated magnetic field.

  17. Gravitational instability of filamentary molecular clouds, including ambipolar diffusion

    CERN Document Server

    Hosseinirad, Mohammad; Abbassi, Shahram; Roshan, Mahmood

    2016-01-01

    The gravitational instability of a filamentary molecular cloud in non-ideal magnetohydrodynamics is investigated. The filament is assumed to be in hydrostatic equilibrium. We add the effect of ambipolar diffusion to the filament which is threaded by an initial uniform axial magnetic field along its axis. We write down the fluid equations in cylindrical coordinates and perform linear perturbation analysis. We integrate the resultant differential equations and then derive the numerical dispersion relation. We find that, a more efficient ambipolar diffusion leads to an enhancement of the growth of the most unstable mode, and to increase of the fragmentation scale of the filament.

  18. STAR FORMATION IN THE MASSIVE ''STARLESS'' INFRARED DARK CLOUD G0.253+0.016

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Luis F.; Zapata, Luis A., E-mail: lrodriguez@crya.unam.mx, E-mail: lzapata@crya.unam.mx [Centro de Radioastronomia y Astrofisica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacan (Mexico)

    2013-04-10

    G0.253+0.016 is a remarkable massive infrared dark cloud located within {approx}100 pc of the galactic center. With a high mass of 1.3 Multiplication-Sign 10{sup 5} M{sub Sun }, a compact average radius of {approx}2.8 pc, and a low dust temperature of 23 K, it has been believed to be a yet starless precursor to a massive Arches-like stellar cluster. We present sensitive JVLA 1.3 and 5.6 cm radio continuum observations that reveal the presence of three compact thermal radio sources projected against this cloud. These radio sources are interpreted as H II regions powered by {approx}B0.5 zero-age main sequence stars. We conclude that although G0.253+0.016 does not show evidence of O-type star formation, there are certainly early B-type stars embedded in it. We detect three more sources in the periphery of G0.253+0.016 with non-thermal spectral indices. We suggest that these sources may be related to the galactic center region and deserve further study.

  19. A multi-transition molecular line study of infrared dark cloud G331.71+00.59

    CERN Document Server

    Yu, Nai-Ping

    2016-01-01

    Using archive data from the Millimeter Astronomy Legacy Team Survey at 90 GHz (MALT90), carried out using the Mopra 22-m telescope, we made the first multi-transition molecular line study of infrared dark cloud (IRDC) MSXDC G331.71+00.59. Two molecular cores were found embedded in this IRDC. Each of these cores is associated with a known extended green object (EGO), indicating places of massive star formation. The HCO+ (1-0) and HNC (1-0) transitions show prominent blue or red asymmetric structures, suggesting outflow and inflow activities of young stellar objects (YSOs). Other detected molecular lines include H13CO+ (1-0), C2H (1-0), HC3N (10-9), HNCO(404-303) and SiO (2-1), which are typical of hot cores and outflows. We regard the two EGOs as evolving from the IRDC to hot cores. Using public GLIMPS data, we investigate the spectral energy distribution of EGO G331.71+0.60. Our results support this EGO being a massive YSO driving the outflow. G331.71+0.58 may be at an earlier evolutionary stage.

  20. Unveiling a network of parallel filaments in the Infrared Dark Cloud G14.225-0.506

    CERN Document Server

    Busquet, Gemma; Palau, Aina; Liu, Hauyu Baobab; Sánchez-Monge, Álvaro; Estalella, Robert; Ho, Paul T P; de Gregorio-Monsalvo, Itziar; Pillai, Thushara; Wyrowski, Friedrich; Girart, Josep M; Santos, Fábio P; Franco, Gabriel A P

    2012-01-01

    We present the results of combined NH3(1,1) and (2,2) line emission observed with the Very Large Array and the Effelsberg 100m telescope of the Infrared Dark Cloud G14.225-0.506. The NH3 emission reveals a network of filaments constituting two hub-filament systems. Hubs are associated with gas of rotational temperature Trot \\sim 25 K, non-thermal velocity dispersion ~1.1 km/s, and exhibit signs of star formation, while filaments appear to be more quiescent (Trot \\sim 11 K, non-thermal velocity dispersion ~0.6 km/s). Filaments are parallel in projection and distributed mainly along two directions, at PA \\sim 10 deg and 60 deg, and appear to be coherent in velocity. The averaged projected separation between adjacent filaments is between 0.5 pc and 1pc, and the mean width of filaments is 0.12 pc. Cores within filaments are separated by ~0.33 pc, which is consistent with the predicted fragmentation of an isothermal gas cylinder due to the 'sausage'-type instability. The network of parallel filaments observed in G...

  1. Hierarchical fragmentation and differential star formation in the Galactic "Snake": infrared dark cloud G11.11-0.12

    CERN Document Server

    Wang, Ke; Testi, Leonardo; van der Tak, Floris; Wu, Yuefang; Zhang, Huawei; Pillai, Thushara; Wyrowski, Friedrich; Carey, Sean; Ragan, Sarah E; Henning, Thomas

    2014-01-01

    We present Submillimeter Array (SMA) $\\lambda =$ 0.88 and 1.3 mm broad band observations, and the Jansky Very Large Array (VLA) observations in $\\rm{NH_3}$ $(J,K) = (1,1)$ up to $(5,5)$, $\\rm{H_2O}$ and $\\rm{CH_3OH}$ maser lines toward the two most massive molecular clumps in infrared dark cloud (IRDC) G11.11-0.12. Sensitive high-resolution images reveal hierarchical fragmentation in dense molecular gas from the $\\sim 1$ pc clump scale down to $\\sim 0.01$ pc condensation scale. At each scale, the mass of the fragments is orders of magnitude larger than the Jeans mass. This is common to all four IRDC clumps we studied, suggesting that turbulence plays an important role in the early stages of clustered star formation. Masers, shock heated $\\rm{NH_3}$ gas, and outflows indicate intense ongoing star formation in some cores while no such signatures are found in others. Furthermore, chemical differentiation may reflect the difference in evolutionary stages among these star formation seeds. We find $\\rm{NH_3}$ ortho...

  2. The structure and early evolution of massive star forming regions - Substructure in the infrared dark cloud SDC13

    CERN Document Server

    McGuire, Catherine; Peretto, Nicolas; Zhang, Qizhou; Traficante, Alessio; Avison, Adam; Jimenez-Serra, Izaskun

    2016-01-01

    Investigations into the substructure of massive star forming regions are essential for understanding the observed relationships between core mass distributions and mass distributions in stellar clusters, differentiating between proposed mechanisms of massive star formation. We study the substructure in the two largest fragments (i.e. cores) MM1 and MM2, in the infrared dark cloud complex SDC13. As MM1 appears to be in a later stage of evolution than MM2, comparing their substructure provides an insight in to the early evolution of massive clumps. We report the results of high resolution SMA dust continuum observations towards MM1 and MM2. Combining these data with Herschel observations, we carry out RADMC-3D radiative transfer modelling to characterise the observed substructure. SMA continuum data indicates 4 sub-fragments in the SDC13 region. The nature of the second brightest sub-fragment (B) is uncertain as it does not appear as prominent at the lower MAMBO resolution or at radio wavelengths. Statistical a...

  3. Dense core properties in the Infrared Dark cloud G14.225-0.506 revealed by ALMA

    CERN Document Server

    Ohashi, Satoshi; Chen, Huei-Ru Vivien; Zhang, Qizhou; Busquet, Gemma; Nakamura, Fumitaka; Palau, Aina; Tatematsu, Ken'ichi

    2016-01-01

    We have performed a dense core survey toward the Infrared Dark Cloud G14.225-0.506 at 3 mm continuum emission with the Atacama Large Millimeter/Submillimeter Array (ALMA). This survey covers the two hub-filament systems with an angular resolution of $\\sim3$\\arcsec ($\\sim0.03$ pc). We identified 48 dense cores. Twenty out of the 48 cores are protostellar due to their association with young stellar objects (YSOs) and/or X-ray point-sources, while the other 28 cores are likely prestellar and unrelated with known IR or X-ray emission. Using APEX 870 $\\mu$m continuum emission, we also identified the 18 clumps hosting these cores. Through virial analysis using the ALMA N$_2$H$^+$ and VLA/Effelsberg NH$_3$ molecular line data, we found a decreasing trend in the virial parameter with decreasing scales from filaments to clumps, and then to cores. The virial parameters of $0.1-1.3$ in cores, indicate that cores are likely undergoing dynamical collapse. The cumulative Core Mass Function (CMF) for the prestellar cores ca...

  4. A multi-transition molecular line study of infrared dark cloud G331.71+00.59

    Institute of Scientific and Technical Information of China (English)

    Nai-Ping Yu; Jun-Jie Wang

    2013-01-01

    Using archive data from the Millimeter Astronomy Legacy Team Survey at 90 GHz (MALT90),carried out using the Mopra 22-m telescope,we made the first multi-transition molecular line study of infrared dark cloud (IRDC) MSXDC G331.71+00.59.Two molecular cores were found embedded in this IRDC.Each of these cores is associated with a known extended green object (EGO),indicating places of massive star formation.The HCO+ (1-0) and HNC (1-0) transitions show prominent blue or red asymmetric structures,suggesting outflow and inflow activities of young stellar objects (YSOs).Other detected molecular lines include H13CO+ (1-0),C2H (1-0),HC3N (10-9),HNCO(40,4-30,3) and SiO (2-1),which are typical of hot cores and outflows.We regard the two EGOs as evolving from the IRDC to hot cores.Using public GLIMPS data,we investigate the spectral energy distribution of EGO G331.71+0.60.Our results support this EGO being a massive YSO driving the outflow.G331.71+0.58 may be at an earlier evolutionary stage.

  5. UNVEILING A NETWORK OF PARALLEL FILAMENTS IN THE INFRARED DARK CLOUD G14.225-0.506

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, Gemma [INAF-Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, I-00133 Roma (Italy); Zhang, Qizhou; Ho, Paul T. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Palau, Aina; Girart, Josep M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C-5 parell, E-08193 Bellaterra, Catalunya (Spain); Liu, Hauyu Baobab [Academia Sinica Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Sanchez-Monge, Alvaro [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-05125 Firenze (Italy); Estalella, Robert [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona, Catalunya (Spain); De Gregorio-Monsalvo, Itziar [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Pillai, Thushara [Caltech Astronomy Department, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Wyrowski, Friedrich [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Santos, Fabio P.; Franco, Gabriel A. P., E-mail: gemma.busquet@iaps.inaf.it [Departamento de Fisica-ICEx-UFMG, Caixa Postal 702, 30.123-970 Belo Horizonte-MG (Brazil)

    2013-02-20

    We present the results of combined NH{sub 3} (1,1) and (2,2) line emission observed with the Very Large Array and the Effelsberg 100 m telescope of the infrared dark cloud G14.225-0.506. The NH{sub 3} emission reveals a network of filaments constituting two hub-filament systems. Hubs are associated with gas of rotational temperature T{sub rot} {approx} 15 K, non-thermal velocity dispersion {sigma}{sub NT} {approx} 1 km s{sup -1}, and exhibit signs of star formation, while filaments appear to be more quiescent (T{sub rot} {approx} 11 K and {sigma}{sub NT} {approx} 0.6 km s{sup -1}). Filaments are parallel in projection and distributed mainly along two directions, at P.A. {approx} 10 Degree-Sign and 60 Degree-Sign , and appear to be coherent in velocity. The averaged projected separation between adjacent filaments is between 0.5 pc and 1 pc, and the mean width of filaments is 0.12 pc. Cores within filaments are separated by {approx}0.33 {+-} 0.09 pc, which is consistent with the predicted fragmentation of an isothermal gas cylinder due to the {sup s}ausage{sup -}type instability. The network of parallel filaments observed in G14.225-0.506 is consistent with the gravitational instability of a thin gas layer threaded by magnetic fields. Overall, our data suggest that magnetic fields might play an important role in the alignment of filaments, and polarization measurements in the entire cloud would lend further support to this scenario.

  6. Observational studies of pre-stellar cores and infrared dark clouds

    CERN Document Server

    Caselli, Paola

    2011-01-01

    Stars like our Sun and planets like our Earth form in dense regions within interstellar molecular clouds, called pre-stellar cores (PSCs). PSCs provide the initial conditions in the process of star and planet formation. In the past 15 years, detailed observations of (low-mass) PSCs in nearby molecular cloud complexes have allowed us to find that they are cold (T < 10 K) and quiescent (molecular line widths are close to thermal), with a chemistry profoundly affected by molecular freeze-out onto dust grains. In these conditions, deuterated molecules flourish, becoming the best tools to unveil the PSC physical and chemical structure. Despite their apparent simplicity, PSCs still offer puzzles to solve and they are far from being completely understood. For example, what is happening to the gas and dust in their nuclei (the future stellar cradles) is still a mystery that awaits for ALMA. Other important questions are: how do different environments and external conditions affect the PSC physical/chemical structu...

  7. Dense Core Properties in the Infrared Dark Cloud G14.225-0.506 Revealed by ALMA

    Science.gov (United States)

    Ohashi, Satoshi; Sanhueza, Patricio; Chen, Huei-Ru Vivien; Zhang, Qizhou; Busquet, Gemma; Nakamura, Fumitaka; Palau, Aina; Tatematsu, Ken'ichi

    2016-12-01

    We have performed a dense core survey toward the Infrared Dark Cloud G14.225-0.506 at 3 mm continuum emission with the Atacama Large Millimeter/Submillimeter Array (ALMA). This survey covers the two hub-filament systems with an angular resolution of ˜ 3\\prime\\prime (˜0.03 pc). We identified 48 dense cores. 20 out of the 48 cores are protostellar due to their association with young stellar objects (YSOs) and/or X-ray point-sources, while the other 28 cores are likely prestellar and unrelated with known IR or X-ray emission. Using APEX 870 μm continuum emission, we also identified the 18 clumps hosting these cores. Through virial analysis using the ALMA N2H+ and VLA/Effelsberg NH3 molecular line data, we found a decreasing trend in the virial parameter with decreasing scales from filaments to clumps, and then to cores. The virial parameters of 0.1-1.3 in cores indicate that cores are likely undergoing dynamical collapse. The cumulative core mass function for the prestellar core candidates has a power law index of α =1.6, with masses ranging from 1.5 to 22 {M}⊙ . We find no massive prestellar or protostellar cores. Previous studies suggest that massive O-type stars have not been produced yet in this region. Therefore, high-mass stars should be formed in the prestellar cores by accreting a significant amount of gas from the surrounding medium. Another possibility is that low-mass YSOs become massive by accreting from their parent cores that are fed by filaments. These two possibilities might be consistent with the scenario of global hierarchical collapse.

  8. High-dynamic-range extinction mapping of infrared dark clouds: Dependence of density variance with sonic Mach number in molecular clouds

    CERN Document Server

    Kainulainen, Jouni

    2012-01-01

    Measuring the mass distribution of infrared dark clouds (IRDCs) over the wide dynamic range of their column densities is a fundamental obstacle in determining the initial conditions of high-mass star formation and star cluster formation. We present a new technique to derive high-dynamic-range, arcsecond-scale resolution column density data for IRDCs and demonstrate the potential of such data in measuring the density variance - sonic Mach number relation in molecular clouds. We combine near-infrared data from the UKIDSS/Galactic Plane Survey with mid-infrared data from the Spitzer/GLIMPSE survey to derive dust extinction maps for a sample of ten IRDCs. We then examine the linewidths of the IRDCs using 13CO line emission data from the FCRAO/Galactic Ring Survey and derive a column density - sonic Mach number relation for them. For comparison, we also examine the relation in a sample of nearby molecular clouds. The presented column density mapping technique provides a very capable, temperature independent tool f...

  9. Mid-J CO shock tracing observations of infrared dark clouds II Low-J CO constraints on excitation, depletion, and kinematics

    CERN Document Server

    Pon, A; Caselli, P; Fontani, F; Palau, A; Butler, M J; Kaufman, M; Jiménez-Serra, I; Tan, J C

    2015-01-01

    Infrared dark clouds are kinematically complex molecular structures in the interstellar medium that can host sites of massive star formation. We present 4 square arcminute maps of the 12CO, 13CO, and C18O J = 3 to 2 lines from selected locations within the C and F (G028.37+00.07 and G034.43+00.24) infrared dark clouds (IRDCs), as well as single pointing observations of the 13CO and C18O J = 2 to 1 lines towards three cores within these clouds. We derive CO gas temperatures throughout the maps and find that CO is significantly frozen out within these IRDCs. We find that the CO depletion tends to be the highest near column density peaks, with maximum depletion factors between 5 and 9 in IRDC F and between 16 and 31 in IRDC C. We also detect multiple velocity components and complex kinematic structure in both IRDCs. Therefore, the kinematics of IRDCs seem to point to dynamically evolving structures yielding dense cores with considerable depletion factors.

  10. A MALT90 study of the chemical properties of massive clumps and filaments of infrared dark clouds

    Science.gov (United States)

    Miettinen, O.

    2014-02-01

    Context. Infrared dark clouds (IRDCs) provide a useful testbed in which to investigate the genuine initial conditions and early stages of massive-star formation. Aims: We attempt to characterise the chemical properties of a sample of 35 massive clumps of IRDCs through multi-molecular line observations. We also search for possible evolutionary trends among the derived chemical parameters. Methods: The clumps are studied using the MALT90 (Millimetre Astronomy Legacy Team 90 GHz) line survey data obtained with the Mopra 22 m telescope. The survey covers 16 different transitions near 90 GHz. The spectral-line data are used in concert with our previous LABOCA (Large APEX BOlometer CAmera) 870 μm dust emission data. Results: Eleven MALT90 transitions are detected towards the clumps at least at the 3σ level. Most of the detected species (SiO, C2H, HNCO, HCN, HCO+, HNC, HC3N, and N2H+) show spatially extended emission towards many of the sources. Most of the fractional abundances of the molecules with respect to H2 are found to be comparable to those determined in other recent similar studies of IRDC clumps. We found that the abundances of SiO, HNCO, and HCO+ are higher in IR-bright clumps than in IR-dark sources, reflecting a possible evolutionary trend. A hint of this trend is also seen for HNC and HC3N. An opposite trend is seen for the C2H and N2H+ abundances. Moreover, a positive correlation is found between the abundances of HCO+ and HNC, and between those of HNC and HCN. The HCN and HNC abundances also appear to increase as a function of the N2H+ abundance. The HNC/HCN and N2H+/HNC abundance ratios are derived to be near unity on average, while that of HC3N/HCN is ~10%. The N2H+/HNC ratio appears to increase as the clump evolves, while the HNC/HCO+ ratio shows the opposite behaviour. Conclusions: The detected SiO emission is probably caused by shocks driven by outflows in most cases, although shocks resulting from the cloud formation process could also play a role

  11. Collapse and Fragmentation of Molecular Cloud Cores. IX. Magnetic Braking of Initially Filamentary Clouds

    Science.gov (United States)

    Boss, Alan P.

    2007-04-01

    The collapse and fragmentation of initially filamentary, magnetic molecular clouds are calculated in three dimensions with a gravitational, radiative hydrodynamics code. The code includes magnetic field effects in an approximate manner: magnetic pressure, tension, braking, and ambipolar diffusion are all modeled. The parameters varied are the ratio of the ambipolar diffusion time to the free-fall time at the center of the filamentary cloud (tad/tff=10, 20, or 106~∞), the cloud's reference magnetic field strength (Boi=0, 200, or 300 μG-the latter two values leading to magnetically subcritical clouds), the ratio of rotational to gravitational energy of the filament (10-4 or 10-2), and the efficiency of magnetic braking (represented by a factor fmb=0, 10-4, or 10-3). Three types of outcomes are observed: direct collapse and fragmentation into a multiple protostar system (models with Boi=0), periodic contraction and expansion without collapse (models with tad/tff=106), or periodic contraction and expansion leading eventually to collapse on a timescale of ~6tff-12tff (all other models). Because the computational grid is a finite-volume sphere, the expanding clouds bounce off the spherical boundary and recollapse toward the center of the spherical grid, leading to the periodic formation of shocked regions where the infalling gas collides with itself, forming dense layers susceptible to sustained collapse and eventual fragmentation. The models develop weakly supersonic velocity fields as a result of rebounding prior to collapse. The models show that magnetically supported clouds subject to magnetic braking can undergo dynamic collapse leading to protostellar fragmentation on scales of 10-100 AU, consistent with typical binary star separations.

  12. Cores in Infra-Red Dark Clouds (IRDCs) seen in the Hi-GAL survey between l = 300{\\deg} and l = 330{\\deg}

    CERN Document Server

    Wilcock, L A; Kirk, J M; Stamatellos, D; Whitworth, A; Elia, D; Fuller, G A; DiGiorgio, A; Griffin, M J; Molinari, S; Martin, P; Mottram, J C; Peretto, N; Pestalozzi, M; Schisano, E; Plume, R; Smith, H A; Thompson, M A

    2012-01-01

    We have used data taken as part of the Herschel infrared Galactic Plane survey (Hi-GAL) to study 3171 infrared-dark cloud (IRDC) candidates that were identified in the mid-infrared (8 {\\mu}m) by Spitzer (we refer to these as 'Spitzer-dark' regions). They all lie in the range l=300 - 330 \\circ and |b| 6 1 \\circ. Of these, only 1205 were seen in emission in the far-infrared (250-500 {\\mu}m) by Herschel (we call these 'Herschel-bright' clouds). It is predicted that a dense cloud will not only be seen in absorption in the mid-infrared, but will also be seen in emission in the far-infrared at the longest Herschel wavebands (250-500 {\\mu}m). If a region is dark at all wavelengths throughout the mid-infrared and far-infrared, then it is most likely to be simply a region of lower background infrared emission (a 'hole in the sky'). Hence, it appears that previous surveys, based on Spitzer and other mid-infrared data alone, may have over-estimated the total IRDC population by a factor of 2. This has implications for es...

  13. LABOCA 870 micron dust continuum mapping of selected infrared-dark cloud regions in the Galactic plane

    CERN Document Server

    Miettinen, Oskari

    2012-01-01

    We have mapped four selected about 0.5 deg x 0.5 deg-sized fields containing Spitzer 8-micron dark regions with APEX/LABOCA at 870 micron. Selected positions in the fields were observed in C17O(2-1) to obtain kinematic information. The obtained LABOCA maps are used in conjunction with the Spitzer IR images. The total number of clumps identified in this survey is 91, out of which 40 (44%) appear dark at 8 and 24 micron. The remaining clumps are associated with mid-IR emission. Many of the identified clumps are massive enough to allow high-mass star formation, and some of them already show clear signposts of that. Seven clumps associated with extended-like 4.5 micron emission are candidate extended green objects (EGOs). Filamentary dust "ridges" were found towards the Spitzer bubbles N10/11 in one of our fields, which conforms to the triggered high-mass star formation in the system. The relative number of IR-dark and IR-bright clumps suggest that the duration of the former stage is about 1.6x10^5 yr. The mass d...

  14. Evidence of triggered star formation in G327.3-0.6. Dust-continuum mapping of an infrared dark cloud with P-ArT\\'eMiS

    CERN Document Server

    Minier, V; Bergman, P; Motte, F; Wyrowski, F; Pennec, J Le; Rodríguez, L; Boulade, O; Doumayrou, E; Dubreuil, D; Gallais, P; Hamon, G; Lagage, P -O; Lortholary, M; Martignac, J; Revéret, V; Roussel, H; Talvard, M; Willmann, G; Olofsson, H; 10.1051/0004-6361/200912308

    2009-01-01

    Aims. Expanding HII regions and propagating shocks are common in the environment of young high-mass star-forming complexes. They can compress a pre-existing molecular cloud and trigger the formation of dense cores. We investigate whether these phenomena can explain the formation of high-mass protostars within an infrared dark cloud located at the position of G327.3-0.6 in the Galactic plane, in between two large infrared bubbles and two HII regions. Methods: The region of G327.3-0.6 was imaged at 450 ? m with the CEA P-ArT\\'eMiS bolometer array on the Atacama Pathfinder EXperiment telescope in Chile. APEX/LABOCA and APEX-2A, and Spitzer/IRAC and MIPS archives data were used in this study. Results: Ten massive cores were detected in the P-ArT\\'eMiS image, embedded within the infrared dark cloud seen in absorption at both 8 and 24 ?m. Their luminosities and masses indicate that they form high-mass stars. The kinematical study of the region suggests that the infrared bubbles expand toward the infrared dark cloud...

  15. What is controlling the fragmentation process in the Infrared Dark Cloud G14.225-0.506? Differet level of fragmentation in twin hubs

    CERN Document Server

    Busquet, G; Palau, A; Liu, H B; Zhang, Q; Girart, J M; de Gregorio-Monsalvo, I; Pillai, T; Anglada, G; Ho, P T P

    2016-01-01

    We present observations of the 1.3 mm continuum emission toward hub-N and hub-S of the infrared dark cloud G14.225-0.506 carried out with the Submillimeter Array, together with observations of the dust emission at 870 and 350 microns obtained with APEX and CSO telescopes. The large scale dust emission of both hubs consists of a single peaked clump elongated in the direction of the associated filament. At small scales, the SMA images reveal that both hubs fragment into several dust condensations. The fragmentation level was assessed under the same conditions and we found that hub-N presents 4 fragments while hub-S is more fragmented, with 13 fragments identified. We studied the density structure by means of a simultaneous fit of the radial intensity profile at 870 and 350 microns and the spectral energy distribution adopting a Plummer-like function to describe the density structure. The parameters inferred from the model are remarkably similar in both hubs, suggesting that density structure could not be respon...

  16. A Detailed Analysis of the Physical Conditions in the Infrared Dark Clouds in the Region IGGC 16/23

    Science.gov (United States)

    Scibelli, Samantha; Tolls, Volker

    2017-01-01

    There is an ongoing debate about why the star formation rate is low in the Galactic Center and Galactic Bar region of the Milky Way. Clump 2 is located at a distance of ~400 pc from the Galactic Center in the Galactic Bar region near the edge of the Central Molecular Zone (CMZ). Molecular clouds in this region are too distant to be influenced by the central black hole. However, despite of its location, Clump 2 is comprised of molecular clouds that show the same low star formation rate as those in the Galactic Center. Using Herschel PACS and SPIRE and APEX dust continuum emission data, our measurements indicate that cores in the IGGC 16/23 region have dust masses and densities comparable to those of more typical star-forming molecular clouds in the solar neighborhood. In addition, we analyzed Herschel HIFI high-J 12CO emission line observations supplemented by MOPRA molecular line observations. We find that the IGGC 16/23 region is composed of many smaller cores with different systemic velocities in the same line of sight advocating that additional analysis should be done to provide better constraints on the core sizes and masses to confirm that the core masses are below their virial masses and, thus, are not collapsing.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  17. H II regions, infrared dark molecular clouds and the local geometry of the Milky Way's nuclear star-forming ring

    CERN Document Server

    Liszt, H S

    2009-01-01

    To interpret the galactic center H II region complexes as constituents of a barred galaxy's nuclear star-forming ring, we compare 18cm VLA radiocontinuumm, $8-22\\mu$ MSX IR and 2.6mm BTL and ARO12m CO emission in the inner few hundred pc. Galactic center H II regions are comparable in their IR appearance, luminosity and SED to M17 or N!0, but the IR light distribution is strongly modified by extinction at 8-22$\\mu$, locally and overall. In Sgr B2 at $l > 0.6$\\degr strong radio H II regions are invisible in the IR. In two favorable cases, extinction from individual galactic center molecular clouds is shown to have $\\tau \\ga 1$ at 8-22$\\mu$ independent of wavelength. The gas kinematics are mostly rotational but with systematic $\\pm 30-50$ \\kms non-circular motion. Sgr B and C both show the same shell and high-velocity cap structure. The H II regions lie in a slightly-inclined ring of radius $\\approx$ 180 pc (1.2\\degr) whose near side appears at higher latitude and lower velocity and contains Sgr B. Sgr C is on ...

  18. WHAT IS CONTROLLING THE FRAGMENTATION IN THE INFRARED DARK CLOUD G14.225–0.506?: DIFFERENT LEVELS OF FRAGMENTATION IN TWIN HUBS

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, Gemma; Girart, Josep Miquel [Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, Carrer de Can Magrans, S/N, E-08193, Cerdanyola del Vallès, Catalunya (Spain); Estalella, Robert [Departament d’Astronomia i Meteorologia, Institut de Ciències del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Martí i Franquès, 1, E-08028 Barcelona, Catalunya (Spain); Palau, Aina [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, P.O. Box 3-72, 58090 Morelia, Michoacán, México (Mexico); Liu, Hauyu Baobab; Ho, Paul T. P. [Academia Sinica Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); De Gregorio-Monsalvo, Itziar [European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Pillai, Thushara [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Anglada, Guillem, E-mail: busquet@ice.cat [Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía, s/n, E-18008, Granada (Spain)

    2016-03-20

    We present observations of the 1.3 mm continuum emission toward hub-N and hub-S of the infrared dark cloud G14.225–0.506 carried out with the Submillimeter Array, together with observations of the dust emission at 870 and 350 μm obtained with APEX and CSO telescopes. The large-scale dust emission of both hubs consists of a single peaked clump elongated in the direction of the associated filament. At small scales, the SMA images reveal that both hubs fragment into several dust condensations. The fragmentation level was assessed under the same conditions and we found that hub-N presents 4 fragments while hub-S is more fragmented, with 13 fragments identified. We studied the density structure by means of a simultaneous fit of the radial intensity profile at 870 and 350 μm and the spectral energy distribution adopting a Plummer-like function to describe the density structure. The parameters inferred from the model are remarkably similar in both hubs, suggesting that density structure could not be responsible for determining the fragmentation level. We estimated several physical parameters, such as the level of turbulence and the magnetic field strength, and we found no significant differences between these hubs. The Jeans analysis indicates that the observed fragmentation is more consistent with thermal Jeans fragmentation compared with a scenario in which turbulent support is included. The lower fragmentation level observed in hub-N could be explained in terms of stronger UV radiation effects from a nearby H ii region, evolutionary effects, and/or stronger magnetic fields at small scales, a scenario that should be further investigated.

  19. Filamentary flow and magnetic geometry in evolving cluster-forming molecular cloud clumps

    CERN Document Server

    Klassen, Mikhail; Kirk, Helen

    2016-01-01

    We present an analysis of the relationship between the orientation of magnetic fields and filaments that form in 3D magnetohydrodynamic simulations of cluster-forming, turbulent molecular cloud clumps. We examine simulated cloud clumps with size scales of L ~ 2-4 pc and densities of n ~ 400-1000 cm^-3. Many molecular clouds have Alfven Mach numbers near unity, a regime insufficiently explored by numerical simulations. We simulated two cloud clumps of different masses, one in virial equilibrium, the other strongly gravitationally bound, but with the same initial turbulent velocity field and similar mass-to-flux ratio. We apply various techniques to analyze the filamentary and magnetic structure of the resulting cloud, including the DisPerSE filament-finding algorithm in 3D. The largest structure that forms is a 1-2 parsec-long filament, with smaller connecting sub-filaments. We find that in our trans-Alfvenic clouds, wherein magnetic forces and turbulence are comparable, coherent orientation of the magnetic fi...

  20. Filamentary flow and magnetic geometry in evolving cluster-forming molecular cloud clumps

    Science.gov (United States)

    Klassen, Mikhail; Pudritz, Ralph E.; Kirk, Helen

    2017-02-01

    We present an analysis of the relationship between the orientation of magnetic fields and filaments that form in 3D magnetohydrodynamic simulations of cluster-forming, turbulent molecular cloud clumps. We examine simulated cloud clumps with size scales of L ∼ 2-4 pc and densities of n ∼ 400-1000 cm-3 with Alfvén Mach numbers near unity. We simulated two cloud clumps of different masses, one in virial equilibrium, the other strongly gravitationally bound, but with the same initial turbulent velocity field and similar mass-to-flux ratio. We apply various techniques to analyse the filamentary and magnetic structure of the resulting cloud, including the DISPERSE filament-finding algorithm in 3D. The largest structure that forms is a 1-2 parsec-long filament, with smaller connecting sub-filaments. We find that our simulated clouds, wherein magnetic forces and turbulence are comparable, coherent orientation of the magnetic field depends on the virial parameter. Sub-virial clumps undergo strong gravitational collapse and magnetic field lines are dragged with the accretion flow. We see evidence of filament-aligned flow and accretion flow on to the filament in the sub-virial cloud. Magnetic fields oriented more parallel in the sub-virial cloud and more perpendicular in the denser, marginally bound cloud. Radiative feedback from a 16 M⊙ star forming in a cluster in one of our simulation's ultimately results in the destruction of the main filament, the formation of an H II region, and the sweeping up of magnetic fields within an expanding shell at the edges of the H II region.

  1. The carbon inventory in a quiescent, filamentary molecular cloud in G328

    Energy Technology Data Exchange (ETDEWEB)

    Burton, Michael G.; Ashley, Michael C. B.; Braiding, Catherine; Storey, John W. V. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Kulesa, Craig [Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Hollenbach, David J. [Carl Sagan Center, SETI Institute, 189 Bernado Avenue, Mountain View, CA 94043-5203 (United States); Wolfire, Mark [Astronomy Department, University of Maryland, College Park, MD 20742 (United States); Glück, Christian [KOSMA, I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln (Germany); Rowell, Gavin, E-mail: m.burton@unsw.edu.au [School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005 (Australia)

    2014-02-20

    We present spectral line images of [C I] 809 GHz, CO J = 1-0 115 GHz and H I 1.4 GHz line emission, and calculate the corresponding C, CO and H column densities, for a sinuous, quiescent giant molecular cloud about 5 kpc distant along the l = 328° sightline (hereafter G328) in our Galaxy. The [C I] data comes from the High Elevation Antarctic Terahertz telescope, a new facility on the summit of the Antarctic plateau where the precipitable water vapor falls to the lowest values found on the surface of the Earth. The CO and H I data sets come from the Mopra and Parkes/ATCA telescopes, respectively. We identify a filamentary molecular cloud, ∼75 × 5 pc long with mass ∼4 × 10{sup 4} M {sub ☉} and a narrow velocity emission range of just 4 km s{sup –1}. The morphology and kinematics of this filament are similar in CO, [C I], and H I, though in the latter appears as self-absorption. We calculate line fluxes and column densities for the three emitting species, which are broadly consistent with a photodissociation region model for a GMC exposed to the average interstellar radiation field. The [C/CO] abundance ratio averaged through the filament is found to be approximately unity. The G328 filament is constrained to be cold (T {sub Dust} < 20 K) by the lack of far-IR emission, to show no clear signs of star formation, and to only be mildly turbulent from the narrow line width. We suggest that it may represent a GMC shortly after formation, or perhaps still in the process of formation.

  2. The Dense Filamentary Giant Molecular Cloud G23.0-0.4: Birthplace of Ongoing Massive Star Formation

    CERN Document Server

    Su, Yang; Shao, Xiangjun; Yang, Ji

    2015-01-01

    We present observations of 1.5 square degree maps of the 12CO, 13CO, and C18O (J=1-0) emission toward the complex region of the supernova remnant (SNR) W41 and SNR G22.7-0.2. A massive (~5E5Msun), large (~84x15 pc), and dense (~10E3 cm^-3) giant molecular cloud (GMC), G23.0-0.4 with VLSR~77 km/s, is found to be adjacent to the two SNRs. The GMC displays a filamentary structure approximately along the Galactic plane. The filamentary structure of the dense molecular gas, traced by C18O (J=1-0) emission, is also coincident well with the distribution of the dust-continuum emission in the direction. Two dense massive MC clumps, two 6.7 GHz methanol masers, and one HII/SNR complex, associated with the 77 km/s GMC G23.0-0.4, are aligned along the filamentary structure, indicating the star forming activity within the GMC. These sources have periodic projected spacing of 0.18-0.26degree along the giant filament, which is consistent well with the theoretical predictions of 0.22degree. It indicates that the turbulence s...

  3. Star formation from dark filamentary clouds: Gravitational stability of a cylindrical plasma with an azimuthal and axial magnetic field

    CERN Document Server

    McLeman, James A; Bingham, Robert

    2012-01-01

    The precise process by which dark filamentary clouds collapse to form stars is a subject of intense debate. In this paper we consider a cylindrical distribution of plasma with both axial and azimuthal magnetic field and examine the resulting gravitational stability. The azimuthal magnetic field is created from an electric current in the plasma and is found to be dictated by Ampere's law. We model this system by using the magnetohydrodynamic (MHD) equation to derive a new virial theorem. We can reduce it to the virial theorem due to Chandrasekhar and Fermi (1953) if we remove the azimuthal magnetic field, as this will represent the case which they have considered. This new virial theorem gives us a fresh insight into the stability of the system. We also derive from this new virial theorem the case where there is only an azimuthal magnetic field. Our generalised stability condition allows for a possible electric current within realistic astronomical values.

  4. Magnetic Fields in Star-Forming Molecular Clouds IV. Polarimetry of the Filamentary NGC 2068 Cloud in Orion B

    CERN Document Server

    Matthews, B C

    2002-01-01

    We present submillimeter polarimetry at 850 micron toward the filamentary star-forming region associated with the reflection nebulosity NGC 2068 in Orion B. These data were obtained using the James Clerk Maxwell Telescope's SCUBA polarimeter. The polarization pattern observed is not consistent with that expected for a field geometry defined by a single mean field direction. There are three distinct distributions of polarization angle, which could represent regions of differing inclination and/or field geometry within the filamentary gas. In general, the polarization pattern does not correlate with the underlying total dust emission. The presence of varying inclinations against the plane of the sky is consistent with the comparison of the 850 micron continuum emission to the optical emission from the Palomar Optical Sky Survey, which shows that the western dust emission lies in the foreground of the optical nebula while the eastern dust emission originates in the background. Percentage polarizations are high, ...

  5. Formation of H i Clouds in Shock-compressed Interstellar Medium: Physical Origin of Angular Correlation between Filamentary Structure and Magnetic Field

    Science.gov (United States)

    Inoue, Tsuyoshi; Inutsuka, Shu-ichiro

    2016-12-01

    Recent observations of the neutral Galactic interstellar medium showed that filamentary structures of H i clouds are aligned with the interstellar magnetic field. Many interesting applications are proposed based on the alignment, such as measurement of magnetic field strength through the Chandrasekhar-Fermi method and removal of foreground dust emissions for the detection of inflationary polarized emission in the cosmic microwave background radiation. However, the physical origin of the alignment remains to be explained. To understand the mechanism, we examine the formation of H i clouds triggered by shock compression of the diffuse warm neutral medium using three-dimensional magnetohydrodynamic simulations. We show that the shock-compressed medium of density n˜ 1 cm-3 evolves into H i clouds with n˜ 50 cm-3 via thermal instability consistent with previous studies. We apply a machine vision transformation developed by Clark et al. to the simulated column density structures to measure angle correlation between filamentary structures of H i clouds and magnetic field. We find that the orientation of H i filaments depends on the environmental turbulent velocity field, particularly on the strength of shear strain in the direction of the magnetic field, which is controlled by the angle between the shock propagation direction and upstream magnetic field. When the strain along the magnetic field is weak, filamentary components of H i clouds lie perpendicular to the magnetic field. However, the filaments have come to align with the magnetic field, if we enhance the turbulent strain along the magnetic field or if we set turbulence in the preshock medium.

  6. Multi-Scale Analysis of Magnetic Fields in Filamentary Molecular Clouds in Orion A

    CERN Document Server

    Poidevin, Frédérick; Jones, Terry J

    2011-01-01

    New visible and K-band polarization measurements on stars surrounding molecular clouds in Orion A and stars in the BN vicinity are presented. Our results confirm that magnetic fields located inside the Orion A molecular clouds and in their close neighborhood are spatially connected. On and around the BN object, we measured the angular offsets between the K-band polarization data and available submm data. We find high values of the polarization degree, P_{K}, and of the optical depth, \\tau_{K}, close to an angular offset position of 90^{\\circ} whereas lower values of P_{K} and \\tau_{K} are observed for smaller angular offsets. We interpret these results as evidence for the presence of various magnetic field components toward lines of sight in the vicinity of BN. On a larger scale, we measured the distribution of angular offsets between available H-band polarization data and the same submm data set. Here we find an increase of with angular offset which we interpret as a rotation of the magnetic field by \\lesss...

  7. Formation of HI Clouds in Shock-compressed Interstellar Medium: Physical Origin of Angular Correlation Between Filamentary Structure and Magnetic Field

    CERN Document Server

    Inoue, Tsuyoshi

    2016-01-01

    Recent observations of neutral Galactic interstellar medium showed that filamentary structures of HI clouds are aligned with the interstellar magnetic field. Many interesting applications are proposed based on the alignment such as measurement of magnetic field strength through the Chandrasekhar-Fermi method and removal of polarized foreground dust emissions for the detection of inflationary polarized emission in the cosmic microwave background radiation. However, the physical origin of the alignment remains to be explained. To understand the alignment mechanism, we examine formation of HI clouds triggered by shock compression of diffuse warm neutral medium using three-dimensional magnetohydrodynamic simulations with the effects of optically thin cooling and heating. We show that the shock-compressed diffuse interstellar medium of density n~1 cm^-3 evolves into HI clouds with typical density n~50 cm^-3 via thermal instability driven by cooling, which is consistent with previous studies. We apply a machine vis...

  8. Investigating the structure and fragmentation of a highly filamentary IRDC

    CERN Document Server

    Henshaw, J D; Fontani, F; Jimenez-Serra, I; Tan, J C; Longmore, S N; Pineda, J E; Parker, R J; Barnes, A T

    2016-01-01

    We present 3.7 arcsec (~0.05 pc) resolution 3.2 mm dust continuum observations from the IRAM PdBI, with the aim of studying the structure and fragmentation of the filamentary Infrared Dark Cloud G035.39-00.33. The continuum emission is segmented into a series of 13 quasi-regularly spaced (~0.18pc) cores, following the major axis of the IRDC. We compare the spatial distribution of the cores with that predicted by theoretical work describing the fragmentation of hydrodynamic fluid cylinders, finding a significant (factor of ~8) discrepancy between the two. Our observations are consistent with the picture emerging from kinematic studies of molecular clouds suggesting that the cores are harboured within a complex network of independent sub-filaments. This result emphasises the importance of considering the underlying physical structure, and potentially, dynamically important magnetic fields, in any fragmentation analysis. The identified cores exhibit a range in (peak) beam-averaged column density ($3.6{\\rm x}10^{...

  9. Cold Dark Clouds: The Initial Conditions for Star Formation

    CERN Document Server

    Bergin, Edwin A

    2007-01-01

    Cold dark clouds are nearby members of the densest and coldest phase in the galactic interstellar medium, and represent the most accessible sites where stars like our Sun are currently being born. In this review we discuss recent progress in their study, including the newly discovered infrared dark clouds that are likely precursors to stellar clusters. At large scales, dark clouds present filamentary mass distributions with motions dominated by supersonic turbulence. At small, sub-parsec scales, a population of subsonic starless cores provides a unique glimpse of the conditions prior to stellar birth. Recent studies of starless cores reveal a combination of simple physical properties together with a complex chemical structure dominated by the freeze-out of molecules onto cold dust grains. Elucidating this combined structure is both an observational and theoretical challenge whose solution will bring us closer to understanding how molecular gas condenses to form stars.

  10. The Three-mm Ultimate Mopra Milky Way Survey. II. Cloud and Star Formation Near the Filamentary Ministarburst RCW 106

    CERN Document Server

    Nguyen, Hans; Martin, Peter G; Barnes, Peter J; Muller, Erik; Lowe, Vicki; Lo, Nadia; Cunningham, Maria; Motte, Frédérique; O'Dougherty, Stefan N; Hernandez, Audra K; Fuller, Gary A

    2015-01-01

    We report here a study of gas, dust and star formation rates (SFRs) in the molecular cloud complexes (MCCs) surrounding the giant H$\\,{\\rm \\scriptsize{II}}$ region RCW$\\,$106 using $^{12}$CO and $^{13}$CO$\\,$(1-0) data from the Three-mm Ultimate Mopra Milky way Survey (ThrUMMS) and archival data. We separate the emission in the Galactic Plane around $l=330^{\\circ}$-$335^{\\circ}$ and $b=-1^{\\circ}$-$1^{\\circ}$ into two main MCCs: the RCW$\\,$106 (V$_{\\rm LSR} = -48\\,$km$\\,$s$^{-1}$) complex and the MCC331-90(V$_{\\rm LSR} = -90\\,$km$\\,$s$^{-1}$) complex. While RCW$\\,$106 (M$\\sim 5.9\\times 10^{6}\\,$M$_{\\odot}$) is located in the Scutum-Centaurus arm at a distance of 3.6$\\,$kpc, MCC331-90 (M$\\sim 2.8\\times 10^{6}\\,$M$_{\\odot}$) is in the Norma arm at a distance of 5$\\,$kpc. Their molecular gas mass surface densities are $\\sim220$ and $\\sim130\\,$M$_{\\odot}$ pc$^{-2}$, respectively. For RCW$\\,$106 complex, using the 21$\\,$cm continuum fluxes and dense clump counting, we obtain an immediate past ($\\sim$-0.2$\\,$Myr) a...

  11. Filamentary Star Formation: Observing the Evolution toward Flattened Envelopes

    CERN Document Server

    Lee, Katherine; Johnstone, Doug; Tobin, John

    2012-01-01

    Filamentary structures are ubiquitous from large-scale molecular clouds (few parsecs) to small-scale circumstellar envelopes around Class 0 sources (~1000 AU to ~0.1 pc). In particular, recent observations with the Herschel Space Observatory emphasize the importance of large-scale filaments (few parsecs) and star formation. The small-scale flattened envelopes around Class 0 sources are reminiscent of the large-scale filaments. We propose an observationally derived scenario for filamentary star formation that describes the evolution of filaments as part of the process for formation of cores and circumstellar envelopes. If such a scenario is correct, small-scale filamentary structures (0.1 pc in length) with higher densities embedded in starless cores should exist, although to date almost all the interferometers have failed to observe such structures. We perform synthetic observations of filaments at the prestellar stage by modeling the known Class 0 flattened envelope in L1157 using both the Combined Array for...

  12. GAS KINEMATICS AND STAR FORMATION IN THE FILAMENTARY IRDC G34.43+0.24

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jin-Long; Li, Di; Zhang, Chuan-Peng; Liu, Xiao-Lan; Wang, Jun-Jie [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Ning, Chang-Chun [NAOC-TU Joint Center for Astrophysics, Lhasa 850000 (China); Ju, Bing-Gang, E-mail: xujl@bao.ac.cn [Purple Mountain Observatory, Qinghai Station, 817000, Delingha (China)

    2016-03-10

    We performed a multiwavelength study toward the infrared dark cloud (IRDC) G34.43+0.24. New maps of {sup 13}CO J = 1–0 and C{sup 18}O J = 1–0 were obtained from the Purple Mountain Observatory (PMO) 13.7 m radio telescope. At 8 μm (Spitzer-IRAC), IRDC G34.43+0.24 appears to be a dark filament extended by 18′ along the north–south direction. Based on the association with the 870 μm and C{sup 18}O J = 1–0 emission, we suggest that IRDC G34.43+0.24 should not be 18′ in length, but extend to 34′. IRDC G34.43+0.24 contains some massive protostars, UC H ii regions, and infrared bubbles. The spatial extend of IRDC G34.43+0.24 is about 37 pc, assuming a distance of 3.7 kpc. IRDC G34.43+0.24 has a linear mass density of ∼1.6 × 10{sup 3} M{sub ⊙} pc{sup −1}, which is roughly consistent with its critical mass to length ratio. The turbulent motion may help stabilize the filament against the radial collapse. Both infrared bubbles N61 and N62 show a ringlike structure at 8 μm. In particular, N61 has a double-shell structure that has expanded into IRDC G34.43+0.24. The outer shell is traced by 8 μm and {sup 13}CO J = 1–0 emission, while the inner shell is traced by 24 μm and 20 cm emission. We suggest that the outer shell (9.9 × 10{sup 5} years) is created by the expansion of H ii region G34.172+0.175, while the inner shell (4.1 ∼ 6.3 × 10{sup 5} years) may be produced by the energetic stellar wind of its central massive star. From the GLIMPSE I catalog, we selected some Class I sources with an age of ∼10{sup 5} years. These Class I sources are clustered along the filamentary molecular cloud.

  13. Method and apparatus for synthesizing filamentary structures

    Energy Technology Data Exchange (ETDEWEB)

    Height, Murray J [Somerville, MA; Howard, Jack B [Winchester, MA; Vandersande, John B [Newbury, MA

    2008-02-26

    Method and apparatus for producing filamentary structures. The structures include single-walled nanotubes. The method includes combusting hydrocarbon fuel and oxygen to establish a non-sooting flame and providing an unsupported catalyst to synthesize the filamentary structure in a post-flame region of the flame. Residence time is selected to favor filamentary structure growth.

  14. FILAMENTARY STAR FORMATION: OBSERVING THE EVOLUTION TOWARD FLATTENED ENVELOPES

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katherine; Looney, Leslie [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green St, Urbana, IL 61801 (United States); Johnstone, Doug [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada); Tobin, John, E-mail: ijlee9@illinois.edu, E-mail: lwl@illinois.edu, E-mail: Douglas.Johnstone@nrc-cnrc.gc.ca, E-mail: jtobin@nrao.edu [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

    2012-12-20

    Filamentary structures are ubiquitous from large-scale molecular clouds (a few parsecs) to small-scale circumstellar envelopes around Class 0 sources ({approx}1000 AU to {approx}0.1 pc). In particular, recent observations with the Herschel Space Observatory emphasize the importance of large-scale filaments (a few parsecs) and star formation. The small-scale flattened envelopes around Class 0 sources are reminiscent of the large-scale filaments. We propose an observationally derived scenario for filamentary star formation that describes the evolution of filaments as part of the process for formation of cores and circumstellar envelopes. If such a scenario is correct, small-scale filamentary structures (0.1 pc in length) with higher densities embedded in starless cores should exist, although to date almost all the interferometers have failed to observe such structures. We perform synthetic observations of filaments at the prestellar stage by modeling the known Class 0 flattened envelope in L1157 using both the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the Atacama Large Millimeter/Submillimeter Array (ALMA). We show that with reasonable estimates for the column density through the flattened envelope, the CARMA D array at 3 mm wavelengths is not able to detect such filamentary structure, so previous studies would not have detected them. However, the substructures may be detected with the CARMA D+E array at 3 mm and the CARMA E array at 1 mm as a result of more appropriate resolution and sensitivity. ALMA is also capable of detecting the substructures and showing the structures in detail compared to the CARMA results with its unprecedented sensitivity. Such detection will confirm the new proposed paradigm of non-spherical star formation.

