WorldWideScience

Sample records for field water balances

  1. Field-scale water balance closure in seasonally frozen conditions

    Directory of Open Access Journals (Sweden)

    X. Pan

    2017-11-01

    Full Text Available Hydrological water balance closure is a simple concept, yet in practice it is uncommon to measure every significant term independently in the field. Here we demonstrate the degree to which the field-scale water balance can be closed using only routine field observations in a seasonally frozen prairie pasture field site in Saskatchewan, Canada. Arrays of snow and soil moisture measurements were combined with a precipitation gauge and flux tower evapotranspiration estimates. We consider three hydrologically distinct periods: the snow accumulation period over the winter, the snowmelt period in spring, and the summer growing season. In each period, we attempt to quantify the residual between net precipitation (precipitation minus evaporation and the change in field-scale storage (snow and soil moisture, while accounting for measurement uncertainties. When the residual is negligible, a simple 1-D water balance with no net drainage is adequate. When the residual is non-negligible, we must find additional processes to explain the result. We identify the hydrological fluxes which confound the 1-D water balance assumptions during different periods of the year, notably blowing snow and frozen soil moisture redistribution during the snow accumulation period, and snowmelt runoff and soil drainage during the melt period. Challenges associated with quantifying these processes, as well as uncertainties in the measurable quantities, caution against the common use of water balance residuals to estimate fluxes and constrain models in such a complex environment.

  2. Botswana water and surface energy balance research program. Part 1: Integrated approach and field campaign results

    Science.gov (United States)

    Vandegriend, A. A.; Owe, M.; Vugts, H. F.; Ramothwa, G. K.

    1992-01-01

    The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. Results of the first part of the program (Botswana 1) which ran from 1 Jan. 1988 - 31 Dec. 1990 are summarized. Botswana 1 consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components in general are described and activities performed during the surface energy modeling component including the extensive field campaign are summarized. The results of the passive microwave component are summarized. The key of the field campaign was a multilevel approach, whereby measurements by various similar sensors were made at several altitudes and resolution. Data collection was performed at two adjacent sites of contrasting surface character. The following measurements were made: micrometeorological measurements, surface temperatures, soil temperatures, soil moisture, vegetation (leaf area index and biomass), satellite data, aircraft data, atmospheric soundings, stomatal resistance, and surface emissivity.

  3. Urbanization dramatically altered the water balances of a paddy field dominated basin in Southern China

    Science.gov (United States)

    Hao, L.; Sun, G.; Liu, Y.; Wan, J.; Qin, M.; Qian, H.; Liu, C.; John, R.; Fan, P.; Chen, J.

    2015-02-01

    Rice paddy fields provide important ecosystem services (e.g., food production, water retention, carbon sequestration) to a large population globally. However, these benefits are declining as a result of rapid environmental and socioeconomic transformations characterized by population growth, urbanization, and climate change in many Asian countries. This case study examined the responses of streamflow and watershed water balances to the decline of rice paddy fields due to urbanization in the Qinhuai River Basin in southern China where massive industrialization has occurred in the region during the past three decades. We found that streamflow increased by 58% and evapotranspiration (ET) decreased by 23% during 1986-2013 as a result of an increase in urban areas of three folds and reduction of rice paddy field by 27%. Both highflows and lowflows increased significantly by about 28% from 2002 to 2013. The increases in streamflow were consistent with the decreases in ET and leaf area index monitored by independent remote sensing MODIS data. The reduction in ET and increase in streamflow was attributed to the large cropland conversion that overwhelmed the effects of regional climate warming and climate variability. Converting traditional rice paddy fields to urban use dramatically altered land surface conditions from a water-dominated to a human-dominated landscape, and thus was considered as one of the extreme types of contemporary hydrologic disturbances. The ongoing large-scale urbanization in the rice paddy-dominated regions in the humid southern China, and East Asia, will likely elevate stormflow volume, aggravate flood risks, and intensify urban heat island effects. Understanding the linkage between land use change and changes in hydrological processes is essential for better management of urbanizing watersheds.

  4. Modelling the water balance of irrigated fields in tropical floodplain soils using Hydrus-1D

    Science.gov (United States)

    Beyene, Abebech; Frankl, Amaury; Verhoest, Niko E. C.; Tilahun, Seifu; Alamirew, Tena; Adgo, Enyew; Nyssen, Jan

    2017-04-01

    Accurate estimation of evaporation, transpiration and deep percolation is crucial in irrigated agriculture and the sustainable management of water resources. Here, the Hydrus-1D process-based numerical model was used to estimate the actual transpiration, soil evaporation and deep percolation from irrigated fields of floodplain soils. Field experiments were conducted from Dec 2015 to May 2016 in a small irrigation scheme (50 ha) called 'Shina' located in the Lake Tana floodplains of Ethiopia. Six experimental plots (three for onion and three for maize) were selected along a topographic transect to account for soil and groundwater variability. Irrigation amount (400 to 550 mm during the growing period) was measured using V-notches installed at each plot boundary and daily groundwater levels were measured manually from piezometers. There was no surface runoff observed in the growing period and rainfall was measured using a manual rain gauge. All daily weather data required for the evapotranspiration calculation using Pen Man Monteith equation were collected from a nearby metrological station. The soil profiles were described for each field to include the vertical soil heterogeneity in the soil water balance simulations. The soil texture, organic matter, bulk density, field capacity, wilting point and saturated moisture content were measured for all the soil horizons. Soil moisture monitoring at 30 and 60 cm depths was performed. The soil hydraulic parameters for each horizon was estimated using KNN pedotransfer functions for tropical soils and were effectively fitted using the RETC program (R2= 0.98±0.011) for initial prediction. A local sensitivity analysis was performed to select and optimize the most important hydraulic parameters for soil water flow in the unsaturated zone. The most sensitive parameters were saturated hydraulic conductivity (Ks), saturated moisture content (θs) and pore size distribution (n). Inverse modelling using Hydrus-1D further optimized

  5. Urbanization dramatically altered the water balances of a paddy field-dominated basin in southern China

    Science.gov (United States)

    Hao, L.; Sun, G.; Liu, Y.; Wan, J.; Qin, M.; Qian, H.; Liu, C.; Zheng, J.; John, R.; Fan, P.; Chen, J.

    2015-07-01

    Rice paddy fields provide important ecosystem services (e.g., food production, water retention, carbon sequestration) to a large population globally. However, these benefits are diminishing as a result of rapid environmental and socioeconomic transformations, characterized by population growth, urbanization, and climate change in many Asian countries. This case study examined the responses of stream flow and watershed water balances to the decline of rice paddy fields due to urbanization in the Qinhuai River basin in southern China, where massive industrialization has occurred during the past 3 decades. We found that stream flow increased by 58 % and evapotranspiration (ET) decreased by 23 % during 1986-2013 as a result of a three-fold increase in urban areas and a reduction of rice paddy fields by 27 %. Both high flows and low flows increased significantly by about 28 % from 2002 to 2013. The increases in stream flow were consistent with the decreases in ET and leaf area index monitored by independent remote sensing MODIS (Moderate Resolution Imaging Spectroradiometer) data. Attribution analysis, based on two empirical models, indicated that land-use/land-cover change contributed about 82-108 % of the observed increase in stream flow from 353 ± 287 mm yr-1 during 1986-2002 to 556 ± 145 during 2003-2013. We concluded that the reduction in ET was largely attributed to the conversion of cropland to urban use. The effects of land-use change overwhelmed the effects of regional climate warming and climate variability. Converting traditional rice paddy fields to urban use dramatically altered land surface conditions from an artificial wetland-dominated landscape to an urban land-use- dominated one, and thus was considered an extreme type of contemporary hydrologic disturbance. The ongoing large-scale urbanization of the rice paddy-dominated regions, in humid southern China and East Asia, will likely elevate storm-flow volume, aggravate flood risks, and intensify urban

  6. Converting Paddy Rice Field to Urban Use Dramatically Altered the Water and Energy Balances in Southern China

    Science.gov (United States)

    Hao, L.; Sun, G.; Liu, Y.; Qin, M.; Huang, X.; Fang, D.

    2017-12-01

    Paddy rice wetlands are the main land use type across southern China, which impact the regional environments by affecting evapotranspiration (ET) and other water and energy related processes. Our study focuses on the effects of land-cover change on water and energy processes in the Qinhuai River Basin, a typical subtropical humid region that is under rapid ecological and economical transformations. This study integrates multiple methods and techniques including remote sensing, water and energy balance model (i.e., Surface Energy Balance Algorithm for Land, SEBAL), ecohydrological model (i.e., Soil and Water Assessment Tool, SWAT), and ground observation (Eddy Covariance measurement, etc.). We found that conversion of paddy rice field to urban use led to rise in vapor pressure deficit (VPD) and reduction in ET, and thus resulted in changes in local and regional water and heat balance. The effects of the land-use change on ET and VPD overwhelmed the effects of regional climate warming and climate variability. We conclude that the ongoing large-scale urbanization of the rice paddy-dominated regions in humid southern China and East Asia will likely exacerbate environmental consequences (e.g., elevated storm-flow volume, aggravated flood risks, and intensified urban heat island and urban dry island effects). The potential role of vegetated land cover in moderating water and energy balances and maintaining a stable climate should be considered in massive urban planning and global change impact assessment in southern China.

  7. Urbanization dramatically altered the water balances of a paddy field dominated basin in southern China

    Science.gov (United States)

    L. Hao; G. Sun; Y. Liu; J. Wan; M. Qin; H. Qian; C. Liu; R. John; P. Fan; J. Chen

    2015-01-01

    Rice paddy fields provide important ecosystem services (e.g., food production, water retention, carbon sequestration) to a large population globally. However, these benefits are declining as a result of rapid environmental and socioeconomic transformations characterized by population growth, urbanization, and climate change in many Asian countries. This case study...

  8. Par Pond water balance

    International Nuclear Information System (INIS)

    Hiergesell, R.A.; Dixon, K.L.

    1996-06-01

    A water budget for the Par Pond hydrologic system was established in order to estimate the rate of groundwater influx to Par Pond. This estimate will be used in modeling exercises to predict Par Pond reservoir elevation and spillway discharge in the scenario where Savannah River water is no longer pumped and discharged into Par Pond. The principal of conservation of mass was used to develop the water budget, where water inflow was set equal to water outflow. Components of the water budget were identified, and the flux associated with each was determined. The water budget was considered balanced when inflow and outflow summed to zero. The results of this study suggest that Par Pond gains water from the groundwater system in the upper reaches of the reservoir, but looses water to the groundwater system near the dam. The rate of flux of groundwater from the water table aquifer into Par Pond was determined to be 13 cfs. The rate of flux from Par Pond to the water table aquifer near the dam was determined to be 7 cfs

  9. Field and laboratory studies on drought tolerance and water balance in adult Pergalumna nervosa (Acari: Oribatida: Galumnidae)

    Czech Academy of Sciences Publication Activity Database

    Slotsbo, S.; Sorensen, J. G.; Starý, Josef; Holmstrup, M.

    2017-01-01

    Roč. 114, January (2017), s. 86-91 E-ISSN 1802-8829 Institutional research plan: CEZ:AV0Z60660521 Institutional support: RVO:60077344 Keywords : oribatid mites * drought * soil water potential * osmolality * water loss * permeability Subject RIV: ED - Physiology OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 1.167, year: 2016

  10. EFFECTS OF HEAT STRESS ON BLOOD ACID-BASE BALANCE AND MINERAL CONTENT IN GUINEA FOWLS WHEN DRINKING WATER TREATED WITH MAGNETIC FIELD WAS USED

    Directory of Open Access Journals (Sweden)

    Beata GŁOWIŃSKA

    2011-01-01

    Full Text Available The purpose of the study was to examine the effect of 24-hour heat stress on blood acid-base balance parameters and mineral content in guinea fowls when drinking water treated with magnetic field was used. The maximum environmental temperature at the end of the present experiment was 32oC. The relative humidity was maintained at 55% (±2. Blood samples were collected from birds three times: in the 1st, 12th and 24th hour of stress. Exposure to heat stress significantly increased blood bicarbonate ion concentration (HCO3 -, content of buffer alkali (BB and decreased shortage of alkali (BE but only in the 12th hour of stress. In the level of oxygen pressure (pO2 and percentage of oxygen content (O2sat in the 12th and 24th hour of the experiment statistically high significant decrease occurred. In consequence of high environmental temperature the statistically significant decrease of sodium was found. No changes in the level of potassium and chlorine ions in guinea fowls watered magnetized water occurred.

  11. Application of the satellite system of the earth's gravity field measurement (GRACE) for the evaluation of water balance in large Russian river catchments

    Science.gov (United States)

    Frolova, Natalia; Zotov, Leonid; Grigoriev, Vadim; Sazonov, Alexey; Kireeva, Maria; Krylenko, Inna

    2017-04-01

    Space-based Earth observing systems provided a substantially large amount of information to the scientific community in recent decades. Cumulative effects of redistribution of masses in the Earth system can be seen in the changes of the gravity field of the Earth. Gravity Recovery and Climate Experiment (GRACE) satellites, launched 17.03.2002 from Plesetsk, provide a set of monthly Earth's gravity field observations. GRACE data is very useful for hydrological and climatological studies, especially over large territory, not completely covered by the meteorological and hydrological networks, like Russia. Possible application of the satellite gravity survey data obtained under the GRACE for solving various hydrological problems is discussed. The GRACE-based monthly gravity field data are transformed into the maps of water level equivalent and averaged for the catchments of the largest rivers of Russia. The temporal variability of the parameter is analyzed. Possible application of the GRACE data for the evaluation of particular components of water balance within the largest river basins of the European part of Russia is discussed. After averaging over 15 large Russian rivers basins annual component shows amplitude increase since 2009. Trend component grows until 2009 and then reaches a plateau. It is mostly dominated by Siberian rivers. Map for the trend show gravity field increase in Siberia, at Back Sea and decrease over Caspian Sea since 2003. GRACE satellite gravimetry data can be used for estimating terrestrial water storage (TWS) in a river basin scale. Terrestrial water storage (TWS) is the integrated sum of all basin storages (surface water bodies, soil and ground aquifer, snowpack and glaciers) and the ability to estimate TWS dynamics is useful for understanding the basin's water cycle, its interconnection with the local climate, physics of predictability of extreme hydrological events. Despite the importance of the TWS estimates, reliable ground

  12. Balancing the Energy-Water Nexus

    Energy Technology Data Exchange (ETDEWEB)

    Dell, Jan

    2010-09-15

    Optimizing the complex tradeoffs in the Energy-Water Nexus requires quantification of energy use, carbon emitted and water consumed. Water is consumed in energy production and is often a constraint to operations. More global attention and investment has been made on reducing carbon emissions than on water management. Review of public reporting by the largest 107 global power producers and 50 companies in the oil/gas industry shows broad accounting on carbon emissions but only partial reporting on water consumption metrics. If the Energy-Water Nexus is to be balanced, then water must also be measured to be optimally managed with carbon emissions.

  13. The changing Water Balance in Saxony

    Science.gov (United States)

    Wagner, Michael; Schwarze, Robert

    2017-04-01

    A first approach to understand mechanisms of the water balance under a changing climate is the analysis of observations in the past. Due to a breaking point analysis of temperatures between 1961 and 2014 it is possible to determine two time slots of reasonable durations, the first from 1961 to 1987 and the second from 1988 to 2014. The time slots feature an average temperature change of appoximately +0.8 K. Although the temperature is only loosely coupled with precipitation - the most important driver of the water balance - it allows for a first analysis of water balance sensitivity. Over the whole time frame the hydrograph separation method DIFGA is carried out for 98 catchments covering a third of Saxony. DIFGA quantifies the water balance according to the storage equation P = ETa + R + dS on a daily basis with different fast and slow runoff components from storages using optimized storage coefficients. The resulting water balance data is subject to a sensitivity analysis of absolute and related components over the two time slots. The most obvious changes can be found during the first vegetation period from April to June. The decreasing precipitation and the higher evaporative demand result in less runoff and ground water recharge. This leeds to a worse water supply for agriculture especially in the drier parts of Saxony. Less obvious although existent is the change of the water balance on a half year or an annual basis. The shift of vegetational activity to earlier weeks can be seen in an increasing evapotranspiration during winter. Surface runoff decreases significantly in summer as does the overall disposition to runoff. Due to the high inertia of ground water recharge, this slow component decreases over the whole year. For the database a clustering method is implemented. Three main groups of water balance reaction in catchments are identified: (1) moderate mean changes, (2) remarkable changes in slow runoff components and (3) significant changes in fast

  14. Renal aquaporins and water balance disorders

    DEFF Research Database (Denmark)

    Kortenoeven, Marleen; Fenton, Robert A.

    2013-01-01

    BACKGROUND: Aquaporins (AQPs) are a family of proteins that can act as water channels. Regulation of AQPs is critical to osmoregulation and the maintenance of body water homeostasis. Eight AQPs are expressed in the kidney of which five have been shown to play a role in body water balance; AQP1, A......-solute diet and diuretics. GENERAL SIGNIFICANCE: In recent years, our understanding of the underlying mechanisms of water balance disorders has increased enormously, which has opened up several possible new treatment strategies.......BACKGROUND: Aquaporins (AQPs) are a family of proteins that can act as water channels. Regulation of AQPs is critical to osmoregulation and the maintenance of body water homeostasis. Eight AQPs are expressed in the kidney of which five have been shown to play a role in body water balance; AQP1, AQP......2, AQP3, AQP4 and AQP7. AQP2 in particular is regulated by vasopressin. SCOPE OF REVIEW: This review summarizes our current knowledge of the underlying mechanisms of various water balance disorders and their treatment strategies. MAJOR CONCLUSIONS: Dysfunctions of AQPs are involved in disorders...

  15. Inter-comparison of four remote sensing based surface energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate

    Science.gov (United States)

    Chirouze, J.; Boulet, G.; Jarlan, L.; Fieuzal, R.; Rodriguez, J. C.; Ezzahar, J.; Er-Raki, S.; Bigeard, G.; Merlin, O.; Garatuza-Payan, J.; Watts, C.; Chehbouni, G.

    2013-01-01

    Remotely sensed surface temperature can provide a good proxy for water stress level and is therefore particularly useful to estimate spatially distributed evapotranspiration. Instantaneous stress levels or instantaneous latent heat flux are deduced from the surface energy balance equation constrained by this equilibrium temperature. Pixel average surface temperature depends on two main factors: stress and vegetation fraction cover. Methods estimating stress vary according to the way they treat each factor. Two families of methods can be defined: the contextual methods, where stress levels are scaled on a given image between hot/dry and cool/wet pixels for a particular vegetation cover, and single-pixel methods which evaluate latent heat as the residual of the surface energy balance for one pixel independently from the others. Four models, two contextual (S-SEBI and a triangle method, inspired by Moran et al., 1994) and two single-pixel (TSEB, SEBS) are applied at seasonal scale over a four by four km irrigated agricultural area in semi-arid northern Mexico. Their performances, both at local and spatial standpoints, are compared relatively to energy balance data acquired at seven locations within the area, as well as a more complex soil-vegetation-atmosphere transfer model forced with true irrigation and rainfall data. Stress levels are not always well retrieved by most models, but S-SEBI as well as TSEB, although slightly biased, show good performances. Drop in model performances is observed when vegetation is senescent, mostly due to a poor partitioning both between turbulent fluxes and between the soil/plant components of the latent heat flux and the available energy. As expected, contextual methods perform well when extreme hydric and vegetation conditions are encountered in the same image (therefore, esp. in spring and early summer) while they tend to exaggerate the spread in water status in more homogeneous conditions (esp. in winter).

  16. Intercomparison of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate

    Science.gov (United States)

    Chirouze, J.; Boulet, G.; Jarlan, L.; Fieuzal, R.; Rodriguez, J. C.; Ezzahar, J.; Er-Raki, S.; Bigeard, G.; Merlin, O.; Garatuza-Payan, J.; Watts, C.; Chehbouni, G.

    2014-03-01

    Instantaneous evapotranspiration rates and surface water stress levels can be deduced from remotely sensed surface temperature data through the surface energy budget. Two families of methods can be defined: the contextual methods, where stress levels are scaled on a given image between hot/dry and cool/wet pixels for a particular vegetation cover, and single-pixel methods, which evaluate latent heat as the residual of the surface energy balance for one pixel independently from the others. Four models, two contextual (S-SEBI and a modified triangle method, named VIT) and two single-pixel (TSEB, SEBS) are applied over one growing season (December-May) for a 4 km × 4 km irrigated agricultural area in the semi-arid northern Mexico. Their performance, both at local and spatial standpoints, are compared relatively to energy balance data acquired at seven locations within the area, as well as an uncalibrated soil-vegetation-atmosphere transfer (SVAT) model forced with local in situ data including observed irrigation and rainfall amounts. Stress levels are not always well retrieved by most models, but S-SEBI as well as TSEB, although slightly biased, show good performance. The drop in model performance is observed for all models when vegetation is senescent, mostly due to a poor partitioning both between turbulent fluxes and between the soil/plant components of the latent heat flux and the available energy. As expected, contextual methods perform well when contrasted soil moisture and vegetation conditions are encountered in the same image (therefore, especially in spring and early summer) while they tend to exaggerate the spread in water status in more homogeneous conditions (especially in winter). Surface energy balance models run with available remotely sensed products prove to be nearly as accurate as the uncalibrated SVAT model forced with in situ data.

  17. Virtual water balance estimation in Tunisia

    Science.gov (United States)

    Stambouli, Talel; Benalaya, Abdallah; Ghezal, Lamia; Ali, Chebil; Hammami, Rifka; Souissi, Asma

    2015-04-01

    The water in Tunisia is limited and unevenly distributed in the different regions, especially in arid zones. In fact, the annual rainfall average varies from less than 100 mm in the extreme South to over 1500 mm in the extreme North of the country. Currently, the conventional potential of water resources of the country is estimated about 4.84 billion m³ / year of which 2.7 billion cubic meters / year of surface water and 2.14 billion cubic meters / year of groundwater, characterizing a structural shortage for water safety in Tunisia (under 500m3/inhabitant/year). With over than 80% of water volumes have been mobilized for agriculture. The virtual water concept, defined by Allan (1997), as the amount of water needed to generate a product of both natural and artificial origin, this concept establish a similarity between product marketing and water trade. Given the influence of water in food production, virtual water studies focus generally on food products. At a global scale, the influence of these product's markets with water management was not seen. Influence has appreciated only by analyzing water-scarce countries, but at the detail level, should be increased, as most studies consider a country as a single geographical point, leading to considerable inaccuracies. The main objective of this work is the virtual water balance estimation of strategic crops in Tunisia (both irrigated and dry crops) to determine their influence on the water resources management and to establish patterns for improving it. The virtual water balance was performed basing on farmer's surveys, crop and meteorological data, irrigation management and regional statistics. Results show that the majority of farmers realize a waste of the irrigation water especially at the vegetable crops and fruit trees. Thus, a good control of the cultural package may result in lower quantities of water used by crops while ensuring good production with a suitable economic profitability. Then, the virtual water

  18. Arid site water balance: evapotranspiration modeling and measurements

    International Nuclear Information System (INIS)

    Gee, G.W.; Kirkham, R.R.

    1984-09-01

    In order to evaluate the magnitude of radionuclide transport at an aird site, a field and modeling study was conducted to measure and predict water movement under vegetated and bare soil conditions. Significant quantities of water were found to move below the roo of a shallow-rooted grass-covered area during wet years at the Hanford site. The unsaturated water flow model, UNSAT-1D, was resonably successful in simulating the transient behavior of the water balance at this site. The effects of layered soils on water balance were demonstrated using the model. Models used to evaluate water balance in arid regions should not rely on annual averages and assume that all precipitation is removed by evapotranspiration. The potential for drainage at arid sites exists under conditions where shallow rooted plants grow on coarse textured soils. This condition was observed at our study site at Hanford. Neutron probe data collected on a cheatgrass community at the Hanford site during a wet year indicated that over 5 cm of water drained below the 3.5-m depth. The unsaturated water flow model, UNSAT-1D, predicted water drainage of about 5 cm (single layer, 10 months) and 3.5 cm (two layers, 12 months) for the same time period. Additional field measurements of hydraulic conductivity will likely improve the drainage estimate made by UNSAT-1D. Additional information describing cheatgrass growth and water use at the grass site could improve model predictions of sink terms and subsequent calculations of water storage within the rooting zone. In arid areas where the major part of the annual precipitation occurs during months with low average potential evapotranspiration and where soils are vegetated but are coarse textured and well drained, significant drainage can occur. 31 references, 18 figures, 1 table

  19. Water balance in the fetus and neonate.

    Science.gov (United States)

    Lindower, Julie B

    2017-04-01

    Fetal water balance is dependent prenatally on the placental transfer of water from maternal to fetal circulation. Adequate amniotic fluid volume is one indicator of stable fetal status and development. Excessive or less than expected amniotic fluid volume may be a precursor to postnatal morbidity and mortality. Postnatal transition is marked by predictable changes in body water including contraction of extracellular volume and insensible fluid loss, primarily across the skin barrier. The degree to which these occur is determined by gestational and postnatal age. Neonatal complications and clinical conditions associated with either retention or excessive loss of body water can occur. Fluid therapy in the neonatal intensive care unit may be guided using three clinical indicators: change in body weight, serum sodium concentration, and urine output. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Energy balance of hydro-aggregate with Pelton water turbine

    International Nuclear Information System (INIS)

    Obretenov, V.

    2005-01-01

    One of the major tasks in the field of hydraulic power engineering refers to machines and equipment modernization in the hydropower plants and pumped storage power plants commissioned more than 20 years ago. The increase of hydraulic units operation efficiency will allow in a number of cases to substantially reduce the specific water consumption and to drive the output of electric energy up. In these cases it is crucial to find out the operational efficiency of individual system elements and to precisely focus the modernization endeavours on such elements where the energy losses go beyond all admissible limits. Besides, the determination of the energy losses in the hydro energy turbo system will allow valid defining of hydraulic units operational scope. This work treats the methods of balance study of a hydraulic unit with Peiton water turbine. The experimental results of the balance study of Belmeken pumped storage power plant hydraulic unit No 5 under turbine operational mode are presented

  1. Modelling raster-based monthly water balance components for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Ulmen, C.

    2000-11-01

    The terrestrial runoff component is a comparatively small but sensitive and thus significant quantity in the global energy and water cycle at the interface between landmass and atmosphere. As opposed to soil moisture and evapotranspiration which critically determine water vapour fluxes and thus water and energy transport, it can be measured as an integrated quantity over a large area, i.e. the river basin. This peculiarity makes terrestrial runoff ideally suited for the calibration, verification and validation of general circulation models (GCMs). Gauging stations are not homogeneously distributed in space. Moreover, time series are not necessarily continuously measured nor do they in general have overlapping time periods. To overcome this problems with regard to regular grid spacing used in GCMs, different methods can be applied to transform irregular data to regular so called gridded runoff fields. The present work aims to directly compute the gridded components of the monthly water balance (including gridded runoff fields) for Europe by application of the well-established raster-based macro-scale water balance model WABIMON used at the Federal Institute of Hydrology, Germany. Model calibration and validation is performed by separated examination of 29 representative European catchments. Results indicate a general applicability of the model delivering reliable overall patterns and integrated quantities on a monthly basis. For time steps less then too weeks further research and structural improvements of the model are suggested. (orig.)

  2. Quantifying catchment water balances and their uncertainties by expert elicitation

    Science.gov (United States)

    Sebok, Eva; Refsgaard, Jens Christian; Warmink, Jord J.; Stisen, Simon; Høgh Jensen, Karsten

    2017-04-01

    The increasing demand on water resources necessitates a more responsible and sustainable water management requiring a thorough understanding of hydrological processes both on small scale and on catchment scale. On catchment scale, the characterization of hydrological processes is often carried out by calculating a water balance based on the principle of mass conservation in hydrological fluxes. Assuming a perfect water balance closure and estimating one of these fluxes as a residual of the water balance is a common practice although this estimate will contain uncertainties related to uncertainties in the other components. Water balance closure on the catchment scale is also an issue in Denmark, thus, it was one of the research objectives of the HOBE hydrological observatory, that has been collecting data in the Skjern river catchment since 2008. Water balance components in the 1050 km2 Ahlergaarde catchment and the nested 120 km2 Holtum catchment, located in the glacial outwash plan of the Skjern catchment, were estimated using a multitude of methods. As the collected data enables the complex assessment of uncertainty of both the individual water balance components and catchment-scale water balances, the expert elicitation approach was chosen to integrate the results of the hydrological observatory. This approach relies on the subjective opinion of experts whose available knowledge and experience about the subject allows to integrate complex information from multiple sources. In this study 35 experts were involved in a multi-step elicitation process with the aim of (1) eliciting average annual values of water balance components for two nested catchments and quantifying the contribution of different sources of uncertainties to the total uncertainty in these average annual estimates; (2) calculating water balances for two catchments by reaching consensus among experts interacting in form of group discussions. To address the complex problem of water balance closure

  3. Sensible heat balance measurements of soil water evaporation beneath a maize canopy

    Science.gov (United States)

    Soil water evaporation is an important component of the water budget in a cropped field. Few methods are available for continuous and independent measurement of soil water evaporation. A sensible heat balance (SHB) approach has recently been demonstrated for continuously determining soil water evapo...

  4. Trends in water balance components across the Brazilian Cerrado

    Science.gov (United States)

    The Brazilian Cerrado (Savanna) is considered one of the most important biomes for Brazilian water resources; however, little is known about the components of the water balance in this biome. In this study, we reviewed the available literature on the water balance components in the Brazilian Cerrado...

  5. Bathymetric survey and estimation of the water balance of Lake ...

    African Journals Online (AJOL)

    Quantification of the water balance components and bathymetric survey is very crucial for sustainable management of lake waters. This paper focuses on the bathymetry and the water balance of the crater Lake Ardibo, recently utilized for irrigation. The bathymetric map of the lake is established at a contour interval of 10 ...

  6. Testing the performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance, and vegetation structure

    Science.gov (United States)

    Kucharik, Christopher J.; Foley, Jonathan A.; Delire, Christine; Fisher, Veronica A.; Coe, Michael T.; Lenters, John D.; Young-Molling, Christine; Ramankutty, Navin; Norman, John M.; Gower, Stith T.

    2000-09-01

    While a new class of Dynamic Global Ecosystem Models (DGEMs) has emerged in the past few years as an important tool for describing global biogeochemical cycles and atmosphere-biosphere interactions, these models are still largely untested. Here we analyze the behavior of a new DGEM and compare the results to global-scale observations of water balance, carbon balance, and vegetation structure. In this study, we use version 2 of the Integrated Biosphere Simulator (IBIS), which includes several major improvements and additions to the prototype model developed by Foley et al. [1996]. IBIS is designed to be a comprehensive model of the terrestrial biosphere; the model represents a wide range of processes, including land surface physics, canopy physiology, plant phenology, vegetation dynamics and competition, and carbon and nutrient cycling. The model generates global simulations of the surface water balance (e.g., runoff), the terrestrial carbon balance (e.g., net primary production, net ecosystem exchange, soil carbon, aboveground and belowground litter, and soil CO2 fluxes), and vegetation structure (e.g., biomass, leaf area index, and vegetation composition). In order to test the performance of the model, we have assembled a wide range of continental and global-scale data, including measurements of river discharge, net primary production, vegetation structure, root biomass, soil carbon, litter carbon, and soil CO2 flux. Using these field data and model results for the contemporary biosphere (1965-1994), our evaluation shows that simulated patterns of runoff, NPP, biomass, leaf area index, soil carbon, and total soil CO2 flux agree reasonably well with measurements that have been compiled from numerous ecosystems. These results also compare favorably to other global model results.

  7. An updated water balance for the Grootfontein aquifer near Mahikeng

    African Journals Online (AJOL)

    Analysis of water levels and a water balance using recent assessments of groundwater abstractions confirm past work describing the hydrogeological functioning of the aquifer, and suggest that current abstractions need to fall by between 19 and 36 ML/day (7 and 13 Mm3/a) to bring the aquifer back into longterm balance.

  8. Spatial Irrigation Management Using Remote Sensing Water Balance Modeling and Soil Water Content Monitoring

    Science.gov (United States)

    Barker, J. Burdette

    Spatially informed irrigation management may improve the optimal use of water resources. Sub-field scale water balance modeling and measurement were studied in the context of irrigation management. A spatial remote-sensing-based evapotranspiration and soil water balance model was modified and validated for use in real-time irrigation management. The modeled ET compared well with eddy covariance data from eastern Nebraska. Placement and quantity of sub-field scale soil water content measurement locations was also studied. Variance reduction factor and temporal stability were used to analyze soil water content data from an eastern Nebraska field. No consistent predictor of soil water temporal stability patterns was identified. At least three monitoring locations were needed per irrigation management zone to adequately quantify the mean soil water content. The remote-sensing-based water balance model was used to manage irrigation in a field experiment. The research included an eastern Nebraska field in 2015 and 2016 and a western Nebraska field in 2016 for a total of 210 plot-years. The response of maize and soybean to irrigation using variations of the model were compared with responses from treatments using soil water content measurement and a rainfed treatment. The remote-sensing-based treatment prescribed more irrigation than the other treatments in all cases. Excessive modeled soil evaporation and insufficient drainage times were suspected causes of the model drift. Modifying evaporation and drainage reduced modeled soil water depletion error. None of the included response variables were significantly different between treatments in western Nebraska. In eastern Nebraska, treatment differences for maize and soybean included evapotranspiration and a combined variable including evapotranspiration and deep percolation. Both variables were greatest for the remote-sensing model when differences were found to be statistically significant. Differences in maize yield in

  9. Management of the water balance and quality in mining areas

    Science.gov (United States)

    Pasanen, Antti; Krogerus, Kirsti; Mroueh, Ulla-Maija; Turunen, Kaisa; Backnäs, Soile; Vento, Tiia; Veijalainen, Noora; Hentinen, Kimmo; Korkealaakso, Juhani

    2015-04-01

    Although mining companies have long been conscious of water related risks they still face environmental management problems. These problems mainly emerge because mine sites' water balances have not been adequately assessed in the stage of the planning of mines. More consistent approach is required to help mining companies identify risks and opportunities related to the management of water resources in all stages of mining. This approach requires that the water cycle of a mine site is interconnected with the general hydrologic water cycle. In addition to knowledge on hydrological conditions, the control of the water balance in the mining processes require knowledge of mining processes, the ability to adjust process parameters to variable hydrological conditions, adaptation of suitable water management tools and systems, systematic monitoring of amounts and quality of water, adequate capacity in water management infrastructure to handle the variable water flows, best practices to assess the dispersion, mixing and dilution of mine water and pollutant loading to receiving water bodies, and dewatering and separation of water from tailing and precipitates. WaterSmart project aims to improve the awareness of actual quantities of water, and water balances in mine areas to improve the forecasting and the management of the water volumes. The study is executed through hydrogeological and hydrological surveys and online monitoring procedures. One of the aims is to exploit on-line water quantity and quality monitoring for the better management of the water balances. The target is to develop a practical and end-user-specific on-line input and output procedures. The second objective is to develop mathematical models to calculate combined water balances including the surface, ground and process waters. WSFS, the Hydrological Modeling and Forecasting System of SYKE is being modified for mining areas. New modelling tools are developed on spreadsheet and system dynamics platforms to

  10. Salt balance, fresh water residence time and budget for non ...

    African Journals Online (AJOL)

    Water and salt budgets suggest that in order to balance the inflow and outflow of water at Makoba bay, there is net flux of water from the bay to the open ocean during wet season. Residual salt fluxes between the bay and the open ocean indicate advective salt export. Exchange of water between the bay with the open ocean ...

  11. A Generic Water Balance Model for a Trench Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Choi, Hee Joo

    2016-01-01

    To quantify the exposure dose rates from the nuclide release and transport through the various pathways possible in the near- and far-fields of the LILW repository system, various scenarios are to be conveniently simulated in a straightforward manner and extensively with this GoldSim model, as similarly developed for other various types of repositories in previous studies. Through this study, a result from four scenario cases, each of which is or is not associated with water balance, are compared to each other to see what happens in different cases in which an overflow over a trench rooftop, stochastic rainfall on the trench cover, and an unsaturated flow scheme under the trench bottom are combined. The other two latter elements vary periodically owing to stochastic behavior of the time series data for the past rain-fall records. This program is ready for a total system performance assessment and is able to deterministically and probabilistically evaluate the nuclide release from a repository and farther transport into the geosphere and biosphere under various scenarios that can occur after a failure of waste packages with associated uncertainty. An illustration conducted through a study with a new water balance scheme shows the possibility of a stochastic evaluation associated with the stochastic behavior and various pathways that happen around the trench repository.

  12. A Generic Water Balance Model for a Trench Repository

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Choi, Hee Joo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    To quantify the exposure dose rates from the nuclide release and transport through the various pathways possible in the near- and far-fields of the LILW repository system, various scenarios are to be conveniently simulated in a straightforward manner and extensively with this GoldSim model, as similarly developed for other various types of repositories in previous studies. Through this study, a result from four scenario cases, each of which is or is not associated with water balance, are compared to each other to see what happens in different cases in which an overflow over a trench rooftop, stochastic rainfall on the trench cover, and an unsaturated flow scheme under the trench bottom are combined. The other two latter elements vary periodically owing to stochastic behavior of the time series data for the past rain-fall records. This program is ready for a total system performance assessment and is able to deterministically and probabilistically evaluate the nuclide release from a repository and farther transport into the geosphere and biosphere under various scenarios that can occur after a failure of waste packages with associated uncertainty. An illustration conducted through a study with a new water balance scheme shows the possibility of a stochastic evaluation associated with the stochastic behavior and various pathways that happen around the trench repository.

  13. Water Balance and Groundwater Quality of Koraro Area, Tigray ...

    African Journals Online (AJOL)

    This paper focuses Koraro Tabia (or Station), one of the millennium villages where shortage and bad quality water is a challenge. Water balance and the hydro chemical characteristics of groundwater have been investigated in order to assess the water potential and quality in the area. Hydrometeorological information has ...

  14. Regulation of water balance in mangroves.

    Science.gov (United States)

    Reef, Ruth; Lovelock, Catherine E

    2015-02-01

    Mangroves are a group of highly salt-tolerant woody plants. The high water use efficiency of mangroves under saline conditions suggests that regulation of water transport is a crucial component of their salinity tolerance. This review focuses on the processes that contribute to the ability of mangroves to maintain water uptake and limit water loss to the soil and the atmosphere under saline conditions, from micro to macro scales. These processes include: (1) efficient filtering of the incoming water to exclude salt; (2) maintenance of internal osmotic potentials lower than that of the rhizosphere; (3) water-saving properties; and (4) efficient exploitation of less-saline water sources when these become available. Mangroves are inherently plastic and can change their structure at the root, leaf and stand levels in response to salinity in order to exclude salt from the xylem stream, maintain leaf hydraulic conductance, avoid cavitation and regulate water loss (e.g. suberization of roots and alterations of leaf size, succulence and angle, hydraulic anatomy and biomass partitioning). However, much is still unknown about the regulation of water uptake in mangroves, such as how they sense and respond to heterogeneity in root zone salinity, the extent to which they utilize non-stomatally derived CO2 as a water-saving measure and whether they can exploit atmospheric water sources. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Regulation of water balance in mangroves

    Science.gov (United States)

    Reef, Ruth; Lovelock, Catherine E.

    2015-01-01

    Background Mangroves are a group of highly salt-tolerant woody plants. The high water use efficiency of mangroves under saline conditions suggests that regulation of water transport is a crucial component of their salinity tolerance. Scope This review focuses on the processes that contribute to the ability of mangroves to maintain water uptake and limit water loss to the soil and the atmosphere under saline conditions, from micro to macro scales. These processes include: (1) efficient filtering of the incoming water to exclude salt; (2) maintenance of internal osmotic potentials lower than that of the rhizosphere; (3) water-saving properties; and (4) efficient exploitation of less-saline water sources when these become available. Conclusions Mangroves are inherently plastic and can change their structure at the root, leaf and stand levels in response to salinity in order to exclude salt from the xylem stream, maintain leaf hydraulic conductance, avoid cavitation and regulate water loss (e.g. suberization of roots and alterations of leaf size, succulence and angle, hydraulic anatomy and biomass partitioning). However, much is still unknown about the regulation of water uptake in mangroves, such as how they sense and respond to heterogeneity in root zone salinity, the extent to which they utilize non-stomatally derived CO2 as a water-saving measure and whether they can exploit atmospheric water sources. PMID:25157072

  16. Water radon anomaly fields

    Energy Technology Data Exchange (ETDEWEB)

    Yin, H.

    1980-01-01

    A striking aspect of water radon levels in relation to earthquakes is that before the Tangshan quake there was a remarkable synchronicity of behavior of many wells within 200 km of Tangshan. However, for many wells anomalous values persisted after the earthquake, particularly outside the immediate region of the quake. It is clear that radon may be produced by various processes; some candidates are pressure, shear, vibration, temperature and pressure, mixing of water-bearing strata, breakdown of mineral crystal structure, and the like, although it is not clear which of these are primary. It seems that a possible explanation of the persistence of the anomaly in the case of Tangshan may be that the earthquake released strain in the vicinity of Tangshan but increased it further along the geological structures involved, thus producing a continued radon buildup.

  17. A Stochastic Water Balance Framework for Lowland Watersheds

    Science.gov (United States)

    Thompson, Sally; MacVean, Lissa; Sivapalan, Murugesu

    2017-11-01

    The water balance dynamics in lowland watersheds are influenced not only by local hydroclimatic controls on energy and water availability, but also by imports of water from the upstream watershed. These imports result in a stochastic extent of inundation in lowland watersheds that is determined by the local flood regime, watershed topography, and the rate of loss processes such as drainage and evaporation. Thus, lowland watershed water balances depend on two stochastic processes—rainfall and local inundation dynamics. Lowlands are high productivity environments that are disproportionately associated with urbanization, high productivity agriculture, biodiversity, and flood risk. Consequently, they are being rapidly altered by human development—generally with clear economic and social motivation—but also with significant trade-offs in ecosystem services provision, directly related to changes in the components and variability of the lowland water balance. We present a stochastic framework to assess the lowland water balance and its sensitivity to two common human interventions—replacement of native vegetation with alternative land uses, and construction of local flood protection levees. By providing analytical solutions for the mean and PDF of the water balance components, the proposed framework provides a mechanism to connect human interventions to hydrologic outcomes, and, in conjunction with ecosystem service production estimates, to evaluate trade-offs associated with lowland watershed development.

  18. Water balance modelling of a uranium mill effluent management system

    Science.gov (United States)

    Plagnes, Valérie; Schmid, Brad; Mitchell, Brett; Judd-Henrey, Ian

    2017-06-01

    A water balance model was developed to forecast the management strategy of a uranium mill effluent system, located in northern Saskatchewan, Canada. Mining and milling operations, such as pit dewatering or treated effluent release, can potentially influence the hydrology and the water quality downstream of the operations. This study presents the methodology used to predict water volumes and water quality discharging downstream in surface water bodies. A compartment model representing the three subsequent lakes included in the management system was set up using the software GoldSim®. The water balance allows predicting lake volumes at the daily time step. A mass balance model developed for conservative elements was also developed and allows validating the proportions of inputs and outputs issued from the water balance model. This model was then used as predictive tool to evaluate the impact of different scenarios of effluents management on volumes and chemistry of surface water for short and longer time periods. An additional significant benefit of this model is that it can be used as an input for geochemical modelling to predict the concentrations of all constituents of concern in the receiving surface water.

  19. Estimated future water balance of Euphrates River

    International Nuclear Information System (INIS)

    Mikhail, W.

    1996-01-01

    In order to achieve national socio-economic development, the three riparian countries of the Euphrates river (i.e. Syria, Iraq and Turkey) are separately formulating and executing large scale irrigation and hydropower projects. If all these projects are to be completed as planned, the total irrigated area will increase to 3,350,000 ha. However, the water requirements of the planned irrigated area and the evaporation losses from dam reservoirs, in addition to municipal and industrial water needs, will exceed by 12 billion cubic m/year the hydrological potential of the Euphrates river. Furthermore, the water quality of the river will deteriorate as a result of the downstream increase of drainage return flow, water salinity will reach harmful levels, and there will be contamination by nitrate and pesticide residues. Cooperation between the three countries is therefore urgently needed to ensure sustainable agricultural development and to preserve the environment of the basin. 34 refs., 3 tabs., 2 figs

  20. Hormonal Contraception, Body Water Balance and Thermoregulation

    National Research Council Canada - National Science Library

    Nadel, Ethan

    1998-01-01

    To test the hypothesis estrogen enhances water and sodium retention, we compared the fluid regulatory responses to 150 mm of exercise-induced dehydration, followed by 180 ruin of ad libitum drinking...

  1. bathymetric survey and estimation of the water balance of lake

    African Journals Online (AJOL)

    Preferred Customer

    The average annual open water evaporation, estimated from Colorado Class-A Pan records and Penman modified method is 23.49 million cubic .... Therefore, the ∆S term in equation 2 can be replaced by the net unmeasured ground .... appears that the steady-state water balance is reasonable. Because, the residual value ...

  2. Water Balance and Proximate Composition in Cowpea ( vigna ...

    African Journals Online (AJOL)

    Studying the water balance and proximate composition in plants subjected to these stresses compared the influence of drought and flooding on cowpea seedlings. In drought plants the leaf water potential, its components and the proximate composition were markedly reduced by the end of the experimental period.

  3. Uncertainty in a monthly water balance model using the generalized ...

    Indian Academy of Sciences (India)

    Uncertainty in a monthly water balance model using the generalized likelihood uncertainty estimation methodology. Diego Rivera1,∗. , Yessica Rivas. 2 and Alex Godoy. 3. 1. Laboratory of Comparative Policy in Water Resources Management, University of Concepcion,. CONICYT/FONDAP 15130015, Concepcion, Chile. 2.

  4. Water balance of rice plots under three different water treatments: monitoring activity and experimental results

    Science.gov (United States)

    Chiaradia, Enrico Antonio; Romani, Marco; Facchi, Arianna; Gharsallah, Olfa; Cesari de Maria, Sandra; Ferrari, Daniele; Masseroni, Daniele; Rienzner, Michele; Battista Bischetti, Gian; Gandolfi, Claudio

    2014-05-01

    In the agricultural seasons 2012 and 2013, a broad monitoring activity was carried out at the Rice Research Centre of Ente Nazionale Risi (CRR-ENR) located in Castello d'Agogna (PV, Italy) with the purpose of comparing the water balance components of paddy rice (Gladio cv.) under different water regimes and assessing the possibility of reducing the high water inputs related to the conventional practice of continuous submergence. The experiments were laid out in six plots of about 20 m x 80 m each, with two replicates for each of the following water regimes: i) continuous flooding with wet-seeded rice (FLD), ii) continuous flooding from around the 3-leaf stage with dry-seeded rice (3L-FLD), and iii) surface irrigation every 7-10 days with dry-seeded rice (IRR). One out of the two replicates of each treatment was instrumented with: water inflow and outflow meters, set of piezometers, set of tensiometers and multi-sensor moisture probes. Moreover, an eddy covariance station was installed on the bund between the treatments FLD and IRR. Data were automatically recorded and sent by a wireless connection to a PC, so as to be remotely controlled thanks to the development of a Java interface. Furthermore, periodic measurements of crop biometric parameters (LAI, crop height and rooting depth) were performed in both 2012 and 2013 (11 and 14 campaigns respectively). Cumulative water balance components from dry-seeding (3L-FLD and IRR), or flooding (FLD), to harvest were calculated for each plot by either measurements (i.e. rainfall, irrigation and surface drainage) or estimations (i.e. difference in the field water storage, evaporation from both the soil and the water surface and transpiration), whereas the sum of percolation and capillary rise (i.e. the 'net percolation') was obtained as the residual term of the water balance. Incidentally, indices of water application efficiency (evapotranspiration over net water input) and water productivity (grain production over net water

  5. Virtual water flows and Water Balance Impacts of the U.S. Great Lakes Basin

    Science.gov (United States)

    Ruddell, B. L.; Mayer, A. S.; Mubako, S. T.

    2014-12-01

    To assess the impacts of human water use and trade on water balances, we estimate virtual water flows for counties in the U.S. portion of the Great Lakes basin. This is a water-rich region, but one where ecohydrological 'hotspots' are created by water scarcity in certain locations (Mubako et al., 2012). Trade shifts water uses from one location to another, causing water scarcity in some locations but mitigating water scarcity in other locations. A database of water withdrawals was assembled to give point-wise withdrawals by location, source, and use category (commercial, thermoelectric power, industrial, agricultural, mining). Point-wise consumptive use is aggregated to the county level, giving direct, virtual water exports by county. A county-level trade database provides import and export data for the various use categories. We link the annual virtual water exported from a county for a given use category to corresponding annual trade exports. Virtual water balances for each county by use category are calculated, and then compared with the renewable annual freshwater supply. Preliminary findings are that overall virtual water balances (imports - exports) are positive for almost all counties, because urban areas import goods and services that are more water intensive than the exported goods and services. However, for some agriculturally-intensive counties, the overall impact of virtual water trade on the water balance is close to zero, and the balance for agricultural sector virtual water trade is negative, reflecting a net impact of economic trade on the water balance in these locations. We also compare the virtual water balance to available water resources, using annual precipitation less evapotranspiration as a crude estimate of net renewable water availability. In some counties virtual water exports approach 30% of the available water resources, indicating the potential for water scarcity, especially from an aquatic ecosystem standpoint.

  6. Stochastic soil water balance under seasonal climates.

    Science.gov (United States)

    Feng, Xue; Porporato, Amilcare; Rodriguez-Iturbe, Ignacio

    2015-02-08

    The analysis of soil water partitioning in seasonally dry climates necessarily requires careful consideration of the periodic climatic forcing at the intra-annual timescale in addition to daily scale variabilities. Here, we introduce three new extensions to a stochastic soil moisture model which yields seasonal evolution of soil moisture and relevant hydrological fluxes. These approximations allow seasonal climatic forcings (e.g. rainfall and potential evapotranspiration) to be fully resolved, extending the analysis of soil water partitioning to account explicitly for the seasonal amplitude and the phase difference between the climatic forcings. The results provide accurate descriptions of probabilistic soil moisture dynamics under seasonal climates without requiring extensive numerical simulations. We also find that the transfer of soil moisture between the wet to the dry season is responsible for hysteresis in the hydrological response, showing asymmetrical trajectories in the mean soil moisture and in the transient Budyko's curves during the 'dry-down' versus the 'rewetting' phases of the year. Furthermore, in some dry climates where rainfall and potential evapotranspiration are in-phase, annual evapotranspiration can be shown to increase because of inter-seasonal soil moisture transfer, highlighting the importance of soil water storage in the seasonal context.

