WorldWideScience

Sample records for field-insensitive strain sensors

  1. Flexible piezotronic strain sensor.

    Science.gov (United States)

    Zhou, Jun; Gu, Yudong; Fei, Peng; Mai, Wenjie; Gao, Yifan; Yang, Rusen; Bao, Gang; Wang, Zhong Lin

    2008-09-01

    Strain sensors based on individual ZnO piezoelectric fine-wires (PFWs; nanowires, microwires) have been fabricated by a simple, reliable, and cost-effective technique. The electromechanical sensor device consists of a single electrically connected PFW that is placed on the outer surface of a flexible polystyrene (PS) substrate and bonded at its two ends. The entire device is fully packaged by a polydimethylsiloxane (PDMS) thin layer. The PFW has Schottky contacts at its two ends but with distinctly different barrier heights. The I- V characteristic is highly sensitive to strain mainly due to the change in Schottky barrier height (SBH), which scales linear with strain. The change in SBH is suggested owing to the strain induced band structure change and piezoelectric effect. The experimental data can be well-described by the thermionic emission-diffusion model. A gauge factor of as high as 1250 has been demonstrated, which is 25% higher than the best gauge factor demonstrated for carbon nanotubes. The strain sensor developed here has applications in strain and stress measurements in cell biology, biomedical sciences, MEMS devices, structure monitoring, and more.

  2. Fibre optic strain sensor: examples of applications

    Science.gov (United States)

    Kruszewski, J.; Beblowska, M.; Wrzosek, P.

    2006-03-01

    Construction of strain sensor for application in safety systems has been presented. The device consists of sensor's head and source and detector units. The head is made of polymer fiber bends. Designed sensor could be mounted in monitoring place (e.g. under a floor) and controlled by PC unit or could be used as a portable device for a valuable object protection.

  3. Graphene based strain sensor with LCP substrate

    Science.gov (United States)

    Nie, M.; Yang, H. S.; Xia, Y. H.

    2018-02-01

    A flexible strain sensor constructed by an efficient, low-cost fabrication strategy is presented in this paper. It is assembled by adhering grid-like graphene on LCP substrate. Kinds of measurement setup have been designed to verify that the proposed flexible sensor device is suitable to be used in health monitoring system. From the experiment results, it can be proved that the sensor exhibits the following features: ultra-light, relatively good sensitivity, high reversibility, superior physical robustness, easy fabrication. With the great performance of this flexible strain sensor, it is considered to play an important role in body monitoring, structural health monitoring system, fatigue detection and healthcare systems in the near future.

  4. Strain sensors for high field pulse magnets

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Christian [Los Alamos National Laboratory; Zheng, Yan [Los Alamos National Laboratory; Easton, Daniel [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

    2009-01-01

    In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Three operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.

  5. Ultrasensitive, Stretchable Strain Sensors Based on Fragmented Carbon Nanotube Papers

    KAUST Repository

    Zhou, Jian; Yu, Hu; Xu, Xuezhu; Han, Fei; Lubineau, Gilles

    2017-01-01

    The development of strain sensors featuring both ultra high sensitivity and high stretchability is still a challenge. We demonstrate that strain sensors based on fragmented single-walled carbon nanotube (SWCNT) paper embedded in poly

  6. Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors.

    Science.gov (United States)

    Tavassolizadeh, Ali; Rott, Karsten; Meier, Tobias; Quandt, Eckhard; Hölscher, Hendrik; Reiss, Günter; Meyners, Dirk

    2016-11-11

    Magnetostrictive tunnel magnetoresistance (TMR) sensors pose a bright perspective in micro- and nano-scale strain sensing technology. The behavior of TMR sensors under mechanical stress as well as their sensitivity to the applied stress depends on the magnetization configuration of magnetic tunnel junctions (MTJ)s with respect to the stress axis. Here, we propose a configuration resulting in an inverse effect on the tunnel resistance by tensile and compressive stresses. Numerical simulations, based on a modified Stoner-Wohlfarth (SW) model, are performed in order to understand the magnetization reversal of the sense layer and to find out the optimum bias magnetic field required for high strain sensitivity. At a bias field of -3.2 kA/m under a 0.2 × 10 - 3 strain, gauge factors of 2294 and -311 are calculated under tensile and compressive stresses, respectively. Modeling results are investigated experimentally on a round junction with a diameter of 30 ± 0.2 μ m using a four-point bending apparatus. The measured field and strain loops exhibit nearly the same trends as the calculated ones. Also, the gauge factors are in the same range. The junction exhibits gauge factors of 2150 ± 30 and -260 for tensile and compressive stresses, respectively, under a -3.2 kA/m bias magnetic field. The agreement of the experimental and modeling results approves the proposed configuration for high sensitivity and ability to detect both tensile and compressive stresses by a single TMR sensor.

  7. Corrosion induced strain monitoring through fibre optic sensors

    International Nuclear Information System (INIS)

    Grattan, S K T; Basheer, P A M; Taylor, S E; Zhao, W; Sun, T; Grattan, K T V

    2007-01-01

    The use of strain sensors is commonplace within civil engineering. Fibre optic strain sensors offer a number of advantages over the current electrical resistance type gauges. In this paper the use of fibre optic strain sensors and electrical resistance gauges to monitor the production of corrosion by-products has been investigated and reported

  8. Development of piping strain sensor for stress evaluation

    International Nuclear Information System (INIS)

    Takahama, Tsunemichi; Nishimura, Kazuma; Ninomiya, Seiichiro; Matsumoto, Yoshihiro; Harada, Yutaka

    2014-01-01

    In a small diameter piping, stresses are generated due to internal fluid or pump vibrations especially around the welding parts. Authors have successfully developed a pipe strain sensor which is able to measure such stresses. Unlike conventional methods using strain gages and adhesive bond, the sensor can measure the strain without putting adhesive bond on the piping surface. However, the strain sensor can provide measurements with a level of accuracy equivalent to that of conventional method using strain gages and adhesive bond. Accordingly, the strain sensor can significantly reduce the working time without any loss of the measurement accuracy. (author)

  9. Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors

    Directory of Open Access Journals (Sweden)

    Ali Tavassolizadeh

    2016-11-01

    Full Text Available Magnetostrictive tunnel magnetoresistance (TMR sensors pose a bright perspective in micro- and nano-scale strain sensing technology. The behavior of TMR sensors under mechanical stress as well as their sensitivity to the applied stress depends on the magnetization configuration of magnetic tunnel junctions (MTJs with respect to the stress axis. Here, we propose a configuration resulting in an inverse effect on the tunnel resistance by tensile and compressive stresses. Numerical simulations, based on a modified Stoner–Wohlfarth (SW model, are performed in order to understand the magnetization reversal of the sense layer and to find out the optimum bias magnetic field required for high strain sensitivity. At a bias field of −3.2 kA/m under a 0.2 × 10 - 3 strain, gauge factors of 2294 and −311 are calculated under tensile and compressive stresses, respectively. Modeling results are investigated experimentally on a round junction with a diameter of 30 ± 0.2 μ m using a four-point bending apparatus. The measured field and strain loops exhibit nearly the same trends as the calculated ones. Also, the gauge factors are in the same range. The junction exhibits gauge factors of 2150 ± 30 and −260 for tensile and compressive stresses, respectively, under a −3.2 kA/m bias magnetic field. The agreement of the experimental and modeling results approves the proposed configuration for high sensitivity and ability to detect both tensile and compressive stresses by a single TMR sensor.

  10. Modeling of a Surface Acoustic Wave Strain Sensor

    Science.gov (United States)

    Wilson, W. C.; Atkinson, Gary M.

    2010-01-01

    NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented

  11. Sensitivity Enhancement of FBG-Based Strain Sensor.

    Science.gov (United States)

    Li, Ruiya; Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Li, Tianliang; Mao, Jian

    2018-05-17

    A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments.

  12. Printed strain sensors for early damage detection in engineering structures

    Science.gov (United States)

    Zymelka, Daniel; Yamashita, Takahiro; Takamatsu, Seiichi; Itoh, Toshihiro; Kobayashi, Takeshi

    2018-05-01

    In this paper, we demonstrate the analysis of strain measurements recorded using a screen-printed sensors array bonded to a metal plate and subjected to high strains. The analysis was intended to evaluate the capabilities of the printed strain sensors to detect abnormal strain distribution before actual defects (cracks) in the analyzed structures appear. The results demonstrate that the developed device can accurately localize the enhanced strains at the very early stage of crack formation. The promising performance and low fabrication cost confirm the potential suitability of the printed strain sensors for applications within the framework of structural health monitoring (SHM).

  13. Photonic Crystal Fiber Sensors for Strain and Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Jian Ju

    2009-01-01

    Full Text Available This paper discusses the applications of photonic crystal fibers (PCFs for strain and temperature measurement. Long-period grating sensors and in-fiber modal interferometric sensors are described and compared with their conventional single-mode counterparts. The strain sensitivities of the air-silica PCF sensors are comparable or higher than those implemented in conventional single-mode fibers but the temperature sensitivities of the PCF sensors are much lower.

  14. Experimental study on an FBG strain sensor

    Science.gov (United States)

    Liu, Hong-lin; Zhu, Zheng-wei; Zheng, Yong; Liu, Bang; Xiao, Feng

    2018-01-01

    Landslides and other geological disasters occur frequently and often cause high financial and humanitarian cost. The real-time, early-warning monitoring of landslides has important significance in reducing casualties and property losses. In this paper, by taking the high initial precision and high sensitivity advantage of FBG, an FBG strain sensor is designed combining FBGs with inclinometer. The sensor was regarded as a cantilever beam with one end fixed. According to the anisotropic material properties of the inclinometer, a theoretical formula between the FBG wavelength and the deflection of the sensor was established using the elastic mechanics principle. Accuracy of the formula established had been verified through laboratory calibration testing and model slope monitoring experiments. The displacement of landslide could be calculated by the established theoretical formula using the changing values of FBG central wavelength obtained by the demodulation instrument remotely. Results showed that the maximum error at different heights was 9.09%; the average of the maximum error was 6.35%, and its corresponding variance was 2.12; the minimum error was 4.18%; the average of the minimum error was 5.99%, and its corresponding variance was 0.50. The maximum error of the theoretical and the measured displacement decrease gradually, and the variance of the error also decreases gradually. This indicates that the theoretical results are more and more reliable. It also shows that the sensor and the theoretical formula established in this paper can be used for remote, real-time, high precision and early warning monitoring of the slope.

  15. An ultrasensitive strain sensor with a wide strain range based on graphene armour scales.

    Science.gov (United States)

    Yang, Yi-Fan; Tao, Lu-Qi; Pang, Yu; Tian, He; Ju, Zhen-Yi; Wu, Xiao-Ming; Yang, Yi; Ren, Tian-Ling

    2018-06-12

    An ultrasensitive strain sensor with a wide strain range based on graphene armour scales is demonstrated in this paper. The sensor shows an ultra-high gauge factor (GF, up to 1054) and a wide strain range (ε = 26%), both of which present an advantage compared to most other flexible sensors. Moreover, the sensor is developed by a simple fabrication process. Due to the excellent performance, this strain sensor can meet the demands of subtle, large and complex human motion monitoring, which indicates its tremendous application potential in health monitoring, mechanical control, real-time motion monitoring and so on.

  16. Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors.

    Science.gov (United States)

    Amjadi, Morteza; Turan, Mehmet; Clementson, Cameron P; Sitti, Metin

    2016-03-02

    There is an increasing demand for flexible, skin-attachable, and wearable strain sensors due to their various potential applications. However, achieving strain sensors with both high sensitivity and high stretchability is still a grand challenge. Here, we propose highly sensitive and stretchable strain sensors based on the reversible microcrack formation in composite thin films. Controllable parallel microcracks are generated in graphite thin films coated on elastomer films. Sensors made of graphite thin films with short microcracks possess high gauge factors (maximum value of 522.6) and stretchability (ε ≥ 50%), whereas sensors with long microcracks show ultrahigh sensitivity (maximum value of 11,344) with limited stretchability (ε ≤ 50%). We demonstrate the high performance strain sensing of our sensors in both small and large strain sensing applications such as human physiological activity recognition, human body large motion capturing, vibration detection, pressure sensing, and soft robotics.

  17. A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors

    Directory of Open Access Journals (Sweden)

    Waris Obitayo

    2012-01-01

    Full Text Available The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.

  18. Residual Strain Characteristics of Nickel-coated FBG Sensors

    International Nuclear Information System (INIS)

    Cho, Won-Jae; Hwang, A-Reum; Kim, Sang-Woo

    2017-01-01

    A metal-coated FBG (fiber Bragg grating) sensor has a memory effect, which can recall the maximum strains experienced by the structure. In this study, a nickel-coated FBG sensor was fabricated through electroless (i.e., chemical plating) and electroplating. A thickness of approximately 43 μm of a nickel layer was achieved. Then, we conducted cyclic loading tests for the fabricated nickel-coated FBG sensors to verify their capability to produce residual strains. The results revealed that the residual strain induced by the nickel coating linearly increased with an increase in the maximum strain experienced by the sensor. Therefore, we verified that a nickel-coated FBG sensor has a memory effect. The fabrication methods and the results of the cycle loading test will provide basic information and guidelines in the design of a nickel-coated FBG sensor when it is applied in the development of structural health monitoring techniques.

  19. Residual Strain Characteristics of Nickel-coated FBG Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won-Jae; Hwang, A-Reum; Kim, Sang-Woo [Hankyong National Univ., Ansung (Korea, Republic of)

    2017-07-15

    A metal-coated FBG (fiber Bragg grating) sensor has a memory effect, which can recall the maximum strains experienced by the structure. In this study, a nickel-coated FBG sensor was fabricated through electroless (i.e., chemical plating) and electroplating. A thickness of approximately 43 μm of a nickel layer was achieved. Then, we conducted cyclic loading tests for the fabricated nickel-coated FBG sensors to verify their capability to produce residual strains. The results revealed that the residual strain induced by the nickel coating linearly increased with an increase in the maximum strain experienced by the sensor. Therefore, we verified that a nickel-coated FBG sensor has a memory effect. The fabrication methods and the results of the cycle loading test will provide basic information and guidelines in the design of a nickel-coated FBG sensor when it is applied in the development of structural health monitoring techniques.

  20. Ultrasensitive, Stretchable Strain Sensors Based on Fragmented Carbon Nanotube Papers

    KAUST Repository

    Zhou, Jian

    2017-01-17

    The development of strain sensors featuring both ultra high sensitivity and high stretchability is still a challenge. We demonstrate that strain sensors based on fragmented single-walled carbon nanotube (SWCNT) paper embedded in poly(dimethylsiloxane) (PDMS) can sustain their sensitivity even at very high strain levels (with a gauge factor of over 10(7) at 50% strain). This record sensitivity is ascribed to the low initial electrical resistance (5-28 Omega) of the SWCNT paper and the wide change in resistance (up to 10(6) Omega) governed by the percolated network of SWCNT in the cracked region. The sensor response remains nearly unchanged after 10 000 strain cycles at 20% proving the robustness of this technology. This fragmentation based sensing system brings opportunities to engineer highly sensitive stretchable sensors.

  1. Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors.

    Science.gov (United States)

    Jiang, Ying; Liu, Zhiyuan; Matsuhisa, Naoji; Qi, Dianpeng; Leow, Wan Ru; Yang, Hui; Yu, Jiancan; Chen, Geng; Liu, Yaqing; Wan, Changjin; Liu, Zhuangjian; Chen, Xiaodong

    2018-03-01

    Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet-of-Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24-fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fiber Optic Strain Sensor for Planetary Gear Diagnostics

    Science.gov (United States)

    Kiddy, Jason S.; Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    This paper presents a new sensing approach for helicopter damage detection in the planetary stage of a helicopter transmission based on a fiber optic strain sensor array. Complete helicopter transmission damage detection has proven itself a difficult task due to the complex geometry of the planetary reduction stage. The crowded and complex nature of the gearbox interior does not allow for attachment of sensors within the rotating frame. Hence, traditional vibration-based diagnostics are instead based on measurements from externally mounted sensors, typically accelerometers, fixed to the gearbox exterior. However, this type of sensor is susceptible to a number of external disturbances that can corrupt the data, leading to false positives or missed detection of potentially catastrophic faults. Fiber optic strain sensors represent an appealing alternative to the accelerometer. Their small size and multiplexibility allows for potentially greater sensing resolution and accuracy, as well as redundancy, when employed as an array of sensors. The work presented in this paper is focused on the detection of gear damage in the planetary stage of a helicopter transmission using a fiber optic strain sensor band. The sensor band includes an array of 13 strain sensors, and is mounted on the ring gear of a Bell Helicopter OH-58C transmission. Data collected from the sensor array is compared to accelerometer data, and the damage detection results are presented

  3. Strain measurement using multiplexed fiber optic sensors

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Yoon, Dong Jin; Lee, Seung Seok

    2003-01-01

    FBG(Fiber Bragg grating) sensor, which is one of the fiber optic sensors for the application of smart structures, can not only measure one specific point but also multiple points by multiplexing techniques. We have proposed a novel multiplexing technique of FBG sensor by the intensity modulation of light source. This technique is applicable to WDM(Wavelength Division Multiplexing) technique and number of sensors in this system can be increased by using this technique with WDM technique.

  4. Wireless implantable passive strain sensor: design, fabrication and characterization

    International Nuclear Information System (INIS)

    Umbrecht, F; Wägli, P; Dechand, S; Hierold, Ch; Gattiker, F; Neuenschwander, J; Sennhauser, U

    2010-01-01

    This work presents a new passive sensor concept for monitoring the deformation of orthopedic implants. The novel sensing principle of the WIPSS (wireless implantable passive strain sensor) is based on a hydro-mechanical amplification effect. The WIPSS is entirely made from biocompatible PMMA and consists of a microchannel attached to a reservoir, which is filled with an incompressible fluid. As the reservoir is exposed to strain, its volume changes and consequently the fill level inside the microchannel varies. The wireless detection of the microchannel's strain-dependent fill level is based on ultrasound. The WIPSS' sensing principle is proved by finite-element simulations and the reservoir's design is optimized toward maximum volume change, in order to achieve high sensitivity. A fabrication process for WIPSS sensor devices entirely made from PMMA is presented. The obtained measurement results confirmed the sensor's functionality and showed very good agreement with the obtained results of the conducted FE simulations regarding the sensor's sensitivity. A strain resolution of 1.7 ± 0.2 × 10 −5 was achieved. Further, the determination of the cross-sensitivity to temperature and strains applied out of the sensing direction is presented. The response to dynamic inputs (0.1–5 Hz) has been measured and showed decreasing sensor output with increasing frequency. Test structures of the sensor device allow the application of a signal bandwidth up to 1 Hz. Therefore, the proposed sensor concept of the WIPSS presents a promising new sensor system for static in vivo strain monitoring of orthopedic implants. In combination with the developed ultrasound-based read-out method, this new sensor system offers the potential of wireless sensor read-out with medical ultrasound scanners, which are commercially available.

  5. A temperature-compensated high spatial resolution distributed strain sensor

    International Nuclear Information System (INIS)

    Belal, Mohammad; Cho, Yuh Tat; Ibsen, Morten; Newson, Trevor P

    2010-01-01

    We propose and demonstrate a scheme which utilizes the temperature dependence of spontaneous Raman scattering to provide temperature compensation for a high spatial resolution Brillouin frequency-based strain sensor

  6. Wireless Zigbee strain gage sensor system for structural health monitoring

    Science.gov (United States)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost

  7. Design and analysis of MEMS MWCNT / epoxy strain sensor using ...

    Indian Academy of Sciences (India)

    Gaurav Sapra

    2017-06-20

    Jun 20, 2017 ... In this paper, highly sensitive MEMS-based multi- walled (MWCNT)/epoxy strain sensor has been designed using ... This paper also discusses the process flow for fabricating MWCNT/epoxy thin film ... stone bridge, i.e., connected to the gold metal pad of the sensor. The change in resistance with respect to.

  8. An Embeddable Strain Sensor with 30 Nano-Strain Resolution Based on Optical Interferometry

    Directory of Open Access Journals (Sweden)

    Chen Zhu

    2018-04-01

    Full Text Available A cost-effective, robust and embeddable optical interferometric strain sensor with nanoscale strain resolution is presented in this paper. The sensor consists of an optical fiber, a quartz rod with one end coated with a thin gold layer, and two metal shells employed to transfer the strain and orient and protect the optical fiber and the quartz rod. The optical fiber endface, combining with the gold-coated surface, forms an extrinsic Fabry–Perot interferometer. The sensor was firstly calibrated, and the result showed that our prototype sensor could provide a measurement resolution of 30 nano-strain (nε and a sensitivity of 10.01 µε/µm over a range of 1000 µε. After calibration of the sensor, the shrinkage strain of a cubic brick of mortar in real time during the drying process was monitored. The strain sensor was compared with a commercial linear variable displacement transducer, and the comparison results in four weeks demonstrated that our sensor had much higher measurement resolution and gained more detailed and useful information. Due to the advantages of the extremely simple, robust and cost-effective configuration, it is believed that the sensor is significantly beneficial to practical applications, especially for structural health monitoring.

  9. Sleep monitoring sensor using flexible metal strain gauge

    Science.gov (United States)

    Kwak, Yeon Hwa; Kim, Jinyong; Kim, Kunnyun

    2018-05-01

    This paper presents a sleep monitoring sensor based on a flexible metal strain gauge. As quality of life has improved, interest in sleep quality, and related products, has increased. In this study, unlike a conventional single sensor based on a piezoelectric material, a metal strain gauge-based array sensor based on polyimide and nickel chromium (NiCr) is applied to provide movement direction, respiration, and heartbeat data as well as contact-free use by the user during sleeping. Thin-film-type resistive strain gage sensors are fabricated through the conventional flexible printed circuit board (FPCB) process, which is very useful for commercialization. The measurement of movement direction and respiratory rate during sleep were evaluated, and the heart rate data were compared with concurrent electrocardiogram (ECG) data. An algorithm for analyzing sleep data was developed using MATLAB, and the error rate was 4.2% when compared with ECG for heart rate.

  10. Application of carbon nanotubes flexible strain sensor in smart textiles

    Directory of Open Access Journals (Sweden)

    Qiong CHENG

    2017-10-01

    Full Text Available Smart textiles have not only the necessary functions of daily wear, but also the intelligence. The focus of the current textile materials research is the selection of flexible material. For flexible materials, carbon material is one of the ideal materials for preparing flexible strain gauges. The application of flexible strain sensor prepared by carbon nanotubes as a flexible material in smart textiles is the research content. The research status of carbon nanotubes flexible strain sensor is introduced from the aspects of the structure, properties and application. The characteristics and functions of flexible strain gages prepared with carbon nanotube fibers and carbon nanotube films as flexible materials are discussed in terms of selection, preparation method, performance test and application. At the same time, the advantages and disadvantages of the flexible strain sensor of carbon nanotubes are reviewed from the aspects of preparation difficulty, production cost and practical application effect. High sensitivity with high strain will be a key research direction for carbon nanotube flexible strain sensors.

  11. A Passive and Wireless Sensor for Bone Plate Strain Monitoring.

    Science.gov (United States)

    Tan, Yisong; Hu, Jiale; Ren, Limin; Zhu, Jianhua; Yang, Jiaqi; Liu, Di

    2017-11-16

    This paper reports on a sensor for monitoring bone plate strain in real time. The detected bone plate strain could be used for judging the healing state of fractures in patients. The sensor consists of a magnetoelastic material, which can be wirelessly connected and passively embedded. In order to verify the effectiveness of the sensor, a tibia-bone plate-screw (TBS) model was established using the finite element analysis method. A variation of the bone plate strain was obtained via this model. A goat hindquarter tibia was selected as the bone fracture model in the experiment. The tibia was fixed on a high precision load platform and an external force was applied. Bone plate strain variation during the bone fracture healing process was acquired with sensing coils. Simulation results indicated that bone plate strain decreases as the bone gradually heals, which is consistent with the finite element analysis results. This validated the soundness of the sensor reported here. This sensor has wireless connections, no in vivo battery requirement, and long-term embedding. These results can be used not only for clinical practices of bone fracture healing, but also for bone fracture treatment and rehabilitation equipment design.

  12. Study on strain transfer of embedded fiber Bragg grating sensors

    Science.gov (United States)

    Wu, Rujun; Zheng, Bailin; Fu, Kunkun; He, Pengfei; Tan, Yuegang

    2014-08-01

    In this study, a theoretical model of embedded fiber Bragg grating sensors was developed to provide predictions of the strain transfer rate and average strain transfer rate without the assumption that the host material is subjected to uniform axial stress. Further, a finite element (FE) analysis was performed to validate the present model. It was shown that the theoretical results with the present model are in good agreement with those by FE analysis. Finally, the parametric analysis was used to quantitatively investigate the effect of the parameters of the adhesive layer and host material on the strain transfer rate and average strain transfer rate.

  13. Experimental Investigations of Woven Textile Tape as Strain Sensor

    Science.gov (United States)

    Kannaian, T.; Naveen, V. S.; Muthukumar, N.; Thilagavathi, G.

    2015-10-01

    In this article, a strain sensitive textile based elastomeric tape sensor has been developed and process parameters for sensor development are optimized. Polyester yarns are used as base threads and rubber threads are used as elastomer for the sensor development. The sensor has been developed with the help of narrow width tape loom by introducing the silver coated nylon yarn in the middle of the tape structure. The influence of weave structure, number of conductive threads and rubber thread tension on sensor development has been optimized by using the Box-Behnken method and the results are analyzed using the Design expert software. From the results, it is found that six numbers of conductive threads in a plain weave structure with rubber thread tension of 750 g is suitable for the sensor to give high gauge factor of 1.626.

  14. Flexible textile-based strain sensor induced by contacts

    International Nuclear Information System (INIS)

    Zhang, Hui

    2015-01-01

    In this paper, the contact effects are used as the key sensing element to develop flexible textile-structured strain sensors. The structures of the contact are analyzed theoretically and the contact resistances are investigated experimentally. The electromechanical properties of the textiles are investigated to find the key factors which determine the sensitivity, repeatability, and linearity of the sensor. The sensing mechanism is based on the change of contact resistance induced by the change of the configuration of the textiles. In order to improve the performance of the textile strain sensor, the contact resistance is designed based on the electromechanical properties of the fabric. It can be seen from the results that the performance of the sensor is largely affected by the structure of the contacts, which are determined by the morphology of fiber surface and the structures of the yarn and fabric. (paper)

  15. A Piezoelectric Passive Wireless Sensor for Monitoring Strain

    Science.gov (United States)

    Zou, Xiyue; Ferri, Paul N.; Hogan, Ben; Mazzeo, Aaron D.; Hull. Patrick V.

    2017-01-01

    Interest in passive wireless sensing has grown over the past few decades to meet demands in structural health monitoring.(Deivasigamani et al., 2013; Wilson and Juarez, 2014) This work describes a passive wireless sensor for monitoring strain, which does not have an embedded battery or chip. Without an embedded battery, the passive wireless sensor has the potential to maintain its functionality over long periods in remote/harsh environments. This work also focuses on monitoring small strain (less than 1000 micro-?). The wireless sensing system includes a reader unit, a coil-like transponder, and a sensing unit. It operates in the Megahertz (MHz) frequency range, which allows for a few centimeters of separation between the reader and sensing unit during measurements. The sensing unit is a strain-sensitive piezoelectric resonator that maximizes the energy efficiency at the resonance frequency, so it converts nanoscale mechanical variations to detectable differences in electrical signal. In response to an external loading, the piezoelectric sensor breaks from its original electromechanical equilibrium, and the resonant frequency shifts as the system reaches a new balanced equilibrium. In this work, the fixture of the sensing unit is a small, sticker-like package that converts the surface strain of a test material to measurable shifts in resonant frequencies. Furthermore, electromechanical modeling provides a lumped-parameter model of the system to describe and predict the measured wireless signals of the sensor. Detailed characterization demonstrates how this wireless sensor has resolution comparable to that of conventional wired strain sensors for monitoring small strain.

  16. Towards Scalable Strain Gauge-Based Joint Torque Sensors

    Science.gov (United States)

    D’Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G.; Cuschieri, Alfred

    2017-01-01

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS), the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot-MiniHyQ. This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR). PMID:28820446

  17. A Novel Vehicle Classification Using Embedded Strain Gauge Sensors

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2008-11-01

    Full Text Available Abstract: This paper presents a new vehicle classification and develops a traffic monitoring detector to provide reliable vehicle classification to aid traffic management systems. The basic principle of this approach is based on measuring the dynamic strain caused by vehicles across pavement to obtain the corresponding vehicle parameters – wheelbase and number of axles – to then accurately classify the vehicle. A system prototype with five embedded strain sensors was developed to validate the accuracy and effectiveness of the classification method. According to the special arrangement of the sensors and the different time a vehicle arrived at the sensors one can estimate the vehicle’s speed accurately, corresponding to the estimated vehicle wheelbase and number of axles. Because of measurement errors and vehicle characteristics, there is a lot of overlap between vehicle wheelbase patterns. Therefore, directly setting up a fixed threshold for vehicle classification often leads to low-accuracy results. Using the machine learning pattern recognition method to deal with this problem is believed as one of the most effective tools. In this study, support vector machines (SVMs were used to integrate the classification features extracted from the strain sensors to automatically classify vehicles into five types, ranging from small vehicles to combination trucks, along the lines of the Federal Highway Administration vehicle classification guide. Test bench and field experiments will be introduced in this paper. Two support vector machines classification algorithms (one-against-all, one-against-one are used to classify single sensor data and multiple sensor combination data. Comparison of the two classification method results shows that the classification accuracy is very close using single data or multiple data. Our results indicate that using multiclass SVM-based fusion multiple sensor data significantly improves

  18. Towards development of nanofibrous large strain flexible strain sensors with programmable shape memory properties

    Science.gov (United States)

    Khalili, N.; Asif, H.; Naguib, H. E.

    2018-05-01

    Electrospun polymeric fibers can be used as strain sensors due to their large surface to weight/volume ratio, high porosity and pore interconnectivity. Large strain flexible strain sensors are used in numerous applications including rehabilitation, health monitoring, and sports performance monitoring where large strain detection should be accommodated by the sensor. This has boosted the demand for a stretchable, flexible and highly sensitive sensor able to detect a wide range of mechanically induced deformations. Herein, a physically cross-linked polylactic acid (PLA) and thermoplastic polyurethane (TPU) blend is made into nanofiber networks via electrospinning. The PLA/TPU weight ratio is optimized to obtain a maximum attainable strain of 100% while maintaining its mechanical integrity. The TPU/PLA fibers also allowed for their thermally activated recovery due to shape memory properties of the substrate. This novel feature enhances the sensor’s performance as it is no longer limited by its plastic deformation. Using spray coating method, a homogeneous layer of single-walled carbon nanotube is deposited onto the as-spun fiber mat to induce electrical conductivity to the surface of the fibers. It is shown that stretching and bending the sensor result in a highly sensitive and linear response with a maximum gauge factor of 33.

  19. Fabric strain sensor integrated with CNPECs for repeated large deformation

    Science.gov (United States)

    Yi, Weijing

    Flexible and soft strain sensors that can be used in smart textiles for wearable applications are much desired. They should meet the requirements of low modulus, large working range and good fatigue resistance as well as good sensing performances. However, there were no commercial products available and the objective of the thesis is to investigate fabric strain sensors based on carbon nanoparticle (CNP) filled elastomer composites (CNPECs) for potential wearing applications. Conductive CNPECs were fabricated and investigated. The introduction of silicone oil (SO) significantly decreased modulus of the composites to less than 1 MPa without affecting their deformability and they showed good stability after heat treatment. With increase of CNP concentration, a percolation appeared in electrical resistivity and the composites can be divided into three ranges. I-V curves and impedance spectra together with electro-mechanical studies demonstrated a balance between sensitivity and working range for the composites with CNP concentrations in post percolation range, and were preferred for sensing applications only if the fatigue life was improved. Due to the good elasticity and failure resist property of knitted fabric under repeated extension, it was adopted as substrate to increase the fatigue life of the conductive composites. After optimization of processing parameters, the conductive fabric with CNP concentration of 9.0CNP showed linear I-V curves when voltage is in the range of -1 V/mm and 1 V/mm and negligible capacitive behavior when frequency below 103 Hz even with strain of 60%. It showed higher sensitivity due to the combination of nonlinear resistance-strain behavior of the CNPECs and non-even strain distribution of knitted fabric under extension. The fatigue life of the conductive fabric was greatly improved. Extended on the studies of CNPECs and the coated conductive fabrics, a fabric strain sensor was designed, fabricated and packaged. The Young's modulus of

  20. Strain sensor system based on amorphous ferromagnetic ribbons

    Czech Academy of Sciences Publication Activity Database

    Jančárik, V.; Švec, P.; Kraus, Luděk

    2002-01-01

    Roč. 53, 10/S (2002), s. 92-94 ISSN 1335-3632. [Magnetic Measurements'02. Bratislava, 11.09.2002-13.09.2002] Grant - others:NATO(XX) SfP 973649 Institutional research plan: CEZ:AV0Z1010914 Keywords : strain sensor * magnetoelastic effect * amorphous ferromagnetic Subject RIV: BM - Solid Matter Physics ; Magnetism

  1. EMI free fiber optic strain sensor system for TFTR

    International Nuclear Information System (INIS)

    Szuchy, N.C.; Caserta, A.L.; Ferrara, A.A.; Squires, R.W.; Sredniawski, J.J.

    1983-01-01

    In certain applications, structural components are subjected to loadings in high electromagnetic interference (EMI) environments. The mechanical responses of these components must be monitored under rapidly varying electromagnetic fields. A Fiber Optic Strain Sensor System (FOSSS) is an acceptable solution since it is immune to EMI. Grumman Aerospace Corporation initiated the development of a FOSSS that can be used in high EMI situations where resistive/electronic-based strain measurement systems would not be effective, such as on the Tokamak Fusion Test Reactor (TFTR) during plasma disruption. Tests have indicated that because of their increased sensitivity due to the size of the fiber optic (FO) transducer (1-in. 2 ) and responsiveness due to the areal changes of the FO sensor, the strain tracking capability of FO sensors are excellent. For the TFTR application a jacketed 400-micron fiber capable of operating in a 250 0 C temperature environment was used. Continuous 30 foot lengths of high-temperature FO cables were affixed to 304 LN SS tabs, forming an integrated strain sensor and pigtail unit. By fusion splicing 400-micron room temperature fibers to the pigtails, the required runs (approximately 200 feet) to the TFTR data acquisition room were made with minimum coupling attenuation. Development methodology is discussed and test data presented

  2. Application of a fiber optic grating strain sensor for the measurement of strain under irradiation environment

    International Nuclear Information System (INIS)

    Kaji, Yoshiyuki; Matsui, Yoshinori; Kita, Satoshi; Ide, Hiroshi; Tsukada, Takashi; Tsuji, Hirokazu

    2002-01-01

    In the Japan Atomic Energy Research Institute (JAERI), in-pile strain measurement techniques have been developed using the Japan Materials Testing Reactor (JMTR). In order to evaluate the performance of fiber optic grating sensors under irradiation environment, heat-up and performance tests at elevated temperatures before irradiation and in-pile tests were performed in JMTR. It was determined that it is possible to measure strain under irradiation environment below 1x10 23 n m -2 (E>1 MeV) by a fiber optic grating sensor, because in-pile temperature characteristics were in good agreement with out-of-pile test results

  3. Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites.

    Science.gov (United States)

    Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen

    2018-06-08

    Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human-machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF sensors is ascribed to the sliding of individual fragmentized-CNT/PDMS-composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.

  4. Annealing effects on strain and stress sensitivity of polymer optical fibre based sensors

    DEFF Research Database (Denmark)

    Pospori, A.; Marques, C. A. F.; Zubel, M. G.

    2016-01-01

    The annealing effects on strain and stress sensitivity of polymer optical fibre Bragg grating sensors after their photoinscription are investigated. PMMA optical fibre based Bragg grating sensors are first photo-inscribed and then they were placed into hot water for annealing. Strain, stress...... fibre tends to increase the strain, stress and force sensitivity of the photo-inscribed sensor....

  5. Application of fiber optic grating strain sensor for measurement of strain under irradiation environment

    International Nuclear Information System (INIS)

    Kaji, Y.; Matsui, Y.; Kita, S.; Ide, H.; Tsukada, T.; Tsuji, H.

    2001-01-01

    In Japan Atomic Energy Research Institute (JAERI), in-pile strain measurement techniques have been developed using Japan Materials Testing Reactor (JMTR). In order to evaluate the performance of fiber optic grating sensor under irradiation environment, heat-up and performance tests at elevated temperature before irradiation and in-pile tests were performed in JMTR. (author)

  6. Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites

    Science.gov (United States)

    Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen

    2018-06-01

    Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human–machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.

  7. Printing of microstructure strain sensor for structural health monitoring

    Science.gov (United States)

    Le, Minh Quyen; Ganet, Florent; Audigier, David; Capsal, Jean-Fabien; Cottinet, Pierre-Jean

    2017-05-01

    Recent advances in microelectronics and materials should allow the development of integrated sensors with transduction properties compatible with being printed directly onto a 3D substrate, especially metallic and polymer substrates. Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated in ink, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments. Here, we report on these strategies and demonstrate the potential of 3D-printed microelectronics based on a structural health monitoring (SHM) application for the precision weapon systems. We show that our printed sensors can be employed in non-invasive, high-fidelity and continuous strain monitoring of handguns, making it possible to implement printed sensors on a 3D substrate in either SHM or remote diagnostics. We propose routes to commercialization and novel device opportunities and highlight the remaining challenges for research.

  8. Temperature and strain registration by fibre-optic strain sensor in the polymer composite materials manufacturing

    Science.gov (United States)

    Matveenko; Kosheleva; Shardakov; Voronkov

    2018-04-01

    The presence of process-induced strains induced by various manufacturing and operational factors is one of the characteristics of polymer composite materials (PCM). Conventional methods of registration and evaluation of process-induced strains can be laborious, time-consuming and demanding in terms of technical applications. The employment of embedded fibre-optic strain sensors (FOSS) offers a real prospect of measuring residual strains. This paper demonstrates the potential for using embedded FOSS for recording technological strains in a PCM plate. The PCM plate is manufactured from prepreg, using the direct compression-moulding method. In this method, the prepared reinforcing package is placed inside a mould, heated, and then exposed to compaction pressure. The examined technology can be used for positioning FOSS between the layers of the composite material. Fibre-optic sensors, interacting with the material of the examined object, make it possible to register the evolution of the strain process during all stages of polymer-composite formation. FOSS data were recorded with interrogator ASTRO X 327. The obtained data were processed using specially developed algorithms.

  9. Distributed perfluorinated POF strain sensor using OTDR and OFDR techniques

    Science.gov (United States)

    Liehr, Sascha; Wendt, Mario; Krebber, Katerina

    2009-10-01

    This paper presents the latest advances in distributed strain sensing using perfluorinated (PF) polymer optical fibers (POF). Compared to previously introduced PMMA POF strain sensors, PF POF have the advantage of lower loss and therefore extended measurement length of more than 500 m at increased spatial resolution of 10 cm. It is shown that PF POF can measure strain distributed up to 100 %. The characteristic backscatter signature of this fiber type provides additional evaluation possibilities. We show that, by applying a cross-correlation algorithm to the backscatter signal, the distributed length change can be measured along the fiber. We also present, to our knowledge for the first time, incoherent Optical Frequency Domain Reflectometry (OFDR) in POF to measure distributed reflections and loss along the fiber. The OFDR technique proves superior to existing OTDR techniques in measurement speed, resolution and potential instrument costs.

  10. Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions.

    Science.gov (United States)

    Tao, Lu-Qi; Wang, Dan-Yang; Tian, He; Ju, Zhen-Yi; Liu, Ying; Pang, Yu; Chen, Yuan-Quan; Yang, Yi; Ren, Tian-Ling

    2017-06-22

    Conventional strain sensors rarely have both a high gauge factor and a large strain range simultaneously, so they can only be used in specific situations where only a high sensitivity or a large strain range is required. However, for detecting human motions that include both subtle and large motions, these strain sensors can't meet the diverse demands simultaneously. Here, we come up with laser patterned graphene strain sensors with self-adapted and tunable performance for the first time. A series of strain sensors with either an ultrahigh gauge factor or a preferable strain range can be fabricated simultaneously via one-step laser patterning, and are suitable for detecting all human motions. The strain sensors have a GF of up to 457 with a strain range of 35%, or have a strain range of up to 100% with a GF of 268. Most importantly, the performance of the strain sensors can be easily tuned by adjusting the patterns of the graphene, so that the sensors can meet diverse demands in both subtle and large motion situations. The graphene strain sensors show significant potential in applications such as wearable electronics, health monitoring and intelligent robots. Furthermore, the facile, fast and low-cost fabrication method will make them possible and practical to be used for commercial applications in the future.

  11. Rapid Prototyping Human Interfaces Using Stretchable Strain Sensor

    Directory of Open Access Journals (Sweden)

    Tokiya Yamaji

    2017-01-01

    Full Text Available In the modern society with a variety of information electronic devices, human interfaces increase their importance in a boundary of a human and a device. In general, the human is required to get used to the device. Even if the device is designed as a universal device or a high-usability device, the device is not suitable for all users. The usability of the device depends on the individual user. Therefore, personalized and customized human interfaces are effective for the user. To create customized interfaces, we propose rapid prototyping human interfaces using stretchable strain sensors. The human interfaces comprise parts formed by a three-dimensional printer and the four strain sensors. The three-dimensional printer easily makes customized human interfaces. The outputs of the interface are calculated based on the sensor’s lengths. Experiments evaluate three human interfaces: a sheet-shaped interface, a sliding lever interface, and a tilting lever interface. We confirm that the three human interfaces obtain input operations with a high accuracy.

  12. Road roughness evaluation using in-pavement strain sensors

    Science.gov (United States)

    Zhang, Zhiming; Deng, Fodan; Huang, Ying; Bridgelall, Raj

    2015-11-01

    The international roughness index (IRI) is a characterization of road roughness or ride quality that transportation agencies most often report. The prevalent method of acquiring IRI data requires instrumented vehicles and technicians with specialized training to interpret the results. The extensive labor and high cost requirements associated with the existing approaches limit data collection to at most once per year for portions of the national highway system. Agencies characterize roughness only for some secondary roads but much less frequently, such as once every five years, resulting in outdated roughness information. This research developed a real-time roughness evaluation approach that links the output of durable in-pavement strain sensors to prevailing indices that summarize road roughness. Field experiments validated the high consistency of the approach by showing that it is within 3.3% of relative IRI estimates. After their installation and calibration during road construction, the ruggedized strain sensors will report road roughness continuously. Thus, the solution will provide agencies a real-time roughness monitoring solution over the remaining service life of road assets.

  13. Enhanced Strain Measurement Range of an FBG Sensor Embedded in Seven-Wire Steel Strands.

    Science.gov (United States)

    Kim, Jae-Min; Kim, Chul-Min; Choi, Song-Yi; Lee, Bang Yeon

    2017-07-18

    FBG sensors offer many advantages, such as a lack of sensitivity to electromagnetic waves, small size, high durability, and high sensitivity. However, their maximum strain measurement range is lower than the yield strain range (about 1.0%) of steel strands when embedded in steel strands. This study proposes a new FBG sensing technique in which an FBG sensor is recoated with polyimide and protected by a polyimide tube in an effort to enhance the maximum strain measurement range of FBG sensors embedded in strands. The validation test results showed that the proposed FBG sensing technique has a maximum strain measurement range of 1.73% on average, which is 1.73 times higher than the yield strain of the strands. It was confirmed that recoating the FBG sensor with polyimide and protecting the FBG sensor using a polyimide tube could effectively enhance the maximum strain measurement range of FBG sensors embedded in strands.

  14. Carbon Nanotube/Polymer Nanocomposites Flexible Stress and Strain Sensors

    Science.gov (United States)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Scholl, Jonathan A.; Lowther, Sharon E.; Harrison, Joycelyn S.

    2008-01-01

    Conformable stress and strain sensors are required for monitoring the integrity of airframe structures as well as for sensing the mechanical stimuli in prosthetic arms. For this purpose, we have developed a series of piezoresistive single-wall carbon nanotube (SWCNT)/polymer nanocomposites. The electromechanical coupling of pressure with resistance changes in these nanocomposites is exceptionally greater than that of metallic piezoresistive materials. In fact, the piezoresistive stress coefficient (pi) of a SWCNT/polymer nanocomposite is approximately two orders of magnitude higher than that of a typical metallic piezoresistive. The piezoresistive stress coefficient is a function of the nanotube concentration wherein the maximum value occurs at a concentration just above the percolation threshold concentration (phi approx. 0.05 %). This response appears to originate from a change in intrinsic resistivity under compression/tension. A systematic study of the effect of the modulus of the polymer matrix on piezoresistivity allowed us to make flexible and conformable sensors for biomedical applications. The prototype haptic sensors using these nanocomposites are demonstrated. The piezocapacitive properties of SWCNT/polymer are also characterized by monitoring the capacitance change under pressure.

  15. Coaxial Thermoplastic Elastomer-Wrapped Carbon Nanotube Fibers for Deformable and Wearable Strain Sensors

    KAUST Repository

    Zhou, Jian; Xu, Xuezhu; Xin, Yangyang; Lubineau, Gilles

    2018-01-01

    performances in these design requirements. Here, achieving highly stretchable and sensitive strain sensors by using a coaxial structure, prepared via coaxial wet spinning of thermoplastic elastomer-wrapped carbon nanotube fibers, is proposed. The sensors attain

  16. Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles

    Science.gov (United States)

    Shengbo, Sang; Lihua, Liu; Aoqun, Jian; Qianqian, Duan; Jianlong, Ji; Qiang, Zhang; Wendong, Zhang

    2018-06-01

    Here, we propose a highly sensitive and stretchable strain sensor based on silver nanoparticles and nanowires (Ag NPs and NWs), advancing the rapid development of electronic skin. To improve the sensitivity of strain sensors based on silver nanowires (Ag NWs), Ag NPs and NWs were added to polydimethylsiloxane (PDMS) as an aid filler. Silver nanoparticles (Ag NPs) increase the conductive paths for electrons, leading to the low resistance of the resulting sensor (14.9 Ω). The strain sensor based on Ag NPs and NWs showed strong piezoresistivity with a tunable gauge factor (GF) at 3766, and a change in resistance as the strain linearly increased from 0% to 28.1%. The high GF demonstrates the irreplaceable role of Ag NPs in the sensor. Moreover, the applicability of our high-performance strain sensor has been demonstrated by its ability to sense movements caused by human talking, finger bending, wrist raising and walking.

  17. Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions.

    Science.gov (United States)

    Yoon, Sun Geun; Koo, Hyung-Jun; Chang, Suk Tai

    2015-12-16

    We report a new class of simple microfluidic strain sensors with high stretchability, transparency, sensitivity, and long-term stability with no considerable hysteresis and a fast response to various deformations by combining the merits of microfluidic techniques and ionic liquids. The high optical transparency of the strain sensors was achieved by introducing refractive-index matched ionic liquids into microfluidic networks or channels embedded in an elastomeric matrix. The microfluidic strain sensors offer the outstanding sensor performance under a variety of deformations induced by stretching, bending, pressing, and twisting of the microfluidic strain sensors. The principle of our microfluidic strain sensor is explained by a theoretical model based on the elastic channel deformation. In order to demonstrate its capability of practical usage, the simple-structured microfluidic strain sensors were performed onto a finger, wrist, and arm. The highly stretchable and transparent microfluidic strain sensors were successfully applied as potential platforms for distinctively monitoring a wide range of human body motions in real time. Our novel microfluidic strain sensors show great promise for making future stretchable electronic devices.

  18. Strain sensors, methods of making same, and applications of same

    Science.gov (United States)

    Biris, Alexandru S.; Trigwell, Steven; Hatfield, Walter

    2015-06-30

    In one aspect, the present invention relates to a layered structure usable in a strain sensor. In one embodiment, the layered structure has a substrate with a first surface and an opposite, second surface defining a body portion therebetween; and a film of carbon nanotubes deposited on the first surface of the substrate, wherein the film of carbon nanotubes is conductive and characterized with an electrical resistance. In one embodiment, the carbon nanotubes are aligned in a preferential direction. In one embodiment, the carbon nanotubes are formed in a yarn such that any mechanical stress increases their electrical response. In one embodiment, the carbon nanotubes are incorporated into a polymeric scaffold that is attached to the surface of the substrate. In one embodiment, the surfaces of the carbon nanotubes are functionalized such that its electrical conductivity is increased.

  19. Optical-fiber strain sensors with asymmetric etched structures.

    Science.gov (United States)

    Vaziri, M; Chen, C L

    1993-11-01

    Optical-fiber strain gauges with asymmetric etched structures have been analyzed, fabricated, and tested. These sensors are very sensitive with a gauge factor as high as 170 and a flat frequency response to at least 2.7 kHz. The gauge factor depends on the asymmetry of the etched structures and the number of etched sections. To understand the physical principles involved, researchers have used structural analysis programs based on a finite-element method to analyze fibers with asymmetric etched structures under tensile stress. The results show that lateral bends are induced on the etched fibers when they are stretched axially. To relate the lateral bending to the optical attenuation, we have also employed a ray-tracing technique to investigate the dependence of the attenuation on the structural deformation. Based on the structural analysis and the ray-tracing study parameters affecting the sensitivity have been studied. These results agree with the results of experimental investigations.

  20. A wireless sensor network design and evaluation for large structural strain field monitoring

    International Nuclear Information System (INIS)

    Qiu, Zixue; Wu, Jian; Yuan, Shenfang

    2011-01-01

    Structural strain changes under external environmental or mechanical loads are the main monitoring parameters in structural health monitoring or mechanical property tests. This paper presents a wireless sensor network designed for monitoring large structural strain field variation. First of all, a precision strain sensor node is designed for multi-channel strain gauge signal conditioning and wireless monitoring. In order to establish a synchronous strain data acquisition network, the cluster-star network synchronization method is designed in detail. To verify the functionality of the designed wireless network for strain field monitoring capability, a multi-point network evaluation system is developed for an experimental aluminum plate structure for load variation monitoring. Based on the precision wireless strain nodes, the wireless data acquisition network is deployed to synchronously gather, process and transmit strain gauge signals and monitor results under concentrated loads. This paper shows the efficiency of the wireless sensor network for large structural strain field monitoring

  1. 3D printing of highly elastic strain sensors using polyurethane/multiwall carbon nanotube composites

    Science.gov (United States)

    Christ, Josef F.; Hohimer, Cameron J.; Aliheidari, Nahal; Ameli, Amir; Mo, Changki; Pötschke, Petra

    2017-04-01

    As the desire for wearable electronics increases and the soft robotics industry advances, the need for novel sensing materials has also increased. Recently, there have been many attempts at producing novel materials, which exhibit piezoresistive behavior. However, one of the major shortcomings in strain sensing technologies is in the fabrication of such sensors. While there is significant research and literature covering the various methods for developing piezoresistive materials, fabricating complex sensor platforms is still a manufacturing challenge. Here, we report a facile method to fabricate multidirectional embedded strain sensors using additive manufacturing technology. Pure thermoplastic polyurethane (TPU) and TPU/multiwall carbon nanotubes (MWCNT) nanocomposites were 3D printed in tandem using a low-cost multi-material FDM printer to fabricate uniaxial and biaxial strain sensors with conductive paths embedded within the insulative TPU platform. The sensors were then subjected to a series of cyclic strain loads. The results revealed excellent piezoresistive responses of the sensors with cyclic repeatability in both the axial and transverse directions and in response to strains as high as 50%. Further, while strain-softening did occur in the embedded printed strain sensors, it was predictable and similar to the results found in the literature for bulk polymer nanocomposites. This works demonstrates the possibility of manufacturing embedded and multidirectional flexible strain sensors using an inexpensive and versatile method, with potential applications in soft robotics and flexible electronics and health monitoring.

  2. Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Scott Wu; Frosz, Michael H.

    2012-01-01

    We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber a...

  3. Strain measurement in concrete using embedded carbon roving-based sensors

    International Nuclear Information System (INIS)

    Quadflieg, Till; Gries, Thomas; Stolyarov, Oleg

    2016-01-01

    This paper presents the results of the application of carbon rovings as strain sensors for measuring the strain in concrete. In this work, three types of electrically conductive carbon roving with different characteristics were used. The possibility of using carbon rovings as a strain sensor is demonstrated via measurements in tensile and four point bending tests. The experimental setups and methods for measuring the electrical resistance of carbon roving in the roving and concrete are described. The results of the characterization of the electrical behavior as a function of strain of carbon rovings and concrete are presented and discussed. The obtained results indicate that the strain range of carbon rovings optimally corresponds to the strain range of concrete. This characteristic behavior makes the carbon rovings well suited for the use as strain sensors. A good correlation has been found between the electrical resistance-strain curve of the carbon roving and the measurements in the concrete.

  4. Annealing and etching effects on strain and stress sensitivity of polymer optical fibre Bragg grating sensors

    DEFF Research Database (Denmark)

    Pospori, A.; Marques, C. A.F.; Sáez-Rodríguez, D.

    2017-01-01

    Thermal annealing and chemical etching effects on the strain and stress sensitivity of polymer optical fibre based sensors are investigated. Bragg grating sensors have been photo-inscribed in PMMA optical fibre and their strain and stress sensitivity has been characterised before and after any...... annealing or etching process. The annealing and etching processes have been tried in different sequence in order to investigate their impact on the sensor's performance. Results show with high confidence that fibre annealing can improve both strain and stress sensitivities. The fibre etching can also...... provide stress sensitivity enhancement, however the strain sensitivity changes seems to be random....

  5. Review of the Strain Modulation Methods Used in Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Kuo Li

    2016-01-01

    Full Text Available Fiber Bragg grating (FBG is inherently sensitive to temperature and strain. By modulating FBG’s strain, various FBG sensors have been developed, such as sensors with enhanced or reduced temperature sensitivity, strain/displacement sensors, inclinometers, accelerometers, pressure meters, and magnetic field meters. This paper reviews the strain modulation methods used in these FBG sensors and categorizes them according to whether the strain of an FBG is changed evenly. Then, those even-strain-change methods are subcategorized into (1 attaching/embedding an FBG throughout to a base and (2 fixing the two ends of an FBG and (2.1 changing the distance between the two ends or (2.2 bending the FBG by applying a transverse force at the middle of the FBG. This review shows that the methods of “fixing the two ends” are prominent because of the advantages of large tunability and frequency modulation.

  6. Preparation and Property Research of Strain Sensor Based on PDMS and Silver Nanomaterials

    Directory of Open Access Journals (Sweden)

    Lihua Liu

    2017-01-01

    Full Text Available Based on the advantages and broad applications of stretchable strain sensors, this study reports a simple method to fabricate a highly sensitive strain sensor with Ag nanomaterials-polydimethylsiloxane (AgNMs-PDMS to create a synergic conductive network and a sandwich-structure. Three Ag nanomaterial samples were synthesized by controlling the concentrations of the FeCl3 solution and reaction time via the heat polyols thermal method. The AgNMs network’s elastomer nanocomposite-based strain sensors show strong piezoresistivity with a high gauge factor of 547.8 and stretchability from 0.81% to 7.26%. The application of our high-performance strain sensors was demonstrated by the inducting finger of the motion detection. These highly sensitive sensors conform to the current trends of flexible electronics and have prospects for broad application.