  15. VizieR Online Data Catalog: Six infrared dark clouds multi-wavelength obs. (Zhang+, 2017)

    Science.gov (United States)

    Zhang, C.-P.; Yuan, J.-H.; Li, G.-X.; Zhou, J.-J.; Wang, J.-J.

    2016-11-01

    Towards six IRDCs G31, G33, G34, G35, G38, and G53, the HCO+ (1-0), HNC (1-0), N2H+ (1-0), and C18O (1-0) observations were carried out during December 2013 and April 2014 using the IRAM 30m telescope on Pico Veleta, Spain. (5 data files).

  16. Distinct Chemical Regions in the "Prestellar" Infrared Dark Cloud (IRDC) G028.23-00.19

    CERN Document Server

    Sanhueza, Patricio; Foster, Jonathan B; Jimenez-Serra, Izaskun; Dirienzo, William J; Pillai, Thushara

    2013-01-01

    We have observed the IRDC G028.23-00.19 at 3.3 mm using CARMA. In its center, the IRDC hosts one of the most massive (~1520 Msun) quiescent, cold (12 K) clumps known (MM1). The low temperature, high NH_2D abundance, narrow molecular line widths, and absence of embedded IR sources (from 3.6 to 70 mu) indicate that the clump is likely prestellar. Strong SiO emission with broad line widths (6-9 km s^-1) and high abundances (0.8-4 x 10^-9) is detected in the northern and southern regions of the IRDC, unassociated with MM1. We suggest that SiO is released to the gas phase from the dust grains through shocks produced by outflows from undetected intermediate-mass stars or clusters of low-mass stars deeply embedded in the IRDC. A weaker SiO component with narrow line widths (~2 km s^-1) and low abundances (4.3 x 10^-11) is detected in the center-west region, consistent with either a "subcloud-subcloud" collision or an unresolved population of a few low-mass stars. We report widespread CH_3OH emission throughout the w...

  17. Large-scale Filamentary Structures around the Virgo Cluster Revisited

    Science.gov (United States)

    Kim, Suk; Rey, Soo-Chang; Bureau, Martin; Yoon, Hyein; Chung, Aeree; Jerjen, Helmut; Lisker, Thorsten; Jeong, Hyunjin; Sung, Eon-Chang; Lee, Youngdae; Lee, Woong; Chung, Jiwon

    2016-12-01

    We revisit the filamentary structures of galaxies around the Virgo cluster, exploiting a larger data set, based on the HyperLeda database, than previous studies. In particular, this includes a large number of low-luminosity galaxies, resulting in better sampled individual structures. We confirm seven known structures in the distance range 4 h -1 Mpc fundamental axis of the Virgo cluster is smoothly connected to two of these filaments (Leo II A and B). Behind the Virgo cluster (16 h -1 Mpc < SGY < 27 h -1 Mpc), we also identify a new filament elongated toward the NGC 5353/4 group (“NGC 5353/4 filament”) and confirm a sheet that includes galaxies from the W and M clouds of the Virgo cluster (“W-M sheet”). In the Hubble diagram, the NGC 5353/4 filament galaxies show infall toward the NGC 5353/4 group, whereas the W-M sheet galaxies do not show hints of gravitational influence from the Virgo cluster. The filamentary structures identified can now be used to better understand the generic role of filaments in the build-up of galaxy clusters at z ≈ 0.

  18. Assembly of filamentary void galaxy configurations

    NARCIS (Netherlands)

    Rieder, Steven; van de Weijgaert, Rien; Cautun, Marius; Beygu, Burcu; Zwart, Simon Portegies

    2013-01-01

    We study the formation and evolution of filamentary configurations of dark matter haloes in voids. Our investigation uses the high-resolution Lambda cold dark matter simulation CosmoGrid to look for void systems resembling the VGS_31 elongated system of three interacting galaxies that was recently

  19. Filamentary Switching: Synaptic Plasticity through Device Volatility

    CERN Document Server

    La Barbera, Selina; Alibart, Fabien

    2015-01-01

    Replicating the computational functionalities and performances of the brain remains one of the biggest challenges for the future of information and communication technologies. Such an ambitious goal requires research efforts from the architecture level to the basic device level (i.e., investigating the opportunities offered by emerging nanotechnologies to build such systems). Nanodevices, or, more precisely, memory or memristive devices, have been proposed for the implementation of synaptic functions, offering the required features and integration in a single component. In this paper, we demonstrate that the basic physics involved in the filamentary switching of electrochemical metallization cells can reproduce important biological synaptic functions that are key mechanisms for information processing and storage. The transition from short- to long-term plasticity has been reported as a direct consequence of filament growth (i.e., increased conductance) in filamentary memory devices. In this paper, we show tha...

  20. Filamentary ion flow theory and experiments

    CERN Document Server

    Lattarulo, Francesco

    2014-01-01

    Presents all-new laboratory-tested theory for calculating more accurate ionized electric fields to aid in designing high-voltage devices and its components Understanding and accurately calculating corona originated electric fields are important issues for scientists who are involved in electromagnetic and electrostatic studies. High-voltage dc lines and equipment, in particular, can generate ion flows that can give rise to environmental inconveniences. Filamentary Ion Flow: Theory and Experiments provides interdisciplinary theoretical arguments to attain a final model for computational elect

  1. Recent progress towards a quantitative description of filamentary SOL transport

    DEFF Research Database (Denmark)

    Carralero, D.; Siccinio, M.; Komm, M.

    2017-01-01

    A summary of recent results on filamentary transport, mostly obtained with the ASDEX-Upgrade tokamak (AUG), is presented and discussed in an attempt to produce a coherent picture of scrape-off layer (SOL) filamentary transport. A clear correlation is found between L-mode density shoulder formatio...

  2. Filamentary and hierarchical pictures - Kinetic energy criterion

    Science.gov (United States)

    Klypin, Anatoly A.; Melott, Adrian L.

    1992-01-01

    We present a new criterion for formation of second-generation filaments. The criterion called the kinetic energy ratio, KR, is based on comparison of peculiar velocities at different scales. We suggest that the clumpiness of the distribution in some cases might be less important than the 'coldness' or 'hotness' of the flow for formation of coherent structures. The kinetic energy ratio is analogous to the Mach number except for one essential difference. If at some scale KR is greater than 1, as estimated at the linear stage, then when fluctuations of this scale reach nonlinearity, the objects they produce must be anisotropic ('filamentary'). In the case of power-law initial spectra the kinetic ratio criterion suggests that the border line is the power-spectrum with the slope n = -1.

  3. Mid-Infrared Extinction Mapping of Infrared Dark Clouds II. The Structure of Massive Starless Cores and Clumps

    CERN Document Server

    Butler, Michael J

    2012-01-01

    (abridged) We develop the mid-infrared extinction (MIREX) mapping technique of Butler & Tan (2009, Paper I), presenting a new method to correct for the Galactic foreground emission based on observed saturation in independent cores. Using Spitzer GLIMPSE 8 micron images, this allows us to accurately probe mass surface densities, Sigma, up to ~0.5g/cm^2 with 2" resolution. We then characterize the structure of 42 massive starless and early-stage IRDC cores and their surrounding clumps, measuring Sigma_cl(r) from the core/clump centers. We first assess the properties of the core/clump at a scale where the total enclosed mass as projected on the sky is M_cl=60Msun. We find these objects have a mean radius of R_cl~0.1pc, mean Sigma_cl=0.3g/cm^2 and, if fit by a power law density profile rho_cl ~ r^{-k_{rho,cl}}, a mean value of k_{rho,cl}=1.1. If we assume a core is embedded in each clump and subtract the surrounding clump envelope to derive the core properties, we find a mean core density power law index of k...

  4. Supersonic turbulence, filamentary accretion,and the rapid assembly of massive stars and disks

    CERN Document Server

    Banerjee, R; Anderson, D W; Banerjee, Robi; Pudritz, Ralph E.; Anderson, Dave W.

    2006-01-01

    We present a detailed computational study of the assembly of protostellar disks and massive stars in molecular clouds with supersonic turbulence. We follow the evolution of large scale filamentary structures in a cluster-forming clump down to protostellar length scales by means of very highly resolved, 3D adaptive mesh refined (AMR) simulations, and show how accretion disks and massive stars form in such environments. We find that an initially elongated cloud core which has a slight spin from oblique shocks collapses first to a filament and later develops a turbulent disk close to the center of the filament. The continued large scale flow that shocks with the filament maintains the high density and pressure within it. Material within the cooling filament undergoes gravitational collapse and an outside-in assembly of a massive protostar. Our simulations show that very high mass accretion rates of up to 10^-2 Msol/yr and high, supersonic, infall velocities result from such filamentary accretion. Accretion at th...

  5. ATLASGAL -- A Galaxy-wide sample of dense filamentary structures

    CERN Document Server

    Li, Guang-Xing; Leurini, S; Csengeri, T; Wyrowski, F; Menten, K M; Schuller, F

    2016-01-01

    [Abridged] Aims. We study the properties of filamentary structures from the ATLASGAL survey. Methods. We use the DisPerSE algorithm to identify spatially coherent structures located across the inner-Galaxy (300 < l < 60 and |b| < 1.5). Results. We have determined distances, masses and physical sizes for 241 of the filamentary structures. We find a median distance of 3.8 kpc, a mean mass of a few 10^3 m_sun, a mean length of ~6pc and a mass-to-length ratio of (M/L) ~200-2000M_sun/ pc. We also find that these filamentary structures are tightly correlated with the spiral arms in longitude and velocity, and that their semi-major axis is preferentially aligned parallel to the Galactic mid-plane and therefore with the direction of large-scale Galactic magnetic field. We find many examples where the dense filaments identified in ATLASGAL are associated with larger scale filamentary structures (~100 pc), and argue that this is likely to be common, and as such these may indicate a connection between large-sca...

  6. Bisous model-Detecting filamentary patterns in point processes

    Science.gov (United States)

    Tempel, E.; Stoica, R. S.; Kipper, R.; Saar, E.

    2016-07-01

    The cosmic web is a highly complex geometrical pattern, with galaxy clusters at the intersection of filaments and filaments at the intersection of walls. Identifying and describing the filamentary network is not a trivial task due to the overwhelming complexity of the structure, its connectivity and the intrinsic hierarchical nature. To detect and quantify galactic filaments we use the Bisous model, which is a marked point process built to model multi-dimensional patterns. The Bisous filament finder works directly with the galaxy distribution data and the model intrinsically takes into account the connectivity of the filamentary network. The Bisous model generates the visit map (the probability to find a filament at a given point) together with the filament orientation field. Using these two fields, we can extract filament spines from the data. Together with this paper we publish the computer code for the Bisous model that is made available in GitHub. The Bisous filament finder has been successfully used in several cosmological applications and further development of the model will allow to detect the filamentary network also in photometric redshift surveys, using the full redshift posterior. We also want to encourage the astro-statistical community to use the model and to connect it with all other existing methods for filamentary pattern detection and characterisation.

  7. Electrical model of dielectric barrier discharge homogenous and filamentary modes

    Science.gov (United States)

    López-Fernandez, J. A.; Peña-Eguiluz, R.; López-Callejas, R.; Mercado-Cabrera, A.; Valencia-Alvarado, R.; Muñoz-Castro, A.; Rodríguez-Méndez, B. G.

    2017-01-01

    This work proposes an electrical model that combines homogeneous and filamentary modes of an atmospheric pressure dielectric barrier discharge cell. A voltage controlled electric current source has been utilized to implement the power law equation that represents the homogeneous discharge mode, which starts when the gas breakdown voltage is reached. The filamentary mode implies the emergence of electric current conducting channels (microdischarges), to add this phenomenon an RC circuit commutated by an ideal switch has been proposed. The switch activation occurs at a higher voltage level than the gas breakdown voltage because it is necessary to impose a huge electric field that contributes to the appearance of streamers. The model allows the estimation of several electric parameters inside the reactor that cannot be measured. Also, it is possible to appreciate the modes of the DBD depending on the applied voltage magnitude. Finally, it has been recognized a good agreement between simulation outcomes and experimental results.

  8. Fine-Scale Filamentary Structure in Coronal Streamers

    Science.gov (United States)

    Woo, Richard; Armstrong, John W.; Bird, Michael K.; Paetzold, Martin

    1995-01-01

    Doppler scintillation measurements of a coronal streamer lasting several solar rotations have been conducted by Ulysses in 1991 over a heliocentric distance range of 14-77 R(sub 0). By showing that the solar corona is filamentary, and that Doppler frequency is the radio counterpart of white-light eclipse pictures processed to enhance spatial gradients, it is demonstrated that Doppler scintillation measurements provide the high spatial resolution that has long eluded white-light coronagraph measurements. The region of enhanced scintillation, spanning an angular extent of 1.8 deg in heliographic longitude, coincides with the radially expanding streamer stalk and represents filamentary structure with scale sizes at least as small as 340 km (0.5 sec) when extrapolated to the Sun. Within the stalk of the streamer, the fine-scale structure corresponding to scale sizes in the range of 20-340 km at the Sun and associated with closed magnetic fields amounts to a few percent of the mean density, while outside the stalk, the fine-scale structure associated with open fields is an order of magnitude lower. Clustering of filamentary structure that takes place within the stalk of the streamer is suggestive of multiple current sheets. Comparison with ISEE 3 in situ plasma measurements shows that significant evolution resulting from dynamic interaction with increasing heliocentric distance takes place by the time streamers reach Earth orbit.

  9. Bisous model - detecting filamentary patterns in point processes

    CERN Document Server

    Tempel, E; Kipper, R; Saar, E

    2016-01-01

    The cosmic web is a highly complex geometrical pattern, with galaxy clusters at the intersection of filaments and filaments at the intersection of walls. Identifying and describing the filamentary network is not a trivial task due to the overwhelming complexity of the structure, its connectivity and the intrinsic hierarchical nature. To detect and quantify galactic filaments we use the Bisous model, which is a marked point process built to model multi-dimensional patterns. The Bisous filament finder works directly with the galaxy distribution data and the model intrinsically takes into account the connectivity of the filamentary network. The Bisous model generates the visit map (the probability to find a filament at a given point) together with the filament orientation field. Using these two fields, we can extract filament spines from the data. Together with this paper we publish the computer code for the Bisous model that is made available in GitHub. The Bisous filament finder has been successfully used in s...

  10. Particle simulation of filamentary formation in dielectric barrier discharge.

    Science.gov (United States)

    Fan, Weili; Dong, Lifang

    2015-11-01

    Dielectric barrier discharge (DBD) is well known for its extensive industrial applications. Recently, new attention has been paid to DBD as a system of rich nonlinear dynamics to study the self-organized filamentary patterns. Though a number of experimental studies have been implemented, the involved physics is still not completely clear, partially due to the limitation of the available space and time-resolved diagnostics. Computer simulation has proven to be an effective tool to give insights into the discharge mechanism. So far, most simulations presented are based on fluid models. However, since the plasma is non-equilibrium in DBD where the particle velocities may deviate from the Maxwellian distribution, self-consistent kinetic simulations are required. In this paper, two successive filamentary discharges in DBD have been studied by use of two-dimensional particle-in-cell simulation with Monte Carlo collisions included (PIC-MCC). The formation of multiple filaments and the involved electric fields, electric potentials, plasma densities, and particle temperatures are presented. Results show that both of the surface charges and space charges play significant roles in the discharges. The total electric field in the gas gap has been completely reversed before the ac voltage hit zero, due to the accumulation of the surface charges, which triggers the next discharge. The space charges always exist between two successive discharges, which provides the `seed charges' for reignition of the filaments. This modeling has revealed significant details of the discharge behaviors, which greatly improved our understanding of DBD mechanisms.

  11. Three dimensional filamentary structures of a relativistic electron beam in Fast Ignition plasmas

    CERN Document Server

    Karmakar, Anupam; Pukhov, Alexander

    2008-01-01

    The filamentary structures and associated electromagnetic fields of a relativistic electron beam have been studied by three dimensional particle-in-cell (PIC) simulations in the context of Fast Ignition fusion. The simulations explicitly include collisions in return plasma current and distinctly examine the effects of beam temperature and collisions on the growth of filamentary structures generated.

  12. Intermittent convective transport carried by propagating electromagnetic filamentary structures in nonuniformly magnetized plasma

    DEFF Research Database (Denmark)

    Xu, G.S.; Naulin, Volker; Fundamenski, W.

    2010-01-01

    Drift-Alfvén vortex filaments associated with electromagnetic turbulence were recently identified in reversed field pinch devices. Similar propagating filamentary structures were observed in the Earth magnetosheath, magnetospheric cusp and Saturn’s magnetosheath by spacecrafts. The characteristic......, heat, and momentum in the fusion plasmas can be interpreted in terms of the ballistic motion of these solitary electromagnetic filamentary structures....

  13. Tidally-disrupted Molecular Clouds falling to the Galactic Center

    CERN Document Server

    Tsuboi, Masato; Uehara, Kenta; Miyawaki, Ryosuke; Miyazaki, Atsushi

    2016-01-01

    We found a molecular cloud connecting from the outer region to the "Galactic Center Mini-spiral (GCMS)" which is a bundle of the ionized gas streams adjacent to Sgr A*. The molecular cloud has a filamentary appearance which is prominent in the CS J=2-1 emission line and is continuously connected with the GCMS. The velocity of the molecular cloud is also continuously connected with that of the ionized gas in the GCMS observed in the H42alpha recombination line. The morphological and kinematic relations suggest that the molecular cloud is falling from the outer region to the vicinity of Sgr A*, being disrupted by the tidal shear of Sgr A* and ionized by UV emission from the Central Cluster. We also found the SiO J=2-1 emission in the boundary area between the filamentary molecular cloud and the GCMS. There seems to exist shocked gas in the boundary area.

  14. The filamentary Multi-Polar Planetary Nebula NGC 5189

    CERN Document Server

    Sabin, L; López, J A; García-Díaz, Ma T; Ramos-Larios, G

    2012-01-01

    We present a set of optical and infrared images combined with long-slit, medium and high dispersion spectra of the southern planetary nebula (PN) NGC 5189. The complex morphology of this PN is puzzling and has not been studied in detail so far. Our investigation reveals the presence of a new dense and cold infrared torus (alongside the optical one) which probably generated one of the two optically seen bipolar outflows and which might be responsible for the twisted appearance of the optical torus via an interaction process. The high-resolution MES-AAT spectra clearly show the presence of filamentary and knotty structures as well as three expanding bubbles. Our findings therefore suggest that NGC 5189 is a quadrupolar nebula with multiple sets of symmetrical condensations in which the interaction of outflows has determined the complex morphology.

  15. Filamentary transport in the private flux region in MAST

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, J.R., E-mail: james.harrison@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Fishpool, G.M. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Dudson, B.D. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)

    2015-08-15

    Measurements of intensity fluctuation of light emission within the divertor volume of MAST provide strong evidence for the existence of filamentary structures within the private flux region (PFR). These filaments are observed in L-mode and H-mode confinement regimes. Correlation analysis of the camera data supports the hypothesis that the filaments observed in the line integrated camera data are genuinely within the PFR, as fluctuations at a given location in the PFR in the image are correlated with fluctuations elsewhere in the PFR, and these two regions are connected by field lines. The filaments appear to move from a position in the PFR of the inner divertor leg, moving towards the inner divertor target, whilst ejecting secondary blobs of plasma deeper into the PFR away from the separatrix.

  16. Optical emission spectrum of filamentary nanosecond surface dielectric barrier discharge

    Science.gov (United States)

    Shcherbanev, S. A.; Khomenko, A. Yu; Stepanyan, S. A.; Popov, N. A.; Starikovskaia, S. M.

    2017-02-01

    Streamer-to-filament transition is a general feature of high pressure high voltage (HV) nanosecond surface dielectric barrier discharges. The transition was studied experimentally using time- and space-resolved optical emission in UV and visible parts of spectra. The discharge was initiated by HV pulses 20 ns in duration and 2 ns rise time, positive or negative polarity, 20-60 kV in amplitude on the HV electrode. The experiments were carried out in a single-shot regime at initial pressures P  >  3 bar and ambient initial temperature in air, N2, H2:N2 and O2:Ar mixtures. It was shown that the transition to filamentary mode is accompanied by the appearance of intense continuous radiation and broad atomic lines. Electron density calculated from line broadening is characterized by high absolute values and long decay in the afterglow. The possible reasons for the continuous spectra were analyzed.

  17. Electrical conductivity of Cu-Ag in situ filamentary composites

    Institute of Scientific and Technical Information of China (English)

    NING Yuan-tao; ZHANG Xiao-hui; WU Yue-jun

    2007-01-01

    The electrical conductivity of Cu-10Ag in situ filamentary composite was studied during the deformation and annealing processes. The dependence of electrical resistivity of the deformed composites on the true strain presents a two-stage change with increase of the true strain. The intermediate heat treatment and the stabilized annealing treatment to the deformed composite promote the separation of Ag precipitate, and increase the electrical conductivity. The maximum conductivity of the composite experienced the stabilizing heat treatment can reach about 97% IACS with σb≥400 MPa at 550 ℃ annealing, and reach about 70% IACS with σb≥1 250 MPa at 300 ℃ annealing. The corresponded strength of the composite was reported. The microstructure reason for the changes of the conductivity was discussed.

  18. THE FILAMENTARY MULTI-POLAR PLANETARY NEBULA NGC5189

    Directory of Open Access Journals (Sweden)

    L. Sabin

    2012-01-01

    Full Text Available We present a set of optical and infrared images combined with long-slit, medium and high dispersion spectra of the southern planetary nebula (PN NGC5189. The complex morphology of this PN is puzzling and has not been studied in detailed so far. Our investigation reveals the presence of a new dense and cold infrared torus (alongside the optical one which probably generated one of the two optically seen bipolar outflows and which might be responsible for the twisted appearance of the optical torus via an interaction process. The high-resolution MES-AAT spectra clearly show the presence of filamentary and knotty structures as well as three expanding bubbles. Our findings therefore suggest that NGC5189 is a quadrupolar nebula with multiple sets of symmetrical condensations in which the interaction of outflows has determined its complex morphology.

  19. Filament formation in wind-cloud interactions. I. Spherical clouds in uniform magnetic fields

    CERN Document Server

    Banda-Barragán, Wladimir; Federrath, Christoph; Crocker, Roland; Bicknell, Geoffrey

    2015-01-01

    Filamentary structures are ubiquitous in the interstellar medium, yet their formation, internal structure, and longevity have not been studied in detail. We report the results from a comprehensive numerical study that investigates the characteristics, formation, and evolution of filaments arising from magnetohydrodynamic interactions between supersonic winds and dense clouds. Here we improve on previous simulations by utilising sharper density contrasts and higher numerical resolutions. By following multiple density tracers, we find that material in the envelopes of the clouds is removed and deposited downstream to form filamentary tails, while the cores of the clouds serve as footpoints and late-stage outer layers of these tails. Aspect ratios >12, subsonic velocity dispersions ~0.1-0.3 of the wind sound speed, and magnetic field amplifications ~100 are found to be characteristic of these filaments. We also report the effects of different magnetic field strengths and orientations. The magnetic field strength...

  20. Kinetics of the growth of filamentary KH2PO4 crystals on a seed crystal

    Science.gov (United States)

    Titaeva, E. K.; Kuritsyn, M. S.; Noskova, A. N.; Portnov, V. N.

    2017-08-01

    At oversaturations exceeding the inert range end for face {101} due to the presence of admixture Al(NO3)3 · 9H2O, a new phase is observed during the growth of this face in the form of filamentary crystals. Some experimental dependences of the growth rate of filamentary potassium dihydrophosphate (KH2PO4) crystals on the oversaturation have been obtained at different admixture concentrations. The growth of filamentary crystals occurs by the mechanism of two-dimensional nucleation. Their formation is governed by the effect of [AlHPO4]+ complexes in the form of Cabrera and Vermilyea stoppers.

  1. Large-scale filamentary structures around the Virgo cluster revisited

    CERN Document Server

    Kim, Suk; Bureau, Martin; Yoon, Hyein; Chung, Aeree; Jerjen, Helmut; Lisker, Thorsten; Jeong, Hyunjin; Sung, Eon-Chang; Lee, Youngdae; Lee, Woong; Chung, Jiwon

    2016-01-01

    We revisit the filamentary structures of galaxies around the Virgo cluster, exploiting a larger dataset based on the HyperLeda database than previous studies. In particular, this includes a large number of low-luminosity galaxies, resulting in better sampled individual structures. We confirm seven known structures in the distance range 4~$h^{-1}$~Mpc~$<$ SGY~$<$ 16~$h^{-1}$ Mpc, now identified as filaments, where SGY is the axis of the supergalactic coordinate system roughly along the line of sight. The Hubble diagram of the filament galaxies suggests they are infalling toward the main-body of the Virgo cluster. We propose that the collinear distribution of giant elliptical galaxies along the fundamental axis of the Virgo cluster is smoothly connected to two of these filaments (Leo~II~A and B). Behind the Virgo cluster (16~$h^{-1}$~Mpc~$<$ SGY~$<$ 27~$h^{-1}$~Mpc), we also identify a new filament elongated toward the NGC 5353/4 group ("NGC 5353/4 filament") and confirm a sheet that includes galaxi...

  2. Galaxy Formation through Filamentary Accretion at z = 6.1

    Science.gov (United States)

    Jones, G. C.; Willott, C. J.; Carilli, C. L.; Ferrara, A.; Wang, R.; Wagg, J.

    2017-08-01

    We present Atacama Large Millimeter/submillimeter Array observations of the dust continuum and [C ii] 158 μm line emission from the z = 6.0695 Lyman-Break Galaxy (LBG) WMH5. These observations at 0.″3 spatial resolution show a compact (˜3 kpc) main galaxy in dust and [C ii] emission, with a “tail” of emission extending to the east by about 5 kpc (in projection). The [C ii] tail is comprised predominantly of two distinct sub-components in velocity, separated from the core by ˜100 and 250 km s-1, with narrow intrinsic widths of about 80 km s-1, which we call “sub-galaxies.” The sub-galaxies themselves are extended east-west by about 3 kpc in individual channel images. The [C ii] tail joins smoothly into the main galaxy velocity field. The [C ii] line to continuum ratios are comparable for the main and sub-galaxy positions, within a factor two. In addition, these ratios are comparable to z˜ 5.5 LBGs. We conjecture that the WMH5 system represents the early formation of a galaxy through the accretion of smaller satellite galaxies, embedded in a smoother gas distribution, along a possibly filamentary structure. The results are consistent with current cosmological simulations of early galaxy formation and support the idea of very early enrichment with dust and heavy elements of the accreting material.

  3. Microstructure and properties of heavily deformed Cu-Ag-Ce in situ nano-filamentary composite

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Xiao-hui; YAN; Lin; NING; Yuan-tao

    2005-01-01

    The microstructure and properties of heavily deformed Cu-Ag-Ce in situ nano-filamentary composite were studied in this paper. As cast, copper matrixes were dendritic and Ag-rich phases, some of which present spheroidizing tendency, were embedded in Cu dentritic arms. After heavily deforming, Agrich phases develop into fibers: the thick fibers with a size of more than 50 nm and the thin ones with a size of less than 30 nm. Strengthening of Cu-Ag-Ce in situ nano-filamentary composite could be divided into two stages and the combination of different strength and conductivity could be obtained through controlling reducing area, intermediate heat treatment and stabilizing treatment. The results revealed that heavily deformed Cu-Ag-Ce in situ nano-filamentary composite had high strength ( > 1.5GPa) and high conductivity(>65 %IACS).

  4. ALMA view of the Galactic Center 50km/s molecular cloud

    CERN Document Server

    Uehara, Kenta; Kitamura, Yoshimi; Miyawaki, Ryosuke; Miyazaki, Atsushi

    2016-01-01

    We have observed the Galactic Center 50km/s molecular cloud (50MC) with ALMA to search for filamentary structures. In the CS J=2-1 emission line channel maps, we succeeded in identifying 27 molecular cloud filaments using the DisPerSE algorithm. This is the first attempt of "filament-finding" in the Galactic Center Region. These molecular cloud filaments strongly suggest that the molecular cloud filaments are also ubiquitous in the molecular clouds of the Galactic Center Region.

  5. ALMA view of the Galactic Center 50km/s molecular cloud

    Science.gov (United States)

    Uehara, Kenta; Tsuboi, Masato; Kitamura, Yoshimi; Miyawaki, Ryosuke; Miyazaki, Atsushi

    2017-01-01

    We have observed the Galactic Center 50km/s molecular cloud (50MC) with ALMA to search for filamentary structures. In the CS J=2-1 emission line channel maps, we succeeded in identifying 27 molecular cloud filaments using the DisPerSE algorithm. This is the first attempt of filament-finding in the Galactic Center Region. These molecular cloud filaments strongly suggest that the molecular cloud filaments are also ubiquitous in the molecular clouds of the Galactic Center Region.

  6. Imprints of Molecular Clouds in Radio Continuum Images

    CERN Document Server

    Yusef-Zadeh, F

    2012-01-01

    We show radio continuum images of several molecular complexes in the inner Galaxy and report the presence of dark features that coincide with dense molecular clouds. Unlike infrared dark clouds, these features which we call "radio dark clouds" are produced by a deficiency in radio continuum emission from molecular clouds that are embedded in a bath of UV radiation field or synchrotron emitting cosmic ray particles. The contribution of the continuum emission along different pathlengths results in dark features that trace embedded molecular clouds. The new technique of identifying cold clouds can place constraints on the depth and the magnetic field of molecular clouds when compared to those of the surrounding hot plasma radiating at radio wavelengths. The study of five molecular complexes in the inner Galaxy, Sgr A, Sgr B2, radio Arc, the snake filament and G359.75-0.13 demonstrate an anti--correlation between the distributions of radio continuum and molecular line and dust emission. Radio dark clouds are iden...

  7. Coherent array of branched filamentary scales along the wing margin of a small moth

    Science.gov (United States)

    Yoshida, Akihiro; Tejima, Shin; Sakuma, Masayuki; Sakamaki, Yositaka; Kodama, Ryuji

    2017-04-01

    In butterflies and moths, the wing margins are fringed with specialized scales that are typically longer than common scales. In the hindwings of some small moths, the posterior margins are fringed with particularly long filamentary scales. Despite the small size of these moth wings, these scales are much longer than those of large moths and butterflies. In the current study, photography of the tethered flight of a small moth, Phthorimaea operculella, revealed a wide array composed of a large number of long filamentary scales. This array did not become disheveled in flight, maintaining a coherent sheet-like structure during wingbeat. Examination of the morphology of individual scales revealed that each filamentary scale consists of a proximal stalk and distal branches. Moreover, not only long scales but also shorter scales of various lengths were found to coexist in each small section of the wing margin. Scale branches were ubiquitously and densely distributed within the scale array to form a mesh-like architecture similar to a nonwoven fabric. We propose that possible mechanical interactions among branched filamentary scales, mediated by these branches, may contribute to maintaining a coherent sheet-like structure of the scale array during wingbeat.

  8. Giant Molecular Cloud Formation in Disk Galaxies: Characterizing Simulated versus Observed Cloud Catalogues

    CERN Document Server

    Benincasa, Samantha M; Pudritz, Ralph E; Wadsley, James

    2013-01-01

    We present the results of a study of simulated Giant Molecular Clouds (GMCs) formed in a Milky Way-type galactic disk with a flat rotation curve. This simulation, which does not include star formation or feedback, produces clouds with masses ranging between 10^4 Msun and 10^7 Msun. We compare our simulated cloud population to two observational surveys; The Boston University- Five College Radio Astronomy Observatory Galactic Ring Survey and the BIMA All-Disk Survey of M33. An analysis of the global cloud properties as well as a comparison of Larson's scaling relations is carried out. We find that simulated cloud properties agree well with the observed cloud properties, with the closest agreement occurring between the clouds at comparable resolution in M33. Our clouds are highly filamentary - a property that derives both from their formation due to gravitational instability in the sheared galactic environment, as well as to cloud- cloud gravitational encounters. We also find that the rate at which potentially s...

  9. Study on the transition from filamentary discharge to diffuse discharge by using a dielectric barrier surface discharge device

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Discharge characteristics have been investigated in different gases under different pressures using a dielectric barrier surface discharge device. Electrical measurements and optical emission spectroscopy are used to study the discharge,and the results obtained show that the discharges in atmospheric pressure helium and in low-pressure air are diffuse,while that in high-pressure air is filamentary. With decreasing pressure, the discharge in air can transit from filamentary to diffuse one. The results also indicate that corona discharge around the stripe electrode is important for the diffuse discharge. The spectral intensity of N2+ (391.4 nm) relative to N2 (337.1 nm) is measured during the transition from diffuse to filamentary discharge. It is shown that relative spectral intensity increases during the discharge transition. This phenomenon implies that the averaged electron energy in diffuse discharge is higher than that in the filamentary discharge.

  10. Critical current studies on fine filamentary NbTi accelerator wires

    Energy Technology Data Exchange (ETDEWEB)

    Garber, M.; Suenaga, M.; Sampson, W.B.; Sabatini, R.L.

    1985-01-01

    The magnets for the Superconductig Super Collider, a high energy proton colliding beam accelerator, require a superconductor with very high current density (>2400 A/mm/sup 2/ at 5 T) and very small filaments (approx. 2..mu..m in diameter). Previous work has shown that by controlling the formation of Cu/sub 4/Ti compound particles on the filament surfaces it is possible to make fine filamentary NbTi wire with high critical current density. The performance of multi-filamentary wire is characterized by the current density and the quantity ''n'' which describes the superconducting-normal transition. Micrographs of wires having high J/sub c/ and high n show smooth, uniform filaments. Recently wires of very high critical current and high n have been produced in experimental quantities by commercial manufactures.

  11. DBD plasma source operated in single-filamentary mode for therapeutic use in dermatology

    Science.gov (United States)

    Rajasekaran, Priyadarshini; Mertmann, Philipp; Bibinov, Nikita; Wandke, Dirk; Viöl, Wolfgang; Awakowicz, Peter

    2009-11-01

    Our dielectric barrier discharge (DBD) plasma source for bio-medical application comprises a copper electrode covered with ceramic. Objects of high capacitance such as the human body can be used as the opposite electrode. In this study, the DBD source is operated in single-filamentary mode using an aluminium spike as the opposite electrode, to imitate the conditions when the discharge is ignited on a raised point, such as hair, during therapeutic use on the human body. The single-filamentary discharge thus obtained is characterized using optical emission spectroscopy, numerical simulation, voltage-current measurements and microphotography. For characterization of the discharge, averaged plasma parameters such as electron distribution function and electron density are determined. Fluxes of nitric oxide (NO), ozone (O3) and photons reaching the treated surface are simulated. The calculated fluxes are finally compared with corresponding fluxes used in different bio-medical applications.

  12. Ultra-fine-scale filamentary structures in the Outer Corona and the Solar Magnetic Field

    Science.gov (United States)

    Woo, Richard

    2006-01-01

    Filamentary structures following magnetic field lines pervade the Sun's atmosphere and offer us insight into the solar magnetic field. Radio propagation measurements have shown that the smallest filamentary structures in the solar corona are more than 2 orders of magnitude finer than those seen in solar imaging. Here we use radio Doppler measurements to characterize their transverse density gradient and determine their finest scale in the outer corona at 20-30 R(circled dot operator), where open magnetic fields prevail. Filamentary structures overly active regions have the steepest gradient and finest scale, while those overlying coronal holes have the shallowest gradient and least finest scale. Their organization by the underlying corona implies that these subresolution structures extend radially from the entire Sun, confirming that they trace the coronal magnetic field responsible for the radial expansion of the solar wind. That they are rooted all over the Sun elucidates the association between the magnetic field of the photosphere and that of the corona, as revealed by the similarity between the power spectra of the photospheric field and the coronal density fluctuations. This association along with the persistence of filamentary structures far from the Sun demonstrate that subresolution magnetic fields must play an important role not only in magnetic coupling of the photosphere and corona, but also in coronal heating and solar wind acceleration through the process of small-scale magnetic reconnection. They also explain why current widely used theoretical models that extrapolate photospheric magnetic fields into the corona do not predict the correct source of the solar wind.

  13. Optical characteristics of the filamentary and diffuse modes in surface dielectric barrier discharge

    Science.gov (United States)

    Zhang, Ying; Li, Jie; Jiang, Nan; Shang, Ke-Feng; Lu, Na; Wu, Yan

    2016-11-01

    Surface dielectric barrier discharge (DBD) plasmas generally exhibits filamentary and diffuse discharges at atmospheric air. The focus of this investigation is on the different optical characteristics and quantitative research about morphological features of two discharge modes. The temporally and spatially resolved characteristics of discharge phenomenon together with the gas temperature are presented with microsecond time scale. Discharge area is estimated by the sum of pixels that equal to "1" in MATLAB software. The formation of diffuse plasma mainly depends on an increase of the ionization coefficient and a creation of sufficient seed electrons by the Penning effect at low electric fields. Accordingly, experimental measurements show that diffuse discharge during the negative half cycle has good uniformity and stability compared with filamentary discharge during the positive half cycle. The rotational temperatures of plasma are determined by comparing the experimental spectra with the simulated spectra that have been investigated. The plasma gas temperature keeps almost constant in the filamentary discharge phase and subsequently increased by about 115 K during the diffuse discharge. In addition, it is shown to be nearly identical in the axial direction. Non-uniform temperature distribution can be observed in the radial direction with large fluctuations. The plasma length is demonstrated almost the same between two discharge modes.

  14. Electromagnetic radiation from filamentary sources in the presence of axially magnetized cylindrical plasma scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Es’kin, V. A.; Ivoninsky, A. V.; Kudrin, A. V., E-mail: kud@rf.unn.ru; Popova, L. L. [Lobachevsky University (Russian Federation)

    2017-02-15

    Electromagnetic radiation from filamentary electric-dipole and magnetic-current sources of infinite length in the presence of gyrotropic cylindrical scatterers in the surrounding free space is studied. The scatterers are assumed to be infinitely long, axially magnetized circular plasma columns parallel to the axis of the filamentary source. The field and the radiation pattern of each source are calculated in the case where the source frequency is equal to one of the surface plasmon resonance frequencies of the cylindrical scatterers. It is shown that the presence of even a single resonant magnetized plasma scatterer of small electrical radius or a few such scatterers significantly affects the total fields of the filamentary sources, so that their radiation patterns become essentially different from those in the absence of scatterers or the presence of isotropic scatterers of the same shape and size. It is concluded that the radiation characteristics of the considered sources can efficiently be controlled using their resonance interaction with the neighboring gyrotropic scatterers.

  15. Magnetosheath Filamentary Structures Formed by Ion Acceleration at the Quasi-Parallel Bow Shock

    Science.gov (United States)

    Omidi, N.; Sibeck, D.; Gutynska, O.; Trattner, K. J.

    2014-01-01

    Results from 2.5-D electromagnetic hybrid simulations show the formation of field-aligned, filamentary plasma structures in the magnetosheath. They begin at the quasi-parallel bow shock and extend far into the magnetosheath. These structures exhibit anticorrelated, spatial oscillations in plasma density and ion temperature. Closer to the bow shock, magnetic field variations associated with density and temperature oscillations may also be present. Magnetosheath filamentary structures (MFS) form primarily in the quasi-parallel sheath; however, they may extend to the quasi-perpendicular magnetosheath. They occur over a wide range of solar wind Alfvénic Mach numbers and interplanetary magnetic field directions. At lower Mach numbers with lower levels of magnetosheath turbulence, MFS remain highly coherent over large distances. At higher Mach numbers, magnetosheath turbulence decreases the level of coherence. Magnetosheath filamentary structures result from localized ion acceleration at the quasi-parallel bow shock and the injection of energetic ions into the magnetosheath. The localized nature of ion acceleration is tied to the generation of fast magnetosonic waves at and upstream of the quasi-parallel shock. The increased pressure in flux tubes containing the shock accelerated ions results in the depletion of the thermal plasma in these flux tubes and the enhancement of density in flux tubes void of energetic ions. This results in the observed anticorrelation between ion temperature and plasma density.

  16. Fabrication of filamentary potassium-doped C 60 superconductors by suspension spinning method

    Science.gov (United States)

    Goto, T.; Maezawa, M.

    2004-10-01

    This paper describes the preparation of filamentary potassium-doped C 60 superconductors prepared by the suspension spinning method. Commercial C 60 powder was suspended in mixed poly(vinyl alcohol) solution of dimethyl sulfoxide and hexamethylphosphoric triamide (sample A). The viscous suspension was extruded as a filament into a precipitating medium of methyl alcohol and coiled on a drum. The filamentary sample was also prepared by the suspension spinning by using polyacrylonitrile solution of N, N-dimethylformamide (sample B). The samples were pyrolyzed to remove volatile components. Doping of potassium for the samples was prepared as following: At first, powder samples of nominal composition K 6C 60 was prepared by reaction of C 60 with excess potassium. The K 6C 60 powder and filamentary sample with stoichiometric ratio of K 3C 60 were placed in Pyrex glass tubes and vacuum-sealed and heated at 250 °C for 36 h. SQUID measurement shows the superconductivity of sample B with Tc=18 K. On the other hand, the superconductivity more than 2 K was not detected for sample A.

  17. Giant Molecular Cloud Formation in Disk Galaxies: Characterizing Simulated versus Observed Cloud Catalogs

    Science.gov (United States)

    Benincasa, Samantha M.; Tasker, Elizabeth J.; Pudritz, Ralph E.; Wadsley, James

    2013-10-01

    We present the results of a study of simulated giant molecular clouds (GMCs) formed in a Milky Way-type galactic disk with a flat rotation curve. This simulation, which does not include star formation or feedback, produces clouds with masses ranging between 104 M ⊙ and 107 M ⊙. We compare our simulated cloud population to two observational surveys: the Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey and the BIMA All-Disk Survey of M33. An analysis of the global cloud properties as well as a comparison of Larson's scaling relations is carried out. We find that simulated cloud properties agree well with the observed cloud properties, with the closest agreement occurring between the clouds at comparable resolution in M33. Our clouds are highly filamentary—a property that derives both from their formation due to gravitational instability in the sheared galactic environment, as well as to cloud-cloud gravitational encounters. We also find that the rate at which potentially star-forming gas accumulates within dense regions—wherein n thresh >= 104 cm-3—is 3% per 10 Myr, in clouds of roughly 106 M ⊙. This suggests that star formation rates in observed clouds are related to the rates at which gas can be accumulated into dense subregions within GMCs via filamentary flows. The most internally well-resolved clouds are chosen for listing in a catalog of simulated GMCs—the first of its kind. The cataloged clouds are available as an extracted data set from the global simulation.

  18. GIANT MOLECULAR CLOUD FORMATION IN DISK GALAXIES: CHARACTERIZING SIMULATED VERSUS OBSERVED CLOUD CATALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Benincasa, Samantha M.; Pudritz, Ralph E.; Wadsley, James [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada); Tasker, Elizabeth J. [Department of Physics, Faculty of Science, Hokkaido University, Kita-ku, Sapporo 060-0810 (Japan)

    2013-10-10

    We present the results of a study of simulated giant molecular clouds (GMCs) formed in a Milky Way-type galactic disk with a flat rotation curve. This simulation, which does not include star formation or feedback, produces clouds with masses ranging between 10{sup 4} M{sub ☉} and 10{sup 7} M{sub ☉}. We compare our simulated cloud population to two observational surveys: the Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey and the BIMA All-Disk Survey of M33. An analysis of the global cloud properties as well as a comparison of Larson's scaling relations is carried out. We find that simulated cloud properties agree well with the observed cloud properties, with the closest agreement occurring between the clouds at comparable resolution in M33. Our clouds are highly filamentary—a property that derives both from their formation due to gravitational instability in the sheared galactic environment, as well as to cloud-cloud gravitational encounters. We also find that the rate at which potentially star-forming gas accumulates within dense regions—wherein n{sub thresh} ≥ 10{sup 4} cm{sup –3}—is 3% per 10 Myr, in clouds of roughly 10{sup 6} M{sub ☉}. This suggests that star formation rates in observed clouds are related to the rates at which gas can be accumulated into dense subregions within GMCs via filamentary flows. The most internally well-resolved clouds are chosen for listing in a catalog of simulated GMCs—the first of its kind. The cataloged clouds are available as an extracted data set from the global simulation.

  19. Thermodynamics of Phase Transitions and Bipolar Filamentary Switching in Resistive Random-Access Memory

    Science.gov (United States)

    Karpov, V. G.; Niraula, D.; Karpov, I. V.; Kotlyar, R.

    2017-08-01

    We present a phenomenological theory of bipolar filamentary resistive random-access memory describing the commonly observed features of their current-voltage characteristics. Our approach follows the approach of a thermodynamic theory developed earlier for chalcogenide memory and threshold switches and largely independent of their microscopic details. It explains, without adjustable parameters, such features as the domains of filament formation and switching, voltage-independent current in set and current-independent voltage in reset regimes, the relation between the set and reset voltages, filament resistance independent of its length, etc. Furthermore, it expresses the observed features through the material and circuitry parameters, thus paving the way to device improvements.

  20. Local Inhomogeneity and Filamentary Superconductivity in Pr-Doped CaFe2As2

    Science.gov (United States)

    Gofryk, Krzysztof; Pan, Minghu; Cantoni, Claudia; Saparov, Bayrammurad; Mitchell, Jonathan E.; Sefat, Athena S.

    2014-01-01

    We use multiscale techniques to determine the extent of local inhomogeneity and superconductivity in Ca0.86Pr0.14Fe2As2 single crystal. The inhomogeneity is manifested as a spatial variation of the praseodymium concentration, local density of states, and superconducting order parameter. We show that the high-Tc superconductivity emerges from cloverlike defects associated with Pr dopants. The highest Tc is observed in both the tetragonal and collapsed tetragonal phases, and its filamentary nature is a consequence of nonuniform Pr distribution that develops localized, isolated superconducting regions within the crystals.

  1. Search Cloud

    Science.gov (United States)

    ... of this page: https://medlineplus.gov/cloud.html Search Cloud To use the sharing features on this ... of Top 110 zoster vaccine Share the MedlinePlus search cloud with your users by embedding our search ...

  2. Tracing the Filamentary Structure of the Galaxy Distribution at z~0.8

    CERN Document Server

    Choi, Ena; Strauss, Michael A; Coil, Alison L; Davis, Marc; Willmer, Christopher N A

    2010-01-01

    We study filamentary structure in the galaxy distribution at z ~ 0.8 using data from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Redshift Survey and its evolution to z ~ 0.1 using data from the Sloan Digital Sky Survey (SDSS). We trace individual filaments for both surveys using the Smoothed Hessian Major Axis Filament Finder, an algorithm which employs the Hessian matrix of the galaxy density field to trace the filamentary structures in the distribution of galaxies. We extract 33 subsamples from the SDSS data with a geometry similar to that of DEEP2. We find that the filament length distribution has not significantly changed since z ~ 0.8, as predicted in a previous study using a $\\Lamda$CDM cosmological N-body simulation. However, the filament width distribution, which is sensitive to the non-linear growth of structure, broadens and shifts to smaller widths for smoothing length scales of 5-10 Mpc/h from z ~ 0.8 to z ~ 0.1, in accord with N-body simulations.

  3. The identification of filaments on far infrared and submillimiter images. Morphology, physical conditions and relation with star formation of filamentary structure

    CERN Document Server

    Schisano, E; Molinari, S; Busquet, G; Elia, D; Pestalozzi, M; Polychroni, D; Billot, N; Noriega-Crespo, A; Carey, S; Paladini, R; Moore, T J T; Plume, R; Glover, S C O; Vazquez-Semadeni, E

    2014-01-01

    Observations of molecular clouds reveal a complex structure, with gas and dust often arranged in filamentary rather than spherical geometries. The associations of pre- and proto- stellar cores with the filaments suggest a direct link with the process of star formation. Any study of the properties of such filaments requires a representative samples from different enviroments and so an unbiased detection method. We developed such an approach using the Hessian matrix of a surface-brightness distribution to identify filaments and determine their physical and morphological properties. After testing the method on simulated, but realistic filaments, we apply the algorithms to column-density maps computed from Herschel observations of the Galactic Plane obtained by the Hi-GAL project. We identified ~500 filaments, in the longitude range of l=216.5 to l=225.5, with lengths from ~1 pc up to ~30 pc and widths between 0.1 pc and 2.5 pc. Average column densities are between 10^20 cm^-2 and 10^22 cm^-2. Filaments include t...

  4. Current transfer length in multi-filamentary superconducting NbTi and Nb3Sn strands; experiments and models

    NARCIS (Netherlands)

    Zhou, Chao; Dhalle, Marc M.J.; ten Kate, Herman H.J.; Nijhuis, Arend

    2014-01-01

    The current transfer length of multi-filamentary superconducting NbTi and Nb3Sn strands was measured and analyzed. The aim is to understand and quantify the current distribution process between matrix and superconducting filaments occurring at current injection joints or shunting localized

  5. What can simulated molecular clouds tell us about real molecular clouds?

    Science.gov (United States)

    Duarte-Cabral, A.; Dobbs, C. L.