  7. Conclusions drawn of tritium balance in light water reactors

    International Nuclear Information System (INIS)

    Dolle, L.; Bazin, J.

    1978-01-01

    In the tritium balance of pressurized water reactors, using boric acid and lithium in the cooling water, contribution of the tritium produced by fission, diffusing through the zircalloy of the fuel cladding estimated to 0.1%, was not in agreement with quantities measured in reactors. It is still difficult to estimate what percentage is represented by the tritium formed by fission in the fuel, owing to diffusion through cladding. The tritium balance in different working nuclear power stations is consequently of interest. The tritium balance method in the water of the cooling circuit of PWR is fast and experimentally simple. It is less sensitive to errors originating from fission yields than balance of tritium produced by fission in the fuel. A tritium balance in the water of the cooling circuit of Biblis-A, with a specific burn-up of 18000 MWd/t gives a better precision. Diffusion rate of tritium produced by fission was less than 0.2%. So low a contribution is a justification to the use of lithium with an isotopic purity of 99.9% of lithium 7 to limit at a low value the residual lithium 6 [fr

  8. Water and sodium balance in space

    DEFF Research Database (Denmark)

    Drummer, C; Norsk, P; Heer, M

    2001-01-01

    in the past, is not a consequence of the variable microG. The handling of sodium, however, is considerably affected by microG. Sodium-retaining endocrine systems, such as renin-aldosterone and catecholamines, are much more activated during microG than on Earth. Despite a comparable oral sodium supply, urinary...... sodium excretion is diminished and a considerable amount of sodium is retained-without accumulating in the intravascular space. An enormous storage capacity for sodium in the extravascular space and a mechanism that allows the dissociation between water and sodium handling likely contribute to the fluid...

  9. Water--Problems and Solutions. A Report Concerning the Problems and Solutions of Negative Water Balance.

    Science.gov (United States)

    Ewert, Alan

    Outdoor leaders constantly face problems created by water shortage and, to act effectively, must thoroughly understand the body's use of water and the ways to delay dehydration when water shortage occurs. Dehydration begins when there is a negative water balance, or more water lost than ingested, and progresses from the stage of dryness, to the…

  10. Cloud water interception and canopy water balance in the Hawaiian Islands: preliminary results and emerging patterns

    Science.gov (United States)

    Tseng, H.; Giambelluca, T. W.; DeLay, J. K.; Nullet, M.

    2017-12-01

    Steep climate gradients and diverse ecosystems make the Hawaiian Islands an ideal laboratory for ecohydrological experiments. Researchers are able to control physical and ecological variables, which is difficult for most environmental studies, by selecting sites along these gradients. Tropical montane forests, especially those situated in the cloud zone, are known to improve recharge and sustain baseflow. This is probably the result of frequent and persistent fog characteristic to these systems. During fog events, evapotranspiration is suppressed due to high humidity and reduced solar radiation. Moreover, cloud water interception by the forest canopy can produce fog drip and contribute significantly to the local water budget. Because the interception process is a complex interaction between the atmosphere and the vegetation, the effects of the meteorological conditions and canopy characteristics are equally important and sometimes hard to separate. This study aims to examine patterns in cloud water interception and canopy water balance across five tropical montane forest sites on three of the main islands of Hawaii. The sites cover a range of elevations between 1100- 2114 m, annual rainfall between 1155-3375 mm, and different dominant plant species with canopy heights ranging from 1.5 m to 30 m. We investigate the effect of climatic factors by comparing passive fog gauge measurements and other meteorological variables, then examine the differences in canopy water balance by comparing throughfall and stemflow measurements at these sites. While this study is ongoing, we present the first few months of field observations and the results of preliminary analyses. This study will improve understanding of how large-scale climate and vegetation factors interact to control cloud water interception and will inform ongoing watershed management. This is particularly important for oceanic islands such as Hawaii because they rely on precipitation entirely for water supply and

  11. Assessing climate change impacts on water balance in the Mount ...

    Indian Academy of Sciences (India)

    A statistical downscaling known for producing station-scale climate information from GCM output was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water balance assessment of climate change ...

  12. Assessing climate change impacts on water balance in the Mount

    Indian Academy of Sciences (India)

    A statistical downscaling known for producing station-scale climate information from GCM output was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water balance assessment of climate change ...

  13. Assessment of the water balance of the Barekese reservoir in ...

    African Journals Online (AJOL)

    A 10 year water balance has been assessed for the Barekese Reservoir using an integrated Remote Sensing and GIS approach for estimation of surface runoff based on Soil Conservation Service Curve Number (SCS-CN). The SCS-CN model was calibrated against observed discharges recorded at Offinso located 10.3km ...

  14. Temporal and spatial variability of global water balance

    Science.gov (United States)

    McCabe, Gregory J.; Wolock, David M.

    2013-01-01

    An analysis of simulated global water-balance components (precipitation [P], actual evapotranspiration [AET], runoff [R], and potential evapotranspiration [PET]) for the past century indicates that P has been the primary driver of variability in R. Additionally, since about 2000, there have been increases in P, AET, R, and PET for most of the globe. The increases in R during 2000 through 2009 have occurred despite unprecedented increases in PET. The increases in R are the result of substantial increases in P during the cool Northern Hemisphere months (i.e. October through March) when PET increases were relatively small; the largest PET increases occurred during the warm Northern Hemisphere months (April through September). Additionally, for the 2000 through 2009 period, the latitudinal distribution of P departures appears to co-vary with the mean P departures from 16 climate model projections of the latitudinal response of P to warming, except in the high latitudes. Finally, changes in water-balance variables appear large from the perspective of departures from the long-term means. However, when put into the context of the magnitudes of the raw water balance variable values, there appears to have been little change in any of the water-balance variables over the past century on a global or hemispheric scale.

  15. Basin-scale water-balance dataset (BSWB): an update

    Science.gov (United States)

    Hirschi, Martin; Seneviratne, Sonia I.

    2017-04-01

    This contribution presents an update of a basin-scale diagnostic dataset of monthly variations in terrestrial water storage for large river basins worldwide (BSWB v2016; Hirschi et al., in review). Terrestrial water storage comprises all forms of water storage on land surfaces, and its seasonal and inter-annual variations are mostly determined by soil moisture, groundwater, snow cover, and surface water. The presented dataset is derived using a combined atmospheric and terrestrial water-balance approach with conventional streamflow measurements and re-analysis data of atmospheric moisture flux convergence and water vapor content. It extends a previous existing version of the dataset (Mueller et al., 2011) temporally and spatially. Comparison of BSWB v2016 to independent estimates of terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE) show good agreement. Hirschi, M., and Seneviratne, S. I.: Basin-scale water-balance dataset (BSWB): an update. Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2016-33, in review, 2016. Mueller, B., Hirschi, M., and Seneviratne, S. I.: New diagnostic estimates of variations in terrestrial water storage based on ERA-Interim data. Hydrol. Process., 25, 996-1008, doi:10.1002/hyp.7652, 2011.

  16. Water in the Balance: A Parking Lot Story

    Science.gov (United States)

    Haas, N. A.; Vitousek, S.

    2017-12-01

    The greater Chicagoland region has seen a high degree of urbanization since 1970. For example, between 1970-1990 the region experienced 4% population growth, a 35% increase in urban land use, and approximately 454 square miles of agricultural land was mostly converted into urban uses. Transformation of land into urban uses in the Chicagoland region has altered the stream and catchment response to rainfall events, specifically an increase in stream flashiness and increase in urban flooding. Chicago has begun to address these changes through green infrastructure. To understand the impact of green infrastructure at local, city-wide, and watershed scales, individual projects need to be accurately and sufficiently modeled. A traditional parking lot conversion into a porous parking lot at the University of Illinois at Chicago was modeled using SWMM and scrutinized using field data to look at stormwater runoff and water balance prior and post reconstruction. SWMM modeling suggested an 87% reduction in peak flow as well as a 100% reduction in flooding for a 24 hour, 1.72-inch storm. For the same storm, field data suggest an 89% reduction in peak flow as well as a 100% reduction in flooding. Modeling suggested 100% reductions in flooding for longer duration storms (24 hour+) and a smaller reduction in peak flow ( 66%). The highly parameterized SWMM model agrees well with collected data and analysis. Further effort is being made to use data mining to create correlations within the collected datasets that can be integrated into a model that follows a standardized formation process and reduces parameterization.

  17. The Water Balance Portal in Saxony - An interactive web application concerning the impact of climate change on the water balance

    Science.gov (United States)

    Hauffe, Corina; Schwarze, Robert; Röhm, Patric; Müller, Ruben; Dröge, Werner; Gurova, Anastasia; Winkler, Peter; Baldy, Agnes

    2016-04-01

    Changes in weather and climate lead to increasing discussions about reasons and possible future impacts on the hydrological cycle. The question of a changed distribution of water also concerns the federal state of Saxony in the eastern part of Germany. Especially with a look at the different and increased requirements for water authorities, water economy and the public. To define and prepare these future requirements estimations of the future development of the natural water resources are necessary. Therefore data, information, and forecast concerning the development of the several components of the water balance are needed. And to make the obtained information easily available for experts and the public, tools like the internet have to be used. Under these frame conditions the water balance portal Saxony (www.wasserhaushaltsportal.sachsen.de) was developed within the project KliWES. The overall approach of the project was devided into the so-called „3 pillars".The first pillar focused on the evaluation of the status quo water balance from 1951-2005 by using a complex area-wide analysis of measured data. Also it contained the generating of a database and the development of a physically based parameter model. Furthermore an extensive model evaluation has been conducted with a number of objective assessment criteria, to select an appropriate model for the project. The second pillar included the calibration of the water balance model and the impact study of climate and land use change (1961-2100) on the water balance of Saxonian catchments. In this context 13 climate scenarios and three land use scenarios were simulated. The web presence of these two pillars represents a classical information service, which provides finalized results at the spatial resolution of sub-catchments using GIS-based webpages. The third pillar focused on the development of an interactive expert system. It allows the user (public, officials and consulting engineers) to simulate the water

  18. Water balance of an earth fill built of organic clay

    Directory of Open Access Journals (Sweden)

    Birle Emanuel

    2016-01-01

    Full Text Available The paper presents investigations on the water balance of an earth fill built of organic clay in humid climate. As the organic soil used for the fill contains geogenetically elevated concentrations of arsenic, particular attention is paid on the seepage flow through the fill. The test fill is 5 m high, 30 m long and 25 m wide. The fill consists of the organic clay compacted at water contents wet and dry of Proctor Optimum covered by a drainage mat and a 60 cm thick top layer. For the determination of the water balance extensive measuring systems were installed. The seepage at the bottom measured so far was less than 2 % of the precipitation. The interflow in the drainage mat above the compacted organic clay was of similar magnitude. The estimated evapotranspiration reached approx. 84 % of the precipitation. According to these measurements the percolation is much lower than the percolation of many landfill covers in humid climates.

  19. The soil water balance in a mosaic of clumped vegetation

    Science.gov (United States)

    Pizzolla, Teresa; Manfreda, Salvatore; Caylor, Kelly; Gioia, Andrea; Iacobellis, Vito

    2014-05-01

    The spatio-temporal distribution of soil moisture influences the plant growth and the distribution of terrestrial vegetation. This effect is more evident in arid and semiarid ecosystems where the interaction between individuals and the water limited conditions play a fundamental role, providing environmental conditions which drive a variety of non-linear ecohydrological response functions (such as transpiration, photosynthesis, leakage). In this context, modeling vegetation patterns at multiple spatial aggregation scales is important to understand how different vegetation structures can modify the soil water distribution and the exchanged fluxes between soil and atmosphere. In the present paper, the effect of different spatial vegetation patterns, under different climatic scenarios, is investigated in a patchy vegetation mosaic generated by a random process of individual tree canopies and their accompanying root system. Vegetation pattern are generated using the mathematical framework proposed by Caylor et al. (2006) characterized by a three dimensional stochastic vegetation structure, based on the density, dispersion, size distribution, and allometry of individuals within a landscape. A Poisson distribution is applied to generate different distribution of individuals paying particular attention on the role of clumping on water distribution dynamics. The soil water balance is evaluated using the analytical expression proposed by Laio et al. (2001) to explore the influence of climate and vegetation patterns on soil water balance steady-state components (such as the average rates of evaporation, the root water uptake and leakage) and on the stress-weighted plant water uptake. Results of numerical simulations show that clumping may be beneficial for water use efficiency at the landscape scale. References Caylor, Kelly K., P. D'Odorico and I. Rodriguez Iturbe: On the ecohydrology of structurally heterogeneous semiarid landscape. Water Resour. Res., 28, W07424, 2006

  20. Ion and water balance in Gryllus crickets during the first twelve hours of cold exposure.

    Science.gov (United States)

    Des Marteaux, Lauren E; Sinclair, Brent J

    2016-06-01

    Insects lose ion and water balance during chilling, but the mechanisms underlying this phenomenon are based on patterns of ion and water balance observed in the later stages of cold exposure (12 or more hours). Here we quantified the distribution of ions and water in the hemolymph, muscle, and gut in adult Gryllus field crickets during the first 12h of cold exposure to test mechanistic hypotheses about why homeostasis is lost in the cold, and how chill-tolerant insects might maintain homeostasis to lower temperatures. Unlike in later chill coma, hemolymph [Na(+)] and Na(+) content in the first few hours of chilling actually increased. Patterns of Na(+) balance suggest that Na(+) migrates from the tissues to the gut lumen via the hemolymph. Imbalance of [K(+)] progressed gradually over 12h and could not explain chill coma onset (a finding consistent with recent studies), nor did it predict survival or injury following 48h of chilling. Gryllus veletis avoided shifts in muscle and hemolymph ion content better than Gryllus pennsylvanicus (which is less chill-tolerant), however neither species defended water, [Na(+)], or [K(+)] balance during the first 12h of chilling. Gryllus veletis better maintained balance of Na(+) content and may therefore have greater tissue resistance to ion leak during cold exposure, which could partially explain faster chill coma recovery for that species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Mass-balance model for predicting nitrate in ground water

    Science.gov (United States)

    Frimpter, Michael H.; Donohue, John J.; Rapacz, Michael V.

    1990-01-01

    A mass-balance accounting model can be used to guide the management of septic systems and fertilizers to control the degradation of ground-water quality in zones of an aquifer that contribute water to public-supply wells. The nitrate concentration of the mixture in the well can be predicted for steady-state conditions by calculating the concentration that results from the total weight of nitrogen and total volume of water entering the zone of contribution to the well. These calculations will allow water-quality managers to predict the nitrate concentrations that would be produced by different types and levels of development, and to plan development accordingly. Computations for different development schemes provide a technical basis for planners and managers to compare water-quality effects and to select alternatives that limit nitrate concentration in wells.

  2. Balancing passive and active systems for evolutionary water cooled reactors

    International Nuclear Information System (INIS)

    Fil, N.S.; Allen, P.J.; Kirmse, R.E.; Kurihara, M.; Oh, S.J.; Sinha, R.K.

    1999-01-01

    Advanced concepts of the water-cooled reactors are intended to improve safety, economics and public perception of nuclear power. The potential inclusion of new passive means in addition or instead of traditional active systems is being considered by nuclear plant designers to reach these goals. With respect to plant safety, application of the passive means is mainly intended to simplify the safety systems and to improve their reliability, to mitigate the effect of human errors and equipment malfunction. However, some clear drawbacks and the limited experience and testing of passive systems may raise additional questions that have to be addressed in the design process for each advanced reactor. Therefore the plant designer should find a reasonable balance of active and passive means to effectively use their advantages and compensate their drawbacks. Some considerations that have to be taken into account when balancing active/passive means in advanced water-cooled reactors are discussed in this paper. (author)

  3. Megacity project: Liwa, climate and water balance modeling

    Science.gov (United States)

    Chamorro, Alejandro; Bardossy, Andras

    2010-05-01

    Megacity project: Liwa, climate and water balance modeling Peru uses to face different natural phenomena such as El Nino and La Nina phenomena and, like many cities around the word, the climate change effects. Its capital Lima, located in a region where annual precipitation is about 9 mm, has a high hydrological cycle vulnerability which is demonstrated in periods of drought and extreme drought. Accurate and reliable methodology is requiring studying the impact of all these problems in the water supply of Lima. A statistical downscaling scheme (Bardossy, 2002) will be used to generate time series of different local climate scenarios in order to be applied in hydrological models. The conceptual model HBV (Bergström, 1995) is used to simulate water discharges at certain points of the catchments under study, water balance groundwater and for the estimation of storage volume in different reservoirs. As already mentioned, El Nino and La Nina currents influence the hydrological cycle. Previous studies have shown that these phenomena have serious impacts in Peru. In order to quantify these impacts in the area of interest we have analyzed the magnitude of the precipitation in several stations in years in which El Nino occurred, and in years where El Nino did not occurred. The next step is to increase the temporal resolution by incorporating new data. Due to the high vulnerability of the water supply system in Lima, potential new water sources are required. In particular, the catchment of Mantaro (including existing lakes) on the other side of Los Andes Mountains provides potential new alternatives for adding water to the current system. Alternatives for water transportation include using existing long tunnels which connect Mantaro with Rimac, where the majority of the lakes are located. Finally, the global climate models simulations for the coming years, considering different scenarios, will be used as an indicator and to estimate water availability for human use (city

  4. Natural groundwater recharge and water balance at the Hanford Site

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Fayer, M.J.; Gee, G.W.; Kanyid, M.J.

    1990-01-01

    The purpose of this report is to present water-balance data collected in 1988 and 1989 from the 300 Area Buried Waste Test Facility and Grass Site, and the 200 East Area closed-bottom lysimeter. This report is an annual update of previous recharge status reports by Gee, Rockhold, and Downs, and Gee. Data from several other lysimeter sites are included for comparison. 43 refs., 28 figs., 7 tabs

  5. Regionalization of the Turc-Mezentsev water balance formula

    Science.gov (United States)

    Lebecherel, Laure; Andréassian, Vazken

    2013-04-01

    equation for annual evaporation using field observations and results from a biophysical model. Journal of Hydrology, 216(1-2): 99-110. Donohue, R., Roderick, M., McVicar, T., 2011. Assessing the differences in sensitivities of runoff to changes in climatic conditions across a large basin. J. Hydrol., 406(3-4): 234-244. Dooge, J.C.I., 1992. Sensitivty of runoff to climate change - A Hortonian approach. Bull. Amer. Meteorol. Soc., 73(12): 2013-2024. Mezentsev, V., 1955. More on the computation of actual evaporation (Yechio raz o rastchetie srednevo summarnovo ispareniia). Meteorologia i Gidrologia, 5: 24-26. Oudin, L., Andréassian, V., Lerat, J., Michel, C., 2008. Has land cover a significant impact on mean annual streamflow? An international assessment using 1508 catchments. Journal of Hydrology, 357(3-4): 303-316. Potter, N.J., Zhang, L., 2009. Interannual variability of catchment water balance in Australia. Journal of Hydrology, 369: 120-129. Roderick, M.L., Farquhar, G.D., 2011. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res., 47. Turc, L., 1954. Le bilan d'eau des sols: relation entre les précipitations, l'évaporation et l'écoulement. Annales Agronomiques, Série A(5): 491-595.

  6. Water for fish, water for power : finding a balance

    International Nuclear Information System (INIS)

    1998-08-01

    The impact of British Columbia Hydro's operations on the 100 different species and sub-species of fish found in the rivers of BC is discussed. The utility operates 30 hydroelectric facilities and 31 reservoirs in 6 major river basins and 27 watersheds. Three-quarters of the hydroelectricity is produced at major installations on the Peace and Columbia river systems. This booklet describes how, in their water use planning and decision-making, the utility considers impacts on aquatic and terrestrial habitats, flood control, domestic water supply and transport, as well as aesthetic requirements and recreational use. figs

  7. Observed and modeled multi-year evaporation from three field-scale experiments using water balance and Penman-Monteith methods: Profound effect of material type and wind exposure

    Science.gov (United States)

    Peterson, H. E.; Fretz, N.; Bay, D.; Mayer, K. U.; Smith, L.; Beckie, R. D.

    2013-12-01

    Three instrumented experimental waste-rock piles at the Cu-Zn-Mo Antamina Mine in Peru are composed of distinct types of waste rock but are otherwise almost identical in size and geometry and experience the same atmospheric conditions with the exception of wind exposure. Evaporation from the piles was calculated using the water balance method over three- and four-year periods to determine the effect of material type and meteorological variability on evaporation. Annual changes in water storage were low or negligible except as a result of unusually high annual precipitation. Observed evaporation was high (44% - 75% of precipitation) and was extremely variable annually in the coarsest-grained waste-rock pile 1, most likely as a result of greater wind exposure and air circulation in that pile. Observed evaporation was moderate (36% - 48% of precipitation) with moderate annual variability in the finer-grained, relatively homogeneous waste-rock pile 2. Observed evaporation was low (24% - 32% of precipitation) with low annual variability in the finer-grained, relatively heterogeneous waste-rock pile 3, most likely as a result of low air circulation coupled with complex flow regimes that include high-velocity preferential flow paths. Slightly higher evaporation was observed on the slopes than on the crowns of Pile 2, while much lower evaporation was observed on the slopes than on the crowns of Piles 1 and 3. Evidence suggests that Piles 1 and 3 slope water-balance evaporation estimates are skewed by non-vertical flow and that, in general, evaporation is higher on the slopes than on the crowns of the piles. Evaporation was also estimated using the Food and Agriculture Organization of the United Nations modified Penman-Monteith method (FAO-PM; Allen et al., 1998) using base-case laboratory- and software- derived parameters. The base-case method underestimated observed evaporation calculated by the water balance method for Pile 1, overestimated observed evaporation for Pile

  8. Forest thinning impacts on the water balance of Sierra Nevada mixed-conifer headwater basins

    Science.gov (United States)

    Saksa, P. C.; Conklin, M. H.; Battles, J. J.; Tague, C. L.; Bales, R. C.

    2017-07-01

    Headwater catchments in the mixed-conifer zone of the American and Merced River basins were selectively thinned in 2012 to reduce the risk of high-intensity wildfire. Distributed observations of forest vegetation thinning, precipitation, snowpack storage, soil water storage, energy balance, and stream discharge from 2010 to 2013 were used to calculate the water balance and constrain a hydroecologic model. Using the spatially calibrated RHESSys model, we assessed thinning effects on the water balance. In the central-Sierra American River headwaters, there was a mean-annual runoff increase of 14% in response to the observed thinning patterns, which included heterogeneous reductions in leaf area index (-8%), canopy cover (-3%), and shrub cover (-4%). In the southern-Sierra Merced River headwaters, thinning had little impact on forest structure or runoff, as vegetation growth in areas not thinned offset reductions from thinning. Observed thinning effects on runoff could not be confirmed in either basin by measurements alone, in part because of the high variability in precipitation during the measurement period. Modeling results show that when thinning is intensive enough to change forest structure, low-magnitude vegetation reductions have greater potential to modify the catchment-scale water balance in the higher-precipitation central Sierra Nevada versus in the more water-limited southern Sierra Nevada. Hydrologic modeling, constrained by detailed, multiyear field measurements, provides a useful tool for analyzing catchment response to forest thinning.

  9. Flow balancing orifice for ITER toroidal field coil

    Science.gov (United States)

    Litvinovich, A. V.; Y Rodin, I.; Kovalchuk, O. A.; Safonov, A. V.; Stepanov, D. B.; Guryeva, T. M.

    2017-12-01

    Flow balancing orifices (FBOs) are used in in International thermonuclear experimental reactor (ITER) Toroidal Field coil to uniform flow rate of cooling gas in the side double pancakes which have a different conductor length: 99 m and 305 m, respectively. FBOs consist of straight parts, elbows produced from a 316L stainless steel tube 21.34 x 2.11 mm and orifices made from a 316L stainless steel rod. Each of right and left FBOs contains 6 orifices, straight FBOs contain 4 and 6 orifices. Before manufacturing of qualification samples D.V. Efremov Institute of Electrophysical Apparatus (JSC NIIEFA) proposed to ITER a new approach to provide the seamless connection between a tube and a plate therefore the most critical weld between the orifice with 1 mm thickness and the tube removed from the FBOs final design. The proposed orifice diameter is three times less than the minimum requirement of the ISO 5167, therefore it was tasked to define accuracy of calculation flow characteristics at room temperature and compare with the experimental data. In 2015 the qualification samples of flow balancing orifices were produced and tested. The results of experimental data showed that the deviation of calculated data is less than 7%. Based on this result and other tests ITER approved the design of FBOs, which made it possible to start the serial production. In 2016 JSC NIIEFA delivered 50 FBOs to ITER, i.e. 24 left side, 24 right side and 2 straight FBOs. In order to define the quality of FBOs the test facility in JSC NIIEFA was prepared. The helium tightness test at 10-9 m3·Pa/s the pressure up to 3 MPa, flow rate measuring at the various pressure drops, the non-destructive tests of orifices and weld seams (ISO 5817, class B) were conducted. Other tests such as check dimensions and thermo cycling 300 - 80 - 300 K also were carried out for each FBO.

  10. Aquatic Exposure Predictions of Insecticide Field Concentrations Using a Multimedia Mass-Balance Model.

    Science.gov (United States)

    Knäbel, Anja; Scheringer, Martin; Stehle, Sebastian; Schulz, Ralf

    2016-04-05

    Highly complex process-driven mechanistic fate and transport models and multimedia mass balance models can be used for the exposure prediction of pesticides in different environmental compartments. Generally, both types of models differ in spatial and temporal resolution. Process-driven mechanistic fate models are very complex, and calculations are time-intensive. This type of model is currently used within the European regulatory pesticide registration (FOCUS). Multimedia mass-balance models require fewer input parameters to calculate concentration ranges and the partitioning between different environmental media. In this study, we used the fugacity-based small-region model (SRM) to calculate predicted environmental concentrations (PEC) for 466 cases of insecticide field concentrations measured in European surface waters. We were able to show that the PECs of the multimedia model are more protective in comparison to FOCUS. In addition, our results show that the multimedia model results have a higher predictive power to simulate varying field concentrations at a higher level of field relevance. The adaptation of the model scenario to actual field conditions suggests that the performance of the SRM increases when worst-case conditions are replaced by real field data. Therefore, this study shows that a less complex modeling approach than that used in the regulatory risk assessment exhibits a higher level of protectiveness and predictiveness and that there is a need to develop and evaluate new ecologically relevant scenarios in the context of pesticide exposure modeling.

  11. Balancing water resource conservation and food security in China.

    Science.gov (United States)

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2015-04-14

    China's economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China's future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities' virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km(3)/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%.

  12. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    Science.gov (United States)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  13. A balanced water layer concept for subglacial hydrology in large-scale ice sheet models

    Directory of Open Access Journals (Sweden)

    S. Goeller

    2013-07-01

    Full Text Available There is currently no doubt about the existence of a widespread hydrological network under the Antarctic Ice Sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux–basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  14. Water balance and irrigation water pumping of Lake Merdada for potato farming in Dieng Highland, Indonesia.

    Science.gov (United States)

    Fadlillah, Lintang N; Widyastuti, M

    2016-08-01

    Lakes provide water resources for domestic use, livestock, irrigational use, etc. Water availability of lakes can be estimated using lake water balance. Lake water balance is calculated from the water input and output of a lake. Dieng Highland has several volcanic lakes in its surroundings. Lake Merdada in Dieng Highland has been experiencing extensive water pumping for several years more than other lakes in the surrounding area. It provides irrigation water for potato farming in Dieng Highland. The hydrological model of this lake has not been studied. The modeled water balance in this research uses primary data, i.e., bathymetric data, soil texture, and outflow discharge, as well as secondary data, i.e., rainfall, temperature, Landsat 7 ETM+ band 8 image, and land use. Water balance input components consist of precipitation on the surface area, surface (direct) runoff from the catchment area, and groundwater inflow and outflow (G net), while the output components consist of evaporation, river outflow, and irrigation. It shows that groundwater is the dominant input and output of the lake. On the other hand, the actual irrigation water pumping plays the leading role as human-induced alteration of outflow discharge. The maximum irrigation pumping modeling shows that it will decrease lake storage up to 37.14 % per month and may affect the ecosystem inside the lake.

  15. Semi-arid vegetation response to antecedent climate and water balance windows

    Science.gov (United States)

    Thoma, David P.; Munson, Seth M.; Irvine, Kathryn M.; Witwicki, Dana L.; Bunting, Erin

    2016-01-01

    Questions Can we improve understanding of vegetation response to water availability on monthly time scales in semi-arid environments using remote sensing methods? What climatic or water balance variables and antecedent windows of time associated with these variables best relate to the condition of vegetation? Can we develop credible near-term forecasts from climate data that can be used to prepare for future climate change effects on vegetation? Location Semi-arid grasslands in Capitol Reef National Park, Utah, USA. Methods We built vegetation response models by relating the normalized difference vegetation index (NDVI) from MODIS imagery in Mar–Nov 2000–2013 to antecedent climate and water balance variables preceding the monthly NDVI observations. We compared how climate and water balance variables explained vegetation greenness and then used a multi-model ensemble of climate and water balance models to forecast monthly NDVI for three holdout years. Results Water balance variables explained vegetation greenness to a greater degree than climate variables for most growing season months. Seasonally important variables included measures of antecedent water input and storage in spring, switching to indicators of drought, input or use in summer, followed by antecedent moisture availability in autumn. In spite of similar climates, there was evidence the grazed grassland showed a response to drying conditions 1 mo sooner than the ungrazed grassland. Lead times were generally short early in the growing season and antecedent window durations increased from 3 mo early in the growing season to 1 yr or more as the growing season progressed. Forecast accuracy for three holdout years using a multi-model ensemble of climate and water balance variables outperformed forecasts made with a naïve NDVI climatology. Conclusions We determined the influence of climate and water balance on vegetation at a fine temporal scale, which presents an opportunity to forecast vegetation

  16. Hydrological balance and water transport processes of partially sealed soils

    Science.gov (United States)

    Timm, Anne; Wessolek, Gerd

    2017-04-01

    With increased urbanisation, soil sealing and its drastic effects on hydrological processes have received a lot of attention. Based on safety concerns, there has been a clear focus on urban drainage and prevention of urban floods caused by storm water events. For this reason, any kind of sealing is often seen as impermeable runoff generator that prevents infiltration and evaporation. While many hydrological models, especially storm water models, have been developed, there are only a handful of empirical studies actually measuring the hydrological balance of (partially) sealed surfaces. These challenge the general assumption of negligible infiltration and evaporation and show that these processes take place even for severe sealing such as asphalt. Depending on the material, infiltration from partially sealed surfaces can be equal to that of vegetated ones. Therefore, more detailed knowledge is needed to improve our understanding and models. In Berlin, two partially sealed weighable lysimeters were equipped with multiple temperature and soil moisture sensors in order to study their hydrological balance, as well as water and heat transport processes within the soil profile. This combination of methods affirms previous observations and offers new insights into altered hydrological processes of partially sealed surfaces at a small temporal scale. It could be verified that not all precipitation is transformed into runoff. Even for a relatively high sealing degree of concrete slabs with narrow seams, evaporation and infiltration may exceed runoff. Due to the lack of plant roots, the hydrological balance is mostly governed by precipitation events and evaporation generally occurs directly after rainfall. However, both surfaces allow for upward water transport from the upper underlying soil layers, sometimes resulting in relatively low evaporation rates on days without precipitation. The individual response of the surfaces differs considerably, which illustrates how

  17. BALANCE

    Science.gov (United States)

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  18. Management of water balance in mining areas – WaterSmart: Final Report

    OpenAIRE

    Krogerus, Kirsti; Pasanen, Antti

    2016-01-01

    Although mining companies have long been conscious of water related risks, they still face environmental management challenges. Several recent environmental incidents in Finnish mines have raised questions regarding mine site environmental and water management practices. This has increased public awareness of mining threats to the environment and resulted in stricter permits and longer permitting procedures. Water balance modelling aids in predictive water management and reduces risks caused ...

  19. Water Isotope framework for lake water balance monitoring and modelling in the Nam Co Basin, Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Shichang Kang

    2017-08-01

    New hydrological insights: A water isotope framework for the Nam Co basin, including the Local Meteoric Water Line, limiting isotopic composition of evaporation and two hypothetical evaporation trajectories, is established. We further applied the isotope mass balance model to estimate the overall isotopic composition of input water to the Nam Co, the evaporation over inputs ratios (E/I for three consecutive years, and the water yields (Wy, depth equivalent runoff at a basin scale. Our results clearly suggest a positive water budget (i.e., E/I < 1, providing another line of evidence that the subsurface leakage from Nam Co is likely. The discrepancy between isotope-based water yields estimations and field-based runoff observations suggest that, compared to the well-studied Nyainqentanglha Mountains and southwestern mountains, the ridge-and-valley landscape in the western highlands and northwestern hogbacks are possibly low yields area, which should draw more research attentions in future hydrological investigations.

  20. WATER SUPPLY MEASUREMENTS IN MULTI-FAMILY BULDINGS AND DISCREPANCIES IN A WATER BALANCE

    Directory of Open Access Journals (Sweden)

    Tomasz Cichoń

    2016-06-01

    Full Text Available A large-scale implementation of individual water meters in water charging systems has created problems with a water shortage that have to be settled between real estate managers and water and sewage utilities. The article presents the observations and experiences from operation of a water metering system at the Krakow agglomeration. The studies have confirmed that many small leaks in installations, taps, faucets, flush toilets as well as system failures and the incidences of water stealing are still the factors responsible for significant differences in the water balance in the apartment buildings.

  1. A metabolism perspective on alternative urban water servicing options using water mass balance.

    Science.gov (United States)

    Farooqui, Tauheed A; Renouf, Marguerite A; Kenway, Steven J

    2016-12-01

    Urban areas will need to pursue new water servicing options to ensure local supply security. Decisions about how best to employ them are not straightforward due to multiple considerations and the potential for problem shifting among them. We hypothesise that urban water metabolism evaluation based a water mass balance can help address this, and explore the utility of this perspective and the new insights it provides about water servicing options. Using a water mass balance evaluation framework, which considers direct urban water flows (both 'natural' hydrological and 'anthropogenic' flows), as well as water-related energy, we evaluated how the use of alternative water sources (stormwater/rainwater harvesting, wastewater/greywater recycling) at different scales influences the 'local water metabolism' of a case study urban development. New indicators were devised to represent the water-related 'resource efficiency' and 'hydrological performance' of the urban area. The new insights gained were the extent to which alternative water supplies influence the water efficiency and hydrological performance of the urban area, and the potential energy trade-offs. The novel contribution is the development of new indicators of urban water resource performance that bring together considerations of both the 'anthropogenic' and 'natural' water cycles, and the interactions between them. These are used for the first time to test alternative water servicing scenarios, and to provide a new perspective to complement broader sustainability assessments of urban water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Energy balance of a corn residue-covered field during snowmelt

    International Nuclear Information System (INIS)

    Sauer, T.J.; Hatfield, J.L.; Prueger, J.H.; Logsdon, S.D.

    1998-01-01

    Transport of agricultural chemicals in runoff and recharge waters from snowmelt and soil thawing may represent a significant event in terms of annual contaminant loadings in temperate regions. Improved understanding of the melt dynamics of shallow snowpacks is necessary to fully assess the implications for water quality. The objective of this study was to measure the energy balance components of a corn (Zea mays L.) stubble field during the melting of its snowcover. Net radiation (Rn), soil (G), sensible (H), and latent (Q) best fluxes were measured in a field near Ames, Iowa, during the winter of 1994-1995. Energy consumed by melting including change in energy storage of the snowpack was determined as the residual of the measured energy balance. There was continuous snowcover at the field site for 71 days (maximum depth = 222 m) followed by an open period of 11 days before additional snowfall and a second melt period. The net radiation and snowmelt/energy storage change (S) terms dominated the energy balance during both measurement intervals. Peak daily sensible and latent best fluxes were below 100 W m(-2) on all days except the last day of the second melt period. There was good agreement between predicted and measured values of H and Q during the melting of an aged snow layer but poorer agreement during the melt of fresh snow. Both snowpacks melted rapidly and coincident changes in soil moisture storage were observed. Improved estimates of Q and H, especially for partially open surfaces, will require better characterization of the surface aerodynamic properties and spatially-representative surface temperature measurements

  3. The liquid water balance of the Greenland ice sheet

    Science.gov (United States)

    Steger, Christian; Reijmer, Carleen; van den Broeke, Michiel

    2017-04-01

    Mass loss from the Greenland Ice Sheet (GrIS) is an increasingly important contributor to global sea level rise. During the last decade, the mass loss was dominated by meltwater runoff. Linking actual runoff from the ice sheet to melt and other forms of liquid water input at the surface (rainfall and condensation) is however complex, as liquid water may be retained within the ice sheet due to refreezing and/or (perennial) storage. In the ablation zone on bare ice, liquid water runs of laterally at the surface, accumulates in supraglacial lakes or enters the ice sheet's en- or subglacial hydraulic system via moulins and crevasses. In the higher elevated accumulation zone, liquid water percolates into the porous firn layer and part of it may be retained due to refreezing and/or perennial storage in so called firn aquifers. In this study, we investigate the liquid water balance of the GrIS focussing on the role of the firn layer. For this purpose, we ran SNOWPACK, a relatively complex one-dimensional snow model, on a horizontal resolution of ˜ 11km and for the transient period of 1960 to 2015. At the snow-atmosphere-interface, the model was forced by output of the regional atmospheric climate model RACMO2.3. A comparison of SNOWPACK with in-situ observations (firn density profiles) and remote sensing data (firn aquifer locations inferred from radar measurements) indicated a good agreement for most climatic conditions. On a GrIS-wide scale, the modelled surface mass balance of SNOWPACK exhibits, in combination with ice-discharge data for ocean-terminating glaciers, an excellent agreement with GRACE data for the period 2003 - 2012. GrIS-integrated amounts of surface melt reveal a significant positive trend (+11.6Gta-2) in the second half of the simulation period. Within this interval, the trend in runoff is larger (+8.3Gta-2) than the one in refreezing (+3.6Gta-2), which results in an overall decrease of the refreezing fraction. This decrease is for instance less

  4. Salinity controls on plant transpiration and soil water balance

    Science.gov (United States)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  5. Energy balance concept in the evaluation of water table management effects on corn growth: experimental investigation

    International Nuclear Information System (INIS)

    Kalita, P.K.; Kanwar, R.S.

    1992-01-01

    The effects of water table management practices (WTMP) on corn growth in 1989 and 1990 at two field sites, Ames and Ankeny, Iowa, were evaluated by calculating crop water stress index (CWSI) and monitoring plant physiological parameters during the growing seasons. Experiments were conducted on field lysimeters at the Ames site by maintaining water tables at 0.3-, 0.6-, and 0.9-m depths and in a subirrigation field at the Ankeny site with 0.2-, 0.3-, 0.6-, 0.9-, and 1.1-m water table depths, and periodically measuring leaf and air temperature, transpiration rate, stomatal conductance, and photosynthetically active radiation (PAR) using leaf chamber techniques. Net radiation of canopy was estimated using the leaf energy balance equation and leaf chamber measurements and then correlated with PAR. Analysis of data revealed that net radiation, leaf air temperature differential, transpiration rate, stomatal conductance, and CWSI were strongly related to WTMP during vegetative and flowering stages of corn growth. Excess water in the root zone with a water table depth of 0.2 m caused the maximum crop water stress and ceased crop growth. Both water and oxygen could be adequately maintained for favorable crop growth by adopting the best WTMP. Results indicate that plant physiological parameters and CWSI could be used to evaluate the effectiveness of WTMP and develop the best WTMP for corn growth in the humid region

  6. Impact of climate forcing uncertainty and human water use on global and continental water balance components

    OpenAIRE

    Müller Schmied, Hannes; Adam, Linda; Eisner, Stephanie; Fink, Gabriel; Flörke, Martina; Kim, Hyungjun; Oki, Taikan; Portmann, Felix Theodor; Reinecke, Robert; Riedel, Claudia; Song, Qi; Zhang, Jing; Döll, Petra

    2016-01-01

    The assessment of water balance components using global hydrological models is subject to climate forcing uncertainty as well as to an increasing intensity of human water use within the 20th century. The uncertainty of five state-of-the-art climate forcings and the resulting range of cell runoff that is simulated by the global hydrological model WaterGAP is presented. On the global land surface, about 62 % of precipitation evapotranspires, whereas 38 % discharges into oceans...

  7. Preliminary estimation of Lake El'gygytgyn water balance and sediment income

    Directory of Open Access Journals (Sweden)

    G. Fedorov

    2013-07-01

    Full Text Available Modern process studies of the hydrologic balance of Lake El'gygytgyn, central Chukotka, and the sediment income from the catchment were carried out during a field campaign in spring and summer 2003. Despite high uncertainties due to the limited data, the results provide important first estimates for better understanding the modern and past sedimentation processes in this basin. Formed ca. 3.6 million years ago as a result of a meteorite impact, the basin contains one of the longest paleoclimate records in the terrestrial Arctic. Fluvial activity is concentrated over the short snowmelt period (about 20 days in second part of June. Underground outflow plays a very important role in the water balance and predominates over surface outflow. The residence time of the lake water is estimated to be about 100 yr.

  8. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  9. Biogeochemical mass balances in a turbid tropical reservoir. Field data and modelling approach

    Science.gov (United States)

    Phuong Doan, Thuy Kim; Némery, Julien; Gratiot, Nicolas; Schmid, Martin

    2014-05-01

    The turbid tropical Cointzio reservoir, located in the Trans Mexican Volcanic Belt (TMVB), behaves as a warm monomictic water body (area = 6 km2, capacity 66 Mm3, residence time ~ 1 year). It is strategic for the drinking water supply of the city of Morelia, capital of the state of Michoacán, and for downstream irrigation during the dry season. This reservoir is a perfect example of a human-impacted system since its watershed is mainly composed of degraded volcanic soils and is subjected to high erosion processes and agricultural loss. The reservoir is threatened by sediment accumulation and nutrients originating from untreated waters in the upstream watershed. The high content of very fine clay particles and the lack of water treatment plants lead to serious episodes of eutrophication (up to 70 μg chl. a L-1), high levels of turbidity (Secchi depth water vertical profiles, reservoir inflow and outflow) we determined suspended sediment (SS), carbon (C), nitrogen (N) and phosphorus (P) mass balances. Watershed SS yields were estimated at 35 t km2 y-1 of which 89-92 % were trapped in the Cointzio reservoir. As a consequence the reservoir has already lost 25 % of its initial storage capacity since its construction in 1940. Nutrient mass balances showed that 50 % and 46 % of incoming P and N were retained by sedimentation, and mainly eliminated through denitrification respectively. Removal of C by 30 % was also observed both by sedimentation and through gas emission. To complete field data analyses we examined the ability of vertical one dimensional (1DV) numerical models (Aquasim biogeochemical model coupled with k-ɛ mixing model) to reproduce the main biogeochemical cycles in the Cointzio reservoir. The model can describe all the mineralization processes both in the water column and in the sediment. The values of the entire mass balance of nutrients and of the mineralization rates (denitrification and aerobic benthic mineralization) calculated from the model

  10. Field Balancing of Magnetically Levitated Rotors without Trial Weights

    Directory of Open Access Journals (Sweden)

    Jiancheng Fang

    2013-11-01

    Full Text Available Unbalance in magnetically levitated rotor (MLR can cause undesirable synchronous vibrations and lead to the saturation of the magnetic actuator. Dynamic balancing is an important way to solve these problems. However, the traditional balancing methods, using rotor displacement to estimate a rotor’s unbalance, requiring several trial-runs, are neither precise nor efficient. This paper presents a new balancing method for an MLR without trial weights. In this method, the rotor is forced to rotate around its geometric axis. The coil currents of magnetic bearing, rather than rotor displacement, are employed to calculate the correction masses. This method provides two benefits when the MLR’s rotation axis coincides with the geometric axis: one is that unbalanced centrifugal force/torque equals the synchronous magnetic force/torque, and the other is that the magnetic force is proportional to the control current. These make calculation of the correction masses by measuring coil current with only a single start-up precise. An unbalance compensation control (UCC method, using a general band-pass filter (GPF to make the MLR spin around its geometric axis is also discussed. Experimental results show that the novel balancing method can remove more than 92.7% of the rotor unbalance and a balancing accuracy of 0.024 g mm kg−1 is achieved.

  11. Determining water use of sorghum from two-source energy balance and radiometric temperatures

    Directory of Open Access Journals (Sweden)

    J. M. Sánchez

    2011-10-01

    Full Text Available Estimates of surface actual evapotranspiration (ET can assist in predicting crop water requirements. An alternative to the traditional crop-coefficient methods are the energy balance models. The objective of this research was to show how surface temperature observations can be used, together with a two-source energy balance model, to determine crop water use throughout the different phenological stages of a crop grown. Radiometric temperatures were collected in a sorghum (Sorghum bicolor field as part of an experimental campaign carried out in Barrax, Spain, during the 2010 summer growing season. Performance of the Simplified Two-Source Energy Balance (STSEB model was evaluated by comparison of estimated ET with values measured on a weighing lysimeter. Errors of ±0.14 mm h−1 and ±1.0 mm d−1 were obtained at hourly and daily scales, respectively. Total accumulated crop water use during the campaign was underestimated by 5%. It is then shown that thermal radiometry can provide precise crop water necessities and is a promising tool for irrigation management.

  12. Water Balance Study of a Groundwater-dependent Oak Forest

    Directory of Open Access Journals (Sweden)

    MÓRICZ, Norbert

    2010-01-01

    Full Text Available The objectives of this study were (1 to estimate the water balance components of an oak standby calibrating a Hydrus 1-D model, (2 to determine the groundwater consumption by the water tablefluctuation method and (3 to compare the results of the modelling with a remote-sensing based estimation.Model simulation described the observed soil moisture and groundwater level relatively well, theroot mean square errors varied between 12.0 and 14.9% for the soil moisture measurements and 5.0%for the groundwater level. Groundwater consumption was estimated also by the water table fluctuationmethod, which provided slightly different groundwater consumption rates than estimated by theHydrus model simulation. The simulated evapotranspiration was compared with results of a remotesensingbased estimation using the surface temperature database of MODIS.According to the Hydrus model, the estimated evapotranspiration resulted from transpiration(73%, interception loss (23% and soil surface evaporation (4% in the two-year study period. Theproportion of groundwater consumption was 58% of the total transpiration. During the dry growingseason of 2007 the groundwater consumption was significant with 66% of the total transpiration.Water supply from groundwater was found to be less important in the wet growing season of 2008with 50%. The remote-sensing based estimation of evapotranspiration was about 4% lower than themodel based results of nearby comparable sites.

  13. Morphometric Controls on Glacier Mass Balance of the Puruogangri Ice Field, Central Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Lin Liu

    2016-11-01

    Full Text Available Evaluating the impacts of climatic changes and morphometric features on glacier mass balance is crucial to providing insight into glacier changes and their effects on regional water resources and ecosystems. Here, we presented an evaluation of morphometric effects on the glacier mass balances of the Puruogangri ice field (PIF on the Tibetan Plateau. A clear spatial variability of glacier mass balances, ranging from −0.035 to +0.019 m·w.e.·year−1, was estimated by comparing the TanDEM-X DEM (2012 with the SRTM-X DEM (2000. In general, the observed glacier mass changes were consistent with our fieldwork investigations. Furthermore, by applying the method of linear regression analysis, we found that the mass changes of individual glaciers on the PIF were mainly dominated by the mean altitude (R = 0.84, p < 0.001, however, they were statistically independent of glacier size, aspect, and surface velocity. At a local scale (grid size of 10 × 10 pixels, apart from the factor of altitude, surface velocity was correlated with glacier mass change.

  14. Water balance components and climate change in Croatia

    Science.gov (United States)

    Vucetic, V.

    2009-09-01

    The openness of the continental part of Croatia towards the north and the separation of the Pannonian flatland from coastline by relative high mountain barrier of the Dinaric Alps produce a continental, mountain and Mediterranean climate in Croatia. Climate change has become an important issue for agriculture in recent years since agricultural production is highly sensitive to weather and water scarcity and consequently to climate change. The special problem with drought and difficulties in water supply and water management exist in the eastern and southern Croatia in the summer. The soil with karst porous base and unsuitable annual distribution of precipitation amount make the mid-Adriatic coast and islands the driest region in Croatia. Therefore, the main goal is to research the secular variations of water balance components using the Palmer method in the most vulnerable dry region in Croatia vs. wet region. The results have been established the intensity of regional impact of climate change on regime of precipitation, evapotranspiration and soil moisture. The increase in potential evapotranspiration and decrease in runoff and soil water content were observed in both regions which mostly became significant in the 1980s. However, contrary linear trends (negative in the dry region and positive in the wet region) were noticed in actual evapoptranspiration, moisture loss from the soil and recharge. The reason of that is a significant and faster decrease in annual precipitation and deficit of rainfall in dry region than in wet region in warmer season. Thus, combined influence of precipitation and air temperature affects the decrease in soil water content and runoff that it could have negative consequences on vegetation and agricultural production, particularly in the driest and most vulnerable region in Croatia - in the mid-Adriatic area.