  7. Flexible and Transparent Strain Sensors with Embedded Multiwalled Carbon Nanotubes Meshes.

    Science.gov (United States)

    Nie, Bangbang; Li, Xiangming; Shao, Jinyou; Li, Xin; Tian, Hongmiao; Wang, Duorui; Zhang, Qiang; Lu, Bingheng

    2017-11-22

    Strain sensors combining high sensitivity with good transparency and flexibility would be of great usefulness in smart wearable/flexible electronics. However, the fabrication of such strain sensors is still challenging. In this study, new strain sensors with embedded multiwalled carbon nanotubes (MWCNTs) meshes in polydimethylsiloxane (PDMS) films were designed and tested. The strain sensors showed elevated optical transparency of up to 87% and high sensitivity with a gauge factor of 1140 at a small strain of 8.75%. The gauge factors of the sensors were also found relatively stable since they did not obviously change after 2000 stretching/releasing cycles. The sensors were tested to detect motion in the human body, such as wrist bending, eye blinking, mouth phonation, and pulse, and the results were shown to be satisfactory. Furthermore, the fabrication of the strain sensor consisting of mechanically blading MWCNTs aqueous dispersions into microtrenches of prestructured PDMS films was straightforward, was low cost, and resulted in high yield. All these features testify to the great potential of these sensors in future real applications.

  8. Highly Sensitive Multifilament Fiber Strain Sensors with Ultrabroad Sensing Range for Textile Electronics.

    Science.gov (United States)

    Lee, Jaehong; Shin, Sera; Lee, Sanggeun; Song, Jaekang; Kang, Subin; Han, Heetak; Kim, SeulGee; Kim, Seunghoe; Seo, Jungmok; Kim, DaeEun; Lee, Taeyoon

    2018-05-22

    Highly stretchable fiber strain sensors are one of the most important components for various applications in wearable electronics, electronic textiles, and biomedical electronics. Herein, we present a facile approach for fabricating highly stretchable and sensitive fiber strain sensors by embedding Ag nanoparticles into a stretchable fiber with a multifilament structure. The multifilament structure and Ag-rich shells of the fiber strain sensor enable the sensor to simultaneously achieve both a high sensitivity and largely wide sensing range despite its simple fabrication process and components. The fiber strain sensor simultaneously exhibits ultrahigh gauge factors (∼9.3 × 10 5 and ∼659 in the first stretching and subsequent stretching, respectively), a very broad strain-sensing range (450 and 200% for the first and subsequent stretching, respectively), and high durability for more than 10 000 stretching cycles. The fiber strain sensors can also be readily integrated into a glove to control a hand robot and effectively applied to monitor the large volume expansion of a balloon and a pig bladder for an artificial bladder system, thereby demonstrating the potential of the fiber strain sensors as candidates for electronic textiles, wearable electronics, and biomedical engineering.

  9. Fabrication and characterization of aerosol-jet printed strain sensors for multifunctional composite structures

    Science.gov (United States)

    Zhao, Da; Liu, Tao; Zhang, Mei; Liang, Richard; Wang, Ben

    2012-11-01

    Traditional multifunctional composite structures are produced by embedding parasitic parts, such as foil sensors, optical fibers and bulky connectors. As a result, the mechanical properties of the composites, especially the interlaminar shear strength (ILSS), could be largely undermined. In the present study, we demonstrated an innovative aerosol-jet printing technology for printing electronics inside composite structures without degrading the mechanical properties. Using the maskless fine feature deposition (below 10 μm) characteristics of this printing technology and a pre-cure protocol, strain sensors were successfully printed onto carbon fiber prepregs to enable fabricating composites with intrinsic sensing capabilities. The degree of pre-cure of the carbon fiber prepreg on which strain sensors were printed was demonstrated to be critical. Without pre-curing, the printed strain sensors were unable to remain intact due to the resin flow during curing. The resin flow-induced sensor deformation can be overcome by introducing 10% degree of cure of the prepreg. In this condition, the fabricated composites with printed strain sensors showed almost no mechanical degradation (short beam shearing ILSS) as compared to the control samples. Also, the failure modes examined by optical microscopy showed no difference. The resistance change of the printed strain sensors in the composite structures were measured under a cyclic loading and proved to be a reliable mean strain gauge factor of 2.2 ± 0.06, which is comparable to commercial foil metal strain gauge.

  10. Fabrication and evaluation of hybrid silica/polymer optical fiber sensors for large strain measurement

    Science.gov (United States)

    Huang, Haiying

    2007-04-01

    Silica-based optical fiber sensors are widely used in structural health monitoring systems for strain and deflection measurement. One drawback of silica-based optical fiber sensors is their low strain toughness. In general, silica-based optical fiber sensors can only reliably measure strains up to 2%. Recently, polymer optical fiber sensors have been employed to measure large strain and deflection. Due to their high optical losses, the length of the polymer optical fibers is limited to 100 meters. In this paper, we present a novel economical technique to fabricate hybrid silica/polymer optical fiber strain sensors for large strain measurement. First, stress analysis of a surface-mounted optical fiber sensor is performed to understand the load distribution between the host structure and the optical fiber in relation to their mechanical properties. Next, the procedure of fabricating a polymer sensing element between two optical fibers is explained. The experimental set-up and the components used in the fabrication process are described in details. Mechanical testing results of the fabricated silica/polymer optical fiber strain sensor are presented.

  11. Polydimethylsiloxane (PDMS-Based Flexible Resistive Strain Sensors for Wearable Applications

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2018-02-01

    Full Text Available There is growing attention and rapid development on flexible electronic devices with electronic materials and sensing technology innovations. In particular, strain sensors with high elasticity and stretchability are needed for several potential applications including human entertainment technology, human–machine interface, personal healthcare, and sports performance monitoring, etc. This article presents recent advancements in the development of polydimethylsiloxane (PDMS-based flexible resistive strain sensors for wearable applications. First of all, the article shows that PDMS-based stretchable resistive strain sensors are successfully fabricated by different methods, such as the filtration method, printing technology, micromolding method, coating techniques, and liquid phase mixing. Next, strain sensing performances including stretchability, gauge factor, linearity, and durability are comprehensively demonstrated and compared. Finally, potential applications of PDMS-based flexible resistive strain sensors are also discussed. This review indicates that the era of wearable intelligent electronic systems has arrived.

  12. All-fiber, long-active-length Fabry-Perot strain sensor.

    Science.gov (United States)

    Pevec, Simon; Donlagic, Denis

    2011-08-01

    This paper presents a high-sensitivity, all-silica, all-fiber Fabry-Perot strain-sensor. The proposed sensor provides a long active length, arbitrary length of Fabry-Perot cavity, and low intrinsic temperature sensitivity. The sensor was micro-machined from purposely-developed sensor-forming fiber that is etched and directly spliced to the lead-in fiber. This manufacturing process has good potential for cost-effective, high-volume production. Its measurement range of over 3000 µε, and strain-resolution better than 1 µε were demonstrated by the application of a commercial, multimode fiber-based signal processor.

  13. Highly Sensitive and Stretchable Strain Sensor Based on Ag@CNTs.

    Science.gov (United States)

    Zhang, Qiang; Liu, Lihua; Zhao, Dong; Duan, Qianqian; Ji, Jianlong; Jian, Aoqun; Zhang, Wendong; Sang, Shengbo

    2017-12-04

    Due to the rapid development and superb performance of electronic skin, we propose a highly sensitive and stretchable temperature and strain sensor. Silver nanoparticles coated carbon nanowires (Ag@CNT) nanomaterials with different Ag concentrations were synthesized. After the morphology and components of the nanomaterials were demonstrated, the sensors composed of Polydimethylsiloxane (PDMS) and CNTs or Ag@CNTs were prepared via a simple template method. Then, the electronic properties and piezoresistive effects of the sensors were tested. Characterization results present excellent performance of the sensors for the highest gauge factor (GF) of the linear region between 0-17.3% of the sensor with Ag@CNTs1 was 137.6, the sensor with Ag@CNTs2 under the strain in the range of 0-54.8% exhibiting a perfect linearity and the GF of the sensor with Ag@CNTs2 was 14.9.

  14. Dynamic strain measurement of hydraulic system pipeline using fibre Bragg grating sensors

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2016-04-01

    Full Text Available Fatigue failure is a serious problem in hydraulic piping systems installed in the machinery and equipment working in harsh operational conditions. To alleviate this problem, health monitoring of pipes can be conducted by measuring and analysing vibration-induced strain. Fibre Bragg grating is considered as a promising sensing approach for dynamic load monitoring. In this article, dynamic strain measurements based on fibre Bragg grating sensors for small-bore metal pipes have been investigated. The quasi-distributed strain sensing of fibre Bragg grating sensors is introduced. Two comparison experiments were carried out under vibration and impact loads among the methods of electrical strain gauge, piezoelectric accelerometer and fibre Bragg grating sensor. Experimental results indicate that fibre Bragg grating sensor possesses an outstanding ability to resist electromagnetic interference compared with strain gauge. The natural frequency measurement results, captured by fibre Bragg grating sensor, agree well with the modal analysis results obtained from finite element analysis. In addition, the attached fibre Bragg grating sensor brings a smaller impact on the dynamic characteristics of the measured pipe than the accelerometer due to its small size and lightweight. Fibre Bragg grating sensors have great potential for the quasi-distributed measurement of dynamic strain for the dynamic characteristic research and health monitoring of hydraulic system pipeline.

  15. Improving the durability of the optical fiber sensor based on strain transfer analysis

    Science.gov (United States)

    Wang, Huaping; Jiang, Lizhong; Xiang, Ping

    2018-05-01

    To realize the reliable and long-term strain detection, the durability of optical fiber sensors has attracted more and more attention. The packaging technique has been considered as an effective method, which can enhance the survival ratios of optical fiber sensors to resist the harsh construction and service environment in civil engineering. To monitor the internal strain of structures, the embedded installation is adopted. Due to the different material properties between host material and the protective layer, the monitored structure embedded with sensors can be regarded as a typical model containing inclusions. Interfacial characteristic between the sensor and host material exists obviously, and the contacted interface is prone to debonding failure induced by the large interfacial shear stress. To recognize the local interfacial debonding damage and extend the effective life cycle of the embedded sensor, strain transfer analysis of a general three-layered sensing model is conducted to investigate the failure mechanism. The perturbation of the embedded sensor on the local strain field of host material is discussed. Based on the theoretical analysis, the distribution of the interfacial shear stress along the sensing length is characterized and adopted for the diagnosis of local interfacial debonding, and the sensitive parameters influencing the interfacial shear stress are also investigated. The research in this paper explores the interfacial debonding failure mechanism of embedded sensors based on the strain transfer analysis and provides theoretical basis for enhancing the interfacial bonding properties and improving the durability of embedded optical fiber sensors.

  16. Strain gauge sensors comprised of carbon nanotube yarn: parametric numerical analysis of their piezoresistive response

    International Nuclear Information System (INIS)

    Abot, Jandro L; Kiyono, César Y; Thomas, Gilles P; Silva, Emílio C N

    2015-01-01

    Carbon nanotube (CNT) yarns are micron-size fibers that contain thousands of intertwined CNTs in their cross sections and exhibit piezoresistance characteristics that can be tapped for sensing purposes. Sensor yarns can be integrated into polymeric and composite materials to measure strain through resistance measurements without adding weight or altering the integrity of the host material. This paper includes the details of novel strain gauge sensor configurations comprised of CNT yarn, the numerical modeling of their piezoresistive response, and the parametric analysis schemes that determines the highest sensor sensitivity to mechanical loading. The effect of several sensor configuration parameters are discussed including the inclination and separation of the CNT yarns within the sensor, the mechanical properties of the CNT yarn, the direction and magnitude of the applied mechanical load, and the dimensions and shape of the sensor. The sensor configurations that yield the highest sensitivity are presented and discussed in terms of the mechanical and electrical properties of the CNT yarn. It is shown that strain gauge sensors consisting of CNT yarn are sensitive enough to measure strain, and could exhibit even higher gauge factors than those of metallic foil strain gauges. (paper)

  17. An IFPI Temperature Sensor Fabricated in an Unstriped Optical Fiber with Self-Strain-Compensation Function

    Directory of Open Access Journals (Sweden)

    Yang Song

    2016-01-01

    Full Text Available This paper describes an intrinsic Fabry-Perot interferometer (IFPI temperature sensor with self-strain-compensation function. The sensor was fabricated on a buffer-intact optical fiber using a femtosecond (fs laser system. The use of fs laser allows the sensor to be fabricated in an optical fiber without the necessity of removing the polymer buffer coating, thus not compromising its mechanical property. The sensor is composed of two cascaded IFPIs in different cavity length of 100 μm and 500 μm, respectively. The shorter IFPI serves as the temperature sensor, while the second IFPI serves as a compensation sensor, which is used to decouple the strain from the raw signal collected by the shorter FPI. The reflection spectrum of sensor, containing both sensory information and compensation information, is collected in wavelength domain and demultiplexed in the Fourier domain of reflection spectrum. An algorithm was developed and successfully implemented to compensate the strain influence on the proposed temperature sensor. The results showed that the proposed sensor structure holds a constant temperature sensitivity of 11.33 pm/°C when strained differently.

  18. Ultrathin epidermal strain sensor based on an elastomer nanosheet with an inkjet-printed conductive polymer

    Science.gov (United States)

    Tetsu, Yuma; Yamagishi, Kento; Kato, Akira; Matsumoto, Yuya; Tsukune, Mariko; Kobayashi, Yo; Fujie, Masakatsu G.; Takeoka, Shinji; Fujie, Toshinori

    2017-08-01

    To minimize the interference that skin-contact strain sensors cause natural skin deformation, physical conformability to the epidermal structure is critical. Here, we developed an ultrathin strain sensor made from poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) inkjet-printed on a polystyrene-polybutadiene-polystyrene (SBS) nanosheet. The sensor, whose total thickness and gauge factor were ˜1 µm and 0.73 ± 0.10, respectively, deeply conformed to the epidermal structure and successfully detected the small skin strain (˜2%) while interfering minimally with the natural deformation of the skin. Such an epidermal strain sensor will open a new avenue for precisely detecting the motion of human skin and artificial soft-robotic skin.

  19. Flat-Cladding Fiber Bragg Grating Sensors for Large Strain Amplitude Fatigue Tests

    Directory of Open Access Journals (Sweden)

    Xijia Gu

    2010-08-01

    Full Text Available We have successfully developed a flat-cladding fiber Bragg grating sensor for large cyclic strain amplitude tests of up to ±8,000 με. The increased contact area between the flat-cladding fiber and substrate, together with the application of a new bonding process, has significantly increased the bonding strength. In the push-pull fatigue tests of an aluminum alloy, the plastic strain amplitudes measured by three optical fiber sensors differ only by 0.43% at a cyclic strain amplitude of ±7,000 με and 1.9% at a cyclic strain amplitude of ±8,000 με. We also applied the sensor on an extruded magnesium alloy for evaluating the peculiar asymmetric hysteresis loops. The results obtained were in good agreement with those measured from the extensometer, a further validation of the sensor.

  20. Film-based Sensors with Piezoresistive Molecular Conductors as Active Components Strain Damage and Thermal Regeneration

    Directory of Open Access Journals (Sweden)

    Elena Laukhina

    2011-02-01

    Full Text Available The article is addressed to the development of flexible all-organic bi layer (BL film-based sensors being capable of measuring strain as a well-defined electrical signal in a wide range of elongations and temperature. The purpose was achieved by covering polycarbonate films with the polycrystalline layer of a high piezoresistive organic molecular conductor. To determine restrictions for sensor applications, the effect of monoaxial strain on the resistance and texture of the sensing layers of BL films was studied. The experiments have shown that the maximum strain before fracture is about 1 %. A thermal regeneration of the sensing layer of the BL film-based sensors that were damaged by cyclic load is also described. These sensors are able to take the place of conventional metal-based strain and pressure gages in low cost innovative controlling and monitoring technologies.

  1. Development of a Waterproof Crack-Based Stretchable Strain Sensor Based on PDMS Shielding.

    Science.gov (United States)

    Hong, Seong Kyung; Yang, Seongjin; Cho, Seong J; Jeon, Hyungkook; Lim, Geunbae

    2018-04-12

    This paper details the design of a poly(dimethylsiloxane) (PDMS)-shielded waterproof crack-based stretchable strain sensor, in which the electrical characteristics and sensing performance are not influenced by changes in humidity. This results in a higher number of potential applications for the sensor. A previously developed omni-purpose stretchable strain (OPSS) sensor was used as the basis for this work, which utilizes a metal cracking structure and provides a wide sensing range and high sensitivity. Changes in the conductivity of the OPSS sensor, based on humidity conditions, were investigated along with the potential possibility of using the design as a humidity sensor. However, to prevent conductivity variation, which can decrease the reliability and sensing ability of the OPSS sensor, PDMS was utilized as a shielding layer over the OPSS sensor. The PDMS-shielded OPSS sensor showed approximately the same electrical characteristics as previous designs, including in a high humidity environment, while maintaining its strain sensing capabilities. The developed sensor shows promise for use under high humidity conditions and in underwater applications. Therefore, considering its unique features and reliable sensing performance, the developed PDMS-shielded waterproof OPSS sensor has potential utility in a wide range of applications, such as motion monitoring, medical robotics and wearable healthcare devices.

  2. Development of a Waterproof Crack-Based Stretchable Strain Sensor Based on PDMS Shielding

    Directory of Open Access Journals (Sweden)

    Seong Kyung Hong

    2018-04-01

    Full Text Available This paper details the design of a poly(dimethylsiloxane (PDMS-shielded waterproof crack-based stretchable strain sensor, in which the electrical characteristics and sensing performance are not influenced by changes in humidity. This results in a higher number of potential applications for the sensor. A previously developed omni-purpose stretchable strain (OPSS sensor was used as the basis for this work, which utilizes a metal cracking structure and provides a wide sensing range and high sensitivity. Changes in the conductivity of the OPSS sensor, based on humidity conditions, were investigated along with the potential possibility of using the design as a humidity sensor. However, to prevent conductivity variation, which can decrease the reliability and sensing ability of the OPSS sensor, PDMS was utilized as a shielding layer over the OPSS sensor. The PDMS-shielded OPSS sensor showed approximately the same electrical characteristics as previous designs, including in a high humidity environment, while maintaining its strain sensing capabilities. The developed sensor shows promise for use under high humidity conditions and in underwater applications. Therefore, considering its unique features and reliable sensing performance, the developed PDMS-shielded waterproof OPSS sensor has potential utility in a wide range of applications, such as motion monitoring, medical robotics and wearable healthcare devices.

  3. Using Collar worn Sensors to Forecast Thermal Strain in Military Working Dogs

    Science.gov (United States)

    2016-04-22

    Using Collar-worn Sensors to Forecast Thermal Strain in Military Working Dogs James R. Williamson, Austin R. Hess, Christopher J. Smalt, Delsey M...these estimates for forecasting and monitoring thermal strain is assessed based on performance in out of sample prediction of core temperature (Tc...time step (100 Hz) from the magnitude of the three- dimensional acceleration vector, ai , which is independent of sensor orientation. Next, the

  4. Fiber Strain Measurement for Wide Region Quasidistributed Sensing by Optical Correlation Sensor with Region Separation Techniques

    Directory of Open Access Journals (Sweden)

    Xunjian Xu

    2010-01-01

    Full Text Available The useful application of optical pulse correlation sensor for wide region quasidistributed fiber strain measurement is investigated. Using region separation techniques of wavelength multiplexing with FBGs and time multiplexing with intensity partial reflectors, the sensor measures the correlations between reference pulses and monitoring pulses from several cascadable selected sensing regions. This novel sensing system can select the regions and obtain the distributed strain information in any desired sensing region.

  5. Passive wireless antenna sensor for strain and crack sensing—electromagnetic modeling, simulation, and testing

    International Nuclear Information System (INIS)

    Yi, Xiaohua; Cho, Chunhee; Wang, Yang; Cooper, James; Tentzeris, Manos M; Leon, Roberto T

    2013-01-01

    This research investigates a passive wireless antenna sensor designed for strain and crack sensing. When the antenna experiences deformation, the antenna shape changes, causing a shift in the electromagnetic resonance frequency of the antenna. A radio frequency identification (RFID) chip is adopted for antenna signal modulation, so that a wireless reader can easily distinguish the backscattered sensor signal from unwanted environmental reflections. The RFID chip captures its operating power from an interrogation electromagnetic wave emitted by the reader, which allows the antenna sensor to be passive (battery-free). This paper first reports the latest simulation results on radiation patterns, surface current density, and electromagnetic field distribution. The simulation results are followed with experimental results on the strain and crack sensing performance of the antenna sensor. Tensile tests show that the wireless antenna sensor can detect small strain changes lower than 20 με, and can perform well at large strains higher than 10 000 με. With a high-gain reader antenna, the wireless interrogation distance can be increased up to 2.1 m. Furthermore, an array of antenna sensors is capable of measuring the strain distribution in close proximity. During emulated crack and fatigue crack tests, the antenna sensor is able to detect the growth of a small crack. (paper)

  6. Vibration based monitoring of stay cable force using wireless piezoelectric based strain sensor nodes

    International Nuclear Information System (INIS)

    Nguyen, Khac Duy; Kim, Jeong Tae

    2012-01-01

    This study presents a method to monitor cable force using wireless sensor nodes and piezoelectric sensors. The following approaches are carried out to achieve the objective. Firstly, the principle of piezoelectric materials (e.g., PZT) as strain sensors is reviewed. A cable force estimation method using dynamic features of cables measured by piezoelectric materials is presented. Secondly, the design of an automated cable force monitoring system using the data acquisition sensor node Imote2/SHM DAQ is described. The sensor node is originally developed by University of Illinois at Urbana champaign and is adopted in this study to monitor strain induced voltage from PZT sensors. The advantages of the system are cheap, and eligible for wireless communication and automated operation. Finally, the feasibility of the proposed monitoring system is evaluated on a lab scaled cable

  7. Wearable Wide-Range Strain Sensors Based on Ionic Liquids and Monitoring of Human Activities

    Directory of Open Access Journals (Sweden)

    Shao-Hui Zhang

    2017-11-01

    Full Text Available Wearable sensors for detection of human activities have encouraged the development of highly elastic sensors. In particular, to capture subtle and large-scale body motion, stretchable and wide-range strain sensors are highly desired, but still a challenge. Herein, a highly stretchable and transparent stain sensor based on ionic liquids and elastic polymer has been developed. The as-obtained sensor exhibits impressive stretchability with wide-range strain (from 0.1% to 400%, good bending properties and high sensitivity, whose gauge factor can reach 7.9. Importantly, the sensors show excellent biological compatibility and succeed in monitoring the diverse human activities ranging from the complex large-scale multidimensional motions to subtle signals, including wrist, finger and elbow joint bending, finger touch, breath, speech, swallow behavior and pulse wave.

  8. Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin

    International Nuclear Information System (INIS)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo

    2016-01-01

    The authors have recently developed a soft-elastomeric capacitive (SEC)-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. Under plane stress conditions, the sensor output contains the additive measurement of the two principal strain components over the monitored surface. In applications where the evaluation of strain maps is useful, in structural health monitoring for instance, such signal must be decomposed into linear strain components along orthogonal directions. Previous work has led to an algorithm that enabled such decomposition by leveraging a dense sensor network configuration with the addition of assumed boundary conditions. Here, we significantly improve the algorithm’s accuracy by leveraging mature off-the-shelf solutions to create a hybrid dense sensor network (HDSN) to improve on the boundary condition assumptions. The system’s boundary conditions are enforced using unidirectional RSGs and assumed virtual sensors. Results from an extensive experimental investigation demonstrate the good performance of the proposed algorithm and its robustness with respect to sensors’ layout. Overall, the proposed algorithm is seen to effectively leverage the advantages of a hybrid dense network for application of the thin film sensor to reconstruct surface strain fields over large surfaces. (paper)

  9. Optical sensor for measuring humidity, strain and temperature

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to an optical sensor (100) adapted to measure at least three physical parameters, said optical sensor comprising a polymer-based optical waveguide structure comprising a first Bragg grating structure (101) being adapted to provide information about a first, a second...

  10. Residual strain sensor using Al-packaged optical fiber and Brillouin optical correlation domain analysis.

    Science.gov (United States)

    Choi, Bo-Hun; Kwon, Il-Bum

    2015-03-09

    We propose a distributed residual strain sensor that uses an Al-packaged optical fiber for the first time. The residual strain which causes Brillouin frequency shifts in the optical fiber was measured using Brillouin optical correlation domain analysis with 2 cm spatial resolution. We quantified the Brillouin frequency shifts in the Al-packaged optical fiber by the tensile stress and compared them for a varying number of Al layers in the optical fiber. The Brillouin frequency shift of an optical fiber with one Al layer had a slope of 0.038 MHz/με with respect to tensile stress, which corresponds to 78% of that for an optical fiber without Al layers. After removal of the stress, 87% of the strain remained as residual strain. When different tensile stresses were randomly applied, the strain caused by the highest stress was the only one detected as residual strain. The residual strain was repeatedly measured for a time span of nine months for the purpose of reliability testing, and there was no change in the strain except for a 4% reduction, which is within the error tolerance of the experiment. A composite material plate equipped with our proposed Al-packaged optical fiber sensor was hammered for impact experiment and the residual strain in the plate was successfully detected. We suggest that the Al-packaged optical fiber can be adapted as a distributed strain sensor for smart structures, including aerospace structures.

  11. Self-sensing concrete-filled FRP tube using FBG strain sensor

    Science.gov (United States)

    Yan, Xin; Li, Hui

    2007-01-01

    Concrete-filled fiber-reinforced polymer (FRP) tube is a type of newly developed structural column. It behaves brittle failure at its peak strength, and so the health monitoring on the hoop strain of the FRP tube is essential for the life cycle safety of the structure. Herein, the optic fiber Bragg grating (FBG) strain sensor was chosen as the strain measuring gauge and embedded in the inter-ply of fibers in the middle height and the hoop direction of the FRP tube. The compressive behaviors of the concrete-filled FRP tubes were experimentally studied. The hoop strain of the FRP tube was recorded in real time using the embedded FBG strain sensor as well as the embedded or surface electric resistance strain gauges. Results indicated that the FBG strain sensor can faithfully record the hoop strain ofthe concrete-filled FRP tubes in compression as compared with the embedded or surface electric resistance strain gauges, and the strain recorded can reach more than 7000μɛ.

  12. Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy

    DEFF Research Database (Denmark)

    Zhang, Liang; Lu, Ping; Chen, Li

    2012-01-01

    A novel (to our best knowledge) optical fiber strain sensor using a fiber ring resonator based on frequency comb Vernier spectroscopy is proposed and demonstrated. A passively mode-locked optical fiber laser is employed to generate a phased-locked frequency comb. Strain applied to the optical fib...

  13. Suitability of Strain Gage Sensors for Integration into Smart Sport Equipment: A Golf Club Example.

    Science.gov (United States)

    Umek, Anton; Zhang, Yuan; Tomažič, Sašo; Kos, Anton

    2017-04-21

    Wearable devices and smart sport equipment are being increasingly used in amateur and professional sports. Smart sport equipment employs various sensors for detecting its state and actions. The correct choice of the most appropriate sensor(s) is of paramount importance for efficient and successful operation of sport equipment. When integrated into the sport equipment, ideal sensors are unobstructive, and do not change the functionality of the equipment. The article focuses on experiments for identification and selection of sensors that are suitable for the integration into a golf club with the final goal of their use in real time biofeedback applications. We tested two orthogonally affixed strain gage (SG) sensors, a 3-axis accelerometer, and a 3-axis gyroscope. The strain gage sensors are calibrated and validated in the laboratory environment by a highly accurate Qualisys Track Manager (QTM) optical tracking system. Field test results show that different types of golf swing and improper movement in early phases of golf swing can be detected with strain gage sensors attached to the shaft of the golf club. Thus they are suitable for biofeedback applications to help golfers to learn repetitive golf swings. It is suggested that the use of strain gage sensors can improve the golf swing technical error detection accuracy and that strain gage sensors alone are enough for basic golf swing analysis. Our final goal is to be able to acquire and analyze as many parameters of a smart golf club in real time during the entire duration of the swing. This would give us the ability to design mobile and cloud biofeedback applications with terminal or concurrent feedback that will enable us to speed-up motor skill learning in golf.

  14. Flexible, Highly Sensitive, and Wearable Pressure and Strain Sensors with Graphene Porous Network Structure.

    Science.gov (United States)

    Pang, Yu; Tian, He; Tao, Luqi; Li, Yuxing; Wang, Xuefeng; Deng, Ningqin; Yang, Yi; Ren, Tian-Ling

    2016-10-03

    A mechanical sensor with graphene porous network (GPN) combined with polydimethylsiloxane (PDMS) is demonstrated by the first time. Using the nickel foam as template and chemically etching method, the GPN can be created in the PDMS-nickel foam coated with graphene, which can achieve both pressure and strain sensing properties. Because of the pores in the GPN, the composite as pressure and strain sensor exhibit wide pressure sensing range and highest sensitivity among the graphene foam-based sensors, respectively. In addition, it shows potential applications in monitoring or even recognize the walking states, finger bending degree, and wrist blood pressure.

  15. Static and dynamic pile testing of reinforced concrete piles with structure integrated fibre optic strain sensors

    Science.gov (United States)

    Schilder, Constanze; Kohlhoff, Harald; Hofmann, Detlef; Basedau, Frank; Habel, Wolfgang R.; Baeßler, Matthias; Niederleithinger, Ernst; Georgi, Steven; Herten, Markus

    2013-05-01

    Static and dynamic pile tests are carried out to determine the load bearing capacity and the quality of reinforced concrete piles. As part of a round robin test to evaluate dynamic load tests, structure integrated fibre optic strain sensors were used to receive more detailed information about the strains along the pile length compared to conventional measurements at the pile head. This paper shows the instrumentation of the pile with extrinsic Fabry-Perot interferometers sensors and fibre Bragg gratings sensors together with the results of the conducted static load test as well as the dynamic load tests and pile integrity tests.

  16. Transparent and stretchable strain sensors based on metal nanowire microgrids for human motion monitoring

    Science.gov (United States)

    Cho, Ji Hwan; Ha, Sung-Hun; Kim, Jong-Man

    2018-04-01

    Optical transparency is increasingly considered as one of the most important characteristics required in advanced stretchable strain sensors for application in body-attachable systems. In this paper, we present an entirely solution-processed fabrication route to highly transparent and stretchable resistive strain sensors based on silver nanowire microgrids (AgNW-MGs). The AgNW-MG strain sensors are readily prepared by patterning the AgNWs on a stretchable substrate into a MG geometry via a mesh-template-assisted contact-transfer printing. The MG has a unique architecture comprising the AgNWs and can be stretched to ɛ = 35%, with high gauge factors of ˜6.9 for ɛ = 0%-30% and ˜41.1 for ɛ = 30%-35%. The sensor also shows a high optical transmittance of 77.1% ± 1.5% (at 550 nm) and stably maintains the remarkable optical performance even at high strains. In addition, the sensor responses are found to be highly reversible with negligible hysteresis and are reliable even under repetitive stretching-releasing cycles (1000 cycles at ɛ = 10%). The practicality of the AgNW-MG strain sensor is confirmed by successfully monitoring a wide range of human motions in real time after firmly laminating the device onto various body parts.

  17. Transparent conductive-polymer strain sensors for touch input sheets of flexible displays

    International Nuclear Information System (INIS)

    Takamatsu, Seiichi; Takahata, Tomoyuki; Muraki, Masato; Iwase, Eiji; Matsumoto, Kiyoshi; Shimoyama, Isao

    2010-01-01

    A transparent conductive polymer-based strain-sensor array, designed especially for touch input sheets of flexible displays, was developed. A transparent conductive polymer, namely poly(3, 4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS), was utilized owing to its strength under repeated mechanical bending. PEDOT:PSS strain sensors with a thickness of 130 nm exhibited light transmittance of 92%, which is the same as the transmittance of ITO electrodes widely used in flat panel displays. We demonstrated that the sensor array on a flexible sheet was able to sustain mechanical bending 300 times at a bending radius of 5 mm. The strain sensor shows a gauge factor of 5.2. The touch point on a flexible sheet could be detected from histograms of the outputs of the strain sensors when the sheet was pushed with an input force of 5 N. The touch input could be detected on the flexible sheet with a curved surface (radius of curvature of 20 mm). These results show that the developed transparent conductive polymer-based strain-sensor array is applicable to touch input sheets of mechanically bendable displays.

  18. Field monitoring of static, dynamic, and statnamic pile loading tests using fibre Bragg grating strain sensors

    Science.gov (United States)

    Li, Jin; Correia, Ricardo P.; Chehura, Edmon; Staines, Stephen; James, Stephen W.; Tatam, Ralph; Butcher, Antony P.; Fuentes, Raul

    2009-10-01

    Pile loading test plays an important role in the field of piling engineering. In order to gain further insight into the load transfer mechanism, strain gauges are often used to measure local strains along the piles. This paper reports a case whereby FBG strain sensors was employed in a field trial conducted on three different types of pile loading tests in a glacial till. The instrumentation systems were configured to suit the specific characteristic of each type of test. Typical test results are presented. The great potential of using FBG sensors for pile testing is shown.

  19. Detection of thermal aging degradation and plastic strain damage for duplex stainless steel using SQUID sensor

    International Nuclear Information System (INIS)

    Otaka, M.; Evanson, S.; Hesegawa, K.; Takaku, K.

    1991-01-01

    An apparatus using a SQUID sensor is developed for nondestructive inspection. The measurements are obtained with the SQUID sensor located approximately 150 mm from the specimen. The degradation of thermal aging and plastic strain for duplex stainless steel is successfully detected independently from the magnetic characterization measurements. The magnetic flux density under high polarizing field is found to be independent of thermal aging. Coercive force increases with thermal aging time. On the other hand, the magnetic flux density under high field increases with the plastic strain. Coercive force is found to be independent of the plastic strain. (author)

  20. Design of cross-sensitive temperature and strain sensor based on sampled fiber grating

    Directory of Open Access Journals (Sweden)

    Zhang Xiaohang

    2017-02-01

    Full Text Available In this paper,a cross-sensitive temperature and strain sensor based on sampled fiber grating is designed.Its temperature measurement range is -50-200℃,and the strain measurement rangeis 0-2 000 με.The characteristics of the sensor are obtained using simulation method.Utilizing SPSS software,we found the dual-parameter matrix equations of measurement of temperature and strain,and calibrated the four sensing coefficients of the matrix equations.

  1. A fiber optics sensor for strain and stress management in superconducting accelerator magnets

    International Nuclear Information System (INIS)

    van Oort, J.M.; ten Kate, H.H.J.

    1993-01-01

    A novel cryogenic interferometric fiber optics sensor for the measurement of strain and stress in the coil windings of superconducting accelerator magnets is described. The sensor can operate with two different readout sources, monochromatic laser light and white light respectively. The sensor head is built up as an extrinsic Fabry-Perot interferometer formed with two cleaved fiber surfaces, and can be mounted in several configurations. When read with laser light, the sensor is an extremely sensitive relative strain or temperature detector. When read with white light the absolute strain and pressure can be measured. Results are presented of tests in several configurations at 77 K and 4.2 K, both for the relative and absolute readout method. Finally, the possible use for quench localization using the temperature sensitivity is described

  2. Sensitive and Flexible Polymeric Strain Sensor for Accurate Human Motion Monitoring.

    Science.gov (United States)

    Khan, Hassan; Razmjou, Amir; Ebrahimi Warkiani, Majid; Kottapalli, Ajay; Asadnia, Mohsen

    2018-02-01

    Flexible electronic devices offer the capability to integrate and adapt with human body. These devices are mountable on surfaces with various shapes, which allow us to attach them to clothes or directly onto the body. This paper suggests a facile fabrication strategy via electrospinning to develop a stretchable, and sensitive poly (vinylidene fluoride) nanofibrous strain sensor for human motion monitoring. A complete characterization on the single PVDF nano fiber has been performed. The charge generated by PVDF electrospun strain sensor changes was employed as a parameter to control the finger motion of the robotic arm. As a proof of concept, we developed a smart glove with five sensors integrated into it to detect the fingers motion and transfer it to a robotic hand. Our results shows that the proposed strain sensors are able to detect tiny motion of fingers and successfully run the robotic hand.

  3. Sensitive and Flexible Polymeric Strain Sensor for Accurate Human Motion Monitoring

    Directory of Open Access Journals (Sweden)

    Hassan Khan

    2018-02-01

    Full Text Available Flexible electronic devices offer the capability to integrate and adapt with human body. These devices are mountable on surfaces with various shapes, which allow us to attach them to clothes or directly onto the body. This paper suggests a facile fabrication strategy via electrospinning to develop a stretchable, and sensitive poly (vinylidene fluoride nanofibrous strain sensor for human motion monitoring. A complete characterization on the single PVDF nano fiber has been performed. The charge generated by PVDF electrospun strain sensor changes was employed as a parameter to control the finger motion of the robotic arm. As a proof of concept, we developed a smart glove with five sensors integrated into it to detect the fingers motion and transfer it to a robotic hand. Our results shows that the proposed strain sensors are able to detect tiny motion of fingers and successfully run the robotic hand.

  4. 3D printed high performance strain sensors for high temperature applications

    Science.gov (United States)

    Rahman, Md Taibur; Moser, Russell; Zbib, Hussein M.; Ramana, C. V.; Panat, Rahul

    2018-01-01

    Realization of high temperature physical measurement sensors, which are needed in many of the current and emerging technologies, is challenging due to the degradation of their electrical stability by drift currents, material oxidation, thermal strain, and creep. In this paper, for the first time, we demonstrate that 3D printed sensors show a metamaterial-like behavior, resulting in superior performance such as high sensitivity, low thermal strain, and enhanced thermal stability. The sensors were fabricated using silver (Ag) nanoparticles (NPs), using an advanced Aerosol Jet based additive printing method followed by thermal sintering. The sensors were tested under cyclic strain up to a temperature of 500 °C and showed a gauge factor of 3.15 ± 0.086, which is about 57% higher than that of those available commercially. The sensor thermal strain was also an order of magnitude lower than that of commercial gages for operation up to a temperature of 500 °C. An analytical model was developed to account for the enhanced performance of such printed sensors based on enhanced lateral contraction of the NP films due to the porosity, a behavior akin to cellular metamaterials. The results demonstrate the potential of 3D printing technology as a pathway to realize highly stable and high-performance sensors for high temperature applications.

  5. 3D-Structured Stretchable Strain Sensors for Out-of-Plane Force Detection.

    Science.gov (United States)

    Liu, Zhiyuan; Qi, Dianpeng; Leow, Wan Ru; Yu, Jiancan; Xiloyannnis, Michele; Cappello, Leonardo; Liu, Yaqing; Zhu, Bowen; Jiang, Ying; Chen, Geng; Masia, Lorenzo; Liedberg, Bo; Chen, Xiaodong

    2018-05-17

    Stretchable strain sensors, as the soft mechanical interface, provide the key mechanical information of the systems for healthcare monitoring, rehabilitation assistance, soft exoskeletal devices, and soft robotics. Stretchable strain sensors based on 2D flat film have been widely developed to monitor the in-plane force applied within the plane where the sensor is placed. However, to comprehensively obtain the mechanical feedback, the capability to detect the out-of-plane force, caused by the interaction outside of the plane where the senor is located, is needed. Herein, a 3D-structured stretchable strain sensor is reported to monitor the out-of-plane force by employing 3D printing in conjunction with out-of-plane capillary force-assisted self-pinning of carbon nanotubes. The 3D-structured sensor possesses large stretchability, multistrain detection, and strain-direction recognition by one single sensor. It is demonstrated that out-of-plane forces induced by the air/fluid flow are reliably monitored and intricate flow details are clearly recorded. The development opens up for the exploration of next-generation 3D stretchable sensors for electronic skin and soft robotics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Processing and Characterization of a Novel Distributed Strain Sensor Using Carbon Nanotube-Based Nonwoven Composites

    Directory of Open Access Journals (Sweden)

    Hongbo Dai

    2015-07-01

    Full Text Available This paper describes the development of an innovative carbon nanotube-based non-woven composite sensor that can be tailored for strain sensing properties and potentially offers a reliable and cost-effective sensing option for structural health monitoring (SHM. This novel strain sensor is fabricated using a readily scalable process of coating Carbon nanotubes (CNT onto a nonwoven carrier fabric to form an electrically-isotropic conductive network. Epoxy is then infused into the CNT-modified fabric to form a free-standing nanocomposite strain sensor. By measuring the changes in the electrical properties of the sensing composite the deformation can be measured in real-time. The sensors are repeatable and linear up to 0.4% strain. Highest elastic strain gage factors of 1.9 and 4.0 have been achieved in the longitudinal and transverse direction, respectively. Although the longitudinal gage factor of the newly formed nanocomposite sensor is close to some metallic foil strain gages, the proposed sensing methodology offers spatial coverage, manufacturing customizability, distributed sensing capability as well as transverse sensitivity.

  7. Study of a high-precision SAW-MOEMS strain sensor with laser optics

    International Nuclear Information System (INIS)

    Liu, Xinwei; Chen, Shufen; Zou, Zhengfeng; Fu, Lei; Meng, Yanbin; Li, Honglang

    2015-01-01

    A novel structure design of a surface acoustic wave (SAW) micro-optic-electro-mechanical-system (MOEMS) strain sensor with a light readout unit is presented in this paper. By measuring the polarization intensity ratio of the TE/TM mode outputted from the waveguide, the strain produced from an object can be measured precisely. The basic working principle of the SAW MOEMS strain sensor is introduced and the mathematical model of the strain sensor system is established. The SAW characteristics effected by the strain sensor are mathematically deduced. The coupling coefficient between the SAW modes and light modes can be calculated based on the theory of coupling modes. The conversion coefficient of polarized light modes is obtained. Due to the restrictions of the specific parameters of the device, the level of technology and the material characteristics, the sensitivity of the strain sensor system is calculated through simulation as 0.1 με, with a dynamic range of 0 ∼ ±50 με. (paper)

  8. Highly Sensitive and Very Stretchable Strain Sensor Based on a Rubbery Semiconductor.

    Science.gov (United States)

    Kim, Hae-Jin; Thukral, Anish; Yu, Cunjiang

    2018-02-07

    There is a growing interest in developing stretchable strain sensors to quantify the large mechanical deformation and strain associated with the activities for a wide range of species, such as humans, machines, and robots. Here, we report a novel stretchable strain sensor entirely in a rubber format by using a solution-processed rubbery semiconductor as the sensing material to achieve high sensitivity, large mechanical strain tolerance, and hysteresis-less and highly linear responses. Specifically, the rubbery semiconductor exploits π-π stacked poly(3-hexylthiophene-2,5-diyl) nanofibrils (P3HT-NFs) percolated in silicone elastomer of poly(dimethylsiloxane) to yield semiconducting nanocomposite with a large mechanical stretchability, although P3HT is a well-known nonstretchable semiconductor. The fabricated strain sensors exhibit reliable and reversible sensing capability, high gauge factor (gauge factor = 32), high linearity (R 2 > 0.996), and low hysteresis (degree of hysteresis wearable smart gloves. Systematic investigations in the materials design and synthesis, sensor fabrication and characterization, and mechanical analysis reveal the key fundamental and application aspects of the highly sensitive and very stretchable strain sensors entirely from rubbers.

  9. Self-sensing concrete-filled FRP tubes using FBG strain sensors

    Science.gov (United States)

    Yan, Xin; Li, Hui

    2007-07-01

    Concrete-filled fiber-reinforced polymer (FRP) tube is a type of newly developed structural column. It behaves brittle failure at its peak strength, and so the health monitoring on the hoop strain of the FRP tube is essential for the life cycle safety of the structure. Herein, three types of FRP tubes including 5-ply tube, 2-ply tube with local reinforcement and FRP-steel composite tube were embedded with the optic fiber Bragg grating (FBG) strain sensors in the inter-ply of FRP or the interface between FRP and steel in the middle height and the hoop direction. The compressive behaviors of the concrete-filled FRP tubes were experimentally studied. The hoop strains of the FRP tubes were recorded in real time using the embedded FBG strain sensors as well as the embedded or surface electric resistance strain gauges. Results indicated that the FBG strain sensors can faithfully record the hoop strains of the FRP tubes in compression as compared with the embedded or surface electric resistance strain gauges, and the strains recorded can reach more than μɛ.

  10. Dynamic Strain and Crack Monitoring Sensor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop a new automated vehicle health monitoring sensor system capable of measuring loads and detecting crack, corrosion, and...

  11. Optimization of geometric characteristics to improve sensing performance of MEMS piezoresistive strain sensors

    International Nuclear Information System (INIS)

    Mohammed, Ahmed A S; Moussa, Walied A; Lou, Edmond

    2010-01-01

    In this paper, the design of MEMS piezoresistive strain sensor is described. ANSYS®, finite element analysis (FEA) software, was used as a tool to model the performance of the silicon-based sensor. The incorporation of stress concentration regions (SCRs), to localize stresses, was explored in detail. This methodology employs the structural design of the sensor silicon carrier. Therefore, the induced strain in the sensing chip yielded stress concentration in the vicinity of the SCRs. Hence, this concept was proved to enhance the sensor sensitivity. Another advantage of the SCRs is to reduce the sensor transverse gauge factor, which offered a great opportunity to develop a MEMS sensor with minimal cross sensitivity. Two basic SCR designs were studied. The depth of the SCRs was also investigated. Moreover, FEA simulation is utilized to investigate the effect of the sensing element depth on the sensor sensitivity. Simulation results showed that the sensor sensitivity is independent of the piezoresistors' depth. The microfabrication process flow was introduced to prototype the different sensor designs. The experiments covered operating temperature range from −50 °C to +50 °C. Finally, packaging scheme and bonding adhesive selection were discussed. The experimental results showed good agreement with the FEA simulation results. The findings of this study confirmed the feasibility of introducing SCRs in the sensor silicon carrier to improve the sensor sensitivity while using relatively high doping levels (5 × 10 19 atoms cm −3 ). The fabricated sensors have a gauge factor about three to four times higher compared to conventional thin-foil strain gauges

  12. Fabrication of strain gauge based sensors for tactile skins

    Science.gov (United States)

    Baptist, Joshua R.; Zhang, Ruoshi; Wei, Danming; Saadatzi, Mohammad Nasser; Popa, Dan O.

    2017-05-01

    Fabricating cost effective, reliable and functional sensors for electronic skins has been a challenging undertaking for the last several decades. Application of such skins include haptic interfaces, robotic manipulation, and physical human-robot interaction. Much of our recent work has focused on producing compliant sensors that can be easily formed around objects to sense normal, tension, or shear forces. Our past designs have involved the use of flexible sensors and interconnects fabricated on Kapton substrates, and piezoresistive inks that are 3D printed using Electro Hydro Dynamic (EHD) jetting onto interdigitated electrode (IDE) structures. However, EHD print heads require a specialized nozzle and the application of a high-voltage electric field; for which, tuning process parameters can be difficult based on the choice of inks and substrates. Therefore, in this paper we explore sensor fabrication techniques using a novel wet lift-off photolithographic technique for patterning the base polymer piezoresistive material, specifically Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) or PEDOT:PSS. Fabricated sensors are electrically and thermally characterized, and temperaturecompensated designs are proposed and validated. Packaging techniques for sensors in polymer encapsulants are proposed and demonstrated to produce a tactile interface device for a robot.

  13. Finite element modelling of fibre Bragg grating strain sensors and experimental validation

    Science.gov (United States)

    Malik, Shoaib A.; Mahendran, Ramani S.; Harris, Dee; Paget, Mark; Pandita, Surya D.; Machavaram, Venkata R.; Collins, David; Burns, Jonathan M.; Wang, Liwei; Fernando, Gerard F.

    2009-03-01

    Fibre Bragg grating (FBG) sensors continue to be used extensively for monitoring strain and temperature in and on engineering materials and structures. Previous researchers have also developed analytical models to predict the loadtransfer characteristics of FBG sensors as a function of applied strain. The general properties of the coating or adhesive that is used to surface-bond the FBG sensor to the substrate has also been modelled using finite element analysis. In this current paper, a technique was developed to surface-mount FBG sensors with a known volume and thickness of adhesive. The substrates used were aluminium dog-bone tensile test specimens. The FBG sensors were tensile tested in a series of ramp-hold sequences until failure. The reflected FBG spectra were recorded using a commercial instrument. Finite element analysis was performed to model the response of the surface-mounted FBG sensors. In the first instance, the effect of the mechanical properties of the adhesive and substrate were modelled. This was followed by modelling the volume of adhesive used to bond the FBG sensor to the substrate. Finally, the predicted values obtained via finite element modelling were correlated to the experimental results. In addition to the FBG sensors, the tensile test specimens were instrumented with surface-mounted electrical resistance strain gauges.

  14. Quality Factor Effect on the Wireless Range of Microstrip Patch Antenna Strain Sensors

    Science.gov (United States)

    Daliri, Ali; Galehdar, Amir; Rowe, Wayne S. T.; John, Sabu; Wang, Chun H.; Ghorbani, Kamran

    2014-01-01

    Recently introduced passive wireless strain sensors based on microstrip patch antennas have shown great potential for reliable health and usage monitoring in aerospace and civil industries. However, the wireless interrogation range of these sensors is limited to few centimeters, which restricts their practical application. This paper presents an investigation on the effect of circular microstrip patch antenna (CMPA) design on the quality factor and the maximum practical wireless reading range of the sensor. The results reveal that by using appropriate substrate materials the interrogation distance of the CMPA sensor can be increased four-fold, from the previously reported 5 to 20 cm, thus improving considerably the viability of this type of wireless sensors for strain measurement and damage detection. PMID:24451457

  15. Quality Factor Effect on the Wireless Range of Microstrip Patch Antenna Strain Sensors

    Directory of Open Access Journals (Sweden)

    Ali Daliri

    2014-01-01

    Full Text Available Recently introduced passive wireless strain sensors based on microstrip patch antennas have shown great potential for reliable health and usage monitoring in aerospace and civil industries. However, the wireless interrogation range of these sensors is limited to few centimeters, which restricts their practical application. This paper presents an investigation on the effect of circular microstrip patch antenna (CMPA design on the quality factor and the maximum practical wireless reading range of the sensor. The results reveal that by using appropriate substrate materials the interrogation distance of the CMPA sensor can be increased four-fold, from the previously reported 5 to 20 cm, thus improving considerably the viability of this type of wireless sensors for strain measurement and damage detection.

  16. A Research on Low Modulus Distributed Fiber Optical Sensor for Pavement Material Strain Monitoring.

    Science.gov (United States)

    Meng, Lingjian; Wang, Linbing; Hou, Yue; Yan, Guannan

    2017-10-19

    The accumulated irreversible deformation in pavement under repeated vehicle loadings will cause fatigue failure of asphalt concrete. It is necessary to monitor the mechanical response of pavement under load by using sensors. Previous studies have limitations in modulus accommodation between the sensor and asphalt pavement, and it is difficult to achieve the distributed monitoring goal. To solve these problems, a new type of low modulus distributed optical fiber sensor (DOFS) for asphalt pavement strain monitoring is fabricated. Laboratory experiments have proved the applicability and accuracy of the newly-designed sensor. This paper presents the results of the development.

  17. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure

    International Nuclear Information System (INIS)

    Wang, Huaping; Xiang, Ping

    2016-01-01

    Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks. (paper)

  18. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure

    Science.gov (United States)

    Wang, Huaping; Xiang, Ping

    2016-07-01

    Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.

  19. Temperature and strain measurements in concrete using micro-structure optical fiber sensors

    Energy Technology Data Exchange (ETDEWEB)

    Areias, Lou [EURIDICE/SCK - CEN, Mol (Belgium); Vrije Univ. Brussels (Belgium); Geernaert, Thomas; Sulejmani, Sanne [Vrije Univ. Brussels (Belgium); and others

    2015-07-01

    A recent test carried out to evaluate the construction feasibility of the Belgian supercontainer concept incorporated several types of state-of-the-art sensors and innovative monitoring techniques, including the use of different types of optical fiber sensors. One of these is a relatively new type of sensor developed by the Brussels Photonics Team (B-PHOT) of the Vrije Universiteit Brussel. The sensor uses highly birefringent microstructured optical fibers equipped with fiber Bragg gratings (MOFBGs) sensors. They were embedded in a carbon-fiber reinforced composite plate to provide protection against the concrete's highly alkaline environment, facilitate installation in the concrete mould and allow the transfer of strain onto the fiber. The double reflection spectrum of the MOFBGs allows monitoring strain and temperature simultaneously. This paper presents results of temperature and strain measurements obtained with MOFBG sensors during a {sup 1}/{sub 2}-scale test performed in 2013. The results compare well with similar measurements obtained using conventional thermocouples and vibrating wire strain gauges.

  20. Multi-axial strain transfer from laminated CFRP composites to embedded Bragg sensor: I. Parametric study

    International Nuclear Information System (INIS)

    Luyckx, G; Voet, E; De Waele, W; Degrieck, J

    2010-01-01

    Embedded optical fibre sensors are considered in numerous applications for structural health monitoring purposes. However, since the optical fibre and the host material in which it is embedded, will have different material properties, strain in both materials will not be equal when load is applied. Therefore, the multi-axial strain transfer from the host material to the embedded sensor (optical fibre) has to be considered in detail. In the first part of this paper the strain transfer will be determined using finite element modelling of a circular isotropic glass fibre embedded first in an isotropic host and second in an anisotropic composite material. The strain transfer or relation depends on the mechanical properties of the host material and the sensor (Young's modulus and Poisson's ratio), on the lay-up of the composite material (uni-directional lay-up/cross-ply lay-up) and the position of the sensor in a certain layer. In the second part of the paper the developed strain transfer model will be evaluated for one specific lay-up and sensor type

  1. A new approach for structural health monitoring by applying anomaly detection on strain sensor data

    Science.gov (United States)

    Trichias, Konstantinos; Pijpers, Richard; Meeuwissen, Erik

    2014-03-01

    Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure's life and required maintenance in a cost-efficient way. Typically, inspection data gives insight in the structural health. The global structural behavior, and predominantly the structural loading, is generally measured with vibration and strain sensors. Acoustic emission sensors are more and more used for measuring global crack activity near critical locations. In this paper, we present a procedure for local structural health monitoring by applying Anomaly Detection (AD) on strain sensor data for sensors that are applied in expected crack path. Sensor data is analyzed by automatic anomaly detection in order to find crack activity at an early stage. This approach targets the monitoring of critical structural locations, such as welds, near which strain sensors can be applied during construction and/or locations with limited inspection possibilities during structural operation. We investigate several anomaly detection techniques to detect changes in statistical properties, indicating structural degradation. The most effective one is a novel polynomial fitting technique, which tracks slow changes in sensor data. Our approach has been tested on a representative test structure (bridge deck) in a lab environment, under constant and variable amplitude fatigue loading. In both cases, the evolving cracks at the monitored locations were successfully detected, autonomously, by our AD monitoring tool.