    2016-06-01

    We study the properties of giant molecular clouds (GMCs) from a smoothed particle hydrodynamics simulation of a portion of a spiral galaxy, modelled at high resolution, with robust representations of the physics of the interstellar medium. We examine the global molecular gas content of clouds, and investigate the effect of using CO or H2 densities to define the GMCs. We find that CO can reliably trace the high-density H2 gas, but misses less dense H2 clouds. We also investigate the effect of using 3D CO densities versus CO emission with an observer's perspective, and find that CO-emission clouds trace well the peaks of the actual GMCs in 3D, but can miss the lower density molecular gas between density peaks which is often CO-dark. Thus, the CO emission typically traces smaller clouds within larger GMC complexes. We also investigate the effect of the galactic environment (in particular the presence of spiral arms), on the distribution of GMC properties, and we find that the mean properties are similar between arm and inter-arm clouds, but the tails of some distributions are indicative of intrinsic differences in the environment. We find highly filamentary clouds (similar to the giant molecular filaments of our Galaxy) exclusively in the inter-arm region, formed by galactic shear. We also find that the most massive GMC complexes are located in the arm, and that as a consequence of more frequent cloud interactions/mergers in the arm, arm clouds are more sub-structured and have higher velocity dispersions than inter-arm clouds.

  6. Amorphous carbon film deposition on inner surface of tubes using atmospheric pressure pulsed filamentary plasma source

    CERN Document Server

    Pothiraja, Ramasamy; Awakowicz, Peter

    2011-01-01

    Uniform amorphous carbon film is deposited on the inner surface of quartz tube having the inner diameter of 6 mm and the outer diameter of 8 mm. A pulsed filamentary plasma source is used for the deposition. Long plasma filaments (~ 140 mm) as a positive discharge are generated inside the tube in argon with methane admixture. FTIR-ATR, XRD, SEM, LSM and XPS analyses give the conclusion that deposited film is amorphous composed of non-hydrogenated sp2 carbon and hydrogenated sp3 carbon. Plasma is characterized using optical emission spectroscopy, voltage-current measurement, microphotography and numerical simulation. On the basis of observed plasma parameters, the kinetics of the film deposition process is discussed.

  7. Machine learning based data mining for Milky Way filamentary structures reconstruction

    CERN Document Server

    Riccio, Giuseppe; Schisano, Eugenio; Brescia, Massimo; Mercurio, Amata; Elia, Davide; Benedettini, Milena; Pezzuto, Stefano; Molinari, Sergio; Di Giorgio, Anna Maria

    2015-01-01

    We present an innovative method called FilExSeC (Filaments Extraction, Selection and Classification), a data mining tool developed to investigate the possibility to refine and optimize the shape reconstruction of filamentary structures detected with a consolidated method based on the flux derivative analysis, through the column-density maps computed from Herschel infrared Galactic Plane Survey (Hi-GAL) observations of the Galactic plane. The present methodology is based on a feature extraction module followed by a machine learning model (Random Forest) dedicated to select features and to classify the pixels of the input images. From tests on both simulations and real observations the method appears reliable and robust with respect to the variability of shape and distribution of filaments. In the cases of highly defined filament structures, the presented method is able to bridge the gaps among the detected fragments, thus improving their shape reconstruction. From a preliminary "a posteriori" analysis of deriv...

  8. Argon metastable dynamics in a filamentary jet micro-discharge at atmospheric pressure

    CERN Document Server

    Niermann, B; Kuschel, T; Benedikt, J; Böke, M; Winter, J

    2011-01-01

    Space and time resolved concentrations of Ar ($^{3}P_2$) metastable atoms at the exit of an atmospheric pressure radio-frequency micro-plasma jet were measured using tunable diode laser absorption spectroscopy. The discharge features a coaxial geometry with a hollow capillary as an inner electrode and a ceramic tube with metal ring as outer electrode. Absorption profiles of metastable atoms as well as optical emission measurements reveal the dynamics and the filamentary structure of the discharge. The average spatial distribution of Ar metastables is characterized with and without a target in front of the jet, showing that the target potential and therewith the electric field distribution substantially changes the filaments' expansion. Together with the detailed analysis of the ignition phase and the discharge's behavior under pulsed operation, the results give an insight into the excitation and de-excitation mechanisms.

  9. Kinematic Structure of Molecular Gas around High-mass YSO, Papillon Nebula, in N159 East in the Large Magellanic Cloud: A New Perspective with ALMA

    Science.gov (United States)

    Saigo, Kazuya; Onishi, Toshikazu; Nayak, Omnarayani; Meixner, Margaret; Tokuda, Kazuki; Harada, Ryohei; Morioka, Yuuki; Sewiło, Marta; Indebetouw, Remy; Torii, Kazufumi; Kawamura, Akiko; Ohama, Akio; Hattori, Yusuke; Yamamoto, Hiroaki; Tachihara, Kengo; Minamidani, Tetsuhiro; Inoue, Tsuyoshi; Madden, Suzanne; Galametz, Maud; Lebouteiller, Vianney; Chen, C.-H. Rosie; Mizuno, Norikazu; Fukui, Yasuo

    2017-01-01

    We present the ALMA Band 3 and Band 6 results of 12CO(2-1), 13CO(2-1), H30α recombination line, free–free emission around 98 GHz, and the dust thermal emission around 230 GHz toward the N159 East Giant Molecular Cloud (N159E) in the Large Magellanic Cloud (LMC). LMC is the nearest active high-mass star-forming face-on galaxy at a distance of 50 kpc and is the best target for studing high-mass star formation. ALMA observations show that N159E is the complex of filamentary clouds with the width and length of ∼1 pc and several parsecs. The total molecular mass is 0.92 × 105 M⊙ from the 13CO(2-1) intensity. N159E harbors the well-known Papillon Nebula, a compact high-excitation H ii region. We found that a YSO associated with the Papillon Nebula has the mass of 35 M⊙ and is located at the intersection of three filamentary clouds. It indicates that the formation of the high-mass YSO was induced by the collision of filamentary clouds. Fukui et al. reported a similar kinematic structure toward two YSOs in the N159 West region, which are the other YSOs that have the mass of ≳35 M⊙. This suggests that the collision of filamentary clouds is a primary mechanism of high-mass star formation. We found a small molecular hole around the YSO in Papillon Nebula with a sub-parsec scale. It is filled by free–free and H30α emission. The temperature of the molecular gas around the hole reaches ∼80 K. It indicates that this YSO has just started the distruction of parental molecular cloud.

  10. A quantitative analysis of IRAS maps of molecular clouds

    Science.gov (United States)

    Wiseman, Jennifer J.; Adams, Fred C.

    1994-01-01

    We present an analysis of IRAS maps of five molecular clouds: Orion, Ophiuchus, Perseus, Taurus, and Lupus. For the classification and description of these astrophysical maps, we use a newly developed technique which considers all maps of a given type to be elements of a pseudometric space. For each physical characteristic of interest, this formal system assigns a distance function (a pseudometric) to the space of all maps: this procedure allows us to measure quantitatively the difference between any two maps and to order the space of all maps. We thus obtain a quantitative classification scheme for molecular clouds. In this present study we use the IRAS continuum maps at 100 and 60 micrometer(s) to produce column density (or optical depth) maps for the five molecular cloud regions given above. For this sample of clouds, we compute the 'output' functions which measure the distribution of density, the distribution of topological components, the self-gravity, and the filamentary nature of the clouds. The results of this work provide a quantitative description of the structure in these molecular cloud regions. We then order the clouds according to the overall environmental 'complexity' of these star-forming regions. Finally, we compare our results with the observed populations of young stellar objects in these clouds and discuss the possible environmental effects on the star-formation process. Our results are consistent with the recently stated conjecture that more massive stars tend to form in more 'complex' environments.

  11. Evolution of Primordial Protostellar Clouds Quasi-Static Analysis

    CERN Document Server

    Omukai, K; Uehara, H; Susa, H; Omukai, Kazuyuki; Nishi, Ryoichi; Uehara, Hideya; Susa, Hajime

    1998-01-01

    The contraction processes of metal-free molecular clouds of starlike mass (or cloud cores) are investigated. We calculate radiative transfer of the H_2 lines and examine quasi-static contraction with radiative cooling. Comparing two time-scales, the free-fall time t_ff and the time-scale of quasi-static contraction t_qsc (nearly equal to t_cool, the cooling time) of these cores, we find that the ratio of the two time-scales t_ff/t_qsc, i.e., the efficiency of cooling, becomes larger with contraction even under the existence of cold and opaque envelopes. In particular, for fragments of primordial filamentary clouds, for which t_ff is nearly equal to t_qsc at the fragmentation epoch, they collapse dynamically in the free-fall time-scale. This efficiency of cooling is unique to line cooling.

  12. Characteristic structure of star-forming clouds

    CERN Document Server

    Myers, Philip C

    2015-01-01

    This paper gives a new way to diagnose the star-forming potential of a molecular cloud region from the probability density function of its column density (N-pdf). It gives expressions for the column density and mass profiles of a symmetric filament having the same N-pdf as a filamentary region. The central concentration of this characteristic filament can distinguish regions and can quantify their fertility for star formation. Profiles are calculated for N-pdfs which are pure lognormal, pure power law, or a combination. In relation to models of singular polytropic cylinders, characteristic filaments can be unbound, bound, or collapsing depending on their central concentration. Such filamentary models of the dynamical state of N-pdf gas are more relevant to star-forming regions than are models of spherical collapse. The star formation fertility of a bound or collapsing filament is quantified by its mean mass accretion rate when in radial free fall. For a given mass per length, the fertility increases with the ...

  13. Kinematic Structure of Molecular Gas around High-mass Star YSO, Papillon Nebula, in N159 East in the Large Magellanic Cloud

    CERN Document Server

    Saigo, Kazuya; Nayak, Omnarayani; Meixner, Margaret; Tokuda, Kazuki; Harada, Ryohei; Morioka, Yuuki; Sewilo, Marta; Indebetouw, Remy; Torii, Kazufumi; Kawamura, Akiko; Ohama, Akio; Hattori, Yusuke; Yamamoto, Hiroaki; Tachihara, Kengo; Minamidani, Tetsuhiro; Inoue, Tsuyoshi; Madden, Suzanne; Galametz, Maud; Lebouteiller, Vianney; Chen, C -H Rosie; Mizuno, Norikazu; Fukui, Yasuo

    2016-01-01

    We present the ALMA Band 3 and Band 6 results of 12CO(2-1), 13$CO(2-1), H30alpha recombination line, free-free emission around 98 GHz, and the dust thermal emission around 230 GHz toward the N159 East Giant Molecular Cloud (N159E) in the Large Magellanic Cloud (LMC). LMC is the nearest active high-mass star forming face-on galaxy at a distance of 50 kpc and is the best target for studing high-mass star formation. ALMA observations show that N159E is the complex of filamentary clouds with the width and length of ~1 pc and 5 pc - 10 pc, respectively. The total molecular mass is 0.92 x 10^5 Msun from the 13CO(2-1) intensity. N159E harbors the well-known Papillon Nebula, a compact high-excitation HII region. We found that a YSO associated with the Papillon Nebula has the mass of 35 Msun and is located at the intersection of three filamentary clouds. It indicates that the formation of the high-mass YSO was induced by the collision of filamentary clouds. Fukui et al. 2015 reported a similar kinematic structure towa...

  14. Cloud Governance

    DEFF Research Database (Denmark)

    Berthing, Hans Henrik

    Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing.......Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing....

  15. Cloud optics

    CERN Document Server

    Kokhanovsky, A

    2006-01-01

    Clouds affect the climate of the Earth, and they are an important factor in the weather. Therefore, their radiative properties must be understood in great detail. This book summarizes current knowledge on cloud optical properties, for example their ability to absorb, transmit, and reflect light, which depends on the clouds' geometrical and microphysical characteristics such as sizes of droplets and crystals, their shapes, and structures. In addition, problems related to the image transfer through clouds and cloud remote sensing are addressed in this book in great detail. This book can be an im

  16. The initial conditions of stellar protocluster formation. I. A catalogue of Spitzer dark clouds

    CERN Document Server

    Peretto, N

    2009-01-01

    The majority of stars form in clusters. Therefore a comprehensive view of star formation requires understanding the initial conditions for cluster formation. The goal of our study is to shed light on the physical properties of infrared dark clouds (IRDCs) and the role they play in the formation of stellar clusters. This article, the first of a series dedicated to the study of IRDCs, describes techniques developed to establish a complete catalogue of Spitzer IRDCs in the Galaxy. We have analysed Spitzer GLIMPSE and MIPSGAL data to identify a complete sample of IRDCs in the region of Galactic longitude and latitude 10deg 1x10^{22} cm^{-2}. The 24micron data are then used to characterize the star formation activity of each extracted cloud. A total of 11303 clouds have been extracted. A comparison with the existing MSX based catalogue of IRDCs shows that 80% of these Spitzer dark clouds were previously unknown. The algorithm also extracts ~ 20000 to 50000 fragments within these clouds, depending on detection thr...

  17. On the similarity of IR-bright and IR-dark molecular clouds

    CERN Document Server

    Schneider, N; Klessen, R S; Tremblin, P; Ossenkopf, V; Peretto, N

    2014-01-01

    Are Infrared Dark Clouds (IRDCs) special in terms of their physical properties (mass, temperature, star-formation activity) or do they behave as any other star-forming molecular cloud? In this letter, we display column density and temperature maps derived from Herschel, and ATLASGAL dust continuum observations of a sample of prominent massive IRDCs, i.e. G11.11-0.12 (the 'snake'), G18.82-0.28, G28.37+0.07, and G28.53-0.25. We disentangle the velocity structure of the clouds using 13CO 1-0 (BU-FCRAO GRS) and 12CO 3-2 (JCMT) data, showing that our IRDCs are embedded in massive giant molecular clouds (GMCs). The probability distribution function of column densities (PDF) for all clouds have a power-law tail for high column densities, independent of their evolutionary stage (G11.11-0.12, G18.82-0.28, and G28.37+0.07 contain (proto)-stars, G28.53-0.25 shows no signs of star-formation), we attribute to self-gravity. This is in contrast with the purely lognormal PDFs reported using near/mid-IR extinction maps. The p...

  18. Electric field strength determination in filamentary DBDs by CARS-based four-wave mixing

    Science.gov (United States)

    Boehm, Patrick; Kettlitz, Manfred; Brandenburg, Ronny; Hoeft, Hans; Czarnetzki, Uwe

    2016-09-01

    The electric field strength is a basic parameter of non-thermal plasmas. Therefore, a profound knowledge of the electric field distribution is crucial. In this contribution a four wave mixing technique based on Coherent Anti-Stokes Raman spectroscopy (CARS) is used to measure electric field strengths in filamentary dielectric barrier discharges (DBDs). The discharges are operated with a pulsed voltage in nitrogen at atmospheric pressure. Small amounts hydrogen (10 vol%) are admixed as tracer gas to evaluate the electric field strength in the 1 mm discharge gap. Absolute values of the electric field strength are determined by calibration of the CARS setup with high voltage amplitudes below the ignition threshold of the arrangement. Alteration of the electric field strength has been observed during the internal polarity reversal and the breakdown process. In this case the major advantage over emission based methods is that this technique can be used independently from emission, e.g. in the pre-phase and in between two consecutive, opposite discharge pulses where no emission occurs at all. This work was supported by the Deutsche Forschungsgemeinschaft, Forschergruppe FOR 1123 and Sonderforschungsbereich TRR 24 ``Fundamentals of complex plasmas''.

  19. Filamentary Alfvénic structures excited at the edges of equatorial plasma bubbles

    Directory of Open Access Journals (Sweden)

    R. Pottelette

    2007-11-01

    Full Text Available Recent observations performed by the French DEMETER satellite at altitudes of about 710 km suggest that the generation of equatorial plasma bubbles correlates with the presence of filamentary structures of field aligned currents carried by Alfvén waves. These localized structures are located at the bubble edges. We study the dynamics of the equatorial plasma bubbles, taking into account that their motion is dictated by gravity driven and displacement currents. Ion-polarization currents appear to be crucial for the accurate description of the evolution of plasma bubbles in the high altitude ionosphere. During their eastward/westward motion the bubbles intersect gravity driven currents flowing transversely with respect to the background magnetic field. The circulation of these currents is prohibited by large density depressions located at the bubble edges acting as perfect insulators. As a result, in these localized regions the transverse currents have to be locally closed by field aligned currents. Such a physical process generates kinetic Alfvén waves which appear to be stationary in the plasma bubble reference frame. Using a two-dimensional model and "in situ" wave measurements on board the DEMETER spacecraft, we give estimates for the magnitude of the field aligned currents and the associated Alfvén fields.

  20. Study of a Filamentary Dielectric Barrier Discharge in Air at Atmospheric Pressure

    Science.gov (United States)

    Celestin, Sebastien; Zeghondy, Barbar; Guaitella, Olivier; Bourdon, Anne; Rousseau, Antoine

    2006-10-01

    Dielectric Barrier Discharges (DBD) at atmospheric pressure have many applications, for instance ozone production, surface treatment, and waste gas treatment. Generally, such a discharge is filamentary but it can be diffuse under particular conditions. Understanding the formation of the filament, which is an ionization wave or so-called ``streamer'', is very hard theoretically, numerically, and experimentally. This is due, first, to the non-linearity of the equations concerned, and second, because of the scaling in space and time of this phenomenon: a streamer has a radius on the order of a few microns, and propagates through distances of several centimeters in a few nanoseconds. In this study we will present the results obtained in experiments and in simulations for a plane-to-plane DBD. We electrically characterized this device and have observed collective effects that are still poorly understood. A point-to-plane DBD has also been studied for producing a much more localized discharge. In parallel with the experimental study we have developed a numerical model based on the Immersed Boundary Method (IBM) to introduce an electrode having a complex geometry into a structured Cartesian mesh. The first results of the code will be discussed.

  1. Machine Learning Based Data Mining for Milky Way Filamentary Structures Reconstruction

    Science.gov (United States)

    Riccio, Giuseppe; Cavuoti, Stefano; Schisano, Eugenio; Brescia, Massimo; Mercurio, Amata; Elia, Davide; Benedettini, Milena; Pezzuto, Stefano; Molinari, Sergio; Di Giorgio, Anna Maria

    2016-06-01

    We present an innovative method called FilExSeC (Filaments Extraction, Selection and Classification), a data mining tool developed to investigate the possibility to refine and optimize the shape reconstruction of filamentary structures detected with a consolidated method based on the flux derivative analysis, through the column-density maps computed from Herschel infrared Galactic Plane Survey (Hi-GAL) observations of the Galactic plane. The present methodology is based on a feature extraction module followed by a machine learning model (Random Forest) dedicated to select features and to classify the pixels of the input images. From tests on both simulations and real observations the method appears reliable and robust with respect to the variability of shape and distribution of filaments. In the cases of highly defined filament structures, the presented method is able to bridge the gaps among the detected fragments, thus improving their shape reconstruction. From a preliminary a posteriori analysis of derived filament physical parameters, the method appears potentially able to add a sufficient contribution to complete and refine the filament reconstruction.

  2. Stretch-Twist-Fold and slow filamentary dynamos in liquid sodium Madison Dynamo Experiments

    CERN Document Server

    de Andrade, Garcia

    2009-01-01

    Recently Ricca and Maggione [MHD (2008)] have presented a very simple and interesting model of stretch-twist-fold dynamo in diffusive media based on numerical simulations of Riemannian flux tubes. In this paper we present a yet simpler way of analytically obtaining fast and slow dynamo, generated by by the curvature energy of magnetic filaments in diffusive media. geometrical model for the galactic or accretion disk dynamo in shear flows is presented. In the fast dynamo case it is shown that the absence of stretching leads to the absence of fast dynamos and when torsion of filaments vanishes the dynamo action cannot be support as well. This is the Cowling-Zeldovich theorem for planar flows. Isotropy of the magnetic fields hypothesis is used to compute the fast nature of dynamo. A similar result using non-holonomic Frenet frame has been recently obtained for filamentary dynamos [Garcia de Andrade, AN (2008)]. The stretch-twist-fold (STF) filamented models discussed here may serve to formulate future experiment...

  3. Detecting filamentary pattern in the cosmic web: a catalogue of filaments for the SDSS

    CERN Document Server

    Tempel, E; Saar, E; Martinez, V J; Liivamägi, L J; Castellan, G

    2013-01-01

    The main feature of the spatial large-scale galaxy distribution is its intricate network of galaxy filaments. This network is spanned by the galaxy locations that can be interpreted as a three-dimensional point distribution. The global properties of the point process can be measured by different statistical methods, which, however, do not describe directly the structure elements. The morphology of the large scale structure is an important property of the galaxy distribution. Here we apply an object point process with interactions (the Bisous model) to trace and extract the filamentary network in the presently largest galaxy redshift survey, the Sloan Digital Sky Survey (SDSS). We search for filaments in the galaxy distribution having a radius of about 0.5 Mpc/h. We divide the detected network into single filaments and present a public catalogue of filaments. We study the filament length distribution and show that the longest filaments reach the length of 60 Mpc/h. The filaments contain 35-40% of the total gal...

  4. Filamentary MgB2 wires manufactured by different processes subjected to tensile loading and unloading

    Science.gov (United States)

    Kováč, P.; Kulich, M.; Kopera, L.; Melišek, T.; Kováč, J.; Hušek, I.

    2017-06-01

    A reversible strain effect on the transport critical current (I c) of filamentary MgB2 wires manufactured by three different processes has been examined at 4.2 K and under an external field of 5 T. MgB2 wires with a Nb barrier and a Monel® outer sheath made by powder-in-tube ex situ, in situ and by diffusion of magnesium into the boron process, have been examined. The wire samples were loaded and partially unloaded at progressively higher strain levels to determine the irreversible strain limit (ε irr), which is defined as the ultimate strain where the critical current (I c) is still reversible. It was found that the strain tolerances of the tested MgB2 wires are affected by the production process. The highest annealing temperature (>900 °C), applied in the ex situ process, causes an apparent softening of the Monel® and, together with the poor grain connectivity of MgB2 filaments, leads to the lowest strain tolerance (ε irr = 0.20%). The best grain connectivity, in internal Mg diffusion (IMD)-made MgB2, combined with a stronger Monel® sheath (heat treated at a lower temperature ∼640 °C) results in the best strain tolerance (ε irr = 0.55%).

  5. The nature of filamentary cold gas in the core of the Virgo Cluster

    CERN Document Server

    Werner, N; Canning, R E A; Allen, S W; Simionescu, A; Kos, J; van Weeren, R J; Edge, A C; Fabian, A C; von der Linden, A; Nulsen, P E J; Reynolds, C S; Ruszkowski, M

    2012-01-01

    We present a multi-wavelength study of the emission-line nebulae located southeast of the nucleus of M87, the central dominant galaxy of the Virgo Cluster. We report the detection of far-infrared (FIR) [CII] line emission from the nebulae using observations made with Herschel PACS. The infrared line emission is extended and cospatial with optical H{\\alpha}+[NII], far-ultraviolet CIV lines, and soft X-ray emission. The filamentary nebulae evidently contain multi-phase material spanning a temperature range of at least 5 orders of magnitude, from ~100 K to ~10^7 K. This material has most likely been uplifted by the AGN from the center of M87. The thermal pressure of the 10^4 K phase appears to be significantly lower than that of the surrounding hot intra-cluster medium (ICM) indicating the presence of additional turbulent and magnetic pressure in the filaments. If the turbulence in the filaments is subsonic then the magnetic field strength required to balance the pressure of the surrounding ICM is B~30-70 {\\mu}G...

  6. The identification of filaments on far-infrared and submillimiter images: Morphology, physical conditions and relation with star formation of filamentary structure

    Energy Technology Data Exchange (ETDEWEB)

    Schisano, E.; Carey, S.; Paladini, R. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Rygl, K. L. J. [European Space Research and Technology Centre (ESA-ESTEC), Keplerlaan 1, P.O. Box 299, 2200 AG Noordwijk (Netherlands); Molinari, S.; Elia, D.; Pestalozzi, M. [Istituto di Astrofisica e Planetologia Spaziali, INAF-IAPS, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Busquet, G. [Instituto de Astrofísica de Andalucia, CSIC, Glorieta de la Astronomía, s/n, E-18008, Granada (Spain); Polychroni, D. [Departement of Astrophysics, Astronomy and Mechanics, Faculty of Physics, University of Athens, Panepistimiopolis, 15784 Zografos, Athens (Greece); Billot, N. [Instituto de RadioAstronomía Milimétrica Avenida Divina Pastora, 7, Núcleo Central, E-18012 Granada (Spain); Noriega-Crespo, A. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Moore, T. J. T. [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Plume, R. [Department of Physics and Astronomy and the Institute for Space Imaging Sciences, University of Calgary, Calgary, AB T2N IN4 (Canada); Glover, S. C. O. [Zentrüm für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Vázquez-Semadeni, E., E-mail: eugenio@ipac.caltech.edu [Centro de Radioastronomía y Astrofísica (CRyA), Universidad Nacional Autónoma de México, CP 58190 Morelia, Michoacán (Mexico)

    2014-08-10

    Observations of molecular clouds reveal a complex structure, with gas and dust often arranged in filamentary, rather than spherical geometries. The association of pre- and proto-stellar cores with the filaments suggests a direct link with the process of star formation. Any study of the properties of such filaments requires representative samples from different environments for an unbiased detection method. We developed such an approach using the Hessian matrix of a surface-brightness distribution to identify filaments and determine their physical and morphological properties. After testing the method on simulated, but realistic, filaments, we apply the algorithms to column-density maps computed from Herschel observations of the Galactic plane obtained by the Hi-GAL project. We identified ∼500 filaments, in the longitude range of l = 216.°5 to l = 225.°5, with lengths from ∼1 pc up to ∼30 pc and widths between 0.1 pc and 2.5 pc. Average column densities are between 10{sup 20} cm{sup –2} and 10{sup 22} cm{sup –2}. Filaments include the majority of dense material with N{sub H{sub 2}} > 6 × 10{sup 21} cm{sup –2}. We find that the pre- and proto-stellar compact sources already identified in the same region are mostly associated with filaments. However, surface densities in excess of the expected critical values for high-mass star formation are only found on the filaments, indicating that these structures are necessary to channel material into the clumps. Furthermore, we analyze the gravitational stability of filaments and discuss their relationship with star formation.

  7. Antarctic clouds

    OpenAIRE

    Lachlan-Cope, Tom

    2010-01-01

    Sensitivity studies with global climate models show that, by their influence on the radiation balance, Antarctic clouds play a major role in the climate system, both directly at high southern latitudes and indirectly globally, as the local circulation changes lead to global teleconnections. Unfortunately, observations of cloud distribution in the Antarctic are limited and often of low quality because of the practical difficulty in observing clouds in the harsh Antarctic environment. The best ...

  8. Cloud Computing

    CERN Document Server

    Antonopoulos, Nick

    2010-01-01

    Cloud computing has recently emerged as a subject of substantial industrial and academic interest, though its meaning and scope is hotly debated. For some researchers, clouds are a natural evolution towards the full commercialisation of grid systems, while others dismiss the term as a mere re-branding of existing pay-per-use technologies. From either perspective, 'cloud' is now the label of choice for accountable pay-per-use access to third party applications and computational resources on a massive scale. Clouds support patterns of less predictable resource use for applications and services a

  9. Connecting diverse molecular cloud environments with nascent protostars in Orion

    Science.gov (United States)

    Stutz, Amelia M.; Megeath, S.; Fischer, W. J.; Ali, B.; Furlan, E.; Tobin, J. J.; Stanke, T.; Henning, T.; Krause, O.; Manoj, P.; Osorio, M.; Robitaille, T.; HOPS Team

    2014-01-01

    Understanding how the gas environment within molecular clouds influences the properties of protostars is a key step towards understanding the physical factors that control star formation. We report on an analysis of the connection between molecular cloud environment and protostellar properties using the Herschel Orion Protostar Survey (HOPS), a large multi-observatory survey of protostars in the Orion molecular clouds. HOPS has produced well sampled 1 um to 870 um SEDs of over 300 protostars in the Orion molecular clouds using images and spectra from 2MASS, Spitzer, Herschel and APEX. Furthermore, the combination of APEX 870 um continuum observations with the HOPS/PACS 160 um data over the same area allows for a determination of the temperatures and column densities in the often filamentary dense gas surrounding the Orion protostars. Based on these data, we link the protostellar properties with their environmental properties. Utilizing the diverse environments present within the Orion molecular clouds, we show how the luminosity and spacing of protostars in Orion depends on the local gas column density. Furthermore, we report an unusual concentration of the youngest known protostars (the Herschel identified PBRS, PACS Bright Red Sources) in the Orion B cloud, and we discuss possible reasons for this concentration.

  10. A compressed cloud in the Vela supernova remnant

    Science.gov (United States)

    Jenkins, E. B.; Silk, J.; Leep, E. M.; Wallerstein, G.

    1981-01-01

    Strong interstellar absorption lines of C I, arising from the two excited fine-structure levels, are found in IUE observations of HD 72350 (type B4 III). An analysis of the excited-level populations of C I gives local temperature and pressure limits, and auxiliary data on the limit of column density for excited O I and the carbon ionization help to establish that (1) the local temperature is within the limits of 25-100 K, and (2) the pressure/Boltzmann's constant ratio is at least 10 to the 4.3/cu cm K, despite its small size. This high-pressure cloud is discussed in terms of shock compression by the Vela supernova blast wave, along with the relationship of this kind of cloud compression to star formation and to the origin of the characteristic filamentary emission arcs seen in Vela and other supernova remnants

  11. Managing Clouds in Cloud Platforms

    CERN Document Server

    Ahmat, Kamal A

    2010-01-01

    Managing cloud services is a fundamental challenge in todays virtualized environments. These challenges equally face both providers and consumers of cloud services. The issue becomes even more challenging in virtualized environments that support mobile clouds. Cloud computing platforms such as Amazon EC2 provide customers with flexible, on demand resources at low cost. However, they fail to provide seamless infrastructure management and monitoring capabilities that many customers may need. For instance, Amazon EC2 doesn't fully support cloud services automated discovery and it requires a private set of authentication credentials. Salesforce.com, on the other hand, do not provide monitoring access to their underlying systems. Moreover, these systems fail to provide infrastructure monitoring of heterogenous and legacy systems that don't support agents. In this work, we explore how to build a cloud management system that combines heterogeneous management of virtual resources with comprehensive management of phys...

  12. Cloud Control

    Science.gov (United States)

    Ramaswami, Rama; Raths, David; Schaffhauser, Dian; Skelly, Jennifer

    2011-01-01

    For many IT shops, the cloud offers an opportunity not only to improve operations but also to align themselves more closely with their schools' strategic goals. The cloud is not a plug-and-play proposition, however--it is a complex, evolving landscape that demands one's full attention. Security, privacy, contracts, and contingency planning are all…

  13. Cloud Cover

    Science.gov (United States)

    Schaffhauser, Dian

    2012-01-01

    This article features a major statewide initiative in North Carolina that is showing how a consortium model can minimize risks for districts and help them exploit the advantages of cloud computing. Edgecombe County Public Schools in Tarboro, North Carolina, intends to exploit a major cloud initiative being refined in the state and involving every…

  14. Cloud Computing

    CERN Document Server

    Mirashe, Shivaji P

    2010-01-01

    Computing as you know it is about to change, your applications and documents are going to move from the desktop into the cloud. I'm talking about cloud computing, where applications and files are hosted on a "cloud" consisting of thousands of computers and servers, all linked together and accessible via the Internet. With cloud computing, everything you do is now web based instead of being desktop based. You can access all your programs and documents from any computer that's connected to the Internet. How will cloud computing change the way you work? For one thing, you're no longer tied to a single computer. You can take your work anywhere because it's always accessible via the web. In addition, cloud computing facilitates group collaboration, as all group members can access the same programs and documents from wherever they happen to be located. Cloud computing might sound far-fetched, but chances are you're already using some cloud applications. If you're using a web-based email program, such as Gmail or Ho...

  15. Screaming Clouds

    Science.gov (United States)

    Fikke, Svein; Egill Kristjánsson, Jón; Nordli, Øyvind

    2017-04-01

    "Mother-of-pearl clouds" appear irregularly in the winter stratosphere at high northern latitudes, about 20-30 km above the surface of the Earth. The size range of the cloud particles is near that of visible light, which explains their extraordinary beautiful colours. We argue that the Norwegian painter Edvard Munch could well have been terrified when the sky all of a sudden turned "bloodish red" after sunset, when darkness was expected. Hence, there is a high probability that it was an event of mother-of-pearl clouds which was the background for Munch's experience in nature, and for his iconic Scream. Currently, the leading hypothesis for explaining the dramatic colours of the sky in Munch's famous painting is that the artist was captivated by colourful sunsets following the enormous Krakatoa eruption in 1883. After carefully considering the historical accounts of some of Munch's contemporaries, especially the physicist Carl Störmer, we suggest an alternative hypothesis, namely that Munch was inspired by spectacular occurrences of mother-of-pearl clouds. Such clouds, which have a wave-like structure akin to that seen in the Scream were first observed and described only a few years before the first version of this motive was released in 1892. Unlike clouds related to conventional weather systems in the troposphere, mother-of-pearl clouds appear in the stratosphere, where significantly different physical conditions prevail. This result in droplet sizes within the range of visible light, creating the spectacular colour patterns these clouds are famous for. Carl Störmer observed such clouds, and described them in minute details at the age of 16, but already with a profound interest in science. He later noted that "..these mother-of-pearl clouds was a vision of indescribable beauty!" The authors find it logical that the same vision could appear scaring in the sensible mind of a young artist unknown to such phenomena.

  16. Securing Cloud from Cloud Drain

    Directory of Open Access Journals (Sweden)

    Niva Das

    2014-09-01

    Full Text Available Today, in the world of communication, connected systems is growing at a rapid pace. To accommodate this growth the need for computational power and storage is also increasing at a similar rate. Companies are investing a large amount of resources in buying, maintaining and ensuring availability of the system to their customers. To mitigate these issues, cloud computing is playing a major role [1]. The underlying concept of cloud computing dates back to the ‘50s but the term entering into widespread usage can be traced to 2006 when Amazon.com announced the Elastic Compute Cloud. In this paper, we will discuss about cloud security approaches. We have used the term “CloudDrain” to define data leakage in case of security compromise.

  17. Cloud migration

    CERN Document Server

    Höllwarth, Tobias

    2012-01-01

    This book is designed for managers and entrepreneurs, who are considering improving the economics and flexibility of their IT solutions and infrastructures. The book is also for readers who wish to learn more about the Cloud, but do not want to become specialists.This book discusses the technical, legal, fiscal, economic, organisational and environmental aspects of Cloud services. If you are looking for practical advice on vendor selection and certification, as well as real world Cloud project case studies, this is the book to consult.It is the result of a highly cooper

  18. Cloud Computing

    CERN Document Server

    Baun, Christian; Nimis, Jens; Tai, Stefan

    2011-01-01

    Cloud computing is a buzz-word in today's information technology (IT) that nobody can escape. But what is really behind it? There are many interpretations of this term, but no standardized or even uniform definition. Instead, as a result of the multi-faceted viewpoints and the diverse interests expressed by the various stakeholders, cloud computing is perceived as a rather fuzzy concept. With this book, the authors deliver an overview of cloud computing architecture, services, and applications. Their aim is to bring readers up to date on this technology and thus to provide a common basis for d

  19. Gas Kinematics and Excitation in the Filamentary IRDC G035.39-00.33

    CERN Document Server

    Jimenez-Serra, I; Fontani, F; Tan, J C; Henshaw, J D; Kainulainen, J; Hernandez, A K

    2014-01-01

    Some theories of dense molecular cloud formation involve dynamical environments driven by converging atomic flows or collisions between preexisting molecular clouds. The determination of the dynamics and physical conditions of the gas in clouds at the early stages of their evolution is essential to establish the dynamical imprints of such collisions, and to infer the processes involved in their formation. We present multi-transition 13CO and C18O maps toward the IRDC G035.39-00.33, believed to be at the earliest stages of evolution. The 13CO and C18O gas is distributed in three filaments (Filaments 1, 2 and 3), where the most massive cores are preferentially found at the intersecting regions between them. The filaments have a similar kinematic structure with smooth velocity gradients of ~0.4-0.8 km s-1 pc-1. Several scenarios are proposed to explain these gradients, including cloud rotation, gas accretion along the filaments, global gravitational collapse, and unresolved sub-filament structures. These results...

  20. The Magnetic Field of Cloud 3 in L204

    CERN Document Server

    Cashman, Lauren R

    2014-01-01

    The L204 dark cloud complex is a nearby filamentary structure in Ophiuchus North that has no signs of active star formation. Past studies show that L204 is interacting with the nearby runaway O star, $\\zeta$ Oph, and hosts a magnetic field that is coherent across parsec-length scales. Near-infrared $H$-band (1.6$\\mu$m) linear polarization measurements were obtained for 3,896 background stars across a $1\\deg \\times 1.5\\deg$ region centered on the dense Cloud 3 in L204, using the Mimir near-infrared instrument on the 1.8m Perkins Telescope. Analysis of these observations reveals both large-scale properties and small-scale changes in the magnetic field direction in Cloud 3. In the northern and western $\\zeta$ Oph facing regions of the cloud, the magnetic field appears to be pushed up against the face of the cloud. This may indicate that the UV flux from $\\zeta$ Oph has compressed the magnetic field on the western edge of L204. The plane-of-sky magnetic field strength is estimated to be $\\sim 11 - 26$ $\\mu$G usin...

  1. Observations of filamentary structures near the vortex edge in the Arctic winter lower stratosphere

    Directory of Open Access Journals (Sweden)

    C. Kalicinsky

    2013-11-01

    filamentary structures that include tropical air masses. A characteristic of the Arctic winter 2009/10 was a sudden stratospheric warming in December that led to a split of the polar vortex. The vortex re-established at the end of December. Our passive tracer simulations suggest that large parts of the re-established vortex consisted to about 45% of high- and mid-latitude air.

  2. Cloud Formation

    Science.gov (United States)

    Graham, Mark Talmage

    2004-05-01

    Cloud formation is crucial to the heritage of modern physics, and there is a rich literature on this important topic. In 1927, Charles T.R. Wilson was awarded the Nobel Prize in physics for applications of the cloud chamber.2 Wilson was inspired to study cloud formation after working at a meteorological observatory on top of the highest mountain in Scotland, Ben Nevis, and testified near the end of his life, "The whole of my scientific work undoubtedly developed from the experiments I was led to make by what I saw during my fortnight on Ben Nevis in September 1894."3 To form clouds, Wilson used the sudden expansion of humid air.4 Any structure the cloud may have is spoiled by turbulence in the sudden expansion, but in 1912 Wilson got ion tracks to show up by using strobe photography of the chamber immediately upon expansion.5 In the interim, Millikan's study in 1909 of the formation of cloud droplets around individual ions was the first in which the electron charge was isolated. This study led to his famous oil drop experiment.6 To Millikan, as to Wilson, meteorology and physics were professionally indistinct. With his meteorological physics expertise, in WWI Millikan commanded perhaps the first meteorological observation and forecasting team essential to military operation in history.7 But even during peacetime meteorology is so much of a concern to everyone that a regular news segment is dedicated to it. Weather is the universal conversation topic, and life on land could not exist as we know it without clouds. One wonders then, why cloud formation is never covered in physics texts.

  3. Effect of nitrogen addition to ozone generation characteristics by diffuse and filamentary dielectric barrier discharges at atmospheric pressure

    Science.gov (United States)

    Osawa, Naoki; Tsuji, Takafumi; Ogiso, Ryota; Yoshioka, Yoshio

    2017-05-01

    Ozone is widely used for gas treatment, advanced oxidation processes, microorganisms inactivation, etc. In this research, we investigated the effect of nitrogen addition to ozone generation characteristics by atmospheric pressure Townsend discharge (APTD) type and filamentary dielectric barrier discharge (DBD) type ozone generators. The result showed that the ozone generated by the filamentary DBD increases rapidly with the increase of O2 content, and is higher than that by the APTD. On the other hand, it is interesting that the ozone generated by the APTD gradually decreases with the increase of O2 content. In order to clarify why the characteristics of ozone generation by the two kinds of discharge modes showed different dependency to the N2 content, we analyzed the exhaust gas composition using FTIR spectroscopy and calculated the rate coefficients using BOLSIG+ code. As a result, we found that although O2 content decreased with increasing N2 content, additional O atoms produced by excited N2 molecules contribute to ozone generation in case of APTD. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  4. A Comparative Study between the Filamentary and Glow Modes of DBD Plasma in the Treatment of Wool Fibers

    Directory of Open Access Journals (Sweden)

    Doaa. M. El-Zeer

    2014-03-01

    Full Text Available In the present research it has been studied the effect of the DBD plasma on the treatment and modification of the surface a printing properities of the wool. Two types of DBD plasma have been investigated namely; the filamentary mode FDBD plasma and the glow mode GDBD plasma to reach the best condition of the treatment. Two discharge cells have been constructed one of them is for the generation of Atmospheric pressure glow discharge APGD and the other is for the generation of filamentary dielectric barrier discharge FDBD plasma. These two cells have the same dimensions except for the type of the dielectric barrier. In the APGD cell the dielectric barrier is a commercial porous fiber while in the FDBD cell the barrier is a Pyrex glass. It has been found that changing the type of the dielectric barriers acquires the discharge different properties. The efficiencies of these two types of discharge in the treatment of the textiles has been examined by treating the wool fabric with these two types of DBD plasma at different conditions of the current and treatment time. The induced changes in wool properties, such as whiteness index, wettability, tensile strength, elongation %, surface morphology, printability and fastness properties, have been investigated. The surface characterization was performed using FTIR and SEM imaging. It has been discovered that GDBD plasma is more efficient than FDBD because of not only its homogeneity but also the high concentration of nitrogen excited species that are the responsible for the surface activation of the textile.

  5. Linking numerical simulations of molecular cloud structure with observations.

    Science.gov (United States)

    Kainulainen, Jouni

    2015-08-01

    Understanding the physical processes that control the life-cycle of the cold interstellar medium (ISM) is one of the key themes in the astrophysics of galaxies today. This importance derives from the role of the cold ISM as the birthplace of new stars, and consequently, as an indivisible constituent of galaxy evolution. In the current paradigm of turbulence-regulated ISM, star formation is controlled by the internal structure of individual molecular clouds, which in turn is set by a complex interplay of turbulence, gravity, and magnetic fields in the clouds. It is in the very focus of the field to determine how these processes give rise to the observed structure of molecular clouds. In this talk, I will review our current efforts to confront this paradigm with the goal of observationally constraining how different processes regulate molecular cloud structure and star formation. At the heart of these efforts lies the use of numerical simulations of gravo-turbulent media to A) define physically meaningful characteristics that are sensitive to the different cloud-shaping processes, and B) determine if and how such characteristics can be recovered by observations. I will show in my talk how this approach has recently led to new constraints for some fundamental measures of the molecular cloud structure. Such constraints allow us to assess the roles of turbulence and gravity in controlling the ISM structure and star formation. I will also highlight specific recent results, focusing on the nature of filamentary structures within molecular clouds. These results may provide a novel set of observational constraints with which to challenge the turbulence-regulated ISM paradigm. Finally, I will discuss the current challenges and open questions in understanding the link between molecular cloud structure and star formation, and speculate on key directions to aim the near-future studies.

  6. $\\rm^{13}CO$ Filaments in the Taurus Molecular Cloud

    CERN Document Server

    Panopoulou, G V; Goldsmith, P F; Heyer, M H

    2014-01-01

    We have carried out a search for filamentary structures in the Taurus molecular cloud using $\\rm^{13}CO$ line emission data from the FCRAO survey of $\\rm \\sim100 \\, deg^2$. We have used the topological analysis tool, DisPerSe, and post-processed its results to include a more strict definition of filaments that requires an aspect ratio of at least 3:1 and cross section intensity profiles peaked on the spine of the filament. In the velocity-integrated intensity map only 10 of the hundreds of filamentary structures identified by DisPerSe comply with our criteria. Unlike Herschel analyses, which find a characteristic width for filaments of $\\rm \\sim0.1 \\, pc$, we find a much broader distribution of profile widths in our structures, with a peak at 0.4 pc. Furthermore, even if the identified filaments are cylindrical objects, their complicated velocity structure and velocity dispersions imply that they are probably gravitationally unbound. Analysis of velocity channel maps reveals the existence of hundreds of `velo...

  7. Mobile Clouds

    DEFF Research Database (Denmark)

    Fitzek, Frank; Katz, Marcos

    users in very different ways and for various purposes. The book provides many stimulating examples of resource-sharing applications. Enabling technologies for mobile clouds are also discussed, highlighting the key role of network coding. Mobile clouds have the potential to enhance communications...... of resource sharing takes a wider and deeper meaning, creating the foundations for a global real-time multidimensional resource pool, the underlying infrastructure for shareconomy. Above all, this is an inspiring book for anyone who is concerned about the future of wireless and mobile communications networks...... and their relationship with Social networks. Key Features: Provides fundamental ideas and promising concepts for exploiting opportunistic cooperation and cognition in wireless and mobile networks Gives clear definitions of mobile clouds from different perspectives Associates mobile and wireless networks with social...

  8. ALMA RESOLVES 30 DORADUS: SUB-PARSEC MOLECULAR CLOUD STRUCTURE NEAR THE CLOSEST SUPER STAR CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Indebetouw, Remy; Brogan, Crystal; Leroy, Adam; Hunter, Todd; Kepley, Amanda, E-mail: rindebet@nrao.edu, E-mail: cbrogan@nrao.edu, E-mail: aleroy@nrao.edu [National Radio Astronomy Observatory, 520 Edgemont Road Charlottesville, VA 22903 (United States); and others

    2013-09-01

    We present Atacama Large (sub)Millimeter Array observations of 30 Doradus-the highest resolution view of molecular gas in an extragalactic star formation region to date ({approx}0.4 pc Multiplication-Sign 0.6 pc). The 30Dor-10 cloud north of R136 was mapped in {sup 12}CO 2-1, {sup 13}CO 2-1, C{sup 18}O 2-1, 1.3 mm continuum, the H30{alpha} recombination line, and two H{sub 2}CO 3-2 transitions. Most {sup 12}CO emission is associated with small filaments and clumps ({approx}<1 pc, {approx}10{sup 3} M{sub Sun} at the current resolution). Some clumps are associated with protostars, including ''pillars of creation'' photoablated by intense radiation from R136. Emission from molecular clouds is often analyzed by decomposition into approximately beam-sized clumps. Such clumps in 30 Doradus follow similar trends in size, linewidth, and surface density to Milky Way clumps. The 30 Doradus clumps have somewhat larger linewidths for a given size than predicted by Larson's scaling relation, consistent with pressure confinement. They extend to a higher surface density at a given size and linewidth compared to clouds studied at 10 pc resolution. These trends are also true of clumps in Galactic infrared-dark clouds; higher resolution observations of both environments are required. Consistency of clump masses calculated from dust continuum, CO, and the virial theorem reveals that the CO abundance in 30 Doradus clumps is not significantly different from the Large Magellanic Cloud mean, but the dust abundance may be reduced by {approx}2. There are no strong trends in clump properties with distance from R136; dense clumps are not strongly affected by the external radiation field, but there is a modest trend toward lower dense clump filling fraction deeper in the cloud.

  9. Cloud radiative properties and aerosol - cloud interaction

    Science.gov (United States)

    Viviana Vladutescu, Daniela; Gross, Barry; Li, Clement; Han, Zaw

    2015-04-01

    The presented research discusses different techniques for improvement of cloud properties measurements and analysis. The need for these measurements and analysis arises from the high errors noticed in existing methods that are currently used in retrieving cloud properties and implicitly cloud radiative forcing. The properties investigated are cloud fraction (cf) and cloud optical thickness (COT) measured with a suite of collocated remote sensing instruments. The novel approach makes use of a ground based "poor man's camera" to detect cloud and sky radiation in red, green, and blue with a high spatial resolution of 30 mm at 1km. The surface-based high resolution photography provides a new and interesting view of clouds. As the cloud fraction cannot be uniquely defined or measured, it depends on threshold and resolution. However as resolution decreases, cloud fraction tends to increase if the threshold is below the mean, and vice versa. Additionally cloud fractal dimension also depends on threshold. Therefore these findings raise concerns over the ability to characterize clouds by cloud fraction or fractal dimension. Our analysis indicate that Principal Component analysis may lead to a robust means of quantifying cloud contribution to radiance. The cloud images are analyzed in conjunction with a collocated CIMEL sky radiometer, Microwave Radiometer and LIDAR to determine homogeneity and heterogeneity. Additionally, MFRSR measurements are used to determine the cloud radiative properties as a validation tool to the results obtained from the other instruments and methods. The cloud properties to be further studied are aerosol- cloud interaction, cloud particle radii, and vertical homogeneity.

  10. The impact of magnetic fields on the IMF in star-forming clouds near a supermassive black hole

    CERN Document Server

    Hocuk, S; Spaans, M; Cazaux, S

    2012-01-01

    Star formation in the centers of galaxies is thought to yield massive stars with a possibly top-heavy stellar mass distribution. It is likely that magnetic fields play a crucial role in the distribution of stellar masses inside star-forming molecular clouds. In this context, we explore the effects of magnetic fields, with a typical field strength of 38 {\\mu}G, such as in RCW 38, and a field strength of 135 {\\mu}G, similar to NGC 2024 and the infrared dark cloud G28.34+0.06, on the initial mass function (IMF) near (\\leq 10 pc) a 10^7 solar mass black hole. Using these conditions, we perform a series of numerical simulations with the hydrodynamical code FLASH to elucidate the impact of magnetic fields on the IMF and the star-formation efficiency (SFE) emerging from an 800 solar mass cloud. We find that the collapse of a gravitationally unstable molecular cloud is slowed down with increasing magnetic field strength and that stars form along the field lines. The total number of stars formed during the simulations...