  15. An efficient soil water balance model based on hybrid numerical and statistical methods

    Science.gov (United States)

    Mao, Wei; Yang, Jinzhong; Zhu, Yan; Ye, Ming; Liu, Zhao; Wu, Jingwei

    2018-04-01

    Most soil water balance models only consider downward soil water movement driven by gravitational potential, and thus cannot simulate upward soil water movement driven by evapotranspiration especially in agricultural areas. In addition, the models cannot be used for simulating soil water movement in heterogeneous soils, and usually require many empirical parameters. To resolve these problems, this study derives a new one-dimensional water balance model for simulating both downward and upward soil water movement in heterogeneous unsaturated zones. The new model is based on a hybrid of numerical and statistical methods, and only requires four physical parameters. The model uses three governing equations to consider three terms that impact soil water movement, including the advective term driven by gravitational potential, the source/sink term driven by external forces (e.g., evapotranspiration), and the diffusive term driven by matric potential. The three governing equations are solved separately by using the hybrid numerical and statistical methods (e.g., linear regression method) that consider soil heterogeneity. The four soil hydraulic parameters required by the new models are as follows: saturated hydraulic conductivity, saturated water content, field capacity, and residual water content. The strength and weakness of the new model are evaluated by using two published studies, three hypothetical examples and a real-world application. The evaluation is performed by comparing the simulation results of the new model with corresponding results presented in the published studies, obtained using HYDRUS-1D and observation data. The evaluation indicates that the new model is accurate and efficient for simulating upward soil water flow in heterogeneous soils with complex boundary conditions. The new model is used for evaluating different drainage functions, and the square drainage function and the power drainage function are recommended. Computational efficiency of the new

  16. Lake Chad basin water balance using multi-sensor data

    Science.gov (United States)

    Frappart, F.; Syed, T. H.; Famiglietti, J. S.; Ramillien, G.; Cazenave, A.

    2006-12-01

    The Lake Chad basin, which covers 8% of the surface of Africa, is one of the largest fresh water bodies of the African continent. In the last decades, it has dramatically decreased in size due to climate change and human water consumption, from approximately 25000 km2 in 1973 to less than 2000 km2 in the 1990s. Freshwater shortage is a major concern for this region. Remote sensing offers new opportunities to monitor and better understand the hydrological cycle of major basins. On the one hand, satellite radar altimetry is currently used to construct water level time series. Spatio- temporal variations of surface water volume can be estimated by combining information from these sensors. On the other hand, the delivery of monthly Earth gravity field by the GRACE project allows the determination of small time-variations of the Earth gravity and particularly the variations of land water storage. We have estimated surface water volume variations over the Lake Chad for 15 years of Topex/Poseidon, Jason-1 and ENVISAT/RA-2 altimeter data. The results obtained are then compared with water volume variations derived from GRACE measurements over a four year time span (April 2002 to March 2006) for the entire Lake Chad basin.

  17. The water balance components of undisturbed tropical woodlands in the Brazilian cerrado

    Science.gov (United States)

    Oliveira, P. T. S.; Wendland, E.; Nearing, M. A.; Scott, R. L.; Rosolem, R.; da Rocha, H. R.

    2015-06-01

    Deforestation of the Brazilian cerrado region has caused major changes in hydrological processes. These changes in water balance components are still poorly understood but are important for making land management decisions in this region. To better understand pre-deforestation conditions, we determined the main components of the water balance for an undisturbed tropical woodland classified as "cerrado sensu stricto denso". We developed an empirical model to estimate actual evapotranspiration (ET) by using flux tower measurements and vegetation conditions inferred from the enhanced vegetation index and reference evapotranspiration. Canopy interception, throughfall, stemflow, surface runoff, and water table level were assessed from ground measurements. We used data from two cerrado sites, Pé de Gigante (PDG) and Instituto Arruda Botelho (IAB). Flux tower data from the PDG site collected from 2001 to 2003 were used to develop the empirical model to estimate ET. The other hydrological processes were measured at the field scale between 2011 and 2014 at the IAB site. The empirical model showed significant agreement (R2 = 0.73) with observed ET at the daily timescale. The average values of estimated ET at the IAB site ranged from 1.91 to 2.60 mm day-1 for the dry and wet seasons, respectively. Canopy interception ranged from 4 to 20 % and stemflow values were approximately 1 % of the gross precipitation. The average runoff coefficient was less than 1 %, while cerrado deforestation has the potential to increase that amount up to 20-fold. As relatively little excess water runs off (either by surface water or groundwater), the water storage may be estimated by the difference between precipitation and evapotranspiration. Our results provide benchmark values of water balance dynamics in the undisturbed cerrado that will be useful to evaluate past and future land-cover and land-use changes for this region.

  18. Impact of climate forcing uncertainty and human water use on global and continental water balance components

    Directory of Open Access Journals (Sweden)

    H. Müller Schmied

    2016-10-01

    Full Text Available The assessment of water balance components using global hydrological models is subject to climate forcing uncertainty as well as to an increasing intensity of human water use within the 20th century. The uncertainty of five state-of-the-art climate forcings and the resulting range of cell runoff that is simulated by the global hydrological model WaterGAP is presented. On the global land surface, about 62 % of precipitation evapotranspires, whereas 38 % discharges into oceans and inland sinks. During 1971–2000, evapotranspiration due to human water use amounted to almost 1 % of precipitation, while this anthropogenic water flow increased by a factor of approximately 5 between 1901 and 2010. Deviation of estimated global discharge from the ensemble mean due to climate forcing uncertainty is approximately 4 %. Precipitation uncertainty is the most important reason for the uncertainty of discharge and evapotranspiration, followed by shortwave downward radiation. At continental levels, deviations of water balance components due to uncertain climate forcing are higher, with the highest discharge deviations occurring for river discharge in Africa (−6 to 11 % from the ensemble mean. Uncertain climate forcings also affect the estimation of irrigation water use and thus the estimated human impact of river discharge. The uncertainty range of global irrigation water consumption amounts to approximately 50 % of the global sum of water consumption in the other water use sector.

  19. Water Balance in a Moist Semi-Deciduous Forest of Ghana

    African Journals Online (AJOL)

    deciduous forest of Ghana was selected for this study because most food and export crops are grown there. Available water ... balance model can be used in place of complicated models in the determination of soil water balance in the tropics. Key words: water ...... A study of evaporation from tropical rain forest h. West lava.

  20. Water shortage affects the water and nitrogen balance in Central European beech forests.

    Science.gov (United States)

    Gessler, A; Keitel, C; Nahm, M; Rennenberg, H

    2004-05-01

    Whilst forest policy promotes cultivation and regeneration of beech dominated forest ecosystems, beech itself is a highly drought sensitive tree species likely to suffer from the climatic conditions prognosticated for the current century. Taking advantage of model ecosystems with cool-moist and warm-dry local climate, the latter assumed to be representative for future climatic conditions, the effects of climate and silvicultural treatment (different thinning regimes) on water status, nitrogen balance and growth parameters of adult beech trees and beech regeneration in the understorey were assessed. In addition, validation experiments with beech seedlings were carried out under controlled conditions, mainly in order to assess the effect of drought on the competitive abilities of beech. As measures of water availability xylem flow, shoot water potential, stomatal conductance as well as delta (13)C and delta (18)O in different tissues (leaves, phloem, wood) were analysed. For the assessment of nitrogen balance we determined the uptake of inorganic nitrogen by the roots as well as total N content and soluble N compounds in different tissues of adult and young trees. Retrospective and current analysis of delta (13)C, growth and meteorological parameters revealed that beech growing under warm-dry climatic conditions were impaired in growth and water balance during periods with low rain-fall. Thinning affected water, N balance and growth mostly of young beech, but in a different way under different local climatic conditions. Under cool, moist conditions, representative for the current climatic and edaphic conditions in beech forests of Central Europe, thinning improves nutrient and water status consistent to published literature and long-term experience of forest practitioners. However, beech regeneration was impaired as a result of thinning at higher temperatures and under reduced water availability, as expected in future climate.

  1. Botswana water and surface energy balance research program. Part 2: Large scale moisture and passive microwaves

    Science.gov (United States)

    Vandegriend, A. A.; Owe, M.; Chang, A. T. C.

    1992-01-01

    The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. The research program consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components are explained in general and activities performed within the passive microwave research component are summarized. The microwave theory is discussed taking into account: soil dielectric constant, emissivity, soil roughness effects, vegetation effects, optical depth, single scattering albedo, and wavelength effects. The study site is described. The soil moisture data and its processing are considered. The relation between observed large scale soil moisture and normalized brightness temperatures is discussed. Vegetation characteristics and inverse modeling of soil emissivity is considered.

  2. The modelled liquid water balance of the Greenland Ice Sheet

    Science.gov (United States)

    Steger, Christian R.; Reijmer, Carleen H.; van den Broeke, Michiel R.

    2017-11-01

    Recent studies indicate that the surface mass balance will dominate the Greenland Ice Sheet's (GrIS) contribution to 21st century sea level rise. Consequently, it is crucial to understand the liquid water balance (LWB) of the ice sheet and its response to increasing surface melt. We therefore analyse a firn simulation conducted with the SNOWPACK model for the GrIS and over the period 1960-2014 with a special focus on the LWB and refreezing. Evaluations of the simulated refreezing climate with GRACE and firn temperature observations indicate a good model-observation agreement. Results of the LWB analysis reveal a spatially uniform increase in surface melt (0.16 m w.e. a-1) during 1990-2014. As a response, refreezing and run-off also indicate positive changes during this period (0.05 and 0.11 m w.e. a-1, respectively), where refreezing increases at only half the rate of run-off, implying that the majority of the additional liquid input runs off the ice sheet. This pattern of refreeze and run-off is spatially variable. For instance, in the south-eastern part of the GrIS, most of the additional liquid input is buffered in the firn layer due to relatively high snowfall rates. Modelled increase in refreezing leads to a decrease in firn air content and to a substantial increase in near-surface firn temperature. On the western side of the ice sheet, modelled firn temperature increases are highest in the lower accumulation zone and are primarily caused by the exceptional melt season of 2012. On the eastern side, simulated firn temperature increases are more gradual and are associated with the migration of firn aquifers to higher elevations.

  3. The modelled liquid water balance of the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    C. R. Steger

    2017-11-01

    Full Text Available Recent studies indicate that the surface mass balance will dominate the Greenland Ice Sheet's (GrIS contribution to 21st century sea level rise. Consequently, it is crucial to understand the liquid water balance (LWB of the ice sheet and its response to increasing surface melt. We therefore analyse a firn simulation conducted with the SNOWPACK model for the GrIS and over the period 1960–2014 with a special focus on the LWB and refreezing. Evaluations of the simulated refreezing climate with GRACE and firn temperature observations indicate a good model–observation agreement. Results of the LWB analysis reveal a spatially uniform increase in surface melt (0.16 m w.e. a−1 during 1990–2014. As a response, refreezing and run-off also indicate positive changes during this period (0.05 and 0.11 m w.e. a−1, respectively, where refreezing increases at only half the rate of run-off, implying that the majority of the additional liquid input runs off the ice sheet. This pattern of refreeze and run-off is spatially variable. For instance, in the south-eastern part of the GrIS, most of the additional liquid input is buffered in the firn layer due to relatively high snowfall rates. Modelled increase in refreezing leads to a decrease in firn air content and to a substantial increase in near-surface firn temperature. On the western side of the ice sheet, modelled firn temperature increases are highest in the lower accumulation zone and are primarily caused by the exceptional melt season of 2012. On the eastern side, simulated firn temperature increases are more gradual and are associated with the migration of firn aquifers to higher elevations.

  4. Water balance and nitrate leaching in a irrigated maize crop in SW Spain

    International Nuclear Information System (INIS)

    Moreno, F.; Cayuela, J.A.; Fernandez, J.E.; Fernandez-Boy, E.; Murillo, J.M.; Cabrera, F.

    1995-01-01

    During three consecutive years (1991- 1993) a field experiment was conducted in an intensive irrigated agricultural soil in S W Spain. The main objective of this study was to determinate the water flow and nitrate leaching, below the root zone, under an irrigated maize crop and after the growing season( bare soil and rainy period). The experiment was carried out on a furrow irrigated maize crop using one of the highest nitrogen fertilization rates traditionally used by farmers in the region ( about 500 kg N ha sup -1 yr sup -1) and on other that represents one third of the former ( 170 kg N ha sup -1 yr sup -1), to provide data that can be used to propose modifications of the environment. The terms of water balance ( crop evapotranspiration, drainage and soil water storage ), and the nitrate leaching were determined by an intensive field monitoring of the soil water content, soil water potential and extracting the soil solution by the combination of a neutron probe, tensiometers and ceramic suction cups. Nitrogen uptake by the plant and NO sub 3 - N produced by mineralization were also determined. The results showed that, in terms of water balance, crop evapotranspiration was similar with both N - fertilization rates used. During the irrigation period drainage below the root zone was limited. Only in 1992 the occurrence of rainfalls during the early growing period, when the soil was wet from previous irrigation, caused a considerable drainage. Nitrate leaching during the whole experimental period amounted to 150 and 43 kg ha sup -1 in the treatments with high and low N - fertilization respectively. This mainly occurred during the bare soil and rainy periods, except in 1992 when a considerable nitrate leaching was not so high during the bare soil period as could be expected because of the drought during the experimental period. A reduction of N - fertilization decreased nitrate leaching strongly without decreasing yield. 10 refs., 4 tabs. (author)

  5. A water management strategy for balancing water uses in the Rideau Canal

    International Nuclear Information System (INIS)

    McClennan, B.; Rae, P.; McGonegal, K.

    1995-01-01

    Alternative water management policies for the Rideau Canal system in eastern Ontario were examined. The methodology of analysis and the impact of policy changes on hydro power production were also focussed on. A historical account of the construction and background of the canal system was providid. Water uses such as navigation, hydroelectric power generation, natural environment, flood abatement, recreation, and water supply were described. Current water management practice was outlined. Various single purpose water management policies were investigated. The impact of the most significant policies on hydroelectric power production were discussed. Integrated policy alternatives were presented and their general effects were described. No long term policy was finalized at the time of writing, but a number of short term operating practices were considered, among them to adjust spring flows for walleye, store flows in the Big Rideau for ice flushings, balance drawdown among reservoirs and raise navigation levels in certain lakes

  6. Estimation of climate change impact on water resources by using Bilan water balance model

    International Nuclear Information System (INIS)

    Horacek, Stanislav; Kasparek, Ladislav; Novicky, Oldrich

    2008-01-01

    Modelling of water balance under changed climate conditions has been carried out by T. G. Masaryk Water Research Institute in Prague for basins in the Czech Republic since 1990. The studies presently use climate change scenarios derived from simulations by regional climate models. Climate change scenarios are reflected in meteorological time-series for given catchment and subsequently used for simulation of water cycle components by using Bilan water balance model. Results of Bilan model simulations for input meteorological series not affected and affected by climate change scenarios give information for assessing the climate change impacts on output series of the model. The results of the studies generally show that annual runoff could largely decrease. The increased winter temperature could cause an increase in winter flows and a decrease in snow storage, and consequently, spring and summer outflows will decrease significantly, even to their current minimum values. The groundwater storage and base flow could also be highly reduced. The described method has been used in a number of research projects and operational applications. Its typical application is aimed at assessing possible impacts of climate change on surface water resources, whose availability can subsequently be analysed by using water management models of the individual basins. The Bilan model, particularly in combination with Modflow model, can also suitably be used for simulation and assessments of groundwater resources.

  7. Water balance analysis for efficient water allocation in agriculture. A case study: Balta Brailei, Romania

    Science.gov (United States)

    Chitu, Zenaida; Villani, Giulia; Tomei, Fausto; Minciuna, Marian; Aldea, Adrian; Dumitrescu, Alexandru; Trifu, Cristina; Neagu, Dumitru

    2017-04-01

    Balta Brailei is one of the largest agriculture area in the Danube floodplain, located in SE of Romania. An impressive irrigation system, that covered about 53.500 ha and transferred water from the Danube River, was carried out in the period 1960-1980. Even if the water resources for agriculture in this area cover in most of the cases the volumes required by irrigation water users, the irrigation infrastructure issues as the position of the pumping stations against the river levels hinder the use of the water during low flows periods. An efficient optimization of water allocation in agriculture could avoid periods with water deficit in the irrigation systems. Hydrological processes are essentials in describing the mass and energy exchanges in the atmosphere-plant-soil system. Furthermore, the hydrological regime in this area is very dynamic with many feedback mechanisms between the various parts of the surface and subsurface water regimes. Agricultural crops depend on capillary rise from the shallow groundwater table and irrigation. For an effective optimization of irrigation water in Balta Brailei, we propose to analyse the water balance taking into consideration the water movement into the root zone and the influence of the Danube river, irrigation channel system and the shallow aquifer by combining the soil water balance model CRITERIA and GMS hydrogeological model. CRITERIA model is used for simulating water movement into the soil, while GMS model is used for simulating the shallow groundwater level variation. The understanding of the complex feedbacks between atmosphere, crops and the various parts of the surface and subsurface water regimes in the Balta Brailei will bring more insights for predicting crop water need and water resources for irrigation and it will represent the basis for implementing Moses Platform in this specific area. Moses Platform is a GIS based system devoted to water procurement and management agencies to facilitate planning of

  8. Actual Evapotranspiration in the Al-Khazir Gomal Basin (Northern Iraq Using the Surface Energy Balance Algorithm for Land (SEBAL and Water Balance

    Directory of Open Access Journals (Sweden)

    Hussein Jassas

    2015-04-01

    Full Text Available Increasing dependence on groundwater requires a detailed determination of the different outputs and inputs of a basin for better water management. Determination of spatial and temporal actual evapotranspiration (ETa, in this regard, is of vital importance as there is significant water loss from drainage basins. This research paper uses the Surface Energy Balance Algorithm for Land (SEBAL, as well as the water balance, to estimate the spatial and temporal ETa in the Al-Khazir Gomal Basin, Northern Iraq. To compensate for the shortage in rainfall, and to irrigate summer crops, farmers in this basin have been depending, to a large extent, on groundwater extracted from the underlying unconfined aquifer, which is considered the major source for both domestic and agricultural uses in this basin. Rainfed farming of wheat and barley is one of the most important activities in the basin in the winter season, while in the summer season, agricultural activity is limited to small rice fields and narrow strips of vegetable cultivation along the Al-Khazir River. The Landsat Thematic Mapper images (TM5 acquired on 21 November 2006, 9 March 2007, 5 May 2007, 21 July 2007, and 23 September 2007 were used, along with a digital elevation model (DEM and ground-based meteorological data, measured within the area of interest. Estimation of seasonal ETa from periods between satellite overpasses was computed using the evaporative fraction (Ʌ. The water balance approach was utilized, using meteorological data and river hydrograph analysis, to estimate the ETa as the only missing input in the predefined water balance equation. The results of the two applied methods were comparable. SEBAL results were compared with the land use land cover (LULC map. The river showed the highest ETa, as evaporation from the free-water surface. Rice fields, irrigated in the summer season, have a high ETa in the images, as these fields are immersed in water during June, July and August

  9. Water balance at an arid site: a model validation study of bare soil evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T.L.; Campbell, G.S.; Gee, G.W.

    1984-03-01

    This report contains results of model validation studies conducted by Pacific Northwest Laboratory (PNL) for the Department of Energy's (DOE) National Low Level Waste Management Program (NLLWMP). The model validation tests consisted of using unsaturated water flow models to simulate water balance experiments conducted at the Buried Waste Test Facility (BWTF) located at the Department of Energy's Hanford site, near Richland, Washington. The BWTF is a lysimeter facility designed to collect field data on long-term water balance and radionuclide tracer movement. It has been operated by PNL for the NLLWMP since 1978. An experimental test case, developed from data collected at the BWTF, was used to evaluate predictions from different water flow models. The major focus of the validation study was to evaluate how the use of different evaporation models affected the accuracy of predictions of evaporation, storage, and drainage made by the whole model. Four evaporation models were tested including two empirical models and two mechanistic models. The empirical models estimate actual evaporation from potential evaporation; the mechanistic models describe water vapor diffusion within the soil profile and between the soil and the atmosphere in terms of fundamental soil properties, and transport processes. The water flow models that included the diffusion-type evaporation submodels performed best overall. The empirical models performed poorly in their description of evaporation and profile water storage during summer months. The predictions of drainage were supported quite well by the experimental data. This indicates that the method used to estimate hydraulic conductivity needed for the Darcian submodel was adequate. This important result supports recommendations for these procedures that were made previously based on laboratory results.

  10. Proposing water balance method for water availability estimation in Indonesian regional spatial planning

    Science.gov (United States)

    Juniati, A. T.; Sutjiningsih, D.; Soeryantono, H.; Kusratmoko, E.

    2018-01-01

    The water availability (WA) of a region is one of important consideration in both the formulation of spatial plans and the evaluation of the effectiveness of actual land use in providing sustainable water resources. Information on land-water needs vis-a-vis their availability in a region determines the state of the surplus or deficit to inform effective land use utilization. How to calculate water availability have been described in the Guideline in Determining the Carrying Capacity of the Environment in Regional Spatial Planning. However, the method of determining the supply and demand of water on these guidelines is debatable since the determination of WA in this guideline used a rational method. The rational method is developed the basis for storm drain design practice and it is essentially a peak discharge method peak discharge calculation method. This paper review the literature in methods of water availability estimation which is described descriptively, and present arguments to claim that water balance method is a more fundamental and appropriate tool in water availability estimation. A better water availability estimation method would serve to improve the practice in preparing formulations of Regional Spatial Plan (RSP) as well as evaluating land use capacity in providing sustainable water resources.

  11. Effects of Water and Land-based Sensorimotor Training Programs on Static Balance among University Students

    OpenAIRE

    Abdolhamid Daneshjoo; Ashril Yusof

    2016-01-01

    This study examined the effect of sensorimotor training on static balance in two different environments; in water and on land. Thirty non-clinical university male students (aged 22±0.85 years) were divided randomly into three groups; water, land and control groups. The experimental groups performed their respective sensorimotor training programs for 6 weeks (3 times per week). The Stork Stand Balance Test was used to examine the static balance at pre- and post-time points. Significant main ef...

  12. Impact of climatic noise on global estimates of terrestrial water balance components

    Science.gov (United States)

    Nasonova, Olga; Gusev, Yeugeniy; Semenov, Vladimir; Kovalev, Evgeny

    2016-04-01

    Estimates of water balance components performed by different authors in climate impact studies are characterized by a large scatter or uncertainty associated, in particular, with application of different meteorological forcing data (simulated by climate models), different estimates of model parameters, and different hydrological models. In the present work, the objective uncertainty, which cannot be reduced by means of better physical description of the processes under study or by means of improvement of the quality of input data for model simulations, and which is an internal feature of the atmosphere - hydrosphere - land surface system, is considered. This uncertainty is caused by a chaotic character of atmospheric processes (i.e. by so-called climatic noise), their instability with respect to small errors in determination of initial conditions for modeling the evolution of meteorological variables. Our study is devoted to investigating the impact of climatic noise on the estimates of terrestrial water balance components (precipitation, runoff and evapotranspiration) on a global scale. To achieve the effect of climatic noise 45 simulations were performed by the atmospheric general circulation model ECHAM5 under identical lower boundary conditions (including sea surface temperatures and sea ice concentrations) and constant external forcing parameters. The only differences between the simulations were initial conditions of the atmosphere. Meteorological fields simulated by ECHAM5 for the period of 1979-2012 were used as forcing data (with 6-hour temporal resolution and one-degree spatial one) by the land surface model Soil Water - Atmosphere - Plants (SWAP) for hydrological simulations on a global scale. As a result, 45-member ensemble of the water balance components for the land surface of the Earth excluding Antarctica was obtained. Analysis of the obtained results allowed us to estimate the lowest level of uncertainty which can be achieved in climate impact

  13. General procedure to initialize the cyclic soil water balance by the Thornthwaite and Mather method

    NARCIS (Netherlands)

    Dourado-Neto, D.; Lier, van Q.D.; Metselaar, K.; Reichardt, K.; Nielsen, D.R.

    2010-01-01

    The original Thornthwaite and Mather method, proposed in 1955 to calculate a climatic monthly cyclic soil water balance, is frequently used as an iterative procedure due to its low input requirements and coherent estimates of water balance components. Using long term data sets to establish a

  14. The water balance of a seasonal stream in the semi-arid Western ...

    African Journals Online (AJOL)

    In addition, stable environmental isotopes and water balance modelling were used to perform hydrograph separation as well as to quantify components of the water balance. Annual streamflow in the catchment during the period of observation was variable, ranging between 0.026 mm·a-1 and 75.401 mm·a-1. Streamflow ...

  15. Modeling plant competition for soil water balance in Water-limited Mediterranean Ecosystems

    Science.gov (United States)

    Cortis, C.; Montaldo, N.

    2009-12-01

    In heterogeneous ecosystems, such Mediterranean ecosystems, contrasting plant functional types (PFTs, e.g., grass and woody vegetation) compete for the water use. In these complex ecosystems current modeling approaches need to be improved due to a general lack of knowledge about the relationship between ET and the plant survival strategies for the different PFTs under water stress. Indeed, still unsolved questions are: how the PFTs (in particular the root systems) compete for the water use, the impact of this competition on the water balance terms, and the role of the soil type and soil depth in this competition. For this reasons an elaborated coupled Vegetation dynamic model (VDM) - land surface model (LSM) model able to also predict root distribution of competing plant systems is developed. The transport of vertical water flow in the unsaturated soil is modelled through a Richards’ equation based model. The water extraction (sink) term is considered as the root water uptake. Two VDMs predict vegetation dynamics, including spatial and temporal distribution/evolution of the root systems in the soil of two competing species (grass and woody vegetation). An innovative method for solving the unlinear system of predicting equations is proposed. The coupled model is able to predict soil and root water potential of the two competing plant species. The model is tested for the Orroli case study, situated in the mid-west of Sardinia within the Flumendosa river watershed. The site landscape is a mixture of Mediterranean patchy vegetation types: trees, including wild olives and coark oaks, different shrubs and herbaceous species. In particular two contrasting plant functional types (grass and woody vegetation) have been included. The model well predict the soil moisture and vegetation dynamics for the case study, and significantly different root potentials are predicted for the two PFTs, highlighting the root competition for the water use. The soil depth is low in the case

  16. Balancing the playing field: collaborative gaming for physical training.

    Science.gov (United States)

    Mace, Michael; Kinany, Nawal; Rinne, Paul; Rayner, Anthony; Bentley, Paul; Burdet, Etienne

    2017-11-20

    Multiplayer video games promoting exercise-based rehabilitation may facilitate motor learning, by increasing motivation through social interaction. However, a major design challenge is to enable meaningful inter-subject interaction, whilst allowing for significant skill differences between players. We present a novel motor-training paradigm that allows real-time collaboration and performance enhancement, across a wide range of inter-subject skill mismatches, including disabled vs. able-bodied partnerships. A virtual task consisting of a dynamic ball on a beam, is controlled at each end using independent digital force-sensing handgrips. Interaction is mediated through simulated physical coupling and locally-redundant control. Game performance was measured in 16 healthy-healthy and 16 patient-expert dyads, where patients were hemiparetic stroke survivors using their impaired arm. Dual-player was compared to single-player performance, in terms of score, target tracking, stability, effort and smoothness; and questionnaires probing user-experience and engagement. Performance of less-able subjects (as ranked from single-player ability) was enhanced by dual-player mode, by an amount proportionate to the partnership's mismatch. The more abled partners' performances decreased by a similar amount. Such zero-sum interactions were observed for both healthy-healthy and patient-expert interactions. Dual-player was preferred by the majority of players independent of baseline ability and subject group; healthy subjects also felt more challenged, and patients more skilled. This is the first demonstration of implicit skill balancing in a truly collaborative virtual training task leading to heightened engagement, across both healthy subjects and stroke patients.

  17. A method for simulating transient ground-water recharge in deep water-table settings in central Florida by using a simple water-balance/transfer-function model

    Science.gov (United States)

    O'Reilly, Andrew M.

    2004-01-01

    A relatively simple method is needed that provides estimates of transient ground-water recharge in deep water-table settings that can be incorporated into other hydrologic models. Deep water-table settings are areas where the water table is below the reach of plant roots and virtually all water that is not lost to surface runoff, evaporation at land surface, or evapotranspiration in the root zone eventually becomes ground-water recharge. Areas in central Florida with a deep water table generally are high recharge areas; consequently, simulation of recharge in these areas is of particular interest to water-resource managers. Yet the complexities of meteorological variations and unsaturated flow processes make it difficult to estimate short-term recharge rates, thereby confounding calibration and predictive use of transient hydrologic models. A simple water-balance/transfer-function (WBTF) model was developed for simulating transient ground-water recharge in deep water-table settings. The WBTF model represents a one-dimensional column from the top of the vegetative canopy to the water table and consists of two components: (1) a water-balance module that simulates the water storage capacity of the vegetative canopy and root zone; and (2) a transfer-function module that simulates the traveltime of water as it percolates from the bottom of the root zone to the water table. Data requirements include two time series for the period of interest?precipitation (or precipitation minus surface runoff, if surface runoff is not negligible) and evapotranspiration?and values for five parameters that represent water storage capacity or soil-drainage characteristics. A limiting assumption of the WBTF model is that the percolation of water below the root zone is a linear process. That is, percolating water is assumed to have the same traveltime characteristics, experiencing the same delay and attenuation, as it moves through the unsaturated zone. This assumption is more accurate if

  18. Meal consumption is ineffective at maintaining or correcting water balance in a desert lizard, Heloderma suspectum.

    Science.gov (United States)

    Wright, Christian D; Jackson, Marin L; DeNardo, Dale F

    2013-04-15

    Many xeric organisms maintain water balance by relying on dietary and metabolic water rather than free water, even when free water may be available. For such organisms, hydric state may influence foraging decisions, since meal consumption is meeting both energy and water demands. To understand foraging decisions it is vital to understand the role of dietary water in maintaining water balance. We investigated whether meal consumption was sufficient to maintain water balance in captive Gila monsters (Heloderma suspectum) at varying levels of dehydration. Gila monsters could not maintain water balance over long time scales through meal consumption alone. Animals fed a single meal took no longer to dehydrate than controls when both groups were deprived of free water. Additionally, meal consumption imparts an acute short-term hydric cost regardless of hydration state. Meal consumption typically resulted in a significant elevation in osmolality at 6 h post-feeding, and plasma osmolality never fell below pre-feeding levels despite high water content (~70%) of meals. These results failed to support our hypothesis that dietary water is valuable to Gila monsters during seasonal drought. When considered in conjunction with previous research, these results demonstrate that Gila monsters, unlike many xeric species, are heavily reliant on seasonal rainfall and the resulting free-standing water to maintain water balance.

  19. Field Monitoring Protocol. Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, C. E. [Mountain Energy Partnership, Longmont, CO (United States)

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  20. Field Monitoring Protocol: Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  1. Assessment of check-dam groundwater recharge with water-balance calculations

    Science.gov (United States)

    Djuma, Hakan; Bruggeman, Adriana; Camera, Corrado; Eliades, Marinos

    2017-04-01

    Studies on the enhancement of groundwater recharge by check-dams in arid and semi-arid environments mainly focus on deriving water infiltration rates from the check-dam ponding areas. This is usually achieved by applying simple water balance models, more advanced models (e.g., two dimensional groundwater models) and field tests (e.g., infiltrometer test or soil pit tests). Recharge behind the check-dam can be affected by the built-up of sediment as a result of erosion in the upstream watershed area. This natural process can increase the uncertainty in the estimates of the recharged water volume, especially for water balance calculations. Few water balance field studies of individual check-dams have been presented in the literature and none of them presented associated uncertainties of their estimates. The objectives of this study are i) to assess the effect of a check-dam on groundwater recharge from an ephemeral river; and ii) to assess annual sedimentation at the check-dam during a 4-year period. The study was conducted on a check-dam in the semi-arid island of Cyprus. Field campaigns were carried out to measure water flow, water depth and check-dam topography in order to establish check-dam water height, volume, evaporation, outflow and recharge relations. Topographic surveys were repeated at the end of consecutive hydrological years to estimate the sediment built up in the reservoir area of the check dam. Also, sediment samples were collected from the check-dam reservoir area for bulk-density analyses. To quantify the groundwater recharge, a water balance model was applied at two locations: at the check-dam and corresponding reservoir area, and at a 4-km stretch of the river bed without check-dam. Results showed that a check-dam with a storage capacity of 25,000 m3 was able to recharge to the aquifer, in four years, a total of 12 million m3 out of the 42 million m3 of measured (or modelled) streamflow. Recharge from the analyzed 4-km long river section without

  2. Water balance and ad libitum water intake in football players during a training session

    Directory of Open Access Journals (Sweden)

    Juan Diego Hernández-Camacho

    2016-01-01

    Full Text Available Introduction: It is known that hydration plays a crucial performance in sports performance. But a great number of studies assessing hydration during football practice have shown that many players have a dehydration state prior to this sport and that most players are not able to replace water loss by sweating with ad libitum water intake. Objectives: To analyze ad libitum water consumption, water balance, thirst sensation and rate of perceived exertion on a sample of young football players during a training session. Material and Methods: A total of 57 players from three teams in the youth category voluntary participated in this study. Weight was collected at the beginning and at the end of training; thirst sensation, rate of perceived exertion and quantification of ingested water were assessed. We used descriptive statistics, correlational and ratio analysis. Results: Mean global intake of players studied was 844.74±351.95mL and an average loss of body water 1274.56±385.82mL. Average rate of dehydration of the initial weight was 0.63%. Average score of 2.81±1.32 on the scale of thirst sensation was obtained. Discussion and conclusions: Rate of loss of body water similar to previous studies is obtained. The players were not able to replace water loss by drinking liquid ad libitum, so the intake of an amount previously scheduled could become helpful.

  3. Water balance of rice plots under three different cultivation methods: first season results

    Directory of Open Access Journals (Sweden)

    Enrico Antonio Chiaradia

    2013-09-01

    Full Text Available In the last years rice cultivation methods have been the object of an intense research activity aiming to implement new irrigation methods in addition to traditional flooding, in order to reduce water use. This change has concerned also the traditional paddy-rice territories of the north-west of Italy, where rice has been traditionally cultivated as flooded and where paddy fields are a strong landscape landmark and represent a central feature in the Italian and European network for nature protection. The new techniques introduced in these territories consist in a dry seeding followed by field flooding after about one month (third-fourth leaf, and in a full aerobic cultivation with intermittent irrigations, similarly to standard irrigated crops. This paper presents the results obtained after the first year of a monitoring activity carried out at the Ente Nazionale Risi Experimental Station of Castello d’Agogna-Mortara (PV, Italy, where the main terms of water balance have been measured or estimated during the whole crop season. Because there is a substantial lack of data concerning the water balance related to the new water management techniques, the data are of wide interest despite this study covered only one season. The results here presented show that dry seeding-delayed flooding method required a rather similar amount of water respect to the traditional flooding method (2200 mm and 2491 mm, respectively, whereas the aerobic technique required one order of magnitude less water (298 mm, also due to the very shallow depth of the surface aquifer. Since evapotranspiration was nearly the same for the three methods (578 mm, 555 mm, and 464 mm, respectively for traditional flooded, dry seeding-delayed flooding and aerobic methods, percolation was very high in the case of the two flooded methods and very limited in the case of the aerobic cultivation with intermittent irrigations. These results suggest that, if the aerobic cultivation of rice

  4. Development of a Water and Enthalpy Budget-based Glacier mass balance Model (WEB-GM) and its preliminary validation

    Science.gov (United States)

    Ding, Baohong; Yang, Kun; Yang, Wei; He, Xiaobo; Chen, Yingying; Lazhu; Guo, Xiaofeng; Wang, Lei; Wu, Hui; Yao, Tandong

    2017-04-01

    This paper presents a new water and energy budget-based glacier mass balance model. Enthalpy, rather than temperature, is used in the energy balance equations to simplify the computation of the energy transfers through the water phase change and the movement of liquid water in the snow. A new parameterization for albedo estimation and state-of-the-art parameterization schemes for rainfall/snowfall type identification and surface turbulent heat flux calculations are implemented in the model. This model was driven with meteorological data and evaluated using mass balance and turbulent flux data collected during a field experiment implemented in the ablation zone of the Parlung No. 4 Glacier on the Southeast Tibetan Plateau during 2009 and 2015-2016. The evaluation shows that the model can reproduce the observed glacier ablation depth, surface albedo, surface temperature, sensible heat flux, and latent heat flux with high accuracy. Comparing with a traditional energy budget-based glacier mass balance model, this enthalpy-based model shows a superior capacity in simulation accuracy. Therefore, this model can reasonably simulate the energy budget and mass balance of glacier melting in this region and be used as a component of land surface models and hydrological models.

  5. Water and salt balances of two shallow groundwater cropping ...

    African Journals Online (AJOL)

    , groundwater table depth, artificial drainage volumes, and electrical conductivity of irrigation water, groundwater and drainage water. Simulations of evaporation and transpiration were done with the SWAMP model. Based on soil water and ...

  6. SWB-A modified Thornthwaite-Mather Soil-Water-Balance code for estimating groundwater recharge

    Science.gov (United States)

    Westenbroek, S.M.; Kelson, V.A.; Dripps, W.R.; Hunt, R.J.; Bradbury, K.R.

    2010-01-01

    A Soil-Water-Balance (SWB) computer code has been developed to calculate spatial and temporal variations in groundwater recharge. The SWB model calculates recharge by use of commonly available geographic information system (GIS) data layers in combination with tabular climatological data. The code is based on a modified Thornthwaite-Mather soil-water-balance approach, with components of the soil-water balance calculated at a daily timestep. Recharge calculations are made on a rectangular grid of computational elements that may be easily imported into a regional groundwater-flow model. Recharge estimates calculated by the code may be output as daily, monthly, or annual values.

  7. EQUILIBRIUM OF WATER BALANCE AS A BASIC PRECONDITION OF PROGRESSIVE DEVELOPMENT OF LAND AREA

    Directory of Open Access Journals (Sweden)

    K KUDRNA

    2005-04-01

    Full Text Available The proportion of water balance components – precipitation, transpiration, evaporation, underground waters and surface runoff – is a determining factor of stabile development of land area. But this proportion can be considerably disturbed and is permanently changing. Certain many-year averages are usually accepted as a stable state. That is why, in the presented work, we have tried to defi ne water balance on symmetry and invariance principles, to express it as a limit state, which would characterize it as a natural principle and enable comparison with the present balance.

  8. Improving the estimation of complete field soil water characteristic curves through field monitoring data

    Science.gov (United States)

    Bordoni, M.; Bittelli, M.; Valentino, R.; Chersich, S.; Meisina, C.

    2017-09-01

    In this work, Soil Water Characteristic Curves (SWCCs) were reconstructed through simultaneous field measurements of soil pore water pressure and water content. The objective was to evaluate whether field-based monitoring can allow for the improvement of the accuracy in SWCCs estimation with respect to the use of laboratory techniques. Moreover, field assessment of SWCCs allowed to: a) quantify the hydrological hysteresis affecting SWCCs through field data; b) analyze the effect of different temporal resolution of field measures; c) highlight the differences in SWCCs reconstructed for a particular soil during different hydrological years; d) evaluate the reliability of field reconstructed SWCCs, by the comparison between assessed and measured trends of a component of the soil water balance. These aspects were fundamental for assessing the reliability of the field reconstructed SWCCs. Field data at two Italian test-sites were measured. These test-sites were used to evaluate the goodness of field reconstructed SWCCs for soils characterized by different geomorphological, geological, physical and pedological features. Field measured or laboratory measured SWCCs data of 5 soil horizons (3 in a predominantly silty soil, 2 in a predominantly clayey one) were fitted by Van Genuchten model. Different field drying and wetting periods were identified, based on monthly meteorological conditions, in terms of rainfall and evapotranspiration amounts, of different cycles. This method allowed for a correct discrimination of the main drying and the main wetting paths from field data related and for a more reliable quantification of soil hydrological properties with respect to laboratory methodologies. Particular patterns of changes in SWCCs forms along depth could be also identified. Field SWCCs estimation is not affected by the temporal resolution of the acquisition (hours or days), as testified by similar values of Van Genuchten equation fitting parameters. Instead, hourly data

  9. Eddy Covariance Measurements Over a Maize Field: The Contribution of Minor Flux Terms to the Energy Balance Gap

    Science.gov (United States)

    Smidt, J.; Ingwersen, J.; Streck, T.

    2015-12-01

    The lack of energy balance closure is a long-standing problem in eddy covariance (EC) measurements. The energy balance equation is defined as Rn - G = H + λE, where Rn is net radiation, G is the ground heat flux, H is the sensible heat flux and λE is the latent heat flux. In most cases of energy imbalance, either Rn is overestimated or the ground heat and turbulent fluxes are underestimated. Multiple studies have shown that calculations, incorrect instrument installation/calibration and measurement errors alone do not entirely account for this imbalance. Rather, research is now focused on previously neglected sources of heat storage in the soil, biomass and air beneath the EC station. This project examined the potential of five "minor flux terms" - soil heat storage, biomass heat storage, energy consumption by photosynthesis, air heat storage and atmospheric moisture change, to further close the energy balance gap. Eddy covariance measurements were conducted at a maize (Zea mays) field in southwest Germany during summer 2014. Soil heat storage was measured for six weeks at 11 sites around the field footprint. Biomass and air heat storage were measured for six subsequent weeks at seven sites around the field footprint. Energy consumption by photosynthesis was calculated using the CO2 flux data. Evapotranspiration was calculated using the water balance method and then compared to the flux data processed with three post-closure methods: the sensible heat flux, the latent heat flux and the Bowen ratio post-closure methods. An energy balance closure of 66% was achieved by the EC station measurements over the entire investigation period. During the soil heat flux campaign, EC station closure was 74.1%, and the field footprint soil heat storage contributed 3.3% additional closure. During the second minor flux term measurement period, closure with the EC station data was 91%. Biomass heat storage resulted in 1.1% additional closure, the photosynthesis flux closed the gap

  10. Water balance in developing leaves of four tropical savanna woody species.

    Science.gov (United States)

    Meinzer, Frederick; Seymour, Virginia; Goldstein, Guillermo

    1983-11-01

    Water balance was studied in developing leaves of Curatella americana, Byrsonima crassifolia, Bowdichia virgilioides and Casearia sylvestris, four widespread tropical savanna evergreen woody species that renew their leaves during the dry season. Water potential components of leaves of different ages were estimated in the laboratory by determination of pressure-volume (PV) curves. Data from PV curves were used to help interpret the significance of variations in leaf water potential (Ψ L ) and stomatal conductance observed in leaves of different ages in the field.Initial osmotic potential at full turgidity as well as osmotic potential at the turgor loss point changed considerably during leaf development. Values of these water potential components for mature leaves were similar to those reported for temperate mesophytic woody species. Passive osmotic adjustment defined as the change in osmotic potential between full turgidity and turgor loss averaged only 0.3 MPa, much smaller than values for temperate mesophytic and drought hardy woody species. Since environmental conditions, especially soil moisture in the rooting zone, were essentially constant during leaf development, changes in leaf water potential components were not seasonal, but rather ontogenetic responses to diurnal water stress.In all species except C. sylvestris there were differences in Ψ L between adjacent leaves exposed to the same environmental conditions, with immature leaves generally maintaining higher Ψ L than mature leaves. The probable causes for this were 1) lower liquid flow resistance and 2) lower transpiration rates in younger leaves. At low transpiration rates liquid flow resistance was flux-dependent in all species, but became nearly independent of transpiration flux density (E) as E increased. This and their lower flow resistance permit high E to be sustained in developing leaves without excessive ψ drop across the leaf.During two typical dry season days E was high and even though

  11. Cumulative impacts of hydroelectric development on the fresh water balance in Hudson Bay

    International Nuclear Information System (INIS)

    Anctil, F.; Couture, R.

    1994-01-01

    A study is presented of the impacts of hydroelectric development on the surface water layer of Hudson Bay, including James Bay and the Foxe Basin. These impacts are directly related to the modifications in the fresh water balance of Hudson Bay and originate from the management of hydroelectric complexes. The fresh water balance is determined by identifying, at different scales, the modifications caused by each complex. The main inputs are the freezing and thawing of the ice cover, runoff water, and mass exchange at the air-water interface. Three spatial scales were used to obtain the resolution required to document the cumulative effects of fresh water balance modifications on the water surface layer, one each for Hudson Bay, Hudson Strait, and the Labrador Sea. Finally, the addition of the proposed Great Whale hydroelectric complex is examined from the available information and forecasts. 18 refs,. 6 figs., 1 tab

  12. Evaluation of a mass-balance approach to determine consumptive water use in northeastern Illinois

    Science.gov (United States)

    Mills, Patrick C.; Duncker, James J.; Over, Thomas M.; Marian Domanski,; ,; Engel, Frank

    2014-01-01

    A principal component of evaluating and managing water use is consumptive use. This is the portion of water withdrawn for a particular use, such as residential, which is evaporated, transpired, incorporated into products or crops, consumed by humans or livestock, or otherwise removed from the immediate water environment. The amount of consumptive use may be estimated by a water (mass)-balance approach; however, because of the difficulty of obtaining necessary data, its application typically is restricted to the facility scale. The general governing mass-balance equation is: Consumptive use = Water supplied - Return flows.

  13. Water-balance approach for assessing potential for smallholder ...

    African Journals Online (AJOL)

    This paper presents a simple, generic groundwater-balance-based methodology that uses a set of type-curves to assist with decision making on the scope for developing sustainable groundwater irrigation supplies, and to help understand how cropping choices influence the potential areal extent of irrigation. Guidance to ...

  14. Energy and water cycle over the Tibetan plateau : surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Zhongbo; Zhang, Ting; Ma, Yaoming; Jia, Li; Wen, Jun

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy

  15. Energy and water cycle over the Tibetan Plateau: surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Z.; Zhang, T.; Ma, Y.; Jia, L.; Wen, J.

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy

  16. Global sensitivity analysis of a local water balance model predicting evaporation, water yield and drought

    Science.gov (United States)

    Speich, Matthias; Zappa, Massimiliano; Lischke, Heike

    2017-04-01

    Evaporation and transpiration affect both catchment water yield and the growing conditions for vegetation. They are driven by climate, but also depend on vegetation, soil and land surface properties. In hydrological and land surface models, these properties may be included as constant parameters, or as state variables. Often, little is known about the effect of these variables on model outputs. In the present study, the effect of surface properties on evaporation was assessed in a global sensitivity analysis. To this effect, we developed a simple local water balance model combining state-of-the-art process formulations for evaporation, transpiration and soil water balance. The model is vertically one-dimensional, and the relative simplicity of its process formulations makes it suitable for integration in a spatially distributed model at regional scale. The main model outputs are annual total evaporation (TE, i.e. the sum of transpiration, soil evaporation and interception), and a drought index (DI), which is based on the ratio of actual and potential transpiration. This index represents the growing conditions for forest trees. The sensitivity analysis was conducted in two steps. First, a screening analysis was applied to identify unimportant parameters out of an initial set of 19 parameters. In a second step, a statistical meta-model was applied to a sample of 800 model runs, in which the values of the important parameters were varied. Parameter effect and interactions were analyzed with effects plots. The model was driven with forcing data from ten meteorological stations in Switzerland, representing a wide range of precipitation regimes across a strong temperature gradient. Of the 19 original parameters, eight were identified as important in the screening analysis. Both steps highlighted the importance of Plant Available Water Capacity (AWC) and Leaf Area Index (LAI). However, their effect varies greatly across stations. For example, while a transition from a

  17. Assessment of the terrestrial water balance using the global water availability and use model WaterGAP - status and challenges

    Science.gov (United States)

    Müller Schmied, Hannes; Döll, Petra

    2017-04-01

    The estimation of the World's water resources has a long tradition and numerous methods for quantification exists. The resulting numbers vary significantly, leaving room for improvement. Since some decades, global hydrological models (GHMs) are being used for large scale water budget assessments. GHMs are designed to represent the macro-scale hydrological processes and many of those models include human water management, e.g. irrigation or reservoir operation, making them currently the first choice for global scale assessments of the terrestrial water balance within the Anthropocene. The Water - Global Assessment and Prognosis (WaterGAP) is a model framework that comprises both the natural and human water dimension and is in development and application since the 1990s. In recent years, efforts were made to assess the sensitivity of water balance components to alternative climate forcing input data and, e.g., how this sensitivity is affected by WaterGAP's calibration scheme. This presentation shows the current best estimate of terrestrial water balance components as simulated with WaterGAP by 1) assessing global and continental water balance components for the climate period 1971-2000 and the IPCC reference period 1986-2005 for the most current WaterGAP version using a homogenized climate forcing data, 2) investigating variations of water balance components for a number of state-of-the-art climate forcing data and 3) discussing the benefit of the calibration approach for a better observation-data constrained global water budget. For the most current WaterGAP version 2.2b and a homogenized combination of the two WATCH Forcing Datasets, global scale (excluding Antarctica and Greenland) river discharge into oceans and inland sinks (Q) is assessed to be 40 000 km3 yr-1 for 1971-2000 and 39 200 km3 yr-1 for 1986-2005. Actual evapotranspiration (AET) is close to each other with around 70 600 (70 700) km3 yr-1 as well as water consumption with 1000 (1100) km3 yr-1. The

  18. Effects of Water Management Strategies on Water Balance in a Water Scarce Region: A Case Study in Beijing by a Holistic Model

    OpenAIRE

    Zhigong Peng; Baozhong Zhang; Xueliang Cai; Lei Wang

    2016-01-01

    Irrigation is facing increasing pressure from other competitive water users to reduce water consumption in a water scarce region. Based on the Basin-wide Holistic Integrated Water Assessment (BHIWA) model, the effects of water management strategies on water balance in the dry regions of North China were analyzed. The results show that, with the decrease of irrigation water supply reliability (IWSR) and the increase of irrigation water use efficiency (WUE), irrigation water use decreased signi...

  19. A flow balance approach to scenarios for water reclamation by Ania ...

    African Journals Online (AJOL)

    drinie

    ISSN 0378-4738 = Water SA Vol. 27 No. 1 January 2001 115. Available on website http://www.wrc.org.za. Comments on: A flow balance approach to scenarios for water reclamation by Ania MW Grobicki and B Cohen. I would like to offer a brief comment on the above paper, which appeared in Water SA 25 (4), October ...

  20. LBA-ECO LC-14 Modeled Soil and Plant Water Balance, Amazon Basin, 1995-2001

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: A simple GIS soil-water balance model for the Amazon Basin, called RisQue (Risco de Queimadasa -- Fire Risk), was used to conduct an analysis of spatial...

  1. LBA-ECO LC-14 Modeled Soil and Plant Water Balance, Amazon Basin, 1995-2001

    Data.gov (United States)

    National Aeronautics and Space Administration — A simple GIS soil-water balance model for the Amazon Basin, called RisQue (Risco de Queimadasa -- Fire Risk), was used to conduct an analysis of spatial and temporal...