  2. Hybrid MEFPI/FBG sensor for simultaneous measurement of strain and magnetic field

    Science.gov (United States)

    Chen, Mao-qing; Zhao, Yong; Lv, Ri-qing; Xia, Feng

    2017-12-01

    A hybrid fiber-optic sensor consisting of a micro extrinsic Fabry-Perot Interferometer (MEFPI) and an etched fiber Bragg grating (FBG) is proposed, which can measure strain and magnetic field simultaneously. The etched FBG is sealed in a capillary with ferrofluids to detect the surrounding magnetic field. FBG with small diameter will be more sensitive to magnetic field is confirmed by simulation results. The MEFPI sensor that is prepared through welding a short section of hollow-core fiber (HCF) with single-mode fiber (SMF) is effective for strain detection. The experiment shows that strain and magnetic field can be successfully simultaneously detected based on hybrid MEFPI/FBG sensor. The sensitivities of the strain and magnetic field intensity are measured to be up to 1.41 pm/με and 5.11 pm/mT respectively. There is a negligible effect on each other, hence simultaneously measuring strain and magnetic field is feasible. It is anticipated that such easy preparation, compact and low-cost fiber-optic sensors for simultaneous measurement of strain and magnetic field could find important applications in practice.

  3. Metallic nanoparticle-based strain sensors elaborated by atomic layer deposition

    Science.gov (United States)

    Puyoo, E.; Malhaire, C.; Thomas, D.; Rafaël, R.; R'Mili, M.; Malchère, A.; Roiban, L.; Koneti, S.; Bugnet, M.; Sabac, A.; Le Berre, M.

    2017-03-01

    Platinum nanoparticle-based strain gauges are elaborated by means of atomic layer deposition on flexible polyimide substrates. Their electro-mechanical response is tested under mechanical bending in both buckling and conformational contact configurations. A maximum gauge factor of 70 is reached at a strain level of 0.5%. Although the exponential dependence of the gauge resistance on strain is attributed to the tunneling effect, it is shown that the majority of the junctions between adjacent Pt nanoparticles are in a short circuit state. Finally, we demonstrate the feasibility of an all-plastic pressure sensor integrating Pt nanoparticle-based strain gauges in a Wheatstone bridge configuration.

  4. Strain features and condition assessment of orthotropic steel deck cable-supported bridges subjected to vehicle loads by using dense FBG strain sensors

    Science.gov (United States)

    Wei, Shiyin; Zhang, Zhaohui; Li, Shunlong; Li, Hui

    2017-10-01

    Strain is a direct indicator of structural safety. Therefore, strain sensors have been used in most structural health monitoring systems for bridges. However, until now, the investigation of strain response has been insufficient. This paper conducts a comprehensive study of the strain features of the U ribs and transverse diaphragm on an orthotropic steel deck and proposes a statistical paradigm for crack detection based on the features of vehicle-induced strain response by using the densely distributed optic fibre Bragg grating (FBG) strain sensors. The local feature of strain under vehicle load is highlighted, which enables the use of measurement data to determine the vehicle loading event and to make a decision regarding the health status of a girder near the strain sensors via technical elimination of the load information. Time-frequency analysis shows that the strain contains three features: the long-term trend item, the short-term trend item, and the instantaneous vehicle-induced item (IVII). The IVII is the wheel-induced strain with a remarkable local feature, and the measured wheel-induced strain is only influenced by the vehicle near the FBG sensor, while other vehicles slightly farther away have no effect on the wheel-induced strain. This causes the local strain series, among the FBG strain sensors in the same transverse locations of different cross-sections, to present similarities in shape to some extent and presents a time delay in successive order along the driving direction. Therefore, the strain series induced by an identical vehicle can be easily tracked and compared by extracting the amplitude and calculating the mutual ratio to eliminate vehicle loading information, leaving the girder information alone. The statistical paradigm for crack detection is finally proposed, and the detection accuracy is then validated by using dense FBG strain sensors on a long-span suspension bridge in China.

  5. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: a review.

    Science.gov (United States)

    Roriz, Paulo; Carvalho, Lídia; Frazão, Orlando; Santos, José Luís; Simões, José António

    2014-04-11

    In vivo measurement, not only in animals but also in humans, is a demanding task and is the ultimate goal in experimental biomechanics. For that purpose, measurements in vivo must be performed, under physiological conditions, to obtain a database and contribute for the development of analytical models, used to describe human biomechanics. The knowledge and control of the mechanisms involved in biomechanics will allow the optimization of the performance in different topics like in clinical procedures and rehabilitation, medical devices and sports, among others. Strain gages were first applied to bone in a live animal in 40's and in 80's for the first time were applied fibre optic sensors to perform in vivo measurements of Achilles tendon forces in man. Fibre optic sensors proven to have advantages compare to conventional sensors and a great potential for biomechanical and biomedical applications. Compared to them, they are smaller, easier to implement, minimally invasive, with lower risk of infection, highly accurate, well correlated, inexpensive and multiplexable. The aim of this review article is to give an overview about the evolution of the experimental techniques applied in biomechanics, from conventional to fibre optic sensors. In the next sections the most relevant contributions of these sensors, for strain and force in biomechanical applications, will be presented. Emphasis was given to report of in vivo experiments and clinical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Large-strain Soft Sensors Using Elastomers Blended with Exfoliated/Fragmented Graphite Particles

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sungmin; Nam, Gyungmok; Kim, Jonghun; Yoon, Sang-Hee [Inha Univ., Incheon (Korea, Republic of)

    2016-09-15

    An elastic polymer (e.g., PDMS) blended with EFG particles is a promising conductive composite for fabricating soft sensors that can detect an object's deformation up to or more than 50 %. Here, we develop large-strain, sprayable soft sensors using a mixture of PDMS and EFG particles, which are used as a host elastomer and electrically conductive particles, respectively. A solution for a conductive composite mixture is prepared by the microwave-assisted graphite exfoliation, followed by ultrasonication-induced fragmentation of the exfoliated graphite and ultrasonic blending of PDMS and EFG. Using the prepared solutions for composite and pure PDMS, 1-, 2-, and 3-axis soft sensors are fabricated by airbrush stencil technique where composite mixture and pure PDMS are materials for sensing and insulating layers, respectively. We characterize the soft strain sensors after investigating the effect of PDMS/EFG wt % on mechanical compliance and electrical conductance of the conductive composite.

  7. Integrating Fiber Optic Strain Sensors into Metal Using Ultrasonic Additive Manufacturing

    Science.gov (United States)

    Hehr, Adam; Norfolk, Mark; Wenning, Justin; Sheridan, John; Leser, Paul; Leser, Patrick; Newman, John A.

    2018-03-01

    Ultrasonic additive manufacturing, a rather new three-dimensional (3D) printing technology, uses ultrasonic energy to produce metallurgical bonds between layers of metal foils near room temperature. This low temperature attribute of the process enables integration of temperature sensitive components, such as fiber optic strain sensors, directly into metal structures. This may be an enabling technology for Digital Twin applications, i.e., virtual model interaction and feedback with live load data. This study evaluates the consolidation quality, interface robustness, and load sensing limits of commercially available fiber optic strain sensors embedded into aluminum alloy 6061. Lastly, an outlook on the technology and its applications is described.

  8. Coaxial Thermoplastic Elastomer-Wrapped Carbon Nanotube Fibers for Deformable and Wearable Strain Sensors

    KAUST Repository

    Zhou, Jian

    2018-01-22

    Highly conductive and stretchable fibers are crucial components of wearable electronics systems. Excellent electrical conductivity, stretchability, and wearability are required from such fibers. Existing technologies still display limited performances in these design requirements. Here, achieving highly stretchable and sensitive strain sensors by using a coaxial structure, prepared via coaxial wet spinning of thermoplastic elastomer-wrapped carbon nanotube fibers, is proposed. The sensors attain high sensitivity (with a gauge factor of 425 at 100% strain), high stretchability, and high linearity. They are also reproducible and durable. Their use as safe sensing components on deformable cable, expandable surfaces, and wearable textiles is demonstrated.

  9. Development of a contact probe incorporating a Bragg grating strain sensor for nano coordinate measuring machines

    International Nuclear Information System (INIS)

    Ji, H; Hsu, H-Y; Kong, L X; Wedding, A B

    2009-01-01

    This paper presents a novel optical fibre based micro contact probe system with high sensitivity and repeatability. In this optical fibre probe with a fused spherical tip, a fibre Bragg grating has been utilized as a strain sensor in the probe stem. When the probe tip contacts the surface of the part, a strain will be induced along the probe stem and will produce a Bragg wavelength shift. The contact signal can be issued once the wavelength shift signal is produced and demodulated. With the fibre grating sensor element integrated into the probe directly, the probe system shows a high sensitivity. In this work, the strain distributions along the probe stem with the probe under axial and lateral load are analysed. A simulation of the strain distribution was performed using the finite element package ANSYS 11. Performance tests using a piezoelectric transducer stage with a displacement resolution of 1.5 nm yielded a measurement resolution of 60 nm under axial loading

  10. Design and Fabrication of Single-Walled Carbon Nanonet Flexible Strain Sensors

    Directory of Open Access Journals (Sweden)

    Trung Kien Vu

    2012-03-01

    Full Text Available This study presents a novel flexible strain sensor for real-time strain sensing. The material for strain sensing is single-walled carbon nanonets, grown using the alcohol catalytic chemical vapor deposition method, that were encapsulated between two layers of Parylene-C, with a polyimide layer as the sensing surface. All of the micro-fabrication was compatible with the standard IC process. Experimental results indicated that the gauge factor of the proposed strain sensor was larger than 4.5, approximately 2.0 times greater than those of commercial gauges. The results also demonstrated that the gauge factor is small when the growth time of SWCNNs is lengthier, and the gauge factor is large when the line width of the serpentine pattern of SWCNNs is small.

  11. A piezo-resistive graphene strain sensor with a hollow cylindrical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Atsushi, E-mail: nakamura.atsushi@ipc.shizuoka.ac.jp [Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan); Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan); Hamanishi, Toshiki [Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan); Kawakami, Shotaro [Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan); Takeda, Masanori [Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan); Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan)

    2017-05-15

    Highlights: • A hollow tubing graphene fiber was synthesized from CVD-grown graphene on Ni wire. • The strain sensor showed the gauge factor 34.3–48.9 at 8% tensile strain. • The TGF sensors performed a writing finger motion assessment. - Abstract: We propose a resistance-type strain sensor consists of hollow tubing graphene fibers (TGFs) with dimethylpolysiloxane (PDMS) coating for millimeters-scale strain/bending detection applications. The TGFs were synthesized via graphene films grown on Ni wire by chemical vapor deposition (CVD). The TGFs are fundamentally folded continuous few-layered graphene films without edges maintained cylindrical tube supported by PDMS coating. Sensing properties were studied comparing with a multi-wall carbon nanotube (MWCNT)/PDMS composites (CNTCs) and the mechanism were discussed. In terms of the gauge factor, the sensor made of TGF is estimated to be in the range of 34.3–48.9 against 8% tensile strain. For a feasibility study, we demonstrate the human finger monitoring by means of bending angle detection on a finger joint.

  12. Surface Crack Detection in Prestressed Concrete Cylinder Pipes Using BOTDA Strain Sensors

    Directory of Open Access Journals (Sweden)

    Zhigang Xu

    2017-01-01

    Full Text Available Structural deterioration after a period of service can induce the failure of prestressed concrete cylinder pipes (PCCPs, with microcracks in the coating leading to the corrosion of the prestressed wires. In this paper, we propose the use of Brillouin optical time-domain analysis (BOTDA strain sensors for detecting the onset of microcracking in PCCP coating: the BOTDA strain sensors are mounted on the surface of the PCCP, and distributed strain measurements are employed to assess the cracks in the mortar coating and the structural state of the pipe. To validate the feasibility of the proposed approach, experimental investigations were conducted on a prototype PCCP segment, wherein the inner pressure was gradually increased to 1.6 MPa. Two types of BOTDA strain sensors—the steel wire packaged fiber optic sensor and the polyelastic packaged fiber optic sensor—were employed in the experiments. The experimental distributed measurements agreed well with the finite element computations, evidencing that the investigated strain sensors are sensitive to localized deterioration behaviors such as PCCP microcracking.

  13. Nanostructural point-contact sensors for diagnostics of carcinogenic strains of Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Г. В. Камарчук

    2017-12-01

    Full Text Available Background: The problem of detecting the different strains of H. pylori has gained great importance today due to the worldwide prevalence of this bacterium and its role in the pathogenesis of a number of serious gastric and extragastric diseases. However, not all H. pylori strains are aggressive and require antibiotic treatment. Thus, the question arises about the necessity of differentiating these bacterium strains with respect to their virulence factors. In accordance with the IV Maastricht Consensus Report, among the variety of ways to diagnose H. pylori infection, non-invasive methods should be given preference. Most of them are based on the analysis of gas which is exhaled by a human. Mass spectrometry, gas chromatography, and IR spectroscopy are currently the mostly used ones. However, despite the obvious advantages, these techniques have a number of disadvantages that make them difficult to use in everyday medical practice. Modern sensor devices can become an inexpensive and easy to access alternative to these technologies. Objectives: The aim of the work is to develop a new type of sensor device for selective recognition of H. pylori strains which is based on analysis of a mixture of gases exhaled by human. Such a kind of device can be designed on the basis of a point-contact gas sensor. Materials and methods: Anion-radical salts of the organic conductor TCNQ were chosen as the sensitive material for point-contact sensors. The fundamental properties of point contacts which are used in the Yanson point-contact spectroscopy make it possible to create a point-contact mesoscopic matrix on the basis of this material, which is sensitive to small concentrations of components in complex gas media. The sensors were obtained by electrochemical deposition of salts from a solvent characterized by a high vapor pressure on a textolite substrate. Gas exhaled by a human served as the substance to be analyzed. The measurements were carried out following

  14. Directly Printable Flexible Strain Sensors for Bending and Contact Feedback of Soft Actuators

    Directory of Open Access Journals (Sweden)

    Khaled Elgeneidy

    2018-02-01

    Full Text Available This paper presents a fully printable sensorized bending actuator that can be calibrated to provide reliable bending feedback and simple contact detection. A soft bending actuator following a pleated morphology, as well as a flexible resistive strain sensor, were directly 3D printed using easily accessible FDM printer hardware with a dual-extrusion tool head. The flexible sensor was directly welded to the bending actuator’s body and systematically tested to characterize and evaluate its response under variable input pressure. A signal conditioning circuit was developed to enhance the quality of the sensory feedback, and flexible conductive threads were used for wiring. The sensorized actuator’s response was then calibrated using a vision system to convert the sensory readings to real bending angle values. The empirical relationship was derived using linear regression and validated at untrained input conditions to evaluate its accuracy. Furthermore, the sensorized actuator was tested in a constrained setup that prevents bending, to evaluate the potential of using the same sensor for simple contact detection by comparing the constrained and free-bending responses at the same input pressures. The results of this work demonstrated how a dual-extrusion FDM printing process can be tuned to directly print highly customizable flexible strain sensors that were able to provide reliable bending feedback and basic contact detection. The addition of such sensing capability to bending actuators enhances their functionality and reliability for applications such as controlled soft grasping, flexible wearables, and haptic devices.

  15. Development of a Brillouin scattering based distributed fibre optic strain sensor

    Science.gov (United States)

    Brown, Anthony Wayne

    2001-07-01

    The parameters of the Brillouin spectrum of an optical fibre depend upon the strain and temperature conditions of the fibre. As a result, fibre optic distributed sensors based on Brillouin scattering can measure strain and temperature in arbitrary regions of a sensing fibre. In the past, such sensors have often been demonstrated under laboratory conditions, demonstrating the principle of operation. Although some field tests of temperature sensing have been reported, the actual deployment of such sensors in the field for strain measurements has been limited by poor spatial resolution (typically 1 m or more) and poor strain accuracy (+/-100 muepsilon). Also, cross-sensitivity of the Brillouin spectrum to temperature further reduces the accuracy of strain measurement while long acquisition times hinders field use. The high level of user knowledge and lack of automation required to operate the equipment is another limiting factor of the only commercially available unit. The potential benefits of distributed measurements are great for instrumentation of civil structures provided that the above limitations are overcome. However, before this system is used with confidence by practitioners, it is essential that it can be effectively operated in field conditions. In light of this, the fibre optics group at the University of New Brunswick has been developing an automated system for field measurement of strain in civil structures, particularly in reinforced concrete. The development of the sensing system hardware and software was the main focus of this thesis. This has been made possible, in part, by observation of the Brillouin spectrum for the case of using very short light pulses (performance to measure strain to an accuracy of 10 muepsilon; and allow the simultaneous measurement of strain and temperature to an accuracy of 204 muepsilon and 3°C are presented. Finally, the results of field measurement of strain on a concrete structure are presented.

  16. A piezoelectric-based infinite stiffness generation method for strain-type load sensors

    International Nuclear Information System (INIS)

    Zhang, Shuwen; Shao, Shubao; Xu, Minglong; Chen, Jie

    2015-01-01

    Under certain application conditions like nanoindentation technology and the mechanical property measurement of soft materials, the elastic deformation of strain-type load sensors affects their displacement measurement accuracy. In this work, a piezoelectric-based infinite stiffness generation method for strain-type load sensors that compensates for this elastic deformation is presented. The piezoelectric material-based deformation compensation method is proposed. An Hottinger Baldwin Messtechnik GmbH (HBM) Z30A/50N load sensor acts as the foundation of the method presented in this work. The piezoelectric stack is selected based on its size, maximum deformation value, blocking force and stiffness. Then, a clamping and fixing structure is designed to integrate the HBM sensor with the piezoelectric stack. The clamping and fixing structure, piezoelectric stack and HBM load sensor comprise the sensing part of the enhanced load sensor. The load-deformation curve and the voltage-deformation curve of the enhanced load sensor are then investigated experimentally. Because a hysteresis effect exists in the piezoelectric structure, the relationship between the control signal and the deformation value of the piezoelectric material is nonlinear. The hysteresis characteristic in a quasi-static condition is studied and fitted using a quadratic polynomial, and its coefficients are analyzed to enable control signal prediction. Applied arithmetic based on current theory and the fitted data is developed to predict the control signal. Finally, the experimental effects of the proposed method are presented. It is shown that when a quasi-static load is exerted on this enhanced strain-type load sensor, the deformation is reduced and the equivalent stiffness appears to be almost infinite. (paper)

  17. Photoelastic colloidal gel for a high-sensitivity strain sensor

    Science.gov (United States)

    Pan, Hui; Chen, Zhixin; Zhu, Shenmin; Jiang, Chun; Zhang, Di

    2018-04-01

    Nanoparticles, having the ability to self-assemble into an ordered structure in their suspensions, analogous to liquid crystals, have attracted extensive attention. Herein, we report a new type of colloidal gel with an ordered crystal structure assembled from 1D and 2D nanoparticles. The material has high elasticity and, more interestingly, it shows significant photoelasticity. Its refractive index can be tuned under external stress and exhibits an ultra-wide dynamic range (Δn) of the order of 10-2. Due to the large Δn, the material shows an extremely high strain sensibility of 720 nm/ɛ, an order of magnitude higher than the reported ones.

  18. Microfabricated photoplastic cantilever with integrated photoplastic/carbon based piezoresistive strain sensor

    DEFF Research Database (Denmark)

    Gammelgaard, Lauge; Rasmussen, Peter Andreas; Calleja, M.

    2006-01-01

    We present an SU-8 micrometer sized cantilever strain sensor with an integrated piezoresistor made of a conductive composite of SU-8 polymer and carbon black particles. The composite has been developed using ultrasonic mixing. Cleanroom processing of the polymer composite has been investigated...

  19. Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Bang, Ole

    2008-01-01

    We study the sensitivity of fiber grating sensors in the applications of strain, temperature, internal label-free biosensing, and internal refractive index sensing. New analytical expressions for the sensitivities, valid for photonic crystal fibers are rigorously derived. These are generally vali...

  20. Monitoring of Carbon Fiber-Reinforced Old Timber Beams via Strain and Multiresonant Acoustic Emission Sensors.

    Science.gov (United States)

    Rescalvo, Francisco J; Valverde-Palacios, Ignacio; Suarez, Elisabet; Roldán, Andrés; Gallego, Antolino

    2018-04-17

    This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes), reinforced using carbon composite materials (CFRP). Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE) sensors. Results demonstrate that: (1) the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness); (2) Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures.

  1. Monitoring of Carbon Fiber-Reinforced Old Timber Beams via Strain and Multiresonant Acoustic Emission Sensors

    Directory of Open Access Journals (Sweden)

    Francisco J. Rescalvo

    2018-04-01

    Full Text Available This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes, reinforced using carbon composite materials (CFRP. Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE sensors. Results demonstrate that: (1 the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness; (2 Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures.

  2. Recent progress of flexible and wearable strain sensors for human-motion monitoring

    Science.gov (United States)

    Ge, Gang; Huang, Wei; Shao, Jinjun; Dong, Xiaochen

    2018-01-01

    With the rapid development of human artificial intelligence and the inevitably expanding markets, the past two decades have witnessed an urgent demand for the flexible and wearable devices, especially the flexible strain sensors. Flexible strain sensors, incorporated the merits of stretchability, high sensitivity and skin-mountable, are emerging as an extremely charming domain in virtue of their promising applications in artificial intelligent realms, human-machine systems and health-care devices. In this review, we concentrate on the transduction mechanisms, building blocks of flexible physical sensors, subsequently property optimization in terms of device structures and sensing materials in the direction of practical applications. Perspectives on the existing challenges are also highlighted in the end. Project supported by the NNSF of China (Nos. 61525402, 61604071), the Key University Science Research Project of Jiangsu Province (No. 15KJA430006), and the Natural Science Foundation of Jiangsu Province (No. BK20161012).

  3. Sensitive element of multifunctional sensor for measuring temperature, strain and magnetic field induction

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2017-12-01

    Full Text Available Sensitive element of multifunctional sensor for measuring temperature, strain and magnetic field induction has been developed based on the studies of electrical conductivity and magnetoresistance of silicon and germanium microcrystals in the temperature range 4.2—70 K, strain ±1.5*10–3 rel.un. and magnetic fields of 0—14 T. The feature of the sensitive element is the using of the p- and n-type conductivity germanium microcrystals as mechanical and magnetic field sensors, respectively, and the p-type silicon microcrystal — as temperature sensor. That allows providing the compensation of temperature influence on piezoresistance and on sensitivity to the magnetic field.

  4. Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression.

    Science.gov (United States)

    Galao, Oscar; Baeza, F Javier; Zornoza, Emilio; Garcés, Pedro

    2017-11-24

    Cement composites with nano-additions have been vastly studied for their functional applications, such as strain and damage sensing. The capacity of a carbon nanofiber (CNF) cement paste has already been tested. However, this study is focused on the use of CNF cement composites as sensors in regular concrete samples. Different measuring techniques and humidity conditions of CNF samples were tested to optimize the strain and damage sensing of this material. In the strain sensing tests (for compressive stresses up to 10 MPa), the response depends on the maximum stress applied. The material was more sensitive at higher loads. Furthermore, the actual load time history did not influence the electrical response, and similar curves were obtained for different test configurations. On the other hand, damage sensing tests proved the capability of CNF cement composites to measure the strain level of concrete samples, even for loads close to the material's strength. Some problems were detected in the strain transmission between sensor and concrete specimens, which will require specific calibration of each sensor one attached to the structure.

  5. Laser-engraved carbon nanotube paper for instilling high sensitivity, high stretchability, and high linearity in strain sensors

    KAUST Repository

    Xin, Yangyang

    2017-06-29

    There is an increasing demand for strain sensors with high sensitivity and high stretchability for new applications such as robotics or wearable electronics. However, for the available technologies, the sensitivity of the sensors varies widely. These sensors are also highly nonlinear, making reliable measurement challenging. Here we introduce a new family of sensors composed of a laser-engraved carbon nanotube paper embedded in an elastomer. A roll-to-roll pressing of these sensors activates a pre-defined fragmentation process, which results in a well-controlled, fragmented microstructure. Such sensors are reproducible and durable and can attain ultrahigh sensitivity and high stretchability (with a gauge factor of over 4.2 × 10(4) at 150% strain). Moreover, they can attain high linearity from 0% to 15% and from 22% to 150% strain. They are good candidates for stretchable electronic applications that require high sensitivity and linearity at large strains.

  6. Bioinspired Flexible and Highly Responsive Dual-Mode Strain/Magnetism Composite Sensor.

    Science.gov (United States)

    Huang, Pei; Li, Yuan-Qing; Yu, Xiao-Guang; Zhu, Wei-Bin; Nie, Shu-Yan; Zhang, Hao; Liu, Jin-Rui; Hu, Ning; Fu, Shao-Yun

    2018-04-04

    The mimicry of human skin to detect both oncoming and physical-contacting object is of great importance in the fields of manufacturing, artificial robots and vehicles, etc. Herein, a novel bioinspired flexible and highly responsive dual-mode strain/magnetism composite sensor, which works via both contact and contactless modes, is first fabricated by incorporating Fe 3 O 4 /silicone system into a carbon fiber aerogel (CFA). The distance dependence of magnetic field endorses the CFA/Fe 3 O 4 /silicone composite possible for spatial sensing due to the introduction of Fe 3 O 4 magnetic nanoparticles. As a result, the as-prepared flexible sensor exhibits precise and real-time response not only to direct-contact compression as usual but also to contactless magnetic field in a wide frequency range from 0.1 to 10 Hz, achieving the maximum variance of 68% and 86% in relative electrical resistance, respectively. The contact and contactless sensing modes of the strain/magnetism sensor are clearly demonstrated by recording the speeds of bicycle riding and walking, respectively. Interestingly, this dual-mode composite sensor exhibits the capacity of identifying the contact and contactless state, which is the first report for flexible sensors. The current protocol is eco-friendly, facile, and thought-provoking for the fabrication of multifunctional sensors.

  7. A Spray-On Carbon Nanotube Artificial Neuron Strain Sensor for Composite Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Gyeongrak Choi

    2016-07-01

    Full Text Available We present a nanocomposite strain sensor (NCSS to develop a novel structural health monitoring (SHM sensor that can be easily installed in a composite structure. An NCSS made of a multi-walled carbon nanotubes (MWCNT/epoxy composite was installed on a target structure with facile processing. We attempted to evaluate the NCSS sensing characteristics and benchmark compared to those of a conventional foil strain gauge. The response of the NCSS was fairly good and the result was nearly identical to the strain gauge. A neuron, which is a biomimetic long continuous NCSS, was also developed, and its vibration response was investigated for structural damage detection of a composite cantilever. The vibration response for damage detection was measured by tracking the first natural frequency, which demonstrated good result that matched the finite element (FE analysis.

  8. Analysis and experimental study on the strain transfer mechanism of an embedded basalt fiber-encapsulated fiber Bragg grating sensor

    Science.gov (United States)

    Zhang, Zhenglin; Wang, Yuan; Sun, Yangyang; Zhang, Qinghua; You, Zewei; Huang, Xiaodi

    2017-01-01

    The precision of the encapsulated fiber optic sensor embedded into a host suffers from the influences of encapsulating materials. Furthermore, an interface transfer effect of strain sensing exists. This study uses an embedded basalt fiber-encapsulated fiber Bragg grating (FBG) sensor as the research object to derive an expression in a multilayer interface strain transfer coefficient by considering the mechanical properties of the host material. The direct impact of the host material on the strain transfer at an embedded multipoint continuous FBG (i.e., multiple gratings written on a single optical fiber) monitoring strain sensor, which was self-developed and encapsulated with basalt fiber, is studied to present the strain transfer coefficients corresponding to the positions of various gratings. The strain transfer coefficients of the sensor are analyzed based on the experiments designed for this study. The error of the experimental results is ˜2 μɛ when the strain is at 60 μɛ and below. Moreover, the measured curves almost completely coincide with the theoretical curves. The changes in the internal strain field inside the embedded structure of the basalt fiber-encapsulated FBG strain sensor could be easily monitored. Hence, important references are provided to measure the internal stress strain of the sensor.

  9. Validation and qualification of surface-applied fibre optic strain sensors using application-independent optical techniques

    International Nuclear Information System (INIS)

    Schukar, Vivien G; Kadoke, Daniel; Kusche, Nadine; Münzenberger, Sven; Gründer, Klaus-Peter; Habel, Wolfgang R

    2012-01-01

    Surface-applied fibre optic strain sensors were investigated using a unique validation facility equipped with application-independent optical reference systems. First, different adhesives for the sensor's application were analysed regarding their material properties. Measurements resulting from conventional measurement techniques, such as thermo-mechanical analysis and dynamic mechanical analysis, were compared with measurements resulting from digital image correlation, which has the advantage of being a non-contact technique. Second, fibre optic strain sensors were applied to test specimens with the selected adhesives. Their strain-transfer mechanism was analysed in comparison with conventional strain gauges. Relative movements between the applied sensor and the test specimen were visualized easily using optical reference methods, digital image correlation and electronic speckle pattern interferometry. Conventional strain gauges showed limited opportunities for an objective strain-transfer analysis because they are also affected by application conditions. (paper)

  10. Textile-Based, Interdigital, Capacitive, Soft-Strain Sensor for Wearable Applications

    Directory of Open Access Journals (Sweden)

    Ozgur Atalay

    2018-05-01

    Full Text Available The electronic textile area has gained considerable attention due to its implementation of wearable devices, and soft sensors are the main components of these systems. In this paper, a new sensor design is presented to create stretchable, capacitance-based strain sensors for human motion tracking. This involves the use of stretchable, conductive-knit fabric within the silicone elastomer matrix, as interdigitated electrodes. While conductive fabric creates a secure conductive network for electrodes, a silicone-based matrix provides encapsulation and dimensional-stability to the structure. During the benchtop characterization, sensors show linear output, i.e., R2 = 0.997, with high response time, i.e., 50 ms, and high resolution, i.e., 1.36%. Finally, movement of the knee joint during the different scenarios was successfully recorded.

  11. Fully integrated carbon nanotube composite thin film strain sensors on flexible substrates for structural health monitoring

    Science.gov (United States)

    Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H.

    2017-09-01

    Multifunctional thin film materials have opened many opportunities for novel sensing strategies for structural health monitoring. While past work has established methods of optimizing multifunctional materials to exhibit sensing properties, comparatively less work has focused on their integration into fully functional sensing systems capable of being deployed in the field. This study focuses on the advancement of a scalable fabrication process for the integration of multifunctional thin films into a fully integrated sensing system. This is achieved through the development of an optimized fabrication process that can create a broad range of sensing systems using multifunctional materials. A layer-by-layer deposited multifunctional composite consisting of single walled carbon nanotubes (SWNT) in a polyvinyl alcohol and polysodium-4-styrene sulfonate matrix are incorporated with a lithography process to produce a fully integrated sensing system deposited on a flexible substrate. To illustrate the process, a strain sensing platform consisting of a patterned SWNT-composite thin film as a strain-sensitive element within an amplified Wheatstone bridge sensing circuit is presented. Strain sensing is selected because it presents many of the design and processing challenges that are core to patterning multifunctional thin film materials into sensing systems. Strain sensors fabricated on a flexible polyimide substrate are experimentally tested under cyclic loading using standard four-point bending coupons and a partial-scale steel frame assembly under lateral loading. The study reveals the material process is highly repeatable to produce fully integrated strain sensors with linearity and sensitivity exceeding 0.99 and 5 {{V}}/{ε }, respectively. The thin film strain sensors are robust and are capable of high strain measurements beyond 3000 μ {ε }.

  12. Elasto-plastic bond mechanics of embedded fiber optic sensors in concrete under uniaxial tension with strain localization

    Science.gov (United States)

    Li, Qingbin; Li, Guang; Wang, Guanglun

    2003-12-01

    Brittleness of the glass core inside fiber optic sensors limits their practical usage, and therefore they are coated with low-modulus softer protective materials. Protective coatings absorb a portion of the strain, and hence part of the structural strain is sensed. The study reported here corrects for this error through development of a theoretical model to account for the loss of strain in the protective coating of optical fibers. The model considers the coating as an elasto-plastic material and formulates strain transfer coefficients for elastic, elasto-plastic and strain localization phases of coating deformations in strain localization in concrete. The theoretical findings were verified through laboratory experimentation. The experimental program involved fabrication of interferometric optical fiber sensors, embedding within mortar samples and tensile tests in a closed-loop servo-hydraulic testing machine. The elasto-plastic strain transfer coefficients were employed for correction of optical fiber sensor data and results were compared with those of conventional extensometers.

  13. Integration of graphene sensor with electrochromic device on modulus-gradient polymer for instantaneous strain visualization

    Science.gov (United States)

    Yang, Tingting; Zhong, Yujia; Tao, Dashuai; Li, Xinming; Zang, Xiaobei; Lin, Shuyuan; Jiang, Xin; Li, Zhihong; Zhu, Hongwei

    2017-09-01

    In nature, some animals change their deceptive coloration for camouflage, temperature preservation or communication. This astonishing function has inspired scientists to replicate the color changing abilities of animals with artificial skin. Recently, some studies have focused on the smart materials and devices with reversible color changing or light-emitting properties for instantaneous strain visualization. However, most of these works only show eye-detectable appearance change when subjected to large mechanical deformation (100%-500% strain), and conspicuous color change at small strain remains rarely explored. In the present study, we developed a user-interactive electronic skin with human-readable optical output by assembling a highly sensitive resistive strain sensor with a stretchable organic electrochromic device (ECD) together. We explored the substrate effect on the electromechanical behavior of graphene and designed a strategy of modulus-gradient structure to employ graphene as both the highly sensitive strain sensing element and the insensitive stretchable electrode of the ECD layer. Subtle strain (0-10%) was enough to evoke an obvious color change, and the RGB value of the color quantified the magnitude of the applied strain. Such high sensitivity to smaller strains (0-10%) with color changing capability will potentially enhance the function of wearable devices, robots and prosthetics in the future.

  14. Polyurethane nanofiber strain sensors via in situ polymerization of polypyrrole and application to monitoring joint flexion

    Science.gov (United States)

    Kim, Inhwan; Cho, Gilsoo

    2018-07-01

    Strain sensors made of intrinsically conductive polymers (ICPs) and nanofibers were fabricated and tested for suitability for use in wearable technology. The sensors were fabricated and evaluated based on their surface appearances, and electrical, tensile, and chemical/thermal properties. Polypyrrole (PPy) was in situ polymerized onto polyurethane (PU) nanofiber substrates by exposing pyrrole monomers to ammonium persulfate as oxidant and 2,6-naphthalenedisulfonic acid disodium salt as doping agents in an aqueous bath. The PPy treated PU nanofibers were then coated with polydimethylsiloxane (PDMS). Both pyrrole concentrations and layer numbers were significantly related to change in electrical conductivity. Specimen treated with 0.1 M of PPy and having three layered structure showed the best electrical conductivity. Regarding tensile strength, the in situ polymerization process decreased tensile strength because the oxidant chemically degraded the PU fibers. Adding layers and PDMS treatment generally improved tensile properties while adding layers created fracture parts in the stress–strain curves. The treatment condition of 0.1 M of PPy, two layered, and PDMS treated specimen showed the best tensile properties as a strain sensor. The chemical property evaluation with Fourier transform infrared and x-ray photoelectron spectroscopy tests showed successful PPy polymerization and PDMS treatments. The functional groups and chemical bonds in polyol, urethane linkage, backbone ring structure in PPy, silicon-based functional groups in PDMS, and elemental content changes by treatment at each stage were characterized. The real-time data acquired from the dummy and five human subjects with repetition of motion at three different speeds of 0.16, 0.25 and 0.5 Hz generated similar trends and tendencies. The PU nanofiber sensors based on PPy and PDMS treatments in this study point to the possibility of developing textiles based wearable strain sensors developed using ICPs.

  15. Three-axial Fiber Bragg Grating Strain Sensor for Volcano Monitoring

    Science.gov (United States)

    Giacomelli, Umberto; Beverini, Nicolò; Carbone, Daniele; Carelli, Giorgio; Francesconi, Francesco; Gambino, Salvatore; Maccioni, Enrico; Morganti, Mauro; Orazi, Massimo; Peluso, Rosario; Sorrentino, Fiodor

    2017-04-01

    Fiber optic and FBGs sensors have attained a large diffusion in the last years as cost-effective monitoring and diagnostic devices in civil engineering. However, in spite of their potential impact, these instruments have found very limited application in geophysics. In order to study earthquakes and volcanoes, the measurement of crustal deformation is of crucial importance. Stress and strain behaviour is among the best indicators of changes in the activity of volcanoes .. Deep bore-hole dilatometers and strainmeters have been employed for volcano monitoring. These instruments are very sensitive and reliable, but are not cost-effective and their installation requires a large effort. Fiber optic based devices offer low cost, small size, wide frequency band, easier deployment and even the possibility of creating a local network with several sensors linked in an array. We present the realization, installation and first results of a shallow-borehole (8,5 meters depth) three-axial Fiber Bragg Grating (FBG) strain sensor prototype. This sensor has been developed in the framework of the MED-SUV project and installed on Etna volcano, in the facilities of the Serra La Nave astrophysical observatory. The installation siteis about 7 Km South-West of the summit craters, at an elevation of about 1740 m. The main goal of our work is the realization of a three-axial device having a high resolution and accuracy in static and dynamic strain measurements, with special attention to the trade-off among resolution, cost and power consumption. The sensor structure and its read-out system are innovative and offer practical advantages in comparison with traditional strain meters. Here we present data collected during the first five months of operation. In particular, the very clear signals recorded in the occurrence of the Central Italy seismic event of October 30th demonstrate the performances of our device.

  16. Oil pipeline geohazard monitoring using optical fiber FBG strain sensors (Conference Presentation)

    Science.gov (United States)

    Salazar-Ferro, Andres; Mendez, Alexis

    2016-04-01

    Pipelines are naturally vulnerable to operational, environmental and man-made effects such as internal erosion and corrosion; mechanical deformation due to geophysical risks and ground movements; leaks from neglect and vandalism; as well as encroachments from nearby excavations or illegal intrusions. The actual detection and localization of incipient and advanced faults in pipelines is a very difficult, expensive and inexact task. Anything that operators can do to mitigate the effects of these faults will provide increased reliability, reduced downtime and maintenance costs, as well as increased revenues. This talk will review the on-line monitoring of an extensive network of oil pipelines in service in Colombia using optical fiber Bragg grating (FBG) strain sensors for the measurement of strains and bending caused by geohazard risks such as soil movements, landslides, settlements, flooding and seismic activity. The FBG sensors were mounted on the outside of the pipelines at discrete locations where geohazard risk was expected. The system has been in service for the past 3 years with over 1,000 strain sensors mounted. The technique has been reliable and effective in giving advanced warning of accumulated pipeline strains as well as possible ruptures.

  17. Mechanical transfer of ZnO nanowires for a flexible and conformal piezotronic strain sensor

    Science.gov (United States)

    Jenkins, Kory; Yang, Rusen

    2017-07-01

    We demonstrate a truly conformal and flexible piezotronic strain sensor using zinc oxide (ZnO) nanowires. Well-aligned, vertical ZnO nanowires are grown by chemical vapor deposition on a silicon wafer with a hydrothermally grown ZnO seed layer. The nanowires are infiltrated with polydimethylsiloxane and mechanically transferred from the silicon substrate. Plasma etching exposes the top surface of the nanowires before deposition of a gold (Au) top electrode. The bottom electrode is formed by silver paint which also adheres the sensor to the measured structure. To demonstrate the sensor’s ability to conform to complex surfaces, a stepped shaft with a shoulder fillet is used. The sensor is attached to the shoulder fillet of the stepped shaft, conforming to both the circumference of the shaft, and the radius of the fillet. A periodic bending displacement is applied to the end of the shaft. The strain induces a piezoelectric potential in the ZnO nanowires which controls the barrier height and conductivity at the gold/ZnO interface, by what is known as the piezotronic effect. The conductivity change is measured for periodically applied strains. The nonlinear current-voltage (I-V) response of the device is due to the Schottky contact between the ZnO nanowires and gold electrode. The geometry of the stepped shaft corresponds to a known stress concentration factor, and the strain experienced by the shaft is estimated with a COMSOL FEA study. The conformal nature of the strain sensor makes it suitable for structural monitoring applications involving complex geometries and stress concentrators.

  18. Feasibility study on measuring axial and transverse stress/strain components in composite materials using Bragg sensors

    Science.gov (United States)

    Luyckx, G.; Degrieck, J.; De Waele, W.; Van Paepegem, W.; Van Roosbroeck, J.; Chah, K.; Vlekken, J.; McKenzie, I.; Obst, A.

    2017-11-01

    A fibre optic sensor design is proposed for simultaneously measuring the 3D stress (or strain) components and temperature inside thermo hardened composite materials. The sensor is based on two fibre Bragg gratings written in polarisation maintaining fibre. Based on calculations of the condition number, it will be shown that reasonable accuracies are to be expected. First tests on the bare sensors and on the sensors embedded in composite material, which confirm the expected behaviour, will be presented.

  19. Method for independent strain and temperature measurement in polymeric tensile test specimen using embedded FBG sensors

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; McGugan, Malcolm; Mikkelsen, Lars Pilgaard

    2016-01-01

    to calculate independently the strain and temperature are presented in the article, together with a measurement resolution study. This multi-parameter measurement method was applied to an epoxy tensile specimen, tested in a unidirectional tensile test machine with a temperature controlled cabinet. A full......A novel method to obtain independent strain and temperature measurements using embedded Fibre Bragg Grating (FBG) in polymeric tensile test specimens is presented in this paper. The FBG strain and temperature cross-sensitivity was decoupled using two single mode FBG sensors, which were embedded...... of temperature, from 40 C to -10 C. The consistency of the expected theoretical results with the calibration procedure and the experimental validation shows that this proposed method is applicable to measure accurate strain and temperature in polymers during static or fatigue tensile testing. Two different...

  20. Circular High-Q Resonating Isotropic Strain Sensors with Large Shift of Resonance Frequency under Stress

    Directory of Open Access Journals (Sweden)

    Hilmi Volkan Demir

    2009-11-01

    Full Text Available We present circular architecture bioimplant strain sensors that facilitate a strong resonance frequency shift with mechanical deformation. The clinical application area of these sensors is for in vivo assessment of bone fractures. Using a rectangular geometry, we obtain a resonance shift of 330 MHz for a single device and 170 MHz for its triplet configuration (with three side-by-side resonators on chip under an applied load of 3,920 N. Using the same device parameters with a circular isotropic architecture, we achieve a resonance frequency shift of 500 MHz for the single device and 260 MHz for its triplet configuration, demonstrating substantially increased sensitivity.

  1. Strain measurements by fiber Bragg grating sensors for in situ pile loading tests

    Science.gov (United States)

    Schmidt-Hattenberger, Cornelia; Straub, Tilmann; Naumann, Marcel; Borm, Günter; Lauerer, Robert; Beck, Christoph; Schwarz, Wolfgang

    2003-07-01

    A fiber Bragg grating (FBG) sensor network has been installed into a large diameter concrete pile on a real construction site. The intention was to monitor its deformation behavior during several quasi-static loading cycles. The skin friction between pile and subsoil affecting the ultimate bearing capacity of the pile as well as the settlement behavior of the structure under investigation has been derived from our measurements. A comparison between the results of the fiber Bragg grating sensors and conventional concrete strain gages (CSG) has shown excellent correspondence.

  2. [Development of a simultaneous strain and temperature sensor with small-diameter FBG].

    Science.gov (United States)

    Liu, Rong-mei; Liang, Da-kai

    2011-03-01

    Manufacture of the small diameter FBG was designed. Cross sensitivity of temperature and strain at sensing point was solved. Based on coupled-mode theory, optical properties of the designed FBG were studied. The reflection and transmission spectra of the designed FBG in small diameter were studied A single mode optical fiber, whose cladding diameter is 80 microm, was manufactured to a fiber Bragg grating (phi80FBG). According to spectrum simulation, the grating length and period were chosen as the wavelength was 1528 nm. The connector of the small diameter FBG with demodulation was designed too. In applications, the FBG measures the total deformation including strain due to forces applied to the structures as well as thermal expansion. In order to overcome this inconvenience and to measure both parameters at the same time and location, a novel scheme for simultaneous strain and temperature sensor was presented. Since the uniform strength beam has same deformation at all points, a pair of phi80 FBG was attached on a uniform strength cantilever. One of the FBG was on the upper surface, with the other one on the below. Therefore, the strains at the monitoring points were equal in magnitude but of opposite sign. The strain and temperature in sensing point could be discriminated by matrix equation. The determination of the K is not null and thus matrix inversion is well conditioned, even the values for the K elements are close. Consequently, the cross sensitivity of the FBG with temperature and strain can be experimentally solved. Experiments were carried out to study the strain discriminability of small-diameter FBG sensors. The temperature and strain were calculated and the errors were, respectively, 5% and 6%.

  3. Carbon nanotubes (CNTs) based strain sensors for a wearable monitoring and biofeedback system for pressure ulcer prevention and rehabilitation.

    Science.gov (United States)

    Boissy, Patrick; Genest, Jonathan; Patenaude, Johanne; Poirier, Marie-Sol; Chenel, Vanessa; Béland, Jean-Pierre; Legault, Georges-Auguste; Bernier, Louise; Tapin, Danielle; Beauvais, Jacques

    2011-01-01

    This paper presents an overview of the functioning principles of CNTs and their electrical and mechanical properties when used as strain sensors and describes a system embodiment for a wearable monitoring and biofeedback platform for use in pressure ulcer prevention and rehabilitation. Two type of CNTs films (multi-layered CNTs film vs purified film) were characterized electrically and mechanically for potential use as source material. The loosely woven CNTs film (multi-layered) showed substantial less sensitivity than the purified CNTs film but had an almost linear response to stress and better mechanical properties. CNTs have the potential to achieve a much higher sensitivity to strain than other piezoresistors based on regular of conductive particles such as commercially available resistive inks and could become an innovative source material for wearable strain sensors. We are currently continuing the characterization of CNTs based strain sensors and exploring their use in a design for 3-axis strain sensors.

  4. Sensing sheet: the response of full-bridge strain sensors to thermal variations for detecting and characterizing cracks

    Science.gov (United States)

    Tung, S.-T.; Glisic, B.

    2016-12-01

    Sensing sheets based on large-area electronics consist of a dense array of unit strain sensors. This new technology has potential for becoming an effective and affordable monitoring tool that can identify, localize and quantify surface damage in structures. This research contributes to their development by investigating the response of full-bridge unit strain sensors to thermal variations. Overall, this investigation quantifies the effects of temperature on thin-film full-bridge strain sensors monitoring uncracked and cracked concrete. Additionally, an empirical formula is developed to estimate crack width given an observed strain change and a measured temperature change. This research led to the understanding of the behavior of full-bridge strain sensors installed on cracked concrete and exposed to temperature variations. It proves the concept of the sensing sheet and its suitability for application in environments with variable temperature.

  5. Electrically Conductive TPU Nanofibrous Composite with High Stretchability for Flexible Strain Sensor

    Science.gov (United States)

    Tong, Lu; Wang, Xiao-Xiong; He, Xiao-Xiao; Nie, Guang-Di; Zhang, Jun; Zhang, Bin; Guo, Wen-Zhe; Long, Yun-Ze

    2018-03-01

    Highly stretchable and electrically conductive thermoplastic polyurethane (TPU) nanofibrous composite based on electrospinning for flexible strain sensor and stretchable conductor has been fabricated via in situ polymerization of polyaniline (PANI) on TPU nanofibrous membrane. The PANI/TPU membrane-based sensor could detect a strain from 0 to 160% with fast response and excellent stability. Meanwhile, the TPU composite has good stability and durability. Besides, the composite could be adapted to various non-flat working environments and could maintain opportune conductivity at different operating temperatures. This work provides an easy operating and low-cost method to fabricate highly stretchable and electrically conductive nanofibrous membrane, which could be applied to detect quick and tiny human actions.

  6. Strain measurements using Fiber Bragg Grating sensors in Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Daniela ENCIU

    2017-06-01

    Full Text Available The paper presents some results obtained within a project of the “NUCLEU” Program financed by the Ministry of Research and Innovation-ANCS. The project supposes, among others, the design and the realization of a demonstrator for strain and stress measurements made with Fiber Bragg Gratings optical sensors. The paper details the construction of the demonstrator. The strain measurements induced in a cantilevered aluminum plate are compared with the analytical values provided by a mathematical model, and with the numerical values obtained by FEM analysis. The consistency of these comparative data indicates the achievement within the project of a level of competence necessary for later use of FBG sensors in the applicative researches involving the aerospace structures monitoring.

  7. Strain Sharing Assessment in Woven Fiber Reinforced Concrete Beams Using Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio

    2016-09-22

    Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data.

  8. Stretchable Dual-Capacitor Multi-Sensor for Touch-Curvature-Pressure-Strain Sensing.

    Science.gov (United States)

    Jin, Hanbyul; Jung, Sungchul; Kim, Junhyung; Heo, Sanghyun; Lim, Jaeik; Park, Wonsang; Chu, Hye Yong; Bien, Franklin; Park, Kibog

    2017-09-07

    We introduce a new type of multi-functional capacitive sensor that can sense several different external stimuli. It is fabricated only with polydimethylsiloxane (PDMS) films and silver nanowire electrodes by using selective oxygen plasma treatment method without photolithography and etching processes. Differently from the conventional single-capacitor multi-functional sensors, our new multi-functional sensor is composed of two vertically-stacked capacitors (dual-capacitor). The unique dual-capacitor structure can detect the type and strength of external stimuli including curvature, pressure, strain, and touch with clear distinction, and it can also detect the surface-normal directionality of curvature, pressure, and touch. Meanwhile, the conventional single-capacitor sensor has ambiguity in distinguishing curvature and pressure and it can detect only the strength of external stimulus. The type, directionality, and strength of external stimulus can be determined based on the relative capacitance changes of the two stacked capacitors. Additionally, the logical flow reflected on a tree structure with its branches reaching the direction and strength of the corresponding external stimulus unambiguously is devised. This logical flow can be readily implemented in the sensor driving circuit if the dual-capacitor sensor is commercialized actually in the future.

  9. Strain sensors for civil engineering application based on CoFeCrSiB amorphous ribbons

    Czech Academy of Sciences Publication Activity Database

    Bydžovský, J.; Kollár, M.; Jančárik, V.; Švec, P.; Kraus, Luděk

    2002-01-01

    Roč. 52, Suppl. A (2002), s. A117-A120 ISSN 0011-4626. [Czech and Slovak Conference on Magnetism. Košice, 20.08.2001-23.08.2001] Grant - others:NATO(XX) SfP973649; VEGA(XX) 1/7609/20 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetic amorphous ribbon * stress-induced anisotropy * strain sensor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.311, year: 2002

  10. Apodization Optimization of FBG Strain Sensor for Quasi-Distributed Sensing Measurement Applications

    Directory of Open Access Journals (Sweden)

    Fahd Chaoui

    2016-01-01

    Full Text Available A novel optimized apodization of Fiber Bragg Grating Sensor (FBGS for quasi-distributed strain sensing applications is developed and introduced in this paper. The main objective of the proposed optimization is to obtain a reflectivity level higher than 90% and a side lobe level around −40 dB, which is suitable for use in quasi-distributed strain sensing application. For this purpose, different design parameters as apodization profile, grating length, and refractive index have been investigated to enhance and optimize the FBGS design. The performance of the proposed apodization has then been compared in terms of reflectivity, side lobe level (SLL, and full width at half maximum (FWHM with apodization profiles proposed by other authors. The optimized sensor is integrated on quasi-distributed sensing system of 8 sensors demonstrating high reliability. Wide strain sensitivity range for each channel has also been achieved in the quasi-distributed system. Results prove the efficiency of the proposed optimization which can be further implemented for any quasi-distributed sensing application.

  11. Simultaneous strain and temperature sensor based on polarization maintaining fiber and multimode fiber

    Science.gov (United States)

    Xing, Rui; Dong, Changbin; Wang, Zixiao; Wu, Yue; Yang, Yuguang; Jian, Shuisheng

    2018-06-01

    A novel, simultaneous strain and temperature sensor utilizing polarization maintaining fiber (PMF) and multimode fiber (MMF) is proposed and experimentally demonstrated in this paper. The sensing head of this sensor can be obtained by splicing PMF and MMF in the structure of PMF-MMF-PMF. The extinction ratio of the transmission spectrum can be over 30 dB. The strain sensitivities of sensor by two spectrum dips can be 1.01 pm/με and 1.27 pm/με in the range from 0 to 2000 με. Meanwhile, the temperature sensitivities of 49 pm/°C and 41 pm/°C can be achieved by two spectrum dips in the range from 30 °C to 70 °C. The sensitivity difference between the two spectrum dips can be used to realize dual parameters fiber sensing. This sensor exhibits the advantages of simple fabrication, compact structure and multi-purpose measuring. It may have the great potential in fields of robot arms and artificial limbs.

  12. Strain Wave Acquisition by a Fiber Optic Coherent Sensor for Impact Monitoring.

    Science.gov (United States)

    Sbarufatti, Claudio; Beligni, Alessio; Gilioli, Andrea; Ferrario, Maddalena; Mattarei, Marco; Martinelli, Mario; Giglio, Marco

    2017-07-13

    A novel fiber optic sensing technology for high frequency dynamics detection is proposed in this paper, specifically tailored for structural health monitoring applications based on strain wave analysis, for both passive impact identification and active Lamb wave monitoring. The sensing solution relies on a fiber optic-based interferometric architecture associated to an innovative coherent detection scheme, which retrieves in a completely passive way the high-frequency phase information of the received optical signal. The sensing fiber can be arranged into different layouts, depending on the requirement of the specific application, in order to enhance the sensor sensitivity while still ensuring a limited gauge length if punctual measures are required. For active Lamb wave monitoring, this results in a sensing fiber arranged in multiple loops glued on an aluminum thin panel in order to increase the phase signal only in correspondence to the sensing points of interest. Instead, for passive impact identification, the required sensitivity is guaranteed by simply exploiting a longer gauge length glued to the structure. The fiber optic coherent (FOC) sensor is exploited to detect the strain waves emitted by a piezoelectric transducer placed on the aluminum panel or generated by an impulse hammer, respectively. The FOC sensor measurements have been compared with both a numerical model based on Finite Elements and traditional piezoelectric sensors, confirming a good agreement between experimental and simulated results for both active and passive impact monitoring scenarios.

  13. Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2012-01-01

    We demonstrate stable wavelength tunable inscription of polymer optical fiber Bragg gratings (FBGs). By straining the fiber during FBG inscription, we linearly tune the center wavelength over 7 nm with less than 1% strain. Above 1% strain, the tuning curve saturates and we show a maximum tuning...... of 12 nm with 2.25% strain. We use this inscription method to fabricate a dual-FBG strain sensor in a poly (methyl methacrylate) single-mode microstructured polymer optical fiber and demonstrate temperature compensated strain sensing around 850 nm....

  14. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes.