  11. Mobile Clouds

    DEFF Research Database (Denmark)

    Fitzek, Frank; Katz, Marcos

    examples of mobile clouds applications, based on both existing commercial initiatives as well as proof-of-concept test-beds. Visions and prospects are also discussed, paving the way for further development. As mobile networks and social networks become more and more reliant on each other, the concept...

  12. Soft Clouding

    DEFF Research Database (Denmark)

    Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas;

    2012-01-01

    Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound...

  13. Unusual Domain Structure and Filamentary Superfluidity for 2D Hard-Core Bosons in Insulating Charge-Ordered Phase

    Science.gov (United States)

    Panov, Yu. D.; Moskvin, A. S.; Rybakov, F. N.; Borisov, A. B.

    2016-12-01

    We made use of a special algorithm for compute unified device architecture for NVIDIA graphics cards, a nonlinear conjugate-gradient method to minimize energy functional, and Monte-Carlo technique to directly observe the forming of the ground state configuration for the 2D hard-core bosons by lowering the temperature and its evolution with deviation away from half-filling. The novel technique allowed us to examine earlier implications and uncover novel features of the phase transitions, in particular, look upon the nucleation of the odd domain structure, emergence of filamentary superfluidity nucleated at the antiphase domain walls of the charge-ordered phase, and nucleation and evolution of different topological structures.

  14. Cloud management and security

    CERN Document Server

    Abbadi, Imad M

    2014-01-01

    Written by an expert with over 15 years' experience in the field, this book establishes the foundations of Cloud computing, building an in-depth and diverse understanding of the technologies behind Cloud computing. In this book, the author begins with an introduction to Cloud computing, presenting fundamental concepts such as analyzing Cloud definitions, Cloud evolution, Cloud services, Cloud deployment types and highlighting the main challenges. Following on from the introduction, the book is divided into three parts: Cloud management, Cloud security, and practical examples. Part one presents the main components constituting the Cloud and federated Cloud infrastructure(e.g., interactions and deployment), discusses management platforms (resources and services), identifies and analyzes the main properties of the Cloud infrastructure, and presents Cloud automated management services: virtual and application resource management services. Part two analyzes the problem of establishing trustworthy Cloud, discuss...

  15. Cloud Computing

    DEFF Research Database (Denmark)

    Krogh, Simon

    2013-01-01

    The second half of the 20th century has been characterized by an explosive development in information technology (Maney, Hamm, & O'Brien, 2011). Processing power, storage capacity and network bandwidth have increased exponentially, resulting in new possibilities and shifting IT paradigms. In step...... with technological changes, the paradigmatic pendulum has swung between increased centralization on one side and a focus on distributed computing that pushes IT power out to end users on the other. With the introduction of outsourcing and cloud computing, centralization in large data centers is again dominating...... the IT scene. In line with the views presented by Nicolas Carr in 2003 (Carr, 2003), it is a popular assumption that cloud computing will be the next utility (like water, electricity and gas) (Buyya, Yeo, Venugopal, Broberg, & Brandic, 2009). However, this assumption disregards the fact that most IT production...

  16. Cloud Interactions

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 1 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere. Image information: VIS instrument. Latitude 68.4, Longitude 258.8 East (101.2 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara

  17. Signatures of fast and slow magnetohydrodynamic shocks in turbulent molecular clouds

    Science.gov (United States)

    Lehmann, Andrew; Wardle, Mark

    2016-01-01

    The character of star formation is intimately related to the supersonic magnetohydrodynamic (MHD) turbulent dynamics of the molecular clouds in which stars form. A significant amount of the turbulent energy dissipates in low-velocity shocks. Fast and slow MHD shocks differ in how they compress and heat the molecular gas, and so their radiative signatures reveal distinct physical conditions. We use a two-fluid model to compare one-dimensional fast and slow MHD shocks propagating at low speeds (a few km s- 1). Fast shocks are magnetically driven, forcing ion species to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where all the fluid variables smoothly change in the shock front. In contrast, slow shocks are driven by gas pressure, and neutral species collide with ion species in a thin hot slab that closely resembles an ordinary gas dynamic shock. We consider shocks at velocities vs = 2-4 km s- 1 and pre-shock hydrogen nuclei densities nH = 102-104 cm-3. We include a simple oxygen chemistry and cooling by CO, H2 and H2O. CO rotational lines above J = 6-5 are more strongly excited in slow shocks. These slow-shock signatures may have already been observed in infrared dark clouds in the Milky Way.

  18. Herschel view of the Taurus B211/3 filament and striations: Evidence of filamentary growth?

    CERN Document Server

    Palmeirim, P; Kirk, J; Ward-Thompson, D; Arzoumanian, D; Könyves, V; Didelon, P; Schneider, N; Benedettini, M; Bontemps, S; Di Francesco, J; Elia, D; Griffin, M; Hennemann, M; Hill, T; Martin, P G; Men'shchikov, A; Molinari, S; Motte, F; Nutter, D; Peretto, N; Pezzuto, S; Roy, A; Rygl, K L J; Spinoglio, L; White, G

    2012-01-01

    We present first results from the Herschel Gould Belt survey for the B211/L1495 region in the Taurus molecular cloud. Thanks to their high sensitivity and dynamic range, the Herschel images reveal the structure of the dense, star-forming filament B211 with unprecedented detail, along with the presence of striations perpendicular to the filament and generally oriented along the magnetic field direction as traced by optical polarization vectors. Based on the column density and dust temperature maps derived from the Herschel data, we find that the radial density profile of the B211 filament approaches a power-law behavior {\\rho} {\\propto} r^(-2.0{\\pm}0.4) at large radii and that the temperature profile exhibits a marked drop at small radii. The observed density and temperature profiles of the B211 filament are in good agreement with a theoretical model of a cylindrical filament undergoing gravitational contraction with a polytropic equation of state: P {\\propto} {\\rho}^{\\gamma} and T {\\propto} {\\rho}^({\\gamma}-1...

  19. Hierarchical Cluster Assembly in Globally Collapsing Clouds

    CERN Document Server

    Vazquez-Semadeni, Enrique; Colin, Pedro

    2016-01-01

    We discuss the mechanism of cluster formation in a numerical simulation of a molecular cloud (MC) undergoing global hierarchical collapse (GHC). The global nature of the collapse implies that the SFR increases over time. The hierarchical nature of the collapse consists of small-scale collapses within larger-scale ones. The large-scale collapses culminate a few Myr later than the small-scale ones and consist of filamentary flows that accrete onto massive central clumps. The small-scale collapses form clumps that are embedded in the filaments and falling onto the large-scale collapse centers. The stars formed in the early, small-scale collapses share the infall motion of their parent clumps. Thus, the filaments feed both gaseous and stellar material to the massive central clump. This leads to the presence of a few older stars in a region where new protostars are forming, and also to a self-similar structure, in which each unit is composed of smaller-scale sub-units that approach each other and may merge. Becaus...

  20. Martian Clouds

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 28 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. This image was acquired during early spring near the North Pole. The linear 'ripples' are transparent water-ice clouds. This linear form is typical for polar clouds. The black regions on the margins of this image are areas of saturation caused by the build up of scattered light from the bright polar material during the long image exposure. Image information: VIS instrument. Latitude 68.1, Longitude 147.9 East (212.1 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip

  1. Cloud Computing (4)

    Institute of Scientific and Technical Information of China (English)

    Wang Bai; Xu Liutong

    2010-01-01

    @@ 8 Case Study Cloud computing is still a new phenomenon. Although many IT giants are developing their own cloud computing infrastructures,platforms, software, and services, few have really succeeded in becoming cloud computing providers.

  2. Blue skies for CLOUD

    CERN Multimedia

    2006-01-01

    Through the recently approved CLOUD experiment, CERN will soon be contributing to climate research. Tests are being performed on the first prototype of CLOUD, an experiment designed to assess cosmic radiation influence on cloud formation.

  3. Mutual Inductance and Magnetic Force Calculations for Bitter Disk Coil (Pancake) with Nonlinear Radial Current and Filamentary Circular Coil with Azimuthal Current

    OpenAIRE

    Slobodan Babic; Cevdet Akyel

    2016-01-01

    Bitter coils are electromagnets used for the generation of extremely strong magnetic fields superior to 30 T. In this paper we calculate the mutual inductance and the magnetic force between Bitter disk (pancake) coil with the nonlinear radial current and the circular filamentary coil with the azimuthal current. The close form expressed over complete elliptic integrals of the first and second kind as well as Heuman’s Lambda function is obtained for this configuration either for the mutual indu...

  4. Cloud-Top Entrainment in Stratocumulus Clouds

    Science.gov (United States)

    Mellado, Juan Pedro

    2017-01-01

    Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

  5. The Magnetic Field of Cloud 3 in L204

    Science.gov (United States)

    Cashman, Lauren R.; Clemens, D. P.

    2014-10-01

    The L204 dark cloud complex is a nearby filamentary structure in Ophiuchus North that has no signs of active star formation. Past studies show that L204 is interacting with the nearby runaway O star, ζ Oph, and hosts a magnetic field that is coherent across parsec-length scales. Near-infrared H-band (1.6 μm) linear polarization measurements were obtained for 3896 background stars across a 1° × 1.°5 region centered on the dense Cloud 3 in L204, using the Mimir near-infrared instrument on the 1.8 m Perkins Telescope. Analysis of these observations reveals both large-scale properties and small-scale changes in the magnetic field direction in Cloud 3. In the northern and western ζ Oph facing regions of the cloud, the magnetic field appears to be pushed up against the face of the cloud. This may indicate that the UV flux from ζ Oph has compressed the magnetic field on the western edge of L204. The plane-of-sky magnetic field strength is estimated to be ~11-26 μG using the Chandrasekhar-Fermi method. The polarimetry data also reveal that the polarization efficiency (PE ≡ P H/A V) steadily decreases with distance from ζ Oph (-0.09% ± 0.03% mag-1 pc-1). Additionally, power-law fits of PE versus A V for localized samples of probe stars show steeper negative indices with distance from ζ Oph. Both findings highlight the importance of external illumination, here from ζ Oph, in aligning dust grains to embedded magnetic fields.

  6. Silicon Photonics Cloud (SiCloud)

    DEFF Research Database (Denmark)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.;

    2015-01-01

    Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  7. Determination of the electric field strength of filamentary DBDs by CARS-based four-wave mixing

    Science.gov (United States)

    Böhm, P.; Kettlitz, M.; Brandenburg, R.; Höft, H.; Czarnetzki, U.

    2016-10-01

    It is demonstrated that a four-wave mixing technique based on coherent anti-Stokes Raman spectroscopy (CARS) can determine the electric field strength of a pulsed-driven filamentary dielectric barrier discharge (DBD) of 1 mm gap, using hydrogen as a tracer medium in nitrogen at atmospheric pressure. The measurements are presented for a hydrogen admixture of 10%, but even 5% H2 admixture delivers sufficient infrared signals. The lasers do not affect the discharge by photoionization or by other radiation-induced processes. The absolute values of the electric field strength can be determined by the calibration of the CARS setup with high voltage amplitudes below the ignition threshold of the arrangement. This procedure also enables the determination of the applied breakdown voltage. The alteration of the electric field is observed during the internal polarity reversal and the breakdown process. One advantage of the CARS technique over emission-based methods is that it can be used independently of emission, e.g. in the pre-phase and in between two consecutive discharges, where no emission occurs at all.

  8. Discharge transitions between glow-like and filamentary in a xenon/chlorine-filled barrier discharge lamp

    Science.gov (United States)

    Xu, Jinzhou; Guo, Ying; Xia, Lei; Zhang, Jing

    2007-08-01

    An asymmetric electric voltage pulse source (2-20 kHz, Vp-p: 0-20 kV) was applied to stimulate excimer radiation by a dielectric barrier discharge in a binary gas mixture of chlorine (10.8 Torr)/xenon at high pressure (~460 Torr). When the source frequency increases continuously from 2.0 to 12.0 kHz or in reverse under a fixed output voltage of Vp-p (13.8 kV), it is observed that the discharge modes excited by this pulse source transmit between glow-like and filamentary, and we observe a mixed mode with filaments randomly distributed in the diffuse-like background in the narrow frequency range 7.0-8.0 kHz. It is argued that the reasons for the discharge transition could be the frequency and the time derivative of the voltage waveform of the power source. It is also observed that there is an obvious difference in the emission spectral profiles and the energy efficiency of excimer emission for the two discharge modes.

  9. Time-resolved characterization of a filamentary argon discharge at atmospheric pressure in a capillary using emission and absorption spectroscopy

    Science.gov (United States)

    Schröter, Sandra; Pothiraja, Ramasamy; Awakowicz, Peter; Bibinov, Nikita; Böke, Marc; Niermann, Benedikt; Winter, Jörg

    2013-11-01

    An argon/nitrogen (0.999/0.001) filamentary pulsed discharge operated at atmospheric pressure in a quartz tube is characterized using voltage-current measurements, microphotography, optical emission spectroscopy (OES) and absorption spectroscopy. Nitrogen is applied as a sensor gas for the purpose of OES diagnostic. The density of argon metastable atoms Ar(3P2) is determined using tunable diode laser absorption spectroscopy (TDLAS). Using a plasma chemical model the measured OES data are applied for the characterization of the plasma conditions. Between intense positive pulses the discharge current oscillates with a damped amplitude. It is established that an electric current flows in this discharge not only through a thin plasma filament that is observed in the discharge image but also through the whole cross section of the quartz tube. A diffuse plasma fills the quartz tube during a time between intense current pulses. Ionization waves are propagating in this plasma between the spike and the grounded area of the tube producing thin plasma channels. The diameter of these channels increases during the pause between the propagation of ionization waves probably because of thermal expansion and diffusion. Inside the channels electron densities of ˜2 × 1013 cm-3, argon metastable densities ˜1014 cm-3 and a reduced electric field about 10 Td are determined.

  10. Model for multi-filamentary conduction in graphene/hexagonal-boron-nitride/graphene based resistive switching devices

    Science.gov (United States)

    Pan, Chengbin; Miranda, Enrique; Villena, Marco A.; Xiao, Na; Jing, Xu; Xie, Xiaoming; Wu, Tianru; Hui, Fei; Shi, Yuanyuan; Lanza, Mario

    2017-06-01

    Despite the enormous interest raised by graphene and related materials, recent global concern about their real usefulness in industry has raised, as there is a preoccupying lack of 2D materials based electronic devices in the market. Moreover, analytical tools capable of describing and predicting the behavior of the devices (which are necessary before facing mass production) are very scarce. In this work we synthesize a resistive random access memory (RRAM) using graphene/hexagonal-boron-nitride/graphene (G/h-BN/G) van der Waals structures, and we develop a compact model that accurately describes its functioning. The devices were fabricated using scalable methods (i.e. CVD for material growth and shadow mask for electrode patterning), and they show reproducible resistive switching (RS). The measured characteristics during the forming, set and reset processes were fitted using the model developed. The model is based on the nonlinear Landauer approach for mesoscopic conductors, in this case atomic-sized filaments formed within the 2D materials system. Besides providing excellent overall fitting results (which have been corroborated in log-log, log-linear and linear-linear plots), the model is able to explain the dispersion of the data obtained from cycle-to-cycle in terms of the particular features of the filamentary paths, mainly their confinement potential barrier height.

  11. High-Tc Superconductivity: Strong Indication of Filamentary-Chaotic Conductance and Possible Routes to Superconductivity Above Room Temperature

    CERN Document Server

    Otto, Hans Hermann

    2016-01-01

    The empirical relation of T_co(K)=2740/_c^4 between the transition temperature of optimum doped superconductors T_co and the mean cationic charge _c, a physical paradox, can be recast to strongly support fractal theories of high-T_c superconductors, thereby applying the finding that the optimum hole concentration of h^+ = 0.229 can be linked with the universal fractal constant delta_1 = 8.72109... of the renormalized Henon map. The transition temperature obviously increases steeply with a domain structure of ever narrower size, characterized by Fibonacci numbers. With this backing superconductivity above room temperature can be conceived for synthetic sandwich structures of _c less than 2+. For instance, composites of tenorite and cuprite respectively tenorite and CuI (CuBr, CuCl) onto AuCu alloys are proposed. This specification is suggested by previously described filamentary superconductivity of 'bulk' CuO_1-x samples. In addition, cesium substitution in the Tl-1223 compound is an option. A low mean cation...

  12. How do the barrier thickness and dielectric material influence the filamentary mode and CO2 conversion in a flowing DBD?

    CERN Document Server

    Ozkan, A; Bogaerts, A; Reniers, F

    2016-01-01

    Dielectric barrier discharges (DBDs) are commonly used to generate cold plasmas at atmospheric pressure. Whatever their configuration (tubular or planar), the presence of a dielectric barrier is mandatory to prevent too much charge build up in the plasma and the formation of a thermal arc. In this article, the role of the barrier thickness (2.0, 2.4 and 2.8 mm) and of the kind of dielectric material (alumina, mullite, pyrex, quartz) is investigated on the filamentary behavior in the plasma and on the CO2 conversion in a tubular flowing DBD, by means of mass spectrometry measurements correlated with electrical characterization and IR imaging. Increasing the barrier thickness decreases the capacitance, while preserving the electrical charge. As a result, the voltage over the dielectric increases and a larger number of microdischarges is generated, which enhances the CO2 conversion. Furthermore, changing the dielectric material of the barrier, while keeping the same geometry and dimensions, also affects the CO2 ...

  13. Automatic Cloud Bursting under FermiCloud

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao [Fermilab; Shangping, Ren [IIT; Garzoglio, Gabriele [Fermilab; Timm, Steven [Fermilab; Bernabeu, Gerard [Fermilab; Kim, Hyun Woo; Chadwick, Keith; Jang, Haengjin [KISTI, Daejeon; Noh, Seo-Young [KISTI, Daejeon

    1900-01-01

    Cloud computing is changing the infrastructure upon which scientific computing depends from supercomputers and distributed computing clusters to a more elastic cloud-based structure. The service-oriented focus and elasticity of clouds can not only facilitate technology needs of emerging business but also shorten response time and reduce operational costs of traditional scientific applications. Fermi National Accelerator Laboratory (Fermilab) is currently in the process of building its own private cloud, FermiCloud, which allows the existing grid infrastructure to use dynamically provisioned resources on FermiCloud to accommodate increased but dynamic computation demand from scientists in the domains of High Energy Physics (HEP) and other research areas. Cloud infrastructure also allows to increase a private cloud’s resource capacity through “bursting” by borrowing or renting resources from other community or commercial clouds when needed. This paper introduces a joint project on building a cloud federation to support HEP applications between Fermi National Accelerator Laboratory and Korea Institution of Science and Technology Information, with technical contributions from the Illinois Institute of Technology. In particular, this paper presents two recent accomplishments of the joint project: (a) cloud bursting automation and (b) load balancer. Automatic cloud bursting allows computer resources to be dynamically reconfigured to meet users’ demands. The load balance algorithm which the cloud bursting depends on decides when and where new resources need to be allocated. Our preliminary prototyping and experiments have shown promising success, yet, they also have opened new challenges to be studied

  14. Automatic Cloud Bursting under FermiCloud

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao [Fermilab; Shangping, Ren [IIT; Garzoglio, Gabriele [Fermilab; Timm, Steven [Fermilab; Bernabeu, Gerard [Fermilab; Kim, Hyun Woo; Chadwick, Keith; Jang, Haengjin [KISTI, Daejeon; Noh, Seo-Young [KISTI, Daejeon

    2013-01-01

    Cloud computing is changing the infrastructure upon which scientific computing depends from supercomputers and distributed computing clusters to a more elastic cloud-based structure. The service-oriented focus and elasticity of clouds can not only facilitate technology needs of emerging business but also shorten response time and reduce operational costs of traditional scientific applications. Fermi National Accelerator Laboratory (Fermilab) is currently in the process of building its own private cloud, FermiCloud, which allows the existing grid infrastructure to use dynamically provisioned resources on FermiCloud to accommodate increased but dynamic computation demand from scientists in the domains of High Energy Physics (HEP) and other research areas. Cloud infrastructure also allows to increase a private cloud’s resource capacity through “bursting” by borrowing or renting resources from other community or commercial clouds when needed. This paper introduces a joint project on building a cloud federation to support HEP applications between Fermi National Accelerator Laboratory and Korea Institution of Science and Technology Information, with technical contributions from the Illinois Institute of Technology. In particular, this paper presents two recent accomplishments of the joint project: (a) cloud bursting automation and (b) load balancer. Automatic cloud bursting allows computer resources to be dynamically reconfigured to meet users’ demands. The load balance algorithm which the cloud bursting depends on decides when and where new resources need to be allocated. Our preliminary prototyping and experiments have shown promising success, yet, they also have opened new challenges to be studied

  15. Magnetohydrodynamic simulations of mechanical stellar feedback in a sheet-like molecular cloud

    Science.gov (United States)

    Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.

    2017-03-01

    We have used the adaptive-mesh-refinement hydrodynamic code, MG, to perform 3D magnetohydrodynamic simulations with self-gravity of stellar feedback in a sheet-like molecular cloud formed through the action of the thermal instability. We simulate the interaction of the mechanical energy input from a 15 star and a 40 M⊙ star into a 100 pc-diameter 17 000 M⊙ cloud with a corrugated sheet morphology that in projection appears filamentary. The stellar winds are introduced using appropriate Geneva stellar evolution models. In the 15 M⊙ star case, the wind forms a narrow bipolar cavity with minimal effect on the parent cloud. In the 40 M⊙ star case, the more powerful stellar wind creates a large cylindrical cavity through the centre of the cloud. After 12.5 and 4.97 Myr, respectively, the massive stars explode as supernovae (SNe). In the 15 M⊙ star case, the SN material and energy is primarily deposited into the molecular cloud surroundings over ∼105 yr before the SN remnant escapes the cloud. In the 40 M⊙ star case, a significant fraction of the SN material and energy rapidly escapes the molecular cloud along the wind cavity in a few tens of kiloyears. Both SN events compress the molecular cloud material around them to higher densities (so may trigger further star formation), and strengthen the magnetic field, typically by factors of 2-3 but up to a factor of 10. Our simulations are relevant to observations of bubbles in flattened ring-like molecular clouds and bipolar H II regions.

  16. Evolution of Prolate Molecular Clouds at Hii Boundaries: II. Formation of BRCs of asymmetrical morphology

    CERN Document Server

    Kinnear, T M; White, G J; Sugitani, K; Goodwin, S

    2015-01-01

    A systematic investigation on the evolution of a prolate cloud at an Hii boundary is conducted using Smoothed Particle Hydrodynamics (SPH) in order to understand the mechanism for a variety of irregular morphological structures found at the boundaries of various Hii regions. The prolate molecular clouds in this investigation are set with their semi-major axes at inclinations between 0 and 90 degrees to a plane parallel ionizing radiation flux. A set of 4 parameters, the number density n, the ratio of major to minor axis gamma, the inclination angle phi and the incident flux F_EUV, are used to define the initial state of the simulated clouds. The dependence of the evolution of a prolate cloud under Radiation Driven Implosion (RDI) on each of the four parameters is investigated. It is found that: i) in addition to the well studied standard type A, B or C Bright Rimmed Clouds (BRCs), many other types such as asymmetrical BRCs, filamentary structures and irregular horse-head structures could also be developed at ...

  17. Cluster-formation in the Rosette molecular cloud at the junctions of filaments

    CERN Document Server

    Schneider, N; Hennemann, M; Motte, F; Didelon, P; Federrath, C; Bontemps, S; Di Francesco, J; Arzoumanian, D; Minier, V; André, Ph; Hill, T; Zavagno, A; Nguyen-Luong, Q; Attard, M; Bernard, J -Ph; Elia, D; Fallscheer, C; Griffin, M; Kirk, J; Klessen, R; Könyves, V; Martin, P; Men'shchikov, A; Palmeirim, P; Peretto, N; Pestalozzi, M; Russeil, D; Sadavoy, S; Sousbie, T; Testi, L; Tremblin, P; Ward-Thompson, D; White, G

    2012-01-01

    For many years feedback processes generated by OB-stars in molecular clouds, including expanding ionization fronts, stellar winds, or UV-radiation, have been proposed to trigger subsequent star formation. However, hydrodynamic models including radiation and gravity show that UV-illumination has little or no impact on the global dynamical evolution of the cloud. The Rosette molecular cloud, irradiated by the NGC2244 cluster, is a template region for triggered star-formation, and we investigated its spatial and density structure by applying a curvelet analysis, a filament-tracing algorithm (DisPerSE), and probability density functions (PDFs) on Herschel column density maps, obtained within the HOBYS key program. The analysis reveals not only the filamentary structure of the cloud but also that all known infrared clusters except one lie at junctions of filaments, as predicted by turbulence simulations. The PDFs of sub-regions in the cloud show systematic differences. The two UV-exposed regions have a double-peak...

  18. Cloud Computing (1)

    Institute of Scientific and Technical Information of China (English)

    Wang Bai; Xu Liutong

    2010-01-01

    @@ Editor's Desk: Cloud computing is a topic of intense interest in the Internet field. Major IT giants have launched their own cloud computing products. This four-part lecture series will discuss cloud computing technology in the following aspects: The first part provides a brief description of the origin and characteristics of cloud computing from the users view of point; the other parts introduce typical applications of cloud computing, technically analyze the specific content within the cloud, its components, architecture and computational paradigm, compare cloud computing to other distributed computing technologies, and discuss its successful cases, commercial models, related technical and economic issues, and development trends.

  19. Cloud Computing (2)

    Institute of Scientific and Technical Information of China (English)

    Wang Bai; Xu Liutong

    2010-01-01

    @@ Editor's Desk: Cloud computing is a topic of intense interest in the Internet field. Major IT giants have launched their own cloud computing products. This four-part lecture series discusses cloud computing technology in the following aspects: The first part provided a brief description of the origin and characteristics of cloud computing from the users view of point; the other parts introduce typical applications of cloud computing, technically analyze the specific content within the cloud, its components, architecture and computational paradigm, compare cloud computing to other distributed computing technologies, and discuss its successful cases, commercial models, related technical and economic issues, and development trends.

  20. Cloud storage for dummies

    CERN Document Server

    Xu, Linda; Loughlin, Tanya

    2010-01-01

    Understand cloud computing and save your organization time and money! Cloud computing is taking IT by storm, but what is it and what are the benefits to your organization? Hitachi Data Systems' Cloud Storage For Dummies provides all the answers, With this book, you discover a clear explanation of cloud storage, and tips for how to choose the right type of cloud storage for your organization's needs. You also find out how cloud storage can free up valuable IT resources, saving time and money. Cloud Storage For Dummies presents useful information on setting up a

  1. Robots and sensor clouds

    CERN Document Server

    Shakshuki, Elhadi

    2016-01-01

    This book comprises four chapters that address some of the latest research in clouds robotics and sensor clouds. The first part of the book includes two chapters on cloud robotics. The first chapter introduces a novel resource allocation framework for cloud robotics and proposes a Stackelberg game model and the corresponding task oriented pricing mechanism for resource allocation. In the second chapter, the authors apply Cloud Computing for building a Cloud-Based 3D Point Cloud extractor for stereo images. Their objective is to have a dynamically scalable and applicable to near real-time scenarios.  .

  2. The CLOUD experiment

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The Cosmics Leaving Outdoor Droplets (CLOUD) experiment as shown by Jasper Kirkby (spokesperson). Kirkby shows a sketch to illustrate the possible link between galactic cosmic rays and cloud formations. The CLOUD experiment uses beams from the PS accelerator at CERN to simulate the effect of cosmic rays on cloud formations in the Earth's atmosphere. It is thought that cosmic ray intensity is linked to the amount of low cloud cover due to the formation of aerosols, which induce condensation.

  3. Cloud Computing (3)

    Institute of Scientific and Technical Information of China (English)

    Wang Bai; Xu Liutong

    2010-01-01

    @@ Editor's Desk: In the preceding two parts of this series, several aspects of cloud computing-including definition, classification, characteristics, typical applications, and service levels-were discussed. This part continues with a discussion of Cloud Computing Oopen Architecture and Market-Oriented Cloud. A comparison is made between cloud computing and other distributed computing technologies, and Google's cloud platform is analyzed to determine how distributed computing is implemented in its particular model.

  4. Cloud Robotics Platforms

    Directory of Open Access Journals (Sweden)

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  5. How do the barrier thickness and dielectric material influence the filamentary mode and CO2 conversion in a flowing DBD?

    Science.gov (United States)

    Ozkan, A.; Dufour, T.; Bogaerts, A.; Reniers, F.

    2016-08-01

    Dielectric barrier discharges (DBDs) are commonly used to generate cold plasmas at atmospheric pressure. Whatever their configuration (tubular or planar), the presence of a dielectric barrier is mandatory to prevent too much charge build up in the plasma and the formation of a thermal arc. In this article, the role of the barrier thickness (2.0, 2.4 and 2.8 mm) and of the kind of dielectric material (alumina, mullite, pyrex, quartz) is investigated on the filamentary behavior in the plasma and on the CO2 conversion in a tubular flowing DBD, by means of mass spectrometry measurements correlated with electrical characterization and IR imaging. Increasing the barrier thickness decreases the capacitance, while preserving the electrical charge. As a result, the voltage over the dielectric increases and a larger number of microdischarges is generated, which enhances the CO2 conversion. Furthermore, changing the dielectric material of the barrier, while keeping the same geometry and dimensions, also affects the CO2 conversion. The highest CO2 conversion and energy efficiency are obtained for quartz and alumina, thus not following the trend of the relative permittivity. From the electrical characterization, we clearly demonstrate that the most important parameters are the somewhat higher effective plasma voltage (yielding a somewhat higher electric field and electron energy in the plasma) for quartz, as well as the higher plasma current (and thus larger electron density) and the larger number of microdischarge filaments (mainly for alumina, but also for quartz). The latter could be correlated to the higher surface roughness for alumina and to the higher voltage over the dielectric for quartz.

  6. Thermal Physics, Cloud Geometry, and the Stellar IMF

    CERN Document Server

    Larson, R B

    2004-01-01

    The thermal properties of star-forming clouds have an important influence on how they fragment into stars, and it is suggested in this paper that the low-mass stellar IMF, which appears to be almost universal, is determined largely by the thermal physics of these clouds. In particular, it is suggested that the characteristic stellar mass, a little below one solar mass, is determined by the transition from an initial cooling phase of collapse to a later phase of slowly rising temperature that occurs when the gas becomes thermally coupled to the dust. Numerical simulations support the hypothesis that the Jeans mass at this transition point plays an important role in determining the peak mass of the IMF. A filamentary geometry may also play a key role in the fragmentation process because the isothermal case is a critical one for the collapse of a cylinder: the collapse and fragmentation of a cylinder can continue freely as long as the temperature continues to decrease, but not if it begins to increase. The limit...

  7. An Extinction Study of the Taurus Dark Cloud Complex

    CERN Document Server

    Arce, H G; Arce, Hector G.; Goodman, Alyssa A.

    1999-01-01

    We present a study of the detailed distribution of extinction in a region of the Taurus dark cloud complex. Our study uses new BVR images of the region, spectral classification data for 95 stars, and IRAS Sky Survey Atlas (ISSA) 60 and 100 micron images. We study the extinction of the region in four different ways, and we present the first inter-comparison of all these methods, which are: 1) using the color excess of background stars for which spectral types are known; 2) using the ISSA 60 and 100 micron images; 3) using star counts; and 4) using an optical (V and R) version of the average color excess method used by Lada et al. (1994). We find that all four methods give generally similar results, with important exceptions. To study the structure in the dust distribution, we compare the ISSA extinction and the extinction measured for individual stars. From the comparison, we conclude that in the relatively low extinction regions studied, with 0.9 < A_V < 3.0 mag (away from filamentary dark clouds and IR...

  8. Magnetohydrodynamic simulations of stellar feedback in a sheet-like molecular cloud formed by the thermal instability

    CERN Document Server

    Wareing, C J; Falle, S A E G

    2016-01-01

    We have used the AMR hydrodynamic code, MG, to perform 3D magnetohydrodynamic simulations with self-gravity of stellar feedback in a sheet-like molecular cloud formed through the action of the thermal instability. We simulate the interaction of the mechanical energy input from a 15Msun star and a 40Msun star into a 100pc-diameter 17000Msun cloud with a corrugated sheet morphology that in projection appears filamentary. The stellar winds are introduced using appropriate Geneva stellar evolution models. In the 15Msun star case, the wind forms a narrow bipolar cavity with minimal effect on the parent cloud. In the 40Msun star case, the more powerful stellar wind creates a large cylindrical cavity through the centre of the cloud. After 12.5Myrs and 4.97Myrs respectively, the massive stars explode as supernovae (SNe). In the 15Msun star case, the SN material and energy is primarily deposited into the molecular cloud surroundings over 10^5 years before the SN remnant escapes the cloud. In the 40Msun star case, the ...

  9. Hybrid cloud for dummies

    CERN Document Server

    Hurwitz, Judith; Halper, Fern; Kirsch, Dan

    2012-01-01

    Understand the cloud and implement a cloud strategy for your business Cloud computing enables companies to save money by leasing storage space and accessing technology services through the Internet instead of buying and maintaining equipment and support services. Because it has its own unique set of challenges, cloud computing requires careful explanation. This easy-to-follow guide shows IT managers and support staff just what cloud computing is, how to deliver and manage cloud computing services, how to choose a service provider, and how to go about implementation. It also covers security and

  10. Secure cloud computing

    CERN Document Server

    Jajodia, Sushil; Samarati, Pierangela; Singhal, Anoop; Swarup, Vipin; Wang, Cliff

    2014-01-01

    This book presents a range of cloud computing security challenges and promising solution paths. The first two chapters focus on practical considerations of cloud computing. In Chapter 1, Chandramouli, Iorga, and Chokani describe the evolution of cloud computing and the current state of practice, followed by the challenges of cryptographic key management in the cloud. In Chapter 2, Chen and Sion present a dollar cost model of cloud computing and explore the economic viability of cloud computing with and without security mechanisms involving cryptographic mechanisms. The next two chapters addres

  11. NEWLY IDENTIFIED EXTENDED GREEN OBJECTS (EGOs) FROM THE SPITZER GLIMPSE II SURVEY. II. MOLECULAR CLOUD ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xi; Gan Conggui; Shen Zhiqiang [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Ellingsen, Simon P.; Titmarsh, Anita [School of Mathematics and Physics, University of Tasmania, Hobart, Tasmania (Australia); He Jinhua, E-mail: chenxi@shao.ac.cn [Key Laboratory for the Structure and Evolution of Celestial Objects, Yunnan Astronomical Observatory/National Astronomical Observatory, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011, Yunnan Province (China)

    2013-06-01

    We have undertaken a survey of molecular lines in the 3 mm band toward 57 young stellar objects using the Australia Telescope National Facility Mopra 22 m radio telescope. The target sources were young stellar objects with active outflows (extended green objects (EGOs)) newly identified from the GLIMPSE II survey. We observe a high detection rate (50%) of broad line wing emission in the HNC and CS thermal lines, which combined with the high detection rate of class I methanol masers toward these sources (reported in Paper I) further demonstrates that the GLIMPSE II EGOs are associated with outflows. The physical and kinematic characteristics derived from the 3 mm molecular lines for these newly identified EGOs are consistent with these sources being massive young stellar objects with ongoing outflow activity and rapid accretion. These findings support our previous investigations of the mid-infrared properties of these sources and their association with other star formation tracers (e.g., infrared dark clouds, methanol masers and millimeter dust sources) presented in Paper I. The high detection rate (64%) of the hot core tracer CH{sub 3}CN reveals that the majority of these new EGOs have evolved to the hot molecular core stage. Comparison of the observed molecular column densities with predictions from hot core chemistry models reveals that the newly identified EGOs from the GLIMPSE II survey are members of the youngest hot core population, with an evolutionary time scale of the order of 10{sup 3} yr.

  12. Cloud Processed CCN Affect Cloud Microphysics

    Science.gov (United States)

    Hudson, J. G.; Noble, S. R., Jr.; Tabor, S. S.

    2015-12-01

    Variations in the bimodality/monomodality of CCN spectra (Hudson et al. 2015) exert opposite effects on cloud microphysics in two aircraft field projects. The figure shows two examples, droplet concentration, Nc, and drizzle liquid water content, Ld, against classification of CCN spectral modality. Low ratings go to balanced separated bimodal spectra, high ratings go to single mode spectra, strictly monomodal 8. Intermediate ratings go merged modes, e.g., one mode a shoulder of another. Bimodality is caused by mass or hygroscopicity increases that go only to CCN that made activated cloud droplets. In the Ice in Clouds Experiment-Tropical (ICE-T) small cumuli with lower Nc, greater droplet mean diameters, MD, effective radii, re, spectral widths, σ, cloud liquid water contents, Lc, and Ld were closer to more bimodal (lower modal ratings) below cloud CCN spectra whereas clouds with higher Nc, smaller MD, re, σ, and Ld were closer to more monomodal CCN (higher modal ratings). In polluted stratus clouds of the MArine Stratus/Stratocumulus Experiment (MASE) clouds that had greater Nc, and smaller MD, re, σ, Lc, and Ld were closer to more bimodal CCN spectra whereas clouds with lower Nc, and greater MD, re, σ, Lc, and Ld were closer to more monomodal CCN. These relationships are opposite because the dominant ICE-T cloud processing was coalescence whereas chemical transformations (e.g., SO2 to SO4) were dominant in MASE. Coalescence reduces Nc and thus also CCN concentrations (NCCN) when droplets evaporate. In subsequent clouds the reduced competition increases MD and σ, which further enhance coalescence and drizzle. Chemical transformations do not change Nc but added sulfate enhances droplet and CCN solubility. Thus, lower critical supersaturation (S) CCN can produce more cloud droplets in subsequent cloud cycles, especially for the low W and effective S of stratus. The increased competition reduces MD, re, and σ, which inhibit coalescence and thus reduce drizzle

  13. Moving towards Cloud Security

    Directory of Open Access Journals (Sweden)

    Edit Szilvia Rubóczki

    2015-01-01

    Full Text Available Cloud computing hosts and delivers many different services via Internet. There are a lot of reasons why people opt for using cloud resources. Cloud development is increasing fast while a lot of related services drop behind, for example the mass awareness of cloud security. However the new generation upload videos and pictures without reason to a cloud storage, but only few know about data privacy, data management and the proprietary of stored data in the cloud. In an enterprise environment the users have to know the rule of cloud usage, however they have little knowledge about traditional IT security. It is important to measure the level of their knowledge, and evolve the training system to develop the security awareness. The article proves the importance of suggesting new metrics and algorithms for measuring security awareness of corporate users and employees to include the requirements of emerging cloud security.

  14. In the clouds

    NARCIS (Netherlands)

    Wassink, J.

    2012-01-01

    Clouds always used to be the least understood element of the weather system, but that is rapidly changing . Computer clouds increasingly correspond with those in the sky, which promises weather forecasts at street level and more accurate climate scenarios.

  15. Cloud Computing for radiologists.

    Science.gov (United States)

    Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit

    2012-07-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  16. An origin of arc structures deeply embedded in dense molecular cloud cores

    CERN Document Server

    Matsumoto, Tomoaki; Tokuda, Kazuki; Inutsuka, Shu-ichiro

    2015-01-01

    We investigated the formation of arc-like structures in the infalling envelope around protostars, motivated by the recent ALMA observations of the high-density molecular cloud core, MC27/L1527F. We performed self-gravitational hydrodynamical numerical simulations with an adaptive mesh refinement code. A filamentary cloud with a 0.1~pc width fragments into cloud cores because of perturbations due to weak turbulence. The cloud core undergoes gravitational collapse to form multiple protostars, and gravitational torque from the orbiting protostars produces arc structures extending up to a 1000~AU scale. As well as on a spatial extent, the velocity ranges of the arc structures, $\\sim0.5\\,\\mathrm{km\\,s}^{-1}$, are in agreement with the ALMA observations. We also found that circumstellar disks are often misaligned in triple system. The misalignment is caused by the tidal interaction between the protostars when they undergo close encounters because of a highly eccentric orbit of the tight binary pair.

  17. The Musca cloud: a 6 pc-long velocity-coherent, sonic filament

    CERN Document Server

    Hacar, A; Tafalla, M; Beuther, H; Alves, J

    2015-01-01

    Filaments play a key role in the molecular clouds' evolution, but their internal dynamical properties remain poorly characterized. To further explore the physical state of these structures, we have investigated the kinematic properties of the Musca cloud. We have sampled the main axis of this filamentary cloud in $^{13}$CO and C$^{18}$O (2--1) lines using APEX observations. The different line profiles in Musca shows that this cloud presents a continuous and quiescent velocity field along its $\\sim$6.5 pc of length. With an internal gas kinematics dominated by thermal motions (i.e. $\\sigma_{NT}/c_s\\lesssim1$) and large-scale velocity gradients, these results reveal Musca as the longest velocity-coherent, sonic-like object identified so far in the ISM. The (tran-)sonic properties of Musca present a clear departure from the predicted supersonic velocity dispersions expected in the Larson's velocity dispersion-size relationship, and constitute the first observational evidence of a filament fully decoupled from th...

  18. On the evolution of irradiated turbulent clouds: a comparative study between modes of triggered star formation

    Science.gov (United States)

    Anathpindika, S.; Bhatt, H. C.

    2012-12-01

    Gas within molecular clouds (MCs) is turbulent and unevenly distributed. Interstellar shocks such as those driven by strong fluxes of ionizing radiation (IR) profoundly affect MCs. While small dense MCs exposed to a strong flux of IR have been shown to implode due to radiation-driven shocks, a phenomenon called radiation-driven implosion, larger MCs, however, are likely to survive this flux, which, in fact, may produce new star-forming sites within these clouds. Here we examine this hypothesis using the smoothed particle hydrodynamics algorithm coupled with a ray-tracing scheme that calculates the position of the ionization front at each time-step. We present results from simulations performed for three choices of IR flux spanning the range of fluxes emitted by a typical B-type star to a cluster of OB-type stars. The extent of photoablation, of course, depends on the strength of the incident flux and a strong flux of IR severely ablates an MC. Consequently, the first star formation sites appear in the dense shocked layer along the edges of the irradiated cloud. Radiation-induced turbulence readily generates dense filamentary structure within the photoablated cloud although several new star-forming sites also appear in some of the densest regions at the junctions of these filaments. Prevalent physical conditions within an MC play a crucial role in determining the mode, i.e. filamentary as compared to isolated pockets, of star formation, the time-scale on which stars form and the distribution of stellar masses. The probability distribution functions derived for irradiated clouds in this study are intriguing due to their resemblance with those presented in a recent census of irradiated MCs. Furthermore, irrespective of the nature of turbulence, the protostellar mass functions(MFs) derived in this study follow a power-law distribution. When turbulence within the cloud is driven by a relatively strong flux of IR such as that emitted by a massive O-type star or a cluster

  19. Computer animation of clouds

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.

    1994-01-28

    Computer animation of outdoor scenes is enhanced by realistic clouds. I will discuss several different modeling and rendering schemes for clouds, and show how they evolved in my animation work. These include transparency-textured clouds on a 2-D plane, smooth shaded or textured 3-D clouds surfaces, and 3-D volume rendering. For the volume rendering, I will present various illumination schemes, including the density emitter, single scattering, and multiple scattering models.

  20. Computer animation of clouds

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.

    1994-01-28

    Computer animation of outdoor scenes is enhanced by realistic clouds. I will discuss several different modeling and rendering schemes for clouds, and show how they evolved in my animation work. These include transparency-textured clouds on a 2-D plane, smooth shaded or textured 3-D clouds surfaces, and 3-D volume rendering. For the volume rendering, I will present various illumination schemes, including the density emitter, single scattering, and multiple scattering models.

  1. Comparing Point Clouds

    Science.gov (United States)

    2004-04-01

    Point clouds are one of the most primitive and fundamental surface representations. A popular source of point clouds are three dimensional shape...acquisition devices such as laser range scanners. Another important field where point clouds are found is in the representation of high-dimensional...framework for comparing manifolds given by point clouds is presented in this paper. The underlying theory is based on Gromov-Hausdorff distances, leading

  2. Cloud computing strategies

    CERN Document Server

    Chorafas, Dimitris N

    2011-01-01

    A guide to managing cloud projects, Cloud Computing Strategies provides the understanding required to evaluate the technology and determine how it can be best applied to improve business and enhance your overall corporate strategy. Based on extensive research, it examines the opportunities and challenges that loom in the cloud. It explains exactly what cloud computing is, what it has to offer, and calls attention to the important issues management needs to consider before passing the point of no return regarding financial commitments.

  3. Governmental Cloud - Part of Cloud Computing

    Directory of Open Access Journals (Sweden)

    Cristian IVANUS

    2014-01-01

    Full Text Available Large IT (Information Technology companies propose cloud government's (G-Cloud development model through investment from the private sector, which will facilitate the access of users from public sector to the new generation IT services. Through the G-Cloud private operators that operate governmental cloud infrastructure by adding specific SaaS (Software as a Service functionalities, proposed model by big companies, supports public institutions in optimizing costs and increased operational efficiency, bringing tangible benefits in relation with citizens and thus with the whole society. These optimizations are achieved by moving the initial investment to the private sector, through type subscription model cost by eliminating dependency on human factors (technical and by providing a low cost [1]. This paper aims to bring to the attention of specialists, some aspects of Governmental Cloud from the European Union (EU countries to be understood and implemented in Romania.

  4. Security in the cloud.

    Science.gov (United States)

    Degaspari, John

    2011-08-01

    As more provider organizations look to the cloud computing model, they face a host of security-related questions. What are the appropriate applications for the cloud, what is the best cloud model, and what do they need to know to choose the best vendor? Hospital CIOs and security experts weigh in.

  5. On clocks and clouds

    Directory of Open Access Journals (Sweden)

    M. K. Witte

    2013-09-01

    Full Text Available Cumulus clouds exhibit a life cycle that consists of: (a the growth phase (increasing size, most notably in the vertical direction; (b the mature phase (growth ceases; any precipitation that develops is strongest during this period; and (c the dissipation phase (cloud dissipates because of precipitation and/or entrainment; no more dynamical support. Although radar can track clouds over time and give some sense of the age of a cloud, most aircraft in situ measurements lack temporal context. We use large eddy simulations of trade wind cumulus cloud fields from cases during the Barbados Oceanographic and Meteorological Experiment (BOMEX and Rain In Cumulus over the Ocean (RICO campaigns to demonstrate a potential cumulus cloud "clock". We find that the volume-averaged total water mixing ratio rt is a useful cloud clock for the 12 clouds studied. A cloud's initial rt is set by the subcloud mixed-layer mean rt and decreases monotonically from the initial value due primarily to entrainment. The clock is insensitive to aerosol loading, environmental sounding and extrinsic cloud properties such as lifetime and volume. In some cases (more commonly for larger clouds, multiple pulses of buoyancy occur, which complicate the cumulus clock by replenishing rt. The clock is most effectively used to classify clouds by life phase.

  6. Cloud Computing Explained

    Science.gov (United States)

    Metz, Rosalyn

    2010-01-01

    While many talk about the cloud, few actually understand it. Three organizations' definitions come to the forefront when defining the cloud: Gartner, Forrester, and the National Institutes of Standards and Technology (NIST). Although both Gartner and Forrester provide definitions of cloud computing, the NIST definition is concise and uses…

  7. Cloud Computing Explained

    Science.gov (United States)

    Metz, Rosalyn

    2010-01-01

    While many talk about the cloud, few actually understand it. Three organizations' definitions come to the forefront when defining the cloud: Gartner, Forrester, and the National Institutes of Standards and Technology (NIST). Although both Gartner and Forrester provide definitions of cloud computing, the NIST definition is concise and uses…

  8. On CLOUD nine

    CERN Multimedia

    2009-01-01

    The team from the CLOUD experiment - the world’s first experiment using a high-energy particle accelerator to study the climate - were on cloud nine after the arrival of their new three-metre diameter cloud chamber. This marks the end of three years’ R&D and design, and the start of preparations for data taking later this year.

  9. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    Science.gov (United States)

    Yu, Sizhe; Lu, Xinpei

    2016-09-01

    We investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6mm gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using synthetic air and its components oxygen and nitrogen. It is found that the pressures are very different when the DBD mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-streamer, which is dominant in the traditional alternating-voltage DBDs. The pulsed DBD in a uniform mode develops in the form of plane ionization wave, due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and DBD develops in streamer instead, corresponding to the filamentary mode. Increasing the initiatory electron density by pre-ionization methods may contribute to discharge uniformity at higher pressures. We also find that the dependence of uniformity upon PRF is non-monotonic.

  10. Accurate modeling and reconstruction of three-dimensional percolating filamentary microstructures from two-dimensional micrographs via dilation-erosion method

    Energy Technology Data Exchange (ETDEWEB)

    Guo, En-Yu [Key Laboratory for Advanced Materials Processing Technology, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Materials Science and Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 (United States); Chawla, Nikhilesh [Materials Science and Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 (United States); Jing, Tao [Key Laboratory for Advanced Materials Processing Technology, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Torquato, Salvatore [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States); Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08544 (United States); Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544 (United States); Jiao, Yang, E-mail: yang.jiao.2@asu.edu [Materials Science and Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 (United States)

    2014-03-01

    Heterogeneous materials are ubiquitous in nature and synthetic situations and have a wide range of important engineering applications. Accurate modeling and reconstructing three-dimensional (3D) microstructure of topologically complex materials from limited morphological information such as a two-dimensional (2D) micrograph is crucial to the assessment and prediction of effective material properties and performance under extreme conditions. Here, we extend a recently developed dilation–erosion method and employ the Yeong–Torquato stochastic reconstruction procedure to model and generate 3D austenitic–ferritic cast duplex stainless steel microstructure containing percolating filamentary ferrite phase from 2D optical micrographs of the material sample. Specifically, the ferrite phase is dilated to produce a modified target 2D microstructure and the resulting 3D reconstruction is eroded to recover the percolating ferrite filaments. The dilation–erosion reconstruction is compared with the actual 3D microstructure, obtained from serial sectioning (polishing), as well as the standard stochastic reconstructions incorporating topological connectedness information. The fact that the former can achieve the same level of accuracy as the latter suggests that the dilation–erosion procedure is tantamount to incorporating appreciably more topological and geometrical information into the reconstruction while being much more computationally efficient. - Highlights: • Spatial correlation functions used to characterize filamentary ferrite phase • Clustering information assessed from 3D experimental structure via serial sectioning • Stochastic reconstruction used to generate 3D virtual structure 2D micrograph • Dilation–erosion method to improve accuracy of 3D reconstruction.