  2. Electropumping of water with rotating electric fields

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; De Luca, Sergio; Todd, Billy

    2013-01-01

    exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum...

  3. Myths and methodologies: Making sense of exercise mass and water balance.

    Science.gov (United States)

    Cheuvront, Samuel N; Montain, Scott J

    2017-09-01

    What is the topic of this review? There is a need to revisit the basic principles of exercise mass and water balance, the use of common equations and the practice of interpreting outcomes. What advances does it highlight? We propose use of the following equation as a way of simplifying exercise mass and water balance calculations in conditions where food is not consumed and waste is not excreted: ∆body mass - 0.20 g/kcal -1  = ∆body water. The relative efficacy of exercise drinking behaviours can be judged using the following equation: percentage dehydration = [(∆body mass - 0.20 g kcal -1 )/starting body mass] × 100. Changes in body mass occur because of flux in liquids, solids and gases. This knowledge is crucial for understanding metabolism, health and human water needs. In exercise science, corrections to observed changes in body mass to estimate water balance are inconsistently applied and often misinterpreted, particularly after prolonged exercise. Although acute body mass losses in response to exercise can represent a close surrogate for body water losses, the discordance between mass and water balance equivalence becomes increasingly inaccurate as more and more energy is expended. The purpose of this paper is briefly to clarify the roles that respiratory water loss, gas exchange and metabolic water production play in the correction of body mass changes for fluid balance determinations during prolonged exercise. Computations do not include waters of association with glycogen because any movement of water among body water compartments contributes nothing to water or mass flux from the body. Estimates of sweat loss from changes in body mass should adjust for non-sweat losses when possible. We propose use of the following equation as a way of simplifying the study of exercise mass and water balance: ∆body mass - 0.20 g kcal -1  = ∆body water. This equation directly controls for the influence of energy expenditure on body mass

  4. Effect of Model Selection on Computed Water Balance Components

    NARCIS (Netherlands)

    Jhorar, R.K.; Smit, A.A.M.F.R.; Roest, C.W.J.

    2009-01-01

    Soil water flow modelling approaches as used in four selected on-farm water management models, namely CROPWAT. FAIDS, CERES and SWAP, are compared through numerical experiments. The soil water simulation approaches used in the first three models are reformulated to incorporate ail evapotranspiration

  5. Water-balance response of Rhinella arenarum (Hensel, 1867) tadpoles to graduated increase in environmental osmolarity

    OpenAIRE

    Ferrari,L.; de la Torre,FR.; Salibián,A.

    2010-01-01

    The water balance and the upper limit of osmotic tolerance of premetamorphic Rhinella arenarum larvae (Gosner's stage 26) was evaluated after semistatic incubation in electrolyte (NaCl) and non-electrolyte (mannitol) media following a protocol of progressively increased osmotic pressure. Wet and dry weights were measured to calculate the water content as a derived variable indicative of the hydric balance. Statistical analysis was performed using univariate and integrated multivariate analysi...

  6. Impacts of climate projections on water balance and implications on olive crop in Minas Gerais

    OpenAIRE

    Santos,Diego F. dos; Martins,Fabrina B.; Torres,Roger R.

    2017-01-01

    ABSTRACT Minas Gerais is vulnerable to climate change, with negative impacts on water balance and changes in the cultivation of several crops. Currently, the olive crop has been an alternative source for farmers, especially those in the South of the state. However, there is no information on areas with climatic conditions suitable for olive cultivation, as well as the possible impacts of climate change. The aim of this study was to verify the impact of climate projections on water balance and...

  7. Can a Halliwick swimming programme develop water competence, static and dynamic balance in disabled participants?

    OpenAIRE

    Maia, Andreia; Amarante, Jean; Serra, Nuno; Vila-Chã, Carolina; Barbosa, Tiago; Costa, Mário

    2017-01-01

    Introduction The Halliwick concept is an aquatic rehabilitation programme aiming to enhance balance and core stability of disabled individuals. Previous studies focused on assessing the participants’ satisfaction on Halliwick programmes or the acquisition of water motor skills (Garcia et al., 2012).Yet, as far as our understanding goes there is not in the literature the assessment of the water independence or the transfer to land-based body balance and posture. Methods Nine individu...

  8. Beyond annual streamflow reconstructions for the Upper Colorado River Basin: a paleo-water-balance approach

    Science.gov (United States)

    Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.

    2015-01-01

    In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotrans- piration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404–1905 period for the Upper Colorado River Basin.

  9. Magnetic Field Water Treatment Section - Overview

    International Nuclear Information System (INIS)

    Kopec, M.

    1999-01-01

    Full text: In the last year the activity of the team was focused on industrial implementing of methods developed, as well as on designing and implementing devices for magnetohydrodynamic water treatment and water filtration in the magnetic field. - Phase 1 of research for Ostrowiec Steelworks in Ostrowiec Swietokrzyski (IFJ N-3454 Research) on the possibilities of implementation of the methods of magnetohydrodynamic water treatment in water and sewage circuits, as well as of the method of filtration in the magnetic field were completed. In this part of research, phase analyses of deposits from water and sewage circuits were carried out. In the rolling mill circuit of Ostrowiec Steelworks, a magnetic filter with a capacity of 200 m 3 /h, designed in the Institute of Nuclear Physics was installed and tested. Implementation of this filter is predicted for the year 1999. - Research for the Kozienice Power Station in Swierze Gorne (IFJ N-3450 Research) on determination of the phase composition of total suspended solids in water-steam circuits was completed. - A preliminary evaluation was completed on economic effects of implementation of the prototype magnetic filter FM-500 which has been operational since 1993 in the circuit of turbine condensate cleaning in the 225 MW unit in the power station in Polaniec. (author)

  10. Improvement of Balance Stability in Older Individuals by On-Water Training.

    Science.gov (United States)

    Osti, Fabiana Rodrigues; de Souza, Caroline Ribeiro; Teixeira, Luis Augusto

    2018-03-09

    In the present investigation we evaluated the effect of stand-up paddle practice on upright postural control in older individuals. Participants were assigned to a group practicing stand-up paddle on seawater or to a walking control group. Balance stability was evaluated in the tandem Romberg and tiptoes postures, comparing the conditions of eyes open versus closed. Results showed that stand-up paddle practice led to reduced anteroposterior and mediolateral amplitudes of body sway in both visual conditions, while walking led to no effect on balance. These results suggest that the challenge of keeping body balance on an unstable board during on-water stand-up paddle practice is transferred to postural tasks performed on a stable support surface, with generalization to sensory and biomechanical conditions different from those experienced during the training. Our results suggest that on-water balance training could be considered as a potential procedure to improve balance control in older adults.

  11. Measuring air-water interfacial area for soils using the mass balance surfactant-tracer method.

    Science.gov (United States)

    Araujo, Juliana B; Mainhagu, Jon; Brusseau, Mark L

    2015-09-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. On the Capabilities of Using AIRSAR Data in Surface Energy/Water Balance Studies

    Science.gov (United States)

    Moreno, Jose F.; Saatchi, Susan S.

    1996-01-01

    level, methods are still not fully well established, especially over vegetation-covered areas. In this paper, an algorithm is described which allows derivation of three fundamental parameters from SAR data: soil moisture, soil roughness and canopy water content, accounting for the effects of vegetation cover by using optical (Landsat) data as auxiliary. Capabilities and limitations of the data and algorithms are discussed, as well as possibilities to use these data in energy/water balance modeling studies. All the data used in this study were acquired as part of the Intensive Observation Period in June-July 1991 (European Multisensor Aircraft Campaign-91), as part of the European Field Experiment in a Desertification- threatened Area (EFEDA), a European contribution to the global-change research sponsored by the IGBP program (Bolle et al., 1993).

  13. Sustainable energy development and water supply security in Kamojang Geothermal Field: The Energy-Water Nexus

    Science.gov (United States)

    Sofyan, Y.; Nishijima, J.; Fujimitsu, Y.

    2014-12-01

    The Kamojang Geothermal Field (KGF) is a typical vapor dominated hydrothermal system in West Java, Indonesia. This geothermal field is the oldest exploited geothermal field in Indonesia. From 1983 to 2005, more than 160 million tons of steam have been exploited from the KGF and more than 30 million tons of water were injected into the reservoir system. The injected water come from condensed water, local river and ground water. Sustainable production in the geothermal energy development is the ability of the production system applied to sustain the stable production level over long times and to manage the mass balance between production, injection and natural recharge in the geothermal reservoir during exploitation. Mass balance in the reservoir system can be monitored by using time lapse gravity monitoring. Mass variation of hydrodynamic in the reservoir of KGF from 1999 to 2005 is about -3.34 Mt/year while is about -3.78 Mt/year from 1999 to 2008. Another period between 2009 and 2010, mass variation decreased about -8.24 Mt. According to the history of production and injection, natural recharge to the KGF's reservoir is estimated at about 2.77 Mt/year from 1999 to 2005 and 2.75 Mt/year from 1999 to 2008. Between 2009 and 2010, KGF has a bigger mass deficiency rate throughout 200 MWe maintain production. Large amount of fresh water is needed for sustainable geothermal energy production, while the domestic water supply need is also increased. Natural recharge, about 50% of injected water, cooling system, drilling and other production activities in KGF spend large amounts of fresh water. Water consumption for local people around KGF is about 1.46 MT/year. The water volume around KGF of total runoff is the range between dry season 0.07 MT/month and rainy season 4.4 MT/month. The water demands for sustainable geothermal production of KGF and for local people's consumption will increase in the future. Integrated planning between the energy and water sectors in KGF

  14. Identifying dominant controls on the water balance of partly sealed surfaces

    Science.gov (United States)

    Schuetz, Tobias; Schübl, Marleen; Siebert, Caroline; Weiler, Markus

    2017-04-01

    It is the challenge of modern urban development to obtain a near natural state for the urban water balance. For this purpose permeable alternatives to conventional surface sealing have been established during the last decades. A wealth of studies - under laboratory as well as field conditions - has emerged around the globe to examine the hydrological characteristics of different types of pavements. The main results of these studies - measured infiltration and evaporation rates, vary to a great extent between single studies and pavement types due to methodological approaches and local conditions. Within this study we analyze the controls of water balance components of partly sealed urban surfaces derived from an extensive literature review and a series of infiltration experiments conducted on historical and modern pavements within the city of Freiburg, Germany. Measured values published in 48 studies as well as the results of 30 double-ring infiltration experiments were compiled and sorted according to the measured parameter, the pavement type, pavement condition, age of the pavement, porosity of the pavement material and joint filling material as well as joint proportion of joint pavements. The main influencing factors on infiltration / hydraulic conductivity, evaporation rates and groundwater recharge of permeable pavements were identified and quantified using multiple linear regression methods. The analysis showed for both the literature study and our own infiltration experiments that condition and age of the pavement have the major influence on the pavement's infiltration capacity and that maintenance plays an important role for the long-term effectiveness of permeable pavements. For pavements with joints, the porosity of the pavement material seemed to have a stronger influence on infiltration capacity than the proportion of joint surface for which a clear influence could not be observed. Evaporation rates were compared for different surface categories as not

  15. Determining water and nitrogen balances for beneficial management practices using lysimeters at Wagna test site (Austria).

    Science.gov (United States)

    Klammler, Gernot; Fank, Johann

    2014-11-15

    The shallow Murtal aquifer south of Graz, Austria, provides easily withdrawable groundwater, which is supplied as drinking water without any chemical treatment. The aquifer is also used intensively by agriculture. Common agricultural management practices are the main source for diffuse nitrogen leaching and high groundwater nitrate concentrations. To safeguard the coexisting use of these two important resources, lysimeters are operated at the agricultural test site Wagna, Austria, and the influence of two beneficial management practices--low nitrogen input and organic farming--on nitrogen leaching towards groundwater is investigated. The technical lysimeter design as presented here consists of: (1) high-resolution weighing cells, (2) a suction controlled lower boundary condition for sucking off seepage water, thus emulating undisturbed field conditions, (3) comparative soil temperature, water content and matrix potential measurements inside and outside the lysimeter at different depths, (4) an installation of the lysimeters directly into test plots and (5) a removable upper lysimeter ring enabling machinery soil tillage. Our results indicate that oasis effects or fringe effects of the lysimeter cylinder on unsaturated water flow did not occur. Another lysimeter cultivated with lawn is operated for observing grass-reference evapotranspiration, which resulted in good agreement with calculated grass-reference evapotranspiration according to the FAO-Penman-Monteith method. We conclude that lysimeters installed at Wagna test site did not show any fringe effects and, thus, are appropriate tools for measuring water balance elements and nitrogen leaching of arable and grass land at point scale. Furthermore, our results for the period of 2005 to 2011 show that beneficial management practices reduced nitrate leaching and, hence, may allow for a sustainable coexistence of drinking water supply and agriculture in the Murtal aquifer. Copyright © 2014 Elsevier B.V. All rights

  16. Hydrological functioning and water balance in a heavily modified hydrographic system

    Science.gov (United States)

    Carbonnel, Vincent; Brion, Natacha; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.

    2017-04-01

    Rivers and canals are often the location for the historical settlement of cities and the backbone for their expansion, as they permit the transport of goods and people, the access to water for industrial activities and energy production, and the evacuation of the domestic and industrial wastewaters. In turn, human activities can result in modifications of the natural river systems to allow for instance ship transport or protection against flooding. The complex interconnected hydrographic network composed of the Zenne and the parallel Charleroi-Brussels-Scheldt Canal, which supports the development of the economy and urbanization of Brussels Metropolitan Area (Belgium), is a good example of such an altered system. The natural water course has been profoundly modified by the deviation of rivers to feed the canal, the control of the water flow in the canal by locks and pumps and the overflow exchange of water between the river and the canal for flood protection purposes. Also, the functioning of this system is strongly impacted by urban hydrology in Brussels, which results in amounts of wastewater discharged in the Zenne River that are nearly equivalent to the natural riverine flow. Water and water quality management in such complex and altered systems correspond to difficult tasks. They require, as a first step, a deep understanding of their hydrological functioning. Building an accurate water budget is also a necessary step in the investigation of the pollution sources, sinks, dynamics and mass-balance. In order to assess the water quality and provide insights for water management in the Zenne-Canal hydrographic network (cf. other contributions in this session), we established a detailed box-model representation of the water budget for the whole system, with a particular interest on the importance and the effects of the exchanges of water between the river and the canal. A particularity of this study is that, in contrast to the widespread use of hydrological

  17. A regional water balance for the WIPP site and surrounding area

    International Nuclear Information System (INIS)

    Hunter, R.L.

    1987-01-01

    A water balance or budget is developed as an accounting of the components of a closed hydrologic system. In the WIPP study area, water-budget techniques have previously been used to compute leakage from Lake Avalon and from potash refinery spoil ponds. A general expression for a closed hydrologic system is presented. In a developed area like the WIPP region, the water budget must include many usage factors, such as municipal or industrial pumpage. In the WIPP water-budget study area, inflows are precipitation, surface- and ground-water inflow, and the artificial addition of surface and ground water. Outflows are surface runoff, evaporation and transpiration, and ground-water outflow. Changes in storage in the WIPP region have also been documented. The WIPP water balance described here is based on a combination of long-term averages and figures for 1980. 12 refs., 5 figs., 1 tab

  18. Evaporation estimates from the Dead Sea and their implications on its water balance

    Science.gov (United States)

    Oroud, Ibrahim M.

    2011-12-01

    The Dead Sea (DS) is a terminal hypersaline water body situated in the deepest part of the Jordan Valley. There is a growing interest in linking the DS to the open seas due to severe water shortages in the area and the serious geological and environmental hazards to its vicinity caused by the rapid level drop of the DS. A key issue in linking the DS with the open seas would be an accurate determination of evaporation rates. There exist large uncertainties of evaporation estimates from the DS due to the complex feedback mechanisms between meteorological forcings and thermophysical properties of hypersaline solutions. Numerous methods have been used to estimate current and historical (pre-1960) evaporation rates, with estimates differing by ˜100%. Evaporation from the DS is usually deduced indirectly using energy, water balance, or pan methods with uncertainty in many parameters. Accumulated errors resulting from these uncertainties are usually pooled into the estimates of evaporation rates. In this paper, a physically based method with minimum empirical parameters is used to evaluate historical and current evaporation estimates from the DS. The more likely figures for historical and current evaporation rates from the DS were 1,500-1,600 and 1,200-1,250 mm per annum, respectively. Results obtained are congruent with field observations and with more elaborate procedures.

  19. Assessment of the regional water balance of the limestone ...

    Indian Academy of Sciences (India)

    water infiltrates is stored in the aquifers. Hence, it can be made available for future use (Dixey 1972). It is therefore necessary to carry out groundwater resources research studies for the evaluation of the sustainability of the aquifers. Neglecting the size of the water bearing for- mations, there are 12 major aquifers distributed.

  20. Uncertainty in a monthly water balance model using the generalized ...

    Indian Academy of Sciences (India)

    Laboratory of Comparative Policy in Water Resources Management, University of Concepcion,. CONICYT/FONDAP 15130015, Concepcion, Chile. 2. Department of Water Resources, Faculty of Agricultural Engineering, University of Concepcion,. Concepcion, Chile. 3. Facultad de Ingenierıa, Universidad del Desarroll, ...

  1. Uncertainty in a monthly water balance model using the generalized ...

    Indian Academy of Sciences (India)

    Laboratory of Comparative Policy in Water Resources Management, University of Concepcion, CONICYT/FONDAP 15130015, Concepcion, Chile. Department of Water Resources, Faculty of Agricultural Engineering, University of Concepcion, Concepcion, Chile. Facultad de Ingeniería, Universidad del Desarroll, ...

  2. Ozone exposure affects leaf wettability and tree water balance

    NARCIS (Netherlands)

    Schreuder, M.D.J.; Hove, van L.W.A.; Brewer, C.A.

    2001-01-01

    Relatively little is known about the influences of growing-season background ozone (O3) concentrations on leaf cuticles and foliar water loss. Using fumigation chambers, leaf wettability and foliar water loss were studied in two poplar species, Populus nigra and P. euramericana, and a conifer,

  3. Rainfall interception and the coupled surface water and energy balance

    NARCIS (Netherlands)

    Van Dijk, A.I.J.M.; et al., et al.; Moors, E.J.

    2015-01-01

    Evaporation from wet canopies (. E) can return up to half of incident rainfall back into the atmosphere and is a major cause of the difference in water use between forests and short vegetation. Canopy water budget measurements often suggest values of E during rainfall that are several times greater

  4. Water Balances in the Eastern Mediterranean | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The roots of destabilization, migration, and local conflict around the world can often be traced to a lack of fresh water. As a result, the importance of fresh water to economic development, quality of life, ecosystem sustainability, and political stability is gaining renewed global recognition. In the Middle East and the countries of ...

  5. Balancing food security and water demand for freshwater ecosystems

    Science.gov (United States)

    Pastor, Amandine; Palazzo, Amanda; Havlik, Petr; Obersteiner, Michael; Biemans, Hester; Wada, Yoshihide; Kabat, Pavel; Ludwig, Fulco

    2017-04-01

    Water is not an infinite resource and demand from irrigation, household and industry is constantly increasing. This study focused on including global water availability including environmental flow requirements with water withdrawal from irrigation and other sectors at a monthly time-step in the GLOBIOM model. This model allows re-adjustment of land-use allocation, crop management, consumption and international trade. The GLOBIOM model induces an endogenous change in water price depending on water supply and demand. In this study, the focus was on how the inclusion of water resources affects land-use and, in particular, how global change will influence repartition of irrigated and rainfed lands at global scale. We used the climate change scenario including a radiative forcing of 8.5 W/m2 (RCP8.5), the socio-economic scenario (SSP2: middle-of-road), and the environmental flow method based on monthly flow allocation (the Variable Monthly Flow method) with high and low restrictions. Irrigation withdrawals were adjusted to a monthly time-step to account for biophysical water limitations at finer time resolution. Our results show that irrigated land might decrease up to 40% on average depending on the choice of EFR restrictions. Several areas were identified as future hot-spots of water stress such as the Mediterranean and Middle-East regions. Other countries were identified to be in safe position in terms of water stress such as North-European countries. Re-allocation of rainfed and irrigated land might be useful information for land-use planners and water managers at an international level to decide on appropriate legislations on climate change mitigation/adaptation when exposure and sensitivity to climate change is high and/or on adaptation measures to face increasing water demand. For example, some countries are likely to adopt measures to increase their water use efficiencies (irrigation system, soil and water conservation practices) to face water shortages, while

  6. Balanced growth path solutions of a Boltzmann mean field game model for knowledge growth

    KAUST Repository

    Burger, Martin

    2016-11-18

    In this paper we study balanced growth path solutions of a Boltzmann mean field game model proposed by Lucas and Moll [15] to model knowledge growth in an economy. Agents can either increase their knowledge level by exchanging ideas in learning events or by producing goods with the knowledge they already have. The existence of balanced growth path solutions implies exponential growth of the overall production in time. We prove existence of balanced growth path solutions if the initial distribution of individuals with respect to their knowledge level satisfies a Pareto-tail condition. Furthermore we give first insights into the existence of such solutions if in addition to production and knowledge exchange the knowledge level evolves by geometric Brownian motion.

  7. Water in discord: Qualitative balance in Latin America

    International Nuclear Information System (INIS)

    Mussetta, Paula C

    2013-01-01

    Basing on a selection of conflict situations and problems with water in some Latin American countries, this paper analyzes some important aspects of the disputes and the role of the state in conflicts and, more generally, in water management. This implies a dual purpose. On the one hand, to outline the most important dimensions repeated on the stage: the motifs and themes, actors, definitions of the situation. On the other hand, based on that scenario outlined, lay the analytical foundations defining the importance of the state as an axis from which to guide future studies of water conflicts.

  8. The impact of previous knee injury on force plate and field-based measures of balance.

    Science.gov (United States)

    Baltich, Jennifer; Whittaker, Jackie; Von Tscharner, Vinzenz; Nettel-Aguirre, Alberto; Nigg, Benno M; Emery, Carolyn

    2015-10-01

    Individuals with post-traumatic osteoarthritis demonstrate increased sway during quiet stance. The prospective association between balance and disease onset is unknown. Improved understanding of balance in the period between joint injury and disease onset could inform secondary prevention strategies to prevent or delay the disease. This study examines the association between youth sport-related knee injury and balance, 3-10years post-injury. Participants included 50 individuals (ages 15-26years) with a sport-related intra-articular knee injury sustained 3-10years previously and 50 uninjured age-, sex- and sport-matched controls. Force-plate measures during single-limb stance (center-of-pressure 95% ellipse-area, path length, excursion, entropic half-life) and field-based balance scores (triple single-leg hop, star-excursion, unipedal dynamic balance) were collected. Descriptive statistics (mean within-pair difference; 95% confidence intervals) were used to compare groups. Linear regression (adjusted for injury history) was used to assess the relationship between ellipse-area and field-based scores. Injured participants on average demonstrated greater medio-lateral excursion [mean within-pair difference (95% confidence interval); 2.8mm (1.0, 4.5)], more regular medio-lateral position [10ms (2, 18)], and shorter triple single-leg hop distances [-30.9% (-8.1, -53.7)] than controls, while no between group differences existed for the remaining outcomes. After taking into consideration injury history, triple single leg hop scores demonstrated a linear association with ellipse area (β=0.52, 95% confidence interval 0.01, 1.01). On average the injured participants adjusted their position less frequently and demonstrated a larger magnitude of movement during single-limb stance compared to controls. These findings support the evaluation of balance outcomes in the period between knee injury and post-traumatic osteoarthritis onset. Copyright © 2015 Elsevier Ltd. All rights

  9. Maintaining Atmospheric Mass and Water Balance Within Reanalysis

    Science.gov (United States)

    Takacs, Lawrence L.; Suarez, Max; Todling, Ricardo

    2015-01-01

    This report describes the modifications implemented into the Goddard Earth Observing System Version-5 (GEOS-5) Atmospheric Data Assimilation System (ADAS) to maintain global conservation of dry atmospheric mass as well as to preserve the model balance of globally integrated precipitation and surface evaporation during reanalysis. Section 1 begins with a review of these global quantities from four current reanalysis efforts. Section 2 introduces the modifications necessary to preserve these constraints within the atmospheric general circulation model (AGCM), the Gridpoint Statistical Interpolation (GSI) analysis procedure, and the Incremental Analysis Update (IAU) algorithm. Section 3 presents experiments quantifying the impact of the new procedure. Section 4 shows preliminary results from its use within the GMAO MERRA-2 Reanalysis project. Section 5 concludes with a summary.

  10. Entropy of Egypt's virtual water trade gravity field

    Science.gov (United States)

    Karakatsanis, Georgios; Bierbach, Sandra

    2016-04-01

    The study investigates the entropy of Egypt's virtual water trade gravity distribution, in order to provide a chart of Egypt's embodied water balance in agricultural trade, in relation to distances with its major counterparties. Moreover, our calculations on the amount of the embodied water traded between Egypt and each of its partners take place according to a combination of available data on the blue, green and grey water footprints as well as the Food and Agriculture Organization (FAO) database of traded amounts per crop type. A study on the virtual water trade gravity, enables us to enrich former related studies (Fracasso 2014; Fracasso, Sartori and Schiavo 2014) via examining Egypt's water supply dependence on the Nile River and if comparative advantages -purely from the side of water quantities- can be identified via recognizing which water footprint categories are particularly high. Additionally, this methodology can comprise -from a fundamental level- a guide for revealing the importance of water footprint types for Egypt's agricultural sector; hence, Egypt's potential comparative advantages, as far as quantitative water endowments are exclusively concerned (without consideration of water or crop prices). Although it is pointed out very correctly by various authors (Antonelli and Sartori 2014) that the virtual water trade concept does not incorporate many important aspects of water supply -such as heavy water price subsidizing- to be used accurately for the identification of comparative advantages, we consider that the purely quantitative examination can provide strong fundamental indications -especially for green and grey water footprints, which are hypothesized to be less sensitive to subsidizing. In overall, this effect can very well provide a primary indication on the organization of the global alimentation trade network (Yang et al. 2006). The gravity equation used contains water footprint data for the 15 top traded crops and the distances for Egypt

  11. Balancing of hot water distribution networks; Equilibrage des reseaux de distribution

    Energy Technology Data Exchange (ETDEWEB)

    Fridmann, P. [Societe Comap SA (France)

    1998-10-01

    The hydraulic balancing of hot water distribution networks is of prime importance for the optimum exploitation of air-conditioning installations. In the case of a non-correct balancing, heat exchangers, hot or cold batteries, water heaters or convection heaters are supplied by an insufficient or excessive water flow rate which disturbs the thermal equilibrium of the system and its correct regulation. The result is a degradation of the thermal comfort and a loss of energy. The aim of this technical paper is to precise the conditions of a good hydraulic (and thermal) balancing and the main rules to apply in order to avoid difficulties and counter-performances in space heating installations. The examples are restricted to closed and ramified hot or cold water networks and to a qualitative description of the phenomena: 1 - generalities (terminology, pressure drops, Z coefficients, network-pump coupling, thermosiphon effect, flow rate adjustment, flow and/or differential pressure regulation); 2 - application to the balancing of new installations (networks calculation principles, determination and adjustment of balancing equipments, follow up of hydraulic characteristics and prevention of disturbances); 3 - application to the balancing of existing installations; 4 - perspectives of evolution. (J.S.) 21 refs.

  12. Finding Balance Between Biological Groundwater Treatment and Treated Injection Water

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Mark A.; Nielsen, Kellin R.; Byrnes, Mark E.; Simmons, Sally A.; Morse, John J.; Geiger, James B.; Watkins, Louis E.; McFee, Phillip M.; Martins, K.

    2015-01-14

    At the U.S. Department of Energy’s Hanford Site, CH2M HILL Plateau Remediation Company operates the 200 West Pump and Treat which was engineered to treat radiological and chemical contaminants in groundwater as a result of the site’s former plutonium production years. Fluidized bed bioreactors (FBRs) are used to remove nitrate, metals, and volatile organic compounds. Increasing nitrate concentrations in the treatment plant effluent and the presence of a slimy biomass (a typical microorganism response to stress) in the FBRs triggered an investigation of nutrient levels in the system. Little, if any, micronutrient feed was coming into the bioreactors. Additionally, carbon substrate (used to promote biological growth) was passing through to the injection wells, causing biological fouling of the wells and reduced specific injectivity. Adjustments to the micronutrient feed improved microorganism health, but the micronutrients were being overfed (particularly manganese) plugging the injection wells further. Injection well rehabilitation to restore specific injectivity required repeated treatments to remove the biological fouling and precipitated metal oxides. A combination of sulfamic and citric acids worked well to dissolve metal oxides and sodium hypochlorite effectively removed the biological growth. Intensive surging and development techniques successfully removed clogging material from the injection wells. Ultimately, the investigation and nutrient adjustments took months to restore proper balance to the microbial system and over a year to stabilize injection well capacities. Carefully tracking and managing the FBRs and well performance monitoring are critical to balancing the needs of the treatment system while reducing fouling mechanisms in the injection wells.

  13. A land surface scheme for atmospheric and hydrologic models: SEWAB (Surface Energy and Water Balance)

    Energy Technology Data Exchange (ETDEWEB)

    Mengelkamp, H.T.; Warrach, K.; Raschke, E. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    A soil-vegetation-atmosphere-transfer scheme is presented here which solves the coupled system of the Surface Energy and Water Balance (SEWAB) equations considering partly vegetated surfaces. It is based on the one-layer concept for vegetation. In the soil the diffusion equations for heat and moisture are solved on a multi-layer grid. SEWAB has been developed to serve as a land-surface scheme for atmospheric circulation models. Being forced with atmospheric data from either simulations or measurements it calculates surface and subsurface runoff that can serve as input to hydrologic models. The model has been validated with field data from the FIFE experiment and has participated in the PILPS project for intercomparison of land-surface parameterization schemes. From these experiments we feel that SEWAB reasonably well partitions the radiation and precipitation into sensible and latent heat fluxes as well as into runoff and soil moisture Storage. (orig.) [Deutsch] Ein Landoberflaechenschema wird vorgestellt, das den Transport von Waerme und Wasser zwischen dem Erdboden, der Vegetation und der Atmosphaere unter Beruecksichtigung von teilweise bewachsenem Boden beschreibt. Im Erdboden werden die Diffusionsgleichungen fuer Waerme und Feuchte auf einem Gitter mit mehreren Schichten geloest. Das Schema SEWAB (Surface Energy and Water Balance) beschreibt die Landoberflaechenprozesse in atmosphaerischen Modellen und berechnet den Oberflaechenabfluss und den Basisabfluss, die als Eingabedaten fuer hydrologische Modelle genutzt werden koennen. Das Modell wurde mit Daten des FIFE-Experiments kalibriert und hat an Vergleichsexperimenten fuer Landoberflaechen-Schemata im Rahmen des PILPS-Projektes teilgenommen. Dabei hat sich gezeigt, dass die Aufteilung der einfallenden Strahlung und des Niederschlages in den sensiblen und latenten Waermefluss und auch in Abfluss und Speicherung der Bodenfeuchte in SEWAB den beobachteten Daten recht gut entspricht. (orig.)

  14. Water Balance Simulations of a PEM Fuel Cell Using a Two-Fluid Model

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen

    2010-01-01

    humidification conditions. It was found that the specific surface area of the electrolyte in the catalyst layers close to the membrane is of critical importance for the overall water balance. Applying a high specific electrolyte surface area close to the membrane (a water-uptake layer) always leads to a lower...

  15. Estimating Water Balance Components of Lakes and Reservoirs Using Various Open Access Satellite Databases

    NARCIS (Netherlands)

    Duan, Z.

    2014-01-01

    There are millions of lakes and ten thousands of reservoirs in the world. The number of reservoirs is still increasing through the construction of large dams to meet the growing demand for water resources, hydroelectricity and economic development. Accurate information on the water balance

  16. The water balance of a seasonal stream in the semi-arid Western Cape (South Africa)

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2012-04-01

    Full Text Available A detailed water balance and conceptual flow model was calculated and developed for the Sandspruit catchment for the period 1990 to 2010 on a winter rainfall water-year (1 April - 31 March) basis. The Sandspruit catchment (quaternary catchment G10J...

  17. The use of material balanced equation to determine the oil water ...

    African Journals Online (AJOL)

    The oil water contact of an oil reservoir can be determined using some geophysical well logs. However, some of the methods might not be accurate. Therefore the material balanced equation which is an accurate means of formation evaluation is critically analysed in this study and then used to determine the oil water contact ...

  18. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 1. Small catchment water balance model

    Science.gov (United States)

    Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.

    1996-03-01

    A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.

  19. Water balance of a lake with floodplain buffering: Lake Tana, Blue Nile Basin, Ethiopia

    Science.gov (United States)

    Dessie, Mekete; Verhoest, Niko E. C.; Pauwels, Valentijn R. N.; Adgo, Enyew; Deckers, Jozef; Poesen, Jean; Nyssen, Jan

    2015-03-01

    Lakes are very important components of the earth's hydrological cycle, providing a variety of services for humans and ecosystem functioning. For a sustainable use of lakes, a substantial body of knowledge on their water balance is vital. We present here a detailed daily water balance analysis for Lake Tana, the largest lake in Ethiopia and the source of the Blue Nile. Rainfall on the lake is determined by Thiessen polygon procedure, open water evaporation is estimated by the Penman-combination equation and observed inflows for the gauged catchments as well as outflow data at the two lake outlets are directly used. Runoff from ungauged catchments is estimated using a simple rainfall-runoff model and runoff coefficients. Hillslope catchments and floodplains are treated separately, which makes this study unique compared to previous water balance studies. Impact of the floodplain on the lake water balance is analyzed by conducting scenario-based studies. We found an average yearly abstraction of 420 × 106 m3 or 6% of river inflows to the lake by the floodplain in 2012 and 2013. Nearly 60% of the inflow to the lake is from the Gilgel Abay River. Simulated lake levels compare well with the observed lake levels (R2 = 0.95) and the water balance can be closed with a closure error of 82 mm/year (3.5% of the total lake inflow). This study demonstrates the importance of floodplains and their influence on the water balance of the lake and the need of incorporating the effects of floodplains and water abstraction for irrigation to improve predictions.

  20. Recharge Estimation Using Water, Chloride and Isotope Mass Balances

    Science.gov (United States)

    Dogramaci, S.; Firmani, G.; Hedley, P.; Skrzypek, G.; Grierson, P. F.

    2014-12-01

    Discharge of surplus mine water into ephemeral streams may elevate groundwater levels and alter the exchange rate between streams and underlying aquifers but it is unclear whether volumes and recharge processes are within the range of natural variability. Here, we present a case study of an ephemeral creek in the semi-arid subtropical Hamersley Basin that has received continuous mine discharge for more than five years. We used a numerical model coupled with repeated measurements of water levels, chloride concentrations and the hydrogen and oxygen stable isotope composition (δ2H and δ18O) to estimate longitudinal evapotranspiration and recharge rates along a 27 km length of Weeli Wolli Creek. We found that chloride increased from 74 to 120 mg/L across this length, while δ18O increased from -8.24‰ to -7.00‰. Groundwater is directly connected to the creek for the first 13 km and recharge rates are negligible. Below this point, the creek flows over a highly permeable aquifer and water loss by recharge increases to a maximum rate of 4.4 mm/d, which accounts for ~ 65% of the total water discharged to the creek. Evapotranspiration losses account for the remaining ~35%. The calculated recharge from continuous flow due to surplus water discharge is similar to that measured for rainfall-driven flood events along the creek. Groundwater under the disconnected section of the creek is characterised by a much lower Cl concentration and more depleted δ18O value than mining discharge water but is similar to flood water generated by large episodic rainfall events. Our results suggest that the impact of recharge from continuous flow on the creek has not extended beyond 27 km from the discharge point. Our approach using a combination of hydrochemical and isotope methods coupled with classical surface flow hydraulic modelling allowed evaluation of components of water budget otherwise not possible in a highly dynamic system that is mainly driven by infrequent but large episodic

  1. Two strategies by epiphytic orchids for maintaining water balance: thick cuticles in leaves and water storage in pseudobulbs.

    Science.gov (United States)

    Yang, Shi-Jian; Sun, Mei; Yang, Qiu-Yun; Ma, Ren-Yi; Zhang, Jiao-Lin; Zhang, Shi-Bao

    2016-01-01

    Epiphytes are an important component of tropical and subtropical flora, and serve vital ecological functions in forest hydrology and nutrient fluxes. However, they often encounter water deficits because there is no direct contact between their roots and the soil. The strategies employed by epiphytes for maintaining water balance in relatively water-limited habitats are not completely understood. In the present study, we investigated the anatomical traits, water loss rates, and physiology of leaves and pseudobulbs of four Dendrobium species with different pseudobulb morphologies to understand the roles of leaf and pseudobulb in maintaining water balance of epiphytic orchids. Our results showed that two species (D. chrysotoxum and D. officinale), with lower rates of water loss, have thicker leaves and upper cuticles, but lower epidermal thickness and leaf dry mass per area. In contrast, the other two species (D. chrysanthum and D. crystallinum) with thinner cuticles and higher rates of water loss, have less tissue density and greater saturated water contents in their pseudobulbs. Therefore, our results indicate that these latter two species may resist drought by storing water in the pseudobulbs to compensate for their thin cuticles and rapid water loss through the leaves. Under the same laboratory conditions, excised pseudobulbs with attached leaves had lower rates of water loss when compared with samples comprising only excised leaves. This implies that epiphytic orchids utilize two different strategies for sustaining water balance: thick cuticles to conserve water in leaves and water storage in pseudobulbs. Our results also show that Dendrobium species with thin cuticles tend to have pseudobulbs with high water storage capacity that compensates for their faster rates of water loss. These outcomes contribute to our understanding of the adaptive water-use strategies in Dendrobium species, which is beneficial for the conservation and cultivation of epiphytic orchids

  2. Water balance in the complex mountainous terrain of Bhutan and linkages to land use

    Directory of Open Access Journals (Sweden)

    Ugyen Dorji

    2016-09-01

    Study Focus: Located in the Himalayas with elevation ranging 100–7550 m and with an area equivalent to Switzerland, Bhutan has great biodiversity despite its small area. A monsoon-dominated climate causes generally wet summer and dry winter. Bhutan is highly dependent of climatic conditions for its developmental activities. Using multiple regression analysis we have established models to predict the evapotranspiration (ETo and water balance and test the linkage to vegetation and land cover using meteorological data from 70 weather stations across Bhutan. Temperature-based ETo equations were evaluated in reference to the Penman-Monteith (PM method and a calibrated Hargreaves (H equation was used for computing the ETo. New Hydrological Insights for the Region. The calibrated Hargreaves equation gave good estimates of average daily ETo comparable to the PM ETo. The spatial variation in PM ETo is linked to variation in sunshine hours in summer and temperature in other seasons. Seasonal and annual ETo was mainly affected by elevation and latitude, which is linked to temperature and sunshine duration. Precipitation and water balance correlated positively with the Southern Oscillation Index (SOI while ETo correlated negatively. Our models for predicting ETo and water balances performed clearly better than the global CRU gridded data for Bhutan. A positive water balance is found in broadleaf forest areas and small or negative water balance for coniferous forests.

  3. Carbon balance of a plastic mulch and drip irrigated cotton field in an arid oasis of Northwest China

    Science.gov (United States)

    Ming, G.

    2017-12-01

    Carbon balance of a plastic mulch and drip irrigated cotton field in an arid oasis of Northwest ChinaGuanghui Ming1, Fuqiang Tian1*, Hongchang Hu11State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China,Abstracts: Agricultural ecosystems have the potential to offset rising CO2 concentration in the atmosphere but the potential is often altered by agricultural management. Plastic film mulching and drip irrigation (PMDI) have been widespread for saving water and improving crop yield worldwide. To comprehensively assess the carbon balance and to detect the controlling factors of the carbon flux in a PMDI cotton field, experiments combining eddy covariance (EC) system, chamber method and crop sampling were implemented in an arid oasis of Xinjiang from the year 2012 to 2016. The annual net ecosystem exchange (NEE) was -250.18 ± 80.41 g C m-2 in the five years, which indicated that the filed was a much stronger carbon sink. After removal of the harvest of cotton as seed oil (Ch) of 108.81±7.57 g C m-2, the field was still a moderate carbon sink with net biome productivity (NBP) of 141.37±73.7 g C m-2. Soil temperature can explain 82% of seasonal variation of nighttime NEE while PAR can explain 36-81% of daytime NEE varying with crop development and photosynthetic activity. NEE was separated into total ecosystem respiration (Reco, 1214.20±144.42 g C m-2) and gross primary productivity (GPP, 1464.38±122.78 g C m-2). Interannual Reco changed more drastically than GPP and respiration may be the main determinant of carbon balance in the PMDI field. Seasonal NPP measured by cop sampling method (NPPCS) agreed well with NPP calculated with EC (NPPEC), with the annual NPP of 708.86 ± 52.26 g C m-2, which indicated that our carbon flux measurements and separating methods reasonable. The PMDI cotton field induced more GPP and Reco than other croplands with larger light use efficiency (LUE) but relatively

  4. Balancing competing water needs in Morocco's Saiss basin | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Each year, Moroccans use nearly 70% of their annual recoverable water supply which is about 20 cubic kilometres. While this may sound sustainable, at the local level it is not viable because community use of groundwater is increasing, while overall supplies are limited.

  5. Water Balances in the Eastern Mediterranean | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Dr Brooks' extensive experience in energy and water conservation, environmental and natural resource policy, and sustainable development extends across both the industrialized and developing world. He has taught in programs on energy and environment around the world and is the author of numerous articles and ...

  6. Balancing competing water needs in Morocco's Saiss basin

    International Development Research Centre (IDRC) Digital Library (Canada)

    CCAA

    The Saiss basin serves many competing water users – local industry, a diverse agricultural sector, and towns and cities in the region, which include the major centres Fez and Meknes. Declining levels of precipitation in the region over the last 40 years have been accompanied by a 1°C increase in the average temperature.

  7. Quantification of the soil-water balance under different veld ...

    African Journals Online (AJOL)

    The monthly herbage production, water-use efficiency (WUE: above-ground phytomass production per unit of evapotranspiration), surface runoff and soil loss were determined on grassland in three different ecological conditions, viz. poor, moderate and good, over a four year (1995/1996 to 1998/1999) period. In addition ...

  8. Assessing climate change impacts on water balance in the Mount ...

    Indian Academy of Sciences (India)

    A statistical downscaling known for producing station-scale climate information from GCM out- put was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water bal- ance assessment of climate change ...

  9. Balancing competing water needs in Morocco's Saiss basin | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-04-21

    Apr 21, 2011 ... Each year, Moroccans use nearly 70% of their annual recoverable water supply which is about 20 cubic kilometres. While this may sound sustainable, at the local level it is not viable because community use of groundwater is increasing, while overall supplies are limited.

  10. Water balance of global aquifers revealed by groundwater footprint.

    Science.gov (United States)

    Gleeson, Tom; Wada, Yoshihide; Bierkens, Marc F P; van Beek, Ludovicus P H

    2012-08-09

    Groundwater is a life-sustaining resource that supplies water to billions of people, plays a central part in irrigated agriculture and influences the health of many ecosystems. Most assessments of global water resources have focused on surface water, but unsustainable depletion of groundwater has recently been documented on both regional and global scales. It remains unclear how the rate of global groundwater depletion compares to the rate of natural renewal and the supply needed to support ecosystems. Here we define the groundwater footprint (the area required to sustain groundwater use and groundwater-dependent ecosystem services) and show that humans are overexploiting groundwater in many large aquifers that are critical to agriculture, especially in Asia and North America. We estimate that the size of the global groundwater footprint is currently about 3.5 times the actual area of aquifers and that about 1.7 billion people live in areas where groundwater resources and/or groundwater-dependent ecosystems are under threat. That said, 80 per cent of aquifers have a groundwater footprint that is less than their area, meaning that the net global value is driven by a few heavily overexploited aquifers. The groundwater footprint is the first tool suitable for consistently evaluating the use, renewal and ecosystem requirements of groundwater at an aquifer scale. It can be combined with the water footprint and virtual water calculations, and be used to assess the potential for increasing agricultural yields with renewable groundwaterref. The method could be modified to evaluate other resources with renewal rates that are slow and spatially heterogeneous, such as fisheries, forestry or soil.

  11. Soil water balance scenario studies using predicted soil hydraulic parameters

    NARCIS (Netherlands)

    Nemes, A.; Wösten, J.H.M.; Bouma, J.; Várallyay, G.

    2006-01-01

    Pedotransfer functions (PTFs) have become a topic drawing increasing interest within the field of soil and environmental research because they can provide important soil physical data at relatively low cost. Few studies, however, explore which contributions PTFs can make to land-use planning, in

  12. Shodagor Family Strategies : Balancing Work and Family on the Water.

    Science.gov (United States)

    Starkweather, Kathrine E

    2017-06-01

    The Shodagor of Matlab, Bangladesh, are a seminomadic community of people who live and work on small wooden boats, within the extensive system of rivers and canals that traverse the country. This unique ecology places particular constraints on family and economic life and leads to Shodagor parents employing one of four distinct strategies to balance childcare and provisioning needs. The purpose of this paper is to understand the conditions that lead a family to choose one strategy over another by testing predictions about socioecological factors that impact the sexual division of labor, including a family's stage in the domestic cycle, aspects of the local ecology, and the availability of alloparents. Results show that although each factor has an impact on the division of labor individually, a confluence of these factors best explains within-group, between-family differences in how mothers and fathers divide subsistence and childcare labor. These factors also interact in particular ways for Shodagor families, and it appears that families choose their economic strategies based on the constellation of constraints that they face. The results of these analyses have implications for theory regarding the sexual division of labor across cultures and inform how Shodagor family economic and parenting strategies should be contextualized in future studies.

  13. Estimating Runoff and Soil Moisture Deficit in Guinea Savannah Region of Nigeria using Water Balance Method

    Directory of Open Access Journals (Sweden)

    A. R. Adesiji

    2012-12-01

    Full Text Available The estimation of runoff and soil moisture deficit in Guinea Savannah region using semi arid model based on soil water balance technique (SAMBA was carried out. The input to the SAMBA model are daily rainfall, daily evapotranspiration, type and date of planting of crop, and soil parameters. The estimated runoff was validated with field measurement taken in a 67.23 ha catchment in the study area. The annual rainfall for the year under study (2009 is 1356.2 mm, the estimated annual evapotranspiration. runoff and recharge are 638mm, 132.93mm, and 447.8mm respectively. Recharge was experienced 23 days after a significant depth of rainfall was recorded. For the crop growth in the catchment, the soil was cropped with a pepper and the growth monitored from the planting to the harvesting. The crop enjoyed so much moisture throughout the growing period as Total Available Water in the soil is greater than Soil Moisture Deficit (TAW>SMD. The model results show that the larger percentage of the total annual rainfall was lost to evaporation and recharge during the growing season. The low runoff and high recharge are attributed to soil characteristics of the area and moderate terrain of the study area.

  14. Life in the Treetops: Drought Tolerance and Water Balance of Canopy Epiphytes in a Tropical Montane Cloud Forest

    Science.gov (United States)

    Gotsch, S. G.; Nadkarni, N.; Darby, A.; Dix, M.; Glunk, A.; Davidson, K.; Dawson, T. E.

    2014-12-01

    Tropical montane cloud forests (TMCFs) inhabit regions rich in biodiversity that play an important role in the local and regional water cycle. Canopy plants such as epiphytes and hemiepiphytes are an important component of the biodiversity in the TMCF and therefore play a significant role in the carbon, nutrient and water cycles. With only partial or no access to resources on the ground, canopy plants may be vulnerable to changes in climate that increase canopy temperatures and decrease atmospheric humidity or precipitation inputs. Despite their importance in the TMCF, there is little information regarding drought tolerance and water balance in this community. In this study we quantified variation in functional traits and water relations in 12 species of epiphytes and hemiepiphytes in a Costa Rican TMCF. We also generated pressure-volume curves and xylem vulnerability curves that we used as indicators of drought tolerance. Lastly, we determined the capacity for foliar water uptake in the laboratory and measured whole-plant transpiration in the field. We found that all species had a high turgor loss point (ψTLP), high vulnerability to cavitation (P50), and low bulk elastic modulus (ɛmax, i.e. high cell wall elasticity). These results indicate that capacitance may be high in canopy plants and that stored water may help to maintain high leaf water potentials during dry periods. We also found that all species had the capacity for foliar uptake and that this process contributed substantially to their water status and water balance. On average, foliar uptake contributed to the reabsorption of 70% of the water transpired over a 34-day period at the beginning of the dry season. Our results indicate that canopy plants can mitigate water loss substantially, but they may be vulnerable to changes in the overall precipitation patterns or increases in cloud base heights.

  15. Soil water balance approach in root zone of maize (95-TZEEY ...

    African Journals Online (AJOL)

    Water balance approach is the simplest method in the study of plant water consumption. The experiment was established in 4.0 x 5.0 m plots in a randomized complete block design containing six (6) treatments water application (3-days, 4-days, 5-days, 6-days, 7-days and 8-days which correspond to T1, T2, T3, T4, T5 and ...

  16. Modelling membrane hydration and water balance of a pem fuel cell

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh

    2015-01-01

    propose a novel mathematical zero-dimensional model for water mass balance of a polymer electrolyte membrane. Physical and electrochemical processes occurring in the membrane electrolyte are included; water adsorption/desorption phenomena are also considered. The effect of diffusivity, surface roughness...... of water transport when membrane absorption/desorption is considered in the model. The model becomes useful when studying fuel cell systems in dynamic conditions....

  17. Bottom Sediment Chemistry, Nutrient Balance, and Water Birds in ...

    African Journals Online (AJOL)

    Water bird characteristics, nutrient loadings, and the levels of bottom sediment silicon oxide (SiO2), aluminium oxide (Al2O3), ferric oxide (Fe2O3), calcium oxide (CaO), copper (Cu), phosphorus (P) and organic carbon (C) was studied in eight high altitude (2040-2640m) small shallow (0.065-0.249 km2; 0.9-3.1 m) ...