    Science.gov (United States)

    Lipomi, Darren J; Vosgueritchian, Michael; Tee, Benjamin C-K; Hellstrom, Sondra L; Lee, Jennifer A; Fox, Courtney H; Bao, Zhenan

    2011-10-23

    Transparent, elastic conductors are essential components of electronic and optoelectronic devices that facilitate human interaction and biofeedback, such as interactive electronics, implantable medical devices and robotic systems with human-like sensing capabilities. The availability of conducting thin films with these properties could lead to the development of skin-like sensors that stretch reversibly, sense pressure (not just touch), bend into hairpin turns, integrate with collapsible, stretchable and mechanically robust displays and solar cells, and also wrap around non-planar and biological surfaces such as skin and organs, without wrinkling. We report transparent, conducting spray-deposited films of single-walled carbon nanotubes that can be rendered stretchable by applying strain along each axis, and then releasing this strain. This process produces spring-like structures in the nanotubes that accommodate strains of up to 150% and demonstrate conductivities as high as 2,200 S cm(-1) in the stretched state. We also use the nanotube films as electrodes in arrays of transparent, stretchable capacitors, which behave as pressure and strain sensors.

  15. In-Situ Three-Dimensional Shape Rendering from Strain Values Obtained Through Optical Fiber Sensors

    Science.gov (United States)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    A method and system for rendering the shape of a multi-core optical fiber or multi-fiber bundle in three-dimensional space in real time based on measured fiber strain data. Three optical fiber cores arc arranged in parallel at 120.degree. intervals about a central axis. A series of longitudinally co-located strain sensor triplets, typically fiber Bragg gratings, are positioned along the length of each fiber at known intervals. A tunable laser interrogates the sensors to detect strain on the fiber cores. Software determines the strain magnitude (.DELTA.L/L) for each fiber at a given triplet, but then applies beam theory to calculate curvature, beading angle and torsion of the fiber bundle, and from there it determines the shape of the fiber in s Cartesian coordinate system by solving a series of ordinary differential equations expanded from the Frenet-Serrat equations. This approach eliminates the need for computationally time-intensive curve-tilting and allows the three-dimensional shape of the optical fiber assembly to be displayed in real-time.

  16. PBO Borehole Strainmeters and Pore Pressure Sensors: Recording Hydrological Strain Signals

    Science.gov (United States)

    Gottlieb, M. H.; Hodgkinson, K. M.; Mencin, D.; Henderson, D. B.; Johnson, W.; Van Boskirk, E.; Pyatt, C.; Mattioli, G. S.

    2017-12-01

    UNAVCO operates a network of 75 borehole strainmeters along the west coast of the United States and Vancouver Island, Canada as part of the Plate Boundary Observatory (PBO), the geodetic component of the NSF-funded Earthscope program. Borehole strainmeters are designed to detect variations in the strain field at the nanostrain level and can easily detect transient strains caused by aseismic creep events, Episodic Tremor and Slip (ETS) events and seismically induced co- and post-seimic signals. In 2016, one strainmeter was installed in an Oklahoma oil field to characterize in-situ deformation during CO2 injection. Twenty-three strainmeter sites also have pore pressure sensors to measure fluctuations in groundwater pressure. Both the strainmeter network and the pore pressure sensors provide unique data against which those using water-level measurements, GPS time-series or InSAR data can compare possible subsidence signals caused by groundwater withdrawal or fluid re-injection. Operating for 12 years, the PBO strainmeter and pore pressure network provides a long-term, continuous, 1-sps record of deformation. PBO deploys GTSM21 tensor strainmeters from GTSM Technologies, which consist of four horizontal strain gauges stacked vertically, at different orientations, within a single 2 m-long instrument. The strainmeters are typically installed at depths of 200 to 250 m and grouted into the bottom of 15 cm diameter boreholes. The pore pressure sensors are Digiquartz Depth Sensors from Paros Scientific. These sensors are installed in 2" PVC, sampling groundwater through a screened section 15 m above the co-located strainmeter. These sensors are also recording at 1-sps with a resolution in the hundredths of hPa. High-rate local barometric pressure data and low-rate rainfall data also available at all locations. PBO Strainmeter and pore pressure data are available in SEED, SAC-ASCII and time-stamped ASCII format from the IRIS Data Managements Center. Strainmeter data are

  17. Skin inspired fractal strain sensors using a copper nanowire and graphite microflake hybrid conductive network.

    Science.gov (United States)

    Jason, Naveen N; Wang, Stephen J; Bhanushali, Sushrut; Cheng, Wenlong

    2016-09-22

    This work demonstrates a facile "paint-on" approach to fabricate highly stretchable and highly sensitive strain sensors by combining one-dimensional copper nanowire networks with two-dimensional graphite microflakes. This paint-on approach allows for the fabrication of electronic skin (e-skin) patches which can directly replicate with high fidelity the human skin surface they are on, regardless of the topological complexity. This leads to high accuracy for detecting biometric signals for applications in personalised wearable sensors. The copper nanowires contribute to high stretchability and the graphite flakes offer high sensitivity, and their hybrid coating offers the advantages of both. To understand the topological effects on the sensing performance, we utilized fractal shaped elastomeric substrates and systematically compared their stretchability and sensitivity. We could achieve a high stretchability of up to 600% and a maximum gauge factor of 3000. Our simple yet efficient paint-on approach enabled facile fine-tuning of sensitivity/stretchability simply by adjusting ratios of 1D vs. 2D materials in the hybrid coating, and the topological structural designs. This capability leads to a wide range of biomedical sensors demonstrated here, including pulse sensors, prosthetic hands, and a wireless ankle motion sensor.

  18. Multidimensional inverse heat conduction problem: optimization of sensor locations and utilization of thermal-strain measurements

    International Nuclear Information System (INIS)

    Blanc, Gilles

    1996-01-01

    This work is devoted to the solution of the inverse multidimensional heat conduction problem. The first part is the determination of a methodology for determining the minimum number of sensors and the best sensor locations. The method is applied to a 20 problem but the extension to 30 problems is quite obvious. This methodology is based on the study of the rate of representation. This new concept allows to determine the quantity and the quality of the information obtain from the various sensors. The rate of representation is a useful tool for experimental design. lt can be determined very quickly by the transposed matrix method. This approach was validated with an experimental set-up. The second part is the development of a method that uses thermal strain measurement instead of temperature measurements to estimate the unknown thermal boundary conditions. We showed that this new sensor has two advantages in comparison with the classical temperature measurements: higher frequency can be estimated and smaller number of sensors can be used for 20 problems. The main weakness is, presently, the fact that the method can only be applied to beams. The results obtained from the numerical simulations were validated by the analysis of experimental data obtained on an experimental set-up especially designed and built for this study. (author) [fr

  19. A Wireless Sensor Network with Enhanced Power Efficiency and Embedded Strain Cycle Identification for Fatigue Monitoring of Railway Bridges

    OpenAIRE

    Feltrin, Glauco; Popovic, Nemanja; Flouri, Kallirroi; Pietrzak, Piotr

    2016-01-01

    Wireless sensor networks have been shown to be a cost-effective monitoring tool for many applications on civil structures. Strain cycle monitoring for fatigue life assessment of railway bridges, however, is still a challenge since it is data intensive and requires a reliable operation for several weeks or months. In addition, sensing with electrical resistance strain gauges is expensive in terms of energy consumption. The induced reduction of battery lifetime of sensor nodes increases the mai...

  20. Metallic-packaging fiber Bragg grating sensor based on ultrasonic welding for strain-insensitive temperature measurement

    Science.gov (United States)

    Zhu, Lianqing; Yang, Runtao; Zhang, Yumin; Dong, Mingli; Lou, Xiaoping

    2018-04-01

    In this paper, a metallic-packaging fiber Bragg grating temperature sensor characterized by a strain insensitive design is demonstrated. The sensor is fabricated by the one-step ultrasonic welding technique using type-II fiber Bragg grating combined with an aluminum alloy substrate. Finite element analysis is used to perform theoretical evaluation. The result of the experiment illustrates that the metallic-packaging temperature sensor is insensitive to longitudinal strain. The sensor's temperature sensitivity is 36 pm/°C over the range of 50-110 °C, with the correlation coefficient (R2) being 0.999. The sensor's temporal response is 40 s at a sudden temperature change from 21 °C to 100 °C. The proposed sensor can be applied on reliable and precise temperature measurement.

  1. Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization

    Science.gov (United States)

    Yu, Gui-Feng; Yan, Xu; Yu, Miao; Jia, Meng-Yang; Pan, Wei; He, Xiao-Xiao; Han, Wen-Peng; Zhang, Zhi-Ming; Yu, Liang-Min; Long, Yun-Ze

    2016-01-01

    A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10 000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger motion. The results demonstrate promising application of the patterned nanofibrous membrane in flexible electronic fields.A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10 000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger

  2. Bending strain study of Bi-2223/Ag tapes using Hall sensor magnetometry

    International Nuclear Information System (INIS)

    Lahtinen, M.; Paasi, J.; Sarkaniemi, J.; Han, Z.; Freltoft, T.

    1996-01-01

    The influence of room temperature bending on critical current (I c ) of Bi-2223/Ag tapes is studied by Hall sensor magnetometry, four-point method and scanning electron microscopy. Hall sensor magnetometry allows one to assess tape homogeneity and the amount of mechanical damage caused by bending. The microstructure of the Bi-2223 ceramic is found to strongly affect the tape behavior under bending strain. In a tape with moderate I c = 6.1 A at 77 K and a porous ceramic core, crack propagation took place normal to the Ag-ceramic interface, whereas in tapes with dense core, I c above 10 A at 77 K, cracks propagated in the tape plane. In monofilamentary tapes core homogeneity correlated with good bending strain performance. In multifilamentary tapes crack propagation between filaments was prohibited by the Ag matrix, thus leading to enhanced strain tolerance. In the high I c tapes studied, bending to 25 mm radius resulted in 1%--2% I c degradation

  3. Temperature Compensated Strain Sensor Based on Cascaded Sagnac Interferometers and All-Solid Birefringent Hybrid Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Wu; He, Sailing

    2012-01-01

    We demonstrate a temperature compensated strain sensor with two cascaded Sagnac interferometers, that provide strain sensing and temperature compensation, respectively. The Sagnac interferometers use an all-solid hybrid photonic crystal fiber with stress-induced birefringence. The stress-induced ...

  4. Low power loss and field-insensitive permeability of Fe-6.5%Si powder cores with manganese oxide-coated particles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junnan, E-mail: junnanli1991@163.com, E-mail: rzhgong@hust.edu.cn; Wang, Xian; Xu, Xiaojun; Gong, Rongzhou, E-mail: junnanli1991@163.com, E-mail: rzhgong@hust.edu.cn; Feng, Zekun [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Yajie; Harris, V. G. [Department of Electrical and Computer Engineering, Center for Microwave Magnetic Materials and Integrated Circuits, Northeastern University, Boston, Massachusetts 02115 (United States)

    2015-05-07

    Fe-6.5%Si alloy powders coated with manganese oxides using an innovative in situ process were investigated. The in-situ coating of the insulating oxides was realized with a KMnO{sub 4} solution by a chemical process. The insulating manganese oxides with mixed valance state were verified by X-ray photoelectron spectroscopy analysis. The thickness of the insulating layer on alloy particles was determined to be in a range of 20–210 nm, depending upon the KMnO{sub 4} concentration. The powder core loss and the change in permeability under a DC-bias field were measured at frequencies ranging from 50 to 100 kHz. The experiments indicated that the Fe-6.5%Si powder cores with a 210 nm-thick manganese oxide layer not only showed a low core loss of 459 mW/cm{sup 3} at 100 kHz but also showed a small reduction in permeability (μ(H)/μ(0) = 85% for μ = 42) at a DC-bias field of 80 Oe. This work has defined a novel pathway to realizing low core loss and field-insensitive permeability for Fe-Si powder cores.

  5. RGO-coated elastic fibres as wearable strain sensors for full-scale detection of human motions

    Science.gov (United States)

    Mi, Qing; Wang, Qi; Zang, Siyao; Mao, Guoming; Zhang, Jinnan; Ren, Xiaomin

    2018-01-01

    In this study, we chose highly-elastic fabric fibres as the functional carrier and then simply coated the fibres with reduced graphene oxide (rGO) using plasma treatment, dip coating and hydrothermal reduction steps, finally making a wearable strain sensor. As a result, the full-scale detection of human motions, ranging from bending joints to the pulse beat, has been achieved by these sensors. Moreover, high sensitivity, good stability and excellent repeatability were realized. The good sensing performances and economical fabrication process of this wearable strain sensor have strengthened our confidence in practical applications in smart clothing, smart fabrics, healthcare, and entertainment fields.

  6. Strengthening of Back Muscles Using a Module of Flexible Strain Sensors

    Directory of Open Access Journals (Sweden)

    Wan-Chun Chuang

    2015-02-01

    Full Text Available This research aims at developing a flexible strain module applied to the strengthening of back muscles. Silver films were sputtered onto flexible substrates to produce a flexible sensor. Assuming that back muscle elongation is positively correlated with the variations in skin surface length, real-time resistance changes exhibited by the sensor during simulated training sessions were measured. The results were used to identify the relationship between resistance change of sensors and skin surface stretch. In addition, muscle length changes from ultrasound images were used to determine the feasibility of a proof of concept sensor. Furthermore, this module is capable of detecting large muscle contractions, some of which may be undesirable for the prescribed training strategy. Therefore, the developed module can facilitate real-time assessments of the movement accuracy of users during training, and the results are instantly displayed on a screen. People using the developed training system can immediately adjust their posture to the appropriate position. Thus, the training mechanism can be constructed to help user improve the efficiency of back muscle strengthening.

  7. A Stretchable Radio-Frequency Strain Sensor Using Screen Printing Technology.

    Science.gov (United States)

    Jeong, Heijun; Lim, Sungjoon

    2016-11-02

    In this paper, we propose a stretchable radio-frequency (RF) strain sensor fabricated with screen printing technology. The RF sensor is designed using a half-wavelength patch that resonates at 3.7 GHz. The resonant frequency is determined by the length of the patch, and it therefore changes when the patch is stretched. Polydimethylsiloxane (PDMS) is used to create the substrate, because of its stretchable and screen-printable surface. In addition, Dupont PE872 (Dupont, NC, American) silver conductive ink is used to create the stretchable conductive patterns. The sensor performance is demonstrated both with full-wave simulations and with measurements carried out on a fabricated sample. When the length of the patch sensor is increased by a 7.8% stretch, the resonant frequency decreases from 3.7 GHz to 3.43 GHz, evidencing a sensitivity of 3.43 × 10⁷ Hz/%. Stretching the patch along its width does not change the resonant frequency.

  8. Modeling borehole microseismic and strain signals measured by a distributed fiber optic sensor

    Science.gov (United States)

    Mellors, R. J.; Sherman, C. S.; Ryerson, F. J.; Morris, J.; Allen, G. S.; Messerly, M. J.; Carr, T.; Kavousi, P.

    2017-12-01

    The advent of distributed fiber optic sensors installed in boreholes provides a new and data-rich perspective on the subsurface environment. This includes the long-term capability for vertical seismic profiles, monitoring of active borehole processes such as well stimulation, and measuring of microseismic signals. The distributed fiber sensor, which measures strain (or strain-rate), is an active sensor with highest sensitivity parallel to the fiber and subject to varying types of noise, both external and internal. We take a systems approach and include the response of the electronics, fiber/cable, and subsurface to improve interpretation of the signals. This aids in understanding noise sources, assessing error bounds on amplitudes, and developing appropriate algorithms for improving the image. Ultimately, a robust understanding will allow identification of areas for future improvement and possible optimization in fiber and cable design. The subsurface signals are simulated in two ways: 1) a massively parallel multi-physics code that is capable of modeling hydraulic stimulation of heterogeneous reservoir with a pre-existing discrete fracture network, and 2) a parallelized 3D finite difference code for high-frequency seismic signals. Geometry and parameters for the simulations are derived from fiber deployments, including the Marcellus Shale Energy and Environment Laboratory (MSEEL) project in West Virginia. The combination mimics both the low-frequency strain signals generated during the fracture process and high-frequency signals from microseismic and perforation shots. Results are compared with available fiber data and demonstrate that quantitative interpretation of the fiber data provides valuable constraints on the fracture geometry and microseismic activity. These constraints appear difficult, if not impossible, to obtain otherwise.

  9. Static and Dynamic Strain Monitoring of Reinforced Concrete Components through Embedded Carbon Nanotube Cement-Based Sensors

    Directory of Open Access Journals (Sweden)

    Antonella D’Alessandro

    2017-01-01

    Full Text Available The paper presents a study on the use of cement-based sensors doped with carbon nanotubes as embedded smart sensors for static and dynamic strain monitoring of reinforced concrete (RC elements. Such novel sensors can be used for the monitoring of civil infrastructures. Because they are fabricated from a structural material and are easy to utilize, these sensors can be integrated into structural elements for monitoring of different types of constructions during their service life. Despite the scientific attention that such sensors have received in recent years, further research is needed to understand (i the repeatability and accuracy of sensors’ behavior over a meaningful number of sensors, (ii testing configurations and calibration methods, and (iii the sensors’ ability to provide static and dynamic strain measurements when actually embedded in RC elements. To address these research needs, this paper presents a preliminary characterization of the self-sensing capabilities and the dynamic properties of a meaningful number of cement-based sensors and studies their application as embedded sensors in a full-scale RC beam. Results from electrical and electromechanical tests conducted on small and full-scale specimens using different electrical measurement methods confirm that smart cement-based sensors show promise for both static and vibration-based structural health monitoring applications of concrete elements but that calibration of each sensor seems to be necessary.

  10. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials

    Science.gov (United States)

    Ramakrishnan, Manjusha; Rajan, Ginu; Semenova, Yuliya; Farrell, Gerald

    2016-01-01

    This paper provides an overview of the different types of fiber optic sensors (FOS) that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements. PMID:26784192

  11. Integration of FBG Strain Sensors in WDM Networks, Effects on Quality Factor

    Directory of Open Access Journals (Sweden)

    Ali Al-Lawati

    2009-06-01

    Full Text Available A study of the effect of integrating an FBG sensor in a four wavelength WDM communications system operating at 1550 nm is presented. The simulations considered focus on the mutual effects of both the sensing and the communications systems. The effect of power levels of the interrogating optical source on the performance of the two systems is also investigated under excitation levels of up to 10 dBm. The network layout used in the simulations is based on an actual optical link in Oman having a variety of spans. The results obtained at data rates of 2.5 and 10 Gbps with variable strains up to ±600 μs show a good tolerance in terms of quality of transmission for the two systems. However, the greater the strain values, the more noticeable are the degradations of transmission quality parameters of the communications system.

  12. Strain and temperature measurement in pultrusion processes by fiber Bragg grating sensors

    Science.gov (United States)

    Tucci, Fausto; Rubino, Felice; Carlone, Pierpaolo

    2018-05-01

    Injection Pultrusion (IP) is one of the most effective processes, in terms of productivity and costs, to manufacture fiber reinforced polymers. In IP roving of fiber are driven through an injection chamber in which they are impregnated by the resin and then formed in a shaped die. The die is heated in order to cure the resin. Pultruded products are in most cases characterized by constant cross-section profile, whereas unidirectional long fibers are mainly used as reinforcing material. Two relevant phenomena occur within the injection chamber and the heated die, namely the impregnation of the fibers and the polymerization of the resin. Furthermore, thermal expansion, resin chemical shrinkage and the interaction between the die and the impregnated fibers strongly influence the process [1]. Clearly, thermal and mechanical fields significantly impact on these strictly chained behaviours. The use of thermocouples to evaluate temperature within pultrusion die is already widespread, but they are not capable to acquire any information concerning stress-strain levels. In the present work Fibers Bragg Gratings (FBG) sensors were used to measure thermal and strain profiles in selected material location within the injection chamber and the curing die. Being the differences among the spectres transmitted and received are related to the variations in both temperature and strain, commercial FBG sensors were opportunely modified and calibrated. The optical fibers were hooked to the fibers entering into the injection pultrusion die. Taking the pulling speed into account, each waveform acquired was correlated to a position within the die. Obtained data highlight the effect of the heat generation due to resin reaction as well as longitudinal strains related to the pulling force, the thermal expansion and the chemical shrinkage of the resin system.

  13. Omni-Purpose Stretchable Strain Sensor Based on a Highly Dense Nanocracking Structure for Whole-Body Motion Monitoring.

    Science.gov (United States)

    Jeon, Hyungkook; Hong, Seong Kyung; Kim, Min Seo; Cho, Seong J; Lim, Geunbae

    2017-12-06

    Here, we report an omni-purpose stretchable strain sensor (OPSS sensor) based on a nanocracking structure for monitoring whole-body motions including both joint-level and skin-level motions. By controlling and optimizing the nanocracking structure, inspired by the spider sensory system, the OPSS sensor is endowed with both high sensitivity (gauge factor ≈ 30) and a wide working range (strain up to 150%) under great linearity (R 2 = 0.9814) and fast response time (sensor has advantages of being extremely simple, patternable, integrated circuit-compatible, and reliable in terms of reproducibility. Using the OPSS sensor, we detected various human body motions including both moving of joints and subtle deforming of skin such as pulsation. As specific medical applications of the sensor, we also successfully developed a glove-type hand motion detector and a real-time Morse code communication system for patients with general paralysis. Therefore, considering the outstanding sensing performances, great advantages of the fabrication process, and successful results from a variety of practical applications, we believe that the OPSS sensor is a highly suitable strain sensor for whole-body motion monitoring and has potential for a wide range of applications, such as medical robotics and wearable healthcare devices.

  14. Performance comparison of Rayleigh and STW modes on quartz crystal for strain sensor application

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Chen; Lee, Ki Jung; Lee, Keekeun; Yang, Sang Sik, E-mail: ssyang@ajou.ac.kr [Department of Electrical and Computer Engineering, Ajou University, Suwon 442-749 (Korea, Republic of); Eun, Kyongtae; Choa, Sung-Hoon [Nano-IT Fusion Program, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of)

    2016-07-14

    In this study, we compare two kinds of strain sensors based on Rayleigh wave and surface transverse wave (STW) modes, respectively. First, we perform a strain-and-stress analysis using the finite element method, and we consider the contribution to a surface acoustic wave (SAW) velocity shift. Prior to fabrication, we use a coupling-of-modes model to simulate and optimize two-port SAW resonators for both modes. We use a network analyzer to measure and characterize the two devices. Further, we perform an experiment using a strain-testing system with a tapered cross-section cantilever beam. The experimental results show that the ratio of the frequency shift to the strain for the Rayleigh wave mode is −1.124 ppm/με in the parallel direction and 0.109 ppm/με in the perpendicular direction, while the corresponding values for the STW mode are 0.680 ppm/με and 0.189 ppm/με, respectively.

  15. Wireless Open-Circuit In-Plane Strain and Displacement Sensor Requiring No Electrical Connections

    Science.gov (United States)

    Woodard, Stanley E. (Inventor)

    2014-01-01

    A wireless in-plane strain and displacement sensor includes an electrical conductor fixedly coupled to a substrate subject to strain conditions. The electrical conductor is shaped between its ends for storage of an electric field and a magnetic field, and remains electrically unconnected to define an unconnected open-circuit having inductance and capacitance. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. The sensor also includes at least one electrically unconnected electrode having an end and a free portion extending from the end thereof. The end of each electrode is fixedly coupled to the substrate and the free portion thereof remains unencumbered and spaced apart from a portion of the electrical conductor so-shaped. More specifically, at least some of the free portion is disposed at a location lying within the magnetic field response generated by the electrical conductor. A motion guidance structure is slidingly engaged with each electrode's free portion in order to maintain each free portion parallel to the electrical conductor so-shaped.

  16. A packaged, low-cost, robust optical fiber strain sensor based on small cladding fiber sandwiched within periodic polymer grating.

    Science.gov (United States)

    Chiang, Chia-Chin; Li, Chein-Hsing

    2014-06-02

    In the present study, a novel packaged long-period fiber grating (PLPFG) strain sensor is first presented. The MEMS process was utilized to fabricate the packaged optical fiber strain sensor. The sensor structure consisted of etched optical fiber sandwiched between two layers of thick photoresist SU-8 3050 and then packaged with poly (dimethylsiloxane) (PDMS) polymer material to construct the PLPFG strain sensor. The PDMS packaging material was used to prevent the glue effect, wherein glue flows into the LPFG structure and reduces coupling strength, in the surface bonding process. Because the fiber grating was packaged with PDMS material, it was effectively protected and made robust. The resonance attenuation dip of PLPFG grows when it is loading. This study explored the size effect of the grating period and fiber diameter of PLPFG via tensile testing. The experimental results found that the best strain sensitivity of the PLPFG strain sensor was -0.0342 dB/με, and that an R2 value of 0.963 was reached.

  17. Strain Measurement during Stress Rupture of Composite Over-Wrapped Pressure Vessel with Fiber Bragg Gratings Sensors

    Science.gov (United States)

    Banks, Curtis E.; Grant, Joseph; Russell, Sam; Arnett, Shawn

    2008-01-01

    Fiber optic Bragg gratings were used to measure strain fields during Stress Rupture (SSM) test of Kevlar Composite Over-Wrapped Pressure Vessels (COPV). The sensors were embedded under the over-wrapped attached to the liner released from the Kevlar and attached to the Kevlar released from the liner. Additional sensors (foil gages and fiber bragg gratings) were surface mounted on the COPY liner.

  18. Strain Measurement of Steel Roof Truss Using FBG Sensor during Construction of Reverse Shell Shaped Reinforced Concrete Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kun Woo [Kyungpook National University, Daegu (Korea, Republic of); Rhim, Hong Chul; Seo, Tae Seok [Yonsei University, Seoul (Korea, Republic of)

    2011-08-15

    Application of FBG (Fiber Bragg Grating) sensors to measure strain of steel roof trusses has been performed. This is to check and confirm the structural integrity of an unusually shaped, reverse shell structure made of reinforced concrete. The issue was to place sensors at proper location and compare the measured values to the results from structural analysis. It has been learned that a deliberate measurement scheme is needed in order to monitor a complex structure during construction. In this study, the measured values were within allowable range of strain, thus confirming the safety of the structure during measurement and construction.

  19. Coaxial printing method for directly writing stretchable cable as strain sensor

    International Nuclear Information System (INIS)

    Yan, Hai-liang; Chen, Yan-qiu; Deng, Yong-qiang; Zhang, Li-long; Lau, Woon-ming; Mei, Jun; Liu, Yu; Hong, Xiao; Hui, David; Yan, Hui

    2016-01-01

    Through applying the liquid metal and elastomer as the core and shell materials, respectively, a coaxial printing method is being developed in this work for preparing a stretchable and conductive cable. When liquid metal alloy eutectic Gallium-Indium is embedded into the elastomer matrix under optimized control, the cable demonstrates well–posed extreme mechanic performance, under stretching for more than 350%. Under developed compression test, the fabricated cable also demonstrates the ability for recovering original properties due to the high flowability of the liquid metal and super elasticity of the elastomeric shell. The written cable presents high cycling reliability regarding its stretchability and conductivity, two properties which can be clearly predicted in theoretical calculation. This work can be further investigated as a strain sensor for monitoring motion status including frequency and amplitude of a curved object, with extensive applications in wearable devices, soft robots, electronic skins, and wireless communication.

  20. Coaxial printing method for directly writing stretchable cable as strain sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hai-liang [College of Material Science and Engineering, Beijing University of Technology, 100124 Beijing (China); Chengdu Green Energy and Green Manufacturing Technology R& D Center, 610299 Chengdu (China); Chen, Yan-qiu, E-mail: yu.liu@vip.163.com, E-mail: cyqleaf@qq.com, E-mail: hyan@but.ac.cn; Deng, Yong-qiang; Zhang, Li-long; Lau, Woon-ming; Mei, Jun; Liu, Yu, E-mail: yu.liu@vip.163.com, E-mail: cyqleaf@qq.com, E-mail: hyan@but.ac.cn [Chengdu Green Energy and Green Manufacturing Technology R& D Center, 610299 Chengdu (China); Hong, Xiao [Chengdu Green Energy and Green Manufacturing Technology R& D Center, 610299 Chengdu (China); College of Computer Science, Sichuan University, Chengdu 610207 (China); Hui, David [Department of Mechanical Engineering, University of New Orleans, New Orleans, Louisiana 70148 (United States); Yan, Hui, E-mail: yu.liu@vip.163.com, E-mail: cyqleaf@qq.com, E-mail: hyan@but.ac.cn [College of Material Science and Engineering, Beijing University of Technology, 100124 Beijing (China)

    2016-08-22

    Through applying the liquid metal and elastomer as the core and shell materials, respectively, a coaxial printing method is being developed in this work for preparing a stretchable and conductive cable. When liquid metal alloy eutectic Gallium-Indium is embedded into the elastomer matrix under optimized control, the cable demonstrates well–posed extreme mechanic performance, under stretching for more than 350%. Under developed compression test, the fabricated cable also demonstrates the ability for recovering original properties due to the high flowability of the liquid metal and super elasticity of the elastomeric shell. The written cable presents high cycling reliability regarding its stretchability and conductivity, two properties which can be clearly predicted in theoretical calculation. This work can be further investigated as a strain sensor for monitoring motion status including frequency and amplitude of a curved object, with extensive applications in wearable devices, soft robots, electronic skins, and wireless communication.

  1. Review of Trackside Monitoring Solutions: From Strain Gages to Optical Fibre Sensors

    Directory of Open Access Journals (Sweden)

    Georges Kouroussis

    2015-08-01

    Full Text Available A review of recent research on structural monitoring in railway industry is proposed in this paper, with a special focus on stress-based solutions. After a brief analysis of the mechanical behaviour of ballasted railway tracks, an overview of the most common monitoring techniques is presented. A special attention is paid on strain gages and accelerometers for which the accurate mounting position on the track is requisite. These types of solution are then compared to another modern approach based on the use of optical fibres. Besides, an in-depth discussion is made on the evolution of numerical models that investigate the interaction between railway vehicles and tracks. These models are used to validate experimental devices and to predict the best location(s of the sensors. It is hoped that this review article will stimulate further research activities in this continuously expanding field.

  2. Fabrication and characterization of a metal-packaged regenerated fiber Bragg grating strain sensor for structural integrity monitoring of high-temperature components

    International Nuclear Information System (INIS)

    Tu, Yun; Tu, Shan-Tung

    2014-01-01

    Assessment of the structural integrity of components operating at high temperatures requires the development of novel sensors to measure strain. A metal-packaged regenerated fiber Bragg grating (RFBG) sensor is developed for measurement of strain using titanium–silver magnetron sputtering and nickel electroplating. The strain response of the sensor mounted onto a flat tensile specimen by spot welding is evaluated by uniaxial tensile tests at constant temperatures ranging from room temperature to 400 °C. Similar tests are performed on a bare RFBG sensor for comparison. The metal-packaged RFBG strain sensor exhibits higher strain sensitivity than that of the bare RFBG sensor, as well as good linearity, stability and repeatability of strain measurements. A three-dimensional finite element model of the sensor is established to predict the strain sensitivity based on the sensing principle of the fiber Bragg grating. Comparisons of the experimental results with the numerical predictions for the strain sensitivity show a satisfactory agreement. These results demonstrate that the metal-packaged RFBG strain sensors can be successfully fabricated by combining magnetron sputtering with electroplating, and provide great promise for structural integrity monitoring of high-temperature components. (paper)

  3. In the trail of a new bio-sensor for measuring strain in bone: osteoblastic biocompatibility.

    Science.gov (United States)

    Carvalho, Lídia; Alberto, Nélia J; Gomes, Pedro S; Nogueira, Rogério N; Pinto, João L; Fernandes, Maria H

    2011-06-15

    Fibre Bragg Grating (FBG) is an optical sensor recorded within the core of a standard optical fibre, which responds faithfully to strain and temperature. FBG sensors are a promising alternative to other sensing methodologies to assess bone mechanics in vivo. However, response of bone cells/bone tissue to FBGs and its sensing capability in this environment have not been recorded yet. The present study addressed these issues in long-term human osteoblastic cell cultures. Results showed that osteoblastic cells were able to adhere and proliferate over the fibre and, also, the protective polymer coating. RT-PCR analysis showed the expression of Col I, ALP, BMP-2, M-CSF, RANKL and OPG. In addition, cultures presented high ALP activity and the formation of a calcium phosphate mineralized extracellular matrix. Cell behavior over the fibre without and with the coating polymer was similar to that found in cultures grown in standard tissue culture plates (control). In addition to the excellent osteoblastic cytocompatibility, FBGs maintained the physical integrity and functionality, as its sensing capability was not affected through the culture period. Results suggest the possibility of in vivo osseointegration of the optical fibre/FBGs anticipating a variety of applications in bone mechanical dynamics. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Kirigami-based PVDF thin-film as stretchable strain sensor

    Science.gov (United States)

    Hu, Nan; Chen, Dajing; Hao, Nanjing; Huang, Shicheng; Yu, Xiaojiao; Zhang, John X. J.; Chen, Zi

    Kirigami, as the sister of the origami, involves cutting of 2D sheets to form complex 3D geometries with out-of-plane patterns. Motivated by the development of the high-stretchable biomedical devices, we explore the stretchability of the kirigami-based PVDF thin film under tension. Our structural prototypes include a set of 2D geometry with kirigami-based pattern cutting on PVDF thin films. We first used paper models to generate a wide range of cutting patterns to study the deformation under compression tests, the results of which are compared with finite element simulations. We then proceeded to test different kirigami-based designs to identify geometric parameters that can tune the post-buckling response and strain distribution. Next, we fabricated and tested the PVDF thin film with kirigami pattern. Experiments showed that the PVDF film in the absence of cutting can be stretched to a limited extent and will break upon further stretching. In contrast, the kirigami-based films can be stretched up to 100% without failure. Our designs demonstrate the ability to significantly improve the strain range of the structure and sensing ability of a sensor. We envision a promising future to use this class of structural elements to develop highly stretchable materials, structures, and devices. Z.C. acknowledges the Society in Science-Branco Weiss fellowship, administered by ETH Zürich. J.X.J.Z. acknowledges the NIH Director's Transformative Research Award (1R01 OD022910-01).

  5. Resonance line shape, strain and electric potential distributions of composite magnetoelectric sensors

    Directory of Open Access Journals (Sweden)

    Martina Gerken

    2013-06-01

    Full Text Available Multiferroic composite magnetoelectric (ME sensors are based on the elastic coupling of a magnetostrictive phase and a piezoelectric phase. A deformation of the magnetostrictive phase causes strain in the piezoelectric phase and thus an induced voltage. Such sensors may be applied both for static as well as for dynamic magnetic field measurements. Particularly high sensitivities are achieved for operation at a mechanical resonance. Here, the resonance line shape of layered (2-2 composite cantilever ME sensors at the first bending-mode resonance is investigated theoretically. Finite element method (FEM simulations using a linear material model reveal an asymmetric resonance profile and a zero-response frequency for the ME coefficient. Frequency-dependent strain and electric potential distributions inside the magnetoelectric composite are studied for the case of a magnetostrictive-piezoelectric bilayer. It is demonstrated that a positive or a negative voltage may be induced across the piezoelectric layer depending on the position of the neutral plane. The frequency-dependent induced electric potential is investigated for structured cantilevers that exhibit magnetostriction only at specific positions. For static operation an induced voltage is obtained locally at positions with magnetostriction. In addition to this direct effect a resonance-assisted effect is observed for dynamic operation. Magnetostriction in a limited area of the cantilever causes a global vibration of the cantilever. Thus, deformation of the piezoelectric layer and an induced electric potential also occur in areas of the cantilever without magnetostriction. The direct and the resonance-assisted pathway may induce voltages of equal or of opposite sign. The net induced voltage results from the superposition of the two effects. As the resonance-assisted induced voltage changes sign upon passing the resonance frequency, while the direct component is constant, an asymmetric line

  6. Life cycle strain monitoring in glass fibre reinforced polymer laminates using embedded fibre Bragg grating sensors from manufacturing to failure

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani; Schmidt, Jacob Wittrup; Høgh, Jacob Herold

    2013-01-01

    A holistic approach to strain monitoring in fibre-reinforced polymer composites is presented using embedded fibre Bragg grating sensors. Internal strains are monitored in unidirectional E-glass/epoxy laminate beams during vacuum infusion, curing, post-curing and subsequent loading in flexure until...... of the different cure temperatures and tool/part interfaces used. Substantial internal process-induced strains develop in the transverse fibre direction, which should be taken into consideration when designing fibre-reinforced polymer laminates. Flexure tests indicate no significant difference in the mechanical...

  7. Design and Development of a Flexible Strain Sensor for Textile Structures Based on a Conductive Polymer Composite

    Directory of Open Access Journals (Sweden)

    Claude Dufour

    2007-04-01

    Full Text Available The aim of this work is to develop a smart flexible sensor adapted to textile structures, able to measure their strain deformations. The sensors are “smart” because of their capacity to adapt to the specific mechanical properties of textile structures that are lightweight, highly flexible, stretchable, elastic, etc. Because of these properties, textile structures are continuously in movement and easily deformed, even under very low stresses. It is therefore important that the integration of a sensor does not modify their general behavior. The material used for the sensor is based on a thermoplastic elastomer (Evoprene/carbon black nanoparticle composite, and presents general mechanical properties strongly compatible with the textile substrate. Two preparation techniques are investigated: the conventional melt-mixing process, and the solvent process which is found to be more adapted for this particular application. The preparation procedure is fully described, namely the optimization of the process in terms of filler concentration in which the percolation theory aspects have to be considered. The sensor is then integrated on a thin, lightweight Nylon fabric, and the electromechanical characterization is performed to demonstrate the adaptability and the correct functioning of the sensor as a strain gauge on the fabric. A normalized relative resistance is defined in order to characterize the electrical response of the sensor. Finally, the influence of environmental factors, such as temperature and atmospheric humidity, on the sensor performance is investigated. The results show that the sensor’s electrical resistance is particularly affected by humidity. This behavior is discussed in terms of the sensitivity of the carbon black filler particles to the presence of water.

  8. A fully integrated GaAs-based three-axis Hall magnetic sensor exploiting self-positioned strain released structures

    International Nuclear Information System (INIS)

    Todaro, Maria T; Sileo, Leonardo; Epifani, Gianmichele; Tasco, Vittorianna; Cingolani, Roberto; De Vittorio, Massimo; Passaseo, Adriana

    2010-01-01

    In this work, we demonstrate a fully integrated three-axis Hall magnetic sensor by exploiting microfabrication technologies applied to a GaAs-based heterostructure. This allows us to obtain, by the same process, three mutually orthogonal sensors: an in-plane Hall sensor and two out-of-plane Hall sensors. The micromachined devices consist of a two-dimensional electron gas AlGaAs/InGaAs/GaAs multilayer which represents the sensing structure, grown on the top of an InGaAs/GaAs strained bilayer. After the release from the substrate, the strained bilayer acts as a hinge for the multilayered structure allowing the out-of-plane self-positioning of devices. Both the in-plane and out-of-plane Hall sensors show a linear response versus the magnetic field with a sensitivity for current-biased devices higher than 1000 V A −1 T −1 , corresponding to an absolute sensitivity more than 0.05 V T −1 at 50 µA. Moreover, Hall voltage measurements, as a function of the mechanical angle for both in-plane and out-of-plane sensors, demonstrate the potential of such a device for measurements of the three vector components of a magnetic field

  9. Highly stretchable strain sensor based on polyurethane substrate using hydrogen bond-assisted laminated structure for monitoring of tiny human motions

    Science.gov (United States)

    Huang, Ying; Zhao, Yunong; Wang, Yang; Guo, Xiaohui; Zhang, Yangyang; Liu, Ping; Liu, Caixia; Zhang, Yugang

    2018-03-01

    Strain sensors used as flexible and wearable electronic devices have improved prospects in the fields of artificial skin, robotics, human-machine interfaces, and healthcare. This work introduces a highly stretchable fiber-based strain sensor with a laminated structure made up of a graphene nanoplatelet layer and a carbon black/single-walled carbon nanotube synergetic conductive network layer. An ultrathin, flexible, and elastic two-layer polyurethane (PU) yarn substrate was successively deposited by a novel chemical bonding-based layered dip-coating process. These strain sensors demonstrated high stretchability (˜350%), little hysteresis, and long-term durability (over 2400 cycles) due to the favorable tensile properties of the PU substrate. The linearity of the strain sensor could reach an adjusted R-squared of 0.990 at 100% strain, which is better than most of the recently reported strain sensors. Meanwhile, the strain sensor exhibited good sensibility, rapid response, and a lower detection limit. The lower detection limit benefited from the hydrogen bond-assisted laminated structure and continuous conductive path. Finally, a series of experiments were carried out based on the special features of the PU strain sensor to show its capacity of detecting and monitoring tiny human motions.

  10. Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement

    Science.gov (United States)

    Park, Jinwoo; Kwon, Yong Seok; Ko, Myeong Ock; Jeon, Min Yong

    2017-11-01

    We demonstrate a 1550 nm band resonance Fourier-domain mode-locked (FDML) fiber laser with fiber Bragg grating (FBG) array. Using the FDML fiber laser, we successfully demonstrate real-time monitoring of dynamic FBG strain sensor interrogation for structural health monitoring. The resonance FDML fiber laser consists of six multiplexed FBGs, which are arranged in series with delay fiber lengths. It is operated by driving the fiber Fabry-Perot tunable filter (FFP-TF) with a sinusoidal waveform at a frequency corresponding to the round-trip time of the laser cavity. Each FBG forms a laser cavity independently in the FDML fiber laser because the light travels different length for each FBG. The very closely positioned two FBGs in a pair are operated simultaneously with a frequency in the FDML fiber laser. The spatial positions of the sensing pair can be distinguished from the variation of the applied frequency to the FFP-TF. One of the FBGs in the pair is used as a reference signal and the other one is fixed on the piezoelectric transducer stack to apply the dynamic strain. We successfully achieve real-time measurement of the abrupt change of the frequencies applied to the FBG without any signal processing delay. The real-time monitoring system is displayed simultaneously on the monitor for the variation of the two peaks, the modulation interval of the two peaks, and their fast Fourier transform spectrum. The frequency resolution of the dynamic variation could reach up to 0.5 Hz for 2 s integration time. It depends on the integration time to measure the dynamic variation. We believe that the real-time monitoring system will have a potential application for structural health monitoring.

  11. Designing Metallic and Insulating Nanocrystal Heterostructures to Fabricate Highly Sensitive and Solution Processed Strain Gauges for Wearable Sensors.

    Science.gov (United States)

    Lee, Woo Seok; Lee, Seung-Wook; Joh, Hyungmok; Seong, Mingi; Kim, Haneun; Kang, Min Su; Cho, Ki-Hyun; Sung, Yun-Mo; Oh, Soong Ju

    2017-12-01

    All-solution processed, high-performance wearable strain sensors are demonstrated using heterostructure nanocrystal (NC) solids. By incorporating insulating artificial atoms of CdSe quantum dot NCs into metallic artificial atoms of Au NC thin film matrix, metal-insulator heterostructures are designed. This hybrid structure results in a shift close to the percolation threshold, modifying the charge transport mechanism and enhancing sensitivity in accordance with the site percolation theory. The number of electrical pathways is also manipulated by creating nanocracks to further increase its sensitivity, inspired from the bond percolation theory. The combination of the two strategies achieves gauge factor up to 5045, the highest sensitivity recorded among NC-based strain gauges. These strain sensors show high reliability, durability, frequency stability, and negligible hysteresis. The fundamental charge transport behavior of these NC solids is investigated and the combined site and bond percolation theory is developed to illuminate the origin of their enhanced sensitivity. Finally, all NC-based and solution-processed strain gauge sensor arrays are fabricated, which effectively measure the motion of each finger joint, the pulse of heart rate, and the movement of vocal cords of human. This work provides a pathway for designing low-cost and high-performance electronic skin or wearable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Enhanced FBG sensor-based system performance assessment for monitoring strain along a prestressed CFRP rod in structural monitoring

    DEFF Research Database (Denmark)

    Kerrouche, A.; Boyle, W.J.O.; Sun, T.

    2009-01-01

    of the existing FBG-based system and the evaluation of the software developed to be compatible with a resolution reaching as high as +/- 0.15 mu epsilon is presented. The system has been tested under particular conditions where a prestressed CFRP (carbon fiber reinforced polymer) rod to which a FBG sensor......Fiber Bragg grating (FBG) sensor-based systems have been widely used for many engineering applications including most recently a number of applications in structural health monitoring. It is well known that strain and temperature both affect the FBG spectrum which in the interrogation system...

  13. A low-cost and temperature-insensitive fibre Bragg grating sensor for monitoring localized strain concentrations

    International Nuclear Information System (INIS)

    Davis, C E; Thompson, A; Li, H C H; Dethlefsen, A F; Stoddart, P R

    2009-01-01

    A simple, self-diagnostic strain sensor is described, based on a strongly reflective optical fibre Bragg grating illuminated by a broadband source. The total reflected power from these gratings is shown to be a function of the strain gradient experienced by the grating. This is because a change in pitch within a section of the grating results in the emergence of reflected energy in other spectral regions, without any significant reduction in the peak intensity at the Bragg wavelength. Thus, the presence of a localized strain can be inferred directly from an intensity measurement without the need for an optical filter or other more complex interrogation schemes. For spectrally flat light sources, the measurement is relatively insensitive to environmental temperature changes. The sensing mechanism can also be considered 'self-diagnostic' as a signal is returned by the grating even under zero load unless the sensor has failed. Modelling results are presented to determine the minimum grating strength required to achieve this effect, while the technique has been experimentally verified by measuring the strain transfer on a loaded scarf repair joint at room and elevated temperatures. The scarf repair was loaded to failure and a reduction in strain transfer was observed as the failure grew along the bondline, in accordance with finite element modelling results

  14. Pressure-sensitive strain sensor based on a single percolated Ag nanowire layer embedded in colorless polyimide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan-Jae [Display Materials & Components Research Center, Korea Electronics Technology Institute, 68 Yatap-dong, Bundang-gu, Seongnam 463-816 (Korea, Republic of); Jun, Sungwoo [Display Materials & Components Research Center, Korea Electronics Technology Institute, 68 Yatap-dong, Bundang-gu, Seongnam 463-816 (Korea, Republic of); Display and Nanosystem Laboratory, College of Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Ju, Byeong-Kwon [Display and Nanosystem Laboratory, College of Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Jong-Woong, E-mail: wyjd@keti.re.kr [Display Materials & Components Research Center, Korea Electronics Technology Institute, 68 Yatap-dong, Bundang-gu, Seongnam 463-816 (Korea, Republic of)

    2017-06-01

    This paper presents the fabrication of an elastomer-free, transparent, pressure-sensitive strain sensor consisting of a specially designed silver nanowire (AgNW) pattern and colorless polyimide (cPI). A percolated AgNW network was patterned with a simple tandem compound circuit, which was then embedded in the surface of the cPI via inverted layer processing. The resulting film-type sensor was highly transparent (~93.5% transmittance at 550 nm) and mechanically stable (capable of resisting 10000 cycles of bending to a 500 µm radius of curvature). We demonstrated that a thin, transparent, and mechanically stable electrode can be produced using a combination of AgNWs and cPI, and used to produce a system sensitive to pressure-induced bending. The capacitance of the AgNW tandem compound electrode pattern grew via fringing, which increased with the pressure-induced bending applied to the surface of the sensor. The sensitivity was four times higher than that of an elastomeric pressure sensor made with the same design. Finally, we demonstrated a skin-like pressure sensor attached to the inside wrist of a human arm. - Highlights: • A thin, transparent pressure sensor was fabricated from AgNWs and cPI. • An AgNW network was patterned with a simple circuit, and then embedded into cPI. • The resulting film-type sensor was highly transparent and mechanically stable. • The sensor sensitivity was 4x higher than that of an elastomeric pressure sensor.

  15. Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring

    OpenAIRE

    Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong; Grattan, Kenneth T. V.; Schmidt, Jacob Wittrup; Täljsten, Björn

    2009-01-01

    Results are reported from a study carried out using a series of Bragg grating-based optical fiber sensors written into a very short length (60 mm) optical fiber network and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures and in tests were subjected to strain through a series of cycles of pulling tests, with applied forces of up to 30 kN. The results show that effective strain measurements can be obtained from the diffe...

  16. Strain development in a filled epoxy resin curing under constrained and unconstrained conditions as assessed by Fibre Bragg Grating sensors

    Directory of Open Access Journals (Sweden)

    2007-04-01

    Full Text Available The influence of adhesion to the mould wall on the released strain of a highly filled anhydride cured epoxy resin (EP, which was hardened in an aluminium mould under constrained and unconstrained condition, was investigated. The shrinkage-induced strain was measured by fibre optical sensing technique. Fibre Bragg Grating (FBG sensors were embedded into the curing EP placed in a cylindrical mould cavity. The cure-induced strain signals were detected in both, vertical and horizontal directions, during isothermal curing at 75 °C for 1000 minutes. A huge difference in the strain signal of both directions could be detected for the different adhesion conditions. Under non-adhering condition the horizontal and vertical strain-time traces were practically identical resulting in a compressive strain at the end of about 3200 ppm, which is a proof of free or isotropic shrinking. However, under constrained condition the horizontal shrinkage in the EP was prevented due to its adhesion to the mould wall. So, the curing material shrunk preferably in vertical direction. This resulted in much higher released compressive strain signals in vertical (10430 ppm than in horizontal (2230 ppm direction. The constrained cured EP resins are under inner stresses. Qualitative information on the residual stress state in the molding was deduced by exploiting the birefringence of the EP.

  17. Refractive index and strain sensor based on twin-core fiber with a novel T-shaped taper

    Science.gov (United States)

    Zhang, Chuanbiao; Ning, Tigang; Li, Jing; Zheng, JingJing; Gao, Xuekai; Pei, Li

    2018-06-01

    A compact in-fiber Mach-Zehnder interferometer (MZI) based on twin-core fiber (TCF) with a novel T-shaped taper is proposed and demonstrated. The taper was firstly fabricated by a short section of TCF, and then spliced with a section of cleaved single mode fiber (SMF). When the light transmit into the TCF, multiple modes will be excited and will propagate within the TCF. In experiment, the proposed device had a maximum interferometric extinction ratio about 17 dB. And the refractive index (RI), strain, and temperature response properties of the sensor have been investigated, which show a relatively high RI, strain sensitivity and low temperature cross sensitivity. Hence, the sensor can be a suitable candidate in the biochemical and physical sensing applications. And due to its easy and controllable fabrication, the novel drawing technology can be applied to more multicore optical fibers.

  18. Fast Estimation of Strains for Cross-Beams Six-Axis Force/Torque Sensors by Mechanical Modeling

    Directory of Open Access Journals (Sweden)

    Junqing Ma

    2013-05-01

    Full Text Available Strain distributions are crucial criteria of cross-beams six-axis force/torque sensors. The conventional method for calculating the criteria is to utilize Finite Element Analysis (FEA to get numerical solutions. This paper aims to obtain analytical solutions of strains under the effect of external force/torque in each dimension. Genetic mechanical models for cross-beams six-axis force/torque sensors are proposed, in which deformable cross elastic beams and compliant beams are modeled as quasi-static Timoshenko beam. A detailed description of model assumptions, model idealizations, application scope and model establishment is presented. The results are validated by both numerical FEA simulations and calibration experiments, and test results are found to be compatible with each other for a wide range of geometric properties. The proposed analytical solutions are demonstrated to be an accurate estimation algorithm with higher efficiency.

  19. Strain sensors optimal placement for vibration-based structural health monitoring. The effect of damage on the initially optimal configuration

    Science.gov (United States)

    Loutas, T. H.; Bourikas, A.

    2017-12-01

    We revisit the optimal sensor placement of engineering structures problem with an emphasis on in-plane dynamic strain measurements and to the direction of modal identification as well as vibration-based damage detection for structural health monitoring purposes. The approach utilized is based on the maximization of a norm of the Fisher Information Matrix built with numerically obtained mode shapes of the structure and at the same time prohibit the sensorization of neighbor degrees of freedom as well as those carrying similar information, in order to obtain a satisfactory coverage. A new convergence criterion of the Fisher Information Matrix (FIM) norm is proposed in order to deal with the issue of choosing an appropriate sensor redundancy threshold, a concept recently introduced but not further investigated concerning its choice. The sensor configurations obtained via a forward sequential placement algorithm are sub-optimal in terms of FIM norm values but the selected sensors are not allowed to be placed in neighbor degrees of freedom providing thus a better coverage of the structure and a subsequent better identification of the experimental mode shapes. The issue of how service induced damage affects the initially nominated as optimal sensor configuration is also investigated and reported. The numerical model of a composite sandwich panel serves as a representative aerospace structure upon which our investigations are based.

  20. A spectral profile multiplexed FBG sensor network with application to strain measurement in a Kevlar woven fabric

    Science.gov (United States)

    Guo, Guodong; Hackney, Drew; Pankow, Mark; Peters, Kara

    2017-04-01

    A spectral profile division multiplexed fiber Bragg grating (FBG) sensor network is described in this paper. The unique spectral profile of each sensor in the network is identified as a distinct feature to be interrogated. Spectrum overlap is allowed under working conditions. Thus, a specific wavelength window does not need to be allocated to each sensor as in a wavelength division multiplexed (WDM) network. When the sensors are serially connected in the network, the spectrum output is expressed through a truncated series. To track the wavelength shift of each sensor, the identification problem is transformed to a nonlinear optimization problem, which is then solved by a modified dynamic multi-swarm particle swarm optimizer (DMS-PSO). To demonstrate the application of the developed network, a network consisting of four FBGs was integrated into a Kevlar woven fabric, which was under a quasi-static load imposed by an impactor head. Due to the substantial radial strain in the fabric, the spectrums of different FBGs were found to overlap during the loading process. With the developed interrogating method, the overlapped spectrum would be distinguished thus the wavelength shift of each sensor can be monitored.

  1. Coherent Pound-Drever-Hall technique for high resolution fiber optic strain sensor at very low light power

    Science.gov (United States)

    Wu, Mengxin; Liu, Qingwen; Chen, Jiageng; He, Zuyuan

    2017-04-01

    Pound-Drever-Hall (PDH) technique has been widely adopted for ultrahigh resolution fiber-optic sensors, but its performance degenerates seriously as the light power drops. To solve this problem, we developed a coherent PDH technique for weak optical signal detection, with which the signal-to-noise ratio (SNR) of demodulated PDH signal is dramatically improved. In the demonstrational experiments, a high resolution fiber-optic sensor using the proposed technique is realized, and n"-order strain resolution at a low light power down to -43 dBm is achieved, which is about 15 dB lower compared with classical PDH technique. The proposed coherent PDH technique has great potentials in longer distance and larger scale sensor networks.

  2. Effect of aluminum doping on the high-temperature stability and piezoresistive response of indium tin oxide strain sensors

    International Nuclear Information System (INIS)

    Gregory, Otto J.; You, Tao; Crisman, Everett E.