  11. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    Science.gov (United States)

    Yu, S.; Pei, X.; Hasnain, Q.; Nie, L.; Lu, X.

    2016-02-01

    In this paper, we investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6 mm discharge gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using dry air and its components oxygen and nitrogen. It is found that the pressures are very different when the mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-Streamer, which is dominant in the traditional alternating-voltage DBD. The pulsed DBD in a uniform mode develops in the form of plane ionization wave due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and discharge develops in streamer, corresponding to the filamentary mode. Increasing the initial electron density by pre-ionization may contribute to discharge uniformity at higher pressures. We also found that the dependence of homogeneity upon PRF is a non-monotonic one.

  12. Intergalactic HI Clouds

    CERN Document Server

    Briggs, F H

    2005-01-01

    Neutral intergalactic clouds are so greatly out numbered by galaxies that their integral HI content is negligible in comparison to that contained in optically luminous galaxies. In fact, no HI cloud that is not associated with a galaxy or grouping of galaxies has yet been identified. This points to a causal relationship that relies on gravitational potentials that bind galaxies also being responsible for confining HI clouds to sufficient density that they can become self-shielding to the ionizing background radiation. Unconfined clouds of low density become ionized, but confined clouds find themselves vulnerable to instability and collapse, leading to star formation.

  13. Cloud Computing Bible

    CERN Document Server

    Sosinsky, Barrie

    2010-01-01

    The complete reference guide to the hot technology of cloud computingIts potential for lowering IT costs makes cloud computing a major force for both IT vendors and users; it is expected to gain momentum rapidly with the launch of Office Web Apps later this year. Because cloud computing involves various technologies, protocols, platforms, and infrastructure elements, this comprehensive reference is just what you need if you'll be using or implementing cloud computing.Cloud computing offers significant cost savings by eliminating upfront expenses for hardware and software; its growing popularit

  14. Cloud Computing Quality

    Directory of Open Access Journals (Sweden)

    Anamaria Şiclovan

    2013-02-01

    Full Text Available Cloud computing was and it will be a new way of providing Internet services and computers. This calculation approach is based on many existing services, such as the Internet, grid computing, Web services. Cloud computing as a system aims to provide on demand services more acceptable as price and infrastructure. It is exactly the transition from computer to a service offered to the consumers as a product delivered online. This paper is meant to describe the quality of cloud computing services, analyzing the advantages and characteristics offered by it. It is a theoretical paper.Keywords: Cloud computing, QoS, quality of cloud computing

  15. Cloud Computing Technologies

    Directory of Open Access Journals (Sweden)

    Sean Carlin

    2012-06-01

    Full Text Available This paper outlines the key characteristics that cloud computing technologies possess and illustrates the cloud computing stack containing the three essential services (SaaS, PaaS and IaaS that have come to define the technology and its delivery model. The underlying virtualization technologies that make cloud computing possible are also identified and explained. The various challenges that face cloud computing technologies today are investigated and discussed. The future of cloud computing technologies along with its various applications and trends are also explored, giving a brief outlook of where and how the technology will progress into the future.

  16. Self-Similar Collapse Solutions for Cylindrical Cloud Geometries and Dynamic Equations of State

    CERN Document Server

    Holden, Lisa; Baxter, Benjamin; Fatuzzo, Marco

    2009-01-01

    A self-similar formalism for the study of the gravitational collapse of molecular gas provides an important theoretical framework from which to explore the dynamics of star formation. Motivated by the presence of elongated and filamentary structures observed in giant molecular clouds, we build upon the existing body of work on cylindrical self-similar collapse flows by including dynamic equations of state that are different from the effective equation of state that produces the initial density distribution. We focus primarily on the collapse of initial states for which the gas is at rest and everywhere overdense from its corresponding hydrostatic equilibrium profile by a factor $\\Lambda$, and apply our results toward the analysis of star formation within dense, elongated molecular cores. An important aspect of this work is the determination of the mass infall rates over a range of the parameters which define the overall state of the gas -- the overdensity parameter $\\Lambda$, the index $\\Gamma$ of the static ...

  17. CLOUD COMPUTING SECURITY

    Directory of Open Access Journals (Sweden)

    Ştefan IOVAN

    2016-05-01

    Full Text Available Cloud computing reprentes the software applications offered as a service online, but also the software and hardware components from the data center.In the case of wide offerd services for any type of client, we are dealing with a public cloud. In the other case, in wich a cloud is exclusively available for an organization and is not available to the open public, this is consider a private cloud [1]. There is also a third type, called hibrid in which case an user or an organization might use both services available in the public and private cloud. One of the main challenges of cloud computing are to build the trust and ofer information privacy in every aspect of service offerd by cloud computingle. The variety of existing standards, just like the lack of clarity in sustenability certificationis not a real help in building trust. Also appear some questions marks regarding the efficiency of traditionsecurity means that are applied in the cloud domain. Beside the economic and technology advantages offered by cloud, also are some advantages in security area if the information is migrated to cloud. Shared resources available in cloud includes the survey, use of the "best practices" and technology for advance security level, above all the solutions offered by the majority of medium and small businesses, big companies and even some guvermental organizations [2].

  18. Community Cloud Computing

    CERN Document Server

    Marinos, Alexandros

    2009-01-01

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenge...

  19. On the Continuing Formation of the Andromeda Galaxy: Detection of HI Clouds in the M31 Halo

    CERN Document Server

    Thilker, D A; Walterbos, R A M; Corbelli, E; Lockman, F J; Murphy, E; Maddalena, R; Thilker, David A.; Braun, Robert; Walterbos, Rene A. M.; Corbelli, Edvige; Lockman, Felix J.; Murphy, Edward; Maddalena, Ronald

    2004-01-01

    Green Bank Telescope (GBT) 21cm observations have revealed a faint, yet extensive HI cloud population surrounding the Andromeda Galaxy (M31). The newfound objects are likely analogs to the high-velocity HI clouds (HVCs) seen around the Milky Way. At least 20 discrete features are detected within 50 kpc of the M31 disk, with radial velocities that are comparable to those of outer disk rotation. In addition, a filamentary ``halo'' component of at least 30 kpc extent is concentrated at the M31 systemic velocity. Some of the discrete features are organized into elongated systems with velocity continuity, suggestive of tidal streams. The discrete population can be characterized by a steep power-law distribution of number versus HI mass in the range between 10^5 and 10^7 M_sun. The velocity line-width of discrete clouds is correlated with the cloud HI mass: such that if the clouds are gravitationally bound this implies a dark- to HI mass ratio of ~ 100:1. Possible origins for the discrete and ``halo'' M31 features ...

  20. Security Problems in Cloud Computing

    OpenAIRE

    Rola Motawie; Mahmoud M. El-Khouly; Samir Abou El-Seoud

    2016-01-01

    Cloud is a pool of computing resources which are distributed among cloud users. Cloud computing has many benefits like scalability, flexibility, cost savings, reliability, maintenance and mobile accessibility. Since cloud-computing technology is growing day by day, it comes with many security problems. Securing the data in the cloud environment is most critical challenges which act as a barrier when implementing the cloud. There are many new concepts that cloud introduces, such as resource sh...

  1. Cross-Cloud Testing Strategies Over Cloud Computing

    Directory of Open Access Journals (Sweden)

    Mr. Nageswararao,

    2014-06-01

    Full Text Available Cloud computing is the new paradigm to deliver all the hosted services over internet on demand. The ultimate goal of cloud computing paradigm is to realize computing as a utility. The cloud is rapidly maturing towards its goal to support a wide variety of enterprise and consumer services and real-world applications. Recently a movement towards cross cloud also called as multi-clouds or inters clouds or cloud-of-clouds has emerged which take advantage of multiple independent cloud provider offers for cloud resilience and dependability. This cross cloud represents the next logical wave in computing, enabling complex hybrid applications, cost and performance optimization, enhanced reliability, customer flexibility and lock-in avoidance. Providing testing as a service (TaaS in cross clouds become hot topics in industry. Testing heterogeneous e-commerce sites, Software as a Service solutions, and Cloud based applications is extremely challenging.

  2. Secure Cloud Architecture

    Directory of Open Access Journals (Sweden)

    Kashif Munir

    2013-02-01

    Full Text Available Cloud computing is set of resources and services offered through the Internet. Cloud services are delivered from data centers located throughout the world. Cloud computing facilitates its consumers by providing virtual resources via internet. The biggest challenge in cloud computing is the security and privacy problems caused by its multi-tenancy nature and the outsourcing of infrastructure, sensitive data and critical applications. Enterprises are rapidly adopting cloud services for their businesses, measures need to be developed so that organizations can be assured of security in their businesses and can choose a suitable vendor for their computing needs. Cloud computing depends on the internet as a medium for users to access the required services at any time on pay-per-use pattern. However this technology is still in its initial stages of development, as it suffers from threats and vulnerabilities that prevent the users from trusting it. Various malicious activitiesfrom illegal users have threatened this technology such as data misuse, inflexible access control and limited monitoring. The occurrence of these threats may result into damaging or illegal access of critical and confidential data of users. In this paper we identify the most vulnerable security threats/attacks in cloud computing, which will enable both end users and vendors to know a bout the k ey security threats associated with cloud computing and propose relevant solution directives to strengthen security in the Cloud environment. We also propose secure cloud architecture for organizations to strengthen the security.

  3. The Cloud Radar System

    Science.gov (United States)

    Racette, Paul; Heymsfield, Gerald; Li, Lihua; Tian, Lin; Zenker, Ed

    2003-01-01

    Improvement in our understanding of the radiative impact of clouds on the climate system requires a comprehensive view of clouds including their physical dimensions, dynamical generation processes, and detailed microphysical properties. To this end, millimeter vave radar is a powerful tool by which clouds can be remotely sensed. The NASA Goddard Space Flight Center has developed the Cloud Radar System (CRS). CRS is a highly sensitive 94 GHz (W-band) pulsed-Doppler polarimetric radar that is designed to fly on board the NASA high-altitude ER-2 aircraft. The instrument is currently the only millimeter wave radar capable of cloud and precipitation measurements from above most all clouds. Because it operates from high-altitude, the CRS provides a unique measurement perspective for cirrus cloud studies. The CRS emulates a satellite view of clouds and precipitation systems thus providing valuable measurements for the implementation and algorithm validation for the upcoming NASA CloudSat mission that is designed to measure ice cloud distributions on the global scale using a spaceborne 94 GHz radar. This paper describes the CRS instrument and preliminary data from the recent Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE). The radar design is discussed. Characteristics of the radar are given. A block diagram illustrating functional components of the radar is shown. The performance of the CRS during the CRYSTAL-FACE campaign is discussed.

  4. Entangled Cloud Storage

    DEFF Research Database (Denmark)

    Ateniese, Giuseppe; Dagdelen, Özgür; Damgård, Ivan Bjerre

    2012-01-01

    Entangled cloud storage enables a set of clients {P_i} to “entangle” their files {f_i} into a single clew c to be stored by a (potentially malicious) cloud provider S. The entanglement makes it impossible to modify or delete significant part of the clew without affecting all files in c. A clew...... recover their files. We provide theoretical foundations for entangled cloud storage, introducing the notion of an entangled encoding scheme that guarantees strong security requirements capturing the properties above. We also give a concrete construction based on privacy-preserving polynomial interpolation......, along with protocols for using the encoding scheme in practice. Protocols for cloud storage find application in the cloud setting, where clients store their files on a remote server and need to be ensured that the cloud provider will not delete their data illegitimately. Current solutions, e.g., based...

  5. Encyclopedia of cloud computing

    CERN Document Server

    Bojanova, Irena

    2016-01-01

    The Encyclopedia of Cloud Computing provides IT professionals, educators, researchers and students with a compendium of cloud computing knowledge. Authored by a spectrum of subject matter experts in industry and academia, this unique publication, in a single volume, covers a wide range of cloud computing topics, including technological trends and developments, research opportunities, best practices, standards, and cloud adoption. Providing multiple perspectives, it also addresses questions that stakeholders might have in the context of development, operation, management, and use of clouds. Furthermore, it examines cloud computing's impact now and in the future. The encyclopedia presents 56 chapters logically organized into 10 sections. Each chapter covers a major topic/area with cross-references to other chapters and contains tables, illustrations, side-bars as appropriate. Furthermore, each chapter presents its summary at the beginning and backend material, references and additional resources for further i...

  6. Cloud Robotics Model

    Directory of Open Access Journals (Sweden)

    Gyula Mester

    2015-01-01

    Full Text Available Cloud Robotics was born from the merger of service robotics and cloud technologies. It allows robots to benefit from the powerful computational, storage, and communications resources of modern data centres. Cloud robotics allows robots to take advantage of the rapid increase in data transfer rates to offload tasks without hard real time requirements. Cloud Robotics has rapidly gained momentum with initiatives by companies such as Google, Willow Garage and Gostai as well as more than a dozen active research projects around the world. The presentation summarizes the main idea, the definition, the cloud model composed of essential characteristics, service models and deployment models, planning task execution and beyond. Finally some cloud robotics projects are discussed.

  7. Kiloparsec-Scale Simulations of Star Formation in Disk Galaxies II. Structure and Dynamics of Filaments and Clumps in Giant Molecular Clouds

    CERN Document Server

    Butler, Michael J; Van Loo, Sven

    2014-01-01

    We present hydrodynamic simulations of self-gravitating dense gas in a galactic disk, exploring scales ranging from 1 kpc down to $\\sim 0.1$~pc. Our primary goal is to understand how dense filaments form in Giant Molecular Clouds (GMCs). These structures, often observed as Infrared Dark Clouds (IRDCs) in the Galactic plane, are thought to be the precursors to massive stars and star clusters, so their formation may be the rate limiting step controlling global star formation rates in galactic systems as described by the Kennicutt-Schmidt relation. Our study follows on from Van Loo et al. (2013, Paper I), which carried out simulations to 0.5~pc resolution and examined global aspects of the formation of dense gas clumps and the resulting star formation rate. Here, using our higher resolution, we examine the detailed structural, kinematic and dynamical properties of dense filaments and clumps, including mass surface density ($\\Sigma$) probability distribution functions, filament mass per unit length and its disper...

  8. CLOUD Experiment - How it works -

    CERN Multimedia

    Jasper Kirkby

    2016-01-01

    A brief tour of the CLOUD experiment at CERN, and its scientific aims. CLOUD uses a special cloud chamber to study the possible link between galactic cosmic rays and cloud formation. The results should contribute much to our fundamental understanding of aerosols and clouds, and their affect on climate.

  9. Considerations for Cloud Security Operations

    OpenAIRE

    Cusick, James

    2016-01-01

    Information Security in Cloud Computing environments is explored. Cloud Computing is presented, security needs are discussed, and mitigation approaches are listed. Topics covered include Information Security, Cloud Computing, Private Cloud, Public Cloud, SaaS, PaaS, IaaS, ISO 27001, OWASP, Secure SDLC.

  10. Cryptographic Cloud Storage

    Science.gov (United States)

    Kamara, Seny; Lauter, Kristin

    We consider the problem of building a secure cloud storage service on top of a public cloud infrastructure where the service provider is not completely trusted by the customer. We describe, at a high level, several architectures that combine recent and non-standard cryptographic primitives in order to achieve our goal. We survey the benefits such an architecture would provide to both customers and service providers and give an overview of recent advances in cryptography motivated specifically by cloud storage.

  11. CLOUD COMPUTING SECURITY

    Directory of Open Access Journals (Sweden)

    DANISH JAMIL,

    2011-04-01

    Full Text Available It is no secret that cloud computing is becoming more and more popular today and is ever increasing inpopularity with large companies as they share valuable resources in a cost effective way. Due to this increasingdemand for more clouds there is an ever growing threat of security becoming a major issue. This paper shalllook at ways in which security threats can be a danger to cloud computing and how they can be avoided.

  12. Geodesics on Point Clouds

    OpenAIRE

    Hongchuan Yu; Zhang, Jian J.; Zheng Jiao

    2014-01-01

    We present a novel framework to compute geodesics on implicit surfaces and point clouds. Our framework consists of three parts, particle based approximate geodesics on implicit surfaces, Cartesian grid based approximate geodesics on point clouds, and geodesic correction. The first two parts can effectively generate approximate geodesics on implicit surfaces and point clouds, respectively. By introducing the geodesic curvature flow, the third part produces smooth and accurate geodesic solution...

  13. Cloud Detection with MATLAB

    OpenAIRE

    P. Shrivastava

    2013-01-01

    The accurate detection of clouds in satellite imagery is important in research and operational applications. Cloud cover influences the distribution of solar radiation reaching the ground where it is absorbed. Resulting fluxes of sensible and latent heat are critical to the accurate characterization of boundary layer behavior and mesoscale circulations that often lead to convective development. Therefore the spatial and temporal variation in cloud cover can greatly affect regional an...

  14. Core of Cloud Computing

    Directory of Open Access Journals (Sweden)

    Prof. C.P.Chandgude

    2017-04-01

    Full Text Available Advancement in computing facilities marks back from 1960’s with introduction of mainframes. Each of the computing has one or the other issues, so keeping this in mind cloud computing was introduced. Cloud computing has its roots in older technologies such as hardware virtualization, distributed computing, internet technologies, and autonomic computing. Cloud computing can be described with two models, one is service model and second is deployment model. While providing several services, cloud management’s primary role is resource provisioning. While there are several such benefits of cloud computing, there are challenges in adopting public clouds because of dependency on infrastructure that is shared by many enterprises. In this paper, we present core knowledge of cloud computing, highlighting its key concepts, deployment models, service models, benefits as well as security issues related to cloud data. The aim of this paper is to provide a better understanding of the cloud computing and to identify important research directions in this field

  15. CLOUD TECHNOLOGY IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Alexander N. Dukkardt

    2014-01-01

    Full Text Available This article is devoted to the review of main features of cloud computing that can be used in education. Particular attention is paid to those learning and supportive tasks, that can be greatly improved in the case of the using of cloud services. Several ways to implement this approach are proposed, based on widely accepted models of providing cloud services. Nevertheless, the authors have not ignored currently existing problems of cloud technologies , identifying the most dangerous risks and their impact on the core business processes of the university. 

  16. Cloud Computing: An Overview

    Science.gov (United States)

    Qian, Ling; Luo, Zhiguo; Du, Yujian; Guo, Leitao

    In order to support the maximum number of user and elastic service with the minimum resource, the Internet service provider invented the cloud computing. within a few years, emerging cloud computing has became the hottest technology. From the publication of core papers by Google since 2003 to the commercialization of Amazon EC2 in 2006, and to the service offering of AT&T Synaptic Hosting, the cloud computing has been evolved from internal IT system to public service, from cost-saving tools to revenue generator, and from ISP to telecom. This paper introduces the concept, history, pros and cons of cloud computing as well as the value chain and standardization effort.

  17. JINR cloud infrastructure evolution

    Science.gov (United States)

    Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.

    2016-09-01

    To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.

  18. MHD simulation of the formation of clumps and filaments in quiescent diffuse clouds by thermal instability

    CERN Document Server

    Wareing, C J; Falle, S A E G; Van Loo, S

    2016-01-01

    We have used the AMR hydrodynamic code, MG, to perform 3D MHD simulations of the formation of clumpy and filamentary structure in a thermally unstable medium. A stationary thermally unstable spherical diffuse cloud with uniform density in pressure equilibrium with low density surroundings was seeded with random density variations and allowed to evolve. A range of magnetic field strengths threading the cloud have been explored, from beta=0.1 to beta=1.0 to the zero magnetic field case (beta=infinity), where beta is the ratio of thermal pressure to magnetic pressure. Once the density inhomogeneities had developed to the point where gravity started to become important, self-gravity was introduced to the simulation. With no magnetic field, clumps form within the cloud with aspect ratios of around unity, whereas in the presence of a relatively strong field (beta=0.1) these become filaments, then evolve into interconnected corrugated sheets that are predominantly perpendicular to the magnetic field. With magnetic a...

  19. Multiple CO Outflows in Circinus The Churning of a Molecular Cloud

    CERN Document Server

    Bally, J; Lada, C J; Billawala, Y N; Bally, John; Reipurth, Bo; Lada, Charles J.; Billawala, Youssef

    1999-01-01

    We present a millimeter wave study of a cluster of bipolar CO outflows embedded in the western end of the Circinus molecular cloud complex, G317-4, that is traced by very high optical extinction. For an assumed distance of 700 pc, the entire Circinus cloud is estimated to have a mass of about 5E4 solar masses. The opaque western portion that was mapped in this study has a mass of about 10E3 solar masses, contains a number of embedded infrared sources and various compact 1.3 mm continuum sources, and has a remarkable filamentary structure with numerous cavities which appears to be the fossil remnants of past star formation activity. The profusion of outflows in this region are disentangled and linked to driving IRAS sources. Thus, the mapped portion of Circinus contains at least 10 CO emitting molecular outflows. Assuming that star formation has continued at a steady rate for the last several hundred thousand years, the Circinus cloud is expected to have produced dozens of young stars. Their outflows have seve...

  20. Effect of cold isostatic pressing on the transport current of filamentary MgB2 wire made by the IMD process

    Science.gov (United States)

    Kováč, P.; Hušek, I.; Pachla, W.; Melišek, T.; Kulich, M.; Rosová, A.; Kopera, L.

    2016-07-01

    This work describes the effect of cold isostatic pressing applied to as-drawn filamentary wires in a GlidCop and/or Cu sheath made by the internal magnesium diffusion process. Critical currents of as-drawn and isostatically pressed wires at high pressures up to 2.0 GPa followed by heat treatment at 640 °C for 40 min were measured. The obtained results show an improvement in boron powder density resulting in an increase of the critical current of MgB2 layers. The engineering current density increases by 4-13 times after the high-pressure treatment, and is influenced by the density of the boron powder and by the mechanical strength of the outer sheath.

  1. The influence of power and frequency on the filamentary behavior of a flowing DBD-application to the splitting of CO2

    CERN Document Server

    Ozkan, Alp; Silva, Tiago; Britun, Nikolay; Snyders, Rony; Bogaerts, Annemie; Reniers, François

    2016-01-01

    In this experimental study, a flowing dielectric barrier discharge operating at atmospheric pressure is used for the splitting of CO2 into O2 and CO. The influence of the applied frequency and plasma power on the microdischarge properties is investigated to understand their role on the CO2 conversion. Electrical measurements are carried out to explain the conversion trends and to characterize the microdischarges through their number, their lifetime, their intensity and the induced electrical charge. Their influence on the gas and electrode temperatures is also evidenced through optical emission spectroscopy and infrared imaging. It is shown that, in our configuration, the conversion depends mostly on the charge delivered in the plasma and not on the effective plasma voltage when the applied power is modified. Similarly, at constant total current, a better conversion is observed at low frequencies, where a less filamentary discharge regime with a higher effective plasma voltage than that at a higher frequency ...

  2. Mutual Inductance and Magnetic Force Calculations for Bitter Disk Coil (Pancake with Nonlinear Radial Current and Filamentary Circular Coil with Azimuthal Current

    Directory of Open Access Journals (Sweden)

    Slobodan Babic

    2016-01-01

    Full Text Available Bitter coils are electromagnets used for the generation of extremely strong magnetic fields superior to 30 T. In this paper we calculate the mutual inductance and the magnetic force between Bitter disk (pancake coil with the nonlinear radial current and the circular filamentary coil with the azimuthal current. The close form expressed over complete elliptic integrals of the first and second kind as well as Heuman’s Lambda function is obtained for this configuration either for the mutual inductance or for the magnetic force. The results of this method are compared with those obtained by the improved modified filament method for the presented configuration. All results are in an excellent agreement.

  3. Two New Theories for the Current Charge Relativity and the Electric Origin of the Magnetic Force Between Two Filamentary Current Elements

    CERN Document Server

    Shadid, Waseem G T

    2016-01-01

    This paper presents two new theories and a new current representation to explain the magnetic force between two filamentary current elements as a result of electric force interactions between current charges. The first theory states that a current has an electric charge relative to its moving observer. The second theory states that the magnetic force is an electric force in origin. The new current representation characterizes a current as equal amounts of positive and negative point charges moving in opposite directions at the speed of light. Previous work regarded electricity and magnetism as different aspects of the same subject. One effort was made by Johnson to unify the origin of electricity and magnetism, but this effort yielded a formula that is unequal to the well-known magnetic force law. The explanation provided for the magnetic force depends on three factors: 1) representing the electric current as charges moving at the speed of light, 2) considering the relative velocity between moving charges, an...

  4. A census of dense cores in the Taurus L1495 cloud from the Herschel Gould Belt Survey

    CERN Document Server

    Marsh, K A; Andre, Ph; Griffin, M J; Konyves, V; Palmeirim, P; Men'shchikov, A; Ward-Thompson, D; Benedettini, M; Bresnahan, D W; Di Francesco, J; Elia, D; Peretto, N; Pezzuto, S; Roy, A; Sadavoy, S; Schneider, N; Spinoglio, L; White, G J

    2016-01-01

    We present a catalogue of dense cores in a $\\sim 4^\\circ\\times2^\\circ$ field of the Taurus star-forming region, inclusive of the L1495 cloud, derived from Herschel SPIRE and PACS observations in the 70 $\\mu$m, 160 $\\mu$m, 250 $\\mu$m, 350 $\\mu$m, and 500 $\\mu$m continuum bands. Estimates of mean dust temperature and total mass are derived using modified blackbody fits to the spectral energy distributions. We detect 528 starless cores of which $\\sim10$-20% are gravitationally bound and therefore presumably prestellar. Our census of unbound objects is $\\sim85$% complete for $M>0.015\\,M_\\odot$ in low density regions ($A_V\\stackrel{0.1\\,M_\\odot$ overall. The prestellar core mass function (CMF) is consistent with lognormal form, resembling the stellar system initial mass function, as has been reported previously. All of the inferred prestellar cores lie on filamentary structures whose column densities exceed the expected threshold for filamentary collapse, in agreement with previous reports. Unlike the prestellar C...

  5. A cloud storage overlay to aggregate heterogeneous cloud services

    OpenAIRE

    Machado, Guilherme Sperb; Bocek, Thomas; Ammann, Michael; Stiller, Burkhard

    2013-01-01

    Many Cloud services provide generic (e.g., Amazon S3 or Dropbox) or data-specific Cloud storage (e.g., Google Picasa or SoundCloud). Although both Cloud storage service types have the data storage in common, they present heterogeneous characteristics: different interfaces, accounting and charging schemes, privacy and security levels, functionality and, among the data-specific Cloud storage services, different data type restrictions. This paper proposes PiCsMu (Platform-independent Cloud Stora...

  6. VMware vCloud security

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    VMware vCloud Security provides the reader with in depth knowledge and practical exercises sufficient to implement a secured private cloud using VMware vCloud Director and vCloud Networking and Security.This book is primarily for technical professionals with system administration and security administration skills with significant VMware vCloud experience who want to learn about advanced concepts of vCloud security and compliance.

  7. The California Molecular Cloud

    CERN Document Server

    Lada, Charles J; Alves, Joao F

    2009-01-01

    We present an analysis of wide-field infrared extinction maps of a region in Perseus just north of the Taurus-Auriga dark cloud complex. From this analysis we have identified a massive, nearby, but previously unrecognized, giant molecular cloud (GMC). From comparison of foreground star counts with Galactic models we derive a distance of 450 +/- 23 parsecs to the cloud. At this distance the cloud extends over roughly 80 pc and has a mass of approximately 10^5 solar masses, rivaling the Orion (A) Molecular Cloud as the largest and most massive GMC in the solar neighborhood. Although surprisingly similar in mass and size to the more famous Orion Molecular Cloud (OMC) the newly recognized cloud displays significantly less star formation activity with more than an order of magnitude fewer young stellar objects than found in the OMC, suggesting that both the level of star formation and perhaps the star formation rate in this cloud are an order of magnitude or more lower than in the OMC. Analysis of extinction maps ...

  8. On Cloud Nine

    Science.gov (United States)

    McCrea, Bridget; Weil, Marty

    2011-01-01

    Across the U.S., innovative collaboration practices are happening in the cloud: Sixth-graders participate in literary salons. Fourth-graders mentor kindergarteners. And teachers use virtual Post-it notes to advise students as they create their own television shows. In other words, cloud computing is no longer just used to manage administrative…

  9. Cloud speed sensor

    Directory of Open Access Journals (Sweden)

    V. Fung

    2013-10-01

    Full Text Available Changing cloud cover is a major source of solar radiation variability and poses challenges for the integration of solar energy. A compact and economical system that measures cloud motion vectors to estimate power plant ramp rates and provide short term solar irradiance forecasts is presented. The Cloud Speed Sensor (CSS is constructed using an array of luminance sensors and high-speed data acquisition to resolve the progression of cloud passages across the sensor footprint. An embedded microcontroller acquires the sensor data and uses a cross-correlation algorithm to determine cloud motion vectors. The CSS was validated against an artificial shading test apparatus, an alternative method of cloud motion detection from ground measured irradiance (Linear Cloud Edge, LCE, and a UC San Diego Sky Imager (USI. The CSS detected artificial shadow directions and speeds to within 15 and 6% accuracy, respectively. The CSS detected (real cloud directions and speeds without average bias and with average weighted root mean square difference of 22° and 1.9 m s−1 when compared to USI and 33° and 1.5 m s−1 when compared to LCE results.

  10. Clouds in Planetary Atmospheres

    Science.gov (United States)

    West, R.; Murdin, P.

    2000-11-01

    What are clouds? The answer to that question is both obvious and subtle. In the terrestrial atmosphere clouds are familiar as vast collections of small water drops or ice crystals suspended in the air. In the atmospheres of Venus, Mars, Jupiter, Saturn, Saturn's moon Titan, Uranus, Neptune, and possibly Pluto, they are composed of several other substances including sulfuric acid, ammonia, hydroge...

  11. Solar variability and clouds

    CERN Document Server

    Kirkby, Jasper

    2000-01-01

    Satellite observations have revealed a surprising imprint of the 11- year solar cycle on global low cloud cover. The cloud data suggest a correlation with the intensity of Galactic cosmic rays. If this apparent connection between cosmic rays and clouds is real, variations of the cosmic ray flux caused by long-term changes in the solar wind could have a significant influence on the global energy radiation budget and the climate. However a direct link between cosmic rays and clouds has not been unambiguously established and, moreover, the microphysical mechanism is poorly understood. New experiments are being planned to find out whether cosmic rays can affect cloud formation, and if so how. (37 refs).

  12. Cloud computing basics

    CERN Document Server

    Srinivasan, S

    2014-01-01

    Cloud Computing Basics covers the main aspects of this fast moving technology so that both practitioners and students will be able to understand cloud computing. The author highlights the key aspects of this technology that a potential user might want to investigate before deciding to adopt this service. This book explains how cloud services can be used to augment existing services such as storage, backup and recovery. Addressing the details on how cloud security works and what the users must be prepared for when they move their data to the cloud. Also this book discusses how businesses could prepare for compliance with the laws as well as industry standards such as the Payment Card Industry.

  13. Prebiotic chemistry in clouds

    Science.gov (United States)

    Oberbeck, Verne R.; Marshall, John; Shen, Thomas

    1991-01-01

    The chemical evolution hypothesis of Woese (1979), according to which prebiotic reactions occurred rapidly in droplets in giant atmospheric reflux columns was criticized by Scherer (1985). This paper proposes a mechanism for prebiotic chemistry in clouds that answers Scherer's concerns and supports Woese's hypothesis. According to this mechanism, rapid prebiotic chemical evolution was facilitated on the primordial earth by cycles of condensation and evaporation of cloud drops containing clay condensation nuclei and nonvolatile monomers. For example, amino acids supplied by, or synthesized during entry of meteorites, comets, and interplanetary dust, would have been scavenged by cloud drops containing clay condensation nuclei and would be polymerized within cloud systems during cycles of condensation, freezing, melting, and evaporation of cloud drops.

  14. Cloud Computing Quality

    Directory of Open Access Journals (Sweden)

    Anamaria Şiclovan

    2013-02-01

    Full Text Available

    Cloud computing was and it will be a new way of providing Internet services and computers. This calculation approach is based on many existing services, such as the Internet, grid computing, Web services. Cloud computing as a system aims to provide on demand services more acceptable as price and infrastructure. It is exactly the transition from computer to a service offered to the consumers as a product delivered online. This paper is meant to describe the quality of cloud computing services, analyzing the advantages and characteristics offered by it. It is a theoretical paper.

    Keywords: Cloud computing, QoS, quality of cloud computing

  15. Cloud computing security.

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.

    2010-10-01

    Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for both academia and government, including configuration options, hardware issues, challenges, and solutions.

  16. CLOUD COMPUTING AND SECURITY

    Directory of Open Access Journals (Sweden)

    Asharani Shinde

    2015-10-01

    Full Text Available This document gives an insight into Cloud Computing giving an overview of key features as well as the detail study of exact working of Cloud computing. Cloud Computing lets you access all your application and documents from anywhere in the world, freeing you from the confines of the desktop thus making it easier for group members in different locations to collaborate. Certainly cloud computing can bring about strategic, transformational and even revolutionary benefits fundamental to future enterprise computing but it also offers immediate and pragmatic opportunities to improve efficiencies today while cost effectively and systematically setting the stage for the strategic change. As this technology makes the computing, sharing, networking easy and interesting, we should think about the security and privacy of information too. Thus the key points we are going to be discussed are what is cloud, what are its key features, current applications, future status and the security issues and the possible solutions.

  17. Hierarchical star cluster assembly in globally collapsing molecular clouds

    Science.gov (United States)

    Vázquez-Semadeni, Enrique; González-Samaniego, Alejandro; Colín, Pedro

    2017-05-01

    We discuss the mechanism of cluster formation in a numerical simulation of a molecular cloud (MC) undergoing global hierarchical collapse, focusing on how the gas motions in the parent cloud control the assembly of the cluster. The global collapse implies that the star formation rate (SFR) increases over time. The collapse is hierarchical because it consists of small-scale collapses within larger scale ones. The latter culminate a few Myr later than the first small-scale ones and consist of filamentary flows that accrete on to massive central clumps. The small-scale collapses consist of clumps that are embedded in the filaments and falling on to the large-scale collapse centres. The stars formed in the early, small-scale collapses share the infall motion of their parent clumps, so that the filaments feed both gas and stars to the massive central clump. This process leads to the presence of a few older stars in a region where new protostars are forming, and also to a self-similar structure, in which each unit is composed of smaller scale subunits that approach each other and may merge. Because the older stars formed in the filaments share the infall motion of the gas on to the central clump, they tend to have larger velocities and to be distributed over larger areas than the younger stars formed in the central clump. Finally, interpreting the initial mass function (IMF) simply as a probability distribution implies that massive stars only form once the local SFR is large enough to sample the IMF up to high masses. In combination with the increase of the SFR, this implies that massive stars tend to appear late in the evolution of the MC, and only in the central massive clumps. We discuss the correspondence of these features with observed properties of young stellar clusters, finding very good qualitative agreement.

  18. Molecular Cloud Evolution

    CERN Document Server

    Vazquez-Semadeni, Enrique

    2010-01-01

    I describe the scenario of molecular cloud (MC) evolution that has emerged over the past decade or so. MCs can start out as cold atomic clouds formed by compressive motions in the warm neutral medium (WNM) of galaxies. Such motions can be driven by large-scale instabilities, or by local turbulence. The compressions induce a phase transition to the cold neutral medium (CNM) to form growing cold atomic clouds, which in their early stages may constitute thin CNM sheets. Several dynamical instabilities soon destabilize a cloud, rendering it turbulent. For solar neighborhood conditions, a cloud is coincidentally expected to become molecular, magnetically supercritical, and gravitationally dominated at roughly the same column density, $N \\sim 1.5 \\times 10^21 \\psc \\approx 10 \\Msun$ pc$^{-2}$. At this point, the cloud begins to contract gravitationally. However, before its global collapse is completed ($\\sim 10^7$ yr later), the nonlinear density fluctuations within the cloud, which have shorter local free-fall time...

  19. Interstellar molecular clouds

    Science.gov (United States)

    Bally, J.

    1986-04-01

    The physical properties of the molecular phase of the interstellar medium are studied with regard to star formation and the structure of the Galaxy. Most observations of molecular clouds are made with single-dish, high-surface precision radio telescopes, with the best resolution attainable at 0.2 to 1 arcmin; the smallest structures that can be resolved are of order 10 to the 17th cm in diameter. It is now believed that: (1) most of the mass of the Galaxy is in the form of giant molecular clouds; (2) the largest clouds and those responsible for most massive star formation are concentrated in spiral arms; (3) the molecular clouds are the sites of perpetual star formation, and are significant in the chemical evolution of the Galaxy; (4) giant molecular clouds determine the evolution of the kinematic properties of galactic disk stars; (5) the total gas content is diminishing with time; and (6) most clouds have supersonic internal motions and do not form stars on a free-fall time scale. It is concluded that though progress has been made, more advanced instruments are needed to inspect the processes operating within stellar nurseries and to study the distribution of the molecular clouds in more distant galaxies. Instruments presently under construction which are designed to meet these ends are presented.

  20. Cloud Computing Law

    CERN Document Server

    Millard, Christopher

    2013-01-01

    This book is about the legal implications of cloud computing. In essence, ‘the cloud’ is a way of delivering computing resources as a utility service via the internet. It is evolving very rapidly with substantial investments being made in infrastructure, platforms and applications, all delivered ‘as a service’. The demand for cloud resources is enormous, driven by such developments as the deployment on a vast scale of mobile apps and the rapid emergence of ‘Big Data’. Part I of this book explains what cloud computing is and how it works. Part II analyses contractual relationships between cloud service providers and their customers, as well as the complex roles of intermediaries. Drawing on primary research conducted by the Cloud Legal Project at Queen Mary University of London, cloud contracts are analysed in detail, including the appropriateness and enforceability of ‘take it or leave it’ terms of service, as well as the scope for negotiating cloud deals. Specific arrangements for public sect...

  1. Cloud Scheduler: a resource manager for distributed compute clouds

    CERN Document Server

    Armstrong, P; Bishop, A; Charbonneau, A; Desmarais, R; Fransham, K; Hill, N; Gable, I; Gaudet, S; Goliath, S; Impey, R; Leavett-Brown, C; Ouellete, J; Paterson, M; Pritchet, C; Penfold-Brown, D; Podaima, W; Schade, D; Sobie, R J

    2010-01-01

    The availability of Infrastructure-as-a-Service (IaaS) computing clouds gives researchers access to a large set of new resources for running complex scientific applications. However, exploiting cloud resources for large numbers of jobs requires significant effort and expertise. In order to make it simple and transparent for researchers to deploy their applications, we have developed a virtual machine resource manager (Cloud Scheduler) for distributed compute clouds. Cloud Scheduler boots and manages the user-customized virtual machines in response to a user's job submission. We describe the motivation and design of the Cloud Scheduler and present results on its use on both science and commercial clouds.

  2. Cloud Computing: A study of cloud architecture and its patterns

    Directory of Open Access Journals (Sweden)

    Mandeep Handa,

    2015-05-01

    Full Text Available Cloud computing is a general term for anything that involves delivering hosted services over the Internet. Cloud computing is a paradigm shift following the shift from mainframe to client–server in the early 1980s. Cloud computing can be defined as accessing third party software and services on web and paying as per usage. It facilitates scalability and virtualized resources over Internet as a service providing cost effective and scalable solution to customers. Cloud computing has evolved as a disruptive technology and picked up speed with the presence of many vendors in cloud computing space. The evolution of cloud computing from numerous technological approaches and business models such as SaaS, cluster computing, high performance computing, etc., signifies that the cloud IDM can be considered as a superset of all the corresponding issues from these paradigms and many more. In this paper we will discuss Life cycle management, Cloud architecture, Pattern in Cloud IDM, Volatility of Cloud relations.

  3. A cybernetics Social Cloud

    OpenAIRE

    Chang, V

    2015-01-01

    © 2015 Elsevier Inc. This paper proposes a Social Cloud, which presents the system design, development and analysis. The technology is based on the BOINC open source software, our hybrid Cloud, Facebook Graph API and our development in a new Facebook API, SocialMedia. The creation of SocialMedia API with its four functions can ensure a smooth delivery of Big Data processing in the Social Cloud, with four selected examples provided. The proposed solution is focused on processing the contacts w...

  4. Cloud Computing Services Accounting

    Directory of Open Access Journals (Sweden)

    Igor Ruiz-Agundez

    2012-06-01

    Full Text Available Cloud computing provides a new promising parading to offer services. It brings the opportunity to develop new business models in the Internet. Classic accounting solutions fail to full fill the new requirements of these services due to their structural design. To understand these new constrains, we study the different actors and processes that interact in the Internet Economics. Specifically, we focus on cloud computing introducing a methodology that allows the deployment of cloud services. Further, we present an Infrastructure as a Service (IaaS use case that applies the proposed system.

  5. Trusted cloud computing

    CERN Document Server

    Krcmar, Helmut; Rumpe, Bernhard

    2014-01-01

    This book documents the scientific results of the projects related to the Trusted Cloud Program, covering fundamental aspects of trust, security, and quality of service for cloud-based services and applications. These results aim to allow trustworthy IT applications in the cloud by providing a reliable and secure technical and legal framework. In this domain, business models, legislative circumstances, technical possibilities, and realizable security are closely interwoven and thus are addressed jointly. The book is organized in four parts on "Security and Privacy", "Software Engineering and

  6. Cloud computing basics for librarians.

    Science.gov (United States)

    Hoy, Matthew B

    2012-01-01

    "Cloud computing" is the name for the recent trend of moving software and computing resources to an online, shared-service model. This article briefly defines cloud computing, discusses different models, explores the advantages and disadvantages, and describes some of the ways cloud computing can be used in libraries. Examples of cloud services are included at the end of the article.

  7. Taxonomy of cloud computing services

    NARCIS (Netherlands)

    Hoefer, C.N.; Karagiannis, G.

    2010-01-01

    Cloud computing is a highly discussed topic, and many big players of the software industry are entering the development of cloud services. Several companies want to explore the possibilities and benefits of cloud computing, but with the amount of cloud computing services increasing quickly, the need

  8. Taxonomy of cloud computing services

    NARCIS (Netherlands)

    Hoefer, C.N.; Karagiannis, Georgios

    2010-01-01

    Cloud computing is a highly discussed topic, and many big players of the software industry are entering the development of cloud services. Several companies want to explore the possibilities and benefits of cloud computing, but with the amount of cloud computing services increasing quickly, the need

  9. IRAM 30 m large scale survey of {sup 12}CO(2-1) and {sup 13}CO(2-1) emission in the Orion molecular cloud

    Energy Technology Data Exchange (ETDEWEB)

    Berné, O.; Cernicharo, J. [Centro de Astrobiologá (CSIC/INTA), Ctra. de Torrejón a Ajalvir, km 4, E-28850, Torrejón de Ardoz, Madrid (Spain); Marcelino, N., E-mail: olivier.berne@irap.omp.eu [NRAO, 520 Edgemont Road, Charlottesville, VA 22902 (United States)

    2014-11-01

    Using the IRAM 30 m telescope, we have surveyed a 1 × 0.°8 part of the Orion molecular cloud in the {sup 12}CO and {sup 13}CO (2-1) lines with a maximal spatial resolution of ∼11'' and spectral resolution of ∼0.4 km s{sup –1}. The cloud appears filamentary, clumpy, and with a complex kinematical structure. We derive an estimated mass of the cloud of 7700 M {sub ☉} (half of which is found in regions with visual extinctions A{sub V} below ∼10) and a dynamical age for the nebula of the order of 0.2 Myr. The energy balance suggests that magnetic fields play an important role in supporting the cloud, at large and small scales. According to our analysis, the turbulent kinetic energy in the molecular gas due to outflows is comparable to turbulent kinetic energy resulting from the interaction of the cloud with the H II region. This latter feedback appears negative, i.e., the triggering of star formation by the H II region is inefficient in Orion. The reduced data as well as additional products such as the column density map are made available online (http://userpages.irap.omp.eu/∼oberne/Olivier{sub B}erne/Data).

  10. IRAM-30m large scale survey of $^{12}$CO(2-1) and $^{13}$CO(2-1) emission in the Orion molecular cloud

    CERN Document Server

    Berne, Olivier; Cernicharo, Jose

    2014-01-01

    Using the IRAM 30m telescope we have surveyed a $1\\times0.8^{\\circ}$ part of the Orion molecular cloud in the $^{12}$CO and $^{13}$CO (2-1) lines with a maximal spatial resolution of $\\sim$11" and spectral resolution of $\\sim$ 0.4 km~s$^{-1}$. The cloud appears filamentary, clumpy and with a complex kinematical structure. We derive an estimated mass of the cloud of 7700 M$_{\\text{Sun}}$ (half of which is found in regions with visual extinctions $A_V$ below $\\sim$10) and a dynamical age for the nebula of the order of 0.2 Myrs. The energy balance suggests that magnetic fields play an important role in supporting the cloud, at large and small scales. According to our analysis, the turbulent kinetic energy in the molecular gas due to outflows is comparable to turbulent kinetic energy resulting from the interaction of the cloud with the HII region. This latter feedback appears negative, i.e. the triggering of star formation by the HII region is inefficient in Orion. The reduced data as well as additional products ...

  11. Cloud Computing (2/2)

    CERN Document Server

    CERN. Geneva

    2012-01-01

    Cloud computing, the recent years buzzword for distributed computing, continues to attract and keep the interest of both the computing and business world. These lectures aim at explaining "What is Cloud Computing?" identifying and analyzing it's characteristics, models, and applications. The lectures will explore different "Cloud definitions" given by different authors and use them to introduce the particular concepts. The main cloud models (SaaS, PaaS, IaaS), cloud types (public, private, hybrid), cloud standards and security concerns will be presented. The borders between Cloud Computing and Grid Computing, Server Virtualization, Utility Computing will be discussed and analyzed.

  12. IBM SmartCloud essentials

    CERN Document Server

    Schouten, Edwin

    2013-01-01

    A practical, user-friendly guide that provides an introduction to cloud computing using IBM SmartCloud, along with a thorough understanding of resource management in a cloud environment.This book is great for anyone who wants to get a grasp of what cloud computing is and what IBM SmartCloud has to offer. If you are an IT specialist, IT architect, system administrator, or a developer who wants to thoroughly understand the cloud computing resource model, this book is ideal for you. No prior knowledge of cloud computing is expected.

  13. Cloud Computing (1/2)

    CERN Document Server

    CERN. Geneva

    2012-01-01

    Cloud computing, the recent years buzzword for distributed computing, continues to attract and keep the interest of both the computing and business world. These lectures aim at explaining "What is Cloud Computing?" identifying and analyzing it's characteristics, models, and applications. The lectures will explore different "Cloud definitions" given by different authors and use them to introduce the particular concepts. The main cloud models (SaaS, PaaS, IaaS), cloud types (public, private, hybrid), cloud standards and security concerns will be presented. The borders between Cloud Computing and Grid Computing, Server Virtualization, Utility Computing will be discussed and analyzed.

  14. Security Architecture of Cloud Computing

    Directory of Open Access Journals (Sweden)

    V.KRISHNA REDDY

    2011-09-01

    Full Text Available The Cloud Computing offers service over internet with dynamically scalable resources. Cloud Computing services provides benefits to the users in terms of cost and ease of use. Cloud Computing services need to address the security during the transmission of sensitive data and critical applications to shared and public cloud environments. The cloud environments are scaling large for data processing and storage needs. Cloud computing environment have various advantages as well as disadvantages on the data security of service consumers. This paper aims to emphasize the main security issues existing in cloud computing environments. The security issues at various levels of cloud computing environment is identified in this paper and categorized based on cloud computing architecture. This paper focuses on the usage of Cloud services and security issues to build these cross-domain Internet-connected collaborations.

  15. Reconfigurable Martian Data Cloud

    Science.gov (United States)

    Sheldon, D. J.; Moeller, R. C.; Pingree, P.; Lay, N.; Reeves, G.

    2012-06-01

    The objective is to develop a constellation of small satellites in orbit around Mars that would provide a highly scalable and dynamically allocatable high performance computing resource. Key is use of Field Programmable Gate Arrays for the cloud.

  16. Cloud Computing For Microfinances

    CERN Document Server

    V, Suma; M, Vaidehi; Nair, T R Gopalakrishnan

    2012-01-01

    Evolution of Science and Engineering has led to the growth of several commercial applications. The wide spread implementation of commercial based applications has in turn directed the emergence of advanced technologies such as cloud computing. India has well proven itself as a potential hub for advanced technologies including cloud based industrial market. Microfinance system has emerged out as a panacea to Indian economy since the population encompasses of people who come under poverty and below poverty index. However, one of the key challenges in successful operation of microfinance system in India has given rise to integration of financial services using sophisticated cloud computing model. This paper, therefore propose a fundamental cloud-based microfinance model in order to reduce high transaction risks involved during microfinance operations in an inexpensive and efficient manner.

  17. Green symbiotic cloud communications

    CERN Document Server

    Mustafa, H D; Desai, Uday B; Baveja, Brij Mohan

    2017-01-01

    This book intends to change the perception of modern day telecommunications. Communication systems, usually perceived as “dumb pipes”, carrying information / data from one point to another, are evolved into intelligently communicating smart systems. The book introduces a new field of cloud communications. The concept, theory, and architecture of this new field of cloud communications are discussed. The book lays down nine design postulates that form the basis of the development of a first of its kind cloud communication paradigm entitled Green Symbiotic Cloud Communications or GSCC. The proposed design postulates are formulated in a generic way to form the backbone for development of systems and technologies of the future. The book can be used to develop courses that serve as an essential part of graduate curriculum in computer science and electrical engineering. Such courses can be independent or part of high-level research courses. The book will also be of interest to a wide range of readers including b...