  18. Impact of spatial data resolution on simulated catchment water balances and model performance of the multi-scale TOPLATS model

    Directory of Open Access Journals (Sweden)

    H. Bormann

    2006-01-01

    Full Text Available This paper analyses the effect of spatial input data resolution on the simulated water balances and flow components using the multi-scale hydrological model TOPLATS. A data set of 25m resolution of the central German Dill catchment (693 km2 is used for investigation. After an aggregation of digital elevation model, soil map and land use classification to 50 m, 75 m, 100 m, 150 m, 200 m, 300 m, 500 m, 1000 m and 2000 m, water balances and water flow components are calculated for the entire Dill catchment as well as for 3 subcatchments without any recalibration. The study shows that model performance measures and simulated water balances almost remain constant for most of the aggregation steps for all investigated catchments. Slight differences in the simulated water balances and statistical quality measures occur for single catchments at the resolution of 50 m to 500 m (e.g. 0–3% for annual stream flow, significant differences at the resolution of 1000 m and 2000 m (e.g. 2–12% for annual stream flow. These differences can be explained by the fact that the statistics of certain input data (land use data in particular as well as soil physical characteristics changes significantly at these spatial resolutions. The impact of smoothing the relief by aggregation occurs continuously but is barely reflected by the simulation results. To study the effect of aggregation of land use data in detail, in addition to current land use the effect of aggregation on the water balance calculations based on three different land use scenarios is investigated. Land use scenarios were available aiming on economic optimisation of agricultural and forestry practices at different field sizes (0.5 ha, 1.5 ha and 5.0 ha. The changes in water balance terms, induced by aggregation of the land use scenarios, are comparable with respect to catchment water balances compared to the current land use. A correlation analysis between statistics of input data and simulated annual

  19. Application of a water balance model for estimating deep infiltration in a karstic watershed

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Calijuri

    2011-12-01

    Full Text Available The current scenario of water scarcity evidences the need for an adequate management of water resources. In karstic regions, the water flow through fractures significantly increases the water infiltration rate, which explains the small number of rivers and the importance of groundwater for urban supply. Therefore, the water balance is necessary since it may aid decision making processes and guide water management projects. The objective of this paper was to perform the water balance of a watershed situated in a karstic region quantifying infiltration, runoff and evapotranspiration. The study area is located near the Tancredo Neves International Airport in Confins, in the state of Minas Gerais, Brazil. Most of the area consists of forest formations (40.9%, and pastures (34.5%. In order to estimate deep infiltration, the BALSEQ model was used. BALSEQ is a numeric model of sequential water balance in which deep infiltration at the end of the day is given by the difference between daily precipitation and the sum of surface runoff, evapotranspiration and the variation of the amount of water stored in the soil. The results show that approximately 60% of total annual precipitation result in deep infiltration, considering the recharge period from September to March. After the dry period, the areas with no vegetal cover present higher deep infiltration. However, over the months, the contribution of the vegetated areas becomes greater, showing the importance of these areas to aquifer recharge.

  20. Role of water balance in the long-term stability of hazardous waste site cover treatments

    International Nuclear Information System (INIS)

    Barnes, F.J.; Rodgers, J.C.; Trujillo, G.

    1986-01-01

    After the 30-year post-closure maintenance period at hazardous waste landfills, long-term stability must be assured without continued intervention. Understanding water balance in the established vegetative cover system is central to predicting such stability. A Los Alamos National Laboratory research project has established a series of experimental cover treatment plots on a closed waste disposal site which will permit the determination of the effects of such critical parameters as soil cover design, leaf area index, and rooting characteristics on water balance under varied conditions. Data from these experiments are being analyzed by water balance modeling and other means. The results show consistent differences in soil moisture storage between soil profiles and between vegetation cover treatments

  1. Water balance at a low-level radioactive-waste disposal site

    International Nuclear Information System (INIS)

    Healy, R.W.; Gray, J.R.; de Vries, M.P.; Mills, P.C.

    1989-01-01

    The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site

  2. Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods

    Science.gov (United States)

    Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P.

    2011-01-01

    Evapotranspiration (ET) is an important hydrological process that can be studied and estimated at multiple spatial scales ranging from a leaf to a river basin. We present a review of methods in estimating basin scale ET and its applications in understanding basin water balance dynamics. The review focuses on two aspects of ET: (i) how the basin scale water balance approach is used to estimate ET; and (ii) how ‘direct’ measurement and modelling approaches are used to estimate basin scale ET. Obviously, the basin water balance-based ET requires the availability of good precipitation and discharge data to calculate ET as a residual on longer time scales (annual) where net storage changes are assumed to be negligible. ET estimated from such a basin water balance principle is generally used for validating the performance of ET models. On the other hand, many of the direct estimation methods involve the use of remotely sensed data to estimate spatially explicit ET and use basin-wide averaging to estimate basin scale ET. The direct methods can be grouped into soil moisture balance modelling, satellite-based vegetation index methods, and methods based on satellite land surface temperature measurements that convert potential ET into actual ET using a proportionality relationship. The review also includes the use of complementary ET estimation principles for large area applications. The review identifies the need to compare and evaluate the different ET approaches using standard data sets in basins covering different hydro-climatic regions of the world.

  3. The efficacy of combining satellite water storage and soil moisture observations as constraints on water balance estimation

    Science.gov (United States)

    Tian, Siyuan; van Dijk, Albert; Renzullo, Luigi; Tregoning, Paul; Walker, Jeffrey; Pauwels, Valentijn

    2016-04-01

    The ability to accurately estimate terrestrial water storage (TWS) and its components (e.g. soil moisture, groundwater, surface water and snow) is of considerable value to water resources assessment. Due to the imperfection of both model predictions and observations, data assimilation methods have been widely applied to hydrological problems for optimal combination of model and observations. Recent studies on the assimilation of TWS data have shown its capability to improve simulated groundwater storages, but the assimilation of TWS only does not guarantee accurate estimation of surface soil moisture (SSM). We investigated the efficiency of data assimilation combining TWS change estimates, derived from temporal changes in Earth's gravity field measured by the Gravity Recovery and Climate Experiment (GRACE), with SSM, retrieved from emitted microwave radiation at L-band observed by the Soil Moisture and Ocean Salinity (SMOS) satellite. The global World Wide Water (W3) water balance model was used. The specific satellite data products used were the SMOS CATDS level 3 daily SSM product and the JPL mascon monthly GRACE product. Both the ensemble Kalman filter (EnKF) and smoother (EnKS) were implemented to determine the best option for the assimilation of SSM observations only and the joint assimilation of SSM and TWS. The observation models, which map model states into observation space, are the top-layer soil relative wetness and monthly average TWS (i.e. aggregated daily top-, shallow-, deep-layer soil water storage, ground- and surface water storages). Three assimilation experiments were conducted with each method: a) assimilation of SSM data only; b) assimilation of TWS data only; c) joint assimilation of SSM and TWS data. Results were compared against in-situ soil moisture and groundwater observations, and the performance assessed with respect to open-loop results. Results for the Murray-Darling Basin in Australia demonstrate that the assimilation of SSM data only

  4. Mathematical modeling of water mass balance for proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Wan Ramli Wan Daud; Kamaruzzaman Sopian; Jaafar Sahari; Nik Suhaimi Mat Hassan

    2006-01-01

    Gas and water management are key to achieving good performance from a proton exchange membrane fuel cell (PEMFC) stack. Water plays a critical role in PEMFC. The proton conductivity is increase with the water content. In order to achieve enough hydration, water is normally introduced into the cell externally by a variety of methods such as liquid injection, steam introduction, and humidification of reactants by passing them through humidifiers before entering the cell. In this paper, mathematical modeling of water mass balance for PEMFC at anode and cathode side are proposed by using external humidification and assume that steady state, constant pressure, constant temperature and gases distribution are uniform

  5. Meteorological conditions, physiochemical properties, thermal-oxygen stratification, water overturn and water balance of Lake Gardno on Wolin Island

    Directory of Open Access Journals (Sweden)

    Tylkowski Jacek

    2015-09-01

    Full Text Available The main research problem of the paper is aimed at determining the proper functioning of Lake Gardno within the period 2012-2014 considered as hydrological years in reference to the physiochemical properties of its waters, water balance, thermal regime and water overturn. Lake Gardno is a representative of non-run-off lake geo-eco-systems; it is situated within the Southern Baltic Sea Coastland at the cliff shore of Wolin Island. The paper analyses how weather conditions affect the specifics of water supplies provided to the lake and seasonal dynamics of its waters, their chemical, thermal and aerobic properties. It also specifies their overturn and balance with a particular emphasis on their supplies together with fog deposits.

  6. A holistic water balance of Austria - how does the quantitative proportion of urban water requirements relate to other users?

    Science.gov (United States)

    Vanham, D

    2012-01-01

    Traditional water use statistics only include the blue water withdrawal/consumption of municipalities, industry and irrigated agriculture. When, however, green water use of the agricultural sector is included as well as the virtual water use/water footprint (WF), water use quantity statistics become very different. In common water use statistics, Austria withdraws in total about 2.5 km(3) per year, only 3% of available resources (total discharge 81.4 km(3) = surface and ground water). The total water consumption (0.5 km(3)) is less than 1% of available resources. Urban (municipal) water requirements account for 27% of total withdrawal or 33% of consumption. When agricultural green water use (cropland) is included in statistics, the fraction of municipal water requirements diminishes to 7.6% of total withdrawal and 2.5% of total consumption. If the evapotranspiration of grassland and alpine meadows is also included in agricultural green water use, this fraction decreases to 3.2% and 0.9% respectively. When the WF is assessed as base value for water use in Austria, the municipal water use represents 5.8% of this value. In this globalized world, these traditional water use statistics are no longer recommendable. Only a holistic water balance approach really represents water use statistics.

  7. Optimization of field homogeneity of Helmholtz-like coils for measuring the balance of planar gradiometers

    International Nuclear Information System (INIS)

    Nordahn, M.A.; Holst, T.; Shen, Y.Q.

    1999-01-01

    Measuring the balance of planar SQUID gradiometers using a relatively small Helmholtz-like coil system requires a careful design of the coils in order to have a high degree of field uniformity along the radial direction. The level to which planar gradiometers can be balanced will be affected by any misalignment of the gradiometer relative to the ideal central position. Therefore, the maximum degree of balancing possible is calculated numerically for the Helmholtz geometry under various perturbations, including misalignment of the gradiometer along the cylindrical and the radial axis, and angular tilting relative to the normal plane. Furthermore, if the ratio between the coil separation and coil radius is chosen to be less than unity, calculations show that the expected radial uniformity of the field can be improved considerably compared to the traditional Helmholtz geometry. The optimized coil geometry is compared to the Helmholtz geometry and is found to yield up to an order of magnitude improvement of the worst case error signal within a volume spanned by the uncertainty in the alignment. (author)

  8. Balancing water, religion and tourism on Redang Island, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Joshua B [Environmental Change Institute, School of Geography and the Environment, Oxford University, South Parks Road, Oxford OX1 0EZ (United Kingdom); Nawaz, Rizwan; Nawaz, Faiza [HydroRisk Ltd, Leeds University Union, Lifton Place, University of Leeds, Leeds LS2 9JT (United Kingdom); Fauzi, Rosmadi [Department of Geography, Universiti Malaya, 50603 Kuala Lumpur (Malaysia); Sadek, Eran Sadek Said Md; Latif, Zulkiflee Abd [Department of Surveying Science and Geomatics, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Blackett, Matthew [Department of Geography, King' s College London, Strand, London WC2R 2LS (United Kingdom)], E-mail: joshbfisher@gmail.com

    2008-04-15

    Redang Island (Pulau Redang) is an island off of Peninsular Malaysia that is part of a Marine Park archipelago of corals and thousands of fish and invertebrates. The relatively isolated local community is generally centered on fishing, and Islam guides daily life. Recently, the tourism industry has expanded on the island. New hotels and resorts provide jobs, but also expose the locals to western culture and touristic behavior, which may clash with deeply traditional community values. Further, the tourism industry may be putting a strain on the natural resources, especially the quantity and quality of freshwater. The island village may become divided between those who support the tourism industry and those who do not. Here we present an exploratory investigation into the development-environment-culture dynamics of tourism, water and religion on Redang Island while building collaborations between universities of this Muslim state and the West.

  9. Norway's historical and projected water balance in TWh

    Science.gov (United States)

    Haddeland, Ingjerd; Holmqvist, Erik

    2015-04-01

    Hydroelectric power production is closely linked to the water cycle, and variations in power production numbers reflect variations in weather. The expected climate changes will influence electricity supply through changes in annual and seasonal inflow of water to hydropower reservoirs. In Norway, more than 95 percent of the electricity production is from hydroelectric plants, and industry linked to hydropower has been an important part of the society for more than a century. Reliable information on historical and future available water resources is hence of crucial importance both for short and long-term planning and adaptation purposes in the hydropower sector. Traditionally, the Multi-area Power-market Simulator (EMPS) is used for modelling hydropower production in Norway. However, due to the models' high level of details and computational demand, this model is only used for historical analyses and a limited number of climate projections. A method has been developed that transfers water fluxes (mm day-1) and states (mm) into energy units (GWh mm-1), based on hydrological modelling of a limited number of catchments representing reservoir inflow to more than 700 hydropower plants in Norway. The advantages of using the conversion factor method, compared to EMPS, are its simplicity and low computational requirements. The main disadvantages are that it does not take into account flood losses and the time lag between inflow and power production. The method is used operationally for weekly and seasonal energy forecasts, and has proven successful at the range of results obtained for reproducing historical hydropower production numbers. In hydropower energy units, mean annual precipitation for the period 1981-2010 is estimated at 154 TWh year-1. On average, 24 TWh year-1 is lost through evapotranspiration, meaning runoff equals 130 TWh year-1. There are large interannual variations, and runoff available for power production ranges from 91 to 165 TWh year-1. The snow pack

  10. Balancing water, religion and tourism on Redang Island, Malaysia

    International Nuclear Information System (INIS)

    Fisher, Joshua B; Nawaz, Rizwan; Nawaz, Faiza; Fauzi, Rosmadi; Sadek, Eran Sadek Said Md; Latif, Zulkiflee Abd; Blackett, Matthew

    2008-01-01

    Redang Island (Pulau Redang) is an island off of Peninsular Malaysia that is part of a Marine Park archipelago of corals and thousands of fish and invertebrates. The relatively isolated local community is generally centered on fishing, and Islam guides daily life. Recently, the tourism industry has expanded on the island. New hotels and resorts provide jobs, but also expose the locals to western culture and touristic behavior, which may clash with deeply traditional community values. Further, the tourism industry may be putting a strain on the natural resources, especially the quantity and quality of freshwater. The island village may become divided between those who support the tourism industry and those who do not. Here we present an exploratory investigation into the development-environment-culture dynamics of tourism, water and religion on Redang Island while building collaborations between universities of this Muslim state and the West

  11. Balancing water, religion and tourism on Redang Island, Malaysia

    Science.gov (United States)

    Fisher, Joshua B.; Nawaz, Rizwan; Fauzi, Rosmadi; Nawaz, Faiza; Sadek, Eran Sadek Said Md; Abd Latif, Zulkiflee; Blackett, Matthew

    2008-04-01

    Redang Island (Pulau Redang) is an island off of Peninsular Malaysia that is part of a Marine Park archipelago of corals and thousands of fish and invertebrates. The relatively isolated local community is generally centered on fishing, and Islam guides daily life. Recently, the tourism industry has expanded on the island. New hotels and resorts provide jobs, but also expose the locals to western culture and touristic behavior, which may clash with deeply traditional community values. Further, the tourism industry may be putting a strain on the natural resources, especially the quantity and quality of freshwater. The island village may become divided between those who support the tourism industry and those who do not. Here we present an exploratory investigation into the development environment culture dynamics of tourism, water and religion on Redang Island while building collaborations between universities of this Muslim state and the West.

  12. Water balances in intensively monitored forest ecosystems in Europe

    International Nuclear Information System (INIS)

    Salm, C. van der; Reinds, G.J.; Vries, W. de

    2007-01-01

    A soil hydrological model based on Darcy's law was used to calculate hydrological fluxes for 245 intensively monitored forest plots in Europe. Local measured input data for the model were rather limited and input was partly based on generic data. To obtain the best results, the model was calibrated on measured throughfall at the plots. Median transpiration fluxes are 350 mm; median leaching fluxes are 150 mm yr -1 with the highest values in areas with high rainfall. Uncertainty analyses indicate that the use of local meteorological data instead of generic data leads to lower leaching fluxes at 70% of the plots due to an overestimation of the wind speed on basis of main meteorological stations. The underestimation of the leaching fluxes is confirmed by the median Cl fluxes which were slightly positive for the considered plots. - Assessment of water fluxes for 245 intensively monitored forest plots in Europe using a soil hydrological model combined with an interception model and a snow module

  13. Estimates of spatial variation in evaporation using satellite-derived surface temperature and a water balance model

    NARCIS (Netherlands)

    Bouwer, L.M.; Biggs, T.W.; Aerts, J.C.J.H.

    2008-01-01

    Evaporation dominates the water balance in arid and semi-arid areas. The estimation of evaporation by land-cover type is important for proper management of scarce water resources. Here, we present a method to assess spatial and temporal patterns of actual evaporation by relating water balance

  14. The Impact of Para Rubber Expansion on Streamflow and Other Water Balance Components of the Nam Loei River Basin, Thailand

    Directory of Open Access Journals (Sweden)

    Winai Wangpimool

    2016-12-01

    Full Text Available At present, Para rubber is an economical crop which provides a high priced product and is in demand by global markets. Consequently, the government of Thailand is promoting the expansion of Para rubber plantations throughout the country. Traditionally, Para rubber was planted and grown only in the southern areas of the country. However, due to the Government’s support and promotion as well as economic reasons, the expansion of Para rubber plantations in the northeast has increased rapidly. This support has occurred without accounting for suitable cultivation of Para rubber conditions, particularly in areas with steep slopes and other factors which have significant impacts on hydrology and water quality. This study presents the impacts of Para rubber expansion by applying the Soil and Water Assessment Tool (SWAT hydrological model on the hydrology and water balance of the Nam Loei River Basin, Loei Province. The results showed that the displacement of original local field crops and disturbed forest land by Para rubber production resulted in an overall increase of evapotranspiration (ET of roughly 3%. The major factors are the rubber canopy and precipitation. Moreover, the water balance results showed an annual reduction of about 3% in the basin average water yield, especially during the dry season.

  15. Evaluation of water balance in a population of older adults. A case control study.

    Science.gov (United States)

    Malisova, Olga; Poulia, Kalliopi-Anna; Kolyzoi, Kleoniki; Lysandropoulos, Athanasios; Sfendouraki, Kalliopi; Kapsokefalou, Maria

    2018-04-01

    Older adults are at risk for dehydration and its' potentially life-threatening consequences. Unrecognized dehydration can complicate chronic medical problems and increase morbidity. The objective of the study was to estimate water balance, intake and loss in elderly people living in Greece using the Water Balance Questionnaire (WBQ). WBQ was administered in winter to 108 independents (65-81yrs) (Group A), 94 independents (82-92yrs) (Group B) and 51 hospitalized (65-92yrs) (Group C). A database from previous study of 335 adults (18-65yrs) (Control Group) used for comparison. Mean estimates of water balance, intake and loss were, respectively, for Group A -749 ± 1386 mL/day, 2571 ± 739 mL/day and 3320 ± 1216 mL/day, for Group B -38 ± 933 mL/day, 2571 ± 739 mL/day and 3320 ± 1216 mL/day, for Group C 64 ± 1399 mL/day, 2586 ± 1071 mL/day and 2522 ± 1048 mL/day and for Control Group -253 ± 1495 mL/day, 2912 ± 1025 mL/day and 3492 ± 2099 mL/day. Significant differences were detected in water balance, intake and loss (p < 0.01). Water balance and water intake in Group A was the lowest. For Groups A, B, C and Control, contribution of solid foods to water intake was 36%, 29%, 32%, 25%, of drinking water was 32%, 48%, 45%, 47%, of beverages was 32%, 23%, 23% and 28% respectively. Significant differences observed in the contribution of drinking water and beverages (p < 0.01). Group A had lower water balance and water intake. Groups B and C had lower water intake from beverages. Copyright © 2018 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  16. Occurrence and simulation of trihalomethanes in swimming pool water: A simple prediction method based on DOC and mass balance.

    Science.gov (United States)

    Peng, Di; Saravia, Florencia; Abbt-Braun, Gudrun; Horn, Harald

    2016-01-01

    Trihalomethanes (THM) are the most typical disinfection by-products (DBPs) found in public swimming pool water. DBPs are produced when organic and inorganic matter in water reacts with chemical disinfectants. The irregular contribution of substances from pool visitors and long contact time with disinfectant make the forecast of THM in pool water a challenge. In this work occurrence of THM in a public indoor swimming pool was investigated and correlated with the dissolved organic carbon (DOC). Daily sampling of pool water for 26 days showed a positive correlation between DOC and THM with a time delay of about two days, while THM and DOC didn't directly correlate with the number of visitors. Based on the results and mass-balance in the pool water, a simple simulation model for estimating THM concentration in indoor swimming pool water was proposed. Formation of THM from DOC, volatilization into air and elimination by pool water treatment were included in the simulation. Formation ratio of THM gained from laboratory analysis using native pool water and information from field study in an indoor swimming pool reduced the uncertainty of the simulation. The simulation was validated by measurements in the swimming pool for 50 days. The simulated results were in good compliance with measured results. This work provides a useful and simple method for predicting THM concentration and its accumulation trend for long term in indoor swimming pool water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Optimization of water balance within the martian crew life support system

    Science.gov (United States)

    Sychev, V.; Levinskikh, M.

    The present-day scenarios of the first exploration mission differ in the total length crew size period of the stay on Mars etc However no matter the scenario one of the common problems is optimization of water balance within the crew life support system Water balance optimization implies in addition to regeneration of atmospheric moisture and urine also dehydration of biowastes In this mission all wastes will be stored and for this reason safe storage is prerequisite Investigations of two-component laboratory BLSS in which the autotrophic component was composed of algae Spirulina platensis and the heterotrophic component was represented by Japanese quail Coturnix coturnix japonica dom showed that optimization of the autotrophic and heterotrophic gas exchange and water regeneration from quail biowastes could raise the system susbstance balance to 76 of the total balance during autonomic cultivation of algae and birds In these investigations dehydration of quail biowastes caused significant pollution of water and air by organics toxic for humans It was demonstrated that the sorption technologies applied on the Russian space station MIR and ISS cannot fully absorb organic contaminants released in the process of quail wastes drying Algal suspension as a hydrobiological filter was able to control the organic pollination of both air and water These results are in agreement with the data of ground-based simulation studies with participation of human subjects at IBMP According to the simulation data intensive

  18. The effects of salinity in the soil water balance: A Budyko's approach

    Science.gov (United States)

    Perri, S.; Viola, F.; Molini, A.

    2017-12-01

    Soil degradation and water scarcity pose important constraints on productivity and development of arid and semi-arid countries. Among the main causes of loss of soil fertility, aridification and soil salinization are deeply connected threats enhanced by climate change. Assessing water availability is fundamental for a large number of applications especially in arid regions. An approach often adopted to estimate the long-term rainfall partitioning into evapotranspiration and runoff is the Budyko's curve. However, the classical Budyko framework might not be able to properly reproduce the water balance in salt affected basins, especially under elevated soil salinization conditions. Salinity is a limiting factor for plant transpiration (as well as growth) affecting both short and long term soil moisture dynamics and ultimately the hydrologic balance. Soluble salts cause a reduction of soil water potential similar to the one arising from droughts, although plant adaptations to soil salinity show extremely different traits and can vary from species to species. In a similar context, the salt-tolerance plants are expected to control the amount of soil moisture lost to transpiration in saline soils, also because salinity reduces evaporation. We propose a simple framework to include the effects of salinization on the surface energy and water balance within a simple Budyko approach. By introducing the effects of salinity in the stochastic water balance we are able to include the influence of vegetation type (i.e. in terms of salt-tolerance) on evapotranspiration-runoff partitioning under different climatic conditions. The water balance components are thus compared to data obtained from arid salt-affected regions.

  19. Electropumping of water with rotating electric fields.

    Science.gov (United States)

    De Luca, Sergio; Todd, B D; Hansen, J S; Daivis, Peter J

    2013-04-21

    Pumping of fluids confined to nanometer dimension spaces is a technically challenging yet vitally important technological application with far reaching consequences for lab-on-a-chip devices, biomimetic nanoscale reactors, nanoscale filtration devices and the like. All current pumping mechanisms require some sort of direct intrusion into the nanofluidic system, and involve mechanical or electronic components. In this paper, we present the first nonequilibrium molecular dynamics results to demonstrate that non-intrusive electropumping of liquid water on the nanoscale can be performed by subtly exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum of the fluid. By selectively tuning the degree of hydrophobicity of the solid walls one can generate a net unidirectional flow. Our results for the linear streaming and angular velocities of the confined water are in general agreement with the extended hydrodynamical theory for this process, though also suggest refinements to the theory are required. These numerical experiments confirm that this new concept for pumping of polar nanofluids can be employed under laboratory conditions, opening up significant new technological possibilities.

  20. The observed evapotranspiration combining the energy and water balance for different land use under semiarid Mediterranean catchment

    Science.gov (United States)

    Zitouna Chebbi, Rim; Mekki, Insaf; Jacob, Frédéric; Masmoudi, Moncef; Prévot, Laurent; Ben Mechlia, Netij; Voltz, Marc; Albergel, Jean

    2014-05-01

    The Mediterranean semiarid cultivated catchments are affected by global and climate change and are characterized by very complex hydrological systems. The improvement of their management requires a best understanding of the hydrological processes and developing reliable means for characterizing the temporal dynamics of soil water balance in a spatially distributed manner. The main objective of this study is: i) to analyze the observed evapotranspiration in relation to natural drivers (i.e. rainfall and soil properties) and anthropogenic forcing (i.e. land use and crop successions), and ) ii to assess the differences in both energy and water balances. We focus on a hilly semiarid Mediterranean catchment devoted to rainfed agriculture, so-called the Kamech catchment, which is located in the Cap Bon Peninsula, north-eastern Tunisia. The site belongs to the OMERE observatory for environmental research and it is monitored for the different hydrological cycle components under influence of anthropogenic forcing. The analysis is based on in-situ data measured under the common cereals/legumes/pasture cropping systems within the Kamech catchment. Energy and water balance components and vegetation parameters were collected in different fields and during various crop growth cycles. The results showed the highly variable response of energy and water balances depending on soil types, land use, and climatic conditions. The annual rainfall is mainly converted into evapotranspiration during the growing cycle for different land uses. The runoff amounts, for most of the sites, correspond to less than 10% of the rainfall amount. The evapotransipration ratios differed significantly across site and season in relation to soil properties and cumulated rainfall. We observe large differences in soil water dynamics among the legumes (fababean and chickpea) and cereals (wheat, oat, and triticale). Soil water is larger for legume crops, despite substantial plant growth during winter

  1. Effect of crop rotation on soil nutrient balance and weediness in soddy podzolic organic farming fields

    Science.gov (United States)

    Zarina, Livija; Zarina, Liga

    2017-04-01

    The nutrient balance in different crop rotations under organic cropping system has been investigated in Latvia at the Institute of Agricultural Resources and Economics since 2006. Latvia is located in a humid and moderate climatic region where the rainfall exceeds evaporation (soil moisture coefficient > 1) and the soil moisture regime is characteristic with percolation. The average annual precipitation is 670-850 mm. The average temperature varies from -6.7° C in January to 16.5 °C in July. The growing season is 175 - 185 days. The most widespread are podzolic soils and mainly they are present in agricultural fields in all regions of Latvia. In a wider sense the goal of the soil management in organic farming is a creation of the biologically active flora and fauna in the soil by maintaining a high level of soil organic matter which is good for crops nutrient balance. Crop rotation is a central component of organic farming systems and has many benefits, including growth of soil microbial activity, which may increase nutrient availability. The aim of the present study was to calculate nutrient balance for each crop in the rotations and average in each rotation. Taking into account that crop rotations can limit build-up of weeds, additionally within the ERA-net CORE Organic Plus transnational programs supported project PRODIVA the information required for a better utilization of crop diversification for weed management in North European organic arable cropping systems was summarized. It was found that the nutrient balance was influenced by nutrients uptake by biomass of growing crops in crop rotation. The number of weeds in the organic farming fields with crop rotation is dependent on the cultivated crops and the succession of crops in the crop rotation.

  2. A stochastic approach for the description of the water balance dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    S. Manfreda

    2008-09-01

    Full Text Available The present paper introduces an analytical approach for the description of the soil water balance dynamics over a schematic river basin. The model is based on a stochastic differential equation where the rainfall forcing is interpreted as an additive noise in the soil water balance. This equation can be solved assuming known the spatial distribution of the soil moisture over the basin transforming the two-dimensional problem in space in a one dimensional one. This assumption is particularly true in the case of humid and semihumid environments, where spatial redistribution becomes dominant producing a well defined soil moisture pattern. The model allowed to derive the probability density function of the saturated portion of a basin and of its relative saturation. This theory is based on the assumption that the soil water storage capacity varies across the basin following a parabolic distribution and the basin has homogeneous soil texture and vegetation cover. The methodology outlined the role played by the soil water storage capacity distribution of the basin on soil water balance. In particular, the resulting probability density functions of the relative basin saturation were found to be strongly controlled by the maximum water storage capacity of the basin, while the probability density functions of the relative saturated portion of the basin are strongly influenced by the spatial heterogeneity of the soil water storage capacity. Moreover, the saturated areas reach their maximum variability when the mean rainfall rate is almost equal to the soil water loss coefficient given by the sum of the maximum rate of evapotranspiration and leakage loss in the soil water balance. The model was tested using the results of a continuous numerical simulation performed with a semi-distributed model in order to validate the proposed theoretical distributions.

  3. Water balance of different forests types in Kiskunság Sandridge

    Science.gov (United States)

    Bolla, Bence; Kalicz, Péter

    2017-04-01

    Kiskunság Sandridge in central Hungary shows the signs of significant drying caused by anthropogenic (e.g. river regulation and water consumption) and climatic reasons. These factors generated dramatically decreasing of groundwater levels which was an important water supply for forest ecosystems. These worsening in site conditions bring up several questions in forest management and natural protection as well because significant part of forests are in protected areas in Kiskunság. This study aims to give a picture of the characteristic features of Sandridge forests concerning their water balance. Hydrology of forest sites were evaluated throughout measurement of hydrological elements and water balance modelling with the Coup 1D water-balance model. Three forest stands and five control stations in the grasslands were settled and monitored to compare the water consumption of different forests with native grasslands. This case study helps the work of forest managers with the quantification of water consumption of forests in Kiskunság. This research has been partly supported by the Agroclimate.2 VKSZ_12-1-2013-0034 project, and the second author's work was also supported by the János Bolyai Scholarship of the Hungarian Academy of Sciences.

  4. Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex

    CERN Document Server

    Lerchner, A; Hertz, J; Ahmadi, M

    2004-01-01

    We present a complete mean field theory for a balanced state of a simple model of an orientation hypercolumn. The theory is complemented by a description of a numerical procedure for solving the mean-field equations quantitatively. With our treatment, we can determine self-consistently both the firing rates and the firing correlations, without being restricted to specific neuron models. Here, we solve the analytically derived mean-field equations numerically for integrate-and-fire neurons. Several known key properties of orientation selective cortical neurons emerge naturally from the description: Irregular firing with statistics close to -- but not restricted to -- Poisson statistics; an almost linear gain function (firing frequency as a function of stimulus contrast) of the neurons within the network; and a contrast-invariant tuning width of the neuronal firing. We find that the irregularity in firing depends sensitively on synaptic strengths. If Fano factors are bigger than 1, then they are so for all stim...

  5. Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex

    DEFF Research Database (Denmark)

    Lerchner, Alexander; Sterner, G.; Hertz, J.

    2006-01-01

    We present a complete mean field theory for a balanced state of a simple model of an orientation hypercolumn, with a numerical procedure for solving the mean-field equations quantitatively. With our treatment, one can determine self-consistently both the firing rates and the firing correlations......, without being restricted to specific neuron models. Here, we solve the mean-field equations numerically for integrate-and-fire neurons. Several known key properties of orientation selective cortical neurons emerge naturally from the description: Irregular firing with statistics close...... to - but not restricted to Poisson statistics; an almost linear gain function (firing frequency as a function of stimulus contrast) of the neurons within the network; and a contrast-invariant tuning width of the neuronal firing. We find that the irregularity in firing depends sensitively on synaptic strengths...

  6. Impact of climate seasonality on catchment yield: A parameterization for commonly-used water balance formulas

    Science.gov (United States)

    de Lavenne, Alban; Andréassian, Vazken

    2018-03-01

    This paper examines the hydrological impact of the seasonality of precipitation and maximum evaporation: seasonality is, after aridity, a second-order determinant of catchment water yield. Based on a data set of 171 French catchments (where aridity ranged between 0.2 and 1.2), we present a parameterization of three commonly-used water balance formulas (namely, Turc-Mezentsev, Tixeront-Fu and Oldekop formulas) to account for seasonality effects. We quantify the improvement of seasonality-based parameterization in terms of the reconstitution of both catchment streamflow and water yield. The significant improvement obtained (reduction of RMSE between 9 and 14% depending on the formula) demonstrates the importance of climate seasonality in the determination of long-term catchment water balance.

  7. Surface energy balance of fresh and saline waters : AquaSEBS

    NARCIS (Netherlands)

    Abdelrady, A.R.; Timmermans, J.; Vekerdy, Z.; Salama, M.S.

    2016-01-01

    Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System) model

  8. Using expert elicitation to quantify catchment water balances and their uncertainties

    NARCIS (Netherlands)

    Sebok, E.; Refsgaard, J.C.; Warmink, Jord Jurriaan; Stisen, S.; Jensen, K.H.

    2016-01-01

    Expert elicitation with the participation of 35 experts was used to estimate a water balance for the nested Ahlergaarde and Holtum catchments in Western Denmark. Average annual values of precipitation, evapotranspiration, and surface runoff as well as subsurface outflow and recharge and their

  9. Assessing topographic patterns in moisture use and stress using a water balance approach

    Science.gov (United States)

    James M. Dyer

    2009-01-01

    Through its control on soil moisture patterns, topography's role in influencing forest composition is widely recognized. This study addresses shortcomings in traditional moisture indices by employing a water balance approach, incorporating topographic and edaphic variability to assess fine-scale moisture demand and moisture availability. Using GIS and readily...

  10. Implications of Kali–Hindon inter-stream aquifer water balance for ...

    Indian Academy of Sciences (India)

    ried out in Krishni–Hindon inter-stream region adjoining the study area (Gupta et al 1979, 1985). They have assessed the stream aquifer interaction as well as conjunctive use of surface water and groundwater in the region. Keywords. Groundwater balance; irrigation return flow; aquifer management; Muzaffarnagar; Uttar ...

  11. Water balance, nutrient and carbon export from a heath forest catchment in central Amazonia, Brazil

    NARCIS (Netherlands)

    Zanchi, F. .B.; Waterloo, M.J.; Tapia, A.P.; Alvarado Barrientos, M.S.; Bolson, M.A.; Luizao, F.J.; Manzi, A.O.; Dolman, A.J.

    2015-01-01

    Carbon storage values in the Amazon basin have been studied through different approaches in the last decades in order to clarify whether the rainforest ecosystem is likely to act as a sink or source for carbon in the near future. This water balance, dissolved organic carbon (DOC) and nutrient export

  12. Water balance in the complex mountainous terrain of Bhutan and linkages to land use

    DEFF Research Database (Denmark)

    Dorji, Ugyen; Olesen, Jørgen Eivind; Seidenkrantz, Marit-Solveig

    2016-01-01

    Bhutan is located in the Himalayas with extreme variation in elevation, climatic conditions and land use. The high dependency of the economy on agriculture and natural resources emphasizes the importance of understanding inter- and intra-seasonal variation in water balance linked to monsoonal...

  13. Effect of water intake on the nitrogen balance of sheep fed a low or a ...

    African Journals Online (AJOL)

    Effect of water intake on the nitrogen balance of sheep fed a low or a medium protein diet. JG van der Walt, EA Boomker, A Meintjes, WA Schultheiss. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  14. Implications of Kali–Hindon inter-stream aquifer water balance for ...

    Indian Academy of Sciences (India)

    water balance for groundwater management in western Uttar Pradesh. Rashid Umar. 1. , M Muqtada A Khan. 1. , Izrar Ahmed. 1 and Shakeel Ahmed. 2. 1. Department of Geology, Aligarh Muslim University, Aligarh 202 002, India. 2. IFCGR, National Geophysical Research Institute, Uppal Road, Hyderabad 500 007, India.

  15. The energy and water balance of a Eucalyptus plantation in southeast Brazil

    NARCIS (Netherlands)

    Cabral, O.M.R.; Rocha, H.R.; Gash, J.H.C.; Ligo, M.A.V.; Freitas, H.C.; Tatsch, J.D.

    2010-01-01

    The eddy covariance method was used to measure energy and water balance of a plantation of Eucalyptus (grandis × urophylla) hybrids over a 2 year period. The average daily evaporation rates were 5.4 (±2.0) mm day

  16. Spatial and temporal variations of water balance components due to a bottomland hedgerow

    Science.gov (United States)

    Thomas, Z.; Ghazavi, G.; Merot, P.

    2009-04-01

    Wooded linear structures in general, and hedgerows in particular, were formerly very abundant in the European landscape, but have undergone a considerable decline in their density in the past decades, before being stabilized. Currently, we observe locally an increase due to the multiple advantages offered by these structures and the effect of agricultural policies. The aim of the present study was to quantify spatially and temporally the impact of an oak hedgerow (Quercus robur) on the various terms of the water balance. This study was carried out at the plot scale by focusing on aspects related to water transfer in the soil and aquifer. From the results obtained on a local scale, we proposed a functional scheme that allowed us to represent the role of hedge trees in water cycle. In this study, groundwater level and soil-water potential were monitored continually at various distances from the hedgerow along two 28 m length transects, at a spacing of 10 m, enabling us to obtain fine-scale information on the functioning of the soil-groundwater system. We evaluate tree transpiration from sap flow density measurements. Functional scheme were proposed illustrating the role of hedgerow, which can then be used for integrating the impact of the hedge trees into hydrological models. For the period when oak trees had their leaves (leafed period), the determining processes that need to be represented are the rainfall interception, tree transpiration and capillary rise. Other terms of the water balance, such as drainage, are directly affected by the presence of the hedgerow. Drainage is strongly reduced under the hedgerow, and decreases significantly at a certain distance from the hedgerow, when capillary rise increased under the hedgerow and decreased far away. Our results show that the impact of a bottomland hedgerow on water balance components can be highly variable according to the climatic conditions. Hedge tree transpiration increased for a wet year when soil-water

  17. The Role of Vegetation Dynamics on the Soil Water Balance in Water-Limited Ecosystems

    Science.gov (United States)

    Montaldo, N.; Rondena, R.; Albertson, J. D.; Mancini, M.

    2003-12-01

    The structure and function of the vegetation regulates the exchange of mass, energy and momentum across the biosphere-atmosphere interface. Vegetation dynamics are usually neglected, other than seasonal phenology, in land surface models (LSMs). However, changes in vegetation densities, influencing the partitioning of incoming solar energy into sensible and latent heat fluxes, can result in long-term changes in both local and global climates (e.g., precipitation and temperature), which in turn will feedback to affect the vegetation growth. In semi-arid regions, this may result in persistent drought and desertification, with substantial impacts on the human populations of these regions through reduction in agricultural productivity and reduction in quantity and quality of water supply. With an objective of finding a simple vegetation model able to accurately simulate the leaf area index (LAI) dynamics, vegetation models of different level of complexity (e.g., including or not the modeling of the root biomass or the modeling of the dead biomass) are developed and compared. The vegetation dynamics models are coupled to a LSM, with the vegetation models providing the green biomass and the LAI evolution through time, and the LSM using this information in the computation of the land surface fluxes and updating the soil water content in the root-zone. We explore the models on a case study of a water limited grass field in California. Results show that a simple vegetation model that simulates the living aboveground green biomass (i.e., with low parameterization and computational efforts) is able to accurately simulate the LAI. Results also highlight the importance of including the plant growth model in the LSM when studying the climate-soil-vegetation interactions and the impact of watershed management practices on the scarce water resources over moderate to long time scales. The inclusion of the vegetation model in the LSM is demonstrated to be essential for assessing the

  18. Soil Water Balance and Irrigation Strategies in an Agricultural District of Southern Italy

    Directory of Open Access Journals (Sweden)

    Domenico Ventrella

    2010-06-01

    Full Text Available An efficient management of water resources is considered very important for Mediterranean regions of Italy in order to improve the economical and environmental sustainability of the agricultural activity. The purpose of this study is to analyze the components of soil water balance in an important district included in the regions of Basilicata and Puglia and situated in the Jonical coastal area of Southern Italy and mainly cropped with horticultural crops. The study was performed by using the spatially distributed and physically based model SIMODIS in order to individuate the best irrigation management maximizing the water use efficiency and minimizing water losses by deep percolation and soil evaporation. SIMODIS was applied taking in to account the soil spatial variability and localization of cadastral units for two crops, durum wheat and water melon. For water melon recognition in 2007 a remote sensed image, from SPOT5 satellite, at the spatial resolution of 10 m, has been used. In 2008, a multi-temporal data set was available, from SPOT5 satellite to produce a land cover map for the classes water melon and durum wheat. Water melon cultivation was simulated adopting different water supply managements: rainfed and four irrigation strategies based on (i soil water availability and (ii plant water status adopting a threshold daily stress value. For each management, several water management indicators were calculated and mapped in GIS environment. For seasonal irrigation depth, actual evapotranspiration and irrigation efficiency were also determined. The analysis allowed to individuate the areas particularly sensitive to water losses by deep percolation because of their hydraulic functions characterized by low water retention and large values of saturated hydraulic conductivity. For these areas, the irrigation based on plant water status caused very high water losses by drainage. On the contrary, the irrigation scheduled on soil base allowed to

  19. Impact of electromagnetic fields on human vestibular system and standing balance: pilot results and future developments

    Science.gov (United States)

    Allen, A.; Villard, S.; Corbacio, M.; Goulet, D.; Plante, M.; Souques, M.; Deschamps, F.; Ostiguy, G.; Lambrozo, J.; Thomas, A. W.; Legros, A.

    2016-03-01

    Although studies have found that extremely low-frequency (ELF, balance, the acute effects of electromagnetic fields on standing balance have not been systematically investigated. This work aims to establish the threshold for acute standing balance modulation during ELFMF exposure. One hundred volunteers will be exposed to transcranial electric stimulations (Direct Current - DC and Alternating Current - AC, 1 mA) and ELFMF (0 to 160 Hz, 0 to 100 mT). The displacement of their center of pressure will be collected and analyzed as an indicator of vestibular performance. During pilot testing (n=6), we found increased lateral sway with DC, and to a lesser extent, AC exposure. The ELFMF exposure system still needs to be adapted to allow meaningful results. Future protocol design will test for possible effects due to exposures in the radiofrequency range (i.e. above 3 kHz). These results will contribute to the literature documenting exposure guidelines aiming to protect workers and the general public.

  20. Consequences of declining snow accumulation for water balance of mid-latitude dry regions

    Science.gov (United States)

    Schlaepfer, Daniel R.; Lauenroth, William K.; Bradford, John B.

    2012-01-01

    Widespread documentation of positive winter temperature anomalies, declining snowpack and earlier snow melt in the Northern Hemisphere have raised concerns about the consequences for regional water resources as well as wildfire. A topic that has not been addressed with respect to declining snowpack is effects on ecosystem water balance. Changes in water balance dynamics will be particularly pronounced at low elevations of mid-latitude dry regions because these areas will be the first to be affected by declining snow as a result of rising temperatures. As a model system, we used simulation experiments to investigate big sagebrush ecosystems that dominate a large fraction of the semiarid western United States. Our results suggest that effects on future ecosystem water balance will increase along a climatic gradient from dry, warm and snow-poor to wet, cold and snow-rich. Beyond a threshold within this climatic gradient, predicted consequences for vegetation switched from no change to increasing transpiration. Responses were sensitive to uncertainties in climatic prediction; particularly, a shift of precipitation to the colder season could reduce impacts of a warmer and snow-poorer future, depending on the degree to which ecosystem phenology tracks precipitation changes. Our results suggest that big sagebrush and other similar semiarid ecosystems could decrease in viability or disappear in dry to medium areas and likely increase only in the snow-richest areas, i.e. higher elevations and higher latitudes. Unlike cold locations at high elevations or in the arctic, ecosystems at low elevations respond in a different and complex way to future conditions because of opposing effects of increasing water-limitation and a longer snow-free season. Outcomes of such nonlinear interactions for future ecosystems will likely include changes in plant composition and productivity, dynamics of water balance, and availability of water resources.

  1. Urban water metabolism indicators derived from a water mass balance - Bridging the gap between visions and performance assessment of urban water resource management.

    Science.gov (United States)

    Renouf, M A; Serrao-Neumann, S; Kenway, S J; Morgan, E A; Low Choy, D

    2017-10-01

    Improving resource management in urban areas has been enshrined in visions for achieving sustainable urban areas, but to date it has been difficult to quantify performance indicators to help identify more sustainable outcomes, especially for water resources. In this work, we advance quantitative indicators for what we refer to as the 'metabolic' features of urban water management: those related to resource efficiency (for water and also water-related energy and nutrients), supply internalisation, urban hydrological performance, sustainable extraction, and recognition of the diverse functions of water. We derived indicators in consultation with stakeholders to bridge this gap between visions and performance indicators. This was done by first reviewing and categorising water-related resource management objectives for city-regions, and then deriving indicators that can gauge performance against them. The ability for these indicators to be quantified using data from an urban water mass balance was also examined. Indicators of water efficiency, supply internalisation, and hydrological performance (relative to a reference case) can be generated using existing urban water mass balance methods. In the future, indicators for water-related energy and nutrient efficiencies could be generated by overlaying the urban water balance with energy and nutrient data. Indicators of sustainable extraction and recognising diverse functions of water will require methods for defining sustainable extraction rates and a water functionality index. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Monitoring the water balance of Lake Victoria, East Africa, from space

    Science.gov (United States)

    Swenson, Sean; Wahr, John

    2009-05-01

    SummaryUsing satellite gravimetric and altimetric data, we examine trends in water storage and lake levels of multiple lakes in the Great Rift Valley region of East Africa for the years 2003-2008. GRACE total water storage estimates reveal that water storage declined in much of East Africa, by as much as 60 {mm}/{year}, while altimetric data show that lake levels in some large lakes dropped by as much as 1-2 m. The largest declines occurred in Lake Victoria, the Earth's second largest freshwater body. Because the discharge from the outlet of Lake Victoria is used to generate hydroelectric power, the role of human management in the lake's decline has been questioned. By comparing catchment water storage trends to lake level trends, we confirm that climatic forcing explains only about 50decline. This analysis provides an independent means of assessing the relative impacts of climate and human management on the water balance of Lake Victoria that does not depend on observations of dam discharge, which may not be publically available. In the second part of the study, the individual components of the lake water balance are estimated. Satellite estimates of changes in lake level, precipitation, and evaporation are used with observed lake discharge to develop a parameterization for estimating subsurface inflows due to changes in groundwater storage estimated from satellite gravimetry. At seasonal timescales, this approach provides closure to Lake Victoria's water balance to within 17 {mm}/{month}. The third part of this study uses the water balance of a downstream water body, Lake Kyoga, to estimate the outflow from Lake Victoria remotely. Because Lake Kyoga is roughly 20 times smaller in area than Lake Victoria, its water balance is strongly influenced by inflow from Lake Victoria. Lake Kyoga has been shown to act as a linear reservoir, where its outflow is proportional to the height of the lake. This model can be used with satellite altimetric lake levels to estimate a

  3. Healthy Water Healthy People Field Monitoring Guide

    Science.gov (United States)

    Project WET Foundation, 2003

    2003-01-01

    This 100-page manual serves as a technical reference for the "Healthy Water, Healthy People Water Quality Educators Guide" and the "Healthy Water Healthy People Testing Kits". Yielding in-depth information about ten water quality parameters, it answers questions about water quality testing using technical overviews, data interpretation guidelines,…

  4. Modeling seasonal water balance based on catchments' hedging strategy on evapotranspiration for climate seasonality

    Science.gov (United States)

    Wu, S.; Zhao, J.; Wang, H.

    2017-12-01

    This paper develops a seasonal water balance model based on the hypothesis that natural catchments utilize hedging strategy on evapotranspiration for climate seasonality. According to the monthly aridity index, one year is split into wet season and dry season. A seasonal water balance model is developed by analogy to a two-stage reservoir operation model, in which seasonal rainfall infiltration, evapotranspiration and saturation-excess runoff is corresponding to the inflow, release and surplus of the catchment system. Then the optimal hedging between wet season and dry season evapotranspiration is analytically derived with marginal benefit principle. Water budget data sets of 320 catchments in the United States covering the period from 1980 to 2010 are used to evaluate the performance of this model. The Nash-Sutcliffe Efficiency coefficient for evapotranspiration is higher than 0.5 in 84% of the study catchments; while the runoff is 87%. This paper validates catchments' hedging strategy on evapotranspiration for climate seasonality and shows its potential application for seasonal water balance, which is valuable for water resources planning and management.