    2005-01-01

    Ceramic strain sensors based on reactively sputtered indium tin oxide (ITO) thin films doped with aluminum are being considered to improve the high-temperature stability and response. Ceramic strain sensors were developed to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500 deg C. Earlier studies using electron spectroscopy for chemical analysis (ESCA) studies indicated that interfacial reactions between ITO and aluminum oxide increase the stability of ITO at elevated temperature. The resulting ESCA depth files showed the presence of two new indium-indium peaks at 448.85 and 456.40 eV, corresponding to the indium 3d5 and 3d3 binding energies. These binding energies are significantly higher than those associated with stoichiometric indium oxide. Based on these studies, a combinatorial chemistry approach was used to screen large numbers of possible concentrations to optimize the stability and performance of Al-doped ceramic strain sensors. Scanning electron microscopy was used to analyze the combinatorial libraries in which varying amounts of aluminum were incorporated into ITO films formed by cosputtering from multiple targets. Electrical stability and piezoresistive response of these films were compared to undoped ITO films over the same temperature range

  3. A Wireless Sensor Network with Enhanced Power Efficiency and Embedded Strain Cycle Identification for Fatigue Monitoring of Railway Bridges

    Directory of Open Access Journals (Sweden)

    Glauco Feltrin

    2016-01-01

    Full Text Available Wireless sensor networks have been shown to be a cost-effective monitoring tool for many applications on civil structures. Strain cycle monitoring for fatigue life assessment of railway bridges, however, is still a challenge since it is data intensive and requires a reliable operation for several weeks or months. In addition, sensing with electrical resistance strain gauges is expensive in terms of energy consumption. The induced reduction of battery lifetime of sensor nodes increases the maintenance costs and reduces the competitiveness of wireless sensor networks. To overcome this drawback, a signal conditioning hardware was designed that is able to significantly reduce the energy consumption. Furthermore, the communication overhead is reduced to a sustainable level by using an embedded data processing algorithm that extracts the strain cycles from the raw data. Finally, a simple software triggering mechanism that identifies events enabled the discrimination of useful measurements from idle data, thus increasing the efficiency of data processing. The wireless monitoring system was tested on a railway bridge for two weeks. The monitoring system demonstrated a good reliability and provided high quality data.

  4. Ultrasensitive Wearable Soft Strain Sensors of Conductive, Self-healing, and Elastic Hydrogels with Synergistic "Soft and Hard" Hybrid Networks.

    Science.gov (United States)

    Liu, Yan-Jun; Cao, Wen-Tao; Ma, Ming-Guo; Wan, Pengbo

    2017-08-02

    Robust, stretchable, and strain-sensitive hydrogels have recently attracted immense research interest because of their potential application in wearable strain sensors. The integration of the synergistic characteristics of decent mechanical properties, reliable self-healing capability, and high sensing sensitivity for fabricating conductive, elastic, self-healing, and strain-sensitive hydrogels is still a great challenge. Inspired by the mechanically excellent and self-healing biological soft tissues with hierarchical network structures, herein, functional network hydrogels are fabricated by the interconnection between a "soft" homogeneous polymer network and a "hard" dynamic ferric (Fe 3+ ) cross-linked cellulose nanocrystals (CNCs-Fe 3+ ) network. Under stress, the dynamic CNCs-Fe 3+ coordination bonds act as sacrificial bonds to efficiently dissipate energy, while the homogeneous polymer network leads to a smooth stress-transfer, which enables the hydrogels to achieve unusual mechanical properties, such as excellent mechanical strength, robust toughness, and stretchability, as well as good self-recovery property. The hydrogels demonstrate autonomously self-healing capability in only 5 min without the need of any stimuli or healing agents, ascribing to the reorganization of CNCs and Fe 3+ via ionic coordination. Furthermore, the resulted hydrogels display tunable electromechanical behavior with sensitive, stable, and repeatable variations in resistance upon mechanical deformations. Based on the tunable electromechanical behavior, the hydrogels can act as a wearable strain sensor to monitor finger joint motions, breathing, and even the slight blood pulse. This strategy of building synergistic "soft and hard" structures is successful to integrate the decent mechanical properties, reliable self-healing capability, and high sensing sensitivity together for assembling a high-performance, flexible, and wearable strain sensor.

  5. Simulation and Experimental Investigations on the Strain Measurement of the Uniform Strength Beam Using a FBG sensor

    International Nuclear Information System (INIS)

    Tu Yumeng; Gong Huaping; Chen Jixuan; Jin Yongxing

    2011-01-01

    The model of force analysis on a uniform strength beam is built by the general finite element program (ANSYS software). The flexivity profile produced by uniform strength beam with different forces is simulated by ANSYS software. In experiment, a fiber Bragg grating sensor is fixed on the uniform strength beam with modified acrylate. The flexivity and strain are varied by changing the load on the end of the beam. The strain of the uniform strength beam is measured with FBG when applied force is varied from 2.45N to14.7N with a step of 2.45N. Both the simulated and experimental results show that, the strain induced by the uniform strength beam is linear with the load force. The sensitivity is 18.32με/N for experimental measurement, and 19.72με/N for simulation. The experimental results are consistent with the simulation results, with the maximum measurement error of strain being 7.4%. It indicates that, the FBG sensor fixed with modified acrylate is proved to be effectively and reliably in the applications of civil engineering.

  6. Eraser-based eco-friendly fabrication of a skin-like large-area matrix of flexible carbon nanotube strain and pressure sensors.

    Science.gov (United States)

    Sahatiya, Parikshit; Badhulika, Sushmee

    2017-03-03

    This paper reports a new type of electronic, recoverable skin-like pressure and strain sensor, produced on a flexible, biodegradable pencil-eraser substrate and fabricated using a solvent-free, low-cost and energy efficient process. Multi-walled carbon nanotube (MWCNT) film, the strain sensing element, was patterned on pencil eraser with a rolling pin and a pre-compaction mechanical press. This induces high interfacial bonding between the MWCNTs and the eraser substrate, which enables the sensor to achieve recoverability under ambient conditions. The eraser serves as a substrate for strain sensing, as well as acting as a dielectric for capacitive pressure sensing, thereby eliminating the dielectric deposition step, which is crucial in capacitive-based pressure sensors. The strain sensing transduction mechanism is attributed to the tunneling effect, caused by the elastic behavior of the MWCNTs and the strong mechanical interlock between MWCNTs and the eraser substrate, which restricts slippage of MWCNTs on the eraser thereby minimizing hysteresis. The gauge factor of the strain sensor was calculated to be 2.4, which is comparable to and even better than most of the strain and pressure sensors fabricated with more complex designs and architectures. The sensitivity of the capacitive pressure sensor was found to be 0.135 MPa -1 .To demonstrate the applicability of the sensor as artificial electronic skin, the sensor was assembled on various parts of the human body and corresponding movements and touch sensation were monitored. The entire fabrication process is scalable and can be integrated into large areas to map spatial pressure distributions. This low-cost, easily scalable MWCNT pin-rolled eraser-based pressure and strain sensor has huge potential in applications such as artificial e-skin in flexible electronics and medical diagnostics, in particular in surgery as it provides high spatial resolution without a complex nanostructure architecture.

  7. Composite Cure Process Modeling and Simulations using COMPRO(Registered Trademark) and Validation of Residual Strains using Fiber Optics Sensors

    Science.gov (United States)

    Sreekantamurthy, Thammaiah; Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.

    2016-01-01

    Composite cure process induced residual strains and warping deformations in composite components present significant challenges in the manufacturing of advanced composite structure. As a part of the Manufacturing Process and Simulation initiative of the NASA Advanced Composite Project (ACP), research is being conducted on the composite cure process by developing an understanding of the fundamental mechanisms by which the process induced factors influence the residual responses. In this regard, analytical studies have been conducted on the cure process modeling of composite structural parts with varied physical, thermal, and resin flow process characteristics. The cure process simulation results were analyzed to interpret the cure response predictions based on the underlying physics incorporated into the modeling tool. In the cure-kinetic analysis, the model predictions on the degree of cure, resin viscosity and modulus were interpreted with reference to the temperature distribution in the composite panel part and tool setup during autoclave or hot-press curing cycles. In the fiber-bed compaction simulation, the pore pressure and resin flow velocity in the porous media models, and the compaction strain responses under applied pressure were studied to interpret the fiber volume fraction distribution predictions. In the structural simulation, the effect of temperature on the resin and ply modulus, and thermal coefficient changes during curing on predicted mechanical strains and chemical cure shrinkage strains were studied to understand the residual strains and stress response predictions. In addition to computational analysis, experimental studies were conducted to measure strains during the curing of laminated panels by means of optical fiber Bragg grating sensors (FBGs) embedded in the resin impregnated panels. The residual strain measurements from laboratory tests were then compared with the analytical model predictions. The paper describes the cure process

  8. Enhancing the humidity sensitivity of Ga2O3 /SnO2 core/shell microribbon by applying mechanical strain and its application as a flexible strain sensor.

    Science.gov (United States)

    Liu, Kewei; Sakurai, Makoto; Aono, Masakazu

    2012-12-07

    The humidity sensitivity of a single β-Ga(2) O(3) /amorphous SnO(2) core/shell microribbon on a flexible substrate is enhanced by the application of tensile strain and increases linearly with the strain. The strain-induced enhancement originates from the increase in the effective surface area where water molecules are adsorbed. This strain dependence of humidity sensitivity can be used to monitor the external strain. The strain sensing of the microribbon device under various amounts of mechanical loading shows excellent reliability and reproducibility with a gauge factor of -41. The flexible device has high potential to detect both humidity and strain at room temperature. These findings and the mechanism involved are expected to pave the way for new flexible strain and multifunctional sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Design and performance investigation of a highly accurate apodized fiber Bragg grating-based strain sensor in single and quasi-distributed systems.

    Science.gov (United States)

    Ali, Taha A; Shehata, Mohamed I; Mohamed, Nazmi A

    2015-06-01

    In this work, fiber Bragg grating (FBG) strain sensors in single and quasi-distributed systems are investigated, seeking high-accuracy measurement. Since FBG-based strain sensors of small lengths are preferred in medical applications, and that causes the full width at half-maximum (FWHM) to be larger, a new apodization profile is introduced for the first time, to the best of our knowledge, with a remarkable FWHM at small sensor lengths compared to the Gaussian and Nuttall profiles, in addition to a higher mainlobe slope at these lengths. A careful selection of apodization profiles with detailed investigation is performed-using sidelobe analysis and the FWHM, which are primary judgment factors especially in a quasi-distributed configuration. A comparison between the elite selection of apodization profiles (extracted from related literature) and the proposed new profile is carried out covering the reflectivity peak, FWHM, and sidelobe analysis. The optimization process concludes that the proposed new profile with a chosen small length (L) of 10 mm and Δnac of 1.4×10-4 is the optimum choice for single stage and quasi-distributed strain-sensor networks, even better than the Gaussian profile at small sensor lengths. The proposed profile achieves the smallest FWHM of 15 GHz (suitable for UDWDM), and the highest mainlobe slope of 130 dB/nm. For the quasi-distributed scenario, a noteworthy high isolation of 6.953 dB is achieved while applying a high strain value of 1500 μstrain (με) for a five-stage strain-sensing network. Further investigation was undertaken, proving that consistency in choosing the apodization profile in the quasi-distributed network is mandatory. A test was made of the inclusion of a uniform apodized sensor among other apodized sensors with the proposed profile in an FBG strain-sensor network.

  10. Ex Vivo Evaluation of Cementless Acetabular Cup Stability Using Impact Analyses with a Hammer Instrumented with Strain Sensors.

    Science.gov (United States)

    Tijou, Antoine; Rosi, Giuseppe; Hernigou, Philippe; Flouzat-Lachaniette, Charles-Henri; Haïat, Guillaume

    2017-12-27

    The acetabular cup (AC) implant stability is determinant for the success of cementless hip arthroplasty. A method based on the analysis of the impact force applied during the press-fit insertion of the AC implant using a hammer instrumented with a force sensor was developed to assess the AC implant stability. The aim of the present study was to investigate the performance of a method using a hammer equipped with strain sensors to retrieve the AC implant stability. Different AC implants were inserted in five bovine samples with different stability conditions leading to 57 configurations. The AC implant was impacted 16 times by the two hammers consecutively. For each impact; an indicator I S (respectively I F ) determined by analyzing the time variation of the signal corresponding to the averaged strain (respectively force) obtained with the stress (respectively strain) hammer was calculated. The pull-out force F was measured for each configuration. F was significantly correlated with I S (R² = 0.79) and I F (R² = 0.80). The present method has the advantage of not modifying the shape of the hammer that can be sterilized easily. This study opens new paths towards the development of a decision support system to assess the AC implant stability.

  11. Long-term strain response of polymer optical fiber FBG sensors

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Nielsen, Kristian; Woyessa, Getinet

    2017-01-01

    We report on the viscoelastic response of PMMA microstructured polymer optical fibers (mPOFs) when exposed to long periods of strain and relaxation, with the strain period ranging from 0.5 min to 50 min. The behavior of the fibers was monitored by inscribing a fiber Bragg grating (FBG) in them...... and tracking the reflection peak. We demonstrate that the fiber, when relaxing from strains of up to 0.9%, has a two-phase recovery: initially linear (elastic driven) and subsequently nonlinear (viscoelastic driven) contraction. The linear (elastic) relaxation wavelength range depends both on the strain level...

  12. Composite cavity based fiber optic Fabry–Perot strain sensors demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror

    International Nuclear Information System (INIS)

    Zhang, Jianzhong; Yang, Jun; Sun, Weimin; Yuan, Libo; Jin, Wencai; Peng, G D

    2008-01-01

    A composite cavity based fiber optic Fabry–Perot strain sensor system, interrogated by a white light source and demodulated by an unbalanced fiber optic Michelson interferometer with an electrical scanning mirror, is proposed and demonstrated. Comparing with the traditional extrinsic fiber optic Fabry–Perot strain sensor, the potential multiplexing capability and the dynamic measurement range are improved simultaneously. At the same time, the measurement stability of the electrical scanning mirror system is improved by the self-referenced signal of the sensor structure

  13. Stretchable Complementary Split Ring Resonator (CSRR-Based Radio Frequency (RF Sensor for Strain Direction and Level Detection

    Directory of Open Access Journals (Sweden)

    Seunghyun Eom

    2016-10-01

    Full Text Available In this paper, we proposed a stretchable radio frequency (RF sensor to detect strain direction and level. The stretchable sensor is composed of two complementary split ring resonators (CSRR with microfluidic channels. In order to achieve stretchability, liquid metal (eutectic gallium-indium, EGaIn and Ecoflex substrate are used. Microfluidic channels are built by Ecoflex elastomer and microfluidic channel frames. A three-dimensional (3D printer is used for fabrication of microfluidic channel frames. Two CSRR resonators are designed to resonate 2.03 GHz and 3.68 GHz. When the proposed sensor is stretched from 0 to 8 mm along the +x direction, the resonant frequency is shifted from 3.68 GHz to 3.13 GHz. When the proposed sensor is stretched from 0 to 8 mm along the −x direction, the resonant frequency is shifted from 2.03 GHz to 1.78 GHz. Therefore, we can detect stretched length and direction from independent variation of two resonant frequencies.

  14. An Experimental Study on Static and Dynamic Strain Sensitivity of Embeddable Smart Concrete Sensors Doped with Carbon Nanotubes for SHM of Large Structures.

    Science.gov (United States)

    Meoni, Andrea; D'Alessandro, Antonella; Downey, Austin; García-Macías, Enrique; Rallini, Marco; Materazzi, A Luigi; Torre, Luigi; Laflamme, Simon; Castro-Triguero, Rafael; Ubertini, Filippo

    2018-03-09

    The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix mterials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete prior to casting. The strain sensing principle is based on the multifunctional composites outputting a measurable change in their electrical properties when subjected to a deformation. Previous work by the authors was devoted to material fabrication, modeling and applications in SHM. In this paper, we investigate the behavior of several sensors fabricated with and without aggregates and with different MWCNT contents. The strain sensitivity of the sensors, in terms of fractional change in electrical resistivity for unit strain, as well as their linearity are investigated through experimental testing under both quasi-static and sine-sweep dynamic uni-axial compressive loadings. Moreover, the responses of the sensors when subjected to destructive compressive tests are evaluated. Overall, the presented results contribute to improving the scientific knowledge on the behavior of smart concrete sensors and to furthering their understanding for SHM applications.

  15. An Experimental Study on Static and Dynamic Strain Sensitivity of Embeddable Smart Concrete Sensors Doped with Carbon Nanotubes for SHM of Large Structures

    Directory of Open Access Journals (Sweden)

    Andrea Meoni

    2018-03-01

    Full Text Available The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM of reinforced concrete structures. These sensors are fabricated by doping cement-matrix mterials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs, and can be embedded into structural elements made of reinforced concrete prior to casting. The strain sensing principle is based on the multifunctional composites outputting a measurable change in their electrical properties when subjected to a deformation. Previous work by the authors was devoted to material fabrication, modeling and applications in SHM. In this paper, we investigate the behavior of several sensors fabricated with and without aggregates and with different MWCNT contents. The strain sensitivity of the sensors, in terms of fractional change in electrical resistivity for unit strain, as well as their linearity are investigated through experimental testing under both quasi-static and sine-sweep dynamic uni-axial compressive loadings. Moreover, the responses of the sensors when subjected to destructive compressive tests are evaluated. Overall, the presented results contribute to improving the scientific knowledge on the behavior of smart concrete sensors and to furthering their understanding for SHM applications.

  16. Improving sensitivity of the polyurethane/CNT laminate strain sensor by controlled mechanical preload

    International Nuclear Information System (INIS)

    Slobodian, Petr; Olejnik, Robert; Matyas, Jiri; Babar, Dipak Gorakh

    2016-01-01

    This article describes strain detection potential of polyurethane/CNT layered composite and further possible enhance of its sensitivity to strain, expressed by value of gauge factor, GF, employing its controlled mechanical preload. In course of its fabrication a non-woven polyurethane membrane made by electro spinning was used as filtering membrane for CNT aqueous dispersion. Final CNT polyurethane laminate composite is prepared by compression molding. Produced polyurethane/CNT composite laminate is electrically conductive and high elastic. Its elongation leads to change of its macroscopic electrical resistance. Changes in resistance are further reversible, reproducible and can monitor deformation in real time. Gauge factor reaches very high values around 8 for strain reaching 3.5% comparing with conventional metallic strain gauges. Finally, controlled mechanical preload significantly increases value of GF. For example for value of 8.1% of preload value of GF reaches 23.3 for strain 3.5%. (paper)

  17. Development of a Flexible Strain Sensor Based on PEDOT:PSS for Thin Film Structures

    Directory of Open Access Journals (Sweden)

    Alexandra El Zein

    2017-06-01

    Full Text Available The aim of this study was to develop and optimize a reproducible flexible sensor adapted to thin low-density polyethylene (LDPE films and/or structures to enable their deformation measurements. As these deformations are suspected to be weak (less than 10%, the developed sensor needs to be particularly sensitive. Moreover, it is of prime importance that sensor integration and usability do not modify the mechanical behavior of its LDPE substrate. The literature review allowed several materials to be investigated and an elastomer/intrinsically conductive polymer PEDOT:PSS (CleviosTM filled composite was selected to simultaneously combine mechanical properties and electrical conductivity. This composite (made of PEDOT:PSS and silicone Bluesil® presented satisfying compatibilities with piezoresistive effects, negative temperature performances (in a range from −60 °C to 20 °C, as well as elongation properties (until the elastic limit of the substrate was reached. The method used for creating the sensor is fully described, as are the optimization of the sensor manufacture in terms of used materials, the used amount of materials where the percolation theory aspects must be considered, the adhesion to the substrate, and the manufacturing protocol. Electromechanical characterization was performed to assess the gauge factor (K of the sensor on its substrate.

  18. Use of Multidimensional Fiber Grating Strain Sensors for Damage Detection in Composite Pressure Vessels

    National Research Council Canada - National Science Library

    Kunzler, Marley

    2004-01-01

    ... during curing and pressure cycling near cut tow and Teflon tape defects. These changes in the multi-axis strain due to four pressure cycles and repeated impacts are measured and compared to ultrasonic and eddy current scans...

  19. Advances in Fiber Optic Sensors Technology Development for temperature and strain measurements in Superconducting magnets and devices

    CERN Document Server

    Chiuchiolo, A.; Bajko, M.; Bottura, L.; Consales, M.; Cusano, A.; Giordano, M.; Perez, J. C.

    2016-01-01

    The luminosity upgrade of the Large Hadron Collider (HL-LHC) requires the development of a new generation of superconducting magnets based on Nb$_{3}$Sn technology. In order to monitor the magnet thermo-mechanical behaviour during its service life, from the coil fabrication to the magnet operation, reliable sensing systems need to be implemented. In the framework of the FP7 European project EUCARD, Nb$_{3}$Sn racetrack coils are developed as test beds for the fabrication validation, the cable characterization and the instrumentation development. Fiber optic sensors (FOS) based on Fiber Bragg Grating (FBG) technology have been embedded in the coils of the Short Model Coil (SMC) magnet. The FBG sensitivity to both temperature and strain required the development of a solution able to separate the mechanical and temperature effects. This work presents the feasibility study of the implementation of embedded FBG sensors for the temperature and strain monitoring of the 11 T type conductor. We aim to monitor and regi...

  20. Generation of a Homozygous Transgenic Rat Strain Stably Expressing a Calcium Sensor Protein for Direct Examination of Calcium Signaling.

    Science.gov (United States)

    Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Pergel, Enikő; Bősze, Zsuzsanna; Bender, Balázs; Vajdovich, Péter; Tóvári, József; Homolya, László; Szakács, Gergely; Héja, László; Enyedi, Ágnes; Sarkadi, Balázs; Apáti, Ágota; Orbán, Tamás I

    2015-08-03

    In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, and animals with one transgene copy were pre-selected by measuring fluorescence in blood cells. A homozygous rat strain was generated with high sensor protein expression in the heart, kidney, liver, and blood cells. No pathological alterations were found in these animals, and fluorescence measurements in cardiac tissue slices and primary cultures demonstrated the applicability of this system for studying calcium signaling. We show here that the GCaMP2 expressing rat cardiomyocytes allow the prediction of cardiotoxic drug side-effects, and provide evidence for the role of Na(+)/Ca(2+) exchanger and its beneficial pharmacological modulation in cardiac reperfusion. Our data indicate that drug-induced alterations and pathological processes can be followed by using this rat model, suggesting that transgenic rats expressing a calcium-sensitive protein provide a valuable system for pharmacological and toxicological studies.

  1. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  2. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  3. Stress strain modelling and analysis of a piezo-coated optical fibre sensor

    Science.gov (United States)

    Al-Raweshidy, H.; Ali, H.; Obayya, S. S. A.; Langley, R.; Batchelor, J.

    2005-02-01

    A finite element model, using commercially available software, is presented to simulate the piezoelectrically induced stresses and strains in an optical fibre to be used as antenna. These stresses and strains are generated by a layer of piezoelectric polymer deposited on the cladding of a short fibre sample. The theoretical basis for the work is briefly explained and the modelling process is emphasised. Two types of fibre are investigated - circular fibre and D-fibre, and the results compared, analysed and discussed. It is shown that in the D-fibre, the stress and displacement increased by 1.46 and 115 times, respectively, in comparison with the circular fibre.

  4. Study on the Correlation between Humidity and Material Strains in Separable Micro Humidity Sensor Design

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Chang

    2017-05-01

    Full Text Available Incidents of injuries caused by tiles falling from building exterior walls are frequently reported in Taiwan. Humidity is an influential factor in tile deterioration but it is more difficult to measure the humidity inside a building structure than the humidity in an indoor environment. Therefore, a separable microsensor was developed in this study to measure the humidity of the cement mortar layer with a thickness of 1.5–2 cm inside the external wall of a building. 3D printing technology is used to produce an encapsulation box that can protect the sensor from damage caused by the concrete and cement mortar. The sensor is proven in this study to be capable of measuring temperature and humidity simultaneously and the measurement results are then used to analyze the influence of humidity on external wall tile deterioration.

  5. Flexible Strain Sensor Based on Layer-by-Layer Self-Assembled Graphene/Polymer Nanocomposite Membrane and Its Sensing Properties

    Science.gov (United States)

    Zhang, Dongzhi; Jiang, Chuanxing; Tong, Jun; Zong, Xiaoqi; Hu, Wei

    2018-04-01

    Graphene is a potential building block for next generation electronic devices including field-effect transistors, chemical sensors, and radio frequency switches. Investigations of strain application of graphene-based films have emerged in recent years, but the challenges in synthesis and processing achieving control over its fabrication constitute the main obstacles towards device applications. This work presents an alternative approach, layer-by-layer self-assembly, allowing a controllable fabrication of graphene/polymer film strain sensor on flexible substrates of polyimide with interdigital electrodes. Carboxylated graphene and poly (diallyldimethylammonium chloride) (PDDA) were exploited to form hierarchical nanostructure due to electrostatic action. The morphology and structure of the film were inspected by using scanning electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy. The strain-sensing properties of the graphene/PDDA film sensor were investigated through tuning micrometer caliper exertion and a PC-assisted piezoresistive measurement system. Experimental result shows that the sensor exhibited not only excellent response and reversibility behavior as a function of deflection, but also good repeatability and acceptable linearity. The strain-sensing mechanism of the proposed sensor was attributed to the electrical resistance change resulted from piezoresistive effect.

  6. Through-Layer Buckle Wavelength-Gradient Design for the Coupling of High Sensitivity and Stretchability in a Single Strain Sensor.

    Science.gov (United States)

    He, Tengyu; Lin, Chucheng; Shi, Liangjing; Wang, Ranran; Sun, Jing

    2018-03-21

    Recent years have witnessed a breathtaking development of wearable strain sensors. Coupling high sensitivity and stretchability in a strain sensor is greatly desired by emerging wearable applications but remains a big challenge. To tackle this issue, a through-layer buckle wavelength-gradient design is proposed and a facile and universal fabrication strategy is demonstrated to introduce such a gradient into the sensing film with multilayered sensing units. Following this strategy, strain sensors are fabricated using graphene woven fabrics (GWFs) as sensing units, which exhibit highly tunable electromechanical performances. Specifically, the sensor with 10-layer GWFs has a gauge factor (GF) of 2996 at a maximum strain of 242.74% and an average GF of 327. It also exhibits an extremely low minimum detection limit of 0.02% strain, a fast signal response of less than 90 ms, and a high cyclic durability through more than 10 000 cycling test. Such excellent performances qualify it in accurately monitoring full-range human activities, ranging from subtle stimuli (e.g., pulse, respiration, and voice recognition) to vigorous motions (finger bending, walking, jogging, and jumping). The combination of experimental observations and modeling study shows that the predesigned through-layer buckle wavelength gradient leads to a layer-by-layer crack propagation process, which accounts for the underlying working mechanism. Modeling study shows a great potential for further improvement of sensing performances by adjusting fabrication parameters such as layers of sensing units ( n) and step pre-strain (ε sp ). For one thing, when ε sp is fixed, the maximum sensing strain could be adjusted from >240% ( n = 10) to >450% ( n = 15) and >1200% ( n = 20). For the other, when n is fixed, the maximum sensing strain could be adjusted from >240% (ε sp = 13.2%) to >400% (ε sp = 18%) and >800% (ε sp = 25%).

  7. Deformable trailing edge flaps for modern megawatt wind turbine controllers using strain gauge sensors

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn; Henriksen, Lars Christian; Gaunaa, Mac

    2010-01-01

    . By enabling the trailing edge to move independently and quickly along the spanwise position of the blade, local small flutuations in the aerodynamic forces can be alleviated by deformation of the airfoil flap. Strain gauges are used as input for the flap controller, and the effect of placing strain gauges......The present work contains a deformable trailing edge flap controller integrated in a numerically simulated modern, variablespeed, pitch-regulated megawatt (MW)-size wind turbine. The aeroservoelastic multi-body code HAWC2 acts as a component in the control loop design. At the core of the proposed...... edge flaps on a wind turbine blade rather than a conclusive control design with traditional issues like stability and robustness fully investigated. Recent works have shown that the fatigue load reduction by use of trailing edge flaps may be greater than for traditional pitch control methods...

  8. Real-time In-Flight Strain and Deflection Monitoring with Fiber Optic Sensors

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This viewgraph presentation reviews Dryden's efforts to develop in-flight monitoring based on Fiber Optics. One of the motivating factors for this development was the breakup of the Helios aircraft. On Ikhana the use of fiber optics for wing shape sensing is being developed. They are being used to flight validate fiber optic sensor measurements and real-time wing shape sensing predictions on NASA's Ikhana vehicle; validate fiber optic mathematical models and design tools; Assess technical viability and, if applicable, develop methodology and approach to incorporate wing shape measurements within the vehicle flight control system, and develop and flight validate advanced approaches to perform active wing shape control.

  9. Sampling optimization for high-speed weigh-in-motion measurements using in-pavement strain-based sensors

    International Nuclear Information System (INIS)

    Zhang, Zhiming; Huang, Ying; Bridgelall, Raj; Palek, Leonard; Strommen, Robert

    2015-01-01

    Weigh-in-motion (WIM) measurement has been widely used for weight enforcement, pavement design, freight management, and intelligent transportation systems to monitor traffic in real-time. However, to use such sensors effectively, vehicles must exit the traffic stream and slow down to match their current capabilities. Hence, agencies need devices with higher vehicle passing speed capabilities to enable continuous weight measurements at mainline speeds. The current practices for data acquisition at such high speeds are fragmented. Deployment configurations and settings depend mainly on the experiences of operation engineers. To assure adequate data, most practitioners use very high frequency measurements that result in redundant samples, thereby diminishing the potential for real-time processing. The larger data memory requirements from higher sample rates also increase storage and processing costs. The field lacks a sampling design or standard to guide appropriate data acquisition of high-speed WIM measurements. This study develops the appropriate sample rate requirements as a function of the vehicle speed. Simulations and field experiments validate the methods developed. The results will serve as guidelines for future high-speed WIM measurements using in-pavement strain-based sensors. (paper)

  10. Sampling optimization for high-speed weigh-in-motion measurements using in-pavement strain-based sensors

    Science.gov (United States)

    Zhang, Zhiming; Huang, Ying; Bridgelall, Raj; Palek, Leonard; Strommen, Robert

    2015-06-01

    Weigh-in-motion (WIM) measurement has been widely used for weight enforcement, pavement design, freight management, and intelligent transportation systems to monitor traffic in real-time. However, to use such sensors effectively, vehicles must exit the traffic stream and slow down to match their current capabilities. Hence, agencies need devices with higher vehicle passing speed capabilities to enable continuous weight measurements at mainline speeds. The current practices for data acquisition at such high speeds are fragmented. Deployment configurations and settings depend mainly on the experiences of operation engineers. To assure adequate data, most practitioners use very high frequency measurements that result in redundant samples, thereby diminishing the potential for real-time processing. The larger data memory requirements from higher sample rates also increase storage and processing costs. The field lacks a sampling design or standard to guide appropriate data acquisition of high-speed WIM measurements. This study develops the appropriate sample rate requirements as a function of the vehicle speed. Simulations and field experiments validate the methods developed. The results will serve as guidelines for future high-speed WIM measurements using in-pavement strain-based sensors.

  11. Ultra-Sensitive Strain Sensor Based on Flexible Poly(vinylidene fluoride) Piezoelectric Film

    Science.gov (United States)

    Lu, Kai; Huang, Wen; Guo, Junxiong; Gong, Tianxun; Wei, Xiongbang; Lu, Bing-Wei; Liu, Si-Yi; Yu, Bin

    2018-03-01

    A flexible 4 × 4 sensor array with 16 micro-scale capacitive units has been demonstrated based on flexible piezoelectric poly(vinylidene fluoride) (PVDF) film. The piezoelectricity and surface morphology of the PVDF were examined by optical imaging and piezoresponse force microscopy (PFM). The PFM shows phase contrast, indicating clear interface between the PVDF and electrode. The electro-mechanical properties show that the sensor exhibits excellent output response and an ultra-high signal-to-noise ratio. The output voltage and the applied pressure possess linear relationship with a slope of 12 mV/kPa. The hold-and-release output characteristics recover in less than 2.5 μs, demonstrating outstanding electro-mechanical response. Additionally, signal interference between the adjacent arrays has been investigated via theoretical simulation. The results show the interference reduces with decreasing pressure at a rate of 0.028 mV/kPa, highly scalable with electrode size and becoming insignificant for pressure level under 178 kPa.

  12. Time-domain multiplexed high resolution fiber optics strain sensor system based on temporal response of fiber Fabry-Perot interferometers.

    Science.gov (United States)

    Chen, Jiageng; Liu, Qingwen; He, Zuyuan

    2017-09-04

    We developed a multiplexed strain sensor system with high resolution using fiber Fabry-Perot interferometers (FFPI) as sensing elements. The temporal responses of the FFPIs excited by rectangular laser pulses are used to obtain the strain applied on each FFPI. The FFPIs are connected by cascaded couplers and delay fiber rolls for the time-domain multiplexing. A compact optoelectronic system performing closed-loop cyclic interrogation is employed to improve the sensing resolution and the frequency response. In the demonstration experiment, 3-channel strain sensing with resolutions better than 0.1 nε and frequency response higher than 100 Hz is realized.

  13. Mushroom body miscellanea: transgenic Drosophila strains expressing anatomical and physiological sensor proteins in Kenyon cells

    Science.gov (United States)

    Pech, Ulrike; Dipt, Shubham; Barth, Jonas; Singh, Priyanka; Jauch, Mandy; Thum, Andreas S.; Fiala, André; Riemensperger, Thomas

    2013-01-01

    The fruit fly Drosophila melanogaster represents a key model organism for analyzing how neuronal circuits regulate behavior. The mushroom body in the central brain is a particularly prominent brain region that has been intensely studied in several insect species and been implicated in a variety of behaviors, e.g., associative learning, locomotor activity, and sleep. Drosophila melanogaster offers the advantage that transgenes can be easily expressed in neuronal subpopulations, e.g., in intrinsic mushroom body neurons (Kenyon cells). A number of transgenes has been described and engineered to visualize the anatomy of neurons, to monitor physiological parameters of neuronal activity, and to manipulate neuronal function artificially. To target the expression of these transgenes selectively to specific neurons several sophisticated bi- or even multipartite transcription systems have been invented. However, the number of transgenes that can be combined in the genome of an individual fly is limited in practice. To facilitate the analysis of the mushroom body we provide a compilation of transgenic fruit flies that express transgenes under direct control of the Kenyon-cell specific promoter, mb247. The transgenes expressed are fluorescence reporters to analyze neuroanatomical aspects of the mushroom body, proteins to restrict ectopic gene expression to mushroom bodies, or fluorescent sensors to monitor physiological parameters of neuronal activity of Kenyon cells. Some of the transgenic animals compiled here have been published already, whereas others are novel and characterized here for the first time. Overall, the collection of transgenic flies expressing sensor and reporter genes in Kenyon cells facilitates combinations with binary transcription systems and might, ultimately, advance the physiological analysis of mushroom body function. PMID:24065891

  14. Truly Distributed Optical Fiber Sensors for Structural Health Monitoring: From the Telecommunication Optical Fiber Drawling Tower to Water Leakage Detection in Dikes and Concrete Structure Strain Monitoring

    Directory of Open Access Journals (Sweden)

    Jean-Marie Henault

    2010-01-01

    Full Text Available Although optical fiber sensors have been developed for 30 years, there is a gap between lab experiments and field applications. This article focuses on specific methods developed to evaluate the whole sensing chain, with an emphasis on (i commercially-available optoelectronic instruments and (ii sensing cable. A number of additional considerations for a successful pairing of these two must be taken into account for successful field applications. These considerations are further developed within this article and illustrated with practical applications of water leakage detection in dikes and concrete structures monitoring, making use of distributed temperature and strain sensing based on Rayleigh, Raman, and Brillouin scattering in optical fibers. They include an adequate choice of working wavelengths, dedicated localization processes, choices of connector type, and further include a useful selection of traditional reference sensors to be installed nearby the optical fiber sensors, as well as temperature compensation in case of strain sensing.

  15. Ultra-high density out-of-plane strain sensor 3D architecture based on sub-20 nm PMOS FinFET

    KAUST Repository

    Ghoneim, Mohamed T.; Alfaraj, Nasir; Sevilla, Galo T.; Hussain, Muhammad Mustafa

    2016-01-01

    Future wearable electronics require not only flexibility but also preservation of the perks associated with today's high-performance, traditional silicon electronics. In this work we demonstrate a state-of-the-art fin-shaped field-effect transistor (FinFET)-based, out-of-plane strain sensor on flexible silicon through transforming the bulk device in a transfer-less process. The device preserves the functionality and high performance associated with its bulk, inflexible state. Furthermore, gate leakage current shows sufficient dependence on the value of the applied out-of-plane strain that enables permits use of the flexible device as a switching device as well as a strain sensor.

  16. Ultra-high density out-of-plane strain sensor 3D architecture based on sub-20 nm PMOS FinFET

    KAUST Repository

    Ghoneim, Mohamed T.

    2016-02-03

    Future wearable electronics require not only flexibility but also preservation of the perks associated with today\\'s high-performance, traditional silicon electronics. In this work we demonstrate a state-of-the-art fin-shaped field-effect transistor (FinFET)-based, out-of-plane strain sensor on flexible silicon through transforming the bulk device in a transfer-less process. The device preserves the functionality and high performance associated with its bulk, inflexible state. Furthermore, gate leakage current shows sufficient dependence on the value of the applied out-of-plane strain that enables permits use of the flexible device as a switching device as well as a strain sensor.

  17. Waterproof Electronic-Bandage with Tunable Sensitivity for Wearable Strain Sensors.

    Science.gov (United States)

    Jeon, Jun-Young; Ha, Tae-Jun

    2016-02-03

    We demonstrate high-performance wearable electronic-bandage (E-bandage) based on carbon nanotube (CNT)/silver nanoparticle (AgNP) composites covered with flexible media of fluoropolymer-coated polydimethylsiloxane (PDMS) films. The E-bandage can be used for motion-related sensors by directly attaching them to human skin, which achieves a fast and accurate electric response with high sensitivity according to the bending and stretching movements that induce changes in the conductivity. This advance in the E-bandage is realized as a result of the sensitivity that can be achieved by controlling the concentration of AgNPs in CNT pastes and by modifying the device architecture. The fluoropolymer encapsulation with hydrophobic surface characteristics allows for the E-bandage to operate in water and protects it from physical and chemical contact with the daily life conditions of the human skin. The reliability and scalability of the E-bandage as well as the compatibility with conventional microfabrication allow new possibilities to integrate flexible human-interactive nanoelectronics into mobile health-care monitoring systems combined with Internet of things (IoTs).

  18. The best body spot to detect the vital capacity from the respiratory movement data obtained by the wearable strain sensor.

    Science.gov (United States)

    Liu, Haijuan; Guo, Shaopeng; Liu, Huilin; Zhang, Hao; Chen, Sujie; Kuramoto-Ahuja, Tsugumi; Sato, Tamae; Kaneko, Junichiro; Onoda, Ko; Maruyama, Hitoshi

    2018-04-01

    [Purpose] The purpose of this study is to find the best body spots on the chest and abdomen wall to obtain the correlated indicators to the vital capacity. [Subjects and Methods] Thirty healthy male staff of the center served as the participants were advised to conduct a breathing movement using spirometer and a wearable strain sensor (WSS) respectively, which was the measured at four spots on chest and abdomen wall from maximal end of inspiration to maximal end of expiration. The Pearson's correlation analysis was conducted to find the correlation of the data obtained respectively by the WSS and spirometer. [Results] The correlation of the mobility data at the four body spots to the vital capacity data were calculated for each level by means of Pearson's correlation coefficient, which showed that the values at each body spot were positive significant correlations and the highest value was at the 10th rib. [Conclusion] There was a correlation between the mobility data of the chest and abdomen obtained by the WSS and the vital capacity data obtained by the spirometer, for which, the 10th rib is the best body spot to detect the positive significant correlation.

  19. Primate Drum Kit: A System for Studying Acoustic Pattern Production by Non-Human Primates Using Acceleration and Strain Sensors

    Directory of Open Access Journals (Sweden)

    W. Tecumseh Fitch

    2013-07-01

    Full Text Available The possibility of achieving experimentally controlled, non-vocal acoustic production in non-human primates is a key step to enable the testing of a number of hypotheses on primate behavior and cognition. However, no device or solution is currently available, with the use of sensors in non-human animals being almost exclusively devoted to applications in food industry and animal surveillance. Specifically, no device exists which simultaneously allows: (i spontaneous production of sound or music by non-human animals via object manipulation, (ii systematical recording of data sensed from these movements, (iii the possibility to alter the acoustic feedback properties of the object using remote control. We present two prototypes we developed for application with chimpanzees (Pan troglodytes which, while fulfilling the aforementioned requirements, allow to arbitrarily associate sounds to physical object movements. The prototypes differ in sensing technology, costs, intended use and construction requirements. One prototype uses four piezoelectric elements embedded between layers of Plexiglas and foam. Strain data is sent to a computer running Python through an Arduino board. A second prototype consists in a modified Wii Remote contained in a gum toy. Acceleration data is sent via Bluetooth to a computer running Max/MSP. We successfully pilot tested the first device with a group of chimpanzees. We foresee using these devices for a range of cognitive experiments.

  20. An Improved Metal-Packaged Strain Sensor Based on A Regenerated Fiber Bragg Grating in Hydrogen-Loaded Boron–Germanium Co-Doped Photosensitive Fiber for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Yun Tu

    2017-02-01

    Full Text Available Local strain measurements are considered as an effective method for structural health monitoring of high-temperature components, which require accurate, reliable and durable sensors. To develop strain sensors that can be used in higher temperature environments, an improved metal-packaged strain sensor based on a regenerated fiber Bragg grating (RFBG fabricated in hydrogen (H2-loaded boron–germanium (B–Ge co-doped photosensitive fiber is developed using the process of combining magnetron sputtering and electroplating, addressing the limitation of mechanical strength degradation of silica optical fibers after annealing at a high temperature for regeneration. The regeneration characteristics of the RFBGs and the strain characteristics of the sensor are evaluated. Numerical simulation of the sensor is conducted using a three-dimensional finite element model. Anomalous decay behavior of two regeneration regimes is observed for the FBGs written in H2-loaded B–Ge co-doped fiber. The strain sensor exhibits good linearity, stability and repeatability when exposed to constant high temperatures of up to 540 °C. A satisfactory agreement is obtained between the experimental and numerical results in strain sensitivity. The results demonstrate that the improved metal-packaged strain sensors based on RFBGs in H2-loaded B–Ge co-doped fiber provide great potential for high-temperature applications by addressing the issues of mechanical integrity and packaging.

  1. Experimental Method of Temperature and Strain Discrimination in Polymer Composite Material by Embedded Fiber-Optic Sensors Based on Femtosecond-Inscribed FBGs

    Directory of Open Access Journals (Sweden)

    Victor V. Shishkin

    2016-01-01

    Full Text Available Experimental method of temperature and strain discrimination with fiber Bragg gratings (FBGs sensors embedded in carbon fiber-reinforced plastic is proposed. The method is based on two-fiber technique, when two FBGs inscribed in different fibers with different sensitivities to strain and/or temperature are placed close to each other and act as a single sensing element. The nonlinear polynomial approximation of Bragg wavelength shift as a function of temperature and strain is presented for this method. The FBGs were inscribed with femtosecond laser by point-by-point inscription technique through polymer cladding of the fiber. The comparison of linear and nonlinear approximation accuracies for array of embedded sensors is performed. It is shown that the use of nonlinear approximation gives 1.5–2 times better accuracy. The obtained accuracies of temperature and strain measurements are 2.6–3.8°C and 50–83 με in temperature and strain range of 30–120°C and 0–400 με, respectively.

  2. Dynamic 3D strain measurements with embedded micro-structured optical fiber Bragg grating sensors during impact on a CFRP coupon

    Science.gov (United States)

    Goossens, Sidney; Geernaert, Thomas; De Pauw, Ben; Lamberti, Alfredo; Vanlanduit, Steve; Luyckx, Geert; Chiesura, Gabriele; Thienpont, Hugo; Berghmans, Francis

    2017-04-01

    Composite materials are increasingly used in aerospace applications, owing to their high strength-to-mass ratio. Such materials are nevertheless vulnerable to impact damage. It is therefore important to investigate the effects of impacts on composites. Here we embed specialty microstructured optical fiber Bragg grating based sensors inside a carbon fiber reinforced polymer, providing access to the 3D strain evolution within the composite during impact. We measured a maximum strain of -655 μɛ along the direction of impact, and substantially lower values in the two in-plane directions. Such in-situ characterization can trigger insight in the development of impact damage in composites.

  3. Sensor

    OpenAIRE

    Gleeson, Helen; Dierking, Ingo; Grieve, Bruce; Woodyatt, Christopher; Brimicombe, Paul

    2015-01-01

    An electrical temperature sensor (10) comprises a liquid crystalline material (12). First and second electrically conductive contacts (14), (16), having a spaced relationship there between, contact the liquid crystalline material (12). An electric property measuring device is electrically connected to the first and second contacts (14), (16) and is arranged to measure an electric property of the liquid crystalline material (12). The liquid crystalline material (12) has a transition temperatur...

  4. Performance of a Distributed Simultaneous Strain and Temperature Sensor Based on a Fabry-Perot Laser Diode and a Dual-Stage FBG Optical Demultiplexer

    Directory of Open Access Journals (Sweden)

    Shinwon Kang

    2013-11-01

    Full Text Available A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD and a dual-stage fiber Bragg grating (FBG optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR. By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.

  5. Performance of a distributed simultaneous strain and temperature sensor based on a Fabry-Perot laser diode and a dual-stage FBG optical demultiplexer.

    Science.gov (United States)

    Kim, Suhwan; Kwon, Hyungwoo; Yang, Injae; Lee, Seungho; Kim, Jeehyun; Kang, Shinwon

    2013-11-12

    A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD) and a dual-stage fiber Bragg grating (FBG) optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR). By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.

  6. Micromachined silicon cantilevers with integrated high-frequency magnetoimpedance sensors for simultaneous strain and magnetic field detection

    Science.gov (United States)

    Buettel, G.; Joppich, J.; Hartmann, U.

    2017-12-01

    Giant magnetoimpedance (GMI) measurements in the high-frequency regime utilizing a coplanar waveguide with an integrated Permalloy multilayer and micromachined on a silicon cantilever are reported. The fabrication process is described in detail. The aspect ratio of the magnetic multilayer in the magnetoresistive and magnetostrictive device was varied. Tensile strain and compressive strain were applied. Vector network analyzer measurements in the range from the skin effect to ferromagnetic resonance confirm the technological potential of GMI-based micro-electro-mechanical devices for strain and magnetic field sensing applications. The strain-impedance gauge factor was quantified by finite element strain calculations and reaches a maximum value of almost 200.

  7. Comparative determination of physical stress and strain on milkers in milking parlours on dairy farms in Upper Austria, using ECG, an activity sensor and spirometer

    Directory of Open Access Journals (Sweden)

    Magdalena Mayrhofer

    2017-05-01

    Full Text Available To-date, the impact of modern milking parlors in dairy farming on physical strain has not been the subject of many studies. Therefore, this case study aims to record and evaluate the physical strain during the entire milking process, including the oxygen consumption (VO2, heart rate (HR and metabolic rate (WkJ, Watt of milkers. The recording was conducted with a portable respiratory gas analysis system and an ECG and activity sensor on 4 dairy farms in Austria. Eight subjects aged from 45–52 years, with a mean age 50±2.4 SD, participated and the data were recorded during the milking process in 2 types of milking parlours. For assessment, the entire milking process was divided into preparation, milking and follow-up work. The entire milking process was performed with an average oxygen consumption of 46.5 l/h and a heart rate of 98 bpm, which is below the anaerobic threshold; whereas in the preparation and follow-up work, this threshold was exceeded. Generally, during the milking process, a moderate physical strain (32.4% and a balanced metabolic rate (143 watt/m2 were determined. The physical strain in female milkers was 9.2% higher than in male milkers throughout the entire process. Reduction of physical strain can be achieved through additional breaks, reduced work speed, division of labour and technical devices.

  8. Ultra-Precision Measurement and Control of Angle Motion in Piezo-Based Platforms Using Strain Gauge Sensors and a Robust Composite Controller

    Science.gov (United States)

    Liu, Lei; Bai, Yu-Guang; Zhang, Da-Li; Wu, Zhi-Gang

    2013-01-01

    The measurement and control strategy of a piezo-based platform by using strain gauge sensors (SGS) and a robust composite controller is investigated in this paper. First, the experimental setup is constructed by using a piezo-based platform, SGS sensors, an AD5435 platform and two voltage amplifiers. Then, the measurement strategy to measure the tip/tilt angles accurately in the order of sub-μrad is presented. A comprehensive composite control strategy design to enhance the tracking accuracy with a novel driving principle is also proposed. Finally, an experiment is presented to validate the measurement and control strategy. The experimental results demonstrate that the proposed measurement and control strategy provides accurate angle motion with a root mean square (RMS) error of 0.21 μrad, which is approximately equal to the noise level. PMID:23860316

  9. Ultra-Precision Measurement and Control of Angle Motion in Piezo-Based Platforms Using Strain Gauge Sensors and a Robust Composite Controller

    Directory of Open Access Journals (Sweden)

    Zhi-Gang Wu

    2013-07-01

    Full Text Available The measurement and control strategy of a piezo-based platform by using strain gauge sensors (SGS and a robust composite controller is investigated in this paper. First, the experimental setup is constructed by using a piezo-based platform, SGS sensors, an AD5435 platform and two voltage amplifiers. Then, the measurement strategy to measure the tip/tilt angles accurately in the order of sub-μrad is presented. A comprehensive composite control strategy design to enhance the tracking accuracy with a novel driving principle is also proposed. Finally, an experiment is presented to validate the measurement and control strategy. The experimental results demonstrate that the proposed measurement and control strategy provides accurate angle motion with a root mean square (RMS error of 0.21 μrad, which is approximately equal to the noise level.

  10. Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars.

    Science.gov (United States)

    Zeng, Xiaodong; Bao, Xiaoyi; Chhoa, Chia Yee; Bremner, Theodore W; Brown, Anthony W; DeMerchant, Michael D; Ferrier, Graham; Kalamkarov, Alexander L; Georgiades, Anastasis V

    2002-08-20

    The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is +/-15 microepsilon (microm/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and +/-5 microepsilon with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are +/-7 and +/-15 microepsilon for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is +/-20 microepsilon for the two-point loading case.

  11. Strain monitoring of a newly developed precast concrete track for high speed railway traffic using embedded fiber optic sensors

    Science.gov (United States)

    Crail, Stephanie; Reichel, D.; Schreiner, U.; Lindner, E.; Habel, Wolfgang R.; Hofmann, Detlef; Basedau, Frank; Brandes, K.; Barner, A.; Ecke, Wolfgang; Schroeder, Kerstin

    2002-07-01

    In a German slab track system (Feste Fahrbahn FF, system Boegl) for speeds up to 300 km/h and more different fiber optic sensors have been embedded in several levels and locations of the track system. The track system consists of prestressed precast panels of steel fiber concrete which are supported by a cat-in-situ concrete or asphalt base course. The sensors are to measure the bond behavior or the stress transfer in the track system. For that, tiny fiber-optic sensors - fiber Fabry-Perot and Bragg grating sensors - have been embedded very near to the interface of the layers. Measurements were taken on a full scale test sample (slab track panel of 6.45 m length) as well as on a real high speed track. The paper describes the measurement task and discusses aspects with regard to sensor design and prefabrication of the sensor frames as well as the embedding procedure into the concrete track. Results from static and dynamic full scale tests carried out in the testing laboratory of BAM and from measurements on a track are given.

  12. Pilot study on rugged fiber optic brillouin sensors for large-strain measurements to ensure the safety of transportation structures.

    Science.gov (United States)

    2012-07-01

    Brillouin-scattering Optical Time Domain Reflectometry (BOTDR) is a viable technology for simultaneous, distributed : strain and temperature measurements for miles-long transportation structures. It is a promising tool to ensure the smooth : operatio...

  13. Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring

    DEFF Research Database (Denmark)

    Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong

    2009-01-01

    Results are reported from a study carried out using a series of Bragg grating based optical fiber sensors written into a very short length (60mm) optical fiber net work and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures...

  14. Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature.

    Science.gov (United States)

    Han, Young-Geun; Tran, T V A; Kim, Sang-Hyuck; Lee, Sang Bae

    2005-06-01

    We propose a simple and flexible multiwavelength Raman-fiber-laser-based long-distance remote-sensing scheme for simultaneous measurement of strain and temperature by use of fiber Bragg gratings. By combining two uniform fiber Bragg gratings with a tunable chirped fiber grating, we readily achieve simultaneous two-channel sensing probes with a high extinction ratio of more than approximately 50 dB over a 50-km distance. When strain and temperature are applied, lasing wavelength separation and shift occur, respectively, since the two uniform fiber Bragg gratings have identical material composition and different cladding diameters. This allows simultaneous measurement of strain and temperature for long-distance sensing applications of more than 50 km.

  15. An optical sensor for local strain measuring of an object by means of a speckle correlation method

    Czech Academy of Sciences Publication Activity Database

    Horváth, P.; Šmíd, Petr; Hrabovský, M.; Hamarová, Ivana

    2012-01-01

    Roč. 106, s3 (2012), s. 425-427 ISSN 0009-2770 R&D Projects: GA AV ČR KAN301370701 Institutional research plan: CEZ:AV0Z10100521 Keywords : non-contact measurement * strain * speckle * speckle correlation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.453, year: 2012

  16. Dynamic Strain Measurements on Automotive and Aeronautic Composite Components by Means of Embedded Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Alfredo Lamberti

    2015-10-01

    Full Text Available The measurement of the internal deformations occurring in real-life composite components is a very challenging task, especially for those components that are rather difficult to access. Optical fiber sensors can overcome such a problem, since they can be embedded in the composite materials and serve as in situ sensors. In this article, embedded optical fiber Bragg grating (FBG sensors are used to analyze the vibration characteristics of two real-life composite components. The first component is a carbon fiber-reinforced polymer automotive control arm; the second is a glass fiber-reinforced polymer aeronautic hinge arm. The modal parameters of both components were estimated by processing the FBG signals with two interrogation techniques: the maximum detection and fast phase correlation algorithms were employed for the demodulation of the FBG signals; the Peak-Picking and PolyMax techniques were instead used for the parameter estimation. To validate the FBG outcomes, reference measurements were performed by means of a laser Doppler vibrometer. Sensors 2015, 15 27175 The analysis of the results showed that the FBG sensing capabilities were enhanced when the recently-introduced fast phase correlation algorithm was combined with the state-of-the-art PolyMax estimator curve fitting method. In this case, the FBGs provided the most accurate results, i.e. it was possible to fully characterize the vibration behavior of both composite components. When using more traditional interrogation algorithms (maximum detection and modal parameter estimation techniques (Peak-Picking, some of the modes were not successfully identified.