  18. Entangled Cloud Storage

    DEFF Research Database (Denmark)

    Ateniese, Giuseppe; Dagdelen, Özgür; Damgård, Ivan Bjerre

    2012-01-01

    Entangled cloud storage enables a set of clients {P_i} to “entangle” their files {f_i} into a single clew c to be stored by a (potentially malicious) cloud provider S. The entanglement makes it impossible to modify or delete significant part of the clew without affecting all files in c. A clew...... keeps the files in it private but still lets each client P_i recover his own data by interacting with S; no cooperation from other clients is needed. At the same time, the cloud provider is discouraged from altering or overwriting any significant part of c as this will imply that none of the clients can...... recover their files. We provide theoretical foundations for entangled cloud storage, introducing the notion of an entangled encoding scheme that guarantees strong security requirements capturing the properties above. We also give a concrete construction based on privacy-preserving polynomial interpolation...

  19. CloudETL

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Thomsen, Christian; Pedersen, Torben Bach

    2014-01-01

    Extract-Transform-Load (ETL) programs process data into data warehouses (DWs). Rapidly growing data volumes demand systems that scale out. Recently, much attention has been given to MapReduce for parallel handling of massive data sets in cloud environments. Hive is the most widely used RDBMS...... the powerful Pig platform for data processing on MapReduce does not support such dimensional ETL processing. To remedy this, we present the ETL framework CloudETL which uses Hadoop to parallelize ETL execution and to process data into Hive. The user defines the ETL process by means of high-level constructs...... and transformations and does not have to worry about technical MapReduce details. CloudETL supports different dimensional concepts such as star schemas and SCDs. We present how CloudETL works and uses different performance optimizations including a purpose-specific data placement policy to co-locate data. Further, we...

  20. The performances of proto-type Ni/MH secondary batteries using Zr-based hydrogen storage alloys and filamentary type Ni

    Science.gov (United States)

    Lee, Sang-Min; Lee, Ho; Kim, Jin-Ho; Lee, Paul S.; Lee, Jai-Young

    2001-04-01

    For the purpose of developing a Zr-based Laves phase alloy with higher capacity and better performance for electrochemical application, extensive work has been carried out. After careful alloy design of ZrMn2-based hydrogen storage alloys through varying their stoichiometry by means of substituting or adding alloying elements, the Zr0.9Ti0.1(Mn0.7V0.5Ni1.4)0.92 with high capacity (392 mAh/g at the 0.25C) and improved performance (comparable to that of commercialized AB5 type alloy) was developed. Another endeavor was made to improve the poor activation property and the low rate capability of the developed Zr-based Laves phase alloy for commercialization. The combination method of hot-immersion and slow-charging was introduced. It was found that electrode activation was greatly improved after hot immersion at 80°C for 12h followed by charging at 0.05C. The effects of this method are discussed in comparison with other activation methods. The combination method was successfully applied to the formation process of 80 Ah Ni/MH cells. A series of systematic investigations has been rendered to analyze the inner cell pressure characteristics of a sealed type Ni-MH battery. It was found that the increase of inner cell pressure in the sealed type Ni/MH battery of the above-mentioned Zr-Ti-Mn-V-Ni alloy was mainly due to the accumulation of oxygen gas during charge/discharge cycling. The fact identified that the surface catalytic activity was affected more dominantly by the oxygen recombination reaction than the reaction surface area was also identified. In order to improve the surface catalytic activity of a Zr-Ti-Mn-V-Ni alloy, which is closely related to the inner pressure behavior in a sealed cell, the electrode was fabricated by mixing the alloy with Cu powder and a filamentary type of Ni and replacing 75% of the carbon black with them; thus, the inner cell pressure rarely increases with cycles due to the active gas recombination reaction. Measurements of the surface

  1. Cloud Forensics Issues

    Science.gov (United States)

    2014-07-01

    Cloud Computing , Forensics , IT Security, Standards, Monitoring, Virtualization. I. INTRODUCTION LOUD computing has come to mean many different...an efficient re-allocation of resources. VI. ACCOUNTABILITY, MONITORING AND FORENSICS The goal of computer forensics is to perform a structured...away from the concept of cloud computing [12 - 14]. We believe, however, that a precise statement of the high assurance and forensics requirements

  2. Marine Cloud Brightening

    Energy Technology Data Exchange (ETDEWEB)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  3. Toward Cloud Computing Evolution

    OpenAIRE

    Susanto, Heru; Almunawar, Mohammad Nabil; Kang, Chen Chin

    2012-01-01

    -Information Technology (IT) shaped the success of organizations, giving them a solid foundation that increases both their level of efficiency as well as productivity. The computing industry is witnessing a paradigm shift in the way computing is performed worldwide. There is a growing awareness among consumers and enterprises to access their IT resources extensively through a "utility" model known as "cloud computing." Cloud computing was initially rooted in distributed grid-based computing. ...

  4. Marine cloud brightening.

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-09-13

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  5. Underestimation of Oceanic Warm Cloud Occurrences by the Cloud Profiling Radar Aboard CloudSat

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The Cloud Profi ling Radar (CPR) onboard CloudSat is an active sensor specifi cally dedicated to cloud detection. Compared to passive remote sensors, CPR plays a unique role in investigating the occurrence of multi-layer clouds and depicting the internal vertical structure of clouds. However, owing to contamination from ground clutter, CPR refl ectivity signals are invalid in the lowest 1 km above the surface, leading to numerous missed detections of warm clouds. In this study, by using 1-yr CPR and MODIS (Moderate Resolution Imaging Spectroradiometer) synchronous data, those CPR-missed oceanic warm clouds that are identifi ed as cloudy by MODIS are examined. It is demonstrated that CPR severely underestimates the occurrence of oceanic warm clouds, with a global-average miss rate of about 0.43. Over the tropical and subtropical oceans, the CPR-missed clouds tend to occur in regions with relatively low sea surface temperature. CPR misses almost all warm clouds with cloud tops lower than 1 km, and the miss rate reduces with increasing cloud top. As for clouds with cloud tops higher than 2 km, the negative bias of CPR-captured warm cloud occurrence falls below 3%. The cloud top height of CPR-missed warm clouds ranges from 0.6 to 1.2 km, and these clouds mostly have evidently small optical depths and droplet eff ective radii. The vertically integrated cloud liquid water content of CPR-missed warm clouds is smaller than 50 g m−2 . It is also revealed that CPR misses some warm clouds that have small optical depths or small droplet sizes, besides those limited in the boundary layer below about 1 km due to ground clutter.

  6. CLOUD COMPUTING TECHNOLOGY TRENDS

    Directory of Open Access Journals (Sweden)

    Cristian IVANUS

    2014-05-01

    Full Text Available Cloud computing has been a tremendous innovation, through which applications became available online, accessible through an Internet connection and using any computing device (computer, smartphone or tablet. According to one of the most recent studies conducted in 2012 by Everest Group and Cloud Connect, 57% of companies said they already use SaaS application (Software as a Service, and 38% reported using standard tools PaaS (Platform as a Service. However, in the most cases, the users of these solutions highlighted the fact that one of the main obstacles in the development of this technology is the fact that, in cloud, the application is not available without an Internet connection. The new challenge of the cloud system has become now the offline, specifically accessing SaaS applications without being connected to the Internet. This topic is directly related to user productivity within companies as productivity growth is one of the key promises of cloud computing system applications transformation. The aim of this paper is the presentation of some important aspects related to the offline cloud system and regulatory trends in the European Union (EU.

  7. An approach to identify the optimal cloud in cloud federation

    Directory of Open Access Journals (Sweden)

    Saumitra Baleshwar Govil

    2012-01-01

    Full Text Available Enterprises are migrating towards cloud computing for their ability to provide agility, robustness and feasibility in operations. To increase the reliability and availability of services, clouds have grown into federated clouds i.e., union of clouds. There are still major issues in federated clouds, which when solved could lead to increased satisfaction to both service providers and clients alike. One such issue is to select the optimal foreign cloud amongst the federation, which provides services according to the client requirements. In this paper, we propose a model to select the optimal cloud service provider based on the capability and performance of the available clouds in the federation. We use two matrix models to obtain the capability and performance parametric values. They are matched with the client requirements and the optimal foreign cloud service provider is selected.

  8. Bayesian Exploration of Cloud Microphysical Sensitivities in Mesoscale Cloud Systems

    Science.gov (United States)

    Posselt, D. J.

    2015-12-01

    It is well known that changes in cloud microphysical processes can have a significant effect on the structure and evolution of cloud systems. In particular, changes in water phase and the associated energy sources and sinks have a direct influence on cloud mass and precipitation, and an indirect effect on cloud system thermodynamic properties and dynamics. The details of cloud particle nucleation and growth, as well as the interactions among vapor, liquid, and ice phases, occur on scales too small to be explicitly simulated in the vast majority of numerical models. These processes are represented by approximations that introduce uncertainty into the simulation of cloud mass and spatial distribution and by extension the simulation of the cloud system itself. This presentation demonstrates how Bayesian methodologies can be used to explore the relationships between cloud microphysics and cloud content, precipitation, dynamics, and radiative transfer. Specifically, a Markov chain Monte Carlo algorithm is used to compute the probability distribution of cloud microphysical parameters consistent with particular mesoscale environments. Two different physical systems are considered. The first example explores the multivariate functional relationships between precipitation, cloud microphysics, and the environment in a deep convective cloud system. The second examines how changes in cloud microphysical parameters may affect orographic cloud structure, precipitation, and dynamics. In each case, the Bayesian framework can be shown to provide unique information on the inter-dependencies present in the physical system.

  9. The Musca cloud: A 6 pc-long velocity-coherent, sonic filament

    Science.gov (United States)

    Hacar, A.; Kainulainen, J.; Tafalla, M.; Beuther, H.; Alves, J.

    2016-03-01

    Filaments play a central role in the molecular clouds' evolution, but their internal dynamical properties remain poorly characterized. To further explore the physical state of these structures, we have investigated the kinematic properties of the Musca cloud. We have sampled the main axis of this filamentary cloud in 13CO and C18O (2-1) lines using APEX observations. The different line profiles in Musca shows that this cloud presents a continuous and quiescent velocity field along its ~6.5 pc of length. With an internal gas kinematics dominated by thermal motions (i.e. σNT/cs ≲ 1) and large-scale velocity gradients, these results reveal Musca as the longest velocity-coherent, sonic-like object identified so far in the interstellar medium. The transonic properties of Musca present a clear departure from the predicted supersonic velocity dispersions expected in the Larson's velocity dispersion-size relationship, and constitute the first observational evidence of a filament fully decoupled from the turbulent regime over multi-parsec scales. This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut fuer Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory (ESO programme 087.C-0583).The reduced datacubes as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A97

  10. Cloud networking understanding cloud-based data center networks

    CERN Document Server

    Lee, Gary

    2014-01-01

    Cloud Networking: Understanding Cloud-Based Data Center Networks explains the evolution of established networking technologies into distributed, cloud-based networks. Starting with an overview of cloud technologies, the book explains how cloud data center networks leverage distributed systems for network virtualization, storage networking, and software-defined networking. The author offers insider perspective to key components that make a cloud network possible such as switch fabric technology and data center networking standards. The final chapters look ahead to developments in architectures

  11. Non-linear dense core formation in the dark cloud L1517

    Science.gov (United States)

    Heigl, S.; Burkert, A.; Hacar, A.

    2016-09-01

    We present a solution for the observed core fragmentation of filaments in the Taurus L1517 dark cloud which previously could not be explained (Hacar & Tafalla 2011). Core fragmentation is a vital step for the formation of stars. Observations suggest a connection to the filamentary structure of the cloud gas, but it remains unclear which process is responsible. We show that the gravitational instability process of an infinite, isothermal cylinder can account for the exhibited fragmentation under the assumption that the perturbation grows on the dominant wavelength. We use numerical simulations with the code RAMSES, estimate observed column densities and line-of-sight velocities, and compare them to the observations. A critical factor for the observed fragmentation is that cores grow by redistributing mass within the filament and thus the density between the cores decreases over the fragmentation process. This often leads to wrong dominant wavelength estimates, as it is strongly dependent on the initial central density. We argue that non-linear effects also play an important role on the evolution of the fragmentation. Once the density perturbation grows above the critical line-mass, non-linearity leads to an enhancement of the central core density in comparison to the analytical prediction. Choosing the correct initial conditions with perturbation strengths of around 20%, leads to inclination corrected line-of-sight velocities and central core densities within the observational measurement error in a realistic evolution time.

  12. Planck intermediate results. XXXVIII. $E$- and $B$-modes of dust polarization from the magnetized filamentary structure of the interstellar medium

    CERN Document Server

    Ade, P A R; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartolo, N; Battaner, E; Benabed, K; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bracco, A; Burigana, C; Calabrese, E; Cardoso, J -F; Catalano, A; Chamballu, A; Chary, R -R; Chiang, H C; Christensen, P R; Colombo, L P L; Combet, C; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dunkley, J; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Falgarone, E; Ferrière, K; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frolov, A; Galeotta, S; Galli, S; Ganga, K; Ghosh, T; Giard, M; Gjerløw, E; González-Nuevo, J; Górski, K M; Gruppuso, A; Guillet, V; Hansen, F K; Harrison, D L; Helou, G; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hornstrup, A; Hovest, W; Huang, Z; Huffenberger, K M; Hurier, G; Jaffe, T R; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; León-Tavares, J; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Maino, D; Mandolesi, N; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; McGehee, P; Melchiorri, A; Mennella, A; Migliaccio, M; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Novikov, D; Novikov, I; Oppermann, N; Oxborrow, C A; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Perdereau, O; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Pratt, G W; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Serra, P; Soler, J D; Stolyarov, V; Sudiwala, R; Sunyaev, R; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; Yvon, D; Zacchei, A; Zonca, A

    2015-01-01

    The quest for a $B$-mode imprint from primordial gravity waves on the polarization of the cosmic microwave background (CMB) requires the characterization of foreground polarization from Galactic dust. We present a statistical study of the filamentary structure of the $353\\,$GHz Planck Stokes maps at high Galactic latitude, relevant to the study of dust emission as a polarized foreground to the CMB. We filter the intensity and polarization maps to isolate filaments in the range of angular scales where the power asymmetry between $E$-modes and $B$-modes is observed. Using the Smoothed Hessian Major Axis Filament Finder, we identify 259 filaments at high Galactic latitude, with lengths larger or equal to $2$\\deg\\ (corresponding to $3.5\\,$pc in length for a typical distance of $100\\,$pc). These filaments show a preferred orientation parallel to the magnetic field projected onto the plane of the sky, derived from their polarization angles. We present mean maps of the filaments in Stokes $I$, $Q$, $U$, $E$, and $B$...

  13. Excisional keratectomy combined with focal cryotherapy and amniotic membrane inlay for recalcitrant filamentary fungal keratitis: A retrospective comparative clinical data analysis.

    Science.gov (United States)

    Chen, Yingxin; Gao, Minghong; Duncan, Joshua K; Ran, Di; Roe, Denise J; Belin, Michael W; Wang, Mingwu

    2016-11-01

    The aim of the present study was to investigate the efficacy of a novel surgical intervention, excisional keratectomy combined with focal cryotherapy and amniotic membrane inlay (EKCAI), for the treatment of recalcitrant filamentary fungal keratitis. A retrospective analysis was performed of patients who underwent excisional keratectomy combined with conjunctival flap inlay (EKCFI), EKCAI or therapeutic penetrating keratoplasty (TPK) from January 2006 to January 2011. Recalcitrance was determined as being unresponsive to standard medical antifungal therapy for at ≥1 week. Outcome measures among the three intervention modalities were compared. A total of 128 patients had a follow-up of ≥1 year after the primary intervention. The success rates of interventions at 1-year follow-up were 58.33% in the EKCFI group, 88.37% in the EKCAI group and 93.44% in the TPK group (P<0.0002). The preoperative visual acuity of the three groups were similar (P=0.6458), while the postoperative best-corrected visual acuity (BCVA) of patients without recurrence was significantly different among the three groups 3 months after surgery. The best postoperative BCVA was found in the TPK group, while the worst was in the EKCFI group. In conclusion, EKCAI does not require donor cornea, is straightforward surgically, and has a favorable success rate compared with EKCFI.

  14. Excisional keratectomy combined with focal cryotherapy and amniotic membrane inlay for recalcitrant filamentary fungal keratitis: A retrospective comparative clinical data analysis

    Science.gov (United States)

    Chen, Yingxin; Gao, Minghong; Duncan, Joshua K.; Ran, Di; Roe, Denise J.; Belin, Michael W.; Wang, Mingwu

    2016-01-01

    The aim of the present study was to investigate the efficacy of a novel surgical intervention, excisional keratectomy combined with focal cryotherapy and amniotic membrane inlay (EKCAI), for the treatment of recalcitrant filamentary fungal keratitis. A retrospective analysis was performed of patients who underwent excisional keratectomy combined with conjunctival flap inlay (EKCFI), EKCAI or therapeutic penetrating keratoplasty (TPK) from January 2006 to January 2011. Recalcitrance was determined as being unresponsive to standard medical antifungal therapy for at ≥1 week. Outcome measures among the three intervention modalities were compared. A total of 128 patients had a follow-up of ≥1 year after the primary intervention. The success rates of interventions at 1-year follow-up were 58.33% in the EKCFI group, 88.37% in the EKCAI group and 93.44% in the TPK group (P<0.0002). The preoperative visual acuity of the three groups were similar (P=0.6458), while the postoperative best-corrected visual acuity (BCVA) of patients without recurrence was significantly different among the three groups 3 months after surgery. The best postoperative BCVA was found in the TPK group, while the worst was in the EKCFI group. In conclusion, EKCAI does not require donor cornea, is straightforward surgically, and has a favorable success rate compared with EKCFI. PMID:27882109

  15. Security Problems in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Rola Motawie

    2016-12-01

    Full Text Available Cloud is a pool of computing resources which are distributed among cloud users. Cloud computing has many benefits like scalability, flexibility, cost savings, reliability, maintenance and mobile accessibility. Since cloud-computing technology is growing day by day, it comes with many security problems. Securing the data in the cloud environment is most critical challenges which act as a barrier when implementing the cloud. There are many new concepts that cloud introduces, such as resource sharing, multi-tenancy, and outsourcing, create new challenges for the security community. In this work, we provide a comparable study of cloud computing privacy and security concerns. We identify and classify known security threats, cloud vulnerabilities, and attacks.

  16. Marine cloud brightening

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action

  17. Trust management in cloud services

    CERN Document Server

    Noor, Talal H; Bouguettaya, Athman

    2014-01-01

    This book describes the design and implementation of Cloud Armor, a novel approach for credibility-based trust management and automatic discovery of cloud services in distributed and highly dynamic environments. This book also helps cloud users to understand the difficulties of establishing trust in cloud computing and the best criteria for selecting a service cloud. The techniques have been validated by a prototype system implementation and experimental studies using a collection of real world trust feedbacks on cloud services.The authors present the design and implementation of a novel pro

  18. Microphysics of Pyrocumulonimbus Clouds

    Science.gov (United States)

    Jensen, Eric; Ackerman, Andrew S.; Fridlind, Ann

    2004-01-01

    The intense heat from forest fires can generate explosive deep convective cloud systems that inject pollutants to high altitudes. Both satellite and high-altitude aircraft measurements have documented cases in which these pyrocumulonimbus clouds inject large amounts of smoke well into the stratosphere (Fromm and Servranckx 2003; Jost et al. 2004). This smoke can remain in the stratosphere, be transported large distances, and affect lower stratospheric chemistry. In addition recent in situ measurements in pyrocumulus updrafts have shown that the high concentrations of smoke particles have significant impacts on cloud microphysical properties. Very high droplet number densities result in delayed precipitation and may enhance lightning (Andrew et al. 2004). Presumably, the smoke particles will also lead to changes in the properties of anvil cirrus produces by the deep convection, with resulting influences on cloud radiative forcing. In situ sampling near the tops of mature pyrocumulonimbus is difficult due to the high altitude and violence of the storms. In this study, we use large eddy simulations (LES) with size-resolved microphysics to elucidate physical processes in pyrocumulonimbus clouds.

  19. Microphysics of Pyrocumulonimbus Clouds

    Science.gov (United States)

    Jensen, Eric; Ackerman, Andrew S.; Fridlind, Ann

    2004-01-01

    The intense heat from forest fires can generate explosive deep convective cloud systems that inject pollutants to high altitudes. Both satellite and high-altitude aircraft measurements have documented cases in which these pyrocumulonimbus clouds inject large amounts of smoke well into the stratosphere (Fromm and Servranckx 2003; Jost et al. 2004). This smoke can remain in the stratosphere, be transported large distances, and affect lower stratospheric chemistry. In addition recent in situ measurements in pyrocumulus updrafts have shown that the high concentrations of smoke particles have significant impacts on cloud microphysical properties. Very high droplet number densities result in delayed precipitation and may enhance lightning (Andrew et al. 2004). Presumably, the smoke particles will also lead to changes in the properties of anvil cirrus produces by the deep convection, with resulting influences on cloud radiative forcing. In situ sampling near the tops of mature pyrocumulonimbus is difficult due to the high altitude and violence of the storms. In this study, we use large eddy simulations (LES) with size-resolved microphysics to elucidate physical processes in pyrocumulonimbus clouds.

  20. The Serpens Molecular Cloud

    CERN Document Server

    Eiroa, C; Casali, M M

    2008-01-01

    The Serpens cloud has received considerable attention in the last years, in particular the small region known as the Serpens cloud core where a plethora of star formation related phenomena are found. This review summarizes our current observational knowledge of the cloud, with emphasis on the core. Recent results are converging to a distance for the cloud of ~ 230 +- 20 pc, an issue which has been controversial over the years. We present the gas and dust properties of the cloud core and describe its structure and appearance at different wavelengths. The core contains a dense, very young, low mass stellar cluster with more than 300 objects in all evolutionary phases, from collapsing gaseous condensations to pre-main sequence stars. We describe the behaviour and spatial distribution of the different stellar populations (mm cores, Classes 0, I and II sources). The spatial concentration and the fraction number of Class 0/Class I/Class II sources is considerably larger in the Serpens core than in any other low mas...

  1. Moving HammerCloud to CERN's private cloud

    CERN Document Server

    Barrand, Quentin

    2013-01-01

    HammerCloud is a testing framework for the Worldwide LHC Computing Grid. Currently deployed on about 20 hand-managed machines, it was desirable to move it to the Agile Infrastructure, CERN's OpenStack-based private cloud.

  2. Cloud processing of soluble gases

    Science.gov (United States)

    Laj, P.; Fuzzi, S.; Facchini, M. C.; Lind, J. A.; Orsi, G.; Preiss, M.; Maser, R.; Jaeschke, W.; Seyffer, E.; Helas, G.; Acker, K.; Wieprecht, W.; Möller, D.; Arends, B. G.; Mols, J. J.; Colvile, R. N.; Gallagher, M. W.; Beswick, K. M.; Hargreaves, K. J.; Storeton-West, R. L.; Sutton, M. A.

    Experimental data from the Great Dun Fell Cloud Experiment 1993 were used to investigate interactions between soluble gases and cloud droplets. Concentrations of H 2O 2, SO 2, CH 3COOOH, HCOOH, and HCHO were monitored at different sites within and downwind of a hill cap cloud and their temporal and spatial evolution during several cloud events was investigated. Significant differences were found between in-cloud and out-of-cloud concentrations, most of which could not be explained by simple dissolution into cloud droplets. Concentration patterns were analysed in relation to the chemistry of cloud droplets and the gas/liquid equilibrium. Soluble gases do not undergo similar behaviour: CH 3COOH simply dissolves in the aqueous phase and is outgassed upon cloud dissipation; instead, SO 2 is consumed by its reaction with H 2O 2. The behaviour of HCOOH is more complex because there is evidence for in-cloud chemical production. The formation of HCOOH interferes with the odd hydrogen cycle by enhancing the liquid-phase production of H 2O 2. The H 2O 2 concentration in cloud therefore results from the balance of consumption by oxidation of SO 2 in-cloud production, and the rate by which it is supplied to the system by entrainment of new air into the clouds.

  3. Reconstruction of cloud geometry using a scanning cloud radar

    Science.gov (United States)

    Ewald, F.; Winkler, C.; Zinner, T.

    2015-06-01

    Clouds are one of the main reasons of uncertainties in the forecasts of weather and climate. In part, this is due to limitations of remote sensing of cloud microphysics. Present approaches often use passive spectral measurements for the remote sensing of cloud microphysical parameters. Large uncertainties are introduced by three-dimensional (3-D) radiative transfer effects and cloud inhomogeneities. Such effects are largely caused by unknown orientation of cloud sides or by shadowed areas on the cloud. Passive ground-based remote sensing of cloud properties at high spatial resolution could be crucially improved with this kind of additional knowledge of cloud geometry. To this end, a method for the accurate reconstruction of 3-D cloud geometry from cloud radar measurements is developed in this work. Using a radar simulator and simulated passive measurements of model clouds based on a large eddy simulation (LES), the effects of different radar scan resolutions and varying interpolation methods are evaluated. In reality, a trade-off between scan resolution and scan duration has to be found as clouds change quickly. A reasonable choice is a scan resolution of 1 to 2°. The most suitable interpolation procedure identified is the barycentric interpolation method. The 3-D reconstruction method is demonstrated using radar scans of convective cloud cases with the Munich miraMACS, a 35 GHz scanning cloud radar. As a successful proof of concept, camera imagery collected at the radar location is reproduced for the observed cloud cases via 3-D volume reconstruction and 3-D radiative transfer simulation. Data sets provided by the presented reconstruction method will aid passive spectral ground-based measurements of cloud sides to retrieve microphysical parameters.

  4. Ash cloud aviation advisories

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Ellis, J.S. [Lawrence Livermore National Lab., CA (United States); Schalk, W.W.; Nasstrom, J.S. [EG and G, Inc., Pleasanton, CA (United States)

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  5. Cloud Based Applications and Platforms (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  6. Modeling the Cloud: Methodology for Cloud Computing Strategy and Design

    Science.gov (United States)

    2011-05-17

    Opportunities 4How can you determine which, if any, cloud computing technologies and services are suitable for the company? 4How does cloud technology differ...with existing service types, in terms of functions and characteristics? 4How can cloud technology support current and new service or application

  7. Multi-Cloud Application Design through Cloud Service Composition

    OpenAIRE

    Kyriakos Kritikos; Dimitris Plexousakis

    2015-01-01

    A paper that proposes a cloud service composition approach able to optimally compose different types of cloud services by simultaneously satisfying various types of user requirements. Its novel approach in handling these types, which are not concurrently supported by any cloud design tool, include quality, deployment, security, placement and cost requirements.

  8. Storm and cloud dynamics

    CERN Document Server

    Cotton, William R

    1992-01-01

    This book focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models.Key Features* Key Highlight

  9. Cloud Computing Strategy

    Science.gov (United States)

    2012-07-01

    delivery and integrated  DevOps .  This test and development cloud  environment will enable applications and services to run in a distributed environment...reducing  time to deliver content to clients.        This cloud development and test environment will:  " DevOps " is an emerging set of principles

  10. Opaque cloud detection

    Science.gov (United States)

    Roskovensky, John K [Albuquerque, NM

    2009-01-20

    A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.

  11. Transition to the Cloud

    DEFF Research Database (Denmark)

    Hedman, Jonas; Xiao, Xiao

    2016-01-01

    companies operate. In this paper, we present a case study of an ERP vendor for SMB (small and mediumsize business) in making a transition towards a cloud-based business model. Through the theoretical lens of ecosystem, we are able to analyze the evolution of the vendor and its business network as a whole......The rising of cloud computing has dramatically changed the way software companies provide and distribute their IT product and related services over the last decades. Today, most software is bought offthe-shelf and distributed over the Internet. This transition is greatly influencing how software...

  12. Securing virtual and cloud environments

    CSIR Research Space (South Africa)

    Carroll, M

    2012-01-01

    Full Text Available targets such as reduced costs, scalability, flexibility, capacity utilisation, higher efficiencies and mobility. Many of these benefits are achieved through the utilisation of technologies such as cloud computing and virtualisation. In many instances cloud...

  13. Security Dynamics of Cloud Computing

    OpenAIRE

    Khaled M. Khan

    2009-01-01

    This paper explores various dimensions of cloud computing security. It argues that security concerns of cloud computing need to be addressed from the perspective of individual stakeholder. Security focuses of cloud computing are essentially different in terms of its characteristics and business model. Conventional way of viewing as well as addressing security such as ‘bolting-in’ on the top of cloud computing may not work well. The paper attempts to portray the security spectrum necessary for...

  14. Cloud services, networking, and management

    CERN Document Server

    da Fonseca, Nelson L S

    2015-01-01

    Cloud Services, Networking and Management provides a comprehensive overview of the cloud infrastructure and services, as well as their underlying management mechanisms, including data center virtualization and networking, cloud security and reliability, big data analytics, scientific and commercial applications. Special features of the book include: State-of-the-art content. Self-contained chapters for readers with specific interests. Includes commercial applications on Cloud (video services and games).

  15. Simulator Of A "Weather" Cloud

    OpenAIRE

    Khramenkova, Ksenia; Hermant, Olivier; Pawlak, Renaud

    2012-01-01

    International audience; In this article a cloud simulator for the "weather" cloud is considered. The purpose of such a simulator is evaluating different cloud architectures and algorithms before implementation. The main idea is to analyze the performance beforehand, in order to avoid unsuitable algorithms being implemented in a real cloud. Two methods of request allocation policies to the nodes are considered. Their behavior in terms of interaction with nodes' cachememory is compared. Finally...

  16. Agent-Based Cloud Computing

    OpenAIRE

    Sim, Kwang Mong

    2012-01-01

    Agent-based cloud computing is concerned with the design and development of software agents for bolstering cloud service\\ud discovery, service negotiation, and service composition. The significance of this work is introducing an agent-based paradigm for\\ud constructing software tools and testbeds for cloud resource management. The novel contributions of this work include: 1) developing\\ud Cloudle: an agent-based search engine for cloud service discovery, 2) showing that agent-based negotiatio...

  17. Understanding and monitoring cloud services

    NARCIS (Netherlands)

    Drago, Idilio

    2013-01-01

    Cloud services have changed the way computing power is delivered to customers. The advantages of the cloud model have fast resulted in powerful providers. However, this success has not come without problems. Cloud providers have been related to major failures, including outages and performance degra

  18. A View from the Clouds

    Science.gov (United States)

    Chudnov, Daniel

    2010-01-01

    Cloud computing is definitely a thing now, but it's not new and it's not even novel. Back when people were first learning about the Internet in the 1990s, every diagram that one saw showing how the Internet worked had a big cloud in the middle. That cloud represented the diverse links, routers, gateways, and protocols that passed traffic around in…

  19. Research on cloud computing solutions

    Directory of Open Access Journals (Sweden)

    Liudvikas Kaklauskas

    2015-07-01

    Full Text Available Cloud computing can be defined as a new style of computing in which dynamically scala-ble and often virtualized resources are provided as a services over the Internet. Advantages of the cloud computing technology include cost savings, high availability, and easy scalability. Voas and Zhang adapted six phases of computing paradigms, from dummy termi-nals/mainframes, to PCs, networking computing, to grid and cloud computing. There are four types of cloud computing: public cloud, private cloud, hybrid cloud and community. The most common and well-known deployment model is Public Cloud. A Private Cloud is suited for sensitive data, where the customer is dependent on a certain degree of security.According to the different types of services offered, cloud computing can be considered to consist of three layers (services models: IaaS (infrastructure as a service, PaaS (platform as a service, SaaS (software as a service. Main cloud computing solutions: web applications, data hosting, virtualization, database clusters and terminal services. The advantage of cloud com-puting is the ability to virtualize and share resources among different applications with the objective for better server utilization and without a clustering solution, a service may fail at the moment the server crashes.DOI: 10.15181/csat.v2i2.914

  20. The Basics of Cloud Computing

    Science.gov (United States)

    Kaestner, Rich

    2012-01-01

    Most school business officials have heard the term "cloud computing" bandied about and may have some idea of what the term means. In fact, they likely already leverage a cloud-computing solution somewhere within their district. But what does cloud computing really mean? This brief article puts a bit of definition behind the term and helps one…

  1. Understanding and Monitoring Cloud Services

    NARCIS (Netherlands)

    Drago, Idilio

    2013-01-01

    Cloud services have changed the way computing power is delivered to customers. The advantages of the cloud model have fast resulted in powerful providers. However, this success has not come without problems. Cloud providers have been related to major failures, including outages and performance

  2. Trusting Privacy in the Cloud

    NARCIS (Netherlands)

    Prüfer, J.O.

    2014-01-01

    Cloud computing technologies have the potential to increase innovation and economic growth considerably. But many users worry that data in the cloud can be accessed by others, thereby damaging the data owner. Consequently, they do not use cloud technologies up to the efficient level. I design an ins

  3. The Basics of Cloud Computing

    Science.gov (United States)

    Kaestner, Rich

    2012-01-01

    Most school business officials have heard the term "cloud computing" bandied about and may have some idea of what the term means. In fact, they likely already leverage a cloud-computing solution somewhere within their district. But what does cloud computing really mean? This brief article puts a bit of definition behind the term and helps one…

  4. iCloud standard guide

    CERN Document Server

    Alfi, Fauzan

    2013-01-01

    An easy-to-use guide, filled with tutorials that will teach you how to set up and use iCloud, and profit from all of its marvellous features.This book is for anyone with basic knowledge of computers and mobile operations. Prior knowledge of cloud computing or iCloud is not expected.

  5. Securing the Cloud Cloud Computer Security Techniques and Tactics

    CERN Document Server

    Winkler, Vic (JR)

    2011-01-01

    As companies turn to cloud computing technology to streamline and save money, security is a fundamental concern. Loss of certain control and lack of trust make this transition difficult unless you know how to handle it. Securing the Cloud discusses making the move to the cloud while securing your peice of it! The cloud offers felxibility, adaptability, scalability, and in the case of security-resilience. This book details the strengths and weaknesses of securing your company's information with different cloud approaches. Attacks can focus on your infrastructure, communications network, data, o

  6. Cloud water chemistry and the production of sulfates in clouds

    Science.gov (United States)

    Hegg, D. A.; Hobbs, P. V.

    1981-01-01

    Measurements are presented of the pH and ionic content of water collected in clouds over western Washington and the Los Angeles Basin. Evidence for sulfate production in some of the clouds is presented. Not all of the sulfur in the cloud water was in the form of sulfate. However, the measurements indicate that the production of sulfate in clouds is of considerable significance in the atmosphere. Comparison of field measurements with model results show reasonable agreement and suggest that the production of sulfate in cloud water is a consequence of more than one conversion mechanism.

  7. VMware private cloud computing with vCloud director

    CERN Document Server

    Gallagher, Simon

    2013-01-01

    It's All About Delivering Service with vCloud Director Empowered by virtualization, companies are not just moving into the cloud, they're moving into private clouds for greater security, flexibility, and cost savings. However, this move involves more than just infrastructure. It also represents a different business model and a new way to provide services. In this detailed book, VMware vExpert Simon Gallagher makes sense of private cloud computing for IT administrators. From basic cloud theory and strategies for adoption to practical implementation, he covers all the issues. You'll lea

  8. Benchmarking personal cloud storage

    NARCIS (Netherlands)

    Drago, Idilio; Bocchi, Enrico; Mellia, Marco; Slatman, Herman; Pras, Aiko

    2013-01-01

    Personal cloud storage services are data-intensive applications already producing a significant share of Internet traffic. Several solutions offered by different companies attract more and more people. However, little is known about each service capabilities, architecture and - most of all - perform

  9. High-velocity clouds

    NARCIS (Netherlands)

    Wakker, BP; vanWoerden, H

    1997-01-01

    High-velocity clouds (HVCs) consist of neutral hydrogen (HI) at velocities incompatible with a simple model of differential galactic rotation; in practice one uses \\v(LSR)\\ greater than or equal to 90 km/s to define HVCs. This review describes the main features of the sky and velocity distributions,

  10. Seeding the Cloud

    Science.gov (United States)

    Schaffhauser, Dian

    2013-01-01

    For any institution looking to shift enterprise resource planning (ERP) systems to the cloud, big savings can be achieved--but only if the school has properly prepped "before" negotiations begin. These three steps can help: (1) Mop up the mess first; (2) Understand the true costs for services; and (3) Calculate the cost of transition.

  11. CLOUD COMPUTING SECURITY ISSUES

    Directory of Open Access Journals (Sweden)

    Florin OGIGAU-NEAMTIU

    2012-01-01

    Full Text Available The term “cloud computing” has been in the spotlights of IT specialists the last years because of its potential to transform this industry. The promised benefits have determined companies to invest great sums of money in researching and developing this domain and great steps have been made towards implementing this technology. Managers have traditionally viewed IT as difficult and expensive and the promise of cloud computing leads many to think that IT will now be easy and cheap. The reality is that cloud computing has simplified some technical aspects of building computer systems, but the myriad challenges facing IT environment still remain. Organizations which consider adopting cloud based services must also understand the many major problems of information policy, including issues of privacy, security, reliability, access, and regulation. The goal of this article is to identify the main security issues and to draw the attention of both decision makers and users to the potential risks of moving data into “the cloud”.

  12. Multiscale Cloud System Modeling

    Science.gov (United States)

    Tao, Wei-Kuo; Moncrieff, Mitchell W.

    2009-01-01

    The central theme of this paper is to describe how cloud system resolving models (CRMs) of grid spacing approximately 1 km have been applied to various important problems in atmospheric science across a wide range of spatial and temporal scales and how these applications relate to other modeling approaches. A long-standing problem concerns the representation of organized precipitating convective cloud systems in weather and climate models. Since CRMs resolve the mesoscale to large scales of motion (i.e., 10 km to global) they explicitly address the cloud system problem. By explicitly representing organized convection, CRMs bypass restrictive assumptions associated with convective parameterization such as the scale gap between cumulus and large-scale motion. Dynamical models provide insight into the physical mechanisms involved with scale interaction and convective organization. Multiscale CRMs simulate convective cloud systems in computational domains up to global and have been applied in place of contemporary convective parameterizations in global models. Multiscale CRMs pose a new challenge for model validation, which is met in an integrated approach involving CRMs, operational prediction systems, observational measurements, and dynamical models in a new international project: the Year of Tropical Convection, which has an emphasis on organized tropical convection and its global effects.

  13. Resilient Diffusive Clouds

    Science.gov (United States)

    2017-02-01

    were not available on any single platform . For example, Intel processors provided virtualization and protection support for guest operating systems (VT...diversified virtual machines. The concepts lead to a view of cloud computing in which vulnerabilities are different at every host, attackers cannot...Ideas ... . ... ... . .. ..... ..... . ... . . .... . ......... . ........................ . .. . ....... . ....... .. 5 3.2.2 Utility Virtual

  14. Password authentication in cloud

    Directory of Open Access Journals (Sweden)

    Indal Singh

    2015-09-01

    Full Text Available Cloud computing is an Internet-based computing, whereby shared resources, software, and information are provided to computers and other devices on demand. However, adopting a cloud computing paradigm may have positive as well as negative effects on the data security of service consumers [1]. Cloud Computing is a term used to describe both a platform and type of application. As a platform it supplies, configures and reconfigures servers, while the servers can be physical machines or virtual machines. On the other hand, Cloud Computing describes applications that are extended to be accessible through the internet and for this purpose large data centers and powerful servers are used to host the web applications and web services. Authentication is one the most important security primitive [6]. Password authentication is most widely used authentication mechanism. Password provides security mechanism for authentication and protection services against unwanted access to resource. In this paper, we applied a technique to preserve our password using graphical authentication.

  15. Computing in the Clouds

    Science.gov (United States)

    Johnson, Doug

    2010-01-01

    Web-based applications offer teachers, students, and school districts a convenient way to accomplish a wide range of tasks, from accounting to word processing, for free. Cloud computing has the potential to offer staff and students better services at a lower cost than the technology deployment models they're using now. Saving money and improving…

  16. Towards autonomous vehicular clouds

    Directory of Open Access Journals (Sweden)

    Stephan Olariu

    2011-09-01

    Full Text Available The dawn of the 21st century has seen a growing interest in vehicular networking and its myriad potential applications. The initial view of practitioners and researchers was that radio-equipped vehicles could keep the drivers informed about potential safety risks and increase their awareness of road conditions. The view then expanded to include access to the Internet and associated services. This position paper proposes and promotes a novel and more comprehensive vision namely, that advances in vehicular networks, embedded devices and cloud computing will enable the formation of autonomous clouds of vehicular computing, communication, sensing, power and physical resources. Hence, we coin the term, autonomous vehicular clouds (AVCs. A key feature distinguishing AVCs from conventional cloud computing is that mobile AVC resources can be pooled dynamically to serve authorized users and to enable autonomy in real-time service sharing and management on terrestrial, aerial, or aquatic pathways or theaters of operations. In addition to general-purpose AVCs, we also envision the emergence of specialized AVCs such as mobile analytics laboratories. Furthermore, we envision that the integration of AVCs with ubiquitous smart infrastructures including intelligent transportation systems, smart cities and smart electric power grids will have an enormous societal impact enabling ubiquitous utility cyber-physical services at the right place, right time and with right-sized resources.

  17. AIRS-CloudSat cloud mask, radar reflectivities, and cloud classification matchups V3.2

    Data.gov (United States)

    National Aeronautics and Space Administration — This is AIRS-CloudSat collocated subset, in NetCDF 4 format. These data contain collocated: AIRS Level 1b radiances spectra, CloudSat radar reflectivities, and MODIS...

  18. Cloud database development and management

    CERN Document Server

    Chao, Lee

    2013-01-01

    Nowadays, cloud computing is almost everywhere. However, one can hardly find a textbook that utilizes cloud computing for teaching database and application development. This cloud-based database development book teaches both the theory and practice with step-by-step instructions and examples. This book helps readers to set up a cloud computing environment for teaching and learning database systems. The book will cover adequate conceptual content for students and IT professionals to gain necessary knowledge and hands-on skills to set up cloud based database systems.

  19. Security for cloud storage systems

    CERN Document Server

    Yang, Kan

    2014-01-01

    Cloud storage is an important service of cloud computing, which offers service for data owners to host their data in the cloud. This new paradigm of data hosting and data access services introduces two major security concerns. The first is the protection of data integrity. Data owners may not fully trust the cloud server and worry that data stored in the cloud could be corrupted or even removed. The second is data access control. Data owners may worry that some dishonest servers provide data access to users that are not permitted for profit gain and thus they can no longer rely on the servers

  20. The Molecular Cloud S242: Physical Environment and Star-formation Activities

    Science.gov (United States)

    Dewangan, L. K.; Baug, T.; Ojha, D. K.; Janardhan, P.; Devaraj, R.; Luna, A.

    2017-08-01

    We present a multi-wavelength study to probe the star-formation (SF) processes on a larger scale (˜ 1\\buildrel{\\circ}\\over{.} 05× 0\\buildrel{\\circ}\\over{.} 56) around the S242 site. The S242 molecular cloud is depicted in a velocity range from -3.25 to 4.55 km s-1 and has a spatially elongated appearance. Based on the virial analysis, the cloud is prone to gravitational collapse. The cloud harbors an elongated filamentary structure (EFS; length ˜25 pc), which is evident in the Herschel column density map, and the EFS has an observed mass per unit length of ˜200 {M}⊙ pc-1, exceeding the critical value of ˜16 {M}⊙ pc-1 (at T = 10 K). The EFS contains a chain of Herschel clumps (M clump ˜ 150-1020 {M}⊙ ), revealing the evidence of fragmentation along its length. The most massive clumps are observed at both the EFS ends, while the S242 H ii region is located at one EFS end. Based on the radio continuum maps at 1.28 and 1.4 GHz, the S242 H ii region is ionized by a B0.5V-B0V type star and has a dynamical age of ˜0.5 Myr. The photometric 1-5 μm data analysis of point-like sources traces young stellar objects (YSOs) toward the EFS and the clusters of YSOs are exclusively found at both the EFS ends, revealing the SF activities. Considering the spatial presence of massive clumps and YSO clusters at both the EFS ends, the observed results are consistent with the prediction of an SF scenario of the end-dominated collapse driven by the higher acceleration of gas.

  1. LOAD MANAGEMENT IN CLOUD ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Esha Sarkar

    2014-09-01

    Full Text Available Cloud computing is an on demand service in which shared resources, information, software and other devices are provided to the end user as per their requirement at a specific time. A cloud consists of several elements such as clients, datacenters and distributed servers. There are n number of clients and end users involved in cloud environment. These clients may make requests to the cloud system simultaneously, making it difficult for the cloud to manage the entire load at a time. The load can be CPU load, memory load, delay or network load. This might cause inconvenience to the clients as there may be delay in the response time or it might affect the performance and efficiency of the cloud environment. So, the concept of load balancing is very important in cloud computing to improve the efficiency of the cloud. Good load balancing makes cloud computing more efficient and improves user satisfaction. This paper gives an approach to balance the incoming load in cloud environment by making partitions of the public cloud

  2. Aircraft measurements of wave cloud

    Directory of Open Access Journals (Sweden)

    Z. Cui

    2012-05-01

    Full Text Available In this paper, aircraft measurements are presented of liquid phase (ice-free wave clouds made at temperatures greater than −5 °C that formed over Scotland, UK. The horizontal variations of the vertical velocity across wave clouds display a distinct pattern. The maximum updraughts occur at the upshear flanks of the clouds and the strong downdraughts at the downshear flanks. The cloud droplet concentrations were a couple of hundreds per cubic centimetres, and the drops generally had a mean diameter between 15–45 μm. A small proportion of the drops were drizzle. A new definition of a mountain-wave cloud is given, based on the measurements presented here and previous studies. The results in this paper provide a case for future numerical simulation of wave cloud and the interaction between wave and clouds.

  3. Research Agenda in Cloud Technologies

    CERN Document Server

    Sriram, Ilango

    2010-01-01

    Cloud computing is the latest effort in delivering computing resources as a service. It represents a shift away from computing as a product that is purchased, to computing as a service that is delivered to consumers over the internet from large-scale data centres - or "clouds". Whilst cloud computing is gaining growing popularity in the IT industry, academia appeared to be lagging behind the rapid developments in this field. This paper is the first systematic review of peer-reviewed academic research published in this field, and aims to provide an overview of the swiftly developing advances in the technical foundations of cloud computing and their research efforts. Structured along the technical aspects on the cloud agenda, we discuss lessons from related technologies; advances in the introduction of protocols, interfaces, and standards; techniques for modelling and building clouds; and new use-cases arising through cloud computing.

  4. Lean computing for the cloud

    CERN Document Server

    Bauer, Eric

    2016-01-01

    Applies lean manufacturing principles across the cloud service delivery chain to enable application and infrastructure service providers to sustainably achieve the shortest lead time, best quality, and value This book focuses on lean in the context of cloud computing capacity management of applications and the physical and virtual cloud resources that support them. Lean Computing for the Cloud considers business, architectural and operational aspects of efficiently delivering valuable services to end users via cloud-based applications hosted on shared cloud infrastructure. The work also focuses on overall optimization of the service delivery chain to enable both application service and infrastructure service providers to adopt leaner, demand driven operations to serve end users more efficiently. The book’s early chapters analyze how capacity management morphs with cloud computing into interlocked physical infrastructure capacity management, virtual resou ce capacity management, and application capacity ma...

  5. Cloud Computing Utility and Applications

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar Tiwari

    2011-12-01

    Full Text Available Cloud Architecture provides services on demand basis via internet (WWW services. Application design in cloud computing environment or the applications which support cloud paradigm are on demand on the basis of user requirement. Those applications provide the support on various hardware, software and other resource requirement on demand. API used in the cloud computing provide the greater advantage to provide industrial strength, where the complex reliability and scalability logic of the underlying services remains implemented and hidden in the cloud environment. Cloud Computing provide the highest utilization in terms of utilization, resource sharing, requirement gathering and utility to the other needful resources. In this paper we discuss several utility and their applications. We provide a broad discussion which is useful for cloud computing research.

  6. Jupiter Clouds in Depth

    Science.gov (United States)

    2000-01-01

    [figure removed for brevity, see original site] 619 nm [figure removed for brevity, see original site] 727 nm [figure removed for brevity, see original site] 890 nmImages from NASA's Cassini spacecraft using three different filters reveal cloud structures and movements at different depths in the atmosphere around Jupiter's south pole.Cassini's cameras come equipped with filters that sample three wavelengths where methane gas absorbs light. These are in the red at 619 nanometer (nm) wavelength and in the near-infrared at 727 nm and 890 nm. Absorption in the 619 nm filter is weak. It is stronger in the 727 nm band and very strong in the 890 nm band where 90 percent of the light is absorbed by methane gas. Light in the weakest band can penetrate the deepest into Jupiter's atmosphere. It is sensitive to the amount of cloud and haze down to the pressure of the water cloud, which lies at a depth where pressure is about 6 times the atmospheric pressure at sea level on the Earth). Light in the strongest methane band is absorbed at high altitude and is sensitive only to the ammonia cloud level and higher (pressures less than about one-half of Earth's atmospheric pressure) and the middle methane band is sensitive to the ammonia and ammonium hydrosulfide cloud layers as deep as two times Earth's atmospheric pressure.The images shown here demonstrate the power of these filters in studies of cloud stratigraphy. The images cover latitudes from about 15 degrees north at the top down to the southern polar region at the bottom. The left and middle images are ratios, the image in the methane filter divided by the image at a nearby wavelength outside the methane band. Using ratios emphasizes where contrast is due to methane absorption and not to other factors, such as the absorptive properties of the cloud particles, which influence contrast at all wavelengths.The most prominent feature seen in all three filters is the polar stratospheric haze that makes Jupiter bright near the pole

  7. Cloud and Cloud Shadow Masking Using Multi-Temporal Cloud Masking Algorithm in Tropical Environmental

    Science.gov (United States)

    Candra, D. S.; Phinn, S.; Scarth, P.