  5. An attempt to perform water balance in a Brazilian municipal solid waste landfill.

    Science.gov (United States)

    São Mateus, Maria do Socorro Costa; Machado, Sandro Lemos; Barbosa, Maria Cláudia

    2012-03-01

    This paper presents an attempt to model the water balance in the metropolitan center landfill (MCL) in Salvador, Brazil. Aspects such as the municipal solid waste (MSW) initial water content, mass loss due to decomposition, MSW liquid expelling due to compression and those related to weather conditions, such as the amount of rainfall and evaporation are considered. Superficial flow and infiltration were modeled considering the waste and the hydraulic characteristics (permeability and soil-water retention curves) of the cover layer and simplified uni-dimensional empirical models. In order to validate the modeling procedure, data from one cell at the landfill were used. Monthly waste entry, volume of collected leachate and leachate level inside the cell were monitored. Water balance equations and the compressibility of the MSW were used to calculate the amount of leachate stored in the cell and the corresponding leachate level. Measured and calculated values of the leachate level inside the cell were similar and the model was able to capture the main trends of the water balance behavior during the cell operational period. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Effects of urbanisation on the water balance - A long-term trajectory

    International Nuclear Information System (INIS)

    Haase, Dagmar

    2009-01-01

    The amount of land consumption required for housing and transport severely conflicts with both the necessity and the legal obligation to maintain the ecological potential afforded by open spaces to meet the needs of current and future generations with regards to the protection of resources and climate change. Owing to an increasing intensity of soil use, soil conditions appear to have deteriorated in most city regions around the world, namely their filter and runoff regulating functions are impaired by land surfacing. As such soil functions depend on the soil's biophysical properties and the degree of imperviousness, the impact on the water balance caused by urban growth varies considerably. In response to the demand for sustainably secure urban water resources, it needs to be assessed exactly how land surfacing affects the functions concerned. Analysing and evaluating urban land use change on the long-term water balance should improve our understanding of the impact of urbanisation on the water household. Therefore, this paper analyses the impact of urban land use change and land surfacing on the long-term urban water balance over a 130-year trajectory by using simple model approaches that are based on data available to the public. The test site is the city of Leipzig. In particular, attention is to be paid to estimating changes of evapotranspiration, direct runoff and groundwater recharge.

  7. Balancing ballistic protection against physiological strain: evidence from laboratory and field trials.

    Science.gov (United States)

    Taylor, Nigel A S; Burdon, Catriona A; van den Heuvel, Anne M J; Fogarty, Alison L; Notley, Sean R; Hunt, Andrew P; Billing, Daniel C; Drain, Jace R; Silk, Aaron J; Patterson, Mark J; Peoples, Gregory E

    2016-02-01

    This project was based on the premise that decisions concerning the ballistic protection provided to defence personnel should derive from an evaluation of the balance between protection level and its impact on physiological function, mobility, and operational capability. Civilians and soldiers participated in laboratory- and field-based studies in which ensembles providing five levels of ballistic protection were evaluated, each with progressive increases in protection, mass (3.4-11.0 kg), and surface-area coverage (0.25-0.52 m(2)). Physiological trials were conducted on volunteers (N = 8) in a laboratory, under hot-dry conditions simulating an urban patrol: walking at 4 km·h(-1) (90 min) and 6 km·h(-1) (30 min or to fatigue). Field-based trials were used to evaluate tactical battlefield movements (mobility) of soldiers (N = 31) under tropical conditions, and across functional tests of power, speed, agility, endurance, and balance. Finally, trials were conducted at a jungle training centre, with soldiers (N = 32) patrolling under tropical conditions (averaging 5 h). In the laboratory, work tolerance was reduced as protection increased, with deep-body temperature climbing relentlessly. However, the protective ensembles could be grouped into two equally stressful categories, each providing a different level of ballistic protection. This outcome was supported during the mobility trials, with the greatest performance decrement evident during fire and movement simulations, as the ensemble mass was increased (-2.12%·kg(-1)). The jungle patrol trials similarly supported this outcome. Therefore, although ballistic protection does increase physiological strain, this research has provided a basis on which to determine how that strain can be balanced against the mission-specific level of required personal protection.

  8. Improvement of a land surface model for accurate prediction of surface energy and water balances

    International Nuclear Information System (INIS)

    Katata, Genki

    2009-02-01

    In order to predict energy and water balances between the biosphere and atmosphere accurately, sophisticated schemes to calculate evaporation and adsorption processes in the soil and cloud (fog) water deposition on vegetation were implemented in the one-dimensional atmosphere-soil-vegetation model including CO 2 exchange process (SOLVEG2). Performance tests in arid areas showed that the above schemes have a significant effect on surface energy and water balances. The framework of the above schemes incorporated in the SOLVEG2 and instruction for running the model are documented. With further modifications of the model to implement the carbon exchanges between the vegetation and soil, deposition processes of materials on the land surface, vegetation stress-growth-dynamics etc., the model is suited to evaluate an effect of environmental loads to ecosystems by atmospheric pollutants and radioactive substances under climate changes such as global warming and drought. (author)

  9. Water balance of a small catchment with permeable soils in Ile-Ife area, southwester Nigeria

    International Nuclear Information System (INIS)

    Ogunkoya, O. O.

    2000-01-01

    Three - year and annual catchment water balances were drawn for a small l catchment (44 ha.) in southwestern Nigeria. The equation: P - Q - E T - Δs = O was not resolved. Rather, the terms on the left did not sum to zero. The residual, which are between 4% and 5% of total rainfall, were consistently negative. A probable source of error is the use of Thornthwaite's potential evaporation in estimating catchment evapotranspiration. Potential evapotranspiration is higher than actual evapotranspiration in the study area due to the limited evaporation opportunity during the approximately five - mouth dry season. Given that the study catchment had runoff patterns that are simi liar to those of larger rivers in the region the computed catchment water balance indicated that 37% of annual rainfall may be taken as the runoff coefficient for the region. This suggests that the engineer's coefficient (0.35 - 0.45) used in assessment of surface water resources in southwestern Nigeria, is reasonable

  10. A New Approach to Modeling Water Balance in Nile River Basin, Africa

    Directory of Open Access Journals (Sweden)

    Marye Belete

    2018-03-01

    Full Text Available The demand for calculating and mapping water yield is increasing for inaccessible locations or areas of conflict to support decision makers. Integrated Valuation of Environmental Services and Tradeoffs (InVEST was applied to simulate basin hydrology. InVEST is becoming popular in the water modeling community due to its low requirements for input information, level of skill and model setup is available to the public domain. Estimation and mapping of water production, evapotranspiration and precipitation of the Nile River Basin have been performed by using open access data. This study utilized climate, soil and land use related data to model the key components of the water balance in the study region. Maps of the key parts of water balance were also produced. The spatial patterns of precipitation, actual evapotranspiration and water yield show sharp decline from south to northern part of the study basin while actual evapotranspiration fraction happens to the opposite. Our analysis confirms the ability of the InVEST water yield model to estimate water production capacity of a different part of a basin without flow meters.

  11. Water balance along a chain of tundra lakes: A 20-year isotopic perspective

    Science.gov (United States)

    Gibson, J. J.; Reid, R.

    2014-11-01

    Stable isotope measurements and isotope mass balance (IMB) calculations are presented in support of an unprecedented 20-year water balance assessment for a tailings pond and a chain of downstream lakes at the Salmita-Tundra mine site, situated near Courageous Lake, Northwest Territories, Canada (65°03‧N; 111°11‧W). The method is shown to provide a comprehensive annual and interannual perspective of water balance fluxes along a chain of lakes during the period 1991-2010, without the need for continuous streamflow gauging, and reveals important lake-order-dependent patterns of land-surface runoff, discharge accumulation, and several key diagnostic ratios, i.e., evaporation/inflow, evaporation/evapotranspiration, land-surface-runoff/precipitation and discharge/ precipitation. Lake evaporation is found to be a significant component of the water balance, accounting for between 26% and 32% of inflow to natural lakes and between 72% and 100% of inflow to mine-tailings ponds. Evaporation/evapotranspiration averages between 7% and 22% and is found to be higher in low-precipitation years, and in watersheds with a higher proportion of lakes. Runoff ratios for land-surface drainages and runoff ratios for watersheds (including lakes) ranged between 14-47% and 20-47%, respectively, and were higher in low precipitation years, in watersheds with a higher proportion of lakes, and in watersheds less affected by mining development. We propose that in general these two runoff ratios will likely converge as lake order increases and as land cover conditions become regionally representative. Notably, the study demonstrates application of IMB, validated with streamflow measurements, to constrain local water balance in a remote low-arctic region. For IMB chain-of-lakes applications, it underlines the importance of accounting for evaporatively-enriched upstream sources to avoid overestimation of evaporation losses.

  12. CHANGES OF WATER BALANCE COMPONENTS OF MIDFOREST POND IN A HYDROLOGICAL YEARS OF A DIFFERENT METEOROLOGICAL CONDITION COURSE

    Directory of Open Access Journals (Sweden)

    Mariusz Korytowski

    2014-10-01

    years. Evaporation from pond surface which was from 408 mm (2009/2010 to 835 mm (2002/2003 was the dominant factor of outgoing part of water balance. Outflow from the pond to neighboring areas had significant participation – about 44% of precipitation, in water balance in wet 2009/2010 hydrological year.

  13. Complex Interactions between Temperature and Relative Humidity on Water Balance of Adult Tsetse (Glossinidae, Diptera): Implications for Climate Change

    OpenAIRE

    Kleynhans, Elsje; Terblanche, John S.

    2011-01-01

    Insect water balance plays an important role in determining energy budgets, activity patterns, survival and population dynamics and, hence, geographic distribution. Tsetse (Glossina spp.) are important vectors of human and animal disease occupying a wide range of habitats in Africa and are notable for their desiccation resistance in xeric environments. Here, we measure water balance traits (water loss rate, body water content and body lipid content) in adult flies across a range of temperatur...

  14. FAO/IAEA Training Course on Integrated Nutrient-Water Management at Field and Area-wide Scale, 19 May–27 June 2014, Seibersdorf, Austria [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    International Nuclear Information System (INIS)

    Wahbi, Ammar; Weltin, Georg; Dercon, Gerd

    2014-01-01

    The main focus of the training course was on: (i) improving nutrient management in rainfed and irrigated agriculture, (ii) monitoring nutrient balances and water use efficiency at the field scale, (iii) increasing the efficiency of water management in rainfed and irrigated agriculture at field and area-wide scales, (iv) monitoring soil moisture at both field and area-wide scales, (v) assessing soil water balance and crop water relations, and (vi) training on the use of FAAO’s AquaCrop model to improve soil water management and irrigation scheduling

  15. Field-based experimental water footprint study of sunflower growth in a semi-arid region of China.

    Science.gov (United States)

    Qin, Lijie; Jin, Yinghua; Duan, Peili; He, Hongshi

    2016-07-01

    Field-scale changes in the water footprint during crop growth play an important role in formulating sustainable water utilisation strategies. This study aimed to explore field-scale variation in the water footprint of growing sunflowers in the western Jilin Province, China, during a 3-year field experiment. The goals of this study were to (1) determine the components of the 'blue' and 'green' water footprints for sunflowers sown with water, and (2) analyse variations in water footprints and soil water balance under different combinations of temperature and precipitation. Specific actions could be adopted to maintain sustainable agricultural water utilisation in the semi-arid region based on this study. The green, blue, and grey water footprints accounted for 93.7-94.7%, 0.4-0.5%, and 4.9-5.8%, respectively, of the water footprint of growing sunflowers. The green water footprint for effective precipitation during the growing season accounted for 58.8% in a normal drought year but 48.2% in an extreme drought year. When the effective precipitation during the growing season could not meet the green water use, a moisture deficit arose. This increase in the moisture deficit can have a significant impact on soil water balance. Green water was the primary water source for sunflower growth in the study area, where a scarcity of irrigation water during sunflower growth damaged the soil water balance, particularly in years with continuous drought. The combination of temperature and precipitation effected the growing environment, leading to differences in yield and water footprint. The field experiments in this area may benefit from further water footprint studies at the global, national and regional scale. © 2016 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2016 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of

  16. Evapotranspiration dynamics in a boreal peatland and its impact on the water and energy balance

    Science.gov (United States)

    Wu, Jiabing; Kutzbach, Lars; Jager, Daniel; Wille, Christian; Wilmking, Martin

    2010-12-01

    Hydrological conditions play a key role in the carbon cycle of northern peatlands. This study examines the evapotranspiration (ET) dynamics and its impact on the water and energy balance in response to differing meteorological conditions during the exceptionally dry year 2006 and the normal wet year 2007 at a boreal peatland in Finland. Energy and water vapor fluxes were determined continuously using the eddy covariance approach. Daily ET rates varied considerably during the growing season and averaged 2.23 ± 0.15 mm d-1 and 1.59 ± 0.07 mm d-1 in the dry and wet year, respectively. Synoptic weather conditions as reflected by incoming radiation and water vapor pressure deficit (VPD) were the key factors controlling ET. Differences in the precipitation patterns and summer temperature also accounted for some of the observed differences in ET between the 2 years. No evidence was found for a relationship between ET rates and water table level, probably due to the relatively high water table level even in the dry year. Latent heat flux dominated the energy balance, particularly in the dry year 2006 with 60% of cumulative precipitation returned to the atmosphere through ET. In the wet year 2007, runoff dominated the water loss, and only 36% of the cumulative precipitation was returned to the atmosphere through ET. While the annual water balance regime of the peatland was mainly regulated by the precipitation pattern, daily measured ET was closely related to potential evaporation, and latent heat flux could be well modeled by the Penman-Monteith approach, suggesting two feasible schemes for ET prediction in peatlands under well watered conditions.

  17. The Acid-Base Balance Between Organic Acids and Circumneutral Ground Waters in Large Peatlands

    Science.gov (United States)

    Siegel, D. I.; Glaser, P. H.; So, J.

    2006-05-01

    Organic acids supply most of the acidity in the surface waters of bogs in peatlands. Yet, the fundamental geochemical properties of peatland organic acids are still poorly known. To assess the geochemical properties of typical organic acid assemblages in peatlands, we used a triprotic analog model for peat pore waters and surface waters in the Glacial Lake Agassiz Peatlands, optimizing on charge balance and calibrated to estimates of mole site density in DOC and triprotic acid dissociation constants. Before the calibration process, all bog waters and 76% of fen waters had more than +20% charge imbalance. After calibration, most electrochemically balanced within 20%. In the best calibration, the mole site denisty of bog DOC was estimated as ~0.05 mmol/mmol C., approximately 6 times smaller than that for fen DOC or the DOC in the fen deeper fen peats that underlie bogs. The three modeled de-protonation constants were; pKa1 = ~3.0, pKa2 = ~4.5 and pKa3 = ~7.0 for the bog DOC, and; pKa1 = ~5.2, pKa2 =~ 6.5 and pKa3 = ~7.0 for the fen DOC. Bog DOC, behaves as a strong acid despite its small mole site density. The DOC in bog runoff can therefore theoretically acidify the surface waters in adjacent fens wherever these waters do not receive sufficient buffering alkalinity from active groundwater seepage.

  18. Employing Hot Wire Anemometry to Directly Measure the Water Balance in a Proton Exchange membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Hussain, Nabeel; Berning, Torsten

    2015-01-01

    Water management in proton exchange membrane fuel cells (PEMFC’s) remains a critical problem for their durability, cost, and performance. Because the anode side of this fuel cell has the tendency to become dehydrated, measuring the water balance can be an important diagnosis tool during fuel cell...... operation. The water balance indicates how much of the product water leaves at the anode side versus the cathode side. Previous methods of determining the fuel cell water balance often relied on condensing the water in the exhaust gas streams and weighing the accumulated mass which is a time consuming...... can be directly converted into the fuel cell water balance. In this work, experimental ex-situ results are presented and the elegance and usefulness of this method is demonstrated....

  19. Assessing Variation in Water Balance Components in Mountainous Inland River Basin Experiencing Climate Change

    Directory of Open Access Journals (Sweden)

    Zhenliang Yin

    2016-10-01

    Full Text Available Quantification of the changes of water balance components is significant for water resource assessment and management. This paper employed the Soil and Water Assessment Tool (SWAT model to estimate the water balance in a mountainous watershed in northwest China at different spatial scales over the past half century. The results showed that both Nash-Sutcliffe efficiency (NSE and determination coefficient (R2 were over 0.90 for the calibration and validation periods. The water balance components presented rising trends at the watershed scale, and the total runoff increased by 30.5% during 1964 to 2013 period. Rising surface runoff and rising groundwater flow contributed 42.7% and 57.3% of the total rising runoff, respectively. The runoff coefficient was sensitive to increasing precipitation and was not significant to the increase of temperature. The alpine meadow was the main landscape which occupied 51.1% of the watershed and contributed 55.5% of the total runoff. Grass land, forest land, bare land, and glacier covered 14.2%, 18.8%, 15.4%, and 0.5% of the watershed and contributed 8.5%, 16.9%, 15.9%, and 3.2% of the total runoff, respectively. The elevation zone from 3500 to 4500 m occupied 66.5% of the watershed area, and contributed the majority of the total runoff (70.7%. The runoff coefficients in the elevation zone from 1637 to 2800 m, 2800 to 3500 m, 3500 to 4000 m, 4000 to 4500 m, and 4500 to 5062 m were 0.20, 0.27, 0.32, 0.43, and 0.78, respectively, which tend to be larger along with the elevation increase. The quantities and change trends of the water balance components at the watershed scale were calculated by the results of the sub-watersheds. Furthermore, we characterized the spatial distribution of quantities and changes in trends of water balance components at the sub-watershed scale analysis. This study provides some references for water resource management and planning in inland river basins.

  20. Determining water balance components at a lysimeter site in north-eastern Austria

    Science.gov (United States)

    Nolz, Reinhard; Kammerer, Gerhard; Cepuder, Peter

    2014-05-01

    The water balance of a certain soil profile in a certain time interval is subjected to changes of soil water content within the respective profile, and fluxes at its upper and lower boundary such as evapotranspiration and percolation, respectively. Weighing lysimeters are valuable instruments for water balance studies. Typically, mass changes - thus, changes of soil profile water content - are detected by a weighing system, while percolating water is measured by a tipping bucket or a weighed storage tank, and precipitation is measured by a rain gauge. Consequently, evapotranspiration can be determined by solving a simple water balance equation. However, a typical problem is that using separately measured precipitation data may cause implausible (negative) evapotranspiration. As a solution, the quantities can be determined directly from lysimeter mass changes, which are assumed to be positive due to precipitation and negative due to evapotranspiration. This method requires short measuring intervals and precise data. In this regard, data management of primarily older lysimeter facilities may be improved to fulfil these criteria. At an experimental site in north-eastern Austria hourly water balance components were determined using a reference lysimeter that was installed 1983 and equipped with lever-arm-counterbalance weighing system. A disadvantage of such systems is their sensitivity to external disturbances, mainly forces exerted by wind, which can significantly decrease measuring accuracy. Hence, we firstly studied the mechanical performance of the system regarding wind effects and oscillation behavior, and tested averaging procedures on noisy raw data to enhance measurement accuracy. The measurement accuracy for a wind velocity piecewise sigmoid function was easy to fit and gave proper results of typical diurnal variation of evapotranspiration on single days without rainfall. However, on a longer time period with rainfall events, a polynomial spline function

  1. Proposed water balance equation for municipal solid waste landfills in Jordan.

    Science.gov (United States)

    Aljaradin, Mohammad; Persson, Kenneth M

    2013-10-01

    This article presents a water balance equation for predicting leachate generation in municipal solid waste (MSW) landfills located in semi-arid areas, using the Akaider landfill in Jordan as an example. HYDRUS-2D/3D software was used to model the effect of co-disposal of wastewater into the landfill on the leachate production rates and for comparison with the results of the simulation of the proposed water balance equation parameters. A series of simulations was carried out for a 30-year period. The suggested water balance equation predicted that leachate will percolate to a depth of 50 m in the simulated period. The result indicates that the co-disposed wastewater plays a major role in controlling the rate and magnitude of the contaminants that percolate from the MSW leachate. As the initial water content of the waste increases, there is greater mobilisation of salts. The concentration of chloride at a given location increased and the time required for the chloride to reach this location decreased as a consequence. However, eliminating the co-disposed wastewater will significantly minimise leachate generation and decrease possible groundwater contamination. This equation is applicable to areas that have geological and hydrological properties similar to Jordan.

  2. Exercise, energy expenditure and energy balance, as measured with doubly labelled water.

    Science.gov (United States)

    Westerterp, Klaas R

    2018-02-01

    The doubly labelled water method for the measurement of total daily energy expenditure (TDEE) over 1-3 weeks under daily living conditions is the indicated method to study effects of exercise and extreme environments on energy balance. Subjects consume a measured amount of doubly labelled water (2H2 18O) to increase background enrichment of body water for 18O and 2H, and the subsequent difference in elimination rate between 18O and 2H, as measured in urine, saliva or blood samples, is a measure for carbon dioxide production and thus allows calculation of TDEE. The present review describes research showing that physical activity level (PAL), calculated as TDEE (assessed with doubly labelled water) divided by resting energy expenditure (REE, PAL = TDEE/REE), reaches a maximum value of 2·00-2·40 in subjects with a vigorously active lifestyle. Higher PAL values, while maintaining energy balance, are observed in professional athletes consuming additional energy dense foods to compete at top level. Exercise training can increase TDEE/REE in young adults to a value of 2·00-2·40, when energy intake is unrestricted. Furthermore, the review shows an exercise induced increase in activity energy expenditure can be compensated by a reduction in REE and by a reduction in non-exercise physical activity, especially at a negative energy balance. Additionally, in untrained subjects, an exercise-induced increase in activity energy expenditure is compensated by a training-induced increase in exercise efficiency.

  3. The U.S. Geological Survey Monthly Water Balance Model Futures Portal

    Science.gov (United States)

    Bock, Andrew R.; Hay, Lauren E.; Markstrom, Steven L.; Emmerich, Christopher; Talbert, Marian

    2017-05-03

    The U.S. Geological Survey Monthly Water Balance Model Futures Portal (https://my.usgs.gov/mows/) is a user-friendly interface that summarizes monthly historical and simulated future conditions for seven hydrologic and meteorological variables (actual evapotranspiration, potential evapotranspiration, precipitation, runoff, snow water equivalent, atmospheric temperature, and streamflow) at locations across the conterminous United States (CONUS).The estimates of these hydrologic and meteorological variables were derived using a Monthly Water Balance Model (MWBM), a modular system that simulates monthly estimates of components of the hydrologic cycle using monthly precipitation and atmospheric temperature inputs. Precipitation and atmospheric temperature from 222 climate datasets spanning historical conditions (1952 through 2005) and simulated future conditions (2020 through 2099) were summarized for hydrographic features and used to drive the MWBM for the CONUS. The MWBM input and output variables were organized into an open-access database. An Open Geospatial Consortium, Inc., Web Feature Service allows the querying and identification of hydrographic features across the CONUS. To connect the Web Feature Service to the open-access database, a user interface—the Monthly Water Balance Model Futures Portal—was developed to allow the dynamic generation of summary files and plots  based on plot type, geographic location, specific climate datasets, period of record, MWBM variable, and other options. Both the plots and the data files are made available to the user for download 

  4. The Elements of Water Balance in the Changing Climate in Poland

    Directory of Open Access Journals (Sweden)

    Małgorzata Szwed

    2015-01-01

    Full Text Available Strong global warming has been observed in the last three decades. Central Europe, including Poland, is not an exception. Moreover, climate projections for Poland foresee further warming as well as changes in the spatial and seasonal distribution and quantity of precipitation. However, climate models do not agree on the sign of change of precipitation. In Poland precipitation is projected to decrease in summer (this finding is not robust, being model-dependent and to increase in winter. Therefore, there is still considerable uncertainty regarding likely climate change impacts on water resources in Poland. However, there is no doubt that changes in the thermal characteristics as well as in precipitation will influence changes in the water balance of the country. In this study, the components of climatic water balance, that is, precipitation, evaporation, and runoff, are calculated for the average conditions in the control period of 1961–1990 and in the future (2071–2100 in Poland. The changes of the water balance components for the present and for the future are compared and analysed. Due to insufficient consistency between climate models a possible range of changes should be presented; hence the multimodel projections from ENSEMBLES Project of the European Union are used in this study.

  5. The effect of the cover and landscape design of waste rock dumps and tailings ponds on the water balance

    International Nuclear Information System (INIS)

    Haehne, R.; Eckart, M.; Marski, R.; Wolf, J.

    1998-01-01

    The dimensioning of cover systems for waste rock dumps and tailings ponds requires the prognosis of the water balances. Site specific field experiments as well as additional modelling efforts are necessary. The cover system could be a simple recultivation layering or a storage systems or a complex multi-layer-system. Uncovered dumps show typical percolation rates between 30 and 60%. Storage cover systems reduce the percolation rate down to 15 to 35%. The evapotranspiration rate is influenced especially by exposition and vegetation. Specific features for the cover of tailings ponds include a very low surface slope and the of percolation rate below 10%. Therefore, multi-layer-systems are most suitable, also because it is characterized by very low drainage velocities of hypodermic runoffs. The resulting, but temporarily high moisture and almost standing water at the surface leads to extreme evapotranspiration rates and consequently to an increase of percolation. (orig.) [de

  6. Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals

    Science.gov (United States)

    Tian, Siyuan; Tregoning, Paul; Renzullo, Luigi J.; van Dijk, Albert I. J. M.; Walker, Jeffrey P.; Pauwels, Valentijn R. N.; Allgeyer, Sébastien

    2017-03-01

    The accuracy of global water balance estimates is limited by the lack of observations at large scale and the uncertainties of model simulations. Global retrievals of terrestrial water storage (TWS) change and soil moisture (SM) from satellites provide an opportunity to improve model estimates through data assimilation. However, combining these two data sets is challenging due to the disparity in temporal and spatial resolution at both vertical and horizontal scale. For the first time, TWS observations from the Gravity Recovery and Climate Experiment (GRACE) and near-surface SM observations from the Soil Moisture and Ocean Salinity (SMOS) were jointly assimilated into a water balance model using the Ensemble Kalman Smoother from January 2010 to December 2013 for the Australian continent. The performance of joint assimilation was assessed against open-loop model simulations and the assimilation of either GRACE TWS anomalies or SMOS SM alone. The SMOS-only assimilation improved SM estimates but reduced the accuracy of groundwater and TWS estimates. The GRACE-only assimilation improved groundwater estimates but did not always produce accurate estimates of SM. The joint assimilation typically led to more accurate water storage profile estimates with improved surface SM, root-zone SM, and groundwater estimates against in situ observations. The assimilation successfully downscaled GRACE-derived integrated water storage horizontally and vertically into individual water stores at the same spatial scale as the model and SMOS, and partitioned monthly averaged TWS into daily estimates. These results demonstrate that satellite TWS and SM measurements can be jointly assimilated to produce improved water balance component estimates.

  7. Iron and aluminum solid phase dynamics and carbon storage across a water balance gradient in volcanic soils

    Science.gov (United States)

    Bateman, J. B.; Fendorf, S. E.; Vitousek, P.

    2017-12-01

    Iron (Fe) and Aluminum (Al) are major components of volcanic soils, and strongly influence the stability of soil carbon (C). The stability of Fe and Al phases is dictated by the redox conditions and pH of soils, respectively. The water balance of a soil, defined as annual precipitation minus evapotranspiration, ultimately controls pH and redox conditions. Consequently, we hypothesize that water balance influences Fe/Al solid phase dynamics in volcanic soils when the climatic regime has persisted on timescales of 20 ky. To test this hypothesis, we collected soils from a naturally occurring water balance gradient on the windward side of Mauna Kea Volcano in Hawaii, across which water balance ranges from -1270 mm/y to +2000 mm/y. Sampling included complete soil profiles, and 30 cm surface soil samples. We determined the solid phases of Fe/Al with selective extractions and total C via combustion. Extracted Fe/Al were then partitioned into operational pools: organically bound, amorphous, crystalline, primary mineral, primary glass, and residual. All soils in the study were acidic, with pH between 3.4 and 6.4. Soil C varied considerably across the gradient, from 15% C by weight. Across sites, soil pH, Fe in primary minerals and glasses, and residual Al are negatively correlated with water balance, while soil C, organic Fe and Al, and crystalline Fe correlated positively with water balance. Organically bound Al increases linearly with water balance, while organically bound Fe is uncorrelated with water balance in soils where water balance is negative and is positively correlated with water balance in wetter sites. These results show that soils developing from the same parent material, though under different water balance regimes, range from lightly weathered ash deposits with little C accumulation in the driest regions, to heavily weathered soils composed of crystalline Fe, organic matter, and organically bound Fe/Al in the wettest regions. Al appears to be the primary

  8. Effects of Land Cover Changes to the Quantity of Water Supply and Hydrologic Cycle using Water Balance Models

    Directory of Open Access Journals (Sweden)

    Caja CC

    2018-01-01

    Full Text Available The hydrologic cycle is a recurring consequence of different forms of movement of water and changes of its physical state on a given area of the earth. The land cover of a certain area is a significant factor affecting the watershed hydrology. This also affects the quantity of water supply within the watershed. This study assessed the impacts of the changing land cover of the Ipo watershed, a part of the Angat-Ipo-La Mesa water system which is the main source of Metro Manila’s water supply. The environmental impacts were assessed using the interaction of vegetation cover changes and the output flow rates in Ipo watershed. Using hydrologic modelling system, the hydrological balance using rainfall, vegetation and terrain data of the watershed was simulated. Over the years, there has been a decreasing land cover within the watershed caused mostly by deforestation and other human activities. This significant change in the land cover resulted to extreme increase in water discharge at all streams and rivers in the watershed and the water balance of the area were affected as saturation and shape of the land terrain changes.

  9. Water and Energy Balances of Loblolly Pine Plantation Forests during a Full Stand Rotation

    Science.gov (United States)

    Sun, G.; Mitra, B.; Domec, J. C.; Gavazi, M.; Yang, Y.; Tian, S.; Zietlow, D.; McNulty, S.; King, J.; Noormets, A.

    2017-12-01

    Loblolly pine (Pinus taeda) plantations in the southern U.S. are well recognized for their ecosystem services in supplying clean and stable water and mitigating climate change through carbon sequestration and solar energy partitioning. Since 2004, we have monitored energy, water, and carbon fluxes in a chronosequence of three drained loblolly pine plantations using integrated methods that include eddy covariance, sap flux, watershed hydrometeorology, remote sensing, and process-based simulation modeling. Study sites were located on the eastern North Carolina coastal plain, representing highly productive ecosystems with high groundwater table, and designated in the Ameriflux network as NC1 (0-10 year old), NC2 (12-25 year old) and NC3 (0-3 years old). The 13-year study spanned a wide range of annual precipitation (900-1600 mm/yr) including two exceptionally dry years during 2007-2008. We found that the mature stand (NC2) had higher net radiation (Rn) flux due to its lower albedo (α =0.11-12), compared with the young stands (NC1, NC3) (α=0.15-0.18). Annually about 75%-80% of net radiation was converted to latent heat in the pine plantations. In general, the mature stand had higher latent heat flux (LE) (i.e. evapotranspiration (ET)) rates than the young stands, but ET rates were similar during wet years when the groundwater table was at or near the soil surface. During a historic drought period (i.e., 2007-2008), total stand annual ET exceeded precipitation, but decreased about 30% at NC2 when compared to a normal year (e.g., 2006). Field measurements and remote sensing-based modeling suggested that annual ET rates increased linearly from planting age (about 800 mm) to age 15 (about 1050 mm) and then stabilized as stand leaf area index leveled-off. Over a full stand rotation, approximately 70% (young stand) to 90% (mature stand) of precipitation was returned to the atmosphere through ET. We conclude that both climatic variability and canopy structure controlled the

  10. Relation between Water Balance and Climatic Variables Associated with the Geographical Distribution of Anurans.

    Science.gov (United States)

    Titon, Braz; Gomes, Fernando Ribeiro

    2015-01-01

    Amphibian species richness increases toward the equator, particularly in humid tropical forests. This relation between amphibian species richness and environmental water availability has been proposed to be a consequence of their high rates of evaporative water loss. In this way, traits that estimate water balance are expected to covary with climate and constrain a species' geographic distribution. Furthermore, we predicted that coexisting species of anurans would have traits that are adapted to local hydric conditions. We compared the traits that describe water balance in 17 species of anurans that occur in the mesic Atlantic Forest and xeric Cerrado (savannah) habitats of Brazil. We predicted that species found in the warmer and dryer areas would show a lower sensitivity of locomotor performance to dehydration (SLPD), increased resistance to evaporative water loss (REWL) and higher rates of water uptake (RWU) than species restricted to the more mesic areas. We estimated the allometric relations between the hydric traits and body mass using phylogenetic generalized least squares. These regressions showed that REWL scaled negatively with body mass, whereas RWU scaled positively with body mass. Additionally, species inhabiting areas characterized by higher and more seasonally uniform temperatures, and lower and more seasonally concentrated precipitation, such as the Cerrado, had higher RWU and SLPD than species with geographical distributions more restricted to mesic environments, such as the Atlantic Forest. These results support the hypothesis that the interspecific variation of physiological traits shows an adaptation pattern to abiotic environmental traits.

  11. The agony of choice: how plants balance growth and survival under water-limiting conditions.

    Science.gov (United States)

    Claeys, Hannes; Inzé, Dirk

    2013-08-01

    When confronted with water limitation, plants actively reprogram their metabolism and growth. Recently, it has become clear that growing tissues show specific and highly dynamic responses to drought, which differ from the well-studied responses in mature tissues. Here, we provide an overview of recent advances in understanding shoot growth regulation in water-limiting conditions. Of special interest is the balance between maintained growth and competitiveness on the one hand and ensured survival on the other hand. A number of master regulators controlling this balance have been identified, such as DELLAs and APETALA2/ETHYLENE RESPONSE FACTOR-type transcription factors. The possibilities of engineering or breeding crops that maintain growth in periods of mild drought, while still being able to activate protective tolerance mechanisms, are discussed.

  12. The Agony of Choice: How Plants Balance Growth and Survival under Water-Limiting Conditions1

    Science.gov (United States)

    Claeys, Hannes; Inzé, Dirk

    2013-01-01

    When confronted with water limitation, plants actively reprogram their metabolism and growth. Recently, it has become clear that growing tissues show specific and highly dynamic responses to drought, which differ from the well-studied responses in mature tissues. Here, we provide an overview of recent advances in understanding shoot growth regulation in water-limiting conditions. Of special interest is the balance between maintained growth and competitiveness on the one hand and ensured survival on the other hand. A number of master regulators controlling this balance have been identified, such as DELLAs and APETALA2/ETHYLENE RESPONSE FACTOR-type transcription factors. The possibilities of engineering or breeding crops that maintain growth in periods of mild drought, while still being able to activate protective tolerance mechanisms, are discussed. PMID:23766368

  13. A water balance model of the Natura 2000 protected area “Nestos delta”

    Directory of Open Access Journals (Sweden)

    D. Myronidis

    2008-09-01

    Full Text Available The purpose of this paper is to develop the water balance of the Natura 2000 protected area “Nestos delta” on a monthly time step. The most significant ecosystem of the delta is the aquatic forest (dominated by Salix alba and Populus alba which remains along the river course near the mount and the poplar plantation. During the last decade two large dams have been constructed upstream of the study area for hydropower generation and irrigation, resulting in the dramatic modification of the hydrologic regime of the site. The research is based on the analysis of the available geographical and hydrological data of the study area for the period 1985-2006. Through the integration of Geographical Information Systems (G.I.S. and computational hydrology techniques, the water balance of the study area is constructed and the need of decision making has raised in order to prevent further deterioration of the unique aquatic forest.

  14. A water balance model for Saxonian catchments - present state and projections up to 2100

    Science.gov (United States)

    Winkler, Peter; Hauffe, Corina; Baldy, Agnes; Schwarze, Robert

    2014-05-01

    The impact of climate change on the regional water balance regime may have severe consequences for agriculture, forestry and water resources management. In this respect the following questions arise: Will extensive irrigation be necessary on Saxonian crop land in future? Which are the necessary adaptions in water resources management? Are new agricultural and forestry concepts necessary? Therefore, the project KliWES aims at modelling the present water balance regime for whole Saxonia (with the exception of the mining regions and the Elbe-corridor which is largely governed by flood events). Moreover, the effects of climate projections from the WetReg model (CEC) on the water balance regime have been investigated. The calibration strategy relies on splitting up the measured discharges into the major water balance components (evaporation, surface flow, subsurface flow and percolation) by a geometrical analysis of the hydrograph (DIFGA, Schwarze et al.). Thereafter, the water balance software ArcEGMO (Pfützner et al.) has been calibrated on these water balance components. Calibration parameters include correction factors for soil macroporosity, evapo-transpiration and the distribution factor between fast and slow groundwater components. Geological and Soil data have been drawn from official databases (LfULG). Subareas where no continuous gauge data are available have been parametrised by a regionalisation procedure relying on correlations between parameters and physical properties of the subareas considered. Possibilities and limitations of such a regionalisation procedure have been pointed out. Focal point of the present study is an investigation of water balance components in different spatial and temporal resolutions. The Results of the model for the climate projections show drastic increase of evaporation and decrease of groundwater recharge especially in the north-eastern parts of Saxonia (Lausitz). Here, this problem is worsened by the predominantly sandy soils

  15. Potential foraging decisions by a desert ungulate to balance water and nutrient intake in a water-stressed environment

    Science.gov (United States)

    Gedir, Jay V.; Cain, James W.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.; Morgart, John R.

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8–55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during

  16. Potential Foraging Decisions by a Desert Ungulate to Balance Water and Nutrient Intake in a Water-Stressed Environment.

    Directory of Open Access Journals (Sweden)

    Jay V Gedir

    Full Text Available Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons and moisture (autumn and winter during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains, female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8-55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental

  17. Water balance in a moist semi-deciduous forest in Ghana ...

    African Journals Online (AJOL)

    Water balance in a moist semi-deciduous forest in Ghana. E Christiansen, T W Awadzi. Abstract. No Abstract. WAJAE Vol. 1 2000: pp. 11-22. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/wajae.v1i1.40566 · AJOL African Journals ...

  18. Carbon dioxide and the stomatal control of water balance and photosynthesis in higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Taiz, L.; Zeiger, E.; Mawson, B. T.; Cornish, K.; Radin, J. W.; Turcotte, E. L.; Hercovitz, S.; Tallman, G.; Karlsson, P. E.; Bogomolni, R. A.; Talbott, L. D.; Srivastava, A.

    1992-01-01

    Research continued into the investigation of the effects of carbon dioxide on stomatal control of water balance and photosynthesis in higher plants. Topics discussed this period include a method of isolating a sufficient number of guard cell chloroplasts for biochemical studies by mechanical isolation of epidermal peels; the measurement of stomatal apertures with a digital image analysis system; development of a high performance liquid chromatography method for quantification of metabolites in guard cells; and genetic control of stomatal movements in Pima cotton. (CBS)

  19. Soil Water Balance and Recharge Monitoring at the Hanford Site - FY09 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Saunders, Danielle L.; Strickland, Christopher E.; Waichler, Scott R.; Clayton, Ray E.

    2009-09-28

    Recharge provides the primary driving force for transporting contaminants from the vadose zone to underlying aquifer systems. Quantification of recharge rates is important for assessing contaminant transport and fate and for evaluating remediation alternatives. This report describes the status of soil water balance and recharge monitoring performed by Pacific Northwest National Laboratory at the Hanford Site for Fiscal Year 2009. Previously reported data for Fiscal Years 2004 - 2008 are updated with data collected in Fiscal Year 2009 and summarized.

  20. U.S. Biofuel Policies and Domestic Shifts in Agricultural Land Use and Water Balances

    Science.gov (United States)

    Teter, J.; Yeh, S.; Mishra, G. S.

    2014-12-01

    Policies promoting domestic biofuels production could lead to significant changes in cropping patterns. Types of direct and indirect land use change include: switching among crops (displacement), expanding cropped area (extensification), and altering water/soil management practices (e.g. irrigation, tillage) (intensification). Most studies of biofuels water use impacts calculate the water intensity of biofuels in liters of irrigated/total evapotranspired water per unit energy of biofuels. But estimates based on this approach are sensitive to assumptions (e.g. co-product allocation, system boundaries), and do not convey policy-relevant information, as highlighted by the issue of land use change. We address these shortcomings by adopting a scenario-based approach that combines economic modeling with crop-water modeling of major crops and biofuel feedstocks. This allows us to holistically compare differences in water balances across policy scenarios in an integrated economic/agricultural system. We compare high spatial resolution water balance estimates under three hypothetical policy scenarios: 1) a counterfactual no-policy scenario, 2) modified Renewable Fuels Standard mandates (M-RFS2), & 3) a national Low Carbon Fuel Standard plus a modified RFS2 scenario (LCFS+RFS2). Differences between scenarios in crop water balances (i.e. transpiration, evaporation, runoff, groundwater infiltration, & irrigation) are regional and are a function of changes in land use patterns (i.e. displacement, intensification, & extensification), plus variation in crop water-use characteristics. Cropped land area increases 6.2% and 1.6% under M-RFS2 and LCFS+RFS2 scenarios, respectively, by 2030. Both policy scenarios lead to reductions in net irrigation volumes nationally compared to the no-policy scenario, though more irrigation occurs in regions of the Midwest and West. The LCFS+RFS2 reduces net irrigation water use by 3.5 times more than M-RFS2. However, both policies drive

  1. A conceptual model of daily water balance following partial clearing from forest to pasture

    Directory of Open Access Journals (Sweden)

    M. A. Bari

    2006-01-01

    Full Text Available A simple conceptual water balance model representing the streamflow generation processes on a daily time step following land use change is presented. The model consists of five stores: (i Dry, Wet and Subsurface Stores for vertical and lateral water flow, (ii a transient Stream zone Store (iii a saturated Goundwater Store. The soil moisture balance in the top soil Dry and Wet Stores are the most important components of the model and characterize the dynamically varying saturated areas responsible for surface runoff, interflow and deep percolation. The Subsurface Store describes the unsaturated soil moisture balance, extraction of percolated water by vegetation and groundwater recharge. The Groundwater Store controls the baseflow to stream (if any and the groundwater contribution to the stream zone saturated areas. The daily model was developed following a downward approach by analysing data from Ernies (control and Lemon (53% cleared catchments in Western Australia and elaborating a monthly model. The daily model performed very well in simulating daily flow generation processes for both catchments. Most of the model parameters were incorporated a priori from catchment attributes such as surface slope, soil depth, porosity, stream length and initial groundwater depth, and some were calibrated by matching the observed and predicted hydrographs. The predicted groundwater depth, and streamflow volumes across all time steps from daily to monthly to annual were in close agreement with observations for both catchments.

  2. Balancing Near-Field Enhancement, Absorption, and Scattering for Effective Antenna-Reactor Plasmonic Photocatalysis.

    Science.gov (United States)

    Li, Kun; Hogan, Nathaniel J; Kale, Matthew J; Halas, Naomi J; Nordlander, Peter; Christopher, Phillip

    2017-06-14

    Efficient photocatalysis requires multifunctional materials that absorb photons and generate energetic charge carriers at catalytic active sites to facilitate a desired chemical reaction. Antenna-reactor complexes are an emerging multifunctional photocatalytic structure where the strong, localized near field of the plasmonic metal nanoparticle (e.g., Ag) is coupled to the catalytic properties of the nonplasmonic metal nanoparticle (e.g., Pt) to enable chemical transformations. With an eye toward sustainable solar driven photocatalysis, we investigate how the structure of antenna-reactor complexes governs their photocatalytic activity in the light-limited regime, where all photons need to be effectively utilized. By synthesizing core@shell/satellite (Ag@SiO 2 /Pt) antenna-reactor complexes with varying Ag nanoparticle diameters and performing photocatalytic CO oxidation, we observed plasmon-enhanced photocatalysis only for antenna-reactor complexes with antenna components of intermediate sizes (25 and 50 nm). Optimal photocatalytic performance was shown to be determined by a balance between maximized local field enhancements at the catalytically active Pt surface, minimized collective scattering of photons out of the catalyst bed by the complexes, and minimal light absorption in the Ag nanoparticle antenna. These results elucidate the critical aspects of local field enhancement, light scattering, and absorption in plasmonic photocatalyst design, especially under light-limited illumination conditions.

  3. Assessing the Importance of Incorporating Spatial and Temporal Variability of Soil and Plant Parameters into Local Water Balance Models for Precision Agriculture: Investigations within a California Vineyard

    Science.gov (United States)

    Hubbard, S.; Pierce, L.; Grote, K.; Rubin, Y.

    2003-12-01

    Due Due to the high cash crop nature of premium winegrapes, recent research has focused on developing a better understanding of the factors that influence winegrape spatial and temporal variability. Precision grapevine irrigation schemes require consideration of the factors that regulate vineyard water use such as (1) plant parameters, (2) climatic conditions, and (3) water availability in the soil as a function of soil texture. The inability to sample soil and plant parameters accurately, at a dense enough resolution, and over large enough areas has limited previous investigations focused on understanding the influences of soil water and vegetation on water balance at the local field scale. We have acquired several novel field data sets to describe the small scale (decimeters to a hundred meters) spatial variability of soil and plant parameters within a 4 acre field study site at the Robert Mondavi Winery in Napa County, California. At this site, we investigated the potential of ground penetrating radar data (GPR) for providing estimates of near surface water content. Calibration of grids of 900 MHz GPR groundwave data with conventional soil moisture measurements revealed that the GPR volumetric water content estimation approach was valid to within 1 percent accuracy, and that the data grids provided unparalleled density of soil water content over the field site as a function of season. High-resolution airborne multispectral remote sensing data was also collected at the study site, which was converted to normalized difference vegetation index (NDVI) and correlated to leaf area index (LAI) using plant-based measurements within a parallel study. Meteorological information was available from a weather station of the California Irrigation management Information System, located less than a mile from our study area. The measurements were used within a 2-D Vineyard Soil Irrigation Model (VSIM), which can incorporate the spatially variable, high-resolution soil and plant

  4. Latent Heat Flux Estimate Through an Energy Water Balance Model and Land Surface Temperature from Remote Sensing

    Science.gov (United States)

    Corbari, Chiara; Sobrino, Jose A.; Mancini, Marco; Hidalgo, Victoria

    2011-01-01

    Soil moisture plays a key role in the terrestrial water cycle and is responsible for the partitioning of precipitation between runoff and infiltration. Moreover, surface soil moisture controls the redistribution of the incoming solar radiation on land surface into sensible and latent heat fluxes. Recent developments have been made to improve soil moisture dynamics predictions with hydrologic land surface models (LSMs) that compute water and energy balances between the land surface and the low atmosphere. However, most of the time soil moisture is confined to an internal numerical model variable mainly due to its intrinsic space and time variability and to the well known difficulties in assessing its value from remote sensing as from in situ measurements. In order to exploit the synergy between hydrological distributed models and thermal remote sensed data, FEST-EWB, a land surface model that solves the energy balance equation, was developed. In this hydrological model, the energy budget is solved looking for the representative thermodynamic equilibrium temperature (RET) defined as the land surface temperature that closes the energy balance equation. So using this approach, soil moisture is linked to the latent heat flux and then to LST. In this work the relationship between land surface temperature and soil moisture is analysed using LST from AHS (airborne hyperspectral scanner), with a spatial resolution of 2-4 m, LST from MODIS, with a spatial resolution of 1000 m, and thermal infrared radiometric ground measurements that are compared with the thermodynamic equilibrium temperature from the energy water balance model. Moreover soil moisture measurements were carried out during the airborne overpasses and then compared with SM from the hydrological model. An improvement of this well known inverse relationship between soil moisture and land surface temperature is obtained when the thermodynamic approach is used. The analysis of the scale effects of the different

  5. The Balance Improvement of Final Assembly Water Pump Business Unit Tracks Section : Case Study

    OpenAIRE

    Siregar Ikhsan; Margaretha Gretty; Hamonangan Nasution Tigor; Andayani Ulfi

    2017-01-01

    This research was conducted at an electronic field assembly company. The company implements a production system that starts from semi-finished goods to finished products. The problem of the company is the imbalance of the production trajectory. The track balance in the final assembly will affect the amount of product that can be produced. The unbalanced track conditions resulted a bottleneck condition in the material flow from one work center to the other, resulting in delay time on the produ...

  6. Remote sensing-based soil water balance to estimate Mediterranean holm oak savanna (dehesa) evapotranspiration under water stress conditions

    Science.gov (United States)

    Campos, Isidro; Villodre, Julio; Carrara, Arnaud; Calera, Alfonso

    2013-06-01

    This paper aims to present the use of a remote sensing-based soil water balance to estimate holm oak woodland evapotranspiration (ET). The model is based on the assimilation of MODIS reflectance-based vegetation indices in the dual crop coefficient methodology. A daily water balance was performed on the root zone soil to estimate plant water stress. The methodology was evaluated with respect to the actual ET measured by eddy covariance in Mediterranean holm oak savanna (dehesa) for five consecutive years (2004-2008). The model adequately reproduced the absolute values and tendencies measured at daily and weekly periods. Root mean square error (RMSE) was 0.50 mm/day for daily values and 2.70 mm/week for weekly accumulated values. The analysis demonstrated the presence of a long period of water stress during the summer and at the beginning of fall. Measured ET dropped during these periods, and the model replicated this tendency accurately, reaching a stress coefficient value close to 0.2. To be operative, the proposed method required low ground data (reference evapotranspiration and precipitation) and the results indicated a simple, robust method that can be used to map ET and water stress in the dehesa ecosystem.

  7. Application of a lake-watershed model for the determination of water balance

    Science.gov (United States)

    Crowe, Allan S.; Schwartz, Franklin W.

    1985-10-01

    A lumped-parameter, lake-watershed response model has been developed for the Wabamun Lake system and used to assess the role of groundwater in the water balance of the lake. Wabamun Lake, located in central Alberta, Canada, has a surface area of 78 km 2. The surrounding watershed has an area of 263 km 2 and is covered by a thin layer (0-15 m) of glacial sediments, which in turn overlie bedrock deposits of sandstone, siltstone, shale and coal. Good agreement has been achieved between the monthly observed and the monthly predicted lake stages for a 26 yr record, with a maximum difference of less than 0.25 m. In addition, the simulation of lake chemistry, including specific conductance, Cl - and K +, is in good agreement with the observed data. On the basis on the simulations, the main hydrologic components contributing water to Wabamun Lake are direct precipitation (43.1-59.8%) and surface-water inflow (36.8-48.3%). Outflow from the lake occurs primarily through evaporation (46.5-57.5%) and the groundwater system (35.0-43.5%). Groundwater discharging to Wabamun Lake (1.3-8.6%) and surface water draining from the lake (0.0-18.5%) are minor components in the water balance of Wabamun Lake.