  17. Quorum sensing signal profile of Acinetobacter strains from nosocomial and environmental sources Perfil de sensores de quórum en cepas nosocomiales y ambientales de Acinetobacter

    Directory of Open Access Journals (Sweden)

    R. H. González

    2009-06-01

    Full Text Available A set of 43 strains corresponding to 20 classified and unclassified genomic Acinetobacter species was analyzed for the production of typical N-acyl homoserine lactone quorum sensing molecules in culture broths. A large percentage of the strains (74% displayed quorum sensing signals that could be separated into three statistically significantly different chromatographic groups (p Rf2 > Rf1. None of the three signals could be specifically assigned to a particular species in the genus; furthermore, no distinction could be made between the quorum sensing signals secreted by typical opportunistic strains of the A. calcoaceticus-A. baumannii complex, isolated from patients, with respect to the other species of the genus, except for the Rf1 signal which was present in all the QS positive strains belonging to this complex and DNA group 13 TU. In conclusion, quorum sensors in Acinetobacter are not homogenously distributed among species and one of them is present in most of the A. calcoaceticus-baumannii complex.Se analizó la producción de moléculas típicas de N-acil homoserina lactona con actividad de quorum sensing en cultivos líquidos de un grupo de 43 cepas correspondientes a 20 especies genómicas clasificadas y no clasificadas de Acinetobacter. Un porcentaje alto de las cepas (74% mostraron señales de quorum sensing que pudieron ser separadas en tres grupos cromatográficos significativamente diferentes entre sí (p Rf2 > Rf1. Ninguna de las tres señales pudo ser asignada a una especie en particular dentro del género; es más, no se encontró diferencia entre las señales producidas por las cepas típicamente oportunistas (complejo A. calcoaceticus-A. baumannii aisladas de pacientes respecto de las producidas por otras cepas del mismo género, excepto para el caso de Rf1, que se encontró presente en todos los aislamientos quorum sensing positivos del mencionado complejo y en las cepas del grupo de DNA 13TU. En conclusión, los sensores de

  18. [Activation of the bioluminescence of the sensor Escherichia coli strains used for detecting N-acyl-homoserine lactones in the presence of nitrofurans and NO generators].

    Science.gov (United States)

    Zaĭtseva, Iu V; Granik, V G; Belik, A S; Koksharova, O A; Khmel', I A

    2010-01-01

    Nitrofurans (nitrofurazone, nitrofurantoin, furazidin, nifuroxazide), and nitric oxide generators (sodium nitroprusside and isosorbide mononitrate) in subinhibitory concentrations were shown to significantly increase the bioluminescence of the sensor Escherichia coli strains used for detecting N-acyl-homoserine lactones, signaling molecules of Quorum Sensing (QS) regulatory systems. The highest activation of bioluminescence (up to 250-400 fold) was observed in the presence of nitrofurazone on E. coli DH5alpha biosensors containing lux-reporter plasmids pSB401 or pSB536. However, this activation was not specifically associated with the functioning of QS systems. We suggest that the effect observed results from a direct action of nitrofurans and NO donors on the process of bioluminescence. The data indicate the necessity of using the biosensors that make it possible to detect specific effects of substances tested on QS regulation.

  19. A method for the on-site determination of prestressing forces using long-gauge fiber optic strain sensors

    International Nuclear Information System (INIS)

    Abdel-Jaber, H; Glisic, B

    2014-01-01

    Structural health monitoring (SHM) consists of the continuous or periodic measurement of structural parameters and their analysis with the aim of deducing information about the performance and health condition of a structure. The significant increase in the construction of prestressed concrete bridges motivated this research on an SHM method for the on-site determination of the distribution of prestressing forces along prestressed concrete beam structures. The estimation of the distribution of forces is important as it can give information regarding the overall performance and structural integrity of the bridge. An inadequate transfer of the designed prestressing forces to the concrete cross-section can lead to a reduced capacity of the bridge and consequently malfunction or failure at lower loads than predicted by design. This paper researches a universal method for the determination of the distribution of prestressing forces along concrete beam structures at the time of transfer of the prestressing force (e.g., at the time of prestressing or post-tensioning). The method is based on the use of long-gauge fiber optic sensors, and the sensor network is similar (practically identical) to the one used for damage identification. The method encompasses the determination of prestressing forces at both healthy and cracked cross-sections, and for the latter it can yield information about the condition of the cracks. The method is validated on-site by comparison to design forces through the application to two structures: (1) a deck-stiffened arch and (2) a curved continuous girder. The uncertainty in the determination of prestressing forces was calculated and the comparison with the design forces has shown very good agreement in most of the structures’ cross-sections, but also helped identify some unusual behaviors. The method and its validation are presented in this paper. (papers)

  20. Hydrostatic force sensor

    International Nuclear Information System (INIS)

    Evans, M.S.; Stoughton, R.S.; Kazerooni, H.

    1994-08-01

    This paper presents a theoretical and experimental investigation of a new kind of force sensor which detects forces by measuring an induced pressure change in a material of large Poisson's ratio. In this investigation we develop mathematical expressions for the sensor's sensitivity and bandwidth, and show that its sensitivity can be much larger and its bandwidth is usually smaller than those of existing strain-gage-type sensors. This force sensor is well-suited for measuring large but slowly varying forces. It can be installed in a space smaller than that required by existing sensors

  1. A High-Resolution Demodulation Algorithm for FBG-FP Static-Strain Sensors Based on the Hilbert Transform and Cross Third-Order Cumulant

    Directory of Open Access Journals (Sweden)

    Wenzhu Huang

    2015-04-01

    Full Text Available Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs. However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs. The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs’ reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method.

  2. A self-repairing polymer waveguide sensor

    International Nuclear Information System (INIS)

    Song, Young J; Peters, Kara J

    2011-01-01

    This paper presents experimental demonstrations of a self-repairing strain sensor waveguide created by self-writing in a photopolymerizable resin system. The sensor is fabricated between two multi-mode optical fibers via lightwaves in the ultraviolet (UV) wavelength range and operates as a sensor through interrogation of the power transmitted through the waveguide in the infrared (IR) wavelength range. After failure of the sensor occurs due to loading, the waveguide re-bridges the gap between the two optical fibers through the UV resin. The response of the original sensor and the self-repaired sensor to strain are measured and show similar behaviors

  3. Theory and Practice of Shear/Stress Strain Gage Hygrometry

    Science.gov (United States)

    Shams, Qamar A.; Fenner, Ralph L.

    2006-01-01

    Mechanical hygrometry has progressed during the last several decades from crude hygroscopes to state-of-the art strain-gage sensors. The strain-gage devices vary from different metallic beams to strain-gage sensors using cellulose crystallite elements, held in full shear restraint. This old technique is still in use but several companies are now actively pursuing development of MEMS miniaturized humidity sensors. These new sensors use polyimide thin film for water vapor adsorption and desorption. This paper will provide overview about modern humidity sensors.

  4. Advanced Wireless Sensor Nodes - MSFC

    Science.gov (United States)

    Varnavas, Kosta; Richeson, Jeff

    2017-01-01

    NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.

  5. Taste sensor; Mikaku sensor

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K. [Kyushu University, Fukuoka (Japan)

    1998-03-05

    This paper introduces a taste sensor having a lipid/polymer membrane to work as a receptor of taste substances. The paper describes the following matters: this sensor uses a hollow polyvinyl chloride rod filled with KCl aqueous solution, and placed with silver and silver chloride wires, whose cross section is affixed with a lipid/polymer membrane as a lipid membrane electrode to identify taste from seven or eight kinds of response patterns of electric potential output from the lipid/polymer membrane; measurements of different substances presenting acidic taste, salty taste, bitter taste, sweet taste and flavor by using this sensor identified clearly each taste (similar response is shown to a similar taste even if the substances are different); different responses are indicated on different brands of beers; from the result of measuring a great variety of mineral waters, a possibility was suggested that this taste sensor could be used for water quality monitoring sensors; and application of this taste sensor may be expected as a maturation control sensor for Japanese sake (wine) and miso (bean paste) manufacturing. 2 figs., 1 tab.

  6. Optical Fiber Grating based Sensors

    DEFF Research Database (Denmark)

    Michelsen, Susanne

    2003-01-01

    In this thesis differenct optical fiber gratings are used for sensor purposes. If a fiber with a core concentricity error (CCE) is used, a directional dependent bend sensor can be produced. The CCE direction can be determined by means of diffraction. This makes it possible to produce long......-period gratings in a fiber with a CCE direction parallel or perpendicular to the writing direction. The maximal bending sensitivity is independent on the writing direction, but the detailed bending response is different in the two cases. A temperature and strain sensor, based on a long-period grating and two...... sampled gratings, was produced and investigated. It is based on the different temperature and strain response of these gratings. Both a transfer matrix method and an overlap calculation is performed to explain the sensor response. Another type of sensor is based on tuning and modulation of a laser...

  7. Wireless interrogation of passive antenna sensors

    International Nuclear Information System (INIS)

    Deshmukh, S; Huang, H

    2010-01-01

    Recently, we discovered that the resonant frequency of a microstrip patch antenna is sensitive to mechanical strains or crack presence in the ground plane. Based on this principle, antenna sensors have been demonstrated to measure strain and detect crack in metallic structures. This paper presents a wireless method to remotely interrogate a dual-frequency antenna sensor. An interrogation horn antenna was used to irradiate the antenna sensor with a linear chirp microwave signal. By implementing a light-activated switch at the sensor node and performing signal processing of the backscattered signals, the resonant frequencies of the antenna sensor along both polarizations can be measured remotely. Since the antenna sensor does not need a local power source and can be interrogated wirelessly, electric wiring can be eliminated. The sensor implementation, the signal processing and the experimental setup that validate the remote interrogation of the antenna sensor are presented. A power budget model has also been established to estimate the maximum interrogation range

  8. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under

  9. Displacement sensing based on modal interference in polymer optical fibers with partially applied strain

    Science.gov (United States)

    Mizuno, Yosuke; Hagiwara, Sonoko; Kawa, Tomohito; Lee, Heeyoung; Nakamura, Kentaro

    2018-05-01

    Strain sensing based on modal interference in multimode fibers (MMFs) has been extensively studied, but no experimental or theoretical reports have been given as to how the system works when strain is applied not to the whole MMF but only to part of the MMF. Here, using a perfluorinated graded-index polymer optical fiber as the MMF, we investigate the strain sensing characteristics of this type of sensor when strain is partially applied to fiber sections with different lengths. The strain sensitivity dependence on the length of the strained section reveals that this strain sensor actually behaves as a displacement sensor.

  10. Development of magnetic jxB sensor

    International Nuclear Information System (INIS)

    Kasai, Satoshi; Ishitsuka, Etsuo

    2001-12-01

    The improved mechanical sensor, i.e. magnetic jxB sensor (a mechanical sensor and a part of the steady state hybrid-type magnetic sensor) has been designed. The basic structure of the sensor is similar to the previously developed sensor (old sensor) in EDA phase. In this design, the neutron resistant materials are selected for the load cell (strain gauge and sensor beam) and sensing coil/frame. In order to reduce temperature drift of the sensor signal, four strain gauges with the same electrical property and geometrical size are bonded on the sensor beam by using Al 2 O 3 plasma spraying process, i.e., a couple of strain gauges is bonded on one side of the beam and another couple of gauges is bonded on the other side. These four strain gauges form an electrical bridge circuit. The zero-level drift of the output of the load cell used in the magnetic jxB sensor was reduced to about 1/20 compared with the old sensor. The temperature dependence of the output of the load cell is small. The linearity of the output of the load cell against weight was obtained. A non-linearity was observed in the sensitivity of the magnetic jxB sensor. The deviation of sensitivity from the fitting line was less than 7% in the high magnetic field region. The neutron irradiation effect on sensitivity of the sensor was investigated. The sensitivity of the sensor was gradually decreased by ∼30% at neutron fluence of (1.8-2.8)x10 23 n/m 2 in the high magnetic field. During irradiation, the non-linearity was observed in the sensitivity. (author)

  11. Instrument for measuring fuel cladding strain

    International Nuclear Information System (INIS)

    Billeter, T.R.

    1976-01-01

    Development work to provide instrumentation for the continuous measurement of strain of material specimens such as nuclear fuel cladding has shown that a microwave sensor and associated instrumentation hold promise. The cylindrical sensor body enclosing the specimen results in a coaxial resonator absorbing microwave energy at frequencies dependent upon the diameter of the specimen. Diametral changes of a microinch can be resolved with use of the instrumentation. Very reasonable values of elastic strain were measured at 75 0 F and 1000 0 F for an internally pressurized 20 percent C.W. 316 stainless steel specimen simulating nuclear fuel cladding. The instrument also indicated the creep strain of the same specimen pressurized at 6500 psi and at a temperature of 1000 0 F for a period of 700 hours. Although the indicated strain appears greater than actual, the sensor/specimen unit experienced considerable oxidation even though an inert gas purge persisted throughout the test duration. By monitoring at least two modes of resonance, the measured strain was shown to be nearly independent of sensor temperature. To prevent oxidation, a second test was performed in which the specimen/sensor units were contained in an evacuated enclosure. The strain of the two prepressurized specimens as indicated by the microwave instrumentation agreed very closely with pre- and post-test measurements obtained with use of a laser interferometer

  12. Modelling non-uniform strain distributions in aerospace composites using fibre Bragg gratings

    NARCIS (Netherlands)

    Rajabzadehdizaji, Aydin; Groves, R.M.; Hendriks, R.C.; Heusdens, R.; Chung, Y.; Jin, W.; Lee, B.; Canning, J.; Nakamura, K.; Yuan, L.

    2017-01-01

    In this paper the behaviour of fibre Bragg grating (FBG) sensors under non-uniform strain distributions was analysed. Using the fundamental matrix approach, the length of the FBG sensor was discretised, with each segment undergoing different strain values. FBG sensors that are embedded inside

  13. Attention Sensor

    NARCIS (Netherlands)

    Börner, Dirk; Kalz, Marco; Specht, Marcus

    2014-01-01

    This software sketch was used in the context of an experiment for the PhD project “Ambient Learning Displays”. The sketch comprises a custom-built attention sensor. The sensor measured (during the experiment) whether a participant looked at and thus attended a public display. The sensor was built

  14. Novel distributed strain sensing in polymeric materials

    International Nuclear Information System (INIS)

    Abot, Jandro L; Song, Yi; Medikonda, Sandeep; Rooy, Nathan; Schulz, Mark J

    2010-01-01

    Monitoring the state of strain throughout an entire structure is essential to determine its state of stress, detect potential residual stresses after fabrication, and also to help to establish its integrity. Several sensing technologies are presently available to determine the strain in the surface or inside a structure. Large sensor dimensions, complex signal conditioning equipment, and difficulty in achieving a widely distributed system have however hindered their development into robust structural health monitoring techniques. Recently, carbon nanotube forests were spun into a microscale thread that is electrically conductive, tough, and easily tailorable. The thread was integrated into polymeric materials and used for the first time as a piezoresistive sensor to monitor strain and also to detect damage in the material. It is revealed that the created self-sensing polymeric materials are sensitive to normal strains above 0.07% and that the sensor thread exhibits a perfectly linear delta resistance–strain response above 0.3%. The longitudinal gauge factors were determined to be in the 2–5 range. This low cost and simple built-in sensor thread may provide a new integrated and distributed sensor technology that enables robust real-time health monitoring of structures

  15. MFTF sensor verification computer program

    International Nuclear Information System (INIS)

    Chow, H.K.

    1984-01-01

    The design, requirements document and implementation of the MFE Sensor Verification System were accomplished by the Measurement Engineering Section (MES), a group which provides instrumentation for the MFTF magnet diagnostics. The sensors, installed on and around the magnets and solenoids, housed in a vacuum chamber, will supply information about the temperature, strain, pressure, liquid helium level and magnet voltage to the facility operator for evaluation. As the sensors are installed, records must be maintained as to their initial resistance values. Also, as the work progresses, monthly checks will be made to insure continued sensor health. Finally, after the MFTF-B demonstration, yearly checks will be performed as well as checks of sensors as problem develops. The software to acquire and store the data was written by Harry Chow, Computations Department. The acquired data will be transferred to the MFE data base computer system

  16. Strain expansion-reduction approach

    Science.gov (United States)

    Baqersad, Javad; Bharadwaj, Kedar

    2018-02-01

    Validating numerical models are one of the main aspects of engineering design. However, correlating million degrees of freedom of numerical models to the few degrees of freedom of test models is challenging. Reduction/expansion approaches have been traditionally used to match these degrees of freedom. However, the conventional reduction/expansion approaches are only limited to displacement, velocity or acceleration data. While in many cases only strain data are accessible (e.g. when a structure is monitored using strain-gages), the conventional approaches are not capable of expanding strain data. To bridge this gap, the current paper outlines a reduction/expansion technique to reduce/expand strain data. In the proposed approach, strain mode shapes of a structure are extracted using the finite element method or the digital image correlation technique. The strain mode shapes are used to generate a transformation matrix that can expand the limited set of measurement data. The proposed approach can be used to correlate experimental and analytical strain data. Furthermore, the proposed technique can be used to expand real-time operating data for structural health monitoring (SHM). In order to verify the accuracy of the approach, the proposed technique was used to expand the limited set of real-time operating data in a numerical model of a cantilever beam subjected to various types of excitations. The proposed technique was also applied to expand real-time operating data measured using a few strain gages mounted to an aluminum beam. It was shown that the proposed approach can effectively expand the strain data at limited locations to accurately predict the strain at locations where no sensors were placed.

  17. Microfabricated pressure and shear stress sensors

    Science.gov (United States)

    Liu, Chang (Inventor); Chen, Jack (Inventor); Engel, Jonathan (Inventor)

    2009-01-01

    A microfabricated pressure sensor. The pressure sensor comprises a raised diaphragm disposed on a substrate. The diaphragm is configured to bend in response to an applied pressure difference. A strain gauge of a conductive material is coupled to a surface of the raised diaphragm and to at least one of the substrate and a piece rigidly connected to the substrate.

  18. SU-8 Based Piezoresistive Mechanical Sensor

    DEFF Research Database (Denmark)

    Thaysen, Jacob; Yalcinkaya, Arda Deniz; Vestergaard, R.K.

    2002-01-01

    We present the first SU-8 based piezoresistive mechanical sensor. Conventionally, silicon has been used as a piezoresistive material due to its high gauge factor and thereby high sensitivity to strain changes in a sensor. By using the fact that SU-8 is much softer than silicon and that a gold...

  19. Flexible heartbeat sensor for wearable device.

    Science.gov (United States)

    Kwak, Yeon Hwa; Kim, Wonhyo; Park, Kwang Bum; Kim, Kunnyun; Seo, Sungkyu

    2017-08-15

    We demonstrate a flexible strain-gauge sensor and its use in a wearable application for heart rate detection. This polymer-based strain-gauge sensor was fabricated using a double-sided fabrication method with polymer and metal, i.e., polyimide and nickel-chrome. The fabrication process for this strain-gauge sensor is compatible with the conventional flexible printed circuit board (FPCB) processes facilitating its commercialization. The fabricated sensor showed a linear relation for an applied normal force of more than 930 kPa, with a minimum detectable force of 6.25Pa. This sensor can also linearly detect a bending radius from 5mm to 100mm. It is a thin, flexible, compact, and inexpensive (for mass production) heart rate detection sensor that is highly sensitive compared to the established optical photoplethysmography (PPG) sensors. It can detect not only the timing of heart pulsation, but also the amplitude or shape of the pulse signal. The proposed strain-gauge sensor can be applicable to various applications for smart devices requiring heartbeat detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Long term strain behavior of PMMA based polymer optical fibers

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Nielsen, Kristian; Woyessa, Getinet

    2015-01-01

    We are reporting on the viscoelasticity of PMMA based Fiber Bragg Grating (FBG) strain sensors when exposed to repeated sequences of long term strain and relaxation with various duty-cycles. In terms of the FBG wavelength and how it follows the strain cycle, we have shown that in the small strain...... regime (up to 1%) an elastic-dominated fast relaxing range, which is followed by a mainly viscous relaxation, depends both on the strain level and on the strain duration. For a small ratio of the strain-relax durations, this fast relaxation range stays almost the same. However, with increasing strain...... duration, for the same relaxation time, this range will be shortened, which might influence the sensing capabilities of the fiber sensor....

  1. Sensors, Volume 4, Thermal Sensors

    Science.gov (United States)

    Scholz, Jorg; Ricolfi, Teresio

    1996-12-01

    'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume describes the construction and applicational aspects of thermal sensors while presenting a rigorous treatment of the underlying physical principles. It provides a unique overview of the various categories of sensors as well as of specific groups, e.g. temperature sensors (resistance thermometers, thermocouples, and radiation thermometers), noise and acoustic thermometers, heat-flow and mass-flow sensors. Specific facettes of applications are presented by specialists from different fields including process control, automotive technology and cryogenics. This volume is an indispensable reference work and text book for both specialists and newcomers, researchers and developers.

  2. Applications of fiber optic sensors in concrete structural health monitoring

    Science.gov (United States)

    Dai, Jingyun; Zhang, Wentao; Sun, Baochen; Du, Yanliang

    2007-11-01

    The research of fiber optic extrinsic Fabry-Perot interferometer (EFPI) sensors and their applications in concrete structural health monitoring are presented in this paper. Different types of fiber optic EFPI sensors are designed and fabricated. Experiments are carried out to test the performance of the sensors. The results show that the sensors have good linearity and stability. The applications of the fiber optic EFPI sensors in concrete structural health monitoring are also introduced. Ten fiber optic sensors are embedded into one section of the Liaohe Bridge in Qinghuangdao-Shenyang Railway. Field test demonstrates that the results of fiber optic sensors agree well with conventional strain gauges.

  3. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  4. Gas Sensor

    KAUST Repository

    Luebke, Ryan; Eddaoudi, Mohamed; Omran, Hesham; Belmabkhout, Youssef; Shekhah, Osama; Salama, Khaled N.

    2015-01-01

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  5. Sensor web

    Science.gov (United States)

    Delin, Kevin A. (Inventor); Jackson, Shannon P. (Inventor)

    2011-01-01

    A Sensor Web formed of a number of different sensor pods. Each of the sensor pods include a clock which is synchronized with a master clock so that all of the sensor pods in the Web have a synchronized clock. The synchronization is carried out by first using a coarse synchronization which takes less power, and subsequently carrying out a fine synchronization to make a fine sync of all the pods on the Web. After the synchronization, the pods ping their neighbors to determine which pods are listening and responded, and then only listen during time slots corresponding to those pods which respond.

  6. Nanomaterial-Enabled Wearable Sensors for Healthcare.

    Science.gov (United States)

    Yao, Shanshan; Swetha, Puchakayala; Zhu, Yong

    2018-01-01

    Highly sensitive wearable sensors that can be conformably attached to human skin or integrated with textiles to monitor the physiological parameters of human body or the surrounding environment have garnered tremendous interest. Owing to the large surface area and outstanding material properties, nanomaterials are promising building blocks for wearable sensors. Recent advances in the nanomaterial-enabled wearable sensors including temperature, electrophysiological, strain, tactile, electrochemical, and environmental sensors are presented in this review. Integration of multiple sensors for multimodal sensing and integration with other components into wearable systems are summarized. Representative applications of nanomaterial-enabled wearable sensors for healthcare, including continuous health monitoring, daily and sports activity tracking, and multifunctional electronic skin are highlighted. Finally, challenges, opportunities, and future perspectives in the field of nanomaterial-enabled wearable sensors are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Chemical sensors

    International Nuclear Information System (INIS)

    Hubbard, C.W.; Gordon, R.L.

    1987-05-01

    The revolution in analytical chemistry promised by recent developments in the field of chemical sensors has potential for significant positive impact on both research and production activities conducted by and for the Department of Energy. Analyses which were, in the past, performed only with a roomful of expensive equipment can now be performed with miniature solid-state electronic devices or small optical probes. Progress in the development of chemical sensors has been rapid, and the field is currently growing at a great rate. In accordance, Pacific Northwest Laboratory initiated a survey of recent literature so that contributors to active programs in research on analytical methods could be made aware of principles and applications of this new technology. This report presents the results of that survey. The sensors discussed here are divided into three types: micro solid-state devices, optical sensors, and piezoelectric crystal devices. The report is divided into three corresponding sections. The first section, ''Micro Solid-State Devices,'' discusses the design, operation, and application of electronic sensors that are produced in much the same way as standard solid-state electronic devices. The second section, ''Optrodes,'' covers the design and operation of chemical sensors that use fiber optics to detect chemically induced changes in optical properties. The final section, ''Piezoelectric Crystal Detectors,'' discusses two types of chemical sensors that depend on the changes in the properties of an oscillating piezoelectric crystal to detect the presence of certain materials. Advantages and disadvantages of each type of sensor are summarized in each section

  8. Multi-Functional Measurement Using a Single FBG Sensor

    NARCIS (Netherlands)

    Mizutani, Y.; Groves, R.M.

    2011-01-01

    This paper describes the measurement of average strain, strain distribution and vibration of a cantilever beam made of Carbon Fiber Reinforced Plastics (CFRP), using a single Fibre Bragg Grating (FBG) sensor mounted on the beam surface. Average strain is determined from the displacement of the peak

  9. Bolt Shear Force Sensor

    Science.gov (United States)

    2015-03-12

    0030] FIG. 7 is an isometric view of a deformable ring of the bolt shear force sensor of the present invention with an optical Attorney Docket No...102587 9 of 19 fiber having Bragg gratings wound around the ring; [0031] FIG. 8 is an isometric view of the deformable ring with wire strain... strength . [0047] Once the joint is subjected to an external load (see force arrows “F” and “F/2”); any frictional resistance to slip is overcome and

  10. Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration

    Directory of Open Access Journals (Sweden)

    Jandro L. Abot

    2018-02-01

    Full Text Available Carbon nanotube yarns are micron-scale fibers comprised by tens of thousands of carbon nanotubes in their cross section and exhibiting piezoresistive characteristics that can be tapped to sense strain. This paper presents the details of novel foil strain gauge sensor configurations comprising carbon nanotube yarn as the piezoresistive sensing element. The foil strain gauge sensors are designed using the results of parametric studies that maximize the sensitivity of the sensors to mechanical loading. The fabrication details of the strain gauge sensors that exhibit the highest sensitivity, based on the modeling results, are described including the materials and procedures used in the first prototypes. Details of the calibration of the foil strain gauge sensors are also provided and discussed in the context of their electromechanical characterization when bonded to metallic specimens. This characterization included studying their response under monotonic and cyclic mechanical loading. It was shown that these foil strain gauge sensors comprising carbon nanotube yarn are sensitive enough to capture strain and can replicate the loading and unloading cycles. It was also observed that the loading rate affects their piezoresistive response and that the gauge factors were all above one order of magnitude higher than those of typical metallic foil strain gauges. Based on these calibration results on the initial sensor configurations, new foil strain gauge configurations will be designed and fabricated, to increase the strain gauge factors even more.

  11. Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration

    Science.gov (United States)

    Góngora-Rubio, Mário R.; Kiyono, César Y.; Mello, Luis A. M.; Cardoso, Valtemar F.; Rosa, Reinaldo L. S.; Kuebler, Derek A.; Brodeur, Grace E.; Alotaibi, Amani H.; Coene, Marisa P.; Coene, Lauren M.; Jean, Elizabeth; Santiago, Rafael C.; Oliveira, Francisco H. A.; Rangel, Ricardo; Thomas, Gilles P.; Belay, Kalayu; da Silva, Luciana W.; Moura, Rafael T.; Seabra, Antonio C.; Silva, Emílio C. N.

    2018-01-01

    Carbon nanotube yarns are micron-scale fibers comprised by tens of thousands of carbon nanotubes in their cross section and exhibiting piezoresistive characteristics that can be tapped to sense strain. This paper presents the details of novel foil strain gauge sensor configurations comprising carbon nanotube yarn as the piezoresistive sensing element. The foil strain gauge sensors are designed using the results of parametric studies that maximize the sensitivity of the sensors to mechanical loading. The fabrication details of the strain gauge sensors that exhibit the highest sensitivity, based on the modeling results, are described including the materials and procedures used in the first prototypes. Details of the calibration of the foil strain gauge sensors are also provided and discussed in the context of their electromechanical characterization when bonded to metallic specimens. This characterization included studying their response under monotonic and cyclic mechanical loading. It was shown that these foil strain gauge sensors comprising carbon nanotube yarn are sensitive enough to capture strain and can replicate the loading and unloading cycles. It was also observed that the loading rate affects their piezoresistive response and that the gauge factors were all above one order of magnitude higher than those of typical metallic foil strain gauges. Based on these calibration results on the initial sensor configurations, new foil strain gauge configurations will be designed and fabricated, to increase the strain gauge factors even more. PMID:29401745

  12. Automotive sensors

    Science.gov (United States)

    Marek, Jiri; Illing, Matthias

    2003-01-01

    Sensors are an essential component of most electronic systems in the car. They deliver input parameters for comfort features, engine and emission control as well as for the active and passive safety systems. New technologies such as silicon micromachining play an important role for the introduction of these sensors in all vehicle classes. The importance and use of these sensor technologies in today"s automotive applications will be shown in this article. Finally an outlook on important current developments and new functions in the car will be given.

  13. Piezoceramic Sensors

    CERN Document Server

    Sharapov, Valeriy

    2011-01-01

    This book presents the latest and complete information about various types of piezosensors. A sensor is a converter of the measured physical size to an electric signal. Piezoelectric transducers and sensors are based on piezoelectric effects. They have proven to be versatile tools for the measurement of various processes. They are used for quality assurance, process control and for research and development in many different industries. In each area of application specific requirements to the parameters of transducers and sensors are developed. This book presents the fundamentals, technical des

  14. Fiber Bragg Grating vibration sensor with DFB laser diode

    Science.gov (United States)

    Siska, Petr; Brozovic, Martin; Cubik, Jakub; Kepak, Stanislav; Vitasek, Jan; Koudelka, Petr; Latal, Jan; Vasinek, Vladimir

    2012-01-01

    The Fiber Bragg Grating (FBG) sensors are nowadays used in many applications. Thanks to its quite big sensitivity to a surrounding environment, they can be used for sensing of temperature, strain, vibration or pressure. A fiber Bragg grating vibration sensor, which is interrogated by a distributed feedback laser diode (DFB) is demonstrated in this article. The system is based on the intensity modulation of the narrow spectral bandwidth of the DFB laser, when the reflection spectrum of the FBG sensor is shifted due to the strain that is applied on it in form of vibrations caused by acoustic wave pressure from loud speaker. The sensor's response in frequency domain and strain is measured; also the factor of sensor pre-strain impact on its sensitivity is discussed.

  15. Wireless sensor network

    Science.gov (United States)

    Perotti, Jose M.; Lucena, Angel R.; Mullenix, Pamela A.; Mata, Carlos T.

    2006-05-01

    Current and future requirements of aerospace sensors and transducers demand the design and development of a new family of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors and transducers will possess a certain degree of intelligence in order to provide the end user with critical data in a more efficient manner. Communication between networks of traditional or next-generation sensors can be accomplished by a Wireless Sensor Network (WSN) developed by NASA's Instrumentation Branch and ASRC Aerospace Corporation at Kennedy Space Center (KSC), consisting of at least one central station and several remote stations and their associated software. The central station is application-dependent and can be implemented on different computer hardware, including industrial, handheld, or PC-104 single-board computers, on a variety of operating systems: embedded Windows, Linux, VxWorks, etc. The central stations and remote stations share a similar radio frequency (RF) core module hardware that is modular in design. The main components of the remote stations are an RF core module, a sensor interface module, batteries, and a power management module. These modules are stackable, and a common bus provides the flexibility to stack other modules for additional memory, increased processing, etc. WSN can automatically reconfigure to an alternate frequency if interference is encountered during operation. In addition, the base station will autonomously search for a remote station that was perceived to be lost, using relay stations and alternate frequencies. Several wireless remote-station types were developed and tested in the laboratory to support different sensing technologies, such as resistive temperature devices, silicon diodes, strain gauges, pressure transducers, and hydrogen leak detectors.

  16. Optischer Sensor

    OpenAIRE

    Brandenburg, A.; Hutter, F.; Edelhaeuser, R.

    1992-01-01

    WO 2010040565 A1 UPAB: 20100506 NOVELTY - The integrated optical sensor comprises a first waveguide (4), a second waveguide (5) optically coupled to the first waveguide via a directional coupler, a substrate, which carries the first and the second waveguides, a single waveguide coupled with a light source, and an output waveguide coupled with a light-sensitive element. The sensor has a functional surface in the region of the directional coupler for depositing or deposition of the substance to...

  17. Wireless sensor

    Science.gov (United States)

    Lamberti, Vincent E.; Howell, JR, Layton N.; Mee, David K.; Sepaniak, Michael J.

    2016-02-09

    Disclosed is a sensor for detecting a target material. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon exposure to vapor or liquid from the target material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The target material is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  18. Smart paint sensor for monitoring structural vibrations

    International Nuclear Information System (INIS)

    Al-Saffar, Y; Baz, A; Aldraihem, O

    2012-01-01

    A class of smart paint sensors is proposed for monitoring the structural vibration of beams. The sensor is manufactured from an epoxy resin which is mixed with carbon black nano-particles to make it electrically conducting and sensitive to mechanical vibrations. A comprehensive theoretical and experimental investigation is presented to understand the underlying phenomena governing the operation of this class of paint sensors and evaluate its performance characteristics. A theoretical model is presented to model the electromechanical behavior of the sensor system using molecular theory. The model is integrated with an amplifier circuit in order to predict the current and voltage developed by the paint sensor when subjected to loading. Furthermore, the sensor/amplifier circuit models are coupled with a finite element model of a base beam to which the sensor is bonded. The resulting multi-field model is utilized to predict the behavior of both the sensor and the beam when subjected to a wide variety of vibration excitations. The predictions of the multi-field finite element model are validated experimentally and the behavior of the sensor is evaluated both in the time and the frequency domains. The performance of the sensor is compared with the performance of conventional strain gages to emphasize its potential and merits. The presented techniques are currently being extended to sensors that can monitor the vibration and structural power flow of two-dimensional structures. (paper)

  19. An embeddable optical strain gauge based on a buckled beam.

    Science.gov (United States)

    Du, Yang; Chen, Yizheng; Zhu, Chen; Zhuang, Yiyang; Huang, Jie

    2017-11-01

    We report, for the first time, a low cost, compact, and novel mechanically designed extrinsic Fabry-Perot interferometer (EFPI)-based optical fiber sensor with a strain amplification mechanism for strain measurement. The fundamental design principle includes a buckled beam with a coated gold layer, mounted on two grips. A Fabry-Perot cavity is produced between the buckled beam and the endface of a single mode fiber (SMF). A ceramic ferrule is applied for supporting and orienting the SMF. The principal sensor elements are packaged and protected by two designed metal shells. The midpoint of the buckled beam will experience a deflection vertically when the beam is subjected to a horizontally/axially compressive displacement. It has been found that the vertical deflection of the beam at midpoint can be 6-17 times larger than the horizontal/axial displacement, which forms the basis of a strain amplification mechanism. The user-configurable buckling beam geometry-based strain amplification mechanism enables the strain sensor to achieve a wide range of strain measurement sensitivities. The designed EFPI was used to monitor shrinkage of a square brick of mortar. The strain was measured during the drying/curing stage. We envision that it could be a good strain sensor to be embedded in civil materials/structures under a harsh environment for a prolonged period of time.

  20. An embeddable optical strain gauge based on a buckled beam

    Science.gov (United States)

    Du, Yang; Chen, Yizheng; Zhu, Chen; Zhuang, Yiyang; Huang, Jie

    2017-11-01

    We report, for the first time, a low cost, compact, and novel mechanically designed extrinsic Fabry-Perot interferometer (EFPI)-based optical fiber sensor with a strain amplification mechanism for strain measurement. The fundamental design principle includes a buckled beam with a coated gold layer, mounted on two grips. A Fabry-Perot cavity is produced between the buckled beam and the endface of a single mode fiber (SMF). A ceramic ferrule is applied for supporting and orienting the SMF. The principal sensor elements are packaged and protected by two designed metal shells. The midpoint of the buckled beam will experience a deflection vertically when the beam is subjected to a horizontally/axially compressive displacement. It has been found that the vertical deflection of the beam at midpoint can be 6-17 times larger than the horizontal/axial displacement, which forms the basis of a strain amplification mechanism. The user-configurable buckling beam geometry-based strain amplification mechanism enables the strain sensor to achieve a wide range of strain measurement sensitivities. The designed EFPI was used to monitor shrinkage of a square brick of mortar. The strain was measured during the drying/curing stage. We envision that it could be a good strain sensor to be embedded in civil materials/structures under a harsh environment for a prolonged period of time.

  1. Characterization of piezoelectric materials for simultaneous strain and temperature sensing for ultra-low frequency applications

    International Nuclear Information System (INIS)

    Islam, Mohammad Nouroz; Seethaler, Rudolf; Alam, M Shahria

    2015-01-01

    Piezoelectric materials are used extensively in a number of sensing applications ranging from aerospace industries to medical diagnostics. Piezoelectric materials generate charge when they are subjected to strain. However, since measuring charge is difficult at low frequencies, traditional piezoelectric sensors are limited to dynamic applications. In this research an alternative technique is proposed to determine static strain that relies upon the measurement of piezoelectric capacitance and resistance using piezoelectric sensors. To demonstrate the validity of this approach, the capacitance and resistance of a piezoelectric patch sensor was characterized for a wide range of strain and temperature. The study shows that the piezoelectric capacitance is sensitive to both strain and temperature while the resistance is mostly dependent on the temperature variation. The findings can be implemented to obtain thermally compensated static strain from piezoelectric sensors, which does not require an additional temperature sensor. (paper)

  2. Review on water quality sensors

    Science.gov (United States)

    Kruse, Peter

    2018-05-01

    Terrestrial life may be carbon-based, but most of its mass is made up of water. Access to clean water is essential to all aspects of maintaining life. Mainly due to human activity, the strain on the water resources of our planet has increased substantially, requiring action in water management and purification. Water quality sensors are needed in order to quantify the problem and verify the success of remedial actions. This review summarizes the most common chemical water quality parameters, and current developments in sensor technology available to monitor them. Particular emphasis is on technologies that lend themselves to reagent-free, low-maintenance, autonomous and continuous monitoring. Chemiresistors and other electrical sensors are discussed in particular detail, while mechanical, optical and electrochemical sensors also find mentioning. The focus here is on the physics of chemical signal transduction in sensor elements that are in direct contact with the analyte. All other sensing methods, and all other elements of sampling, sample pre-treatment as well as the collection, transmission and analysis of the data are not discussed here. Instead, the goal is to highlight the progress and remaining challenges in the development of sensor materials and designs for an audience of physicists and materials scientists.

  3. Radiation sensor

    International Nuclear Information System (INIS)

    Brown, W.L.; Geronime, R.L.

    1977-01-01

    Radiation sensor and thermocouple, respectively, which can be used for reactor in-core instrumentation. The radiation sensor consists of an inconel conductor wire and rhodium emitter wire, the thermocouple of two intertwined alumel or chromel wires. Both are arranged in the center of a metal tube relative to which they are separated by an insulator made of SiO 2 fibers. This insulator is first introduced as a loose fabric between the radiation sensor and the thermocouple, respectively, and the metal tube and then compacted to a density of 35-73% of pure SiO 2 by drawing the tube. There is no need for soldering or welding. The insulation resistivity at room temperature ist between 10 14 and 10 15 ohms. (ORU) [de

  4. Water Sensors

    Science.gov (United States)

    1992-01-01

    Mike Morris, former Associate Director of STAC, formed pHish Doctor, Inc. to develop and sell a pH monitor for home aquariums. The monitor, or pHish Doctor, consists of a sensor strip and color chart that continually measures pH levels in an aquarium. This is important because when the level gets too high, ammonia excreted by fish is highly toxic; at low pH, bacteria that normally break down waste products stop functioning. Sales have run into the tens of thousands of dollars. A NASA Tech Brief Technical Support Package later led to a salt water version of the system and a DoE Small Business Innovation Research (SBIR) grant for development of a sensor for sea buoys. The company, now known as Ocean Optics, Inc., is currently studying the effects of carbon dioxide buildup as well as exploring other commercial applications for the fiber optic sensor.

  5. Practical Use Technique of Sensor

    International Nuclear Information System (INIS)

    Hwang, Gyu Seop

    1985-11-01

    This book tells of practical use technology of sensor, introducing the recent trend of sensor for electronic industry, IC temperature sensor, radiation temperature sensor of surface acoustic wave, optical fiber temperature sensor, a polyelectrolyte film humidity sensor, semiconductor pressure sensor for industrial instrumentation, silicon integration pressure sensor, thick film humidity sensor and its application, photo sensor reflection type, and color sensor. It also deals with sensor for FA, sensor for a robot and sensor for the chemical industry.

  6. Practical Use Technique of Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gyu Seop

    1985-11-15

    This book tells of practical use technology of sensor, introducing the recent trend of sensor for electronic industry, IC temperature sensor, radiation temperature sensor of surface acoustic wave, optical fiber temperature sensor, a polyelectrolyte film humidity sensor, semiconductor pressure sensor for industrial instrumentation, silicon integration pressure sensor, thick film humidity sensor and its application, photo sensor reflection type, and color sensor. It also deals with sensor for FA, sensor for a robot and sensor for the chemical industry.

  7. Chemical sensor

    Science.gov (United States)

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  8. Load sensor

    NARCIS (Netherlands)

    Van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder

  9. Gas sensor

    Science.gov (United States)

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  10. Power Replenishment Patch for Spacecraft Health Monitoring Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Metis Design Corporation (MDC) proposes the development of a strain-based power replenishment technology to harvest energy for recharging remote sensors. MDC has...

  11. Interpretation of large-strain geophysical crosshole tests

    International Nuclear Information System (INIS)

    Drnevich, V.P.; Salgado, R.; Ashmawy, A.; Grant, W.P.; Vallenas, P.

    1995-10-01

    At sites in earthquake-prone areas, the nonlinear dynamic stress-strain behavior of soil with depth is essential for earthquake response analyses. A seismic crosshole test has been developed where large dynamic forces are applied in a borehole. These forces generate shear strains in the surrounding soil that are well into the nonlinear range. The shear strain amplitudes decrease with distance from the source. Velocity sensors located in three additional holes at various distances from the source hole measure the particle velocity and the travel time of the shear wave from the source. This paper provides an improved, systematic interpretation scheme for the data from these large-strain geophysical crosshole tests. Use is made of both the measured velocities at each sensor and the travel times. The measured velocity at each sensor location is shown to be a good measure of the soil particle velocity at that location. Travel times to specific features on the velocity time history, such as first crossover, are used to generate travel time curves for the waves which are nonlinear. At some distance the amplitudes reduce to where the stress-strain behavior is essentially linear and independent of strain amplitude. This fact is used together with the measurements at the three sensor locations in a rational approach for fitting curves of shear wave velocity versus distance from the source hole that allow the determination of the shear wave velocity and the shear strain amplitude at each of the sensor locations as well as the shear wave velocity associated with small-strain (linear) behavior. The method is automated using off-the-shelf PC-based software. The method is applied to large-strain crosshole tests performed as part of the studies for the design and construction of the proposed Multi-Function Waste Tank Facility planned for Hanford Site

  12. All-plastic fiber-based pressure sensor

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Lwin, Richard; Leon-Saval, Sergio

    2016-01-01

    We present a feasibility study and a prototype of an all-plastic fiber-based pressure sensor. The sensor is based on long period gratings inscribed for the first time to the best of our knowledge by a CO2 laser in polymethyl methacrylate (PMMA) microstructured fibers and coupled to a pod......-like transducer that converts pressure to strain. The sensor prototype was characterized for pressures up to 150 mbars, and various parameters related to its construction were also characterized in order to enhance sensitivity. We consider this sensor in the context of future applications in endoscopic pressure...... sensors....

  13. Circuit Design of Surface Acoustic Wave Based Micro Force Sensor

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2014-01-01

    Full Text Available Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established to analyze the frequency, and a peripheral circuit is designed to measure the micro force. The SAW based micro force sensor is tested to show the reasonable design of detection circuit and the stability of frequency and amplitude.

  14. Zeonex Microstructured Polymer Optical Fibre Bragg Grating Sensor

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Markos, Christos

    2016-01-01

    We fabricated an endlessly single mode and humidity insensitive Zeonex microstructured polymer optical fibre (mPOF) for fibre Bragg grating (FBG) temperature and strain sensors. We inscribed and characterise FBGs in Zeonex mPOF for the first time.......We fabricated an endlessly single mode and humidity insensitive Zeonex microstructured polymer optical fibre (mPOF) for fibre Bragg grating (FBG) temperature and strain sensors. We inscribed and characterise FBGs in Zeonex mPOF for the first time....

  15. Direct strain energy harvesting in automobile tires using piezoelectric PZT-polymer composites

    NARCIS (Netherlands)

    Ende, D.A. van den; Wiel, H.J. van de; Groen, W.A.; Zwaag, S. van der

    2012-01-01

    Direct piezoelectric strain energy harvesting can be used to power wireless autonomous sensors in environments where low frequency, high strains are present, such as in automobile tires during operation. However, these high strains place stringent demands on the materials with respect to mechanical

  16. Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites

    NARCIS (Netherlands)

    Van den Ende, D.A.; Van de Wiel, H.J.; Groen, W.A.; Van der Zwaag, S.

    2011-01-01

    Direct piezoelectric strain energy harvesting can be used to power wireless autonomous sensors in environments where low frequency, high strains are present, such as in automobile tires during operation. However, these high strains place stringent demands on the materials with respect to mechanical

  17. Optical response characteristics of strained uniform fiber Bragg grating using laser diode

    Science.gov (United States)

    Setiono, Andi; Widiyatmoko, Bambang; Purnamaningsih, Retno Wigajatri

    2015-01-01

    The working principle of the FBG strain sensor using laser diode (λ = 1551.9 - 1553 nm) as a light source is reported. Experimental results show that by straining the bare uniform FBG (λB = 1552 nm) for every 0.01 mm in room temperature, the transmitted and refelcted power were varied according to the state of FBG strains.

  18. Performance characterization of VGCF/epoxy nanocomposite sensors under static load cycles and in static structural health monitoring

    International Nuclear Information System (INIS)

    Hu, Bin; Hu, Ning; Cai, Yindi; Furukawa, Manabu; Matsushita, Makoto; Yuan, Weifeng; Cai, Yong; Yan, Cheng

    2013-01-01

    Compared to conventional metal-foil strain gauges, nanocomposite piezoresistive strain sensors have demonstrated high strain sensitivity and have been attracting increasing attention in recent years. To fulfil their ultimate success, the performance of vapor growth carbon fiber (VGCF)/epoxy nanocomposite strain sensors subjected to static cyclic loads was evaluated in this work. A strain-equivalent quantity (resistance change ratio) in cantilever beams with intentionally induced notches in bending was evaluated using the conventional metal-foil strain gauges and the VGCF/epoxy nanocomposite sensors. Compared to the metal-foil strain gauges, the nanocomposite sensors are much more sensitive to even slight structural damage. Therefore, it was confirmed that the signal stability, reproducibility, and durability of these nanocomposite sensors are very promising, leading to the present endeavor to apply them for static structural health monitoring. (paper)

  19. Semiconductor sensors

    International Nuclear Information System (INIS)

    Hartmann, Frank

    2011-01-01

    Semiconductor sensors have been around since the 1950s and today, every high energy physics experiment has one in its repertoire. In Lepton as well as Hadron colliders, silicon vertex and tracking detectors led to the most amazing physics and will continue doing so in the future. This contribution tries to depict the history of these devices exemplarily without being able to honor all important developments and installations. The current understanding of radiation damage mechanisms and recent R and D topics demonstrating the future challenges and possible technical solutions for the SLHC detectors are presented. Consequently semiconductor sensor candidates for an LHC upgrade and a future linear collider are also briefly introduced. The work presented here is a collage of the work of many individual silicon experts spread over several collaborations across the world.

  20. Load sensor

    OpenAIRE

    Van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder forming 30-60% by volume of the composite, and wherein the PZT powder forms 40-50% by volume of the composite.

  1. Image Sensor

    OpenAIRE

    Jerram, Paul; Stefanov, Konstantin

    2017-01-01

    An image sensor of the type for providing charge multiplication by impact ionisation has plurality of multiplication elements. Each element is arranged to receive charge from photosensitive elements of an image area and each element comprises a sequence of electrodes to move charge along a transport path. Each of the electrodes has an edge defining a boundary with a first electrode, a maximum width across the charge transport path and a leading edge that defines a boundary with a second elect...

  2. Optischer Sensor

    OpenAIRE

    Brandenburg, A.; Fischer, A.

    1995-01-01

    An optical sensor (1) comprising an integrated optical arrangement has a waveguide (4) and at least one defraction grating (5) arranged in this waveguide. Light can launched into the waveguide via the defraction grating. In the reflection area of defraction grating, part of the light is dispersed through the waveguide at the beam angle for which the launch conditions and thus the defraction in the waveguide are fulfilled, so that, at this angle, a dark line (14) occurs whose position is evalu...

  3. Gas sensor

    International Nuclear Information System (INIS)

    Dorogan, V.; Korotchenkov, Gh.; Vieru, T.; Prodan, I.

    2003-01-01

    The invention relates to the gas sensors on base of metal-oxide films (SnO, InO), which may be used for enviromental control, in the fireextinguishing systema etc. The gas includes an insulating substrate, an active layer, a resistive layer with ohmic contacts. The resistive layer has two or more regions with dofferent resistances , and on the active layer are two or more pairs of ohmic contacts

  4. Inverse calculation of strain profiles from ETDR measurements using artificial neural networks

    Directory of Open Access Journals (Sweden)

    R. Höhne

    2017-12-01

    Full Text Available A novel carbon fibre sensor is developed for the spatially resolved strain measurement. A unique feature of the sensor is the fibre-break resistive measurement principle and the two-core transmission line design. The electrical time domain reflectometry (ETDR is used in order to realize a spatially resolved measurement of the electrical parameters of the sensor. In this contribution, the process of mapping between the ETDR signals to the existing strain profile is described. Artificial neural networks (ANNs are used to solve the inverse electromagnetic problem. The investigations were carried out with a sensor patch in a cantilever arm configuration. Overall, 136 experiments with varying strain distribution over the sensor length were performed to generate the necessary training data to learn the ANN model. The validation of the ANN highlights the feasibility as well as the current limits concerning the quantitative accuracy of mapping ETDR signals to strain profiles.

  5. Smart architecture for stable multipoint fiber Bragg grating sensor system

    Science.gov (United States)

    Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Liu, Wen-Fung

    2017-12-01

    In this work, we propose and investigate an intelligent fiber Bragg grating (FBG)-based sensor system in which the proposed stabilized and wavelength-tunable single-longitudinal-mode erbium-doped fiber laser can improve the sensing accuracy of wavelength-division-multiplexing multiple FBG sensors in a longer fiber transmission distance. Moreover, we also demonstrate the proposed sensor architecture to enhance the FBG capacity for sensing strain and temperature, simultaneously.

  6. Fiber Sensor Technology Today

    Science.gov (United States)

    Hotate, Kazuo

    2006-08-01

    Fiber sensor technologies are overviewed. Since the early 1970s, this field has been developed, on the basis of the same devices and photonic principles as fiber communication technologies. Besides simple configurations, in which the fiber acts only as a data transmission line, sophisticated configurations have also been developed, in which the fiber is used as a device to realize unique sensing mechanisms. The fiber optic gyroscope (FOG) is a good example, and has been developed as an absolute rotation sensor used, for example, for navigation and/or attitude control applications. Compared with traditional spinning-mass gyroscopes, the FOG has advantages, such as a short warming-up time, a light weight, and easy handling. A Japanese satellite, which was launched in August 2005 with a mission to observe the aurora, is controlled with a FOG. The FOG has also been used in consumer applications, such as the camera stabilizer, radio-controlled (RC) helicopter navigation, and the control of humanoid robots. Recently, distributed and multiplexed sensing schemes, in particular, have been studied and developed, in which a long fiber acts like a “nerve” for feeling the strain and/or the temperature distribution along the fiber. Performances of artificial nerve systems have markedly improved within the last couple of years, in spatial resolution and measurement speed. By embedding the “fiber-optic nerve system” in aircraft wings, bridges and tall buildings, these materials and structures can sense damage to prevent disasters.

  7. Intrusion detection sensors

    International Nuclear Information System (INIS)

    Williams, J.D.

    1978-07-01

    Intrusion detection sensors are an integral part of most physical security systems. Under the sponsorship of the U.S. Department of Energy, Office of Safeguards and Security, Sandia Laboratories has conducted a survey of available intrusion detection sensors and has tested a number of different sensors. An overview of these sensors is provided. This overview includes (1) the operating principles of each type of sensor, (2) unique sensor characteristics, (3) desired sensor improvements which must be considered in planning an intrusion detection system, and (4) the site characteristics which affect the performance of both exterior and interior sensors. Techniques which have been developed to evaluate various intrusion detection sensors are also discussed

  8. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  9. Passive wireless structural health monitoring sensor made with a flexible planar dipole antenna

    International Nuclear Information System (INIS)

    Jang, Sang-Dong; Kim, Jaehwan

    2012-01-01

    Cheap and efficient wireless sensors have been widely studied by electronics and communication technology development. In this paper, a flexible planar dipole antenna based passive wireless strain sensor has been investigated. The planar dipole antenna is designed for X band and made on a flexible polymer substrate using a conventional photolithography process. The fabricated dipole antenna is attached to a nonmetallic cantilever beam and monitors its bending strain. Mechanical strain and load impedance of the dipole antenna can change its resonance frequency, return loss and reflected signal. The return loss and reflected signals of the dipole antenna sensor are characterized by using a network analyzer. The strain sensitivity of the sensor is proportional to the return loss variation with the bending strain of the cantilever beam. The magnitude of reflected signals increases as the bending strain increases. (technical note)

  10. Strain-Modulated Epitaxy

    National Research Council Canada - National Science Library

    Brown, April

    1999-01-01

    Strain-Modulated Epitaxy (SME) is a novel approach, invented at Georgia Tech, to utilize subsurface stressors to control strain and therefore material properties and growth kinetics in the material above the stressors...

  11. Hamstring strain - aftercare

    Science.gov (United States)

    Pulled hamstring muscle; Sprain - hamstring ... There are 3 levels of hamstring strains: Grade 1 -- mild muscle strain or pull Grade 2 -- partial muscle tear Grade 3 -- complete muscle tear Recovery time depends ...

  12. Hybrid optical-fibre/geopolymer sensors for structural health monitoring of concrete structures

    Science.gov (United States)

    Perry, M.; Saafi, M.; Fusiek, G.; Niewczas, P.

    2015-04-01

    In this work, we demonstrate hybrid optical-fibre/geopolymer sensors for monitoring temperature, uniaxial strain and biaxial strain in concrete structures. The hybrid sensors detect these measurands via changes in geopolymer electrical impedance, and via optical wavelength measurements of embedded fibre Bragg gratings. Electrical and optical measurements were both facilitated by metal-coated optical fibres, which provided the hybrid sensors with a single, shared physical path for both voltage and wavelength signals. The embedded fibre sensors revealed that geopolymer specimens undergo 2.7 mɛ of shrinkage after one week of curing at 42 °C. After curing, an axial 2 mɛ compression of the uniaxial hybrid sensor led to impedance and wavelength shifts of 7 × 10-2 and -2 × 10-4 respectively. The typical strain resolution in the uniaxial sensor was 100 μ \\varepsilon . The biaxial sensor was applied to the side of a concrete cylinder, which was then placed under 0.6 mɛ of axial, compressive strain. Fractional shifts in impedance and wavelength, used to monitor axial and circumferential strain, were 3 × 10-2 and 4 × 10-5 respectively. The biaxial sensor’s strain resolution was approximately 10 μ \\varepsilon in both directions. Due to several design flaws, the uniaxial hybrid sensor was unable to accurately measure ambient temperature changes. The biaxial sensor, however, successfully monitored local temperature changes with 0.5 °C resolution.