    2016-06-01

    A cloud masking approach based on multi-temporal satellite images is proposed. The basic idea of this approach is to detect cloud and cloud shadow by using the difference reflectance values between clear pixels and cloud and cloud shadow contaminated pixels. Several bands of satellite image which have big difference values are selected for developing Multi-temporal Cloud Masking (MCM) algorithm. Some experimental analyses are conducted by using Landsat-8 images. Band 3 and band 4 are selected because they can distinguish between cloud and non cloud. Afterwards, band 5 and band 6 are used to distinguish between cloud shadow and clear. The results show that the MCM algorithm can detect cloud and cloud shadow appropriately. Moreover, qualitative and quantitative assessments are conducted using visual inspections and confusion matrix, respectively, to evaluate the reliability of this algorithm. Comparison between this algorithm and QA band are conducted to prove the reliability of the approach. The results show that MCM better than QA band and the accuracy of the results are very high.

  8. The Clouds of Isidore

    Science.gov (United States)

    2002-01-01

    These views of Hurricane Isidore were acquired by the Multi-angle Imaging SpectroRadiometer (MISR) on September 20, 2002. After bringing large-scale flooding to western Cuba, Isidore was upgraded (on September 21) from a tropical storm to a category 3hurricane. Sweeping westward to Mexico's Yucatan Peninsula, the hurricane caused major destruction and left hundreds of thousands of people homeless. Although weakened after passing over the Yucatan landmass, Isidore regained strength as it moved northward over the Gulf of Mexico.At left is a colorful visualization of cloud extent that superimposes MISR's radiometric camera-by-camera cloud mask (RCCM) over natural-color radiance imagery, both derived from data acquired with the instrument's vertical-viewing (nadir) camera. Using brightness and statistical metrics, the RCCM is one of several techniques MISR uses to determine whether an area is clear or cloudy. In this rendition, the RCCM has been color-coded, and purple = cloudy with high confidence, blue = cloudy with low confidence, green = clear with low confidence, and red = clear with high confidence.In addition to providing information on meteorological events, MISR's data products are designed to help improve our understanding of the influences of clouds on climate. Cloud heights and albedos are among the variables that govern these influences. (Albedo is the amount of sunlight reflected back to space divided by the amount of incident sunlight.) The center panel is the cloud-top height field retrieved using automated stereoscopic processing of data from multiple MISR cameras. Areas where heights could not be retrieved are shown in dark gray. In some areas, such as the southern portion of the image, the stereo retrieval was able to detect thin, high clouds that were not picked up by the RCCM's nadir view. Retrieved local albedo values for Isidore are shown at right. Generation of the albedo product is dependent upon observed cloud radiances as a function of

  9. Point clouds in BIM

    Science.gov (United States)

    Antova, Gergana; Kunchev, Ivan; Mickrenska-Cherneva, Christina

    2016-10-01

    The representation of physical buildings in Building Information Models (BIM) has been a subject of research since four decades in the fields of Construction Informatics and GeoInformatics. The early digital representations of buildings mainly appeared as 3D drawings constructed by CAD software, and the 3D representation of the buildings was only geometric, while semantics and topology were out of modelling focus. On the other hand, less detailed building representations, with often focus on ‘outside’ representations were also found in form of 2D /2,5D GeoInformation models. Point clouds from 3D laser scanning data give a full and exact representation of the building geometry. The article presents different aspects and the benefits of using point clouds in BIM in the different stages of a lifecycle of a building.

  10. IBM Cloud Computing Powering a Smarter Planet

    Science.gov (United States)

    Zhu, Jinzy; Fang, Xing; Guo, Zhe; Niu, Meng Hua; Cao, Fan; Yue, Shuang; Liu, Qin Yu

    With increasing need for intelligent systems supporting the world's businesses, Cloud Computing has emerged as a dominant trend to provide a dynamic infrastructure to make such intelligence possible. The article introduced how to build a smarter planet with cloud computing technology. First, it introduced why we need cloud, and the evolution of cloud technology. Secondly, it analyzed the value of cloud computing and how to apply cloud technology. Finally, it predicted the future of cloud in the smarter planet.

  11. Ion Cloud Modeling

    Science.gov (United States)

    1977-11-11

    detailed examination of the photographic image of the Spruce neutral cloud at 20 seconds after release. Technology International Corporation kindly...seconds after release as recorded on film record #71715. (Original densitometer tracing courtesy of W. Boquist, Technology International Corporation.) 29...C., and R. N. Bybee , "Secede H Chemical Payloads," RADC-TR-71-232, pp. 1-21, Thiokol Chemical Corporation, Ogden, Utah, 84402, June 1971. 6. Boquist

  12. Positron clouds within thunderstorms

    CERN Document Server

    Dwyer, Joseph R; Hazelton, Bryna J; Grefenstette, Brian W; Kelley, Nicole A; Lowell, Alexander W; Schaal, Meagan M; Rassoul, Hamid K

    2015-01-01

    We report the observation of two isolated clouds of positrons inside an active thunderstorm. These observations were made by the Airborne Detector for Energetic Lightning Emissions (ADELE), an array of six gamma-ray detectors, which flew on a Gulfstream V jet aircraft through the top of an active thunderstorm in August 2009. ADELE recorded two 511 keV gamma-ray count rate enhancements, 35 seconds apart, each lasting approximately 0.2 seconds. The enhancements, which were about a factor of 12 above background, were both accompanied by electrical activity as measured by a flat-plate antenna on the underside of the aircraft. The energy spectra were consistent with a source mostly composed of positron annihilation gamma rays, with a prominent 511 keV line clearly visible in the data. Model fits to the data suggest that the aircraft was briefly immersed in clouds of positrons, more than a kilometer across. It is not clear how the positron clouds were created within the thunderstorm, but it is possible they were ca...

  13. Clouds over Mars!

    Science.gov (United States)

    1997-01-01

    This is the first color image ever taken from the surface of Mars of an overcast sky. Featured are pink stratus clouds coming from the northeast at about 15 miles per hour (6.7 meters/second) at an approximate height of ten miles (16 kilometers) above the surface. The clouds consist of water ice condensed on reddish dust particles suspended in the atmosphere. Clouds on Mars are sometimes localized and can sometimes cover entire regions, but have not yet been observed to cover the entire planet. The image was taken about an hour and forty minutes before sunrise by the Imager for Mars Pathfinder (IMP) on Sol 16 at about ten degrees up from the eastern Martian horizon.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  14. Icebergs in the Clouds: the Other Risks of Cloud Computing

    CERN Document Server

    Ford, Bryan

    2012-01-01

    Cloud computing is appealing from management and efficiency perspectives, but brings risks both known and unknown. Well-known and hotly-debated information security risks, due to software vulnerabilities, insider attacks, and side-channels for example, may be only the "tip of the iceberg." As diverse, independently developed cloud services share ever more fluidly and aggressively multiplexed hardware resource pools, unpredictable interactions between load-balancing and other reactive mechanisms could lead to dynamic instabilities or "meltdowns." Non-transparent layering structures, where alternative cloud services may appear independent but share deep, hidden resource dependencies, may create unexpected and potentially catastrophic failure correlations, reminiscent of financial industry crashes. Finally, cloud computing exacerbates already-difficult digital preservation challenges, because only the provider of a cloud-based application or service has the ability to archive a "live," functional copy of a cloud...

  15. ATLAS Cloud R&D

    Science.gov (United States)

    Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration

    2014-06-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  16. Cloud Computing Security: A Survey

    Directory of Open Access Journals (Sweden)

    Issa M. Khalil

    2014-02-01

    Full Text Available Cloud computing is an emerging technology paradigm that migrates current technological and computing concepts into utility-like solutions similar to electricity and water systems. Clouds bring out a wide range of benefits including configurable computing resources, economic savings, and service flexibility. However, security and privacy concerns are shown to be the primary obstacles to a wide adoption of clouds. The new concepts that clouds introduce, such as multi-tenancy, resource sharing and outsourcing, create new challenges to the security community. Addressing these challenges requires, in addition to the ability to cultivate and tune the security measures developed for traditional computing systems, proposing new security policies, models, and protocols to address the unique cloud security challenges. In this work, we provide a comprehensive study of cloud computing security and privacy concerns. We identify cloud vulnerabilities, classify known security threats and attacks, and present the state-of-the-art practices to control the vulnerabilities, neutralize the threats, and calibrate the attacks. Additionally, we investigate and identify the limitations of the current solutions and provide insights of the future security perspectives. Finally, we provide a cloud security framework in which we present the various lines of defense and identify the dependency levels among them. We identify 28 cloud security threats which we classify into five categories. We also present nine general cloud attacks along with various attack incidents, and provide effectiveness analysis of the proposed countermeasures.

  17. A FIRST LOOK AT THE AURIGA-CALIFORNIA GIANT MOLECULAR CLOUD WITH HERSCHEL AND THE CSO: CENSUS OF THE YOUNG STELLAR OBJECTS AND THE DENSE GAS

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Paul M. [Astronomy Department, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Fallscheer, Cassandra [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Ginsburg, Adam [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-0389 (United States); Terebey, Susan [Department of Physics and Astronomy PS315, 5151 State University Drive, California State University at Los Angeles, Los Angeles, CA 90032 (United States); Andre, Philippe; Koenyves, Vera [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/Service d' Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Di Francesco, James; Matthews, Brenda C. [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Peterson, Dawn E., E-mail: pmh@astro.as.utexas.edu, E-mail: Cassandra.Fallscheer@nrc-cnrc.gc.ca, E-mail: adam.ginsburg@colorado.edu, E-mail: sterebe@calstatela.edu, E-mail: pandre@cea.fr, E-mail: vera.konyves@cea.fr, E-mail: tbourke@cfa.harvard.edu, E-mail: James.DiFrancesco@nrc-cnrc.gc.ca, E-mail: Brenda.Matthews@nrc-cnrc.gc.ca, E-mail: dpeterson@spacescience.org [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80303 (United States)

    2013-02-20

    We have mapped the Auriga/California molecular cloud with the Herschel PACS and SPIRE cameras and the Bolocam 1.1 mm camera on the Caltech Submillimeter Observatory with the eventual goal of quantifying the star formation and cloud structure in this giant molecular cloud (GMC) that is comparable in size and mass to the Orion GMC, but which appears to be forming far fewer stars. We have tabulated 60 compact 70/160 {mu}m sources that are likely pre-main-sequence objects and correlated those with Spitzer and WISE mid-IR sources. At 1.1 mm, we find 18 cold, compact sources and discuss their properties. The most important result from this part of our study is that we find a modest number of additional compact young objects beyond those identified at shorter wavelengths with Spitzer. We also describe the dust column density and temperature structure derived from our photometric maps. The column density peaks at a few Multiplication-Sign 10{sup 22} cm{sup -2} (N {sub H2}) and is distributed in a clear filamentary structure along which nearly all of the pre-main-sequence objects are found. We compare the young stellar object surface density to the gas column density and find a strong nonlinear correlation between them. The dust temperature in the densest parts of the filaments drops to {approx}10 K from values {approx}14-15 K in the low-density parts of the cloud. We also derive the cumulative mass fraction and probability density function of material in the cloud, which we compare with similar data on other star-forming clouds.

  18. Clouds and Dust Storms

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 2 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere. Image information: VIS instrument. Latitude 68.4, Longitude 180 East (180 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote

  19. A Catalog of HI Clouds in the Large Magellanic Cloud

    CERN Document Server

    Kim, S; Lee, Y; Kim, Y; Jung, Y C; Dopita, M A; Elmegreen, B G; Freeman, K C; Sault, R J; Kesteven, M J; McConnell, D; Chu, Y -H

    2007-01-01

    A 21 cm neutral hydrogen interferometric survey of the Large Magellanic Cloud (LMC) combined with the Parkes multi-beam HI single-dish survey clearly shows that the HI gas is distributed in the form of clumps or clouds. The HI clouds and clumps have been identified using a thresholding method with three three separate brightness temperature thresholds ($T_b$). Each catalog of HI cloud candidates shows a power law relationship between the sizes and the velocity dispersions of the clouds roughly following the Larson Law scaling $\\sigma_v \\propto R^{0.5}$, with steeper indices associated with dynamically hot regions. The clouds in each catalog have roughly constant virial parameters as a function mass suggesting that that the clouds are all in roughly the same dynamical state, but the values of the virial parameter are significantly larger than unity showing that turbulent motions dominate gravity in these clouds. The mass distribution of the clouds is a power law with differential indices between -1.6 and -2.0 ...

  20. Security prospects through cloud computing by adopting multiple clouds

    DEFF Research Database (Denmark)

    Jensen, Meiko; Schwenk, Jörg; Bohli, Jens Matthias

    2011-01-01

    Clouds impose new security challenges, which are amongst the biggest obstacles when considering the usage of cloud services. This triggered a lot of research activities in this direction, resulting in a quantity of proposals targeting the various security threats. Besides the security issues coming...... with the cloud paradigm, it can also provide a new set of unique features which open the path towards novel security approaches, techniques and architectures. This paper initiates this discussion by contributing a concept which achieves security merits by making use of multiple distinct clouds at the same time....

  1. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yang; Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Xu, Haitao, E-mail: gaoyang-00@mails.tsinghua.edu.cn [Max Planck Institute for Dynamics and Self-Organization (MPIDS), D-37077 Göttingen (Germany)

    2015-02-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation.

  2. Security prospects through cloud computing by adopting multiple clouds

    DEFF Research Database (Denmark)

    Jensen, Meiko; Schwenk, Jörg; Bohli, Jens Matthias

    2011-01-01

    Clouds impose new security challenges, which are amongst the biggest obstacles when considering the usage of cloud services. This triggered a lot of research activities in this direction, resulting in a quantity of proposals targeting the various security threats. Besides the security issues coming...... with the cloud paradigm, it can also provide a new set of unique features which open the path towards novel security approaches, techniques and architectures. This paper initiates this discussion by contributing a concept which achieves security merits by making use of multiple distinct clouds at the same time...

  3. CLOUD PARAMETERIZATIONS, CLOUD PHYSICS, AND THEIR CONNECTIONS: AN OVERVIEW.

    Energy Technology Data Exchange (ETDEWEB)

    LIU,Y.; DAUM,P.H.; CHAI,S.K.; LIU,F.

    2002-02-12

    This paper consists of three parts. The first part is concerned with the parameterization of cloud microphysics in climate models. We demonstrate the crucial importance of spectral dispersion of the cloud droplet size distribution in determining radiative properties of clouds (e.g., effective radius), and underline the necessity of specifying spectral dispersion in the parameterization of cloud microphysics. It is argued that the inclusion of spectral dispersion makes the issue of cloud parameterization essentially equivalent to that of the droplet size distribution function, bringing cloud parameterization to the forefront of cloud physics. The second part is concerned with theoretical investigations into the spectral shape of droplet size distributions in cloud physics. After briefly reviewing the mainstream theories (including entrainment and mixing theories, and stochastic theories), we discuss their deficiencies and the need for a paradigm shift from reductionist approaches to systems approaches. A systems theory that has recently been formulated by utilizing ideas from statistical physics and information theory is discussed, along with the major results derived from it. It is shown that the systems formalism not only easily explains many puzzles that have been frustrating the mainstream theories, but also reveals such new phenomena as scale-dependence of cloud droplet size distributions. The third part is concerned with the potential applications of the systems theory to the specification of spectral dispersion in terms of predictable variables and scale-dependence under different fluctuating environments.

  4. Future of Cloud Computing in India

    OpenAIRE

    Pradeep Kumar Tiwari

    2012-01-01

    This paper shows the future of cloud computing in India. This paper also help to understand of future of cloud computing in Indian market .This paper also show the benefits of cloud computing .Cloud computing is not very buzz in India. This paper give the new idea to understand cloud computing and cloud computing future in India. This paper also show the importance of cloud computing. Ito show the growth rate of cloud computing. This paper not only show the cloud computing market it also show...

  5. Studi Perbandingan Layanan Cloud Computing

    Directory of Open Access Journals (Sweden)

    Afdhal Afdhal

    2014-03-01

    Full Text Available In the past few years, cloud computing has became a dominant topic in the IT area. Cloud computing offers hardware, infrastructure, platform and applications without requiring end-users knowledge of the physical location and the configuration of providers who deliver the services. It has been a good solution to increase reliability, reduce computing cost, and make opportunities to IT industries to get more advantages. The purpose of this article is to present a better understanding of cloud delivery service, correlation and inter-dependency. This article compares and contrasts the different levels of delivery services and the development models, identify issues, and future directions on cloud computing. The end-users comprehension of cloud computing delivery service classification will equip them with knowledge to determine and decide which business model that will be chosen and adopted securely and comfortably. The last part of this article provides several recommendations for cloud computing service providers and end-users.

  6. Cloud Vertical Structure variability within MODIS Cloud Regimes according to CloudSat-CALIPSO

    Science.gov (United States)

    Cho, N.; Oreopoulos, L.; Lee, D.

    2016-12-01

    To advance the understanding of the relationships and associations between active and passive views of cloud systems systematic comparisons are needed. We take advantage of A-Train's capability to collect a multitude of coincident measurements of atmospheric hydrometeors to develop a framework for examining cloud vertical structure (CVS). The backbone of our comparisons are cloud regimes (CRs) derived from co-varying cloud optical thickness and cloud top pressure retrieved from the MODIS radiometer. CloudSat and CALIPSO observations containing information about cloud occurrence throughout atmospheric layers are segregated and composited according to the MODIS regime classification for Aqua-only CR occurrences. With this approach, vertical profiles of cloud systems are organized in a way that allows them to be thoroughly studied and compared. We examine the frequency of occurrence within each MODIS CR of coarsely resolved CVS permutations (namely the possible combinations of clouds occurring at high, middle, and low altitudes either in isolation or in various configurations of contiguous or non-contiguous overlap). We look for similarities and extreme contrasts in CVS among MODIS CRs, dependence of CVS on the degree of deviation from the CR centroid, and regional dependences within the occurrences of the same CR. The presentation aims to demonstrate pathways towards a better knowledge of the information content of each type (i.e., active/passive) of measurement and to expose categories of cloud systems where the combination of measurements with different strengths and sensitivities is helping rather than confounding interpretations of the nature of cloudiness.

  7. Shock Waves in Cloud Cavitation

    OpenAIRE

    Brennen, C. E.; Reisman, G. E.; Wang, Y.-C.

    1997-01-01

    Thie paper described experimental and computational investigations of the dynamics of clouds of cavitation bubbles. Recent studies have confirmed that the interactions between bubbles as they are manifest in the dynamics of bubble clouds lead to generation of very large impulsive pressures which, in turn, cause substantial enhancement of the radiated noise and the material damage which results from this form of cavitation. The experimental program focuses on cloud cavitation formed on th...

  8. Cosmic rays, clouds, and climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2000-01-01

    in the Earth's radiation budget through trapping outgoing radiation and reflecting incoming radiation. If a physical link between these two features can be established, it would provide a mechanism linking solar activity and Earth's climate. Recent satellite observations have further revealed a correlation...... between cosmic ray flux and low cloud top temperature. The temperature of a cloud depends on the radiation properties determined by its droplet distribution. Low clouds are warm (> 273 K) and therefore consist of liquid water droplets. At typical atmospheric supersaturations (similar to1%) a liquid cloud...

  9. Cloud computing theory and practice

    CERN Document Server

    Marinescu, Dan C

    2013-01-01

    Cloud Computing: Theory and Practice provides students and IT professionals with an in-depth analysis of the cloud from the ground up. Beginning with a discussion of parallel computing and architectures and distributed systems, the book turns to contemporary cloud infrastructures, how they are being deployed at leading companies such as Amazon, Google and Apple, and how they can be applied in fields such as healthcare, banking and science. The volume also examines how to successfully deploy a cloud application across the enterprise using virtualization, resource management and the ri

  10. The Ethics of Cloud Computing.

    Science.gov (United States)

    de Bruin, Boudewijn; Floridi, Luciano

    2017-02-01

    Cloud computing is rapidly gaining traction in business. It offers businesses online services on demand (such as Gmail, iCloud and Salesforce) and allows them to cut costs on hardware and IT support. This is the first paper in business ethics dealing with this new technology. It analyzes the informational duties of hosting companies that own and operate cloud computing datacentres (e.g., Amazon). It considers the cloud services providers leasing 'space in the cloud' from hosting companies (e.g., Dropbox, Salesforce). And it examines the business and private 'clouders' using these services. The first part of the paper argues that hosting companies, services providers and clouders have mutual informational (epistemic) obligations to provide and seek information about relevant issues such as consumer privacy, reliability of services, data mining and data ownership. The concept of interlucency is developed as an epistemic virtue governing ethically effective communication. The second part considers potential forms of government restrictions on or proscriptions against the development and use of cloud computing technology. Referring to the concept of technology neutrality, it argues that interference with hosting companies and cloud services providers is hardly ever necessary or justified. It is argued, too, however, that businesses using cloud services (e.g., banks, law firms, hospitals etc. storing client data in the cloud) will have to follow rather more stringent regulations.

  11. MgB2多芯超导线带材研究进展%Progress of Multi-Filamentary MgB2 Superconductor Wires and Tapes

    Institute of Scientific and Technical Information of China (English)

    王庆阳; 闫果; A.Sulpice; 张平祥

    2011-01-01

    The recent development of multi-filamentary MgE$2 superconductor wires and tapes is reported. The choice of the sheath material is analyzed. The properties of several fabrication processes, such as powder-in-tube method (PIT), continuous tube filling, forming process (CTFF) and internal magnesium diffusion method (IMD) are compared. The progress of flux pinning properties, AC losses, stability, quench propagation and the mechanical properties are commented. At last, the application of multi-filamentary MgEfe superconducting wires and tapes is re viewed.%回顾了近年来多芯MgB2超导线带材的主要研究进展,分析了包套材料的选取原则;比较了粉末套管法( PIT)、连续粉末装管成型工艺(CTFF)及中心镁扩散工艺(IMD)等几种常用的MgB2线带材加工制备技术的特点;评述了多芯MgB2线带材的磁通钉扎性能、交流损耗、稳定性与失超传播以及力学性能等方面的研究进展;同时简要回顾了多芯MgB2超导线带材的应用研究现状.

  12. The link between turbulence, magnetic fields, filaments, and star formation in the Central Molecular Zone cloud G0.253+0.016

    CERN Document Server

    Federrath, C; Longmore, S N; Kruijssen, J M D; Bally, J; Contreras, Y; Crocker, R M; Garay, G; Jackson, J M; Testi, L; Walsh, A J

    2016-01-01

    Star formation is primarily controlled by the interplay between gravity, turbulence, and magnetic fields. However, the turbulence and magnetic fields in molecular clouds near the Galactic Center may differ substantially from spiral-arm clouds. Here we determine the physical parameters of the central molecular zone (CMZ) cloud G0.253+0.016, its turbulence, magnetic field and filamentary structure. Using column-density maps based on dust-continuum emission observations with ALMA+Herschel, we identify filaments and show that at least one dense core is located along them. We measure the filament width W_fil=0.17$\\pm$0.08pc and the sonic scale {\\lambda}_sonic=0.15$\\pm$0.11pc of the turbulence, and find W_fil~{\\lambda}_sonic. A strong velocity gradient is seen in the HNCO intensity-weighted velocity maps obtained with ALMA+Mopra, which is likely caused by large-scale shearing of G0.253+0.016, producing a wide double-peaked velocity PDF. After subtracting the gradient to isolate the turbulent motions, we find a near...

  13. Using cloud computing infrastructure with CloudBioLinux, CloudMan, and Galaxy.

    Science.gov (United States)

    Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James

    2012-06-01

    Cloud computing has revolutionized availability and access to computing and storage resources, making it possible to provision a large computational infrastructure with only a few clicks in a Web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this unit, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatic analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy, into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to set up the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command-line interface, and the Web-based Galaxy interface.

  14. The Fundamentally Different Dynamics of Dust and Gas in Molecular Clouds

    CERN Document Server

    Hopkins, Philip F

    2015-01-01

    We study the behavior of large dust grains in turbulent molecular clouds (MCs). In primarily neutral regions, dust grains move as aerodynamic particles, not necessarily with the gas. We therefore directly simulate, for the first time, the behavior of aerodynamic grains in highly supersonic, magnetohydrodynamic turbulence typical of MCs. We show that, under these conditions, grains with sizes a>0.01 micron exhibit dramatic (exceeding factor ~1000) fluctuations in the local dust-to-gas ratio (implying large small-scale variations in abundances, dust cooling rates, and dynamics). The dust can form highly filamentary structures (which would be observed in both dust emission and extinction), which can be much thinner than the characteristic width of gas filaments. Sometimes, the dust and gas filaments are not even in the same location. The 'clumping factor' of the dust (critical for dust evolution) can reach ~100, for grains in the ideal size range. The dust clustering is maximized around scales ~0.2pc*(a/micron)*...

  15. Interaction Between Supernova Remnant G22.7-0.2 And The Ambient Molecular Clouds

    CERN Document Server

    Su, Yang; Zhou, Xin; Zhou, Ping; Chen, Yang

    2014-01-01

    We have carried out 12CO (J=1-0 and 2-1), 13CO (J=1-0), and C18O (J=1-0) observations in the direction of the supernova remnant (SNR) G22.7-0.2. A filamentary molecular gas structure, which is likely part of a larger molecular complex with VLSR~75-79 km/s, is detected and is found to surround the southern boundary of the remnant. In particular, the high-velocity wing (77-110 km/s) in the 12CO (J=1-0 and J=2-1) emission shows convincing evidence of the interaction between SNR G22.7-0.2 and the 75-79 km/s molecular clouds (MCs). Spectra with redshifted profiles, a signature of shocked molecular gas, are seen in the southeastern boundary of the remnant. The association between the remnant and the 77 km/s MCs places the remnant at the near distance of 4.0-4.8 kpc, which agrees with a location on the Scutum-Crux arm. We suggest that SNR G22.7-0.2, SNR W41, and HII region G022.760-0.485 are at the same distance and are associated with GMC G23.0-0.4.

  16. Heroku cloud application development

    CERN Document Server

    Hanjura, Anubhav

    2014-01-01

    An easy-to-follow, hands-on guide that clearly explains the various components of the Heroku platform and provides step-by-step guidance as well as numerous examples on how to build and troubleshoot robust and scalable production-ready web applications on the Heroku platform.This book is intended for those who want to learn Heroku the right way. Perhaps you are new to Heroku or are someone who has heard about Heroku but have not built anything significant with it. You should have knowledge or familiarity with cloud computing and basic knowledge of database and network deployment.

  17. Berkeley Nuclear Data Cloud

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-27

    The software was developed to serve and curate arbitrarily large datasets comprising data acquired from various mobile platforms. The software is contained in a number of server and client libraries. The former manage the ingestion, indexing, querying, and serving of the data. The latter libraries are distributed for Linux, Mac OSX, and Windows and enable users to interact with data downloaded from the service either in the form of an HDF5 file or streamed in a BSON data chunk. Using the Berkeley Data Cloud, researchers from varying fields can collaborate, compare results and curate both their raw data and the derived products of their analysis.

  18. Mapping in the cloud

    CERN Document Server

    Peterson, Michael P

    2014-01-01

    This engaging text provides a solid introduction to mapmaking in the era of cloud computing. It takes students through both the concepts and technology of modern cartography, geographic information systems (GIS), and Web-based mapping. Conceptual chapters delve into the meaning of maps and how they are developed, covering such topics as map layers, GIS tools, mobile mapping, and map animation. Methods chapters take a learn-by-doing approach to help students master application programming interfaces and build other technical skills for creating maps and making them available on the Internet. Th

  19. Grids, Clouds and Virtualization

    CERN Document Server

    Cafaro, Massimo

    2011-01-01

    Research into grid computing has been driven by the need to solve large-scale, increasingly complex problems for scientific applications. Yet the applications of grid computing for business and casual users did not begin to emerge until the development of the concept of cloud computing, fueled by advances in virtualization techniques, coupled with the increased availability of ever-greater Internet bandwidth. The appeal of this new paradigm is mainly based on its simplicity, and the affordable price for seamless access to both computational and storage resources. This timely text/reference int

  20. Defining the cloud battlefield - supporting security assessments by cloud customers

    NARCIS (Netherlands)

    Bleikertz, Sören; Mastelic, Toni; Pape, Sebastian; Pieters, Wolter; Dimkov, Trajce

    2013-01-01

    Cloud computing is becoming more and more popular, but security concerns overshadow its technical and economic benefits. In particular, insider attacks and malicious insiders are considered as one of the major threats and risks in cloud computing. As physical boundaries disappear and a variety of pa

  1. Defining the cloud battlefield - supporting security assessments by cloud customers

    NARCIS (Netherlands)

    Bleikertz, Sören; Mastelic, Toni; Pape, Sebastian; Pieters, Wolter; Dimkov, T.

    Cloud computing is becoming more and more popular, but security concerns overshadow its technical and economic benefits. In particular, insider attacks and malicious insiders are considered as one of the major threats and risks in cloud computing. As physical boundaries disappear and a variety of

  2. A Simple Cloud Reflectance Model for Ship Tracks in Clouds

    Science.gov (United States)

    1991-11-01

    A Simple Cloud Reflectance Model 01 for Ship Tracks in Clouds I OTIOSt 9L1, FIF MAR 16 1992J R. A. Siquig Forecast Guidance and Naval Systems...because of increased absorption. Note that this is based on the results for four wavelengths. Because of the undulatory nature of the imaginary part of

  3. Alterations of Cloud Microphysics Due to Cloud Processed CCN

    Science.gov (United States)

    Hudson, J. G.; Tabor, S. S.; Noble, S. R., Jr.

    2015-12-01

    High-resolution CCN spectra have revealed bimodality (Hudson et al. 2015) similar to aerosol size spectra (e.g., Hoppel et al. 1985). Bimodality is caused by chemical and physical cloud processes that increase mass or hygroscopicity of only CCN that produced activated cloud droplets. Bimodality is categorized by relative CCN concentrations (NCCN) within the two modes, Nu-Np; i.e., NCCN within the higher critical supersaturation, Sc, mode that did not undergo cloud processing minus NCCN within the lower Sc mode that was cloud processed. Lower, especially negative, Nu-Np designates greater processing. The table shows regressions between Nu-Np and characteristics of clouds nearest the CCN measurements. ICE-T MASE parameter R SL R SL Nc 0.17 93.24 -0.26 98.65 MD -0.31 99.69 0.33 99.78 σ -0.27 99.04 0.48 100.00 Ld -0.31 99.61 0.38 99.96 Table. Correlation coefficients, R, and one-tailed significance levels in percent, SL, for Nu-Np with microphysics of the clouds closest to each CCN measurement, 75 ICE-T and 74 MASE cases. Nc is cloud droplet concentration, MD is cloud droplet mean diameter, σ is standard deviation of cloud droplet spectra, Ldis drizzle drop LWC. Two aircraft field campaigns, Ice in Clouds Experiment-Tropical (ICE-T) and Marine Stratus/Stratocumulus Experiment (MASE) show opposite R signs because coalescence dominated cloud processing in low altitude ICE-T cumuli whereas chemical transformations predominated in MASE low altitude polluted stratus. Coalescence reduces Nc and NCCN, which thus increases MD, and σ, which promote Ld. Chemical transformations, e.g., SO2 to SO4, increase CCN hygroscopicity, thus reducing Sc, but not affecting Nc or NCCN. Lower Sc CCN are capable of producing greater Nc in subsequent cloud cycles, which leads to lower MD and σ which reduce Ld (figure). These observations are consistent with cloud droplet growth models for the higher vertical wind (W) of cumuli and lower W of stratus. Coalescence thus reduces the indirect

  4. Cloud ERP and Cloud Accounting Software in Romania

    Directory of Open Access Journals (Sweden)

    Gianina MIHAI

    2015-05-01

    Full Text Available Nowadays, Cloud Computing becomes a more and more fashionable concept in the IT environment. There is no unanimous opinion on the definition of this concept, as it covers several versions of the newly emerged stage in the IT. But in fact, Cloud Computing should not suggest anything else than simplicity. Thus, in short, simple terms, Cloud Computing can be defined as a solution to use external IT resources (servers, storage media, applications and services, via Internet. Cloud computing is nothing more than the promise of an easy accessible technology. If the promise will eventually turn into something certain yet remains to be seen. In our opinion it is too early to make an assertion. In this article, our purpose is to find out what is the Romanian offer of ERP and Accounting software applications in Cloud and / or as services in SaaS version. Thus, we conducted an extensive study whose results we’ll present in the following.

  5. Statistical properties of cloud lifecycles in cloud-resolving models

    Directory of Open Access Journals (Sweden)

    R. S. Plant

    2008-12-01

    Full Text Available A new technique is described for the analysis of cloud-resolving model simulations, which allows one to investigate the statistics of the lifecycles of cumulus clouds. Clouds are tracked from timestep-to-timestep within the model run. This allows for a very simple method of tracking, but one which is both comprehensive and robust. An approach for handling cloud splits and mergers is described which allows clouds with simple and complicated time histories to be compared within a single framework. This is found to be important for the analysis of an idealized simulation of radiative-convective equilibrium, in which the moist, buoyant, updrafts (i.e., the convective cores were tracked. Around half of all such cores were subject to splits and mergers during their lifecycles. For cores without any such events, the average lifetime is 30 min, but events can lengthen the typical lifetime considerably.

  6. CloudGenius: Decision Support for Web Server Cloud Migration

    CERN Document Server

    Menzel, Michael

    2012-01-01

    Cloud computing is the latest computing paradigm that delivers hardware and software resources as virtualized services in which users are free from the burden of worrying about the low-level system administration details. Migrating Web applications to Cloud services and integrating Cloud services into existing computing infrastructures is non-trivial. It leads to new challenges that often require innovation of paradigms and practices at all levels: technical, cultural, legal, regulatory, and social. The key problem in mapping Web applications to virtualized Cloud services is selecting the best and compatible mix of software images (e.g., Web server image) and infrastructure services to ensure that Quality of Service (QoS) targets of an application are achieved. The fact that, when selecting Cloud services, engineers must consider heterogeneous sets of criteria and complex dependencies between infrastructure services and software images, which are impossible to resolve manually, is a critical issue. To overcom...

  7. Performance Evaluation of the CloudStack Private Cloud

    Directory of Open Access Journals (Sweden)

    Mumtaz M.Ali AL-Mukhtar

    2014-02-01

    Full Text Available The number of open source cloud platforms is increasing day by day.The features of these platforms vary significantly and this creates a difficulty for cloud consumers to choose the platforms based on their requirments.In this paper we build a private cloud using Cloudstack , a popular open source platform used to built Infrastructure as a Service(IaaS cloud.We presents its architecure and analyze performance of virtual machines initiated and managed by the Cloudstack in terms of CPU usage,memory bandwidth,disk I/O speed and networking performance using suitable benchmarks.Different vitual machine management operations such as add ,delete and live migration are also evaluated .The performance evaluation of Cloudstack can help to determine its suability to be adopted as on premise cloud solution.

  8. Daytime Land Cloud Detection Enhancements For The VIIRS Cloud Mask

    Science.gov (United States)

    Frey, R. A.; Heidinger, A. K.; Hutchinson, K. D.; Iisager, B.

    2005-12-01

    The first in a new series of polar-orbiting satellites, National Polar-Orbiting Operational Satellite System (NPOESS), is scheduled to be launched in 2008. The Visible/Infrared Imager/Radiometer Suite (VIIRS) is a major component of the series and will replace the AVHRR instrument on operational polar orbiters. A crucial piece of the VIIRS data processing chain is the VIIRS Cloud Mask (VCM). A high quality cloud detection system is necessary as a first step for most if not all of the algorithms which produce the 18 EDRs (Environmental Data Records) from VIIRS. A cloud detection scheme similar to the one developed for MODIS data (MOD35) will be implemented for VIIRS, but several enhancements have been investigated for daytime land scenes. During daylight hours over vegetated surfaces and in the absence of snow cover, use of the high contrast between clouds and surface in visible wavelengths offers the most sensitive clear/cloud discrimination. However, visible surface reflectances vary from about 10% over tropical rain forests to as high as 50% in arid regions, making the use of a single cloud test threshold very difficult. A set of reflectance thresholds based on NDVI and scattering angle has been developed from historical AVHRR data. Clear-sky NDVIs were accumulated as a function of scattering angle over a multi-year period and from morning and afternoon satellites, from which cloud test thresholds were developed. The thresholds were then tested on several AVHRR scenes. For extremely arid scenes, where visible reflectances from clouds and surface are similar, a cloud test using 0.4 μm data has been devised. This poster describes the development of both new cloud tests and associated thresholds, from initial tests using MODIS data to the calculation and implementation of the thresholds.

  9. Cloud Native Java

    CERN Document Server

    CERN. Geneva

    2017-01-01

    “It is not necessary to change. Survival is not mandatory.” -W. Edwards Deming Work takes time to flow through an organization and ultimately be deployed to production where it captures value. It’s critical to reduce time-to-production. Software – for many organizations and industries – is a competitive advantage. Organizations break their larger software ambitions into smaller, independently deployable, feature -centric batches of work – microservices. In order to reduce the round-trip between stations of work, organizations collapse or consolidate as much of them as possible and automate the rest; developers and operations beget “devops,” cloud-based services and platforms (like Cloud Foundry) automate operations work and break down the need for ITIL tickets and change management boards. But velocity, for velocity’s sake, is dangerous. Microservices invite architectural complexity that few are prepared to address. In this talk, we’ll look at how high performance organizations like Tic...

  10. Reviewing Molecular Clouds

    Science.gov (United States)

    Fernandez Lopez, Manuel

    2017-07-01

    The star formation process involves a wide range of spatial scales, densities and temperatures. Herschel observations of the cold and low density molecular gas extending tens of parsecs, that constitutes the bulk of the molecular clouds of the Milky Way, have shown a network of dense structures in the shape of filaments. These filaments supposedly condense into higher density clumps to form individual stars or stellar clusters. The study of the kinematics of the filaments through single-dish observations suggests the presence of gas flows along the filaments, oscillatory motions due to gravity infall, and the existence of substructure inside filaments that may be threaded by twisted fibers. A few molecular clouds have been mapped with interferometric resolutions bringing more insight into the filament structure. Compression due to large-scale supersonic flows is the preferred mechanism to explain filament formation although the exact nature of the filaments, their origin and evolution are still not well understood. Determining the turbulence drivers behind the origin of the filaments, the relative importance of turbulence, gravity and magnetic fields on regulating the filament structure and evolution, and providing detailed insight on the substructure inside the filaments are among the current open questions in this research area.

  11. Growing Cloud Computing Efficiency

    Directory of Open Access Journals (Sweden)

    Dr. Mohamed F. AlAjmi, Dr. Arun Sharma, Shakir Khan

    2012-05-01

    Full Text Available Cloud computing is basically altering the expectation for how and when computing, storage and networking assets should be allocated, managed and devoted. End-users are progressively more sensitive in response time of services they ingest. Service Developers wish for the Service Providers to make sure or give the ability for dynamically assigning and managing resources in respond to alter the demand patterns in real-time. Ultimately, Service Providers are under anxiety to build their infrastructure to facilitate real-time end-to-end visibility and energetic resource management with well grained control to decrease total cost of tenure for improving quickness. What is required to rethink of the underlying operating system and management infrastructure to put up the on-going renovation of data centre from the traditional server-centric architecture model to a cloud or network centric model? This paper projects and describes a indication model for a network centric data centre infrastructure management heap that make use of it and validates key ideas that have enabled dynamism, the quality of being scalable, reliability and security in the telecommunication industry to the computing engineering. Finally, the paper will explain a proof of concept classification that was implemented to show how dynamic resource management can be enforced to enable real-time service guarantee for network centric data centre architecture.

  12. Two-level hierarchical fragmentation in the northern filament of the Orion Molecular Cloud 1

    Science.gov (United States)

    Teixeira, P. S.; Takahashi, S.; Zapata, L. A.; Ho, P. T. P.

    2016-03-01

    Context. The filamentary structure of molecular clouds may set important constraints on the mass distribution of stars forming within them. It is therefore important to understand which physical mechanism dominates filamentary cloud fragmentation and core formation. Aims: Orion A is the nearest giant molecular cloud, and its so-called ∫-shaped filament is a very active star-forming region that is a good target for such a study. We have recently reported on the collapse and fragmentation properties of the northernmost part of this structure, located ~2.4 pc north of Orion KL - Orion Molecular Cloud (OMC) 3. As part of our project to study the ∫-shaped filament, we analyze the fragmentation properties of the northern OMC 1 filament (located ≲0.3 pc north of Orion KL). This filament is a dense structure previously identified by JCMT/SCUBA submillimeter continuum and VLA NH3 observations and was shown to have fragmented into clumps. Our aim is to search for cores and young protostars embedded within OMC 1n and to study how the filament is fragmenting to form them. Methods: We observed OMC 1North (hereafter OMC 1n) with the Submillimeter Array (SMA) at 1.3 mm and report on our analysis of the continuum data. Results: We discovered 24 new compact sources, ranging in mass from 0.1 to 2.3, in size from 400 to 1300 au, and in density from 2.6 × 107 to 2.8 × 106 cm-3. The masses of these sources are similar to those of the SMA protostars in OMC 3, but their typical sizes and densities are lower by a factor of ten. Only 8% of the new sources have infrared counterparts, but there are five associated CO molecular outflows. These sources are thus likely in the Class 0 evolutionary phase but it cannot be excluded that some of the sources might still be pre-stellar cores. The spatial analysis of the protostars shows that they are divided into small groups that coincide with previously identified JCMT/SCUBA 850 μm and VLA NH3 clumps, which are separated by a quasi

  13. The ethics of cloud computing

    NARCIS (Netherlands)

    de Bruin, Boudewijn; Floridi, Luciano

    2016-01-01

    Cloud computing is rapidly gaining traction in business. It offers businesses online services on demand (such as Gmail, iCloud and Salesforce) and allows them to cut costs on hardware and IT support. This is the first paper in business ethics dealing with this new technology. It analyzes the informa

  14. Enhancing accountability in the cloud

    NARCIS (Netherlands)

    Jaatun, M.; Pearson, S.; Gittler, F.; Leenes, Ronald; van der Zwet, Maartje

    2016-01-01

    This article focuses on the role of accountability within information management, particularly in cloud computing contexts. Key to this notion is that an accountable Cloud Provider must demonstrate both willingness and capacity for being a responsible steward of other people's data. More generally,

  15. Cloud $_{Micro}$Atlas$^{∗}$

    Indian Academy of Sciences (India)

    Rama Govindarajan; S Ravichandran

    2017-03-01

    We begin by outlining the life cycle of a tall cloud, and thenbriefly discuss cloud systems. We choose one aspect of thislife cycle, namely, the rapid growth of water droplets in ice freeclouds, to then discuss in greater detail. Taking a singlevortex to be a building block of turbulence, we demonstrateone mechanism by which we believe droplets grow rapidly.

  16. Cloud computing assessing the risks

    CERN Document Server

    Carstensen, Jared; Golden, Bernard

    2012-01-01

    Cloud Computing: Assessing the risks answers these questions and many more. Using jargon-free language and relevant examples, analogies and diagrams, it is an up-to-date, clear and comprehensive guide the security, governance, risk, and compliance elements of Cloud Computing.

  17. Chemical evolution of molecular clouds

    Science.gov (United States)

    Prasad, Sheo S.; Tarafdar, Sankar P.; Villere, Karen R.; Huntress, Wesley T., Jr.

    1987-01-01

    The principles behind the coupled chemical-dynamical evolution of molecular clouds are described. Particular attention is given to current problems involving the simplest species (i.e., C. CO, O2, and H2) in quiescent clouds. The results of a comparison made between the molecular abundances in the Orion ridge and the hot core (Blake, 1986) are presented.

  18. Big Data in der Cloud

    DEFF Research Database (Denmark)

    Leimbach, Timo; Bachlechner, Daniel

    2014-01-01

    Technology assessment of big data, in particular cloud based big data services, for the Office for Technology Assessment at the German federal parliament (Bundestag)......Technology assessment of big data, in particular cloud based big data services, for the Office for Technology Assessment at the German federal parliament (Bundestag)...

  19. How to govern the cloud?

    NARCIS (Netherlands)

    Prüfer, J.; Diamond, S.; Wainwright, N.

    2013-01-01

    This paper applies economic governance theory to the cloud computing industry. We analyze which governance institution may be best suited to solve the problems stemming from asymmetric information about the true level of data protection, security, and accountability offered by cloud service provider

  20. Cloud computing and services science

    NARCIS (Netherlands)

    Ivanov, Ivan; Sinderen, van Marten; Shishkov, Boris

    2012-01-01

    This book is essentially a collection of the best papers of the International Conference on Cloud Computing and Services Science (CLOSER), which was held in Noordwijkerhout, The Netherlands on May 7–9, 2011. The conference addressed technology trends in the domain of cloud computing in relation to a

  1. The ethics of cloud computing

    NARCIS (Netherlands)

    de Bruin, Boudewijn; Floridi, Luciano

    2016-01-01

    Cloud computing is rapidly gaining traction in business. It offers businesses online services on demand (such as Gmail, iCloud and Salesforce) and allows them to cut costs on hardware and IT support. This is the first paper in business ethics dealing with this new technology. It analyzes the

  2. Teaching Cybersecurity Using the Cloud

    Science.gov (United States)

    Salah, Khaled; Hammoud, Mohammad; Zeadally, Sherali

    2015-01-01

    Cloud computing platforms can be highly attractive to conduct course assignments and empower students with valuable and indispensable hands-on experience. In particular, the cloud can offer teaching staff and students (whether local or remote) on-demand, elastic, dedicated, isolated, (virtually) unlimited, and easily configurable virtual machines.…

  3. Cloud formation in giant planets

    CERN Document Server

    Helling, Christiane

    2007-01-01

    We calculate the formation of dust clouds in atmospheres of giant gas-planets. The chemical structure and the evolution of the grain size distribution in the dust cloud layer is discussed based on a consistent treatment of seed formation, growth/evaporation and gravitational settling. Future developments are shortly addressed.

  4. International Satellite Cloud Climatology Project (ISCCP)

    Data.gov (United States)

    National Aeronautics and Space Administration — International Satellite Cloud Climatology Project (ISCCP) focuses on the distribution and variation of cloud radiative properties to improve the understanding of the...

  5. Climate Effects of Cloud Modified CCN-Cloud Interactions

    Science.gov (United States)

    Noble, S. R., Jr.; Hudson, J. G.

    2015-12-01

    Cloud condensation nuclei (CCN) play an important role in the climate system through the indirect aerosol effect (IAE). IAE is one of the least understood aspects of the climate system as many cloud processes are complicated. Many studies of aerosol-cloud interaction involve CCN interaction with cloud droplet concentrations (Nc), cloud microphysics, and radiative properties. However, fewer studies investigate how cloud processes modify CCN. Upon evaporation from non-precipitating clouds, CCN distributions develop bimodal shaped distributions (Hoppel et al. 1986). Activated CCN participate in cloud processing that is either chemical: aqueous oxidation; or physical: Brownian scavenging, collision and coalescence. Chemical processing does not change CCN concentration (NCCN) but reduces critical supersaturations (Sc; larger size) (Feingold and Kreidenweis, 2000) while physical processing reduces NCCN and Sc. These processes create the minima in the bimodal CCN distributions (Hudson et al., 2015). Updraft velocity (W) and NCCN are major factors on how these modified CCN distributions affect clouds. Panel a shows two nearby CCN distributions in the MArine Stratus/stratocumulus Experiment (MASE), which have similar concentrations, but the bimodal one (red) has been modified by cloud processing. In a simplified cloud droplet model, the modified CCN then produces higher Nc (panel b) and smaller droplet mean diameters (MD; panel c) when compared to the unmodified CCN (black) for W lower than 50 cm/s. The better CCN (lower Sc) increase competition among droplets reducing MD and droplet distribution spread (σ) which acts to reduce drizzle. Competition is created by limited available condensate due to lower S created by the low W (50 cm/s) typical of cumuli, Ncis reduced and MD is increased from the modified CCN distribution (panels b & c). Here, CCN cloud processing increases MD and σ leading to increased drizzle. Improved climate prediction requires a better understanding

  6. Cloud Computing: Exploring the scope

    CERN Document Server

    Pandey, Abhinav; Tandon, Ankit; Maurya, Brajesh Kr; Kushwaha, Upendra

    2010-01-01

    Cloud computing refers a paradigm shift to overall IT solutions while raising the accessibility, scalability and effectiveness through its enabling technologies. However, migrated cloud platforms and services cost benefits as well as performances are neither clear nor summarized. Globalization and the recessionary economic times have not only raised the bar of a better IT delivery models but also have given access to technology enabled services via internet. Cloud computing has vast potential in terms of lean Retail methodologies that can minimize the operational cost by using the third party based IT capabilities, as a service. It will not only increase the ROI but will also help in lowering the total cost of ownership. In this paper we have tried to compare the cloud computing cost benefits with the actual premise cost which an organization incurs normally. However, in spite of the cost benefits, many IT professional believe that the latest model i.e. "cloud computing" has risks and security concerns. This ...

  7. Cloud Database Management System (CDBMS

    Directory of Open Access Journals (Sweden)

    Snehal B. Shende

    2015-10-01

    Full Text Available Cloud database management system is a distributed database that delivers computing as a service. It is sharing of web infrastructure for resources, software and information over a network. The cloud is used as a storage location and database can be accessed and computed from anywhere. The large number of web application makes the use of distributed storage solution in order to scale up. It enables user to outsource the resource and services to the third party server. This paper include, the recent trend in cloud service based on database management system and offering it as one of the services in cloud. The advantages and disadvantages of database as a service will let you to decide either to use database as a service or not. This paper also will highlight the architecture of cloud based on database management system.