  8. Water Balance and Level Change of Lake Babati, Tanzania: Sensitivity to Hydroclimatic Forcings

    Directory of Open Access Journals (Sweden)

    René P. Mbanguka

    2016-12-01

    Full Text Available We develop and present a novel integrated water balance model that accounts for lake water—groundwater interactions, and apply it to the semi-closed freshwater Lake Babati system, Northern Tanzania, East Africa. The model was calibrated and used to evaluate the lake level sensitivity to changes in key hydro-climatic variables such as temperature, precipitation, humidity and cloudiness. The lake response to the Coupled Model Intercomparison Project, Phase 5 (CMIP5 output on possible future climate outcomes was evaluated, an essential basis in understanding future water security and flooding risk in the region. Results show high lake level sensitivity to cloudiness. Increased focus on cloud fraction measurement and interpretation could likely improve projections of lake levels and surface water availability. Modelled divergent results on the future (21st century development of Lake Babati can be explained by the precipitation output variability of CMIP5 models being comparable to the precipitation change needed to drive the water balance model from lake dry-out to overflow; this condition is likely shared with many other East African lake systems. The developed methodology could be useful in investigations on change-driving processes in complex climate—drainage basin—lake systems, which are needed to support sustainable water resource planning in data scarce tropical Africa.

  9. Simulation of nitrogen balance of maize field under different drainage strategies using the DRAINMOD-N model

    International Nuclear Information System (INIS)

    El-Sadek, A.; Feyen, J.; Ragab, R.

    2002-01-01

    'Full text:' Denitrification is the process by which nitrate-nitrogen is converted to nitrogen gas by soil microorganisms when soil oxygen is low or absent. The process of denitrification is important in preventing high agriculture-source nitrate loads from entering and polluting rivers. The aim of the research was to examine if the NO3-N concentration in drain water of agricultural fields can be kept below the EU limit of 11.3 mg l -1 by controlling the denitrification process through management of the water table level. As such the research focused on the determination of the exact denitrification amount to achieve both, limitation of the NO3-N leaching and optimisation of the nitrogen-nitrate uptake by the crop. The method used in this study is based on the nitrogen version of DRAINMOD model. This model was used to simulate the performance of the drainage system using two drainage strategies (conventional and controlled) at the Hooibeekhoeve experiment, situated in the sandy region of the Kempen (Belgium), and this for a 14-year (1985-1998) period. In the analysis a continuous cropping with maize was assumed. Daily NO3-N losses were predicted for a range of drain spacings. The study illustrated that the denitrification process has a very strong impact on the amount of nitrate that can be leached to ground and surface waters. The results have also shown that if the water table elevation is properly controlled, one should be able to strike the delicate balance between our need for maximum yield production and a minimum hazard to our environment. (author)

  10. Assessing actual evapotranspiration via surface energy balance aiming to optimize water and energy consumption in large scale pressurized irrigation systems

    Science.gov (United States)

    Awada, H.; Ciraolo, G.; Maltese, A.; Moreno Hidalgo, M. A.; Provenzano, G.; Còrcoles, J. I.

    2017-10-01

    Satellite imagery provides a dependable basis for computational models that aimed to determine actual evapotranspiration (ET) by surface energy balance. Satellite-based models enables quantifying ET over large areas for a wide range of applications, such as monitoring water distribution, managing irrigation and assessing irrigation systems' performance. With the aim to evaluate the energy and water consumption of a large scale on-turn pressurized irrigation system in the district of Aguas Nuevas, Albacete, Spain, the satellite-based image-processing model SEBAL was used for calculating actual ET. The model has been applied to quantify instantaneous, daily, and seasonal actual ET over high- resolution Landsat images for the peak water demand season (May to September) and for the years 2006 - 2008. The model provided a direct estimation of the distribution of main energy fluxes, at the instant when the satellite overpassed over each field of the district. The image acquisition day Evapotranspiration (ET24) was obtained from instantaneous values by assuming a constant evaporative fraction (Λ) for the entire day of acquisition; then, monthly and seasonal ET were estimated from the daily evapotranspiration (ETdaily) assuming that ET24 varies in proportion to reference ET (ETr) at the meteorological station, thus accounting for day to day variation in meteorological forcing. The comparison between the hydrants water consumption and the actual evapotranspiration, considering an irrigation efficiency of 85%, showed that a considerable amount of water and energy can be saved at district level.

  11. Impacts of Cropland Changes on Water Balance, Sediment and Nutrient Transport in Eden River, UK

    Science.gov (United States)

    Huang, Yumei; Quinn, Paul; Liang, Qiuhua; Adams, Russell

    2017-04-01

    Water is the key to food and human life. Farming is the main part of economic and society in Eden, with approximately 2000 farms which covers 95% of under crops. However, with the growth of farming practice and global climate changes, Eden has presented great challenges and bringing uncertainty in the water quality caused by the agricultural diffuse pollution. This expected to reduce negative impacts of the water diffuse pollution from agriculture in Eden. Therefore, there is a high need to ensure effective water resource management to enhance water quality, to address the flow pathways and sediment transport in different farming practice and cropland changes. Hence we need to understand nutrient and the hydrological flow pathways from soil to Hillslope to channel. The aim of this research is to evaluate the impacts of different cropland changes on water balance, sediment and nutrient transport. By using the hydrological models Soil and Water Assessment Tool (SWAT) and the Catchment Runoff Attenuation Flux Tool (CRAFT), it can show the sediment and nutrient export from the load for each flow pathways (overland flow, soil water flow and ground water flow). We will show results from a small research catchment (10km2) area to the whole of Eden (800km2) at a daily time step.

  12. Thermal balance of a LPG fuelled, four stroke SI engine with water addition

    International Nuclear Information System (INIS)

    Ozcan, Hakan; Soeylemez, M.S.

    2006-01-01

    The effect of water injection on a spark ignition engine thermal balance and performance has been experimentally investigated. A four stroke, four cylinder conventional engine was used with LPG (liquid petroleum gas) as fuel. Different water to fuel ratios by mass were used with variable engine speed ranging from 1000 to 4500 rpm. The results showed that as the water injection level to the engine increased, the percentage of useful work increased, while the losses other than unaccounted losses decreased. Additionally, the specific fuel consumption decreases, while the engine thermal efficiency increases. The average increase in the brake thermal efficiency for a 0.5 water to fuel mass ratio is approximately 2.7% over the use of LPG alone for the engine speed range studied

  13. Investigation by tracer method of water balance in filling the gob with slurries

    International Nuclear Information System (INIS)

    Jureczko, J.; Skowronek, E.

    1977-01-01

    Results of investigations on the establishment of conditions of water flow in filling old workings with mud, in order to determine the degree of water hazard for mine workings in one of mines are given. For the inspection of flow, the stable tracer method and the neutron activation analysis were used. Chromium as a complex compound with EDTA was used as tracer. Geological and mining conditions in the area of investigations by tracers are given and the disposal of diluted stowing slurry is characterized. The method of interpretation of results is discussed in order to determine the water flow rate in the gob and to draw up the water balance on the basis of the curve of tracer travel. (author)

  14. Impacts of Human Induced Nitrogen Deposition on Ecosystem Carbon Sequestration and Water Balance in China

    Science.gov (United States)

    Sheng, M.; Yang, D.; Tang, J.; Lei, H.

    2017-12-01

    Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, many experiments around the world reported that nitrogen availability could limit the sustainability of the ecosystems' response to elevated CO2. In the recent 20 years, atmospheric nitrogen deposition, primarily from fossil fuel combustion, has increased sharply about 25% in China and meanwhile, China has the highest carbon emission in the world, implying a large opportunity to increase vegetation greenness and ecosystem carbon sequestration. Moreover, the water balance of the ecosystem will also change. However, in the future, the trajectory of increasing nitrogen deposition from fossil fuel use is to be controlled by the government policy that shapes the energy and industrial structure. Therefore, the historical and future trajectories of nitrogen deposition are likely very different, and it is imperative to understand how changes in nitrogen deposition will impact the ecosystem carbon sequestration and water balance in China. We here use the Community Land Model (CLM 4.5) to analyze how the change of nitrogen deposition has influenced and will influence the ecosystem carbon and water cycle in China at a high spatial resolution (0.1 degree). We address the following questions: 1) what is the contribution of the nitrogen deposition on historical vegetation greenness? 2) How does the change of nitrogen deposition affect the carbon sequestration? 3) What is its influence to water balance? And 4) how different will be the influence of the nitrogen deposition on ecosystem carbon and water cycling in the future?

  15. Carbon and water balance of European croplands throughout the 20th century

    Science.gov (United States)

    Gervois, SéBastien; Ciais, Philippe; de Noblet-Ducoudré, Nathalie; Brisson, Nadine; Vuichard, Nicolas; Viovy, Nicolas

    2008-06-01

    We assessed the effects of rising atmospheric CO2, changing climate, and farmers' practice on the carbon and water balance of European croplands during the past century (1901-2000). The coupled vegetation-crop model ORCHIDEE-STICS is applied over western Europe for C3 crops (winter wheat) and for maize, with prescribed historical agricultural practice changes. Not surprisingly, the enormous crop yield increase observed in all European regions, 300-400% between 1950 and 2000, is found to be dominantly explained by improved practice and varieties selection, rather than by rising CO2 (explaining a ˜11% uniform increase in yield) and changing climate (no further change in yield on average, but causing a decrease of ˜19% in the southern Iberian Peninsula). Agricultural soil carbon stocks in Europe are modeled to have decreased between 1950 and 1970, and since then to have increased again. Thus, the current stocks only differ by 1 ± 6 tC ha-1 from their 1900 value. Compensating effects of increasing yields on the one hand (increasing stocks) and of higher harvest index values and ploughing on the other hand (decreasing stocks) occur. Each of these processes taken individually has the potential to strongly alter the croplands soil carbon balance in the model. Consequently, large uncertainties are associated to the estimated change in carbon stocks between 1901 and 2001, roughly ±6 tC ha-1 a-1. In our most realistic simulation, the current cropland carbon balance is a net sink of 0.16 ± 0.15 tC ha-1 a-1. The annual water balance of cropland soils is influenced by increasing crop water use efficiency, one third of which is caused by rising CO2. However, increasing water use efficiency occurred mainly in spring and winter, when water is not limiting for plant growth, whereas no strong savings of soil water are achieved in summer through elevated CO2. Overall, trends in cultivation practices have caused a 3 times larger increase of water use efficiency than rising CO2.

  16. Water balance-based estimation of groundwater recharge in the Lake Chad Basin

    Science.gov (United States)

    Babamaaji, R. A.; Lee, J.

    2012-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought and shortage of water has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the change of land use and its characteristics must be a first step to find how such changes disturb the water cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and vertical recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires not only reliable forecasting of changes in the major climatic variables, but also accurate estimation of groundwater recharge. Spatial variations in the land use/land cover, soil texture, topographic slope, and meteorological conditions should be accounted for in the recharge estimation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal average spatial distribution of surface runoff, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB.

  17. Applications of wireless sensor networks, soil water balance modeling, and satellite data for crop evapotranspiration monitoring and irrigation management support

    Science.gov (United States)

    Purdy, A. J.; Lund, C.; Pierce, L.; Melton, F. S.; Guzman, A.; Harlen, I.; Holloway, R.; Johnson, L.; Lee, C.; Nemani, R. R.; Rosevelt, C.; Fletcher, N.

    2011-12-01

    Irrigation scheduling systems can potentially be improved through the combined use of satellite driven estimates of crop evapotranspiration and real-time soil moisture data from wireless sensor networks. In order to analyze spatial and temporal patterns in soil moisture and evapotranspiration, we used wireless sensor networks deployed in operational agricultural fields across California to track evapotranspiration and soil moisture, and compute daily water budgets for multiple crops at the field scale. We present findings on efficacy and feasibility of using wireless sensor networks in an operational agricultural setting to monitor soil moisture and calculate a soil water balance. We compare estimated evapotranspiration rates from the wireless sensor networks against estimates from surface renewal instrumentation and satellite-derived estimates from the NASA Terrestrial Observation and Prediction System. Information from this research can lead to a better understanding of how to effectively monitor soil moisture levels at the field scale, and how to integrate satellite and sensor network data to support agricultural producers in optimizing irrigation scheduling.

  18. WATER TEMPERATURE, VOLUNTARY DRINKING AND FLUID BALANCE IN DEHYDRATED TAEKWONDO ATHLETES

    Directory of Open Access Journals (Sweden)

    Saeed Khamnei

    2011-12-01

    Full Text Available Voluntary drinking is one of the major determiners of rehydration, especially as regards exercise or workout in the heat. The present study undertakes to search for the effect of voluntary intake of water with different temperatures on fluid balance in Taekwondo athletes. Six young healthy male Taekwondo athletes were dehydrated by moderate exercise in a chamber with ambient temperature at 38-40°C and relative humidity between 20-30%. On four separate days they were allowed to drink ad libitum plane water with the four temperatures of 5, 16, 26, and 58°C, after dehydration. The volume of voluntary drinking and weight change was measured; then the primary percentage of dehydration, sweat loss, fluid deficit and involuntary dehydration were calculated. Voluntary drinking of water proved to be statistically different in the presented temperatures. Water at 16°C involved the greatest intake, while fluid deficit and involuntary dehydration were the lowest. Intake of water in the 5°C trial significantly correlated with the subject's plasma osmolality change after dehydration, yet it showed no significant correlation with weight loss. In conclusion, by way of achieving more voluntary intake of water and better fluid state, recommending cool water (~16°C for athletes is in order. Unlike the publicly held view, drinking cold water (~5°C does not improve voluntary drinking and hydration status.

  19. Acid-base balance and hydration status following consumption of mineral-based alkaline bottled water

    Directory of Open Access Journals (Sweden)

    Heil Daniel P

    2010-09-01

    Full Text Available Abstract Background The present study sought to determine whether the consumption of a mineral-rich alkalizing (AK bottled water could improve both acid-base balance and hydration status in young healthy adults under free-living conditions. The AK water contains a naturally high mineral content along with Alka-PlexLiquid™, a dissolved supplement that increases the mineral content and gives the water an alkalizing pH of 10.0. Methods Thirty-eight subjects were matched by gender and self-reported physical activity (SRPA, hrs/week and then split into Control (12 women, 7 men; Mean +/- SD: 23 +/- 2 yrs; 7.2 +/- 3.6 hrs/week SRPA and Experimental (13 women, 6 men; 22 +/- 2 yrs; 6.4 +/- 4.0 hrs/week SRPA groups. The Control group consumed non-mineralized placebo bottled water over a 4-week period while the Experimental group consumed the placebo water during the 1st and 4th weeks and the AK water during the middle 2-week treatment period. Fingertip blood and 24-hour urine samples were collected three times each week for subsequent measures of blood and urine osmolality and pH, as well as total urine volume. Dependent variables were analyzed using multivariate repeated measures ANOVA with post-hoc focused on evaluating changes over time within Control and Experimental groups (alpha = 0.05. Results There were no significant changes in any of the dependent variables for the Control group. The Experimental group, however, showed significant increases in both the blood and urine pH (6.23 to 7.07 and 7.52 to 7.69, respectively, a decreased blood and increased urine osmolality, and a decreased urine output (2.51 to 2.05 L/day, all during the second week of the treatment period (P Conclusions Consumption of AK water was associated with improved acid-base balance (i.e., an alkalization of the blood and urine and hydration status when consumed under free-living conditions. In contrast, subjects who consumed the placebo bottled water showed no changes over the

  20. BALANCE OF WATER AND ENERGY FOR EUCALYPTUS PLANTATIONS WITH PARTIAL SOIL COVER

    Directory of Open Access Journals (Sweden)

    Mariana Gonçalves dos Reis

    2014-03-01

    Full Text Available http://dx.doi.org/10.5902/1980509813329Eucalyptus plots with initial development ages presented discontinuity in soil cover, resulting in greaterexposure of the leaves to wind and solar radiation, which alters soil-plant-atmosphere interactions. Theobjective of this study was to study the components of the water and energy balances along the first yearof eucalyptus development in the Brazilian coastal plain region. The experimental site is located in anarea belonging to the company Fibria in the municipality of Aracruz, Espírito Santo state, Brazil. Thespace between the planted eucalyptus trees in the area studied was 3 x 3 m and the data of planting wason August 15th , 2004. The period of study lasted from the planting date until the plot reached an ageof 19 months. It was verified that there was a greater availability of energy during the summer and theprecipitation directly influenced the energy balance where during the period of study the energy available necessary for evapotranspiration was always greater than the fraction necessary for heating the soil-plantatmospheresystem, presenting a λE/Rn ratio of 59.57%. It was also observed that the water balance with themodeled evapotranspiration showed a good correspondence with the observed moisture content, presentinga determination coefficient of 0,94. In the majority of trees, greater indices of leaf and root system areasfavored evapotranspiration, indicating that most energy available was utilized for changing the phase ofwater

  1. Use of a stochastic approach for description of water balance and runoff production dynamics

    Science.gov (United States)

    Gioia, A.; Manfreda, S.; Iacobellis, V.; Fiorentino, M.

    2009-04-01

    The present study exploits an analytical model (Manfreda, NHESS [2008]) for the description of the probability density function of soil water balance and runoff generation over a set of river basins belonging to Southern Italy. The model is based on a stochastic differential equation where the rainfall forcing is interpreted as an additive noise in the soil water balance; the watershed heterogeneity is described exploiting the conceptual lumped watershed Xinanjiang model (widely used in China) that uses a parabolic curve for the distribution of the soil water storage capacity (Zhao et al. [1980]). The model, characterized by parameters that depend on soil, vegetation and basin morphology, allowed to derive the probability density function of the relative saturation and the surface runoff of a basin accounting for the spatial heterogeneity in soil water storage. Its application on some river basins belonging to regions of Southern Italy, gives interesting insights for the investigation of the role played by the dynamical interaction between climate, soil, and vegetation in soil moisture and runoff production dynamics. Manfreda, S., Runoff Generation Dynamics within a Humid River Basin, Natural Hazard and Earth System Sciences, 8, 1349-1357, 2008. Zhao, R. -J., Zhang, Y. L., and Fang, L. R.: The Xinanjiang model, Hydrological Forecasting Proceedings Oxford Symposium, IAHS Pub. 129, 351-356, 1980.

  2. Assessment of green roof systems in terms of water and energy balance

    Directory of Open Access Journals (Sweden)

    Mert Ekşi

    2016-01-01

    Full Text Available Green roofs concept term is used for extensive green roofs which are planted with herbaceous plants that can be adapted into changeable environmental conditions on a shallow substrate layer, require minimal maintenance, installed for their benefits to building and urban scale. Main objective of this study is to determine the characteristics of a green roof such as thermal insulation, water holding capacity, runoff characteristics, plant growth and its interaction with environmental factors in Istanbul climate conditions by performing comparative measurements. In this study, a research site (IU Green Roof Research Station was founded to assess water and energy balance of green roofs. Thus, a typical green roof was evaluated in terms of water and energy balance and its interaction with the building and city was determined. energy efficiency of green roof system was 77% higher than reference roof. Temperature fluctuations on green roof section of the roof were 79% lower. In addition, green roof retained 12,8% - 100% of precipitation and delayed runoff up to 23 hours depending on water content of substrate.

  3. Assessment of Agricultural Water Productivity for Tea Production in Tea Fields of Guilan Province

    Directory of Open Access Journals (Sweden)

    kourosh majdsalimi

    2016-05-01

    Full Text Available Water productivity index is one of the main factors in efficient use of water for agricultural products. In this study, the rate of water productivity (WP in six irrigated tea fields and three rainfed (no irrigation were assessed by farmer’s management for two years (2009-2010. Yield of each tea field in successive harvests, soil moisture monitoring by gravimetric soil and use of water balance equation was conducted during the growing seasons. Volume of water entered to irrigation system and amount of water reached to surface level were also measured. Tea mean yield in irrigated and rainfed field were 2843 and 1095 Kg. ha-1, respectively. Average of gross irrigation and effective rainfall (WP and irrigation water productivity (IWP in the irrigated fields were 4.39 and 4.55 kg (made tea ha-1 mm-1 and average of net WP (actual evaportanspiration and net IWP was 5.18 and 6.61 kg ha-1 mm-1, respectively. Average WP in rainfed tea fields was 3.4 kg ha-1 for each mm of effective rainfall. The most effective factors on WP reduction in tea fields were improper harvesting operations (un standard plucking and economic problems. Moreover, improper operation and maintenance and old irrigation systems and unprincipled irrigation scheduling in irrigated tea fields were also effective on WP reduction. Comparing the results of this study with other studies in past, showed that by implementing the proper methods in irrigation management and appropriate agricultural practices can improve water productivity in tea fields.

  4. Deformation of Water by a Magnetic Field

    Science.gov (United States)

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  5. Field, laboratory and estimated soil-water content limits

    African Journals Online (AJOL)

    2005-01-21

    Jan 21, 2005 ... For the purpose of irrigation scheduling, estimates of soil-water content limits are determined using field or laboratory meas- urements or empirically-based regression equations. In this study the field method involved measuring simultaneously the soil-water content (using a frequency domain reflectometer ...

  6. Field, laboratory and estimated soil-water content limits ...

    African Journals Online (AJOL)

    For the purpose of irrigation scheduling, estimates of soil-water content limits are determined using field or laboratory measurements or empirically-based regression equations. In this study the field method involved measuring simultaneously the soil-water content (using a frequency domain reflectometer with the PR1 ...

  7. Applying fog climatology to water balance modeling for the Russian River watershed, California

    Science.gov (United States)

    Flint, L. E.; Torregrosa, A.; Flint, A. L.; Combs, C.; Peters, J.

    2013-12-01

    Coastal fog modifies the hydrodynamic and thermodynamic properties of California watersheds with the greatest impact on ecosystem functioning during arid summer months. Lowered maximum temperatures that result from inland penetration of marine fog are probably adequately captured by meteorological temperature measurements, however the hydrologic impacts of lowered rates of evapotranspiration due to fog drip, increased relative humidity, and other factors associated with fog events are more difficult to gage. Fog products, such as those derived from National Weather Service (NWS) satellite data streams provide high frequency (up to every 15 min) views of low cloud cover and have the potential to improve water balance models. Even slight improvements in water balance calculations can benefit urban water managers and agricultural irrigation. The high frequency of data output from the NWS Geostationary Operational Environmental Satellite (GOES) provides the opportunity to explore various strategies for data input. This pilot project sought to explore which time interval provided useful results and if empirical relationships with climate and water balance variables could be developed. Plant ecophysiological mechanisms of daytime photosynthesis suggest that a day/night differentiation on a monthly basis is adequate. To explore this hypothesis, we examined the output for the Russian River watershed from the USGS Basin Characterization Model to compare runoff, recharge, potential evapotranspiration, and actual evapotranspiration with stream gage data under low, medium, and high fog hour conditions over 10 years (1999-2009) and differentiating fog events into daytime and nighttime versus a 24-hour compilation on a daily, monthly, and seasonal basis. Our data suggest that a daily time-step is required to adequately incorporate the hydrologic effect of fog.

  8. Estimating Evapotranspiration of an Apple Orchard Using a Remote Sensing-Based Soil Water Balance

    Directory of Open Access Journals (Sweden)

    Magali Odi-Lara

    2016-03-01

    Full Text Available The main goal of this research was to estimate the actual evapotranspiration (ETc of a drip-irrigated apple orchard located in the semi-arid region of Talca Valley (Chile using a remote sensing-based soil water balance model. The methodology to estimate ETc is a modified version of the Food and Agriculture Organization of the United Nations (FAO dual crop coefficient approach, in which the basal crop coefficient (Kcb was derived from the soil adjusted vegetation index (SAVI calculated from satellite images and incorporated into a daily soil water balance in the root zone. A linear relationship between the Kcb and SAVI was developed for the apple orchard Kcb = 1.82·SAVI − 0.07 (R2 = 0.95. The methodology was applied during two growing seasons (2010–2011 and 2012–2013, and ETc was evaluated using latent heat fluxes (LE from an eddy covariance system. The results indicate that the remote sensing-based soil water balance estimated ETc reasonably well over two growing seasons. The root mean square error (RMSE between the measured and simulated ETc values during 2010–2011 and 2012–2013 were, respectively, 0.78 and 0.74 mm·day−1, which mean a relative error of 25%. The index of agreement (d values were, respectively, 0.73 and 0.90. In addition, the weekly ETc showed better agreement. The proposed methodology could be considered as a useful tool for scheduling irrigation and driving the estimation of water requirements over large areas for apple orchards.

  9. Insights into the effects of patchy ice layers on water balance heterogeneity in peatlands

    Science.gov (United States)

    Dixon, Simon; Kettridge, Nicholas; Devito, Kevin; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2017-04-01

    Peatlands in boreal and sub-arctic settings are characterised by a high degree of seasonality. During winter soils are frozen and snow covers the surface preventing peat moss growth. Conversely, in summer, soils unfreeze and rain and evapotranspiration drive moss productivity. Although advances have been made in understanding growing season water balance and moss dynamics in northern peatlands, there remains a gap in knowledge of inter-seasonal water balance as layers of ice break up during the spring thaw. Understanding the effects of ice layers on spring water balance is important as this coincides with periods of high wildfire risk, such as the devastating Fort McMurrary wildfire of May, 2016. We hypothesise that shallow layers of ice disconnect the growing surface of moss from a falling water table, and prevent water from being supplied from depth. A disconnect between the evaporating surface and deeper water storage will lead to the drying out of the surface layer of moss and a greater risk of severe spring wildfires. We utilise the unsaturated flow model Hydrus 2D to explore water balance in peat layers with an impermeable layer representing ice. Additionally we create models to represent the heterogeneous break up of ice layers observed in Canadian boreal peatlands; these models explore the ability of breaks in an ice layer to connect the evaporating surface to a deeper water table. Results show that peatlands with slower rates of moss growth respond to dry periods by limiting evapotranspiration and thus maintain moist conditions in the sub-surface and a water table above the ice layer. Peatlands which are more productive continue to grow moss and evaporate during dry periods; this results in the near surface mosses drying out and the water table dropping below the level of the ice. Where there are breaks in the ice layer the evaporating surface is able to maintain contact with a falling water table, but connectivity is limited to above the breaks, with

  10. Radiation chemistry of water at low dose rates with emphasis on the energy balance

    International Nuclear Information System (INIS)

    Fletcher, J.W.

    1982-09-01

    There has been considerable interest in absorbed dose water calorimetry. In order to accurately relate the temperature change to the absorbed dose, the energy balance of the overall chemistry of the system must be known. The radiolytic products and their yields are affected by dose rate, dose and added solutes. The yields of the radiolytic products have been calculated using a computer program developed at Atomic Energy of Canada. The chemical energy balance was determined as a function of dose for various dose rates and initial concentrations of hydrogen (H 2 ), oxygen (O 2 ), and hydrogen peroxide (H 2 O 2 ). In solutions containing H 2 O 2 or O 2 and H 2 the chemical reactions were exothermic; in other cases they were endothermic. Approach to equilibrium and equilbrium conditions are discussed

  11. Soil nitrogen balance under wastewater management: Field measurements and simulation results

    Science.gov (United States)

    Sophocleous, M.; Townsend, M.A.; Vocasek, F.; Ma, Liwang; KC, A.

    2009-01-01

    The use of treated wastewater for irrigation of crops could result in high nitrate-nitrogen (NO3-N) concentrations in the vadose zone and ground water. The goal of this 2-yr field-monitoring study in the deep silty clay loam soils south of Dodge City, Kansas, was to assess how and under what circumstances N from the secondary-treated, wastewater-irrigated corn reached the deep (20-45 m) water table of the underlying High Plains aquifer and what could be done to minimize this problem. We collected 15.2-m-deep soil cores for characterization of physical and chemical properties; installed neutron probe access tubes to measure soil-water content and suction lysimeters to sample soil water periodically; sampled monitoring, irrigation, and domestic wells in the area; and obtained climatic, crop, irrigation, and N application rate records for two wastewater-irrigated study sites. These data and additional information were used to run the Root Zone Water Quality Model to identify key parameters and processes that influence N losses in the study area. We demonstrated that NO3-N transport processes result in significant accumulations of N in the vadose zone and that NO3-N in the underlying ground water is increasing with time. Root Zone Water Quality Model simulations for two wastewater-irrigated study sites indicated that reducing levels of corn N fertilization by more than half to 170 kg ha-1 substantially increases N-use efficiency and achieves near-maximum crop yield. Combining such measures with a crop rotation that includes alfalfa should further reduce the accumulation and downward movement of NO3-N in the soil profile. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  12. Efficacy of an extravascular lung water-driven negative fluid balance protocol.

    Science.gov (United States)

    Díaz-Rubia, L; Ramos-Sáez, S; Vázquez-Guillamet, R; Guerrero-López, F; Pino-Sánchez, F; García-Delgado, M; Gómez-Jiménez, F J; Fernández-Mondéjar, E

    2015-01-01

    To analyze the efficacy of negative fluid balance in hypoxemic patients with an elevated extravascular lung water index (EVLWI). A retrospective observational study was made. Intensive Care Unit of Virgen de las Nieves Hospital (Spain). Forty-four patients participated in the study. We analyzed our database of hypoxemic patients covering a period of 11 consecutive months. We included all hemodynamically stable and hypoxemic patients with EVLWI>9ml/kg. The protocol dictates a negative fluid balance between 500 and 1500ml/day. We analyzed the impact of this negative fluid balance strategy upon pulmonary, hemodynamic, and renal function. Demographic data, severity scores, clinical, hemodynamic, pulmonary, metabolic and renal function data. Thirty-three patients achieved negative fluid balance (NFB group) and 11 had a positive fluid balance (PFB group). In the former group, PaO2/FiO2 improved from 145 (IQR 106, 200) to 210mmHg (IQR 164, 248) (pPFB group, EVLWI also decreased from 11 (10, 14) to 10ml/kg (8, 14) at the end of the protocol (p=0.004). For these patients there were no changes in oxygenation, with a PaO2/FiO2 of 216mmHg (IQR 137, 260) at the beginning versus 205mmHg (IQR 99,257) at the end of the study (p=0.08). Three out of four hypoxic patients with elevated EVLWI tolerated the NFB protocol. In these subjects, the improvement of various analyzed physiological parameters was greater and faster than in those unable to complete the protocol. Patients who did not tolerate the protocol were usually in more severe condition, though a larger sample would be needed to detect specific characteristics of this group. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  13. Snow cover dynamics and water balance in complex high alpine terrain

    Science.gov (United States)

    Warscher, Michael; Kraller, Gabriele; Kunstmann, Harald; Strasser, Ulrich; Franz, Helmut

    2010-05-01

    The water balance in high alpine regions in its full complexity is so far insufficiently understood. High altitudinal gradients, a strong variability of meteorological variables in time and space, complex hydrogeological situations, unquantified lateral snow transport processes and heterogenous snow cover dynamics result in high uncertainties in the quantification of the water balance. To achieve interpretable modeling results we have complemented the deterministic hydrological model WaSiM-ETH with the high-alpine specific snow model AMUNDSEN. The integration of the new snow module was done to improve the modeling of water fluxes influenced by the dynamics of the snow cover, which greatly affect the water cycle in high alpine regions. To enhance the reproduction of snow deposition and ablation processes, the new approach calculates the energy balance of the snow cover considering the terrain-dependent radiation fluxes, the interaction between tree canopy and snow cover as well as lateral snow transport processes. The test site for our study is the Berchtesgaden National Park which is characterized by an extreme topography with mountain ranges covering an altitude from 607 to 2713 m.a.s.l. About one quarter of the investigated catchment area, which comprises 433 km² in total, is terrain steeper than 35°. Due to water soluble limestone being predominant in the region, a high number of subsurface water pathways (karst) exist. The results of several tracer experiments and extensive data of spring observations provide additional information to meet the challenge of modeling the unknown subsurface pathways and the complex groundwater system of the region. The validation of the new snow module is based on a dense network of meteorological stations which have been adapted to measure physical properties of the snow cover like snow water equivalent and liquid water content. We will present first results which show that the integration of the new snow module generates a

  14. Water Reserves Program. An adaptation strategy to balance water in nature

    Science.gov (United States)

    Lopez Perez, M.; Barrios, E.; Salinas-Rodriguez, S.; Wickel, B.; Villon, R. A.

    2013-05-01

    Freshwater ecosystems occupy approximately 1% of the earth's surface yet possess about 12% of all known animal species. By virtue of their position in the landscape they connect terrestrial and coastal marine biomes and provide and sustain ecosystem services vital to the health and persistence of human communities. These services include the supply of water for food production, urban and ind ustrial consumption, among others. Over the past century many freshwater ecosystems around the world have been heavily modified or lost due to the alteration of flow regimes (e.g. due to damming, canalization, diversion, over-abstraction). The synergistic impacts of land use change, changes in flows, chemical deterioration, and climate change have left many systems and their species very little room to adjust to change, while future projections indicate a steady increase in water demand for food and energy production and water supply to suit the needs of a growing world population. In Mexico, the focus has been to secure water for human development and maximize economic growth, which has resulted in allocation of water beyond available amounts. As a consequence episodic water scarcity severely constrains freshwater ecosystems and the services they provide. Climatic change and variability are presenting serious challenges to a country that already is experiencing serious strain on its water resources. However, freshwater ecosystems are recognized by law as legitimate user of water, and mandate a flow allocation for the environment ("water reserve" or "environmental flows"). Based on this legal provision the Mexican government through the National Water Commission (Conagua), with support of the Alliance WWF - Fundación Gonzalo Río Arronte, and the Interamerican Development Bank, has launched a national program to identify and implement "water reserves": basins where environmental flows will be secured and allocated and where the flow regime is then protected before over

  15. Holding Water in the Landscape; striking a balance between food production and healthy catchment function

    Science.gov (United States)

    Quinn, Paul; Wilkinson, Mark; Stutter, Marc; Adams, Russell

    2015-04-01

    Here it is proposed that ~5 % of the rural landscape could be modified to hold water during storm events. Hence ~95% of land remains for food production, commercial forestry and amenity. This is a catchment scale commitment to sustainably reducing flood and drought risk, improving water quality, biodiversity and thereby climate proofing our catchments. The farmed landscape has intensified and as a result, runoff rates are no longer in balance with the catchment needs, which in turn contributes to floods, droughts and water pollution problems. The loss of infiltration rates, soil water holding capacity and the increase in ditches and drains through intense farming has resulted in a reduction of the overall water holding capacity of the landscape, therefore deeper soil and aquifer recharge rates are lower. However, adequate raw water supply and food production is also vital. Here we consider how ~5% of productive land could be used to physically hold water during and after storms. This is a simple philosophy for water stewardship that could be delivered by farmers and land managers themselves. In this poster we consider a 'treatment train' of mitigation in headwaters by the construction of:- Rural SuDs - by creating swales, bunds and grassy filters; Buffer Strips - (designed to hold water); The Ditch of The Future - by creating the prime location for holding water and recovering lost top soil and finally the better use of Small Headwater Floodplains - by storing flood water, creating wetlands, planting new forest, installing woody debris and new habitats. We present examples of where and how these measures have been installed and show the cost-effectiveness of temporarily holding storm runoff in several case study catchments taken from the UK.

  16. Development and application of the Qausi Distributed Water Balance model (QDWB in the Neishaboor-Rokh watershed

    Directory of Open Access Journals (Sweden)

    sajjad razavi

    2017-03-01

    Full Text Available Limitation of water resources in Iran motivates sustaining and preserving of the resources in order to supply future water needs. Fulfilling these objectives will not be possible unless having accurate water balance of watersheds. The purpose of this study is to estimate the water balance parameters using a distributed method. The large number of distributed models and methods was studied and “Quasi Distributed Water Balance model” (QDWB was written in the MATLAB programming environment. To conduct this model, it is needed that each data layer (precipitation, potential evapotranspiration, land use, soil data,.. to be converted into grid format. In this research the 500m * 500m cell size was used and water balance parameters for each cell was estimated. Runoff and deep percolation obtained from surface balance equation and irrigation needs were estimated based on soil moisture deficit. The study area of 9157 square kilometers is Neyshabour- Rokh watershed. The results showed there is a good correlation between water balance parameters such as precipitation-runoff, precipitation-evapotranspiration, and precipitation- deep percoulation and demonstrate that QDWB model is consistent with the basin hydrological process.Change in soil moisture at basin wide is 1 MCM in 1388-89 and 40 MCM in 1380-81. The evapotranspiration results from a distributed model” SWAT” and QDWB model were in good agreement.

  17. Effect of the Meteorological Conditions to Spring Water Availability in Some Karst Region at Gunungkidul Districts (Meteorologist Water Balance Analysis Study for Drought Mitigation

    Directory of Open Access Journals (Sweden)

    Darmakusuma Darmanto

    2013-07-01

    Full Text Available The objective of this study is to understand the influence of meteorological conditions of logva water availability in karst area, Gunungkidul Regency. Meteorological condition analysis was determined by creating meteorological water balance using Thornthwaite Mather method. Water availability condition was determined by using multi-temporal images. Then, the result of water balance was matched with the logva water availability derived from multi-temporal images. The result shows that meteorological conditions will influence logva water availability in karst area, Gunungkidul Regency. It was shown by comparing the amount of logva in surplus months and deficit months. The amount of logva in surplus months is more than in deficit months. In addition, the longer meteorological water deficit, the amounts of detected logva decreases. Based on that condition, it means that meteorological water balance analysis can be used to plan disaster mitigation based on the time and duration of deficit months.

  18. Tight cohesion between glycolipid membranes results from balanced water-headgroup interactions

    Science.gov (United States)

    Kanduč, Matej; Schlaich, Alexander; de Vries, Alex H.; Jouhet, Juliette; Maréchal, Eric; Demé, Bruno; Netz, Roland R.; Schneck, Emanuel

    2017-04-01

    Membrane systems that naturally occur as densely packed membrane stacks contain high amounts of glycolipids whose saccharide headgroups display multiple small electric dipoles in the form of hydroxyl groups. Experimentally, the hydration repulsion between glycolipid membranes is of much shorter range than that between zwitterionic phospholipids whose headgroups are dominated by a single large dipole. Using solvent-explicit molecular dynamics simulations, here we reproduce the experimentally observed, different pressure-versus-distance curves of phospholipid and glycolipid membrane stacks and show that the water uptake into the latter is solely driven by the hydrogen bond balance involved in non-ideal water/sugar mixing. Water structuring effects and lipid configurational perturbations, responsible for the longer-range repulsion between phospholipid membranes, are inoperative for the glycolipids. Our results explain the tight cohesion between glycolipid membranes at their swelling limit, which we here determine by neutron diffraction, and their unique interaction characteristics, which are essential for the biogenesis of photosynthetic membranes.

  19. Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development

    Science.gov (United States)

    Hepworth, Christopher; Turner, Carla; Landim, Marcela Guimaraes; Cameron, Duncan; Gray, Julie E.

    2016-01-01

    Root development is influenced by nutrient and water availabilities. Plants are able to adjust many attributes of their root in response to environmental signals including the size and shape of the primary root, lateral roots and root hairs. Here we investigated the response of roots to changes in the levels of leaf transpiration associated with altered stomatal frequency. We found that plants with high stomatal density and conductance produce a larger rooting area and as a result have enhanced phosphate uptake capacity whereas plants with low stomatal conductance produce a smaller root. Manipulating the growth environment of plants indicated that enhanced root growth is most likely a result of an increased demand for water rather than phosphate. Plants manipulated to have an increase or reduction in root hair growth show a reduction or increase respectively, in stomatal conductance and density. Our results demonstrate that plants can balance their water uptake and loss through coordinated regulation of both stomatal and root development. PMID:27275842

  20. Water-Balance Model to Simulate Historical Lake Levels for Lake Merced, California

    Science.gov (United States)

    Maley, M. P.; Onsoy, S.; Debroux, J.; Eagon, B.

    2009-12-01

    Lake Merced is a freshwater lake located in southwestern San Francisco, California. In the late 1980s and early 1990s, an extended, severe drought impacted the area that resulted in significant declines in Lake Merced lake levels that raised concerns about the long-term health of the lake. In response to these concerns, the Lake Merced Water Level Restoration Project was developed to evaluate an engineered solution to increase and maintain Lake Merced lake levels. The Lake Merced Lake-Level Model was developed to support the conceptual engineering design to restore lake levels. It is a spreadsheet-based water-balance model that performs monthly water-balance calculations based on the hydrological conceptual model. The model independently calculates each water-balance component based on available climate and hydrological data. The model objective was to develop a practical, rule-based approach for the water balance and to calibrate the model results to measured lake levels. The advantage of a rule-based approach is that once the rules are defined, they enhance the ability to then adapt the model for use in future-case simulations. The model was calibrated to historical lake levels over a 70-year period from 1939 to 2009. Calibrating the model over this long historical range tested the model over a variety of hydrological conditions including wet, normal and dry precipitation years, flood events, and periods of high and low lake levels. The historical lake level range was over 16 feet. The model calibration of historical to simulated lake levels had a residual mean of 0.02 feet and an absolute residual mean of 0.42 feet. More importantly, the model demonstrated the ability to simulate both long-term and short-term trends with a strong correlation of the magnitude for both annual and seasonal fluctuations in lake levels. The calibration results demonstrate an improved conceptual understanding of the key hydrological factors that control lake levels, reduce uncertainty

  1. Assessing the terrestrial water balance in South America using multi-satellite remote sensing data

    Science.gov (United States)

    Aparecida Moreira, Adriana; Ruhoff, Anderson; Cauduro Dias de Paiva, Rodrigo; Severo Correa, Dairan

    2017-04-01

    The hydrological cycle components of the terrestrial water cycle have been estimated with increasingly accuracy through remotely-sensed data, from regional to continental scales and in different time intervals. In this paper, we evaluated the water balance closure using remote sensing data in 28 large basins in South America for the period from 2003 to 2014. We used observed discharge (Q) data, precipitation (P) data from the TRMM Multi-satellite Precipitation Analysis (TMPA 3B43 version 7) with spatial resolution 0.25°, evapotranspiration (ET) data from MOD16, with spatial resolution of 0.05° and terrestrial water storage (TWS) estimations from the Gravity Recovery and climate Experiment (GRACE), with spatial resolution of 300 km. To evaluate the water budget closure, we used the simplified continuity equation (dS/dt=P-ET-Q) at monthly time-scales to analyse the water storage change in time (dS/dt), comparing the results to the TWS change from GRACE. Our results indicate that the water storage change dS/dt computed from remote sensing products showed significant correlations with the terrestrial water storage from GRACE. We found correlations higher than 0.70 in 14 basins, mostly in large basins located in the north of South America (with tropical wet and tropical dry climates), whilst lower correlations were found in Southern Brazil and in smaller basins (usually with subtropical climates). Lastly, we computed the correlation between dS/dt from GRACE and P, ET and Q. Precipitation was the hydrological component that showed better correlations, with 19 basins yielding a correlation higher than 0.70, suggesting that precipitation has a strong influence of the terrestrial water storage in those basins. Discharge measurements also yielded a very good agreement, with correlations higher than 0.63 in almost all basins. Despite the water balance closure based on remote sensing data still remains a challenge due to large biases and uncertainties in the precipitation

  2. Investigating onychophoran gas exchange and water balance as a means to inform current controversies in arthropod physiology.

    Science.gov (United States)

    Clusella-Trullas, Susana; Chown, Steven L

    2008-10-01

    Several controversies currently dominate the fields of arthropod metabolic rate, gas exchange and water balance, including the extent to which modulation of gas exchange reduces water loss, the origins of discontinuous gas exchange, the relationship between metabolic rate and life-history strategies, and the causes of Palaeozoic gigantism. In all of these areas, repeated calls have been made for the investigation of groups that might most inform the debates, especially of taxa in key phylogenetic positions. Here we respond to this call by investigating metabolic rate, respiratory water loss and critical oxygen partial pressure (Pc) in the onychophoran Peripatopsis capensis, a member of a group basal to the arthropods, and by synthesizing the available data on the Onychophora. The rate of carbon dioxide release (VCO2) at 20 degrees C in P. capensis is 0.043 ml CO2 h(-1), in keeping with other onychophoran species; suggesting that low metabolic rates in some arthropod groups are derived. Continuous gas exchange suggests that more complex gas exchange patterns are also derived. Total water loss in P. capensis is 57 mg H2O h(-1) at 20 degrees C, similar to modern estimates for another onychophoran species. High relative respiratory water loss rates ( approximately 34%; estimated using a regression technique) suggest that the basal condition in arthropods may be a high respiratory water loss rate. Relatively high Pc values (5-10% O2) suggest that substantial safety margins in insects are also a derived condition. Curling behaviour in P. capensis appears to be a strategy to lower energetic costs when resting, and the concomitant depression of water loss is a proximate consequence of this behaviour.

  3. A self-consistent model of a thermally balanced quiescent prominence in magnetostatic equilibrium in a uniform gravitational field

    International Nuclear Information System (INIS)

    Lerche, I.; Low, B.C.

    1977-01-01

    A theoretical model of quiescent prominences in the form of an infinite vertical sheet is presented. Self-consistent solutions are obtained by integrating simultaneously the set of nonlinear equations of magnetostatic equilibrium and thermal balance. The basic features of the models are: (1) The prominence matter is confined to a sheet and supported against gravity by a bowed magnetic field. (2) The thermal flux is channelled along magnetic field lines. (3) The thermal flux is everywhere balanced by Low's (1975) hypothetical heat sink which is proportional to the local density. (4) A constant component of the magnetic field along the length of the prominence shields the cool plasma from the hot surrounding. It is assumed that the prominence plasma emits more radiation than it absorbes from the radiation fields of the photosphere, chromosphere and corona, and the above hypothetical heat sink is interpreted to represent the amount of radiative loss that must be balanced by a nonradiative energy input. Using a central density and temperature of 10 11 particles cm -3 and 5000 K respectively, a magnetic field strength between 2 to 10 gauss and a thermal conductivity that varies linearly with temperature, the physical properties implied by the model are discussed. The analytic treatment can also be carried out for a class of more complex thermal conductivities. These models provide a useful starting point for investigating the combined requirements of magnetostatic equilibrium and thermal balance in the quiescent prominence. (Auth.)

  4. EU Water Governance: Striking the Right Balance between Regulatory Flexibility and Enforcement?

    Directory of Open Access Journals (Sweden)

    Olivia O. Green

    2013-06-01

    Full Text Available Considering the challenges and threats currently facing water management and the exacerbation of uncertainty by climate change, the need for flexible yet robust and legitimate environmental regulation is evident. The European Union took a novel approach toward sustainable water resource management with the passage of the EU Water Framework Directive in 2000. The Directive promotes sustainable water use through long-term protection of available water resources, progressively reduces discharges of hazardous substances in ground and surface waters, and mitigates the effects of floods and droughts. The lofty goal of achieving good status of all waters requires strong adaptive capacity, given the large amounts of uncertainty in water management. Striking the right balance between flexibility in local implementation and robust and enforceable standards is essential to promoting adaptive capacity in water governance, yet achieving these goals simultaneously poses unique difficulty. Applied resilience science reveals a conceptual framework for analyzing the adaptive capacity of governance structures that includes multiple overlapping levels of control or coordination, information flow horizontally and vertically, meaningful public participation, local capacity building, authority to respond to changed circumstances, and robust monitoring, system feedback, and enforcement. Analyzing the Directive through the lens of resilience science, we highlight key elements of modern European water management and their contribution to the resilience of the system and conclude that the potential lack of enforcement and adequate feedback of monitoring results does not promote managing for resilience. However, the scale-appropriate governance aspects of the EU approach promotes adaptive capacity by enabling vertical and horizontal information flow, building local capacity, and delegating control at multiple relevant scales.

  5. Century-scale variability in global annual runoff examined using a water balance model

    Science.gov (United States)

    McCabe, G.J.; Wolock, D.M.

    2011-01-01

    A monthly water balance model (WB model) is used with CRUTS2.1 monthly temperature and precipitation data to generate time series of monthly runoff for all land areas of the globe for the period 1905 through 2002. Even though annual precipitation accounts for most of the temporal and spatial variability in annual runoff, increases in temperature have had an increasingly negative effect on annual runoff after 1980. Although the effects of increasing temperature on runoff became more apparent after 1980, the relative magnitude of these effects are small compared to the effects of precipitation on global runoff. ?? 2010 Royal Meteorological Society.

  6. Water balance modeling of Upper Blue Nile catchments using a top-down approach

    Directory of Open Access Journals (Sweden)

    S. Tekleab

    2011-07-01

    Full Text Available The water balances of twenty catchments in the Upper Blue Nile basin have been analyzed using a top-down modeling approach based on Budyko's hypotheses. The objective of this study is to obtain better understanding of water balance dynamics of upper Blue Nile catchments on annual and monthly time scales and on a spatial scale of meso scale to large scale. The water balance analysis using a Budyko-type curve at annual scale reveals that the aridity index does not exert a first order control in most of the catchments. This implies the need to increase model complexity to monthly time scale to include the effects of seasonal soil moisture dynamics. The dynamic water balance model used in this study predicts the direct runoff and other processes based on the limit concept; i.e. for dry environments since rainfall amount is small, the aridity index approaches to infinity or equivalently evaporation approaches rainfall and for wet environments where the rainfall amount is large, the aridity index approaches to zero and actual evaporation approaches the potential evaporation. The uncertainty of model parameters has been assessed using the GLUE (Generalized Likelihood Uncertainty Estimation methodology. The results show that the majority of the parameters are reasonably well identifiable. However, the baseflow recession constant was poorly identifiable. Parameter uncertainty and model structural errors could be the reason for the poorly identifiable parameter. Moreover, a multi-objective model calibration strategy has been employed to emphasize the different aspects of the hydrographs on low and high flows.

    The model has been calibrated and validated against observed streamflow time series and it shows good performance for the twenty study catchments in the upper Blue Nile. During the calibration period (1995–2000 the Nash and Sutcliffe efficiency (E NS for monthly flow prediction varied between 0.52 to 0.93 (dominated by

  7. Surface Energy Balance of Fresh and Saline Waters: AquaSEBS

    Directory of Open Access Journals (Sweden)

    Ahmed Abdelrady

    2016-07-01

    Full Text Available Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System model for large water bodies and add the effect of water salinity to the evaporation rate. Firstly, SEBS is modified for fresh-water whereby new parameterizations of the water heat flux and sensible heat flux are suggested. This is achieved by adapting the roughness heights for momentum and heat transfer. Secondly, a salinity correction factor is integrated into the adapted model. Eddy covariance measurements over Lake IJsselmeer (The Netherlands are carried out and used to estimate the roughness heights for momentum (~0.0002 m and heat transfer (~0.0001 m. Application of these values over the Victoria and Tana lakes (freshwater in Africa showed that the calculated latent heat fluxes agree well with the measurements. The root mean-square of relative-errors (rRMSE is about 4.1% for Lake Victoria and 4.7%, for Lake Tana. Verification with ECMWF data showed that the salinity reduced the evaporation at varying levels by up to 27% in the Great Salt Lake and by 1% for open ocean. Our results show the importance of salinity to the evaporation rate and the suitability of the adapted-SEBS model (AquaSEBS for fresh and saline waters.