  13. Monitoring the Como Railway Bridge based on dynamic FBG sensor system

    Science.gov (United States)

    Zhang, Jianzhong; Sun, Weimin; Peng, G. D.; Yuan, Libo

    2007-07-01

    A FBG-based dynamic strain sensor system, whose responding frequency and resolution can be high as 16Hz and ~1μɛ respectively, is described and the system is applied to monitor the dynamic strain of Como Railway Bridge in Australia. The results of one-month long measurement show that the system can figure out all dynamic strain caused by passed trains and also prove the stability of the sensor system.

  14. Flexible pressure sensors for smart protective clothing against impact loading

    International Nuclear Information System (INIS)

    Wang, Fei; Zhu, Bo; Shu, Lin; Tao, Xiaoming

    2014-01-01

    The development of smart protective clothing will facilitate the quick detection of injuries from contact sports, traffic collisions and other accidents. To obtain real-time information like spatial and temporal pressure distributions on the clothing, flexible pressure sensor arrays are required. Based on a resistive fabric strain sensor we demonstrate all flexible, resistive pressure sensors with a large workable pressure range (0–8 MPa), a high sensitivity (1 MPa −1 ) and an excellent repeatability (lowest non-repeatability ±2.4% from 0.8 to 8 MPa) that can be inexpensively fabricated using fabric strain sensors and biocompatible polydimethylsiloxane (PDMS). The pressure sensitivity is tunable by using elastomers with different elasticities or by the pre-strain control of fabric strain sensors. Finite element simulation further confirms the sensor design. The simple structure, large workable pressure range, high sensitivity, high flexibility, facile fabrication and low cost of these pressure sensors make them promising candidates for smart protective clothing against impact loading. (paper)

  15. Priority design parameters of industrialized optical fiber sensors in civil engineering

    Science.gov (United States)

    Wang, Huaping; Jiang, Lizhong; Xiang, Ping

    2018-03-01

    Considering the mechanical effects and the different paths for transferring deformation, optical fiber sensors commonly used in civil engineering have been systematically classified. Based on the strain transfer theory, the relationship between the strain transfer coefficient and allowable testing error is established. The proposed relationship is regarded as the optimal control equation to obtain the optimal value of sensors that satisfy the requirement of measurement precision. Furthermore, specific optimization design methods and priority design parameters of the classified sensors are presented. This research indicates that (1) strain transfer theory-based optimization design method is much suitable for the sensor that depends on the interfacial shear stress to transfer the deformation; (2) the priority design parameters are bonded (sensing) length, interfacial bonded strength, elastic modulus and radius of protective layer and thickness of adhesive layer; (3) the optimization design of sensors with two anchor pieces at two ends is independent of strain transfer theory as the strain transfer coefficient can be conveniently calibrated by test, and this kind of sensors has no obvious priority design parameters. Improved calibration test is put forward to enhance the accuracy of the calibration coefficient of end-expanding sensors. By considering the practical state of sensors and the testing accuracy, comprehensive and systematic analyses on optical fiber sensors are provided from the perspective of mechanical actions, which could scientifically instruct the application design and calibration test of industrialized optical fiber sensors.

  16. Sensors for Entertainment.

    Science.gov (United States)

    Lamberti, Fabrizio; Sanna, Andrea; Rokne, Jon

    2016-07-15

    Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on "Sensors for Entertainment", developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.

  17. Sensors for Entertainment

    OpenAIRE

    Fabrizio Lamberti; Andrea Sanna; Jon Rokne

    2016-01-01

    Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on ?Sensors for Entertainment?, developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.

  18. Optically Defined Modal Sensors Incorporating Spiropyran-Doped Liquid Crystals with Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Hui-Lung Kuo

    2011-01-01

    Full Text Available We integrated a piezoelectric sensing layer lamina containing liquid crystals (LC and spiropyran (SP in a LC/SP mixture to create an optically reconfigurable modal sensor for a cantilever beam. The impedance of this LC/SP lamina was decreased by UV irradiation which constituted the underlying mechanism to modulate the voltage externally applied to the piezoelectric actuating layer. Illuminating a specific pattern onto the LC/SP lamina provided us with a way to spatially modulate the piezoelectric vibration signal. We showed that if an UV illuminated pattern matches the strain distribution of a specific mode, a piezoelectric modal sensor can be created. Since UV illumination can be changed in situ in real-time, our results confirm for the first time since the inception of smart sensors, that an optically tailored modal sensor can be created. Some potential applications of this type of sensor include energy harvesting devices, bio-chips, vibration sensing and actuating devices.

  19. A strain gauge

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....

  20. Embedded fiber optic ultrasonic sensors and generators

    Science.gov (United States)

    Dorighi, John F.; Krishnaswamy, Sridhar; Achenbach, Jan D.

    1995-04-01

    Ultrasonic sensors and generators based on fiber-optic systems are described. It is shown that intrinsic fiber optic Fabry-Perot ultrasound sensors that are embedded in a structure can be stabilized by actively tuning the laser frequency. The need for this method of stabilization is demonstrated by detecting piezoelectric transducer-generated ultrasonic pulses in the presence of low frequency dynamic strains that are intentionally induced to cause sensor drift. The actively stabilized embedded fiber optic Fabry-Perot sensor is also shown to have sufficient sensitivity to detect ultrasound that is generated in the interior of a structure by means of a high-power optical fiber that pipes energy from a pulsed laser to an embedded generator of ultrasound.

  1. Wireless sensor platform

    Science.gov (United States)

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    2017-08-08

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  2. Wireless instrumentation for data transfer of smart sensors

    International Nuclear Information System (INIS)

    Kim, Chi Yeop; Kwon, Il Bum

    2005-01-01

    A wireless instrumentation system was constructed to transfer the data from a structure site to a monitoring site. The device was composed of a transmitter and a receiver. The transmitter was connected with smart sensors, as fiber optic sensors, piezo-sensors, and shape memory alloy sensors. The specification of this device was as follows: 2.4 GHz of transmitted frequency, 8 channels, 57600 bps of the transmitted speed, and 10 mW of the transmitted power. By bending the beam, the strain data were well transmitted to a monitor PC.

  3. Embedded Bragg grating fiber optic sensor for composite flexbeams

    Science.gov (United States)

    Bullock, Daniel; Dunphy, James; Hufstetler, Gerard

    1993-03-01

    An embedded fiber-optic (F-O) sensor has been developed for translaminar monitoring of the structural integrity of composites, with a view to application in composite helicopter flexbeams for bearingless main rotor hubs. This through-thickness strain sensor is much more sensitive than conventional in-plane embedded F-O sensors to ply delamination, on the basis of a novel insertion technique and innovative Bragg grating sensor. Experimental trials have demonstrated the detection by this means of potential failures in advance of the edge-delamination or crack-propagation effect.

  4. Subsurface material identification and sensor selection

    Science.gov (United States)

    T, H.; Reghunadh, R.; Ramesh, M. V.

    2017-12-01

    In India, most of the landslides occur during monsoon season and causes huge loss of life and property. Design of an early warning system for highly landslide prone area will reduce losses to a great extent. The in-situ monitoring systems needs deployment of several sensors inside a borehole for monitoring a particular slope. Amrita Center for Wireless Networks and Applications (AmritaWNA), Amrita University has designed, developed and deployed a Wireless Sensor Network (WSN) for real time landslide monitoring using geotechnical instruments and sensors like rain gauge, moisture sensor, piezometer, strain gauge, tilt meter and geophone inside a Deep Earth Probe (DEP) at different locations. These sensors provide point measurements of the subsurface at a higher accuracy. Every landslide prone terrain is unique with respect to its geology, hydrological conditions, meteorological conditions, velocity of movement etc. The decision of installing different geotechnical instruments in a landslide prone terrain is a crucial step to be considered. Rain gauge, moisture sensor, and piezometer are usually used in clay rich areas to sense the moisture and pore pressure values. Geophone and Crack meter are instruments used in rocky areas to monitor cracks and vibrations associated with a movement. Inclinometer and Strain gauge are usually placed inside a casing and can be used in both rocky and soil areas. In order to place geotechnical instruments and sensors at appropriate places Electrical Resistivity Tomography (ERT) method can be used. Variation in electrical resistivity values indicate the changes in composition, layer thickness, or contaminant levels. The derived true resistivity image can be used for identifying the type of materials present in the subsurface at different depths. We have used this method for identifying the type of materials present in our site at Chandmari (Sikkim). Fig 1 shows the typical resistivity values of a particular area in Chandmari site. The

  5. Vibration sensing in flexible structures using a distributed-effect modal domain optical fiber sensor

    Science.gov (United States)

    Reichard, Karl M.; Lindner, Douglas K.; Claus, Richard O.

    1991-01-01

    Modal domain optical fiber sensors have recently been employed in the implementation of system identification algorithms and the closed-loop control of vibrations in flexible structures. The mathematical model of the modal domain optical fiber sensor used in these applications, however, only accounted for the effects of strain in the direction of the fiber's longitudinal axis. In this paper, we extend this model to include the effects of arbitrary stress. Using this sensor model, we characterize the sensor's sensitivity and dynamic range.

  6. Microwave interrogated large core fused silica fiber Michelson interferometer for strain sensing.

    Science.gov (United States)

    Hua, Liwei; Song, Yang; Huang, Jie; Lan, Xinwei; Li, Yanjun; Xiao, Hai

    2015-08-20

    A Michelson-type large core optical fiber sensor has been developed, which is designed based on the optical carrier-based microwave interferometry technique, and fabricated by using two pieces of 200-μm diameter fused silica core fiber as two arms of the Michelson interferometer. The interference fringe pattern caused by the optical path difference of the two arms is interrogated in the microwave domain, where the fringe visibility of 40 dB has easily been obtained. The strain sensing at both room temperature and high temperatures has been demonstrated by using such a sensor. Experimental results show that this sensor has a linear response to the applied strain, and also has relatively low temperature-strain cross talk. The dopant-free quality of the fused silica fiber provides high possibility for the sensor to have promising strain sensing performance in a high temperature environment.

  7. Unsteady Aerodynamic Force Sensing from Measured Strain

    Science.gov (United States)

    Pak, Chan-Gi

    2016-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection

  8. A modular optical sensor

    Science.gov (United States)

    Conklin, John Albert

    This dissertation presents the design of a modular, fiber-optic sensor and the results obtained from testing the modular sensor. The modular fiber-optic sensor is constructed in such manner that the sensor diaphragm can be replaced with different configurations to detect numerous physical phenomena. Additionally, different fiber-optic detection systems can be attached to the sensor. Initially, the modular sensor was developed to be used by university of students to investigate realistic optical sensors and detection systems to prepare for advance studies of micro-optical mechanical systems (MOMS). The design accomplishes this by doing two things. First, the design significantly lowers the costs associated with studying optical sensors by modularizing the sensor design. Second, the sensor broadens the number of physical phenomena that students can apply optical sensing techniques to in a fiber optics sensor course. The dissertation is divided into seven chapters covering the historical development of fiber-optic sensors, a theoretical overview of fiber-optic sensors, the design, fabrication, and the testing of the modular sensor developed in the course of this work. Chapter 1 discusses, in detail, how this dissertation is organized and states the purpose of the dissertation. Chapter 2 presents an historical overview of the development of optical fibers, optical pressure sensors, and fibers, optical pressure sensors, and optical microphones. Chapter 3 reviews the theory of multi-fiber optic detection systems, optical microphones, and pressure sensors. Chapter 4 presents the design details of the modular, optical sensor. Chapter 5 delves into how the modular sensor is fabricated and how the detection systems are constructed. Chapter 6 presents the data collected from the microphone and pressure sensor configurations of the modular sensor. Finally, Chapter 7 discusses the data collected and draws conclusions about the design based on the data collected. Chapter 7 also

  9. Recent Progress in Distributed Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoyi Bao

    2012-06-01

    Full Text Available Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.

  10. Three dimensional strained semiconductors

    Science.gov (United States)

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  11. High stress monitoring of prestressing tendons in nuclear concrete vessels using fibre-optic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Perry, M., E-mail: marcus.perry@strath.ac.uk [Institute for Energy and Environment, University of Strathclyde, 204 George Street, Glasgow G1 1XW (United Kingdom); Yan, Z.; Sun, Z.; Zhang, L. [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Niewczas, P. [Institute for Energy and Environment, University of Strathclyde, 204 George Street, Glasgow G1 1XW (United Kingdom); Johnston, M. [Civil Design Group, EDF Energy, Nuclear Generation, East Kilbride G74 5PG (United Kingdom)

    2014-03-15

    Highlights: • We weld radiation-resistant optical fibre strain sensors to steel prestressing tendons. • We prove the sensors can survive 1300 MPa stress (80% of steel's tensile strength). • Mechanical relaxation of sensors is characterised under 1300 MPa stress over 10 h. • Strain transfer between tendon and sensor remains at 69% after relaxation. • Sensors can withstand and measure deflection of tendon around a 4.5 m bend radius. - Abstract: Maintaining the structural health of prestressed concrete nuclear containments is a key element in ensuring nuclear reactors are capable of meeting their safety requirements. This paper discusses the attachment, fabrication and characterisation of optical fibre strain sensors suitable for the prestress monitoring of irradiated steel prestressing tendons. The all-metal fabrication and welding process allowed the instrumented strand to simultaneously monitor and apply stresses up to 1300 MPa (80% of steel's ultimate tensile strength). There were no adverse effects to the strand's mechanical properties or integrity. After sensor relaxation through cyclic stress treatment, strain transfer between the optical fibre sensors and the strand remained at 69%. The fibre strain sensors could also withstand the non-axial forces induced as the strand was deflected around a 4.5 m bend radius. Further development of this technology has the potential to augment current prestress monitoring practices, allowing distributed measurements of short- and long-term prestress losses in nuclear prestressed-concrete vessels.

  12. Influence of the gauge length on the accuracy of long-gauge sensors employed in monitoring of prismatic beams

    International Nuclear Information System (INIS)

    Glisic, Branko

    2011-01-01

    Depending on the geometric basis of measurement (gauge length), discrete strain sensors used in structural monitoring of civil engineering structures can be considered as short-gauge sensors or long-gauge sensors. Long-gauge sensors measure average strain over the gauge lengths and are used for global monitoring of structures, in particular, those built of inhomogeneous materials. However, the strain distribution along the sensor's gauge length may be nonlinear and the measured average strain value that is commonly attributed to the midpoint of the sensor may be different from the real value of strain at that point. Consequently, excessively long sensors may feature significant errors in measurement. However, short-gauge sensors are more susceptible to other types of measurement error, most notably, error caused by discontinuities (open cracks) distributed in the monitored material. Thus an optimum gauge length is to be found. The error in average strain measurement inherent to the sensor's gauge length introduced by the strain distribution and discontinuities in the monitored material is modelled for the most common applications met in civil engineering practice. The modelling takes into account the geometric properties of the monitored structure and various load cases. Guidelines for the selection of an appropriate gauge length are proposed, and tables for measurement error estimation are presented

  13. Strain measurement technique

    International Nuclear Information System (INIS)

    1987-01-01

    The 10 contributions are concerned with selected areas of application, such as strain measurements in wood, rubber/metal compounds, sets of strain measurements on buildings, reinforced concrete structures without gaps, pipes buried in the ground and measurements of pressure fluctuations. To increase the availability and safety of plant, stress analyses were made on gas turbine rotors with HT-DMS or capacitive HT-DMS (high temperature strain measurements). (DG) [de

  14. Integrated cryogenic sensors

    International Nuclear Information System (INIS)

    Juanarena, D.B.; Rao, M.G.

    1991-01-01

    Integrated cryogenic pressure-temperature, level-temperature, and flow-temperature sensors have several advantages over the conventional single parameter sensors. Such integrated sensors were not available until recently. Pressure Systems, Inc. (PSI) of Hampton, Virginia, has introduced precalibrated precision cryogenic pressure sensors at the Los Angeles Cryogenic Engineering Conference in 1989. Recently, PSI has successfully completed the development of integrated pressure-temperature and level-temperature sensors for use in the temperature range 1.5-375K. In this paper, performance characteristics of these integrated sensors are presented. Further, the effects of irradiation and magnetic fields on these integrated sensors are also reviewed

  15. Strained Silicon Photonics

    Directory of Open Access Journals (Sweden)

    Ralf B. Wehrspohn

    2012-05-01

    Full Text Available A review of recent progress in the field of strained silicon photonics is presented. The application of strain to waveguide and photonic crystal structures can be used to alter the linear and nonlinear optical properties of these devices. Here, methods for the fabrication of strained devices are summarized and recent examples of linear and nonlinear optical devices are discussed. Furthermore, the relation between strain and the enhancement of the second order nonlinear susceptibility is investigated, which may enable the construction of optically active photonic devices made of silicon.

  16. EDITORIAL: Humidity sensors Humidity sensors

    Science.gov (United States)

    Regtien, Paul P. L.

    2012-01-01

    produced at relatively low cost. Therefore, they find wide use in lots of applications. However, the method requires a material that possesses some conflicting properties: stable and reproducible relations between air humidity, moisture uptake and a specific property (for instance the length of a hair, the electrical impedance of the material), fast absorption and desorption of the water vapour (to obtain a short response time), small hysteresis, wide range of relative humidity (RH) and temperature-independent output (only responsive to RH). For these reasons, much research is done and is still going on to find suitable materials that combine high performance and low price. In this special feature, three of the four papers report on absorption sensors, all with different focus. Aziz et al describe experiments with newly developed materials. The surface structure is extensively studied, in view of its ability to rapidly absorb water vapour and exhibit a reproducible change in the resistance and capacitance of the device. Sanchez et al employ optical fibres coated with a thin moisture-absorbing layer as a sensitive humidity sensor. They have studied various coating materials and investigated the possibility of using changes in optical properties of the fibre (here the lossy mode resonance) due to a change in humidity of the surrounding air. The third paper, by Weremczuk et al, focuses on a cheap fabrication method for absorption-based humidity sensors. The inkjet technology appears to be suitable for mass fabrication of such sensors, which is demonstrated by extensive measurements of the electrical properties (resistance and capacitance) of the absorbing layers. Moreover, they have developed a model that describes the relation between humidity and the electrical parameters of the moisture-sensitive layer. Despite intensive research, absorption sensors still do not meet the requirements for high accuracy applications. The dew-point temperature method is more appropriate

  17. Novel fabric pressure sensors: design, fabrication, and characterization

    International Nuclear Information System (INIS)

    Wang, Yangyong; Hua, Tao; Zhu, Bo; Li, Qiao; Yi, Weijing; Tao, Xiaoming

    2011-01-01

    Soft and pliable pressure sensors are essential elements in wearable electronics which have wide applications in modern daily lives. This paper presents a family of fabric pressure sensors made by sandwiching a piece of resistive fabric strain sensing element between two tooth-structured layers of soft elastomers. The pressure sensors are capable of measuring pressure from 0 to 2000 kPa, covering the whole range of human–machine interactions. A pressure sensitivity of up to 2.98 × 10 −3 kPa −1 was obtained. Theoretical modeling was conducted based on an energy method to predict the load–displacement relationship for various sensor configurations. By adjusting the Young's modulus of the two conversion layers, as well as the geometrical dimensions, the measurement ranges, and sensitivities of the sensors can be quantitatively determined. The sensors are being used for pressure measurements between the human body and garments, shoes, beds, and chairs

  18. Piezoresistive pressure sensor array for robotic skin

    Science.gov (United States)

    Mirza, Fahad; Sahasrabuddhe, Ritvij R.; Baptist, Joshua R.; Wijesundara, Muthu B. J.; Lee, Woo H.; Popa, Dan O.

    2016-05-01

    Robots are starting to transition from the confines of the manufacturing floor to homes, schools, hospitals, and highly dynamic environments. As, a result, it is impossible to foresee all the probable operational situations of robots, and preprogram the robot behavior in those situations. Among human-robot interaction technologies, haptic communication is an intuitive physical interaction method that can help define operational behaviors for robots cooperating with humans. Multimodal robotic skin with distributed sensors can help robots increase perception capabilities of their surrounding environments. Electro-Hydro-Dynamic (EHD) printing is a flexible multi-modal sensor fabrication method because of its direct printing capability of a wide range of materials onto substrates with non-uniform topographies. In past work we designed interdigitated comb electrodes as a sensing element and printed piezoresistive strain sensors using customized EHD printable PEDOT:PSS based inks. We formulated a PEDOT:PSS derivative ink, by mixing PEDOT:PSS and DMSO. Bending induced characterization tests of prototyped sensors showed high sensitivity and sufficient stability. In this paper, we describe SkinCells, robot skin sensor arrays integrated with electronic modules. 4x4 EHD-printed arrays of strain sensors was packaged onto Kapton sheets and silicone encapsulant and interconnected to a custom electronic module that consists of a microcontroller, Wheatstone bridge with adjustable digital potentiometer, multiplexer, and serial communication unit. Thus, SkinCell's electronics can be used for signal acquisition, conditioning, and networking between sensor modules. Several SkinCells were loaded with controlled pressure, temperature and humidity testing apparatuses, and testing results are reported in this paper.

  19. Monitoring diver kinematics with dielectric elastomer sensors

    Science.gov (United States)

    Walker, Christopher R.; Anderson, Iain A.

    2017-04-01

    Diving, initially motivated for food purposes, is crucial to the oil and gas industry, search and rescue, and is even done recreationally by millions of people. There is a growing need however, to monitor the health and activity of divers. The Divers Alert Network has reported on average 90 fatalities per year since 1980. Furthermore an estimated 1000 divers require recompression treatment for dive-related injuries every year. One means of monitoring diver activity is to integrate strain sensors into a wetsuit. This would provide kinematic information on the diver potentially improving buoyancy control assessment, providing a platform for gesture communication, detecting panic attacks and monitoring diver fatigue. To explore diver kinematic monitoring we have coupled dielectric elastomer sensors to a wetsuit worn by the pilot of a human-powered wet submarine. This provided a unique platform to test the performance and accuracy of dielectric elastomer strain sensors in an underwater application. The aim of this study was to assess the ability of strain sensors to monitor the kinematics of a diver. This study was in collaboration with the University of Auckland's human-powered submarine team, Team Taniwha. The pilot, completely encapsulated in a hull, pedals to propel the submarine forward. Therefore this study focused on leg motion as that is the primary motion of the submarine pilot. Four carbon-filled silicone dielectric elastomer sensors were fabricated and coupled to the pilot's wetsuit. The first two sensors were attached over the knee joints, with the remaining two attached between the pelvis and thigh. The goal was to accurately measure leg joint angles thereby determining the position of each leg relative to the hip. A floating data acquisition unit monitored the sensors and transmitted data packets to a nearby computer for real-time processing. A GoPro Hero 4 silver edition was used to capture the experiments and provide a means of post-validation. The

  20. A strain gauge

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a strain gauge of a carrier layer and a meandering measurement grid (101) positioned on the carrier layer, wherein the measurement grid comprises a number of measurement grid sections placed side by side with gaps in between, and a number of end loops (106) interconnecting...... relates to a method for manufacturing a strain gauge as mentioned above....

  1. All-Optical Frequency Modulated High Pressure MEMS Sensor for Remote and Distributed Sensing

    DEFF Research Database (Denmark)

    Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole

    2011-01-01

    We present the design, fabrication and characterization of a new all-optical frequency modulated pressure sensor. Using the tangential strain in a circular membrane, a waveguide with an integrated nanoscale Bragg grating is strained longitudinally proportional to the applied pressure causing...... a shift in the Bragg wavelength. The simple and robust design combined with the small chip area of 1 × 1.8 mm2 makes the sensor ideally suited for remote and distributed sensing in harsh environments and where miniaturized sensors are required. The sensor is designed for high pressure applications up...

  2. Compact Fiber Optic Strain Sensors (cFOSS) Element

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers are reducing the Fiber Optic Sensing Sysme (FOSS) technology’s size, power requirement, weight, and cost to effectively extend...

  3. Monitoring Poisson's ratio degradation of FRP composites under fatigue loading using biaxially embedded FBG sensors

    OpenAIRE

    Akay, Erdem; Yılmaz, Çağatay; Yilmaz, Cagatay; Kocaman, Esat Selim; Türkmen, Halit S.; Turkmen, Halit S.; Yıldız, Mehmet; Yildiz, Mehmet

    2016-01-01

    The significance of strain measurement is obvious for the analysis of Fiber-Reinforced Polymer (FRP) composites. Conventional strain measurement methods are sufficient for static testing in general. Nevertheless, if the requirements exceed the capabilities of these conventional methods, more sophisticated techniques are necessary to obtain strain data. Fiber Bragg Grating (FBG) sensors have many advantages for strain measurement over conventional ones. Thus, the present paper suggests a novel...

  4. Monitoring Poisson's ratio of glass fiber reinforced composites as damage index using biaxial Fiber Bragg Grating sensors

    OpenAIRE

    Yılmaz, Çağatay; Yilmaz, Cagatay; Akalın, Çağdaş; Akalin, Cagdas; Kocaman, Esat Selim; Suleman, A.; Yıldız, Mehmet; Yildiz, Mehmet

    2016-01-01

    Damage accumulation in Glass Fiber Reinforced Polymer (GFRP) composites is monitored based on Poisson's ratio measurements for three different fiber stacking sequences subjected to both quasi-static and quasi-static cyclic tensile loadings. The sensor systems utilized include a dual-extensometer, a biaxial strain gage and a novel embedded-biaxial Fiber Bragg Grating (FBG) sensor. These sensors are used concurrently to measure biaxial strain whereby the evolution of Poisson's ratio as a functi...

  5. Application Of FA Sensor 2

    International Nuclear Information System (INIS)

    Park, Seon Ho

    1993-03-01

    This book introduces FA sensor from basic to making system, which includes light sensor like photo diode and photo transistor, photo electricity sensor, CCD type image sensor, MOS type image sensor, color sensor, cds cell, and optical fiber scope. It also deals with direct election position sensor such as proximity switch, differential motion, linear scale of photo electricity type, and magnet scale, rotary sensor with summary of rotary encoder, rotary encoder types and applications, flow sensor, and sensing technology.

  6. Sensors an introductory course

    CERN Document Server

    Kalantar-zadeh, Kourosh

    2013-01-01

    Sensors: An Introductory Course provides an essential reference on the fundamentals of sensors. The book is designed to help readers in developing skills and the understanding required in order to implement a wide range of sensors that are commonly used in our daily lives. This book covers the basic concepts in the sensors field, including definitions and terminologies. The physical sensing effects are described, and devices which utilize these effects are presented. The most frequently used organic and inorganic sensors are introduced and the techniques for implementing them are discussed. This book: Provides a comprehensive representation of the most common sensors and can be used as a reference in relevant fields Presents learning materials in a concise and easy to understand manner Includes examples of how sensors are incorporated in real life measurements Contains detailed figures and schematics to assist in understanding the sensor performance Sensors: An Introductory Course is ideal for university stu...

  7. Coupled wave sensor technology

    International Nuclear Information System (INIS)

    Maki, M.C.

    1988-01-01

    Buried line guided radar sensors have been used successfully for a number of years to provide perimeter security for high value resources. This paper introduces a new complementary sensor advancement at Computing Devices termed 'coupled wave device technology' (CWD). It provides many of the inherent advantages of leakey cable sensors, such as terrain-following and the ability to discriminate between humans and small animals. It also is able to provide a high or wide detection zone, and allows the sensor to be mounted aerially and adjacent to a wall or fence. Several alternative sensors have been developed which include a single-line sensor, a dual-line hybrid sensor that combines the elements of ported coax and CWD technology, and a rapid-deployment portable sensor for temporary or mobile applications. A description of the technology, the sensors, and their characteristics is provided

  8. Smart Optoelectronic Sensors and Intelligent Sensor Systems

    Directory of Open Access Journals (Sweden)

    Sergey Y. YURISH

    2012-03-01

    Full Text Available Light-to-frequency converters are widely used in various optoelectronic sensor systems. However, a further frequency-to-digital conversion is a bottleneck in such systems due to a broad frequency range of light-to-frequency converters’ outputs. This paper describes an effective OEM design approach, which can be used for smart and intelligent sensor systems design. The design is based on novel, multifunctional integrated circuit of Universal Sensors & Transducers Interface especially designed for such sensor applications. Experimental results have confirmed an efficiency of this approach and high metrological performances.

  9. Strain and displacement controls by fibre bragg grating and digital image correlation

    DEFF Research Database (Denmark)

    Waldbjørn, Jacob Paamand; Høgh, Jacob Herold; Schmidt, Jacob Wittrup

    2014-01-01

    the test based on measurements performed directly on the test specimen. In this paper, fibre Bragg grating (FBG) and Digital Image Correlation (DIC) are used to control a test. The FBG sensors offer the possibility of measuring strains inside the specimen, while the DIC system measures strains...

  10. Demonstration of SiC Pressure Sensors at 750 C

    Science.gov (United States)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2014-01-01

    We report the first demonstration of MEMS-based 4H-SiC piezoresistive pressure sensors tested at 750 C and in the process confirmed the existence of strain sensitivity recovery with increasing temperature above 400 C, eventually achieving near or up to 100% of the room temperature values at 750 C. This strain sensitivity recovery phenomenon in 4H-SiC is uncharacteristic of the well-known monotonic decrease in strain sensitivity with increasing temperature in silicon piezoresistors. For the three sensors tested, the room temperature full-scale output (FSO) at 200 psig ranged between 29 and 36 mV. Although the FSO at 400 C dropped by about 60%, full recovery was achieved at 750 C. This result will allow the operation of SiC pressure sensors at higher temperatures, thereby permitting deeper insertion into the engine combustion chamber to improve the accurate quantification of combustor dynamics.

  11. Fiber-optic couplers as displacement sensors

    Science.gov (United States)

    Baruch, Martin C.; Gerdt, David W.; Adkins, Charles M.

    2003-04-01

    We introduce the novel concept of using a fiber-optic coupler as a versatile displacement sensor. Comparatively long fiber-optic couplers, with a coupling region of approximately 10 mm, are manufactured using standard communication SM fiber and placed in a looped-back configuration. The result is a displacement sensor, which is robust and highly sensitive over a wide dynamic range. This displacement sensor resolves 1-2 μm over distances of 1-1.5 mm and is characterized by the essential absence of a 'spring constant' plaguing other strain gauge-type sensors. Consequently, it is possible to couple to extremely weak vibrations, such as the skin displacement affected by arterial heart beat pulsations. Used as a wrist-worn heartbeat monitor, the fidelity of the arterial pulse signal has been shown to be so high that it is possible to not only determine heartbeat and breathing rates, but to implement a new single-point blood pressure measurement scheme which does not squeeze the arm. In an application as a floor vibration sensor for the non-intrusive monitoring of independently living elderly, the sensor has been shown to resolve the distinct vibration spectra of different persons and different events.

  12. A MEMS sensor for microscale force measurements

    International Nuclear Information System (INIS)

    Majcherek, S; Aman, A; Fochtmann, J

    2016-01-01

    This paper describes the development and testing of a new MEMS-based sensor device for microscale contact force measurements. A special MEMS cell was developed to reach higher lateral resolution than common steel-based load cells with foil-type strain gauges as mechanical-electrical converters. The design provided more than one normal force measurement point with spatial resolution in submillimeter range. Specific geometric adaption of the MEMS-device allowed adjustability of its measurement range between 0.5 and 5 N. The thin film nickel-chromium piezo resistors were used to achieve a mechanical-electrical conversion. The production process was realized by established silicon processing technologies such as deep reactive ion etching and vapor deposition (sputtering). The sensor was tested in two steps. Firstly, the sensor characteristics were carried out by application of defined loads at the measurement points by a push-pull tester. As a result, the sensor showed linear behavior. A measurement system analysis (MSA1) was performed to define the reliability of the measurement system. The measured force values had the maximal relative deviation of 1% to average value of 1.97 N. Secondly, the sensor was tested under near-industrial conditions. In this context, the thermal induced relaxation behavior of the electrical connector contact springs was investigated. The handling of emerging problems during the characterization process of the sensor is also described. (paper)

  13. Towards Sensor Database Systems

    DEFF Research Database (Denmark)

    Bonnet, Philippe; Gehrke, Johannes; Seshadri, Praveen

    2001-01-01

    . These systems lack flexibility because data is extracted in a predefined way; also, they do not scale to a large number of devices because large volumes of raw data are transferred regardless of the queries that are submitted. In our new concept of sensor database system, queries dictate which data is extracted...... from the sensors. In this paper, we define the concept of sensor databases mixing stored data represented as relations and sensor data represented as time series. Each long-running query formulated over a sensor database defines a persistent view, which is maintained during a given time interval. We...... also describe the design and implementation of the COUGAR sensor database system....

  14. Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring

    KAUST Repository

    Nag, Anindya

    2016-10-16

    The paper presents the design, development, and fabrication of a flexible and wearable sensor based on carbon nanotube nanocomposite for monitoring specific physiological parameters. Polydimethylsiloxane (PDMS) was used as the substrate with a thin layer of a nanocomposite comprising functionalized multi-walled carbon nanotubes (MWCNTs) and PDMS as electrodes. The sensor patch functionalized on strain-sensitive capacitive sensing from interdigitated electrodes which were patterned with a laser on the nanocomposite layer. The thickness of the electrode layer was optimized regarding strain and conductivity. The sensor patch was connected to a monitoring device from one end and attached to the body on the other for examining purposes. Experimental results show the capability of the sensor patch used to detect respiration and limb movements. This work is a stepping stone of the sensing system to be developed for multiple physiological parameters.

  15. Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas Chandra; Kosel, Jü rgen

    2016-01-01

    The paper presents the design, development, and fabrication of a flexible and wearable sensor based on carbon nanotube nanocomposite for monitoring specific physiological parameters. Polydimethylsiloxane (PDMS) was used as the substrate with a thin layer of a nanocomposite comprising functionalized multi-walled carbon nanotubes (MWCNTs) and PDMS as electrodes. The sensor patch functionalized on strain-sensitive capacitive sensing from interdigitated electrodes which were patterned with a laser on the nanocomposite layer. The thickness of the electrode layer was optimized regarding strain and conductivity. The sensor patch was connected to a monitoring device from one end and attached to the body on the other for examining purposes. Experimental results show the capability of the sensor patch used to detect respiration and limb movements. This work is a stepping stone of the sensing system to be developed for multiple physiological parameters.

  16. Aluminum-thin-film packaged fiber Bragg grating probes for monitoring the maximum tensile strain of composite materials.

    Science.gov (United States)

    Im, Jooeun; Kim, Mihyun; Choi, Ki-Sun; Hwang, Tae-Kyung; Kwon, Il-Bum

    2014-06-10

    In this paper, new fiber Bragg grating (FBG) sensor probes are designed to intermittently detect the maximum tensile strain of composite materials, so as to evaluate the structural health status. This probe is fabricated by two thin Al films bonded to an FBG optical fiber and two supporting brackets, which are fixed on the surface of composite materials. The residual strain of the Al packaged FBG sensor probe is induced by the strain of composite materials. This residual strain can indicate the maximum strain of composite materials. Two types of sensor probes are prepared-one is an FBG with 18 μm thick Al films, and the other is an FBG with 36 μm thick Al films-to compare the thickness effect on the detection sensitivity. These sensor probes are bonded on the surfaces of carbon fiber reinforced plastics composite specimens. In order to determine the strain sensitivity between the residual strain of the FBG sensor probe and the maximum strain of the composite specimen, tensile tests are performed by universal testing machine, under the loading-unloading test condition. The strain sensitivities of the probes, which have the Al thicknesses of 18 and 36 μm, are determined as 0.13 and 0.23, respectively.

  17. Soft Sensors and Actuators based on Nanomaterials

    Science.gov (United States)

    Yao, Shanshan

    The focus of this research is using novel bottom-up synthesized nanomaterials and structures to build up devices for wearable sensors and soft actuators. The applications of the wearable sensors towards motion detection and health monitoring are investigated. In addition, flexible heaters for bimorph actuators and stretchable patches made of microgel depots containing drug-loaded nanoparticles (NPs) for stretch-triggered wearable drug delivery are studied. Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to 1 MPa) and finger touch with good sensitivity, fast response time ( 40 ms) and good pressure mapping function were developed. The sensors were demonstrated for several wearable applications including monitoring thumb movements and knee motions, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels. In addition to mechanical sensors, a wearable skin hydration sensor made of silver nanowires (AgNWs) in a polydimethylsiloxane (PDMS) matrix was demonstrated based on skin impedance measurement. The hydration sensors were packaged into a flexible wristband for skin hydration monitoring and a chest patch consisting of a strain sensor, three electrocardiogram (ECG) electrodes and a skin hydration sensor for multimodal sensing. The wearable wristband and chest patch may be used for low-cost, wireless and continuous sensing of skin hydration and other health parameters. Two representative applications of the nanomaterials for soft actuators were investigated. In the first application on bimorph actuation, low-voltage and extremely flexible electrothermal bimorph actuators were fabricated in a simple, efficient and scalable process. The bimorph actuators were made of flexible Ag

  18. Distributed Strain Measurement along a Concrete Beam via Stimulated Brillouin Scattering in Optical Fibers

    Directory of Open Access Journals (Sweden)

    Romeo Bernini

    2011-01-01

    Full Text Available The structural strain measurement of tension and compression in a 4 m long concrete beam was demonstrated with a distributed fiber-optic sensor portable system based on Brillouin scattering. Strain measurements provided by the fiber-optic sensor permitted to detect the formation of a crack in the beam resulting from the external applied load. The sensor system is valuable for structural monitoring applications, enabling the long-term performance and health of structures to be efficiently monitored.

  19. Grasp force sensor for robotic hands

    Science.gov (United States)

    Scheinman, Victor D. (Inventor); Bejczy, Antal K. (Inventor); Primus, Howard C. (Inventor)

    1989-01-01

    A grasp force sensor for robotic hands is disclosed. A flexible block is located in the base of each claw through which the grasp force is exerted. The block yields minute parallelogram deflection when the claws are subjected to grasping forces. A parallelogram deflection closely resembles pure translational deflection, whereby the claws remain in substantial alignment with each other during grasping. Strain gauge transducers supply signals which provide precise knowledge of and control over grasp forces.

  20. Auxetic Foam-Based Contact-Mode Triboelectric Nanogenerator with Highly Sensitive Self-Powered Strain Sensing Capabilities to Monitor Human Body Movement

    KAUST Repository

    Zhang, Steven L.; Lai, Ying-Chih; He, Xu; Liu, Ruiyuan; Zi, Yunlong; Wang, Zhong Lin

    2017-01-01

    The first contact-mode triboelectric self-powered strain sensor using an auxetic polyurethane foam, conductive fabric, and polytetrafluroethylene (PTFE) is fabricated. Utilizing the auxetic properties of the polyurethane foam, the auxetic polyurethane foam would expand into the PTFE when the foam is stretched, causing contact electrification. Due to a larger contact area between the PTFE and the foam as the foam is stretched, this device can serve effectively as a strain sensor. The sensitivity of this method is explored, and this sensor has the highest sensitivity in all triboelectric nanogenerator devices that are used previously as a strain sensor. Different applications of this strain sensor are shown, and this sensor can be used as a human body monitoring system, self-powered scale to measure weight, and a seat belt to measure body movements inside a car seat.

  1. Auxetic Foam-Based Contact-Mode Triboelectric Nanogenerator with Highly Sensitive Self-Powered Strain Sensing Capabilities to Monitor Human Body Movement

    KAUST Repository

    Zhang, Steven L.

    2017-05-15

    The first contact-mode triboelectric self-powered strain sensor using an auxetic polyurethane foam, conductive fabric, and polytetrafluroethylene (PTFE) is fabricated. Utilizing the auxetic properties of the polyurethane foam, the auxetic polyurethane foam would expand into the PTFE when the foam is stretched, causing contact electrification. Due to a larger contact area between the PTFE and the foam as the foam is stretched, this device can serve effectively as a strain sensor. The sensitivity of this method is explored, and this sensor has the highest sensitivity in all triboelectric nanogenerator devices that are used previously as a strain sensor. Different applications of this strain sensor are shown, and this sensor can be used as a human body monitoring system, self-powered scale to measure weight, and a seat belt to measure body movements inside a car seat.

  2. Geomembranes with incorporated optical fiber sensors for geotechnical and environmental applications

    International Nuclear Information System (INIS)

    Borns, D.J.

    1997-01-01

    This research covers the development of optical-fiber sensors and the methods to incorporate the sensors within geomembranes during manufacture. Such systems are being developed to monitor the effects of strain on geomembranes including the location of tears. Other possible measurements utilize moisture and fluid-level sensors. Since the use of geomembranes in geotechnical and environmental applications is widespread and monitoring systems are generally lacking, the potential for this technology is significant. For example, a geomembrane-and-sensor system addresses the need to monitor landfill stabilization in general and specifically the behavior of geomembranes used in liner and cover designs. We have demonstrated that glass and plastic fibers can be attached to a geomembrane (1) during extrusion and lamination and (2) by hot shoe welding, glued tape runners, and welded runners. Using these methods, we have manufactured 30 m lengths of geomembrane with continuous optical Fiber across the length. Our preliminary focus has been on strain sensors to monitor landfill subsidence. We have utilized existing and newly developed strain sensors, e.g., microbend, Bragg grating, and adsorption band sensors. These sensors have been installed as arrays into several test membranes at a manufacturing scale (e.g., 3 to 4 m wide). The prototype monitoring systems were installed in laboratory test frames, and the sensors measured the strains across the membranes as they were loaded. We plan to scale these experiments up to the size of landfill cover system using a test cell under construction

  3. Passive wireless strain measurement based upon the Villari effect and giant magnetoresistance

    Science.gov (United States)

    Windl, Roman; Bruckner, Florian; Abert, Claas; Huber, Christian; Vogler, Christoph; Huber, Thomas; Oezelt, Harald; Suess, Dieter

    2016-12-01

    A passive wireless radio frequency-identification (RFID) stress/strain sensor is presented. Stress is transformed into a change of magnetic field by utilizing an amorphous metal ribbon. This magnetic field change is measured by a giant magnetoresistance magnetic field sensor and converted into a digital value with a RFID chip for wireless access. Standard metal foil strain gauges have a gauge factor GF from around 2 to 5 and suffer from the disadvantage of a physically connected power supply and measurement equipment. For the presented sensor, a strain range of -10 μm/m to 190 μm/m results in a linear sensor response, a gauge factor of GF ≈ 245, and a detectivity of 4.10 nm/m 1/√{Hz } . The detectivity of the presented sensor is similar to the detectivity of a reference metal foil strain gauge. Due to low power consumption and easy signal analysis, this sensor is well suited for long term strain measurement inside closed spaces. RFID adds features like multiple tag detection, wireless passive operation and a user data storage.

  4. Fano Factor in Strained Graphene Nanoribbon Nanodevices

    Institute of Scientific and Technical Information of China (English)

    Walid Soliman; Mina D.Asham; Adel H.Phillips

    2017-01-01

    We investigate the Fano factor in a strained armchair and zigzag graphene nanoribbon nanodevice under the effect of ac field in a wide range of frequencies at different temperatures (10 K T0 K).This nanodevice is modeled as follows:a graphene nanoribbon is connected to two metallic leads.These two metallic leads operate as a source and a drain.The conducting substance is the gate electrode in this three-terminal nanodevice.Another metallic gate is used to govern the electrostatics and the switching of the graphene nanoribbon channel The substances at the graphene nanoribbon/metal contact are controlled by the back gate.The photon-assisted tunneling probability is deduced by solving the Dirac eigenvalue differential equation in which the Fano factor is expressed in terms of this tunneling probability.The results show that for the investigated nanodevice,the Fano factor decreases as the frequency of the induced ac field increases,while it increases as the temperature increases.In general,the Fano factors for both strained armchair and zigzag graphene nanoribbons are different.This is due to the effect of the uniaxial strain.It is shown that the band structure parameters of graphene nanoribbons at the energy gap,the C-C bond length,the hopping integral,the Fermi energy and the width are modulated by uniaxial strain.This research gives us a promise of the present nanodevice being used for digital nanoelectronics and sensors.

  5. Flexible magnetoimpedance sensor

    KAUST Repository

    Li, Bodong; Kavaldzhiev, Mincho; Kosel, Jü rgen

    2015-01-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors's magnetic field and frequency

  6. Air Sensor Toolbox

    Science.gov (United States)

    Air Sensor Toolbox provides information to citizen scientists, researchers and developers interested in learning more about new lower-cost compact air sensor technologies and tools for measuring air quality.

  7. Invisible magnetic sensors

    Science.gov (United States)

    Mach-Batlle, Rosa; Navau, Carles; Sanchez, Alvaro

    2018-04-01

    Sensing magnetic fields is essential in many applications in biomedicine, transportation, or smart cities. The distortion magnetic sensors create in response to the field they are detecting may hinder their use, for example, in applications requiring dense packaging of sensors or accurately shaped field distributions. For sensing electromagnetic waves, cloaking shells that reduce the scattering of sensors have been introduced. However, the problem of making a magnetic sensor undetectable remains unsolved. Here, we present a general strategy on how to make a sensor magnetically invisible while keeping its ability to sense. The sensor is rendered undetectable by surrounding it with a spherical shell having a tailored magnetic permeability. Our method can be applied to arbitrary shaped magnetic sensors in arbitrary magnetic fields. The invisibility can be made exact when the sensor is spherical and the probed field is uniform. A metasurface composed of superconducting pieces is presented as a practical realization of the ideal invisibility shell.

  8. Embedded sensor systems

    CERN Document Server

    Agrawal, Dharma Prakash

    2017-01-01

    This inspiring textbook provides an introduction to wireless technologies for sensors, explores potential use of sensors for numerous applications, and utilizes probability theory and mathematical methods as a means of embedding sensors in system design. It discusses the need for synchronization and underlying limitations, inter-relation between given coverage and connectivity to number of sensors needed, and the use of geometrical distance to determine location of the base station for data collection and explore use of anchor nodes for relative position determination of sensors. The book explores energy conservation, communication using TCP, the need for clustering and data aggregation, and residual energy determination and energy harvesting. It covers key topics of sensor communication like mobile base stations and relay nodes, delay-tolerant sensor networks, and remote sensing and possible applications. The book defines routing methods and do performance evaluation for random and regular sensor topology an...

  9. Sensor Substrate Development

    Data.gov (United States)

    National Aeronautics and Space Administration — Novel substrates, such as aerogels and porous, low density ceramics may increase the sensitivities of chemical reaction-based sensors for toxic vapors. These sensors...

  10. Fiber Bragg grating sensors for structural and railway applications

    Science.gov (United States)

    Tam, H. Y.; Liu, S. Y.; Guan, B. O.; Chung, W. H.; Chan, T. H.; Cheng, L. K.

    2005-02-01

    Historically, due to the high cost of optical devices, fiber-optics sensor systems were only employed in niche areas where conventional electrical sensors are not suitable. This scenario changed dramatically in the last few years following the explosion of the Internet which caused the rapid expansion of the optical fiber telecommunication industry and substantially driven down the cost of optical components. In recent years, fiber-optic sensors and particularly fiber Bragg grating (FBG) sensors have attracted a lot of interests and are being used in numerous applications. We have conducted several field trials of FBG sensors for railway applications and structural monitoring. About 30 FBG sensors were installed on the rail tracks of Kowloon-Canton Railway Corp. for train identification and speed measurements and the results obtained show that FBG sensors exhibit very good performance and could play a major role in the realization of "Smart Railway". FBG sensors were also installed on Hong Kong's landmark TsingMa Bridge, which is the world longest suspension bridge (2.2 km) that carries both trains and regular road traffic. The trials were carried out with a high-speed (up to 20 kHz) interrogation system based on CCD and also with a interrogation unit that based on scanning optical filter (up to 70 Hz). Forty FBGs sensors were divided into 3 arrays and installed on different parts of the bridge (suspension cable, rocker bearing and truss girders). The objectives of the field trial on the TsingMa Bridge are to monitor the strain of different parts of the bridge under railway load and highway load, and to compare the FBG sensors' performance with conventional resistive strain gauges already installed on the bridge. The measured results show that excellent agreement was obtained between the 2 types of sensors.

  11. Microstrip patch antenna for simultaneous strain and temperature sensing

    Science.gov (United States)

    Mbanya Tchafa, F.; Huang, H.

    2018-06-01

    A patch antenna, consisting of a radiation patch, a dielectric substrate, and a ground plane, resonates at distinct fundamental frequencies that depend on the substrate dielectric constant and the dimensions of the radiation patch. Since these parameters change with the applied strain and temperature, this study investigates simultaneous strain and temperature sensing using a single antenna that has two fundamental resonant frequencies. The theoretical relationship between the antenna resonant frequency shifts, the temperature, and the applied strain was first established to guide the selection of the dielectric substrate, based on which an antenna sensor with a rectangular radiation patch was designed and fabricated. A tensile test specimen instrumented with the antenna sensor was subjected to thermo-mechanical tests. Experiment results validated the theoretical predictions that the normalized antenna resonant frequency shifts are linearly proportional to the applied strain and temperature changes. An inverse method was developed to determine the strain and temperature changes from the normalized antenna resonant frequency shifts, yielding measurement uncertainty of 0.4 °C and 17.22 μ \\varepsilon for temperature and strain measurement, respectively.

  12. Internally Mounting Strain Gages

    Science.gov (United States)

    Jett, J. R., Jr.

    1984-01-01

    Technique for mounting strain gages inside bolt or cylinder simultaneously inserts gage, attached dowel segment, and length of expandable tubing. Expandable tubing holds gage in place while adhesive cures, assuring even distribution of pressure on gage and area gaged.

  13. Running Title: Strained Yoghurts

    African Journals Online (AJOL)

    USER

    2012-09-27

    Sep 27, 2012 ... ever, the traditional method of producing strained yoghurt ... Food market studies have the essential function of providing ..... Communication No: 2001/21. ... fermented foods and beverages of Turkey. Crit. Rev. Food. Sci. Nutr.

  14. Distributed strain measurement with polymer optical fibers integrated into multifunctional geotextiles

    Science.gov (United States)

    Liehr, Sascha; Lenke, Philipp; Krebber, Katerina; Seeger, Monika; Thiele, Elke; Metschies, Heike; Gebreselassie, Berhane; Münich, Johannes Christian; Stempniewski, Lothar

    2008-04-01

    Fiber optic sensors based on polymer optical fibers (POF) have the advantage of being very elastic and robust at the same time. Unlike silica fibers, standard PMMA POF fibers can be strained to more than 40% while fully maintaining their light guiding properties. We investigated POF as a distributed strain sensor by analysing the backscatter increase at the strained section using the optical time domain reflectometry (OTDR) technique. This sensing ability together with its high robustness and break-down strain makes POF well-suited for integration into technical textiles for structural health monitoring purposes. Within the European research project POLYTECT (Polyfunctional textiles against natural hazards) technical textiles with integrated POF sensors, among others sensors are being developed for online structural health monitoring of geotechnical structures. Mechanical deformation in slopes, dams, dikes, embankments and retrofitted masonry structures is to be detected before critical damage occurs. In this paper we present the POF strain sensor properties, reactions to disturbing influences as temperature and bends as well as the results of the different model tests we conducted within POLYTECT. We further show the potential of perfluorinated graded-index POF for distributed strain sensing with increased spatial resolution and measurement lengths.

  15. Digital Sensor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  16. Piezoresistive Soft Condensed Matter Sensor for Body-Mounted Vital Function Applications

    Directory of Open Access Journals (Sweden)

    Mark Melnykowycz

    2016-03-01

    Full Text Available A soft condensed matter sensor (SCMS designed to measure strains on the human body is presented. The hybrid material based on carbon black (CB and a thermoplastic elastomer (TPE was bonded to a textile elastic band and used as a sensor on the human wrist to measure hand motion by detecting the movement of tendons in the wrist. Additionally it was able to track the blood pulse wave of a person, allowing for the determination of pulse wave peaks corresponding to the systole and diastole blood pressures in order to calculate the heart rate. Sensor characterization was done using mechanical cycle testing, and the band sensor achieved a gauge factor of 4–6.3 while displaying low signal relaxation when held at a strain levels. Near-linear signal performance was displayed when loading to successively higher strain levels up to 50% strain.

  17. First-principles investigation of strain effects on the energy gaps in silicon nanoclusters

    International Nuclear Information System (INIS)

    Peng, X-H; Alizadeh, A; Bhate, N; Varanasi, K K; Kumar, S K; Nayak, S K

    2007-01-01

    First-principles density functional calculations were performed to study strain effects on the energy gaps in silicon nanoclusters with diameter ranging from 0.6 to 2 nm. Hydrostatic and non-hydrostatic strains have been found to affect the energy gaps differently. For the same strain energy density, non-hydrostatic strain leads to a significantly larger change in the energy gap of silicon clusters compared to that of the hydrostatic strain case. In contrast, hydrostatic and non-hydrostatic strain effects on the energy gaps of bulk Si or larger size Si quantum dots are comparable. Non-hydrostatic strains break the tetrahedral bonding symmetry in silicon, resulting in significant variation in the energy gaps due to the splitting of the degenerate orbitals in the clusters. Our results suggest that the combination of energy gaps and strains permits the engineering of photoluminescence in silicon nanoclusters and offers the possibility of designing novel optical devices and chemical sensors

  18. First-time demonstration of measuring concrete prestress levels with metal packaged fibre optic sensors

    Science.gov (United States)

    Mckeeman, I.; Fusiek, G.; Perry, M.; Johnston, M.; Saafi, M.; Niewczas, P.; Walsh, M.; Khan, S.

    2016-09-01

    In this work we present the first large-scale demonstration of metal packaged fibre Bragg grating sensors developed to monitor prestress levels in prestressed concrete. To validate the technology, strain and temperature sensors were mounted on steel prestressing strands in concrete beams and stressed up to 60% of the ultimate tensile strength of the strand. We discuss the methods and calibration procedures used to fabricate and attach the temperature and strain sensors. The use of induction brazing for packaging the fibre Bragg gratings and welding the sensors to prestressing strands eliminates the use of epoxy, making the technique suitable for high-stress monitoring in an irradiated, harsh industrial environment. Initial results based on the first week of data after stressing the beams show the strain sensors are able to monitor prestress levels in ambient conditions.

  19. Focus on image sensors

    NARCIS (Netherlands)

    Jos Gunsing; Daniël Telgen; Johan van Althuis; Jaap van de Loosdrecht; Mark Stappers; Peter Klijn

    2013-01-01

    Robots need sensors to operate properly. Using a single image sensor, various aspects of a robot operating in its environment can be measured or monitored. Over the past few years, image sensors have improved a lot: frame rate and resolution have increased, while prices have fallen. As a result,

  20. Multi-Sensor Architectures

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki; Khan, M. Z.

    2012-01-01

    The use of multiple sensors typically requires the fusion of data from different type of sensors. The combined use of such a data has the potential to give an efficient, high quality and reliable estimation. Input data from different sensors allows the introduction of target attributes (target ty...

  1. Thermal flow micro sensors

    NARCIS (Netherlands)

    Elwenspoek, Michael Curt

    1999-01-01

    A review is given on sensors fabricated by silicon micromachining technology using the thermal domain for the measurement of fluid flow. Attention is paid especially to performance and geometry of the sensors. Three basic types of thermal flow sensors are discussed: anemometers, calorimetric flow

  2. Sensors for Entertainment

    Directory of Open Access Journals (Sweden)

    Fabrizio Lamberti

    2016-07-01

    Full Text Available Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on “Sensors for Entertainment”, developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.