  8. The Future of Cloud Computing

    Directory of Open Access Journals (Sweden)

    Anamaroa SIclovan

    2011-12-01

    Full Text Available

    Cloud computing was and it will be a new way of providing Internet services and computers. This calculation approach is based on many existing services, such as the Internet, grid computing, Web services. Cloud computing as a system aims to provide on demand services more acceptable as price and infrastructure. It is exactly the transition from computer to a service offered
    to the consumers as a product delivered online. This represents an advantage for the organization both regarding the cost and the opportunity for the new business. This paper presents the future perspectives in cloud computing. The paper presents some issues of the cloud computing paradigm. It is a theoretical paper.

    Keywords: Cloud Computing, Pay-per-use

  9. Trusted computing strengthens cloud authentication.

    Science.gov (United States)

    Ghazizadeh, Eghbal; Zamani, Mazdak; Ab Manan, Jamalul-lail; Alizadeh, Mojtaba

    2014-01-01

    Cloud computing is a new generation of technology which is designed to provide the commercial necessities, solve the IT management issues, and run the appropriate applications. Another entry on the list of cloud functions which has been handled internally is Identity Access Management (IAM). Companies encounter IAM as security challenges while adopting more technologies became apparent. Trust Multi-tenancy and trusted computing based on a Trusted Platform Module (TPM) are great technologies for solving the trust and security concerns in the cloud identity environment. Single sign-on (SSO) and OpenID have been released to solve security and privacy problems for cloud identity. This paper proposes the use of trusted computing, Federated Identity Management, and OpenID Web SSO to solve identity theft in the cloud. Besides, this proposed model has been simulated in .Net environment. Security analyzing, simulation, and BLP confidential model are three ways to evaluate and analyze our proposed model.

  10. Trusted Computing Strengthens Cloud Authentication

    Directory of Open Access Journals (Sweden)

    Eghbal Ghazizadeh

    2014-01-01

    Full Text Available Cloud computing is a new generation of technology which is designed to provide the commercial necessities, solve the IT management issues, and run the appropriate applications. Another entry on the list of cloud functions which has been handled internally is Identity Access Management (IAM. Companies encounter IAM as security challenges while adopting more technologies became apparent. Trust Multi-tenancy and trusted computing based on a Trusted Platform Module (TPM are great technologies for solving the trust and security concerns in the cloud identity environment. Single sign-on (SSO and OpenID have been released to solve security and privacy problems for cloud identity. This paper proposes the use of trusted computing, Federated Identity Management, and OpenID Web SSO to solve identity theft in the cloud. Besides, this proposed model has been simulated in .Net environment. Security analyzing, simulation, and BLP confidential model are three ways to evaluate and analyze our proposed model.

  11. The Future of Cloud Computing

    Directory of Open Access Journals (Sweden)

    Anamaroa SIclovan

    2011-12-01

    Full Text Available Cloud computing was and it will be a new way of providing Internet services and computers. This calculation approach is based on many existing services, such as the Internet, grid computing, Web services. Cloud computing as a system aims to provide on demand services more acceptable as price and infrastructure. It is exactly the transition from computer to a service offeredto the consumers as a product delivered online. This represents an advantage for the organization both regarding the cost and the opportunity for the new business. This paper presents the future perspectives in cloud computing. The paper presents some issues of the cloud computing paradigm. It is a theoretical paper.Keywords: Cloud Computing, Pay-per-use

  12. EDITORIAL: Focus on Cloud Physics FOCUS ON CLOUD PHYSICS

    Science.gov (United States)

    Falkovich, Gregory; Malinowski, Szymon P.

    2008-07-01

    Cloud physics has for a long time been an important segment of atmospheric science. It is common knowledge that clouds are crucial for our understanding of weather and climate. Clouds are also interesting by themselves (not to mention that they are beautiful). Complexity is hidden behind the common picture of these beautiful and interesting objects. The typical school textbook definition that a cloud is 'a set of droplets or particles suspended in the atmosphere' is not adequate. Clouds are complicated phenomena in which dynamics, turbulence, microphysics, thermodynamics and radiative transfer interact on a wide range of scales, from sub-micron to kilometres. Some of these interactions are subtle and others are more straightforward. Large and small-scale motions lead to activation of cloud condensation nuclei, condensational growth and collisions; small changes in composition and concentration of atmospheric aerosol lead to significant differences in radiative properties of the clouds and influence rainfall formation. It is justified to look at a cloud as a composite, nonlinear system which involves many interactions and feedback. This system is actively linked into a web of atmospheric, oceanic and even cosmic interactions. Due to the complexity of the cloud system, present-day descriptions of clouds suffer from simplifications, inadequate parameterizations, and omissions. Sometimes the most fundamental physics hidden behind these simplifications and parameterizations is not known, and a wide scope of view can sometimes prevent a 'microscopic', deep insight into the detail. Only the expertise offered by scientists focused on particular elementary processes involved in this complicated pattern of interactions allows us to shape elements of the puzzle from which a general picture of clouds can be created. To be useful, every element of the puzzle must be shaped precisely. This often creates problems in communication between the sciences responsible for shaping

  13. Cloud-Ground Interaction

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 30 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. This image of the North Polar water-ice clouds shows how surface topography can affect the linear form. Notice that the crater at the bottom of the image is causing a deflection in the linear form. Image information: VIS instrument. Latitude 68.4, Longitude 100.7 East (259.3 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and

  14. ASTER cloud coverage reassessment using MODIS cloud mask products

    Science.gov (United States)

    Tonooka, Hideyuki; Omagari, Kunjuro; Yamamoto, Hirokazu; Tachikawa, Tetsushi; Fujita, Masaru; Paitaer, Zaoreguli

    2010-10-01

    In the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) Project, two kinds of algorithms are used for cloud assessment in Level-1 processing. The first algorithm based on the LANDSAT-5 TM Automatic Cloud Cover Assessment (ACCA) algorithm is used for a part of daytime scenes observed with only VNIR bands and all nighttime scenes, and the second algorithm based on the LANDSAT-7 ETM+ ACCA algorithm is used for most of daytime scenes observed with all spectral bands. However, the first algorithm does not work well for lack of some spectral bands sensitive to cloud detection, and the two algorithms have been less accurate over snow/ice covered areas since April 2008 when the SWIR subsystem developed troubles. In addition, they perform less well for some combinations of surface type and sun elevation angle. We, therefore, have developed the ASTER cloud coverage reassessment system using MODIS cloud mask (MOD35) products, and have reassessed cloud coverage for all ASTER archived scenes (>1.7 million scenes). All of the new cloud coverage data are included in Image Management System (IMS) databases of the ASTER Ground Data System (GDS) and NASA's Land Process Data Active Archive Center (LP DAAC) and used for ASTER product search by users, and cloud mask images are distributed to users through Internet. Daily upcoming scenes (about 400 scenes per day) are reassessed and inserted into the IMS databases in 5 to 7 days after each scene observation date. Some validation studies for the new cloud coverage data and some mission-related analyses using those data are also demonstrated in the present paper.

  15. Cloud and Star Formation in Spiral Arms

    CERN Document Server

    Dobbs, Clare

    2014-01-01

    We present the results from simulations of GMC formation in spiral galaxies. First we discuss cloud formation by cloud-cloud collisions, and gravitational instabilities, arguing that the former is prevalent at lower galactic surface densities and the latter at higher. Cloud masses are also limited by stellar feedback, which can be effective before clouds reach their maximum mass. We show other properties of clouds in simulations with different levels of feedback. With a moderate level of feedback, properties such as cloud rotations and virial parameters agree with observations. Without feedback, an unrealistic population of overly bound clouds develops. Spiral arms are not found to trigger star formation, they merely gather gas into more massive GMCs. We discuss in more detail interactions of clouds in the ISM, and argue that these are more complex than early ideas of cloud-cloud collisions. Finally we show ongoing work to determine whether the Milky Way is a flocculent or grand design spiral.

  16. Evolution of Cloud Storage as Cloud Computing Infrastructure Service

    OpenAIRE

    Rajan, Arokia Paul; Shanmugapriyaa

    2013-01-01

    Enterprises are driving towards less cost, more availability, agility, managed risk - all of which is accelerated towards Cloud Computing. Cloud is not a particular product, but a way of delivering IT services that are consumable on demand, elastic to scale up and down as needed, and follow a pay-for-usage model. Out of the three common types of cloud computing service models, Infrastructure as a Service (IaaS) is a service model that provides servers, computing power, network bandwidth and S...

  17. Cloud Security A Comprehensive Guide to Secure Cloud Computing

    CERN Document Server

    Krutz, Ronald L

    2010-01-01

    Well-known security experts decipher the most challenging aspect of cloud computing-security. Cloud computing allows for both large and small organizations to have the opportunity to use Internet-based services so that they can reduce start-up costs, lower capital expenditures, use services on a pay-as-you-use basis, access applications only as needed, and quickly reduce or increase capacities. However, these benefits are accompanied by a myriad of security issues, and this valuable book tackles the most common security challenges that cloud computing faces. The authors offer you years of unpa

  18. Ionisation in turbulent magnetic molecular clouds. I. Effect on density and mass-to-flux ratio structures

    Science.gov (United States)

    Bailey, Nicole D.; Basu, Shantanu; Caselli, Paola

    2017-05-01

    Context. Previous studies show that the physical structures and kinematics of a region depend significantly on the ionisation fraction. These studies have only considered these effects in non-ideal magnetohydrodynamic simulations with microturbulence. The next logical step is to explore the effects of turbulence on ionised magnetic molecular clouds and then compare model predictions with observations to assess the importance of turbulence in the dynamical evolution of molecular clouds. Aims: In this paper, we extend our previous studies of the effect of ionisation fractions on star formation to clouds that include both non-ideal magnetohydrodynamics and turbulence. We aim to quantify the importance of a treatment of the ionisation fraction in turbulent magnetised media and investigate the effect of the turbulence on shaping the clouds and filaments before star formation sets in. In particular, here we investigate how the structure, mass and width of filamentary structures depend on the amount of turbulence in ionised media and the initial mass-to-flux ratio. Methods: To determine the effects of turbulence and mass-to-flux ratio on the evolution of non-ideal magnetised clouds with varying ionisation profiles, we have run two sets of simulations. The first set assumes different initial turbulent Mach values for a fixed initial mass-to-flux ratio. The second set assumes different initial mass-to-flux ratio values for a fixed initial turbulent Mach number. Both sets explore the effect of using one of two ionisation profiles: step-like (SL) or cosmic ray only (CR-only). We compare the resulting density and mass-to-flux ratio structures both qualitatively and quantitatively via filament and core masses and filament fitting techniques (Gaussian and Plummer profiles). Results: We find that even with almost no turbulence, filamentary structure still exists although at lower density contours. Comparison of simulations shows that for turbulent Mach numbers above 2, there is

  19. Horizontal distribution of mixed cloud type scene

    Science.gov (United States)

    Guillaume, A.; Kahn, B. H.; Yue, Q.; Wong, S.; Manipon, G.; Hua, H.; Wilson, B. D.; Wang, T.; Fetzer, E. J.

    2016-12-01

    We describe a novel method to uniquely characterize and quantify the scale dependence of mixed cloud scene geometry using cloud type classification reported with the 94GHz CloudSat radar. Only a fraction of all possible combinations of cloud types are observed at any along-track length scale considered. Cloud scenes most frequently contain only one or two cloud types. We show how cloud occurrence depends on the grid cell spatial resolution used to define cloud scenes. A maximum number of observed cloud scenes occur near 100 km with fewer cloud type combinations at smaller and larger scales. We then quantify the cloud lengths along the CloudSat track using both the cloud top classification and the vertical structure of cloud classification separately for each of the nine cloud types defined by CloudSat and for all clouds considered independent of cloud type. While the individual cloud types do not follow a clear power law behavior as a function of horizontal or vertical scale, a robust power law scaling of cloud geometry is observed when cloud type is not considered. The power law scaling exponent of horizontal length is approximated by β ≈ -5/3 over two to three orders of magnitude. The power law scaling exponent of vertical length is approximated by β ≈ -7/3 over two orders of magnitude. These exponents are in agreement with previous studies using numerical models, satellite, and in situ aircraft observations. In particular, the anisotropy in the horizontal and vertical scaling are nearly identical to recent aircraft observations of wind kinetic energy spectra, suggesting the underlying three-dimensional cloud geometry is strongly related to kinetic energy spectra.

  20. Molecular clouds without detectable CO

    Science.gov (United States)

    Blitz, Leo; Bazell, David; Desert, F. Xavier

    1990-03-01

    The clouds identified by Desert, Bazell, and Boulanger (DBB clouds) in their search for high-latitude molecular clouds were observed in the CO (J = 1-0) line, but only 13 percent of the sample was detected. The remaining 87 percent are diffuse molecular clouds with CO abundances of about 10 to the -6th, a typical value for diffuse clouds. This hypothesis is shown to be consistent with Copernicus data. The DBB clouds are shown to ben an essentially complete catalog of diffuse molecular clouds in the solar vicinity. The total molecular surface density in the vicinity of the sun is then only about 20 percent greater than the 1.3 solar masses/sq pc determined by Dame et al. (1987). Analysis of the CO detections indicates that there is a sharp threshold in extinction of 0.25 mag before CO is detectable and is derived from the IRAS I(100) micron threshold of 4 MJy/sr. This threshold is presumably where the CO abundance exhibits a sharp increase

  1. ATLAS Cloud R&D

    CERN Document Server

    Panitkin, S; The ATLAS collaboration; Caballero Bejar, J; Benjamin, D; DiGirolamo, A; Gable, I; Hendrix, V; Hover, J; Kucharczuk, K; Medrano LLamas, R; Love, P; Ohman, H; Paterson, M; Sobie, R; Taylor, R; Walker, R; Zaytsev, A

    2014-01-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained...

  2. Data mining in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Ruxandra-Ştefania PETRE

    2012-10-01

    Full Text Available This paper describes how data mining is used in cloud computing. Data Mining is used for extracting potentially useful information from raw data. The integration of data mining techniques into normal day-to-day activities has become common place. Every day people are confronted with targeted advertising, and data mining techniques help businesses to become more efficient by reducing costs.Data mining techniques and applications are very much needed in the cloud computing paradigm. The implementation of data mining techniques through Cloud computing will allow the users to retrieve meaningful information from virtually integrated data warehouse that reduces the costs of infrastructure and storage.

  3. Cloud computing for enterprise architectures

    CERN Document Server

    Mahmood, Zaigham

    2011-01-01

    This important text provides a single point of reference for state-of-the-art cloud computing design and implementation techniques. The book examines cloud computing from the perspective of enterprise architecture, asking the question; how do we realize new business potential with our existing enterprises? Its topics and features are: with a Foreword by Thomas Erl; contains contributions from an international selection of preeminent experts; presents the state-of-the-art in enterprise architecture approaches with respect to cloud computing models, frameworks, technologies, and applications; di

  4. Mobile Cloud Computing and Applications

    Institute of Scientific and Technical Information of China (English)

    Chengzhong Xu

    2011-01-01

    @@ In 2010, cloud computing gained momentum.Cloud computing is a model for real-time, on-demand, pay-for-use network access to a shared pool of configurable computing and storage resources.It has matured from a promising business concept to a working reality in both the private and public IT sectors.The U.S.government, for example, has requested all its agencies to evaluate cloud computing alternatives as part of their budget submissions for new IT investment.

  5. Aerosol-Cloud-Drizzle-Turbulence Interactions in Boundary Layer Clouds

    Science.gov (United States)

    2013-09-30

    prevent sticking. They were dispersed using a mechanism that auger fed particles into fluidized bed of grit before emitting them to the outside in a...objectives are to: 1) document the structure and characteristics of entrainment circulations in marine stratocumulus and fair-weather-cumuli, 2...characterize the vertical distribution of drizzle and how it relates to cloud and mesoscale circulations ; 3) investigate the relative role of cloud

  6. "Electrostructural Phase Changes" In Charged Particulate Clouds: Planetary and Astrophysical Implications

    Science.gov (United States)

    Marshall, J. R.

    1999-09-01

    There is empirical evidence that freely-suspended triboelectrostatically charged particulate clouds of dielectric materials undergo rapid conversion from (nominally) monodispersed "aerosols" to a system of well-defined grain aggregates after grain motion or fluid turbulence ceases within the cloud. In United States Microgravity Laboratory Space Shuttle experiments USML-1 and USML-2, it was found that ballistically-energized grain dispersions would rapidly convert into populations of filamentary aggregates after natural fluid (air) damping of grain motion. Unless continuously disrupted mechanically, it was impossible to maintain a non-aggregated state for the grain clouds of sand-size materials. Similarly, ground- based experiments with very fine dust-size material produced the same results: rapid, impulsive "collapse" of the dispersed grains into well-defined filamentary structures. In both ground-based and microgravity experiments, the chains or filaments were created by long-range dipole electrostatic forces and dipole-induced dielectric interactions, not by monopole interactions. Maintenance of the structures was assisted by short-range static boundary adhesion forces and van der Waals interactions. When the aggregate containers in the USML experiments were disturbed after aggregate formation, the quiescently disposed filaments would rearrange themselves into fractal bundles and tighter clusters as a result of enforced encounters with one another. The long-range dipole interactions that bring the grains together into aggregates are a product of randomly-distributed monopole charges on the grain surfaces. In computer simulations, it has been shown that when the force vectors of all the random charges (of both sign) on a grain are resolved mathematically by assuming Coulombic interaction between them, the net result is a dipole moment on individual grains, even though the grains are electrically neutral insofar as there is no predominance, on their surface, of one

  7. Unveiling the Early-Stage Anatomy of a Protocluster Hub with ALMA

    CERN Document Server

    Henshaw, J D; Longmore, S N; Caselli, P; Pineda, J E; Avison, A; Barnes, A T; Tan, J C; Fontani, F

    2016-01-01

    High-mass stars shape the interstellar medium in galaxies, and yet, largely because the initial conditions are poorly constrained, we do not know how they form. One possibility is that high-mass stars and star clusters form at the junction of filamentary networks, referred to as "hubs". In this letter we present the complex anatomy of a protocluster hub within an Infrared Dark Cloud (IRDC), G035.39-00.33, believed to be in an early phase of its evolution. We use high-angular resolution ($\\{\\theta_{\\rm maj}, \\theta_{\\rm min}\\}=\\{1.''4, 0.''8\\}\\sim\\{0.02\\,{\\rm pc}, 0.01\\,{\\rm pc}\\}$) and high-sensitivity ($0.2$ mJy beam$^{-1}$; $\\sim0.2$ M$_{\\odot}$) 1.07 mm dust continuum observations from the Atacama Large Millimeter Array (ALMA) to identify a network of narrow, $0.028\\,\\pm\\,0.005$ pc wide, filamentary structures. These are a factor of $\\gtrsim3$ narrower than the proposed "quasi-universal" $\\sim0.1$ pc width of interstellar filaments. Additionally, 28 compact objects are reported, spanning a mass range $0.3\\...

  8. Towards a service centric contextualized vehicular cloud

    NARCIS (Netherlands)

    Hu, Xiping; Wang, Lei; Sheng, Zhengguo; TalebiFard, Peyman; Zhou, Li; Liu, Jia; Leung, Victor C.M.

    2014-01-01

    This paper proposes a service-centric contextualized vehicular (SCCV) cloud platform to facilitate the deployment and delivery of cloud-based mobile applications over vehicular networks. SCCV cloud employs a multi-tier architecture that consists of the network, mobile device, and cloud tiers. Based

  9. Hidden in the Clouds: New Ideas in Cloud Computing

    CERN Document Server

    CERN. Geneva

    2013-01-01

    Abstract: Cloud computing has become a hot topic. But 'cloud' is no newer in 2013 than MapReduce was in 2005: We've been doing both for years. So why is cloud more relevant today than it ever has been? In this presentation, we will introduce the (current) central thesis of cloud computing, and explore how and why (or even whether) the concept has evolved. While we will cover a little light background, our primary focus will be on the consequences, corollaries and techniques introduced by some of the leading cloud developers and organizations. We each have a different deployment model, different applications and workloads, and many of us are still learning to efficiently exploit the platform services offered by a modern implementation. The discussion will offer the opportunity to share these experiences and help us all to realize the benefits of cloud computing to the fullest degree. Please bring questions and opinions, and be ready to share both!   Bio: S...

  10. Secure Data Sharing in Cloud Computing using Hybrid cloud

    Directory of Open Access Journals (Sweden)

    Er. Inderdeep Singh

    2015-06-01

    Full Text Available Cloud computing is fast growing technology that enables the users to store and access their data remotely. Using cloud services users can enjoy the benefits of on-demand cloud applications and data with limited local infrastructure available with them. While accessing the data from cloud, different users may have relationship among them depending on some attributes, and thus sharing of data along with user privacy and data security becomes important to get effective results. Most of the research has been done to secure the data authentication so that user’s don’t lose their private data stored on public cloud. But still data sharing is a significant hurdle to overcome by researchers. Research is going on to provide secure data sharing with enhanced user privacy and data access security. In this paper various research and challenges in this area are discussed in detail. It will definitely help the cloud users to understand the topic and researchers to develop a method to overcome these challenges.

  11. CALIPSO Observations of Near-Cloud Aerosol Properties as a Function of Cloud Fraction

    Science.gov (United States)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Wood, Robert

    2015-01-01

    This paper uses spaceborne lidar data to study how near-cloud aerosol statistics of attenuated backscatter depend on cloud fraction. The results for a large region around the Azores show that: (1) far-from-cloud aerosol statistics are dominated by samples from scenes with lower cloud fractions, while near-cloud aerosol statistics are dominated by samples from scenes with higher cloud fractions; (2) near-cloud enhancements of attenuated backscatter occur for any cloud fraction but are most pronounced for higher cloud fractions; (3) the difference in the enhancements for different cloud fractions is most significant within 5km from clouds; (4) near-cloud enhancements can be well approximated by logarithmic functions of cloud fraction and distance to clouds. These findings demonstrate that if variability in cloud fraction across the scenes used to composite aerosol statistics are not considered, a sampling artifact will affect these statistics calculated as a function of distance to clouds. For the Azores-region dataset examined here, this artifact occurs mostly within 5 km from clouds, and exaggerates the near-cloud enhancements of lidar backscatter and color ratio by about 30. This shows that for accurate characterization of the changes in aerosol properties with distance to clouds, it is important to account for the impact of changes in cloud fraction.

  12. The design of cloud workflow systems

    CERN Document Server

    Liu, Xiao; Zhang, Gaofeng

    2011-01-01

    Cloud computing is the latest market-oriented computing paradigm which brings software design and development into a new era characterized by ""XaaS"", i.e. everything as a service. Cloud workflows, as typical software applications in the cloud, are composed of a set of partially ordered cloud software services to achieve specific goals. However, due to the low QoS (quality of service) nature of the cloud environment, the design of workflow systems in the cloud becomes a challenging issue for the delivery of high quality cloud workflow applications. To address such an issue, this book presents

  13. Characterization of Cloud Water-Content Distribution

    Science.gov (United States)

    Lee, Seungwon

    2010-01-01

    The development of realistic cloud parameterizations for climate models requires accurate characterizations of subgrid distributions of thermodynamic variables. To this end, a software tool was developed to characterize cloud water-content distributions in climate-model sub-grid scales. This software characterizes distributions of cloud water content with respect to cloud phase, cloud type, precipitation occurrence, and geo-location using CloudSat radar measurements. It uses a statistical method called maximum likelihood estimation to estimate the probability density function of the cloud water content.

  14. Research computing in a distributed cloud environment

    Energy Technology Data Exchange (ETDEWEB)

    Fransham, K; Agarwal, A; Armstrong, P; Bishop, A; Charbonneau, A; Desmarais, R; Hill, N; Gable, I; Gaudet, S; Goliath, S; Impey, R; Leavett-Brown, C; Ouellete, J; Paterson, M; Pritchet, C; Penfold-Brown, D; Podaima, W; Schade, D; Sobie, R J, E-mail: fransham@uvic.ca

    2010-11-01

    The recent increase in availability of Infrastructure-as-a-Service (IaaS) computing clouds provides a new way for researchers to run complex scientific applications. However, using cloud resources for a large number of research jobs requires significant effort and expertise. Furthermore, running jobs on many different clouds presents even more difficulty. In order to make it easy for researchers to deploy scientific applications across many cloud resources, we have developed a virtual machine resource manager (Cloud Scheduler) for distributed compute clouds. In response to a user's job submission to a batch system, the Cloud Scheduler manages the distribution and deployment of user-customized virtual machines across multiple clouds. We describe the motivation for and implementation of a distributed cloud using the Cloud Scheduler that is spread across both commercial and dedicated private sites, and present some early results of scientific data analysis using the system.

  15. Trust level of Clouds by Scheduling

    Directory of Open Access Journals (Sweden)

    Deva Sinha K.

    2015-11-01

    Full Text Available Cloud computing is a virtual storage which is used to store the data and information in secure manner. This project which gives a trustworthy to the cloud user from Admin without knowing the infrastructure and its properties of cloud. Cloud scheduled safety-critical data processing needs are beginning to push back strongly against using cloud computing, users will find that cloud scheduling will be maintained by the user to store their data on the cloud to create trust them . We have overcome this problem; a trusted cloud computing platform (TCCP proposed design. TCCP guarantees the implementation of the guest virtual machines to provide a closed box execution environment as a Service (IaaS providers such as Amazon EC2 allowing infrastructure. To protect a data in a secured way, while cloud user uploading a data it will get encrypted which means non readable format and when cloud user downloading a data it will get decrypted.

  16. Trust level of Clouds by Scheduling

    Directory of Open Access Journals (Sweden)

    Deva Sinha K

    2014-03-01

    Full Text Available Cloud computing is a virtual storage which is used to store the data and information in secure manner. This project which gives a trustworthy to the cloud user from Admin without knowing the infrastructure and its properties of cloud. Cloud scheduled safety-critical data processing needs are beginning to push back strongly against using cloud computing, users will find that cloud scheduling will be maintained by the user to store their data on the cloud to create trust them . We have overcome this problem; a trusted cloud computing platform (TCCP proposed design. TCCP guarantees the implementation of the guest virtual machines to provide a closed box execution environment as a Service (IaaS providers such as Amazon EC2 allowing infrastructure. To protect a data in a secured way, while cloud user uploading a data it will get encrypted which means non readable format and when cloud user downloading a data it will get decrypted.

  17. Research computing in a distributed cloud environment

    Science.gov (United States)

    Fransham, K.; Agarwal, A.; Armstrong, P.; Bishop, A.; Charbonneau, A.; Desmarais, R.; Hill, N.; Gable, I.; Gaudet, S.; Goliath, S.; Impey, R.; Leavett-Brown, C.; Ouellete, J.; Paterson, M.; Pritchet, C.; Penfold-Brown, D.; Podaima, W.; Schade, D.; Sobie, R. J.

    2010-11-01

    The recent increase in availability of Infrastructure-as-a-Service (IaaS) computing clouds provides a new way for researchers to run complex scientific applications. However, using cloud resources for a large number of research jobs requires significant effort and expertise. Furthermore, running jobs on many different clouds presents even more difficulty. In order to make it easy for researchers to deploy scientific applications across many cloud resources, we have developed a virtual machine resource manager (Cloud Scheduler) for distributed compute clouds. In response to a user's job submission to a batch system, the Cloud Scheduler manages the distribution and deployment of user-customized virtual machines across multiple clouds. We describe the motivation for and implementation of a distributed cloud using the Cloud Scheduler that is spread across both commercial and dedicated private sites, and present some early results of scientific data analysis using the system.

  18. Cloud Infrastructure Service Management - A Review

    Directory of Open Access Journals (Sweden)

    A. Anasuya Threse Innocent

    2012-03-01

    Full Text Available The new era of computing called Cloud Computing allows the user to access the cloud services dynamically over the Internet wherever and whenever needed. Cloud consists of data and resources; and the cloud services include the delivery of software, infrastructure, applications, and storage over the Internet based on user demand through Internet. In short, cloud computing is a business and economic model allowing the users to utilize high-end computing and storage virtually with minimal infrastructure on their end. Cloud has three service models namely, Cloud Software-as-a-Service (SaaS, Cloud Platform-as-a-Service (PaaS, and Cloud Infrastructure-as-a-Service (IaaS. This paper talks in depth of cloud infrastructure service management.

  19. Graph kernels between point clouds

    CERN Document Server

    Bach, Francis

    2007-01-01

    Point clouds are sets of points in two or three dimensions. Most kernel methods for learning on sets of points have not yet dealt with the specific geometrical invariances and practical constraints associated with point clouds in computer vision and graphics. In this paper, we present extensions of graph kernels for point clouds, which allow to use kernel methods for such ob jects as shapes, line drawings, or any three-dimensional point clouds. In order to design rich and numerically efficient kernels with as few free parameters as possible, we use kernels between covariance matrices and their factorizations on graphical models. We derive polynomial time dynamic programming recursions and present applications to recognition of handwritten digits and Chinese characters from few training examples.

  20. Cloud computing in medical imaging.

    Science.gov (United States)

    Kagadis, George C; Kloukinas, Christos; Moore, Kevin; Philbin, Jim; Papadimitroulas, Panagiotis; Alexakos, Christos; Nagy, Paul G; Visvikis, Dimitris; Hendee, William R

    2013-07-01

    Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing.

  1. Unidata Cyberinfrastructure in the Cloud

    Science.gov (United States)

    Ramamurthy, M. K.; Young, J. W.

    2016-12-01

    Data services, software, and user support are critical components of geosciences cyber-infrastructure to help researchers to advance science. With the maturity of and significant advances in cloud computing, it has recently emerged as an alternative new paradigm for developing and delivering a broad array of services over the Internet. Cloud computing is now mature enough in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Given the enormous potential of cloud-based services, Unidata has been moving to augment its software, services, data delivery mechanisms to align with the cloud-computing paradigm. To realize the above vision, Unidata has worked toward: * Providing access to many types of data from a cloud (e.g., via the THREDDS Data Server, RAMADDA and EDEX servers); * Deploying data-proximate tools to easily process, analyze, and visualize those data in a cloud environment cloud for consumption by any one, by any device, from anywhere, at any time; * Developing and providing a range of pre-configured and well-integrated tools and services that can be deployed by any university in their own private or public cloud settings. Specifically, Unidata has developed Docker for "containerized applications", making them easy to deploy. Docker helps to create "disposable" installs and eliminates many configuration challenges. Containerized applications include tools for data transport, access, analysis, and visualization: THREDDS Data Server, Integrated Data Viewer, GEMPAK, Local Data Manager, RAMADDA Data Server, and Python tools; * Leveraging Jupyter as a central platform and hub with its powerful set of interlinking tools to connect interactively data servers

  2. VMware vCloud director cookbook

    CERN Document Server

    Langenhan, Daniel

    2013-01-01

    VMware vCloud Director Cookbook will adopt a Cookbook-based approach. Packed with illustrations and programming examples, this book explains the simple as well as the complex recipes in an easy-to-understand language.""VMware vCloud Director Cookbook"" is aimed at system administrators and technical architects moving from a virtualized environment to cloud environments. Familiarity with cloud computing platforms and some knowledge of virtualization and managing cloud environments is expected.

  3. Cloud Security: Issues and Research Directions

    Science.gov (United States)

    2014-11-18

    al. present two storage isolation schemes that enable cloud users with high security requirements to verify that their disk storage is isolated from...Proof of Isolation for Cloud Storage Zhan Wang, Kun Sun, Sushil Jajodia, and Jiwu Jing 6. Selective and Fine-Grained Access to Data in the Cloud ... Cloud Security: Issues and Research Directions We organized an invitational workshop at George Mason University on Cloud Security: Issues and Research

  4. Cloud computing methods and practical approaches

    CERN Document Server

    Mahmood, Zaigham

    2013-01-01

    This book presents both state-of-the-art research developments and practical guidance on approaches, technologies and frameworks for the emerging cloud paradigm. Topics and features: presents the state of the art in cloud technologies, infrastructures, and service delivery and deployment models; discusses relevant theoretical frameworks, practical approaches and suggested methodologies; offers guidance and best practices for the development of cloud-based services and infrastructures, and examines management aspects of cloud computing; reviews consumer perspectives on mobile cloud computing an

  5. Cloud Top Scanning radiometer (CTS)

    Science.gov (United States)

    1978-01-01

    A scanning radiometer to be used for measuring cloud radiances in each of three spectral regions is described. Significant features incorporated in the Cloud Top Scanner design are: (1) flexibility and growth potential through use of easily replaceable modular detectors and filters; (2) full aperture, multilevel inflight calibration; (3) inherent channel registration through employment of a single shared field stop; and (4) radiometric sensitivity margin in a compact optical design through use of Honeywell developed (Hg,Cd)Te detectors and preamplifiers.

  6. Horizontally oriented plates in clouds

    CERN Document Server

    Bréon, François-Marie

    2011-01-01

    Horizontally oriented plates in clouds generate a sharp specular reflectance signal in the glint direction, often referred to as "subsun". This signal (amplitude and width) may be used to analyze the relative area fraction of oriented plates in the cloud top layer and their characteristic tilt angle to the horizontal. We make use of spaceborne measurements from the POLDER instrument to provide a statistical analysis of these parameters. More than half of the clouds show a detectable maximum reflectance in the glint direction, although this maximum may be rather faint. The typical effective fraction (area weighted) of oriented plates in clouds lies between 10-3 and 10-2. For those oriented plates, the characteristic tilt angle is less than 1 degree in most cases. These low fractions imply that the impact of oriented plates on the cloud albedo is insignificant. The largest proportion of clouds with horizontally oriented plates is found in the range 500-700 hPa, in agreement with typical in situ observation of p...

  7. Considerations about Cloud Services: Learning

    Directory of Open Access Journals (Sweden)

    Riccardo Cognini

    2013-05-01

    Full Text Available Cloud services are ubiquitous: for small to large companies the phenomenon of cloud service is nowadays a standard business practice. This paper would compile an analysis over a possible implementation of a cloud system, treating especially the legal aspect of this theme. In the Italian market has a large number of issues arise form cloud computing. First of all, this paper investigates the legal issues associated to cloud computing, specific contractual scheme that is able to define rights a duties both of user (private and/or public body and cloud provider. On one side there is all the EU legislative production related to privacy over electronic communication and, furthermore, the Privacy Directive is under a revision process to be more adaptable to new challenges of decentralized data treatment, but concretely there are no any structured and well defined legal instruments. Objectives: we present a possible solution to address the uncertainty of this area, starting from the EU legislative production with the help of the specific Italian scenario that could offer an operative solution. Indeed the Italian legal system is particularly adaptable to changing technologies and it could use as better as possible to adapt the already existing legal tools to this new technological era. Prior work: after an introduction to the state of the art, we show the main issues and their critical points that must be solved. Approach: observation of the state of the art to propose a new approach to find the suitable disciple

  8. Cloud computing for comparative genomics.

    Science.gov (United States)

    Wall, Dennis P; Kudtarkar, Parul; Fusaro, Vincent A; Pivovarov, Rimma; Patil, Prasad; Tonellato, Peter J

    2010-05-18

    Large comparative genomics studies and tools are becoming increasingly more compute-expensive as the number of available genome sequences continues to rise. The capacity and cost of local computing infrastructures are likely to become prohibitive with the increase, especially as the breadth of questions continues to rise. Alternative computing architectures, in particular cloud computing environments, may help alleviate this increasing pressure and enable fast, large-scale, and cost-effective comparative genomics strategies going forward. To test this, we redesigned a typical comparative genomics algorithm, the reciprocal smallest distance algorithm (RSD), to run within Amazon's Elastic Computing Cloud (EC2). We then employed the RSD-cloud for ortholog calculations across a wide selection of fully sequenced genomes. We ran more than 300,000 RSD-cloud processes within the EC2. These jobs were farmed simultaneously to 100 high capacity compute nodes using the Amazon Web Service Elastic Map Reduce and included a wide mix of large and small genomes. The total computation time took just under 70 hours and cost a total of $6,302 USD. The effort to transform existing comparative genomics algorithms from local compute infrastructures is not trivial. However, the speed and flexibility of cloud computing environments provides a substantial boost with manageable cost. The procedure designed to transform the RSD algorithm into a cloud-ready application is readily adaptable to similar comparative genomics problems.

  9. Evolution of molecular clouds

    Science.gov (United States)

    Sevenster, M.

    1993-01-01

    The evolution of interstellar molecular hydrogen was studied, with a special interest for the formation and evolution of molecular clouds and star formation within them, by a two-dimensional hydrodynamical simulation performed on a rectangular grid of physical sizes on the order of 100 pc. It is filled with an initial density of approx. 1 cm(exp -3), except for one cell (approx. 1 pc(exp 2)) at the center of the grid where an accretion core of 1-10(exp 3) solar masses is placed. The grid is co-moving with the gridcenter that is on a circular orbit around the Galactic center and that also is the guiding center of epicyclic approximation of orbits of the matter surrounding it. The initial radial velocity is zero; to account for differential rotation the initial tangential velocity (i.e. the movement around the galactic center) is proportional to the radial distance to the grid center. The rate is comparable to the rotation rate at the Local Standard of Rest. The influence of galactic rotation is noticed by spiral or elliptical forms, but on much longer time scales than self gravitation and cooling processes. Density and temperature are kept constant at the boundaries and no inflow is allowed along the tangential boundaries.

  10. Geometric characteristics of clouds from ceilometer measurements and radiosounding methods

    OpenAIRE

    Costa Surós, Montse

    2014-01-01

    Improving methods for automatic and continuous description of cloud has a huge importance in order to determine the role of clouds in climate and their contribution to climate change. The geometric characteristics of clouds, such as the cloud cover and the cloud vertical structure (CVS), including the cloud base height (CBH) which is linked to cloud type, are very important for describing the impact clouds have on the atmosphere. It is presented a complete study of the cloud cover and the...

  11. The Community Cloud Atlas - Building an Informed Cloud Watching Community

    Science.gov (United States)

    Guy, N.; Rowe, A.

    2014-12-01

    The sky is dynamic, from long lasting cloud systems to ethereal, fleeting formations. After years of observing the sky and growing our personal collections of cloud photos, we decided to take to social media to share pictures, as well as build and educate a community of cloud enthusiasts. We began a Facebook page, the Community Cloud Atlas, described as "...the place to show off your pictures of the sky, identify clouds, and to discuss how specific cloud types form and what they can tell you about current and future weather." Our main goal has been to encourage others to share their pictures, while we describe the scenes from a meteorological perspective and reach out to the general public to facilitate a deeper understanding of the sky. Nearly 16 months later, we have over 1400 "likes," spanning 45 countries with ages ranging from 13 to over 65. We have a consistent stream of submissions; so many that we decided to start a corresponding blog to better organize the photos, provide more detailed explanations, and reach a bigger audience. Feedback from users has been positive in support of not only sharing cloud pictures, but also to "learn the science as well as admiring" the clouds. As one community member stated, "This is not 'just' a place to share some lovely pictures." We have attempted to blend our social media presence with providing an educational resource, and we are encouraged by the response we have received. Our Atlas has been informally implemented into classrooms, ranging from a 6th grade science class to Meteorology courses at universities. NOVA's recent Cloud Lab also made use of our Atlas as a supply of categorized pictures. Our ongoing goal is to not only continue to increase understanding and appreciation of the sky among the public, but to provide an increasingly useful tool for educators. We continue to explore different social media options to interact with the public and provide easier content submission, as well as software options for

  12. Zen of cloud learning cloud computing by examples on Microsoft Azure

    CERN Document Server

    Bai, Haishi

    2014-01-01

    Zen of Cloud: Learning Cloud Computing by Examples on Microsoft Azure provides comprehensive coverage of the essential theories behind cloud computing and the Windows Azure cloud platform. Sharing the author's insights gained while working at Microsoft's headquarters, it presents nearly 70 end-to-end examples with step-by-step guidance on implementing typical cloud-based scenarios.The book is organized into four sections: cloud service fundamentals, cloud solutions, devices and cloud, and system integration and project management. Each chapter contains detailed exercises that provide readers w

  13. Clouds and Hazes in Exoplanet Atmospheres

    CERN Document Server

    Marley, Mark S; Cuzzi, Jeffrey N; Kitzmann, Daniel

    2013-01-01

    Clouds and hazes are commonplace in the atmospheres of solar system planets and are likely ubiquitous in the atmospheres of extrasolar planets as well. Clouds affect every aspect of a planetary atmosphere, from the transport of radiation, to atmospheric chemistry, to dynamics and they influence - if not control - aspects such as surface temperature and habitability. In this review we aim to provide an introduction to the role and properties of clouds in exoplanetary atmospheres. We consider the role clouds play in influencing the spectra of planets as well as their habitability and detectability. We briefly summarize how clouds are treated in terrestrial climate models and consider the far simpler approaches that have been taken so far to model exoplanet clouds, the evidence for which we also review. Since clouds play a major role in the atmospheres of certain classes of brown dwarfs we briefly discuss brown dwarf cloud modeling as well. We also review how the scattering and extinction efficiencies of cloud p...

  14. Guidelines for Building a Private Cloud Infrastructure

    DEFF Research Database (Denmark)

    Ali Babar, Muhammad; Pantić, Zoran

    Cloud computing has become an extremely attractive area of research and practice over the last few years. An increasing number of public and private sector organizations have either adopted cloud computing based solutions or are seriously considering a move to cloud computing. However...... concepts of cloud computing and then elaborate on the practical aspects concerning the design, installation and implementation of a private cloud using open source solution. It is expected that organizations looking at the possibilities for implementing cloud solutions would benefit from getting the basics......, there are many concerns about adopting and using public cloud solutions. Hence, private cloud solutions are becoming an attractive alternative to a large number of companies. We initiated a project aimed at designing and setting up a private cloud infrastructure in an academic and scientific environment based...

  15. The Evolution of Cloud Computing in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00224309; The ATLAS collaboration; Berghaus, Frank; Love, Peter; Leblanc, Matthew Edgar; Di Girolamo, Alessandro; Paterson, Michael; Gable, Ian; Sobie, Randall; Field, Laurence

    2015-01-01

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This work will describe the overall evolution of cloud computing in ATLAS. The current status of the VM management systems used for harnessing IAAS resources will be discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for managing VM images across multiple clouds, ...

  16. Cloud computing development in Armenia

    Directory of Open Access Journals (Sweden)

    Vazgen Ghazaryan

    2014-10-01

    Full Text Available Purpose – The purpose of the research is to clarify benefits and risks in regards with data protection, cost; business can have by the use of this new technologies for the implementation and management of organization’s information systems.Design/methodology/approach – Qualitative case study of the results obtained via interviews. Three research questions were raised: Q1: How can company benefit from using Cloud Computing compared to other solutions?; Q2: What are possible issues that occur with Cloud Computing?; Q3: How would Cloud Computing change an organizations’ IT infrastructure?Findings – The calculations provided in the interview section prove the financial advantages, even though the precise degree of flexibility and performance has not been assessed. Cloud Computing offers great scalability. Another benefit that Cloud Computing offers, in addition to better performance and flexibility, is reliable and simple backup data storage, physically distributed and so almost invulnerable to damage. Although the advantages of Cloud Computing more than compensate for the difficulties associated with it, the latter must be carefully considered. Since the cloud architecture is relatively new, so far the best guarantee against all risks it entails, from a single company's perspective, is a well-formulated service-level agreement, where the terms of service and the shared responsibility and security roles between the client and the provider are defined.Research limitations/implications – study was carried out on the bases of two companies, which gives deeper view, but for more widely applicable results, a wider analysis is necessary.Practical implications:Originality/Value – novelty of the research depends on the fact that existing approaches on this problem mainly focus on technical side of computing.Research type: case study

  17. Liquid Cloud Responses to Soot

    Science.gov (United States)

    Koch, D. M.

    2010-12-01

    Although soot absorption warms the atmosphere, soot may cause climate cooling due to its effects on liquid clouds, including contribution to cloud condensation nuclei (CCN) and semi-direct effects. Six global models that include aerosol microphysical schemes conducted three soot experiments. The average model cloud radiative response to biofuel soot (black and organic carbon), including both indirect and semi-direct effects, is -0.12 Wm-2, comparable in size but opposite in sign to the respective direct atmospheric warming. In a more idealized fossil fuel black carbon only experiment, some models calculated a positive cloud response because the soot provided a deposition sink for sulfate, decreasing formation of more viable CCN. Biofuel soot particles were typically assumed to be larger and more hygroscopic than for fossil fuel soot and therefore caused more negative forcing, as also found in previous studies. Diesel soot (black and organic carbon) experiments had relatively smaller cloud impacts with five of the models effect alone may also be negative in global models, as found by several previous studies. The soot-cloud effects are quite uncertain. The range of model responses was large and interrannual variability for each model can also be large. Furthermore the aerosol microphysical schemes are poorly constrained, and the non-linearities resulting from the competition of opposing effects on the CCN population make it difficult to extrapolate from idealized experiments to likely impacts of realistic potential emission changes. However, results so far suggest that soot-induced cloud-cooling effects are comparable in magnitude to the direct warming effects from soot absorption.

  18. Validation of MODIS cloud mask and multilayer flag using CloudSat-CALIPSO cloud profiles and a cross-reference of their cloud classifications

    Science.gov (United States)

    Wang, Tao; Fetzer, Eric J.; Wong, Sun; Kahn, Brian H.; Yue, Qing

    2016-10-01

    Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 cloud observations (MYD06) at 1 km are collocated with daytime CloudSat-Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) (C-C) cloud vertical structures (2B-CLDCLASS-LIDAR). For 2007-2010, over 267 million C-C cloud profiles are used to (1) validate MODIS cloud mask and cloud multilayer flag and (2) cross-reference between C-C cloud types and MODIS cloud regimes defined by joint histograms of cloud top pressure (CTP) and cloud optical depth (τ). Globally, of total observations, C-C reports 27.1% clear and 72.9% cloudy, whereas MODIS reports 30.0% confidently clear and 58.7% confidently cloudy, with the rest 7.1% as probably clear and 4.2% as probably cloudy. Agreement between MODIS and C-C is 77.8%, with 20.9% showing both clear and 56.9% showing both cloudy. The 9.1% of observations are clear in MODIS but cloudy in C-C, indicating clouds missed by MODIS; 1.8% of observations are cloudy in MODIS but clear in C-C, likely due to aerosol/dust or surface snow layers misidentified by MODIS. C-C reports 47.4/25.5% single-layer/multilayer clouds, while MODIS reports 26.7/14.0%. For C-C single-layer clouds, 90% of tropical MODIS high (CTP 23) clouds are recognized as deep convective in C-C. Approximately 70% of MODIS low-level (CTP > 680 hPa) clouds are classified as stratocumulus in C-C regardless of region and optical thickness. No systematic relationship exists between MODIS middle-level (680 < CTP < 440 hPa) clouds and C-C cloud types, largely due to different definitions adopted.

  19. How small is a small cloud?

    Directory of Open Access Journals (Sweden)

    I. Koren

    2008-07-01

    Full Text Available The interplay between clouds and aerosols and their contribution to the radiation budget is one of the largest uncertainties of climate change. Most work to date has separated cloudy and cloud-free areas in order to evaluate the individual radiative forcing of aerosols, clouds, and aerosol effects on clouds.

    Here we examine the size distribution and the optical properties of small, sparse cumulus clouds and the associated optical properties of what is considered a cloud-free atmosphere within the cloud field. We show that any separation between clouds and cloud free atmosphere will incur errors in the calculated radiative forcing.

    The nature of small cumulus cloud size distributions suggests that at any resolution, a significant fraction of the clouds are missed, and their optical properties are relegated to the apparent cloud-free optical properties. At the same time, the cloudy portion incorporates significant contribution from non-cloudy pixels.

    We show that the largest contribution to the total cloud reflectance comes from the smallest clouds and that the spatial resolution changes the apparent energy flux of a broken cloudy scene. When changing the resolution from 30 m to 1 km (Landsat to MODIS the average "cloud-free" reflectance at 1.65 μm increases from 0.0095 to 0.0115 (>20%, the cloud reflectance decreases from 0.13 to 0.066 (~50%, and the cloud coverage doubles, resulting in an important impact on climate forcing estimations. The apparent aerosol forcing is on the order of 0.5 to 1 Wm−2 per cloud field.

  20. Fast Simulators for Satellite Cloud Optical Centroid Pressure Retrievals, 1. Evaluation of OMI Cloud Retrievals

    Science.gov (United States)

    Joiner, J.; Vasilkov, A.; Gupta, P.; Bhartia, P. K.; Veefkind, P.; Sneep, M.; de Haan, J.; Polonsky, I.; Spurr, R.

    2012-01-01

    The cloud Optical Centroid Pressure (OCP), also known as the effective cloud pressure, is a satellite-derived parameter that is commonly used in trace-gas retrievals to account for the effects of clouds on near-infrared through ultraviolet radiance measurements. Fast simulators are desirable to further expand the use of cloud OCP retrievals into the operational and climate communities for applications such as data assimilation and evaluation of cloud vertical structure in general circulation models. In this paper, we develop and validate fast simulators that provide estimates of the cloud OCP given a vertical profile of optical extinction. We use a pressure-weighting scheme where the weights depend upon optical parameters of clouds and/or aerosol. A cloud weighting function is easily extracted using this formulation. We then use fast simulators to compare two different satellite cloud OCP retrievals from the Ozone Monitoring Instrument (OMI) with estimates based on collocated cloud extinction profiles from a combination of CloudS at radar and MODIS visible radiance data. These comparisons are made over a wide range of conditions to provide a comprehensive validation of the OMI cloud OCP retrievals. We find generally good agreement between OMI cloud OCPs and those predicted by CloudSat. However, the OMI cloud OCPs from the two independent algorithms agree better with each other than either does with the estimates from CloudSat/MODIS. Differences between OMI cloud OCPs and those based on CloudSat/MODIS may result from undetected snow/ice at the surface, cloud 3-D effects, low altitude clouds missed by CloudSat, and the fact that CloudSat only observes a relatively small fraction of an OMI field-of-view.