  3. Electric field sensor studies

    International Nuclear Information System (INIS)

    Griffith, R.D.; Parks, S.

    1977-01-01

    Above-ground intrusion sensors are reviewed briefly. Buried wire sensors are next considered; feasibility studies were conducted. A triangular system of an overhead transmitter wire exciting two buried sensor wires was developed and tested. It failed sometimes to detect a man making a broad jump. A differential receiver was developed to solve this problem

  4. Fuzzy Fiber Sensors for Structural Composite Health Monitoring (Preprint)

    Science.gov (United States)

    2011-12-01

    fuzzy fibers to applied strain was measured in the following configurations: individual fiber, fiber tow, tow in matrix, and tow in laminated composite...panels, 12″ × 12″, were fabricated with IM7/977-2 prepreg unidirectional carbon fiber tape. Three panels each were prepared with unidirectional [0]8 or...were fabricated with 6″-long fuzzy fiber strain sensors embedded at the midpoint of the laminate plies. Eight straight-sided specimens (as shown in

  5. Sensitivity enhancement using annealed polymer optical fibre based sensors for pressure sensing applications

    DEFF Research Database (Denmark)

    Pospori, A.; Marques, C. A. F.; Saez-Rodriguez, D.

    2016-01-01

    for that investigation was an unexpected behaviour observed in an array of sensors which were used for liquid level monitoring. One sensor exhibited much lower pressure sensitivity and that was the only one that was not annealed. To further investigate the phenomenon, additional sensors were photo...... sensitivity of the devices. This can provide better performing sensors for use in stress, force and pressure sensing applications.......Thermal annealing can be used to induce a permanent negative Bragg wavelength shift for polymer fibre grating sensors and it was originally used for multiplexing purposes. Recently, researchers showed that annealing can also provide additional benefits, such as strain and humidity sensitivity...

  6. Fibre Bragg grating sensors for reinforcement corrosion monitoring in civil engineering structures

    International Nuclear Information System (INIS)

    Grattan, S K T; Basheer, P; Taylor, S E; Zhao, W; Sun, T; Grattan, K T V

    2007-01-01

    Fibre optic strain sensors offer a number of advantages over the current electrical resistance type gauges, yet are not widely used in civil engineering applications. The use of fibre optic strain sensors (with a cross comparison with the output of electrical resistance gauges) to monitor the production of corrosion by-products in civil engineering concrete structures containing reinforcement bars has been investigated and results reported

  7. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure

    OpenAIRE

    Tang, Yongsheng; Wu, Zhishen

    2016-01-01

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced p...

  8. Virtual Sensor Test Instrumentation

    Science.gov (United States)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  9. Development of an experimentally supported evaluation method for optimization and characterization of strain transfer of surface-applied Fibre Bragg Gratings (FBG); Entwicklung eines experimentell gestuetzten Bewertungsverfahrens zur Optimierung und Charakterisierung der Dehnungsuebertragung oberflaechenapplizierter Faser-Bragg-Gitter-Sensoren

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, Vivien Gisela

    2010-05-01

    Fibre Bragg Gratings (FBG) as strain sensors are implemented in those areas, where conventional electrical strain gauges reach their limits (for example in areas of high voltage, strong electro-magnetic fields, medical technology, safety relevant and radiation-exposed areas). Subject of this work is the surface application and the qualification of these sensors as strain sensors on different materials. A certified and proven method of application for surface mounted sensors is not known yet. The determination of the strain transfer and the definition of a strain transfer factor out of the relation between the Bragg wavelength change and the strain of the specimen have not yet been validated experimentally with an independent validation method. The development of an experimental methodology using a physically independent optical reference method for the determination of the strain transfer between the specimen and the FBG strain sensor is the main focus of this work. The influencing parameters on the strain distribution have been quantified experimentally and the change in Bragg wavelength has been investigated in relation to the strain measured by strain gauges. The material properties of the adhesives have been partly investigated. On the basis of these experiments a testing facility for surface applied FBG strain sensors has been developed. The functionality of the experimental methodology for the determination of the strain factor has been shown. The characterisation of the testing facility and the validity of FBG strain sensors through the experimental methodology inhere developed have been started. For the case of the strain determination in wind turbine rotor blades specially adapted FBG patches have been developed and qualified. An integration technique for FBG strain sensors into the rotor blade has been developed as well. As a first step of standardizing this measurement technique a national standard has been developed under the contribution of the author

  10. Conduction gap in graphene strain junctions: direction dependence

    International Nuclear Information System (INIS)

    Nguyen, M Chung; Nguyen, V Hung; Dollfus, P; Nguyen, Huy-Viet

    2014-01-01

    It has been shown in a recent study (Nguyen et al 2014 Nanotechnology 25 165201) that unstrained/strained graphene junctions are promising candidates to improve the performance of graphene transistors which is usually hindered by the gapless nature of graphene. Although the energy bandgap of strained graphene still remains zero, the shift of Dirac points in the k-space due to strain-induced deformation of graphene lattice can lead to the appearance of a finite conduction gap of several hundred meV in strained junctions with a strain of only a few per cent. However, since it depends essentially on the magnitude of the Dirac point shift, this conduction gap strongly depends on the direction of applied strain and the transport direction. In this work, a systematic study of conduction-gap properties with respect to these quantities is presented and the results are carefully analyzed. Our study provides useful information for further investigations to exploit graphene-strained junctions in electronic applications and strain sensors. (paper)

  11. Multifuctional integrated sensors (MFISES).

    Energy Technology Data Exchange (ETDEWEB)

    Homeijer, Brian D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roozeboom, Clifton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and the real world applications of the sensors systems.

  12. Sensor mount assemblies and sensor assemblies

    Science.gov (United States)

    Miller, David H [Redondo Beach, CA

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  13. Wireless Biological Electronic Sensors.

    Science.gov (United States)

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  14. MEMS optical sensor

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an all-optical sensor utilizing effective index modulation of a waveguide and detection of a wavelength shift of reflected light and a force sensing system accommodating said optical sensor. One embodiment of the invention relates to a sensor system comprising...... at least one multimode light source, one or more optical sensors comprising a multimode sensor optical waveguide accommodating a distributed Bragg reflector, at least one transmitting optical waveguide for guiding light from said at least one light source to said one or more multimode sensor optical...... waveguides, a detector for measuring light reflected from said Bragg reflector in said one or more multimode sensor optical waveguides, and a data processor adapted for analyzing variations in the Bragg wavelength of at least one higher order mode of the reflected light....

  15. Progress of optical sensor system for health monitoring of bridges at Chongqing University

    Science.gov (United States)

    Chen, W.; Fu, Y.; Zhu, Y.; Huang, S.

    2005-02-01

    With decades of research experience on optical sensors, Optoelectronic Technology Lab of Chongqing University (OTLCU) has studied on a variety of sensors system designed for practical use in health monitoring. In OTLCU, embedded and surface mounted fiber Fabry-Perot strain sensor has been developed for monitoring the local strain of both concrete and steel truss bridge. Optoelectronic deflect meter, with a group of optical level sensor in a series connected pipe, was developed for deflection monitoring and line shape monitoring of the bridges. Laser deflect meter, with a laser pointer and a sensors array, has been also developed for a dynamic deflection monitoring of the bridges. To monitoring the 2-Dimentional displacement of the bridge, a self-calibrating imaging system was developed. All these sensor systems have been applied in different bridges successfully. This paper briefly describes principle of these optical sensing systems, and also gives some representative results of the system in practical application of bridges.

  16. Evaluation of Chewing and Swallowing Sensors for Monitoring Ingestive Behavior.

    Science.gov (United States)

    Fontana, Juan M; Sazonov, Edward S

    2013-03-01

    Monitoring Ingestive Behavior (MIB) of individuals is of special importance to identify and treat eating patterns associated with obesity and eating disorders. Current methods for MIB require subjects reporting every meal consumed, which is burdensome and tend to increase the reporting bias over time. This study presents an evaluation of the burden imposed by two wearable sensors for MIB during unrestricted food intake: a strain sensor to detect chewing events and a throat microphone to detect swallowing sounds. A total of 30 healthy subjects with various levels of adiposity participated in experiments involving the consumption of four meals in four different visits. A questionnaire was handled to subjects at the end of the last visit to evaluate the sensors burden in terms of the comfort levels experienced. Results showed that sensors presented high comfort levels as subjects indicated that the way they ate their meal was not considerably affected by the presence of the sensors. A statistical analysis showed that chewing sensor presented significantly higher comfort levels than the swallowing sensor. The outcomes of this study confirmed the suitability of the chewing and swallowing sensors for MIB and highlighted important aspects of comfort that should be addressed to obtain acceptable and less burdensome wearable sensors for MIB.

  17. Digital Sensor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Quinn, Edward L. [Technology Resources, Dana Point, CA (United States); Mauck, Jerry L. [Technology Resources, Dana Point, CA (United States); Bockhorst, Richard M. [Technology Resources, Dana Point, CA (United States)

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  18. A soft compressive sensor using dielectric elastomers

    International Nuclear Information System (INIS)

    Zhang, Hongying; Wang, Michael Yu; Li, Jisen; Zhu, Jian

    2016-01-01

    This paper proposes a methodology to design, analyze and fabricate a soft compressive sensor, made of dielectric elastomers that are able to recover from large strain. Each module of the compressive sensor is modeled as a capacitor, comprising a DE membrane sandwiched between two compliant electrodes. When the sensor modules aligned in an array were subject to a compressive load, the induced deformation on the corresponding module resulted in capacitance increase. By detecting the capacitance signal, not only the position but also the magnitude of the compressive load were obtained. We built an analytical model to simulate the mechanical–electrical responses of two common soft sensor structures, namely with and without an embedded air chamber. The simulation results showed that the air embedded prototype improved the sensitivity of the sensor significantly, which was consistent with the experimental results, where the sensitivity is enhanced from 0.05 N −1 to 0.91 N −1 . Furthermore, the effect of the air chamber dimension on the sensitivity is also discussed theoretically and experimentally. It concluded that the detection range increased with the air chamber height over length ratio. (paper)

  19. Fibre Bragg Grating as a Multi-Stage Structure Health Monitoring Sensor

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira

    2016-01-01

    . At the manufacturing stage, where the sensors can measure several parameters of infusion and curing, sensor feedback can help control the process, avoid residual strain, and contribute to the product certification; and then in operation where cracks can be detected and monitored. Experimental mechanical testing...

  20. Ethanol-assisted multi-sensitive poly(vinyl alcohol) photonic crystal sensor.

    Science.gov (United States)

    Chen, Cheng; Zhu, Yihua; Bao, Hua; Shen, Jianhua; Jiang, Hongliang; Peng, Liming; Yang, Xiaoling; Li, Chunzhong; Chen, Guorong

    2011-05-21

    An ethanol-assisted method is utilized to generate a robust gelated crystalline colloidal array (GCCA) photonic crystal sensor. The functionalized sensor efficiently diffracts the visible light and responds to various stimuli involving solvent, pH, cation, and compressive strain; the related color change can be easily distinguished by the naked eye. © The Royal Society of Chemistry 2011

  1. Transducer-based fiber Bragg grating high-temperature sensor with enhanced range and stability

    Science.gov (United States)

    Mamidi, Venkata Reddy; Kamineni, Srimannarayana; Ravinuthala, Lakshmi Narayana Sai Prasad; Tumu, Venkatappa Rao

    2017-09-01

    Fiber Bragg grating (FBG)-based high-temperature sensor with enhanced-temperature range and stability has been developed and tested. The sensor consists of an FBG and a mechanical transducer, which furnishes a linear temperature-dependent tensile strain on FBG by means of differential linear thermal expansion of two different ceramic materials. The designed sensor is tested over a range: 20°C to 1160°C and is expected to measure up to 1500°C.

  2. A novel textile characterisation approach using an embedded sensor system and segmented textile manipulation

    Science.gov (United States)

    Fial, Julian; Carosella, Stefan; Langheinz, Mario; Wiest, Patrick; Middendorf, Peter

    2018-05-01

    This paper investigates the application of sensors on carbon fibre textiles for the purpose of textile characterisation and draping process optimisation. The objective is to analyse a textile's condition during the draping operation and actively manipulate boundary conditions in order to create better preform qualities. Various realisations of textile integrated sensors are presented, focusing on the measurement of textile strain. Furthermore, a complex textile characterisation approach is presented where these sensors shall be implemented in.

  3. Structural health monitoring system of soccer arena based on optical sensors

    Science.gov (United States)

    Shishkin, Victor V.; Churin, Alexey E.; Kharenko, Denis S.; Zheleznova, Maria A.; Shelemba, Ivan S.

    2014-05-01

    A structural health monitoring system based on optical sensors has been developed and installed on the indoor soccer arena "Zarya" in Novosibirsk. The system integrates 119 fiber optic sensors: 85 strain, 32 temperature and 2 displacement sensors. In addition, total station is used for measuring displacement in 45 control points. All of the constituents of the supporting structure are subjects for monitoring: long-span frames with under floor ties, connections, purlins and foundation.

  4. Modelling and processing of data from a fibre-optic sensor of vibrations

    International Nuclear Information System (INIS)

    Morawski, R Z; Makowski, P L; Michalik, L; Domanski, A W

    2010-01-01

    A new technique of vibration sensing, based on a polarimetric fibre-optic strain sensor, is presented; it is designed for localisation of multiple sources of disturbances in a broad spectrum without using fibre gratings. A mathematical model of the sensor is used for development of a variational method for estimation of amplitudes of component vibrations on the basis of noisy samples of the voltage at the output of the sensor.

  5. HEAT Sensor: Harsh Environment Adaptable Thermionic Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Limb, Scott J. [Palo Alto Research Center, Palo Alto, CA (United States)

    2016-05-31

    This document is the final report for the “HARSH ENVIRONMENT ADAPTABLE THERMIONIC SENSOR” project under NETL’s Crosscutting contract DE-FE0013062. This report addresses sensors that can be made with thermionic thin films along with the required high temperature hermetic packaging process. These sensors can be placed in harsh high temperature environments and potentially be wireless and self-powered.

  6. Longitudinally Jointed Edge-wise Compression Honeycomb Composite Sandwich Coupon Testing and FE Analysis: Three Methods of Strain Measurement, and Comparison

    Science.gov (United States)

    Farrokh, Babak; AbdulRahim, Nur Aida; Segal, Ken; Fan, Terry; Jones, Justin; Hodges, Ken; Mashni, Noah; Garg, Naman; Sang, Alex; Gifford, Dawn; hide

    2013-01-01

    Three means (i.e., typical foil strain gages, fiber optic sensors, and a digital image correlation (DIC) system) were implemented to measure strains on the back and front surfaces of a longitudinally jointed curved test article subjected to edge-wise compression testing, at NASA Goddard Space Flight Center, according to ASTM C364. The Pre-test finite element analysis (FEA) was conducted to assess ultimate failure load and predict strain distribution pattern throughout the test coupon. The predicted strain pattern contours were then utilized as guidelines for installing the strain measurement instrumentations. The strain gages and fiber optic sensors were bonded on the specimen at locations with nearly the same strain values, as close as possible to each other, so that, comparisons between the measured strains by strain gages and fiber optic sensors, as well as the DIC system are justified. The test article was loaded to failure (at approximately 38 kips), at the strain value of approximately 10,000mu epsilon As a part of this study, the validity of the measured strains by fiber optic sensors is examined against the strain gage and DIC data, and also will be compared with FEA predictions.

  7. Fiber Bragg Grating Based pH Sensor

    Science.gov (United States)

    Yulianti, Ian; Sahmah, Abu; Supa'at, M.; Idrus, M.; Kassim, Norazan M.; Al-hetar, Abdulaziz M.

    2011-05-01

    This paper demonstrates the modeling of pH sensor based on pH sensitive hydrogel coated FBG. The modeling was done by simulating the hydrogel swelling behavior, then calculating the strain induced by hydrogel expansion. Meshless numerical method was adopted to solve the Poison Nernst Planck equation coupled to mechanical equation to simulate the hydrogel swelling. The strain induced in the FBG due to mechanical expansion of hydrogel was calculated analytically. Strain of more than 10 μɛ was obtained at pH> 5. At pH of 5, λB shift of more than 10 pm was achieved.

  8. Compliant Tactile Sensors

    Science.gov (United States)

    Torres-Jara, Eduardo R.

    2011-01-01

    Tactile sensors are currently being designed to sense interactions with human hands or pen-like interfaces. They are generally embedded in screens, keyboards, mousepads, and pushbuttons. However, they are not well fitted to sense interactions with all kinds of objects. A novel sensor was originally designed to investigate robotics manipulation where not only the contact with an object needs to be detected, but also where the object needs to be held and manipulated. This tactile sensor has been designed with features that allow it to sense a large variety of objects in human environments. The sensor is capable of detecting forces coming from any direction. As a result, this sensor delivers a force vector with three components. In contrast to most of the tactile sensors that are flat, this one sticks out from the surface so that it is likely to come in contact with objects. The sensor conforms to the object with which it interacts. This augments the contact's surface, consequently reducing the stress applied to the object. This feature makes the sensor ideal for grabbing objects and other applications that require compliance with objects. The operational range of the sensor allows it to operate well with objects found in peoples' daily life. The fabrication of this sensor is simple and inexpensive because of its compact mechanical configuration and reduced electronics. These features are convenient for mass production of individual sensors as well as dense arrays. The biologically inspired tactile sensor is sensitive to both normal and lateral forces, providing better feedback to the host robot about the object to be grabbed. It has a high sensitivity, enabling its use in manipulation fingers, which typically have low mechanical impedance in order to be very compliant. The construction of the sensor is simple, using inexpensive technologies like silicon rubber molding and standard stock electronics.

  9. Sensor for metal detection

    KAUST Repository

    Kodzius, Rimantas

    2014-06-26

    NOVELTY - The sensor has a microfluidic flow channel that is provided with an inlet port, an outlet port, and a detection chamber. The detection chamber is provided with a group of sensing electrodes (4) having a working electrode (8), a counter electrode (9), and a reference electrode (10). A flow sensor is configured to measure flow in the channel. A temperature sensor (6) is configured to measure temperature in the channel (3). An electrical connection is configured to connect the sensor to a sensing device. USE - Sensor for detecting metal such as toxic metal in sample such as clinical sample such as stool, saliva, sputum, bronchial lavage, urine, vaginal swab, nasal swab, biopsy, tissue, tears, breath, blood, serum, plasma, cerebrospinal fluid, peritoneal fluid, pleural fluid, pericardial fluid, joint fluid, and amniotic fluid, water sample, food sample, air sample, and soil sample (all claimed). ADVANTAGE - The sensor for use with the portable analytical instrument is configured for detection of metalsin samples. The sensor can provide the excellent solution for on-site metal detection, including heavy metal detection. The sensors can provide significant advantages in higher throughput, lower cost, at the same time being less labor intensive and less dependent on individual skills. The disposable design of the sensor, the enhanced reliability and repeatability of measurements can be obtained. The sensors can be widely applied in various industries. DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following: (1) a system for detecting metal in sample; and (2) a method for using sensor for detecting metal in sample. DESCRIPTION OF DRAWING(S) - The drawing shows a schematic view of the sensor prototype. Channel (3) Sensing electrodes (4) Temperature sensor (6) Working electrode (8) Counter electrode (9) Reference electrode (10)

  10. MITRE sensor layer prototype

    Science.gov (United States)

    Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott

    2009-05-01

    The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type

  11. Design and development of long-period grating sensors for ...

    Indian Academy of Sciences (India)

    Raja Ramanna Centre for Advanced Technology, Indore 450 213. ∗ e-mail: ... Home built CO2 laser (Max power 20 Watt) is focused onto .... Claus R O 1997 Temperature-insensitive and strain insensitive long-period grating sensors for smart.

  12. Strains and Sprains

    Science.gov (United States)

    ... lot of pressure on a muscle or you push it too far, such as when lifting a heavy object. Strains may be more likely to happen if you haven't warmed up first to get blood circulating to the muscles. They're also common for someone returning to a sport after the off-season. That first time playing ...

  13. Prediction of Composite Pressure Vessel Failure Location using Fiber Bragg Grating Sensors

    Science.gov (United States)

    Kreger, Steven T.; Taylor, F. Tad; Ortyl, Nicholas E.; Grant, Joseph

    2006-01-01

    Ten composite pressure vessels were instrumented with fiber Bragg grating sensors in order to assess the strain levels of the vessel under various loading conditions. This paper and presentation will discuss the testing methodology, the test results, compare the testing results to the analytical model, and present a possible methodology for predicting the failure location and strain level of composite pressure vessels.

  14. Strain engineering on electronic structure and carrier mobility in monolayer GeP3

    Science.gov (United States)

    Zeng, Bowen; Long, Mengqiu; Zhang, Xiaojiao; Dong, Yulan; Li, Mingjun; Yi, Yougen; Duan, Haiming

    2018-06-01

    Using density functional theory coupled with the Boltzmann transport equation with relaxation time approximation, we have studied the strain effect on the electronic structure and carrier mobility of two-dimensional monolayer GeP3. We find that the energies of valence band maximum and conduction band minimum are nearly linearly shifted with a biaxial strain in the range of  ‑4% to 6%, and the band structure experiences a remarkable transition from semiconductor to metal with the appropriate compression (‑5% strain). Under biaxial strain, the mobility of the electron and hole in monolayer GeP3 reduces and increases by more than one order of magnitude, respectively. It is suggested that it is possible to perform successive transitions from an n-type semiconductor (‑4% strain) to a good performance p-semiconductor (+6% strain) by applying strain in monolayer GeP3, which is potentially useful for flexible electronics and nanosized mechanical sensors.

  15. Capacitive chemical sensor

    Science.gov (United States)

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  16. The Ringcore Fluxgate Sensor

    DEFF Research Database (Denmark)

    Brauer, Peter

    1997-01-01

    A model describing the fundamental working principle of the "ringcore fluxgate sensor" is derived. The model is solely based on geometrical and measurable magnetic properties of the sensor and from this a number of fluxgate phenomenon can be described and estimated. The sensitivity of ringcore...... fluxgate sensors is measured for a large variety of geometries and is for all measurements found to fall between two limits obtained by the fluxgate model. The model is used to explain the zero field odd harmonic output of the fluxgate sensor, called the "feedthrough". By assuming a non ideal sensor...... with spatially distributed magnetization, the model predicts feedthrough signals which exactly reflects the measured signals. The non-linearities in a feedback compensated ringcore fluxgate sensors, called the "transverse field effect", can also be explained by the model. Measurements on stress annealed...

  17. Cryogenic microsize Hall sensors

    International Nuclear Information System (INIS)

    Kvitkovic, J.; Polak, M.

    1993-01-01

    Hall sensors have a variety of applications in magnetic field measurements. The active area of the Hall sensor does not play an important role in measuring of homogeneous magnetic field. Actually Hall sensors are widely used to measure profiles of magnetic fields produced by magnetization currents in samples of HTC superconductors, as well as of LTC ones. Similar techniques are used to measure magnetization of both HTC and LTC superconductors. In these cases Hall sensor operates in highly inhomogeneous magnetic fields. Because of that, Hall sensors with very small active area are required. We developed and tested Hall sensors with active area 100 μm x 100 μm - type M and 50 μm x 50 μm - type V. Here we report on the most imporant parameters of these units, as well as on their properties as differential magnetometer. (orig.)

  18. Clementine sensor suite

    Energy Technology Data Exchange (ETDEWEB)

    Ledebuhr, A.G. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    LLNL designed and built the suite of six miniaturized light-weight space-qualified sensors utilized in the Clementine mission. A major goal of the Clementine program was to demonstrate technologies originally developed for Ballistic Missile Defense Organization Programs. These sensors were modified to gather data from the moon. This overview presents each of these sensors and some preliminary on-orbit performance estimates. The basic subsystems of these sensors include optical baffles to reject off-axis stray light, light-weight ruggedized optical systems, filter wheel assemblies, radiation tolerant focal plane arrays, radiation hardened control and readout electronics and low mass and power mechanical cryogenic coolers for the infrared sensors. Descriptions of each sensor type are given along with design specifications, photographs and on-orbit data collected.

  19. Flexible magnetoimpedance sensor

    KAUST Repository

    Li, Bodong

    2015-03-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors\\'s magnetic field and frequency responses and their dependence on the sensors\\'s deflection. For the first time, the impedance characteristic is obtained through reflection coefficient analysis over a wide range of frequencies from 0.1 MHz to 3 GHz and for deflections ranging from zero curvature to a radius of 7.2 cm. The sensor element maintains a high MI ratio of up to 90% and magnetic sensitivity of up to 9.2%/Oe over different bending curvatures. The relationship between the curvature and material composition is discussed based on the magnetostriction effect and stress simulations. The sensor\\'s large frequency range, simple fabrication process and high sensitivity provide a great potential for flexible electronics and wireless applications.

  20. Working Group Report: Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Artuso, M.; et al.,

    2013-10-18

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  1. Polymer Optical Fiber Sensor and the Prediction of Sensor Response Utilizing Artificial Neural Networks

    Science.gov (United States)

    Haroglu, Derya

    The global market researches showed that there is a growing trend in the field of polymer optical fiber (POF) and POF sensors. Telecommunications, medicine, defense, aerospace, and automotive are the application areas of fiber optic sensors, where the automotive industry is the most promising application area for innovations in the field of POF sensors. The POF sensors in automobiles are particularly for detection of seat occupancy, and intelligent pedestrian protection systems. This dissertation investigates graded index perfluorinated polymer optical fiber as an intensity modulated intrinsic sensor for application in automotive seat occupancy sensing. Since a fiber optic sensor has a high bandwidth, is small in size, is lightweight, and is immune to electromagnetic interference (EMI) it offers higher performance than that of its electrical based counterparts such as strain gauge, elastomeric bladder, and resistive sensor systems. This makes the fiber optic sensor a potential suitable material for seat occupancy sensing. A textile-based fiber optic sensor was designed to be located in the area beneath the typical seated human's thighs. The pressure interval under which the proposed POF sensor design could perform well was found to be between 0.18 and 0.21 N/cm2, where perfluorinated (PF) graded index (GI) POF (62.5/750 mum) was used as the POF material. In addition, the effect of the automotive seat covering including face material (fabric) and foam backing to the sensor's performance was analyzed. The face fabric structure and the thickness of foam backing were not found to be significant factors to change the sensor results. A research study, survey, was conducted of which purpose was to better understand market demands in terms of sensor performance characteristics for automotive seat weight sensors, as a part of the Quality Function Deployment (QFD) House of Quality analysis. The companies joined the survey agreed on the first 5 most important sensor

  2. Visual Measurement of Suture Strain for Robotic Surgery

    Directory of Open Access Journals (Sweden)

    John Martell

    2011-01-01

    Full Text Available Minimally invasive surgical procedures offer advantages of smaller incisions, decreased hospital length of stay, and rapid postoperative recovery to the patient. Surgical robots improve access and visualization intraoperatively and have expanded the indications for minimally invasive procedures. A limitation of the DaVinci surgical robot is a lack of sensory feedback to the operative surgeon. Experienced robotic surgeons use visual interpretation of tissue and suture deformation as a surrogate for tactile feedback. A difficulty encountered during robotic surgery is maintaining adequate suture tension while tying knots or following a running anastomotic suture. Displaying suture strain in real time has potential to decrease the learning curve and improve the performance and safety of robotic surgical procedures. Conventional strain measurement methods involve installation of complex sensors on the robotic instruments. This paper presents a noninvasive video processing-based method to determine strain in surgical sutures. The method accurately calculates strain in suture by processing video from the existing surgical camera, making implementation uncomplicated. The video analysis method was developed and validated using video of suture strain standards on a servohydraulic testing system. The video-based suture strain algorithm is shown capable of measuring suture strains of 0.2% with subpixel resolution and proven reliability under various conditions.

  3. Contact stress sensor

    Science.gov (United States)

    Kotovsky, Jack [Oakland, CA

    2012-02-07

    A contact stress sensor includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a thermal compensator and a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  4. Transient multivariable sensor evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, Richard B.; Heifetz, Alexander

    2017-02-21

    A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.

  5. Networked Sensor Arrays

    International Nuclear Information System (INIS)

    Tighe, R. J.

    2002-01-01

    A set of independent radiation sensors, coupled with real-time data telemetry, offers the opportunity to run correlation algorithms for the sensor array as well as to incorporate non-radiological data into the system. This may enhance the overall sensitivity of the sensors and provide an opportunity to project the location of a source within the array. In collaboration with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), we have conducted field experiments to test a prototype system. Combining the outputs of a set of distributed sensors permits the correlation that the independent sensor outputs. Combined with additional information such as traffic patterns and velocities, this can reduce random/false detections and enhance detection capability. The principle components of such a system include: (1) A set of radiation sensors. These may be of varying type and complexity, including gamma and/or neutron detectors, gross count and spectral-capable sensors, and low to high energy-resolution sensors. (2) A set of non-radiation sensors. These may include sensors such as vehicle presence and imaging sensors. (3) A communications architecture for near real-time telemetry. Depending upon existing infrastructure and bandwidth requirements, this may be a radio or hard-wire based system. (4) A central command console to pole the sensors, correlate their output, and display the data in a meaningful form to the system operator. Both sensitivity and selectivity are important considerations when evaluating the performance of a detection system. Depending on the application, the optimization of sensitivity as well as the rejection of ''nuisance'' radioactive sources may or may not be critical

  6. Bioinspired Sensor Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2011-10-01

    Full Text Available This editorial summarizes and classifies the contributions presented by different authors to the special issue of the journal Sensors dedicated to Bioinspired Sensor Systems. From the coupling of sensor arrays or networks, plus computer processing abilities, new applications to mimic or to complement human senses are arising in the context of ambient intelligence. Principles used, and illustrative study cases have been presented permitting readers to grasp the current status of the field.

  7. Magnetic actuators and sensors

    CERN Document Server

    Brauer, John R

    2014-01-01

    An accessible, comprehensive guide on magnetic actuators and sensors, this fully updated second edition of Magnetic Actuators and Sensors includes the latest advances, numerous worked calculations, illustrations, and real-life applications. Covering magnetics, actuators, sensors, and systems, with updates of new technologies and techniques, this exemplary learning tool emphasizes computer-aided design techniques, especially magnetic finite element analysis, commonly used by today's engineers. Detailed calculations, numerous illustrations, and discussions of discrepancies make this text an inva

  8. Perimeter intrusion sensors

    International Nuclear Information System (INIS)

    Eaton, M.J.

    1977-01-01

    To obtain an effective perimeter intrusion detection system requires careful sensor selection, procurement, and installation. The selection process involves a thorough understanding of the unique site features and how these features affect the performance of each type of sensor. It is necessary to develop procurement specifications to establish acceptable sensor performance limits. Careful explanation and inspection of critical installation dimensions is required during on-site construction. The implementation of these activities at a particular site is discussed

  9. Simultaneous measurement of dynamic strain and temperature distribution using high birefringence PANDA fiber Bragg grating

    Science.gov (United States)

    Zhu, Mengshi; Murayama, Hideaki

    2017-04-01

    New approach in simultaneous measurement of dynamic strain and temperature has been done by using a high birefringence PANDA fiber Bragg grating sensor. By this technique, we have succeeded in discriminating dynamic strain and temperature distribution at the sampling rate of 800 Hz and the spatial resolution of 1 mm. The dynamic distribution of strain and temperature were measured with the deviation of 5mm spatially. In addition, we have designed an experimental setup by which we can apply quantitative dynamic strain and temperature distribution to the fiber under testing without bounding it to a specimen.

  10. Three-axis force sensor with fiber Bragg grating.

    Science.gov (United States)

    Hyundo Choi; Yoan Lim; Junhyung Kim

    2017-07-01

    Haptic feedback is critical for many surgical tasks, and it replicates force reflections at the surgical site. To meet the force reflection requirements, we propose a force sensor with an optical fiber Bragg grating (FBG) for robotic surgery. The force sensor can calculate three directional forces of an instrument from the strain of three FBGs, even under electromagnetic interference. A flexible ring-shape structure connects an instrument tip and fiber strain gages to sense three directional force. And a stopper mechanism is added in the structure to avoid plastic deformation under unexpected large force on the instrument tip. The proposed sensor is experimentally verified to have a sensing range from -12 N to 12 N, and its sensitivity was less than 0.06 N.

  11. Smart sensors and systems

    CERN Document Server

    Kyung, Chong-Min; Yasuura, Hiroto; Liu, Yongpan

    2015-01-01

     This book describes for readers technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoTs).  The authors provide a multidisciplinary view of sensor technology from MEMS, biological, chemical, and electrical domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc.  Unlike earlier books on sensors, this book will provide a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms.  .

  12. Dynamic Sensor Networks

    National Research Council Canada - National Science Library

    Schott, Brian

    2004-01-01

    ...: Declarative Languages and Execution Environment includes topographical soldier interface and a sensor network simulation environment for algorithm development, deployment planning, and operational support. Finally, Task 3...

  13. Palladium Nanoparticle Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    I. Pavlovsky

    2006-12-01

    Full Text Available An innovative hydrogen sensor based on palladium (Pd nanoparticle networks is described in the article. Made by Applied Nanotech Inc. sensor has a fast response time, in the range of seconds, which is increased at 80 °C due to higher hydrogen diffusion rates into the palladium lattice. The low detection limit of the sensor is 10 ppm of H2, and the high limit is 40,000 ppm. This is 100% of a lowest flammability level of hydrogen. This range of sensitivities complies with the requirements that one would expect for a reliable hydrogen sensor.

  14. Smart and Intelligent Sensors

    Science.gov (United States)

    Lansaw, John; Schmalzel, John; Figueroa, Jorge

    2009-01-01

    John C. Stennis Space Center (SSC) provides rocket engine propulsion testing for NASA's space programs. Since the development of the Space Shuttle, every Space Shuttle Main Engine (SSME) has undergone acceptance testing at SSC before going to Kennedy Space Center (KSC) for integration into the Space Shuttle. The SSME is a large cryogenic rocket engine that uses Liquid Hydrogen (LH2) as the fuel. As NASA moves to the new ARES V launch system, the main engines on the new vehicle, as well as the upper stage engine, are currently base lined to be cryogenic rocket engines that will also use LH2. The main rocket engines for the ARES V will be larger than the SSME, while the upper stage engine will be approximately half that size. As a result, significant quantities of hydrogen will be required during the development, testing, and operation of these rocket engines.Better approaches are needed to simplify sensor integration and help reduce life-cycle costs. 1.Smarter sensors. Sensor integration should be a matter of "plug-and-play" making sensors easier to add to a system. Sensors that implement new standards can help address this problem; for example, IEEE STD 1451.4 defines transducer electronic data sheet (TEDS) templates for commonly used sensors such as bridge elements and thermocouples. When a 1451.4 compliant smart sensor is connected to a system that can read the TEDS memory, all information needed to configure the data acquisition system can be uploaded. This reduces the amount of labor required and helps minimize configuration errors. 2.Intelligent sensors. Data received from a sensor be scaled, linearized; and converted to engineering units. Methods to reduce sensor processing overhead at the application node are needed. Smart sensors using low-cost microprocessors with integral data acquisition and communication support offer the means to add these capabilities. Once a processor is embedded, other features can be added; for example, intelligent sensors can make

  15. Microfabricated Formaldehyde Gas Sensors

    Directory of Open Access Journals (Sweden)

    Karen C. Cheung

    2009-11-01

    Full Text Available Formaldehyde is a volatile organic compound that is widely used in textiles, paper, wood composites, and household materials. Formaldehyde will continuously outgas from manufactured wood products such as furniture, with adverse health effects resulting from prolonged low-level exposure. New, microfabricated sensors for formaldehyde have been developed to meet the need for portable, low-power gas detection. This paper reviews recent work including silicon microhotplates for metal oxide-based detection, enzyme-based electrochemical sensors, and nanowire-based sensors. This paper also investigates the promise of polymer-based sensors for low-temperature, low-power operation.

  16. Clinical potential of implantable wireless sensors for orthopedic treatments.

    Science.gov (United States)

    Karipott, Salil Sidharthan; Nelson, Bradley D; Guldberg, Robert E; Ong, Keat Ghee

    2018-04-01

    Implantable wireless sensors have been used for real-time monitoring of chemicals and physical conditions of bones, tendons and muscles to diagnose and study orthopedic diseases and injuries. Due to the importance of these sensors in orthopedic care, a critical review, which not only analyzes the underlying technologies but also their clinical implementations and challenges, will provide a landscape view on their current state and their future clinical role. Areas covered: By conducting an extensive literature search and following the leaders of orthopedic implantable wireless sensors, this review covers the battery-powered and battery-free wireless implantable sensor technologies, and describes their implementation for hips, knees, spine, and shoulder stress/strain monitoring. Their advantages, limitations, and clinical challenges are also described. Expert commentary: Currently, implantable wireless sensors are mostly limited for scientific investigations and demonstrative experiments. Although rapid advancement in sensors and wireless technologies will push the reliability and practicality of these sensors for clinical realization, regulatory constraints and financial viability in medical device industry may curtail their continuous adoption for clinical orthopedic applications. In the next five years, these sensors are expected to gain increased interest from researchers, but wide clinical adoption is still unlikely.

  17. Implantable Biosensors for Real-time Strain and Pressure Monitoring

    Directory of Open Access Journals (Sweden)

    Keat Ghee Ong

    2008-10-01

    Full Text Available Implantable biosensors were developed for real-time monitoring of pressure and strain in the human body. The sensors, which are wireless and passive, consisted of a soft magnetic material and a permanent magnet. When exposed to a low frequency AC magnetic field, the soft magnetic material generated secondary magnetic fields that also included the higher-order harmonic modes. Parameters of interest were determined by measuring the changes in the pattern of these higher-order harmonic fields, which was achieved by changing the intensity of a DC magnetic field generated by a permanent magnet. The DC magnetic field, or the biasing field, was altered by changing the separation distance between the soft magnetic material and the permanent magnet. For pressure monitoring, the permanent magnet was placed on the membrane of an airtight chamber. Changes in the ambient pressure deflected the membrane, altering the separation distance between the two magnetic elements and thus the higher-order harmonic fields. Similarly, the soft magnetic material and the permanent magnet were separated by a flexible substrate in the stress/strain sensor. Compressive and tensile forces flexed the substrate, changing the separation distance between the two elements and the higher-order harmonic fields. In the current study, both stress/strain and pressure sensors were fabricated and characterized. Good stability, linearity and repeatability of the sensors were demonstrated. This passive and wireless sensor technology may be useful for long term detection of physical quantities within the human body as a part of treatment assessment, disease diagnosis, or detection of biomedical implant failures.

  18. Wireless measurement of elastic and plastic deformation by a metamaterial-based sensor.

    Science.gov (United States)

    Ozbey, Burak; Demir, Hilmi Volkan; Kurc, Ozgur; Erturk, Vakur B; Altintas, Ayhan

    2014-10-20

    We report remote strain and displacement measurement during elastic and plastic deformation using a metamaterial-based wireless and passive sensor. The sensor is made of a comb-like nested split ring resonator (NSRR) probe operating in the near-field of an antenna, which functions as both the transmitter and the receiver. The NSRR probe is fixed on a standard steel reinforcing bar (rebar), and its frequency response is monitored telemetrically by a network analyzer connected to the antenna across the whole stress-strain curve. This wireless measurement includes both the elastic and plastic region deformation together for the first time, where wired technologies, like strain gauges, typically fail to capture. The experiments are further repeated in the presence of a concrete block between the antenna and the probe, and it is shown that the sensing system is capable of functioning through the concrete. The comparison of the wireless sensor measurement with those undertaken using strain gauges and extensometers reveals that the sensor is able to measure both the average strain and the relative displacement on the rebar as a result of the applied force in a considerably accurate way. The performance of the sensor is tested for different types of misalignments that can possibly occur due to the acting force. These results indicate that the metamaterial-based sensor holds great promise for its accurate, robust and wireless measurement of the elastic and plastic deformation of a rebar, providing beneficial information for remote structural health monitoring and post-earthquake damage assessment.

  19. Experimental Determination and Numerical Modelling of Process Induced Strains and Residual Stresses in Thick Glass/Epoxy Laminate

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani; Hattel, Jesper Henri; Løgstrup Andersen, Tom

    2012-01-01

    dependency on temperature and cure degree. Model predictions are compared to experimentally determined in-situ strains, determined using FBG sensors. It was found that both models offer good approximations of internal strain build-up. A general shortcoming is the lack of capturing rate-dependent effects...

  20. Prototyping of a highly performant and integrated piezoresistive force sensor for microscale applications

    International Nuclear Information System (INIS)

    Komati, Bilal; Agnus, Joël; Clévy, Cédric; Lutz, Philippe

    2014-01-01

    In this paper, the prototyping of a new piezoresistive microforce sensor is presented. An original design taking advantage of both the mechanical and bulk piezoresistive properties of silicon is presented, which enables the easy fabrication of a very small, large-range, high-sensitivity with high integration potential sensor. The sensor is made of two silicon strain gauges for which widespread and known microfabrication processes are used. The strain gauges present a high gauge factor which allows a good sensitivity of this force sensor. The dimensions of this sensor are 700 μm in length, 100 μm in width and 12 μm in thickness. These dimensions make its use convenient with many microscale applications, notably its integration in a microgripper. The fabricated sensor is calibrated using an industrial force sensor. The design, microfabrication process and performances of the fabricated piezoresistive force sensor are innovative thanks to its resolution of 100 nN and its measurement range of 2 mN. This force sensor also presents a high signal-to-noise ratio, typically 50 dB when a 2 mN force is applied at the tip of the force sensor. (paper)

  1. Strains in general relativity

    International Nuclear Information System (INIS)

    Bini, Donato; Felice, Fernando de; Geralico, Andrea

    2006-01-01

    The definition of relative accelerations and strains among a set of comoving particles is studied in connection with the geometric properties of the frame adapted to a 'fiducial observer'. We find that a relativistically complete and correct definition of strains must take into account the transport law of the chosen spatial triad along the observer's congruence. We use special congruences of (accelerated) test particles in some familiar spacetimes to elucidate such a point. The celebrated idea of Szekeres' compass of inertia, arising when studying geodesic deviation among a set of free-falling particles, is here generalized to the case of accelerated particles. In doing so we have naturally contributed to the theory of relativistic gravity gradiometer. Moreover, our analysis was made in an observer-dependent form, a fact that would be very useful when thinking about general relativistic tests on space stations orbiting compact objects like black holes and also in other interesting gravitational situations

  2. Bridge monitoring by interferometric deformation sensors

    Science.gov (United States)

    Inaudi, Daniele; Vurpillot, Samuel; Casanova, Nicoletta

    1996-09-01

    In many concrete bridges, the deformations are the most relevant parameter to be monitored in both short and long- terms. Strain monitoring gives only local information about the material behavior and too many such sensors would therefore be necessary to gain a complete understanding of the bridge behavior. We have found that fiber optic deformation sensors, with measurement bases of the order of one to a few meters, can give useful information both during the first days after concrete pouring and in the long term. In a first phase it is possible to monitor the thermal expansion due to the exothermic setting reaction and successively the thermal and drying shrinkages. Thanks to the long sensor basis, the detection of a crack traverse to the measurement region becomes probable and the evolution of cracks can therefore be followed with a reduced number of sensors. In the long-term it is possible to measure the geometric deformations and therefore the creeping of the bridge under static loads, especially under its own weight. In the past two years, our laboratory has installed hundreds of fiber optic deformation sensors in more than five concrete, composite steel-concrete, refurbished and enlarged bridges (road, highway and railway bridges). The measuring technique relies on low-coherence interferometry and offers a resolution down to a few microns even for long-term measurements. This contribution briefly discusses the measurement technique and then focuses on the development of a reliable sensor for direct concrete embedding and on the experimental results obtained on these bridges.

  3. Integrating soft sensor systems using conductive thread

    Science.gov (United States)

    Teng, Lijun; Jeronimo, Karina; Wei, Tianqi; Nemitz, Markus P.; Lyu, Geng; Stokes, Adam A.

    2018-05-01

    We are part of a growing community of researchers who are developing a new class of soft machines. By using mechanically soft materials (MPa modulus) we can design systems which overcome the bulk-mechanical mismatches between soft biological systems and hard engineered components. To develop fully integrated soft machines—which include power, communications, and control sub-systems—the research community requires methods for interconnecting between soft and hard electronics. Sensors based upon eutectic gallium alloys in microfluidic channels can be used to measure normal and strain forces, but integrating these sensors into systems of heterogeneous Young’s modulus is difficult due the complexity of finding a material which is electrically conductive, mechanically flexible, and stable over prolonged periods of time. Many existing gallium-based liquid alloy sensors are not mechanically or electrically robust, and have poor stability over time. We present the design and fabrication of a high-resolution pressure-sensor soft system that can transduce normal force into a digital output. In this soft system, which is built on a monolithic silicone substrate, a galinstan-based microfluidic pressure sensor is integrated with a flexible printed circuit board. We used conductive thread as the interconnect and found that this method alleviates problems arising due to the mechanical mismatch between conventional metal wires and soft or liquid materials. Conductive thread is low-cost, it is readily wetted by the liquid metal, it produces little bending moment into the microfluidic channel, and it can be connected directly onto the copper bond-pads of the flexible printed circuit board. We built a bridge-system to provide stable readings from the galinstan pressure sensor. This system gives linear measurement results between 500-3500 Pa of applied pressure. We anticipate that integrated systems of this type will find utility in soft-robotic systems as used for wearable

  4. Strain Induced Adatom Correlations

    OpenAIRE

    Kappus, Wolfgang

    2012-01-01

    A Born-Green-Yvon type model for adatom density correlations is combined with a model for adatom interactions mediated by the strain in elastic anisotropic substrates. The resulting nonlinear integral equation is solved numerically for coverages from zero to a limit given by stability constraints. W, Nb, Ta and Au surfaces are taken as examples to show the effects of different elastic anisotropy regions. Results of the calculation are shown by appropriate plots and discussed. A mapping to sup...

  5. Microelectronic temperature sensor; silicon temperature sensor

    International Nuclear Information System (INIS)

    Beitner, M.; Kanert, W.; Reichert, H.

    1982-01-01

    The goal of this work was to develop a silicon temperature sensor with a sensitivity and a reliability as high and a tolerance as small as possible, for use in measurement and control. By employing the principle of spreading-resistance, using silicon doped by neutron transmutation, and trimming of the single wafer tolerances of resistance less than +- 5% can be obtained; overstress tests yielded a long-term stability better than 0.2%. Some applications show the advantageous use of this sensor. (orig.) [de

  6. Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars.

    Science.gov (United States)

    Park, Heun; Jeong, Yu Ra; Yun, Junyeong; Hong, Soo Yeong; Jin, Sangwoo; Lee, Seung-Jung; Zi, Goangseup; Ha, Jeong Sook

    2015-10-27

    We report on the facile fabrication of a stretchable array of highly sensitive pressure sensors. The proposed pressure sensor consists of the top layer of Au-deposited polydimethylsiloxane (PDMS) micropillars and the bottom layer of conductive polyaniline nanofibers on a polyethylene terephthalate substrate. The sensors are operated by the changes in contact resistance between Au-coated micropillars and polyaniline according to the varying pressure. The fabricated pressure sensor exhibits a sensitivity of 2.0 kPa(-1) in the pressure range below 0.22 kPa, a low detection limit of 15 Pa, a fast response time of 50 ms, and high stability over 10000 cycles of pressure loading/unloading with a low operating voltage of 1.0 V. The sensor is also capable of noninvasively detecting human-pulse waveforms from carotid and radial artery. A 5 × 5 array of the pressure sensors on the deformable substrate, which consists of PDMS islands for sensors and the mixed thin film of PDMS and Ecoflex with embedded liquid metal interconnections, shows stable sensing of pressure under biaxial stretching by 15%. The strain distribution obtained by the finite element method confirms that the maximum strain applied to the pressure sensor in the strain-suppressed region is less than 0.04% under a 15% biaxial strain of the unit module. This work demonstrates the potential application of our proposed stretchable pressure sensor array for wearable and artificial electronic skin devices.

  7. Ratchetting strain prediction

    International Nuclear Information System (INIS)

    Noban, Mohammad; Jahed, Hamid

    2007-01-01

    A time-efficient method for predicting ratchetting strain is proposed. The ratchetting strain at any cycle is determined by finding the ratchetting rate at only a few cycles. This determination is done by first defining the trajectory of the origin of stress in the deviatoric stress space and then incorporating this moving origin into a cyclic plasticity model. It is shown that at the beginning of the loading, the starting point of this trajectory coincides with the initial stress origin and approaches the mean stress, displaying a power-law relationship with the number of loading cycles. The method of obtaining this trajectory from a standard uniaxial asymmetric cyclic loading is presented. Ratchetting rates are calculated with the help of this trajectory and through the use of a constitutive cyclic plasticity model which incorporates deviatoric stresses and back stresses that are measured with respect to this moving frame. The proposed model is used to predict the ratchetting strain of two types of steels under single- and multi-step loadings. Results obtained agree well with the available experimental measurements

  8. Medical Sensor Network Infrastructures

    DEFF Research Database (Denmark)

    Andersen, Jacob

    researchers have been developing power-efficient security mechanisms for sensor networks. However, most of this work ignores the special usability demands from the clinical use-scenarios: set-up must be fast, and key pre-distribution is problematic if disposable sensors are discarded after being used for only...

  9. Sensors in Education

    NARCIS (Netherlands)

    Van Rosmalen, Peter; Schneider, Jan; Börner, Dirk

    2014-01-01

    Sensors rapidly become available both for personal as well as scientific use. A wide range of applications exists for personal use e.g. safety in and around the house, sport, fitness and health. In this workshop we will explore how sensors are (can be) used in education. We start with an

  10. Nanophotonic Image Sensors.

    Science.gov (United States)

    Chen, Qin; Hu, Xin; Wen, Long; Yu, Yan; Cumming, David R S

    2016-09-01

    The increasing miniaturization and resolution of image sensors bring challenges to conventional optical elements such as spectral filters and polarizers, the properties of which are determined mainly by the materials used, including dye polymers. Recent developments in spectral filtering and optical manipulating techniques based on nanophotonics have opened up the possibility of an alternative method to control light spectrally and spatially. By integrating these technologies into image sensors, it will become possible to achieve high compactness, improved process compatibility, robust stability and tunable functionality. In this Review, recent representative achievements on nanophotonic image sensors are presented and analyzed including image sensors with nanophotonic color filters and polarizers, metamaterial-based THz image sensors, filter-free nanowire image sensors and nanostructured-based multispectral image sensors. This novel combination of cutting edge photonics research and well-developed commercial products may not only lead to an important application of nanophotonics but also offer great potential for next generation image sensors beyond Moore's Law expectations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sensor technology foresight

    DEFF Research Database (Denmark)

    Andersen, Per Dannemand; Jørgensen, Birte Holst; Rasmussen, Birgitte

    2001-01-01

    heavily impacted by new sensor technology. It also appears that new sensor technology will affect food processing and the environment sector. Some impact is made on sectors such as agriculture, chemical engineering, domestic and otherappliances, security and defence, transport, and energy. Less impact...

  12. ALC Rooftop Sensor System

    Science.gov (United States)

    2017-10-31

    Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an... Interior view of the new sensor box ...................................................... 3 Fig. 4 Interior of original sensor box...7 Fig. 10 Interior of fiber patch panel .................................................................. 7 Fig. 11

  13. Stretch Sensor Device

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method for determining stretch values and movement of body parts, e.g. a foot, by analysing stretch data from a stretch sensor. By analysing data from the stretch sensor it is possible to determine stretch samples which are associated with particular motion phases...

  14. Magnetic sensor device

    NARCIS (Netherlands)

    2009-01-01

    The present invention provides a sensor device and a method for detg. the presence and/or amt. of target moieties in a sample fluid, the target moieties being labeled with magnetic or magnetizable objects. The sensor device comprises a magnetic field generating means adapted for applying a retention

  15. Aggregating Linked Sensor Data

    NARCIS (Netherlands)

    Stasch, Christoph; Schade, Sven; Llaves, Alejandro; Janowicz, K.; Bröring, Arne; Taylor, Kerry; Ayyagari, Arun; De Roure, David

    2011-01-01

    Sensor observations are usually oered in relation to a specific purpose, e.g., for reporting fine dust emissions, following strict procedures, and spatio-temporal scales. Consequently, the huge amount of data gathered by today's public and private sensor networks is most often not reused outside of

  16. Sensor Data Fusion

    DEFF Research Database (Denmark)

    Plascencia, Alfredo; Stepán, Petr

    2006-01-01

    The main contribution of this paper is to present a sensor fusion approach to scene environment mapping as part of a Sensor Data Fusion (SDF) architecture. This approach involves combined sonar array with stereo vision readings.  Sonar readings are interpreted using probability density functions...

  17. Multifunctional optical sensor

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a multifunctional optical sensor, having at least 2 areas which independently react to different input parameters, the sensor comprising a substrate and a polymeric layer comprising polymerized liquid crystal monomers having an ordered morphology, wherein the color, the

  18. Sensor Alerting Capability

    Science.gov (United States)

    Henriksson, Jakob; Bermudez, Luis; Satapathy, Goutam

    2013-04-01

    There is a large amount of sensor data generated today by various sensors, from in-situ buoys to mobile underwater gliders. Providing sensor data to the users through standardized services, language and data model is the promise of OGC's Sensor Web Enablement (SWE) initiative. As the amount of data grows it is becoming difficult for data providers, planners and managers to ensure reliability of data and services and to monitor critical data changes. Intelligent Automation Inc. (IAI) is developing a net-centric alerting capability to address these issues. The capability is built on Sensor Observation Services (SOSs), which is used to collect and monitor sensor data. The alerts can be configured at the service level and at the sensor data level. For example it can alert for irregular data delivery events or a geo-temporal statistic of sensor data crossing a preset threshold. The capability provides multiple delivery mechanisms and protocols, including traditional techniques such as email and RSS. With this capability decision makers can monitor their assets and data streams, correct failures or be alerted about a coming phenomena.

  19. Electrocatalytic glucose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, U; Luft, G; Mund, K; Preidel, W; Richter, G J

    1983-01-01

    An artificial pancreas consists of an insulin depot, a dosage unit and a glucose sensor. The measurement of the actual glucose concentration in blood is still an unsolved problem. Two methods are described for an electrocatalytic glucose sensor. Under the interfering action of amino acids and urea in-vitro measurements show an error of between 10% and 20%.

  20. An Integrated Health Monitoring Method for Structural Fatigue Life Evaluation Using Limited Sensor Data

    Directory of Open Access Journals (Sweden)

    Jingjing He

    2016-11-01

    Full Text Available A general framework for structural fatigue life evaluation under fatigue cyclic loading using limited sensor data is proposed in this paper. First, limited sensor data are measured from various sensors which are preset on the complex structure. Then the strain data at remote spots are used to obtain the strain responses at critical spots by the strain/stress reconstruction method based on empirical mode decomposition (REMD method. All the computations in this paper are directly performed in the time domain. After the local stress responses at critical spots are determined, fatigue life evaluation can be performed for structural health management and risk assessment. Fatigue life evaluation using the reconstructed stresses from remote strain gauge measurement data is also demonstrated with detailed error analysis. Following this, the proposed methodology is demonstrated using a three-dimensional frame structure and a simplified airfoil structure. Finally, several conclusions and future work are drawn based on the proposed study.