  8. Towards Large-area Field-scale Operational Evapotranspiration for Water Use Mapping

    Science.gov (United States)

    Senay, G. B.; Friedrichs, M.; Morton, C.; Huntington, J. L.; Verdin, J.

    2017-12-01

    Field-scale evapotranspiration (ET) estimates are needed for improving surface and groundwater use and water budget studies. Ideally, field-scale ET estimates would be at regional to national levels and cover long time periods. As a result of large data storage and computational requirements associated with processing field-scale satellite imagery such as Landsat, numerous challenges remain to develop operational ET estimates over large areas for detailed water use and availability studies. However, the combination of new science, data availability, and cloud computing technology is enabling unprecedented capabilities for ET mapping. To demonstrate this capability, we used Google's Earth Engine cloud computing platform to create nationwide annual ET estimates with 30-meter resolution Landsat ( 16,000 images) and gridded weather data using the Operational Simplified Surface Energy Balance (SSEBop) model in support of the National Water Census, a USGS research program designed to build decision support capacity for water management agencies and other natural resource managers. By leveraging Google's Earth Engine Application Programming Interface (API) and developing software in a collaborative, open-platform environment, we rapidly advance from research towards applications for large-area field-scale ET mapping. Cloud computing of the Landsat image archive combined with other satellite, climate, and weather data, is creating never imagined opportunities for assessing ET model behavior and uncertainty, and ultimately providing the ability for more robust operational monitoring and assessment of water use at field-scales.

  9. The diagnostic value of magnetic resonance urography using a balanced turbo field echo sequence

    Energy Technology Data Exchange (ETDEWEB)

    Cifci, Egemen; Coban, Goekcen [Baskent University Faculty of Medicine, Department of Radiology, Konya (Turkey); Cicek, Tufan; Goenuelalan, Umut [Baskent University Faculty of Medicine, Department of Urology, Konya (Turkey)

    2016-12-15

    The aim of the study was to compare the inter-observer variability and the accuracy of magnetic resonance urography (MRU) using a thin sectional balanced-turbo field echo (B-TFE) sequence for detecting ureteral calculi and to determine the effect of additional factors (size, density and location of the calculus) on the sensitivity and specificity of the MRU. MRU and CT images were evaluated independently by two radiologists according to presence, density and localization of calculi. The degrees of inter-rater agreement for categorical items were evaluated by the Kappa coefficient. According to the 1st and 2nd observers, the sensitivity of MRU was 65.9 %, 71.8 % and the specificity of MRU was 95.9 %, 100 %, respectively. Inter-observer agreement was 84.6 % for stone detection. The larger size had a better effect on detectability (p < 0.05). Also, the higher density had a better impact on detectability (p < 0.05). Our study has shown that B-TFE MRU was useful to detect ureteral calculi. However, B-TFE MRU has low sensitivity and high specificity in comparison with CT images. MRU is a reasonable alternative imaging technique for follow-up periods of selective groups like patients with large urinary stones, children or pregnant patients when ionizing radiation is undesirable. (orig.)

  10. Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective

    Directory of Open Access Journals (Sweden)

    A. Alessandri

    2012-11-01

    Full Text Available Future climate scenarios experiencing global warming are expected to strengthen the hydrological cycle during the 21st century (21C. We analyze the strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. By combining energy and water equations for the whole atmosphere, we obtain constraints for the changes in surface fluxes and partitioning at the surface between sensible and latent components. We investigate the differences in the strengthening of the hydrological cycle in two centennial simulations performed with an Earth system model forced with specified atmospheric concentration pathways. Alongside the Special Report on Emissions Scenario (SRES A1B, which is a medium-high non-mitigation scenario, we consider a new aggressive-mitigation scenario (E1 with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K.

    Our results show that the mitigation scenario effectively constrains the global warming with a stabilization below 2 K with respect to the 1950–2000 historical period. On the other hand, the E1 precipitation does not follow the temperature field toward a stabilization path but continues to increase over the mitigation period. Quite unexpectedly, the mitigation scenario is shown to strengthen the hydrological cycle even more than SRES A1B till around 2070. We show that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to decreased sulfate aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B.

    The last decades of the 21C show a marked increase in global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost the same overall increase of radiative imbalance with respect to the 20th century. Our

  11. Enhancing MQMAS of low-gamma nuclei by using a high B(1) field balanced probe circuit.

    Science.gov (United States)

    Gan, Zhehong; Gor'kov, Peter L; Brey, William W; Sideris, Paul J; Grey, Clare P

    2009-09-01

    A balanced probe circuit is used to generate high B(1) magnetic field for sensitivity enhancement of multiple-quantum magic-angle spinning (MQMAS) experiment applied to low-gamma quadrupolar nuclei. Electrical balancing of the sample coil can cut the peak voltage by a half, therefore improving the power handling when generating a two-fold higher B(1) field. Experimental results, illustrated here with (25)Mg data for two layered double hydroxides, show that the MQMAS efficiency increases more than linearly with the B(1) field strength. The multiplicative enhancements from high B(0) and B(1) fields and an optimized MQMAS pulse sequence provide the critically needed sensitivity for acquiring MQMAS spectra of low-gamma quadrupolar nuclei such as (25)Mg at natural abundance.

  12. Enhancing MQMAS of low-γ nuclei by using a high B1 field balanced probe circuit

    Science.gov (United States)

    Gan, Zhehong; Gor'kov, Peter L.; Brey, William W.; Sideris, Paul J.; Grey, Clare P.

    2009-09-01

    A balanced probe circuit is used to generate high B1 magnetic field for sensitivity enhancement of multiple-quantum magic-angle spinning (MQMAS) experiment applied to low-γ quadrupolar nuclei. Electrical balancing of the sample coil can cut the peak voltage by a half, therefore improving the power handling when generating a two-fold higher B1 field. Experimental results, illustrated here with 25Mg data for two layered double hydroxides, show that the MQMAS efficiency increases more than linearly with the B1 field strength. The multiplicative enhancements from high B0 and B1 fields and an optimized MQMAS pulse sequence provide the critically needed sensitivity for acquiring MQMAS spectra of low-γ quadrupolar nuclei such as 25Mg at natural abundance.

  13. Critical discussion on the "observed" water balances of five sub-basins in the Everest region

    Science.gov (United States)

    Chevallier, P.; Eeckman, J.; Nepal, S.; Delclaux, F.; Wagnon, P.; Brun, F.; Koirala, D.

    2017-12-01

    The hydrometeorological components of five Dudh Koshi River sub-basins on the Nepalese side of the Mount Everest have been monitored during four hydrological years (2013-2017), with altitudes ranging from 2000 m to Everest top, areas between 4.65 and 1207 km², and proportions of glaciated areas between nil and 45%. This data set is completed with glacier mass balance observations. The analysis of the observed data and the resulting water balances show large uncertainties of different types: aleatory, epistemic or semantic, following the classification proposed by Beven (2016). The discussion is illustrated using results from two modeling approaches, physical (ISBA, Noilhan and Planton, 1996) and conceptual (J2000, Krause, 2001), as well as large scale glacier mass balances obtained by the way of a recent remote sensing processing method. References: Beven, K., 2016. Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication. Hydrological Sciences Journal 61, 1652-1665. doi:10.1080/02626667.2015.1031761 Krause, P., 2001. Das hydrologische Modellsystem J2000: Beschreibung und Anwendung in groen Flueinzugsgebieten, Schriften des Forschungszentrum Jülich. Reihe Umwelt/Environment; Band 29. Noilhan, J., Planton, S., 1989. A single parametrization of land surface processes for meteorological models. Monthly Weather Review 536-549.

  14. Comparative analysis of the actual evapotranspiration of Flemish forest and cropland, using the soil water balance model WAVE

    Directory of Open Access Journals (Sweden)

    W. W. Verstraeten

    2005-01-01

    Full Text Available This paper focuses on the quantification of the green – vegetation related – water flux of forest stands in the temperate lowland of Flanders. The underlying reason of the research was to develop a methodology for assessing the impact of forests on the hydrologic cycle in comparison to agriculture. The tested approach for calculating the water use by forests was based on the application of the soil water balance model WAVE. The study involved the collection of data from 14 forest stands, the calibration and validation of the WAVE model, and the comparison of the water use (WU components – transpiration, soil and interception evaporation – between forest and cropland. For model calibration purposes simulated and measured time series of soil water content at different soil depths, period March 2000–August 2001, were compared. A multiple-site validation was conducted as well. Actual tree transpiration calculated with sap flow measurements in three forest stands gave similar results for two of the three stands of pine (Pinus sylvestris L., but WAVE overestimated the actual measured transpiration for a stand of poplar (Populus sp.. A useful approach to compare the WU components of forest versus cropland is scenario analysis based on the validated WAVE model. The statistical Profile Analysis method was implemented to explore and analyse the simulated WU time series. With an average annual rainfall of 819 mm, the results reveal that forests in Flanders consume more water than agricultural crops. A 30 years average of 491 mm for 10 forests stands versus 398 mm for 10 cropped agricultural fields was derived. The WU components, on yearly basis, also differ between the two land use types (transpiration: 315 mm for forest and 261 mm for agricultural land use; soil evaporation: 47 mm and 131 mm, for forest and cropland, respectively. Forest canopy interception evaporation was estimated at 126 mm, while it was negligible for cropland.

  15. Simulation of the water balance of boreal watersheds of northeastern British Columbia, Canada using MIKE SHE, an integrated hydrological model

    Science.gov (United States)

    Abadzadesahraei, S.; Déry, S.; Rex, J. F.

    2016-12-01

    Northeastern British Columbia (BC) is undergoing rapid development for oil and gas extraction, largely depending on subsurface hydraulic fracturing (fracking), which relies on available freshwater. Even though this industrial activity has made substantial contributions to regional and provincial economies, it is important to ensure that sufficient and sustainable water supplies are available for all those dependent on the resource, including ecological systems. Further, BC statistics predict that the northeastern region's population will increase by 30% over the next 25 years, thereby amplifying the demands of domestic and industrial water usage. Hence, given the increasing demands for surface water in the complex wetlands of northeastern BC, obtaining accurate long-term water balance information is of vital importance. Thus, this study aims to simulate the 1979-2014 water balance at two boreal watersheds using the MIKE SHE model. More specifically, this research intends to quantify the historical, and regional, water budgets and their associated hydrological processes at two boreal watersheds—the Coles Lake and Tsea Lake watersheds—in northeastern BC. The development of coupled groundwater and surface water model of these watersheds are discussed. The model setup, calibration process, and results are presented, focusing on the water balance of boreal watersheds. Hydrological components within these watersheds are quantified through a combination of intensive fieldwork, observational data, analysis and numerical modeling. The output from the model provides important information for decision makers to manage water resources in northeastern BC. Keywords: Northeastern BC; boreal watershed; water balance; MIKE SHE hydrological model.

  16. Impact of climate change on water balance components in Mediterranean rainfed olive orchards under tillage or cover crop soil management

    Science.gov (United States)

    Rodríguez-Carretero, María Teresa; Lorite, Ignacio J.; Ruiz-Ramos, Margarita; Dosio, Alessandro; Gómez, José A.

    2013-04-01

    The rainfed olive orchards in Southern Spain constitute the main socioeconomic system of the Mediterranean Spanish agriculture. These systems have an elevated level of complexity and require the accurate characterization of crop, climate and soil components for a correct management. It is common the inclusion of cover crops (usually winter cereals or natural cover) intercalated between the olive rows in order to reduce water erosion. Saving limited available water requires specific management, mowing or killing these cover crops in early spring. Thus, under the semi-arid conditions in Southern Spain the management of the cover crops in rainfed olive orchards is essential to avoid a severe impact to the olive orchards yield through depletion of soil water. In order to characterize this agricultural system, a complete water balance model has been developed, calibrated and validated for the semi-arid conditions of Southern Spain, called WABOL (Abazi et al., 2013). In this complex and fragile system, the climate change constitutes a huge threat for its sustainability, currently limited by the availability of water resources, and its forecasted reduction for Mediterranean environments in Southern Spain. The objective of this study was to simulate the impact of climate change on the different components of the water balance in these representative double cropping systems: transpiration of the olive orchard and cover crop, runoff, deep percolation and soil water content. Four climatic scenarios from the FP6 European Project ENSEMBLES were first bias corrected for temperatures and precipitation (Dosio and Paruolo, 2011; Dosio et al., 2012) and, subsequently, used as inputs for the WABOL model for five olive orchard fields located in Southern Spain under different conditions of crop, climate, soils and management, in order to consider as much as possible of the variability detected in the Spanish olive orchards. The first results indicate the significant effect of the cover

  17. Apparatus for ground water chemistry investigations in field caissons

    International Nuclear Information System (INIS)

    Cokal, E.J.; Stallings, E.; Walker, R.; Nyhan, J.W.; Polzer, W.L.; Essington, E.H.

    1985-01-01

    Los Alamos is currently in its second season of ground water chemistry and hydrology experimentation in a field facility that incorporates clusters of six, 3-meter-diameter by 6-meter-deep, soil-filled caissons and required ancillaries. Initial experience gained during the 1983 field season indicated the need for further development of the technology of this type of experimentation supporting hydrologic waste management research. Uniform field application of water/matrix solutions to the caisson, matrix and tracer solution blending/storage, and devices for ground water sampling are discussed

  18. Gypsiferous mine water use in irrigation on rehabilitated open-cast mine land: Crop production, soil water and salt balance

    OpenAIRE

    Annandale, J.; Jovanovic, N.; Pretorius, J.; Lorentz, S.; Rethman, N.; Tanner, P.

    2001-01-01

    The use of gypsiferous mine water for irrigation of agricultural crops is a promising technology, which could alleviate a shortage of irrigation water and address the problem of disposal of mine effluent. A field trial was established at Kleinkopje Colliery in Witbank (Mpumalanga Province, South Africa) during the 1997-1998 season. Sugar beans and wheat were irrigated with three center pivots, on both virgin and rehabilitated land. The objectives were to determine crop response to irrigation ...

  19. Water and salt balance of Great Salt Lake, Utah, and simulation of water and salt movement through the causeway

    Science.gov (United States)

    Wold, Steven R.; Thomas, Blakemore E.; Waddell, Kidd M.

    1997-01-01

    The water and salt balance of Great Salt Lake primarily depends on the amount of inflow from tributary streams and the conveyance properties of a causeway constructed during 1957-59 that divides the lake into the south and north parts. The conveyance properties of the causeway originally included two culverts, each 15 feet wide, and the permeable rock-fill material.During 1980-86, the salt balance changed as a result of record high inflow that averaged 4,627,000 acre-feet annually and modifications made to the conveyance properties of the causeway that included opening a 300-foot-wide breach. In this study, a model developed in 1973 by Waddell and Bolke to simulate the water and salt balance of the lake was revised to accommodate the high water-surface altitude and modifications made to the causeway. This study, done by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of State Lands and Forestry, updates the model with monitoring data collected during 1980-86. This report describes the calibration of the model and presents the results of simulations for three hypothetical 10-year periods.During January 1, 1980, to July 31, 1984, a net load of 0.5 billion tons of dissolved salt flowed from the south to the north part of the lake primarily as a result of record inflows. From August 1, 1984, when the breach was opened, to December 31,1986, a net load of 0.3 billion tons of dissolved salt flowed from the north to the south part of the lake primarily as a result of the breach.For simulated inflow rates during a hypothetical 10-year period resulting in the water-surface altitude decreasing from about 4,200 to 4,192 feet, there was a net movement of about 1.0 billion tons of dissolved salt from the south to the north part, and about 1.7 billion tons of salt precipitated in the north part. For simulated inflow rates during a hypothetical 10-year period resulting in a rise in water-surface altitude from about 4,200 to 4

  20. Dynamic regulation and dysregulation of the water channel aquaporin-2: a common cause of and promising therapeutic target for water balance disorders.

    Science.gov (United States)

    Noda, Yumi

    2014-08-01

    The human body is two-thirds water. The ability of ensuring the proper amount of water inside the body is essential for the survival of mammals. The key event for maintenance of body water balance is water reabsorption in the kidney collecting ducts, which is regulated by aquaporin-2 (AQP2). AQP2 is a channel that is exclusively selective for water molecules and never allows permeation of ions or other small molecules. Under normal conditions, AQP2 is restricted within the cytoplasm of the collecting duct cells. However, when the body is dehydrated and needs to retain water, AQP2 relocates to the apical membrane, allowing water reabsorption from the urinary tubule into the cell. Its impairments result in various water balance disorders including diabetes insipidus, which is a disease characterized by a massive loss of water through the kidney, leading to severe dehydration in the body. Dysregulation of AQP2 is also a common cause of water retention and hyponatremia that exacerbate the prognosis of congestive heart failure and hepatic cirrhosis. Many studies have uncovered the regulation mechanisms of AQP2 at the single-molecule level, the whole-body level, and the clinical level. In clinical practice, urinary AQP2 is a useful marker for body water balance (hydration status). Moreover, AQP2 is now attracting considerable attention as a potential therapeutic target for water balance disorders which commonly occur in many diseases.

  1. Contribution of supra-permafrost discharge to thermokarst lake water balances on the northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Pan, Xicai; Yu, Qihao; You, Yanhui; Chun, Kwok Pan; Shi, Xiaogang; Li, Yanping

    2017-12-01

    The seasonal hydrological mechanisms of two thermokarst lakes on the northeastern Qinghai-Tibet Plateau (QTP) were characterized by three-year intensive field observations and a water balance model. In three ice-free seasons, the supra-permafrost discharge contributed a mean ratio of over 170% of the precipitation. In the ice-cover seasons, the supra-permafrost discharge contribution varied between -20% and 22% of the water storage change. Results show that a large portion of the lake water storage change is because of the supra-permafrost discharge resulting from precipitation. Furthermore, a precipitation-subsurface runoff function is preliminarily identified in which the supra-permafrost discharge nonlinearly increased with more precipitation. Our results show that the recent lake expansion is linked with increasing supra-permafrost discharge dominated by precipitation. This study also suggests that we need to pay attention to the nonlinear increase of precipitation-controlled supra-permafrost discharge on the large lake expansion at the catchment scale in the QTP region, instead of only looking at the inputs (e.g., precipitation and river discharge) as shown in the previous studies.

  2. Cerebral water and ion balance remains stable when humans are exposed to acute hypoxic exercise

    DEFF Research Database (Denmark)

    Avnstorp, Magnus B; Rasmussen, Peter; Brassard, Patrice

    2015-01-01

    both circumstances. No cerebral net exchange of Na(+) or K(+) was evident. Likewise, no significant net-exchange of water over the brain was demonstrated and the arterial and jugular venous hemoglobin concentrations were similar. CONCLUSION: Challenging exercise in hypoxia for 30 min affected muscle......Avnstorp, Magnus B., Peter Rasmussen, Patrice Brassard, Thomas Seifert, Morten Overgaard, Peter Krustrup, Niels H. Secher, and Nikolai B. Nordsborg. Cerebral water and ion balance remains stable when humans are exposed to acute hypoxic exercise. High Alt Med Biol 16:000-000, 2015.-Background...... intense exercise is carried out in hypoxia and monitored the influence of muscle metabolism for changes in arterial variables. METHODS: On two separate days, in random order, 30 min cycling exercise was performed in either hypoxia (10% O2) or normoxia at an intensity that was exhaustive in the hypoxic...

  3. Assessing the effect, on animal model, of mixture of food additives, on the water balance.

    Science.gov (United States)

    Friedrich, Mariola; Kuchlewska, Magdalena

    2013-01-01

    The purpose of this study was to determine, on the animal model, the effect of modification of diet composition and administration of selected food additives on water balance in the body. The study was conducted with 48 males and 48 females (separately for each sex) of Wistar strain rats divided into four groups. For drinking, the animals from groups I and III were receiving water, whereas the animals from groups II and IV were administered 5 ml of a solution of selected food additives (potassium nitrate - E 252, sodium nitrite - E 250, benzoic acid - E 210, sorbic acid - E 200, and monosodium glutamate - E 621). Doses of the administered food additives were computed taking into account the average intake by men, expressed per body mass unit. Having drunk the solution, the animals were provided water for drinking. The mixture of selected food additives applied in the experiment was found to facilitate water retention in the body both in the case of both male and female rats, and differences observed between the volume of ingested fluids and the volume of excreted urine were statistically significant in the animals fed the basal diet. The type of feed mixture provided to the animals affected the site of water retention - in the case of animals receiving the basal diet analyses demonstrated a significant increase in water content in the liver tissue, whereas in the animals fed the modified diet water was observed to accumulate in the vascular bed. Taking into account the fact of water retention in the vascular bed, the effects of food additives intake may be more adverse in the case of females.

  4. Impacts of climate change on the water balance of a large nonhumid natural basin in China

    Science.gov (United States)

    Liu, Qiang; Liang, Liqiao

    2015-08-01

    Water resources are contingent on the combined effects of climate change and watershed characteristics. An analytical model devised from the Budyko framework was used to investigate the partitioning of precipitation ( P) into actual evapotranspiration ( E) and streamflow ( Q) parameters for the Yellow River Basin (YRB), a water-limited basin, to estimate the response of E and Q to P and potential evapotranspiration ( E p ). Although a steady state was assumed, the analytical model, incorporating an adjustable parameter characteristic of catchment conditions ( ω), can be run to analyze the sensitivity of catchment characteristics on water resources. The theory predicts that Q and E are more sensitive to P than to E p . For example, a 10 % increase in P will result in a 22.8 % increase in Q, while a 10 % increase in E p will decrease Q by 13.2 %. The model shows that, to some extent, water balance is governed by changing catchment characteristics (such as changes in vegetation on annual scales). These findings indicate that additional elucidative data can be drawn from the Budyko framework when taking into account catchment characteristics. Furthermore, the model can analyze the response of water resources to climate change on different temporal and spatial scales.

  5. Impacts of climate projections on water balance and implications on olive crop in Minas Gerais

    Directory of Open Access Journals (Sweden)

    Diego F. dos Santos

    Full Text Available ABSTRACT Minas Gerais is vulnerable to climate change, with negative impacts on water balance and changes in the cultivation of several crops. Currently, the olive crop has been an alternative source for farmers, especially those in the South of the state. However, there is no information on areas with climatic conditions suitable for olive cultivation, as well as the possible impacts of climate change. The aim of this study was to verify the impact of climate projections on water balance and agroclimatic zoning for olive cultivation in the Minas Gerais, based on current climate conditions (1980-2011, and different climate change projections for three future periods (2011-2040, 2041-2070 and 2071-2100. For the current climate, Minas Gerais showed 37% of suitable area, 15% of marginal area and 48% of unsuitable area for olive cultivation. For the period 2071-2100, only 4% was classified as suitable area, 6% as marginal area and 90% as unsuitable. Projections of climate change, of both temperature and rainfall, will affect the olive cultivation, substantially reducing the suitable area in the entire state.

  6. The energy and water balance of a Eucalyptus plantation in southeast Brazil

    Science.gov (United States)

    Cabral, Osvaldo M. R.; Rocha, Humberto R.; Gash, John H. C.; Ligo, Marcos A. V.; Freitas, Helber C.; Tatsch, Jonatan D.

    2010-07-01

    SummaryThe eddy covariance method was used to measure energy and water balance of a plantation of Eucalyptus ( grandis × urophylla) hybrids over a 2 year period. The average daily evaporation rates were 5.4 (±2.0) mm day -1 in summer, but fell to 1.2 (±0.3) mm day -1 in winter. In contrast, the sensible heat flux was relatively low in summer but dominated the energy balance in winter. Evaporation accounted for 80% and 26% of the available energy, in summer and winter respectively. The annual evaporation was 82% (1124 mm) and 96% (1235 mm) of the annual rainfall recorded during the first and second year, respectively. Daily average canopy and aerodynamic conductance to water vapour were in the summer 51.9 (±38.4) mm s -1 and 84.1 (±25.6) mm s -1, respectively; and in the winter 6.0 (±10.5) mm s -1 and 111.6 (±24.6) mm s -1, respectively.

  7. A reassessment of North American river basin water balances in light of new estimates of mountain snow accumulation

    Science.gov (United States)

    Wrzesien, M.; Durand, M. T.; Pavelsky, T.

    2017-12-01

    The hydrologic cycle is a key component of many aspects of daily life, yet not all water cycle processes are fully understood. In particular, water storage in mountain snowpacks remains largely unknown. Previous work with a high resolution regional climate model suggests that global and continental models underestimate mountain snow accumulation, perhaps by as much as 50%. Therefore, we hypothesize that since snow water equivalent (one aspect of the water balance) is underestimated, accepted water balances for major river basins are likely wrong, particularly for mountainous river basins. Here we examine water balances for four major high latitude North American watersheds - the Columbia, Mackenzie, Nelson, and Yukon. The mountainous percentage of each basin ranges, which allows us to consider whether a bias in the water balance is affected by mountain area percentage within the watershed. For our water balance evaluation, we especially consider precipitation estimates from a variety of datasets, including models, such as WRF and MERRA, and observation-based, such as CRU and GPCP. We ask whether the precipitation datasets provide enough moisture for seasonal snow to accumulate within the basin and whether we see differences in the variability of annual and seasonal precipitation from each dataset. From our reassessment of high-latitude water balances, we aim to determine whether the current understanding is sufficient to describe all processes within the hydrologic cycle or whether datasets appear to be biased, particularly in high-elevation precipitation. Should currently-available datasets appear to be similarly biased in precipitation, as we have seen in mountain snow accumulation, we discuss the implications for the continental water budget.

  8. Wind speed effects on leaf energy balance, transpiration and water use efficiency

    Science.gov (United States)

    Schymanski, S. J.; Or, D.

    2014-12-01

    Transpiration and heat exchange rates by plant leaves involve coupled physiological processes of significant ecohydrological importance. Prediction of the effects of changing environmental conditions such as irradiance, temperature, humidity and wind speed requires a thorough understanding of these processes. The common assumption that leaf temperature equals air temperature may introduce significant bias into estimates of transpiration rates and water use efficiency (WUE, the amount of carbon gained by photosynthesis per unit of water lost by transpiration). Theoretical considerations and observations suggest that leaf temperatures may deviate substantially from air temperature under typical environmental conditions, leading to greatly modified transpiration rates compared to isothermal conditions. In particular, effects of wind on gas exchange must consider feedbacks with leaf temperature. Systematic quantification of the effects of wind speed on leaf heat and gas exchange rates yield some surprising insights. We found a range of conditions where increased wind speed can suppress transpiration rates. The result reflects unintuitive feedbacks between sensible heat flux, leaf temperature, leaf-to-air vapour pressure deficit and latent heat flux. Modelling results suggest that with high wind speeds the same leaf conductance (for water vapour and carbon dioxide) can be maintained with less evaporative losses. This leads to positive relation between water use efficiency and wind speed across a wide range of conditions. The presentation will report results from a lab experiment allowing separation of the different leaf energy balance components under fully controlled conditions (wind speed, temperature, humidity, irradiance) and put them into perspective with a detailed leaf energy balance model and the commonly used Penman-Monteith equation.

  9. Chlorination or monochloramination: Balancing the regulated trihalomethane formation and microbial inactivation in marine aquaculture waters

    KAUST Repository

    Sanawar, Huma

    2017-08-15

    Disinfection methods like chlorination are increasingly used to sanitize the water, equipment, tools and surfaces in aquaculture facilities. This is to improve water quality, and to maintain a hygienic environment for the well-being of aquatic organisms. However, chlorination can result in formation of regulated disinfection byproducts (DBPs) that can be carcinogenic and toxic. This study aims to evaluate if an optimal balance can be achieved between minimal regulated DBP formation and effective microbial inactivation with either chlorination or monochloramination for application in the Red Sea aquaculture waters. Upon chlorination, the concentration of total trihalomethanes (THMs), primarily bromoform, exceeded the regulatory limit of 80μg/L even at the lowest tested concentration of chlorine (1mg/L) and contact time (1h). Comparatively, regulated THMs concentration was only detectable at 30μg/L level in one of the three sets of monochloraminated marine aquaculture waters. The average log reduction of antibiotic-resistant bacteria (ARB) by chlorine ranged from 2.3-log to 3.2-log with different contact time. The average log reduction of ARB by monochloramine was comparatively lower at 1.9 to 2.9-log. Although viable Staphylococcus aureus was recovered from monochloraminated samples as opposed to chlorinated samples, the abundance of S. aureus was not high enough to result in any significant microbial risks. Both chlorination and monochloramination did not provide any significant improvement in the reduction of antibiotic resistance genes (ARGs). This study demonstrates that a systematic evaluation is needed to determine the optimal disinfectant required to balance both microbial and chemical risks. Compared to chlorine, monochloramine may be a more appropriate disinfection strategy for the treatment of aquaculture effluents prior to discharge or for recirculatory use in the aquaculture facility.

  10. Water balance in the Guarani Aquifer outcrop zone based on hydrogeologic monitoring

    Science.gov (United States)

    Wendland, E.; Barreto, C.; Gomes, L. H.

    2007-09-01

    SummaryMain objective of this work was the study of the infiltration and recharge mechanisms in the Guarani Aquifer System (GAS) outcrop zone. The study was based on hydrogeologic monitoring, evapotranspiration and water balance in a pilot watershed. The pilot watershed (Ribeirão da Onça) is situated in the outcrop zone of the Guarani Aquifer between parallels 22°10' and 22°15' (south latitude) and meridians 47°55' and 48°00' (west longitude). For the execution of the research project, a monitoring network (wells, rain gauge and linigraph) was installed in the watershed. Data have been systematically collected during the period of a hydrological year. Water level fluctuation has been used to estimate deep recharge and subsurface storage variation. The method used to estimate the direct recharge adopted the hypothesis that the recession of the groundwater level obeys a function of power law type. Direct recharge is obtained through the difference between the actual level of an unconfined aquifer and the level indicated by extrapolation of the recession curve, in a given period. Base outflow is estimated through a mixed function (linear and exponential). Outflow in the creek has been measured with current meter and monitored continuously with a linigraph. The annual infiltration in 2005 was estimated to be 350 mm, while the deep recharge, based on water balance, appears to be 3.5% of the precipitation (1410 mm). These results indicate that the estimated long term water availability of the Guarani Aquifer System should be studied more carefully.

  11. Water flow pathways and the water balance within a head-water catchment containing a dambo: inferences drawn from hydrochemical investigations

    Directory of Open Access Journals (Sweden)

    M. P. McCartney

    1999-01-01

    Full Text Available Dambos, seasonally saturated wetlands, are widespread in headwater catchments in sub-Saharan Africa. It is widely believed that they play an important role in regional hydrology but, despite research conducted over the last 25 years, their hydrological functions remain poorly understood. To improve conceptualisation of hydrological flow paths and investigate the water balance of a small Zimbabwean catchment containing a single dambo, measurements of alkalinity and chloride in different water types within the catchment have been used as chemical markers. The temporal variation in alkalinity is consistent with the premise that all stream water, including the prolonged dry season recession, is derived predominantly from shallow sources. The proposition that dry season recession flows are maintained by water travelling at depth within the underlying saprolite is not substantiated. There is evidence that a low permeability clay lens, commonly present in many dambos, acts as a barrier for vertical water exchange. However, the highly heterogeneous chemical composition of different waters precludes quantitative hydrograph split-ting using end member mixing analysis. Calculation of the chloride mass-balance confirms that, after rainfall, evaporation is the largest component of the catchment water budget. The study provides improved understanding of the hydrological functioning of dambos. Such understanding is essential for the development and implementation of sustainable management strategies for this landform.

  12. Complex interactions between temperature and relative humidity on water balance of adult tsetse (Glossinidae, Diptera: implications for climate change

    Directory of Open Access Journals (Sweden)

    Elsje eKleynhans

    2011-10-01

    Full Text Available Insect water balance plays an important role in determining energy budgets, activity patterns, survival and population dynamics and, hence, geographic distribution. Tsetse (Glossina spp. are important vectors of human and animal disease occupying a wide range of habitats in Africa and are notable for their desiccation resistance in xeric environments. Here, we measure water balance traits (water loss rate, body water content and body lipid content in adult flies across a range of temperature (20 – 30 °C and relative humidity (0 – 99 % combinations in four tsetse species from both xeric and mesic habitats. Water loss rates were significantly affected by measurement under different temperature and relative humidity combinations, while body water content, body lipid content and mass were less affected. Different effects of temperature and relative humidity within and among experimental conditions and species suggests cuticular permeability and saturation deficit are likely to be key factors in forecasting tsetse water balance responses to climate variability. These results provide support for mass–independent inter– and intra–specific variation in water loss rates and survival times. Therefore, water balance responses to variation in temperature and relative humidity are complex in Glossina, and this response varies within and among species, sub–groups and ecotypes in terms of both magnitude of effects and the direction of change. This complicates potential forecasting of tsetse distribution in the face of climate change.

  13. Evaporation rate of water as a function of a magnetic field and field gradient.

    Science.gov (United States)

    Guo, Yun-Zhu; Yin, Da-Chuan; Cao, Hui-Ling; Shi, Jian-Yu; Zhang, Chen-Yan; Liu, Yong-Ming; Huang, Huan-Huan; Liu, Yue; Wang, Yan; Guo, Wei-Hong; Qian, Ai-Rong; Shang, Peng

    2012-12-11

    The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g), 1 g, 1.56 g and 1.96 g) in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air.

  14. Evaporation Rate of Water as a Function of a Magnetic Field and Field Gradient

    Science.gov (United States)

    Guo, Yun-Zhu; Yin, Da-Chuan; Cao, Hui-Ling; Shi, Jian-Yu; Zhang, Chen-Yan; Liu, Yong-Ming; Huang, Huan-Huan; Liu, Yue; Wang, Yan; Guo, Wei-Hong; Qian, Ai-Rong; Shang, Peng

    2012-01-01

    The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g), 1 g, 1.56 g and 1.96 g) in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air. PMID:23443127

  15. Field assessment of balance in 10 to 14 year old children, reproducibility and validity of the Nintendo Wii board

    DEFF Research Database (Denmark)

    Runge, Lisbeth; Jørgensen, Martin Grønbech; Junge, Tina

    2014-01-01

    and adults. When assessing static balance, it is essential to use objective, sensitive tools, and these types of measurement have previously been performed in laboratory settings. However, the emergence of technologies like the Nintendo Wii Board (NWB) might allow balance assessment in field settings......: bilateral stance with eyes open (1), unilateral stance on dominant (2) and non-dominant leg (3) with eyes open, and bilateral stance with eyes closed (4). Three rounds of the four tests were completed with the NWB and with a force platform (AMTI). To assess reproducibility, an intra-day test-retest design...

  16. Hydroclimatic regimes: a distributed water-balance framework for hydrologic assessment, classification, and management

    Science.gov (United States)

    Weiskel, Peter K.; Wolock, David M.; Zarriello, Phillip J.; Vogel, Richard M.; Levin, Sara B.; Lent, Robert M.

    2014-01-01

    Runoff-based indicators of terrestrial water availability are appropriate for humid regions, but have tended to limit our basic hydrologic understanding of drylands – the dry-subhumid, semiarid, and arid regions which presently cover nearly half of the global land surface. In response, we introduce an indicator framework that gives equal weight to humid and dryland regions, accounting fully for both vertical (precipitation + evapotranspiration) and horizontal (groundwater + surface-water) components of the hydrologic cycle in any given location – as well as fluxes into and out of landscape storage. We apply the framework to a diverse hydroclimatic region (the conterminous USA) using a distributed water-balance model consisting of 53 400 networked landscape hydrologic units. Our model simulations indicate that about 21% of the conterminous USA either generated no runoff or consumed runoff from upgradient sources on a mean-annual basis during the 20th century. Vertical fluxes exceeded horizontal fluxes across 76% of the conterminous area. Long-term-average total water availability (TWA) during the 20th century, defined here as the total influx to a landscape hydrologic unit from precipitation, groundwater, and surface water, varied spatially by about 400 000-fold, a range of variation ~100 times larger than that for mean-annual runoff across the same area. The framework includes but is not limited to classical, runoff-based approaches to water-resource assessment. It also incorporates and reinterprets the green- and blue-water perspective now gaining international acceptance. Implications of the new framework for several areas of contemporary hydrology are explored, and the data requirements of the approach are discussed in relation to the increasing availability of gridded global climate, land-surface, and hydrologic data sets.

  17. Application of SWAT99.2 to sensitivity analysis of water balance components in unique plots in a hilly region

    Directory of Open Access Journals (Sweden)

    Jun-feng Dai

    2017-07-01

    Full Text Available Although many sensitivity analyses using the soil and water assessment tool (SWAT in a complex watershed have been conducted, little attention has been paid to the application potential of the model in unique plots. In addition, sensitivity analysis of percolation and evapotranspiration with SWAT has seldom been undertaken. In this study, SWAT99.2 was calibrated to simulate water balance components for unique plots in Southern China from 2000 to 2001, which included surface runoff, percolation, and evapotranspiration. Twenty-one parameters classified into four categories, including meteorological conditions, topographical characteristics, soil properties, and vegetation attributes, were used for sensitivity analysis through one-at-a-time (OAT sampling to identify the factor that contributed most to the variance in water balance components. The results were shown to be different for different plots, with parameter sensitivity indices and ranks varying for different water balance components. Water balance components in the broad-leaved forest and natural grass plots were most sensitive to meteorological conditions, less sensitive to vegetation attributes and soil properties, and least sensitive to topographical characteristics. Compared to those in the natural grass plot, water balance components in the broad-leaved forest plot demonstrated higher sensitivity to the maximum stomatal conductance (GSI and maximum leaf area index (BLAI.

  18. Radium balance in discharge waters from coal mines in Poland the ecological impact of underground water treatment

    International Nuclear Information System (INIS)

    Chalupnik, S.; Wysocka, M.

    2008-01-01

    Saline waters from underground coal mines in Poland often contain natural radioactive isotopes, mainly 226 Ra from the uranium decay series and 228 Ra from the thorium series. More than 70% of the total amount of radium remains underground as radioactive deposits due to spontaneous co-precipitation or water treatment technologies, but several tens of MBq of 226 Ra and even higher activity of 228 Ra are released daily into the rivers along with the other mine effluents from all Polish coal mines. Mine waters can have a severe impact on the natural environment, mainly due to its salinity. Additionally high levels of radium concentration in river waters, bottom sediments and vegetation were also observed. Sometimes radium concentrations in rivers exceeded 0.7 kBq/m 3 , which was the permitted level for wastewaters under Polish law. The investigations described here were carried out for all coal mines and on this basis the total radium balance in effluents has been calculated. Measurements in the vicinity of mine settling ponds and in rivers have given an opportunity to study radium behaviour in river waters and to assess the degree of contamination. For removal of radium from saline waters a method of purification has been developed and implemented in full technical scale in two of Polish coal mines. The purification station in Piast Colliery was unique, the first underground installation for the removal of radium isotopes from saline waters. Very good results have been achieved - approximately 6 m 3 /min of radium-bearing waters were treated there, more than 100 MBq of 226 Ra and 228 Ra remained underground each day. Purification has been started in 1999, therefore a lot of experiences have been gathered during this period. Since year 2006, a new purification station is working in another colliery, Ziemowit, at the level -650 meters. Barium chloride is used as a cleaning , agent, and amount of water to be purified is reaching 9 m 3 /min. Technical measures such as

  19. Rice evapotranspiration at the field and canopy scales under water-saving irrigation

    Science.gov (United States)

    Liu, Xiaoyin; Xu, Junzeng; Yang, Shihong; Zhang, Jiangang

    2018-04-01

    Evapotranspiration (ET) is an important process of land surface water and thermal cycling, with large temporal and spatial variability. To reveal the effect of water-saving irrigation (WSI) on rice ET at different spatial scales and understand the cross spatial scale difference, rice ET under WSI condition at canopy (ETCML) and field scale (ETEC) were measured simultaneously by mini-lysimeter and eddy covariance (EC) in the rice season of 2014. To overcome the shortage of energy balance deficit by EC system, and evaluate the influence of energy balance closure degree on ETEC, ETEC was corrected as {ET}_{EC}^{*} by energy balance closure correction according to the evaporative fraction. Seasonal average daily ETEC, {ET}_{EC}^{*} and ETCML of rice under WSI practice were estimated as 3.12, 4.03 and 4.35 mm day-1, smaller than the values reported in flooded paddy fields. Daily ETEC, {ET}_{EC}^{*} and ETCML varied in a similar trends and reached the maximum in late tillering, then decreased along with the crop growth in late season. The value of ETEC was much lower than ETCML, and was frequently 1-2 h lagged behind ETCML. It indicated that the energy balance deficit resulted in underestimation of crop ET by EC system. The corrected value of {ET}_{EC}^{*} matched ETCML much better than ETEC, with a smaller RMSE (0.086 mm h-1) and higher R 2 (0.843) and IOA (0.961). The time lapse between {ET}_{EC}^{*} and ETCML was mostly shortened to less than 0.5 h. The multiple stepwise regression analysis indicated that net radiation ( R n) is the dominant factor for rice ET, and soil moisture ( θ) is another significant factor ( p important variables for understanding the spatial scale effect of rice ET in WSI fields, and for its cross scale conversion.

  20. Water and energy balance in the cultivated and bake soil in a montane area in Paraiba, Brazil

    International Nuclear Information System (INIS)

    Lima, Jose Romualdo de Sousa

    2004-02-01

    In the areas of rain fed agriculture it is very important to quantify losses of water by evapotranspiration and soil evaporation. The methods used for measuring evapotranspiration and/or evaporation varies from direct measurements techniques, using lysimeters, to measurements of the water and energy balances. The precision lysimeters have high cost, being only used for research purposes. The water and energy balances methods have been very used due the simplicity, robustness and lower cost. Therefore, the objective of this study was to assess the water and energy balance components in the soil cultivated with cowpea (Vigna unguiculata (L) Walp) and without vegetation, besides comparing the methods used to determine the cowpea evapotranspiration. Two experiments (2002 and 2003) were performed in the 4 ha area of the Centro de Ciencias Agrarias, UFPB, municipality of Areia, Paraiba State (6 deg C 58 S, 5 deg C 41 W). To determine the energy balance, the area was instrumented with a rain gauge, a pyrano meter, a net radiometer, and sensors for measuring air temperature and humidity, and wind speed in two levels. Two locals, in the soil, were instrumented with two temperature sensors located at 2.0 cm and 8.0 cm below soil surface and one heat flux plate placed at 5.0 cm below soil surface. The measurements were recorded every 30 minutes on a data logger. To determine the water balance, three plots were installed, composed one-meter access tube for neutron probe measurements, and 8 tensiometers. The results show very good correlation between the aerodynamic method and the Bowen ration energy balance method, for all atmospherics and soil water conditions. For the two years, in average 72% of the net radiation was used by crop evapotranspiration. The energy and water balance can be used, the determine the crop evapotranspiration and soil evaporation, and regardless of the method used, the major water use by crop occurred in the reproductive stage. In the year of 2002

  1. The contribution of groundwater discharge to the overall water budget of two typical Boreal lakes in Alberta/Canada estimated from a radon mass balance

    Directory of Open Access Journals (Sweden)

    A. Schmidt

    2010-01-01

    Full Text Available Radon-222, a naturally-occurring radioisotope with a half-life of 3.8 days, was used to estimate groundwater discharge to small lakes in wetland-dominated basins in the vicinity of Fort McMurray, Canada. This region is under significant water development pressure including both oil sands mining and in situ extraction. Field investigations were carried out in March and July 2008 to measure radon-222 distributions in the water column of two lakes as a tracer of groundwater discharge. Radon concentrations in these lakes ranged from 0.5 to 72 Bq/m3, while radon concentrations in groundwaters ranged between 2000 and 8000 Bq/m3. A radon mass balance, used in comparison with stable isotope mass balance, suggested that the two lakes under investigation had quite different proportions of annual groundwater inflow (from 0.5% to about 14% of the total annual water inflow. Lower discharge rates were attributed to a larger drainage area/lake area ratio which promotes greater surface connectivity. Interannual variability in groundwater proportions is expected despite an implied seasonal constancy in groundwater discharge rates. Our results demonstrate that a combination of stable isotope and radon mass balance approaches provides information on flowpath partitioning that is useful for evaluating surface-groundwater connectivity and acid sensitivity of individual water bodies of interest in the Alberta Oil Sands Region.

  2. N balance of different N application rate of winter wheat under water-saving condition

    International Nuclear Information System (INIS)

    Li Shijuan; Zhu Yeping; Sun Kaimeng; E Yue

    2003-01-01

    N uptake and N balance of different N rate applied to wheat under water-saving condition were investigated with 15 N tracer technique and the dynamic N uptake of economic N treatment under two irrigation conditions was compared. The results showed that (1) compared with conventional n treatment, the N loss of economic N treatment reduced while NUE and N residue in soil improved under water-saving condition; (2) Use efficiency of fertilizer applied as basal fertilizer was higher than that as top-dressing fertilizer under water-saving condition; (3) The fertilizer N residue rate was from 29% to 41%, and 60% of N residue, which distributed in 1 m depth soil concentrated in 0-20 cm surface layer; (4) In whole growing stage of wheat, fertilizer N hadn't leach to 130 cm depth; (5) NUE of economic N treatment under conventional irrigation decreased by 16.6% compared with the same n treatment under water-saving condition

  3. Water balance simulations of a polymer-electrolyte membrane fuel cell using a two-fluid model

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, M.; Kær, Søren Knudsen

    2011-01-01

    humidification conditions. It was found that the specific surface area of the electrolyte in the catalyst layers close to the membrane is of critical importance for the overall water balance. Applying a high specific electrolyte surface area close to the membrane (a water-uptake layer) can prevent drying out...

  4. Water balance complexities in ephemeral catchments with different land uses: Insights from monitoring and distributed hydrologic modeling

    NARCIS (Netherlands)

    Dean, J.F.; Camporese, M.; Webb, J.A.; Grover, S.P.; Dresel, P.E.; Daly, E.

    2016-01-01

    Although ephemeral catchments are widespread in arid and semiarid climates, the relationship of their water balance with climate, geology, topography, and land cover is poorly known. Here we use 4 years (2011–2014) of rainfall, streamflow, and groundwater level measurements to estimate the water

  5. Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model

    NARCIS (Netherlands)

    Marhaento, Hero; Booij, Martijn J.; Rientjes, T. H.M.; Hoekstra, Arjen Y.

    2017-01-01

    Changes in the water balance of the Samin catchment (277.9 km2) on Java, Indonesia, can be attributed to land use change using the Soil Water Assessment Tool model. A baseline-altered method was used in which the simulation period 1990–2013 was divided into 4 equal periods to represent baseline

  6. Field kites: Crop-water production functions and the timing of water application for supplementary irrigation

    Science.gov (United States)

    Smilovic, M.; Gleeson, T.; Adamowski, J. F.

    2015-12-01

    Agricultural production is directly related to water management and water supply. The temporal distribution of water use throughout the growing season can significantly influence crop yield, and the facility to manage both the timing and amount of irrigation water may result in higher yields. The crop-water production function quantitatively evaluates the relationship between seasonal water use and crop yield. Previous efforts have attempted to describe and formalize the crop-water production function as a single-variable function of seasonal water use. However, these representations do not account for the effects of temporal distribution of water use and trivialize the associated variability in yields by assuming an optimized or arbitrary temporal distribution of soil moisture. This over-simplification renders the function inappropriate for recommendations related to irrigation scheduling, water management, economically optimal irrigation, water and agricultural productivity, and assessing the role of full and supplementary irrigation. We propose field kites, a novel representation of the crop-water production function that explicitly acknowledges crop yield variability as a function of both seasonal water use and associated temporal distributions of water use. Field kites are a tool that explicitly considers the farmers' capacity to manage their water resources, to more appropriately evaluate the optimal depth of irrigation water under water-limiting conditions. The field kite for winter wheat is presented both generally and cultivar- and climate-specific for Western Canada. The field kites are constructed using AquaCrop and previously validated cultivar-specific variables. Field kites provide the tools for water authorities and policy makers to evaluate agricultural production as it relates to farm water management, and to determine appropriate policies related to developing and supporting the necessary irrigation infrastructure to increase water productivity.

  7. Pedotransfer functions to estimate soil water content at field capacity ...

    Indian Academy of Sciences (India)

    20

    available scarce water resources in dry land agriculture, but direct measurement thereof for multiple locations in the field is not always feasible. Therefore, pedotransfer functions (PTFs) were developed to estimate soil water retention at FC and PWP for dryland soils of India. A soil database available for Arid Western India ...

  8. Characterizing the Water Balance of the Sooke Reservoir, British Columbia over the Last Century

    Directory of Open Access Journals (Sweden)

    Arelia T. Werner

    2015-03-01

    Full Text Available Infrastructure such as dams and reservoirs are critical water-supply features in several regions of the world. However, ongoing population growth, increased demand and climate variability/change necessitate the better understanding of these systems, particularly in terms of their long-term trends. The Sooke Reservoir (SR of British Columbia, Canada is one such reservoir that currently supplies water to ~300,000 people, and is subject to considerable inter and intra-annual climatic variations. The main objectives of this study are to better understand the characteristics of the SR through an in-depth assessment of the contemporary water balance when the basin was intensively monitored (1996–2005, to use standardized runoff to select the best timescale to compute the Standard Precipitation (SPI and Standard Precipitation Evaporation Indices (SPEI to estimate trends in water availability over 1919 to 2005. Estimates of runoff and evaporation were validated by comparing simulated change in storage, computed by adding inputs and subtracting outputs from the known water levels by month, to observed change in storage. Water balance closure was within ±11% of the monthly change in storage on average when excluding months with spill pre-2002. The highest evaporation, dry season (1998 and lowest precipitation, wet season (2000/2001 from the intensively monitored period were used to construct a worst-case scenario to determine the resilience of the SR to drought. Under such conditions, the SR could support Greater Victoria until the start of the third wet season. The SPEI and SPI computed on a three-month timescale had the highest correlation with the standardized runoff, R2 equaled 0.93 and 0.90, respectively. A trend toward drier conditions was shown by SPEI over 1919 to 2005, while moistening over the same period was shown by SPI, although trends were small in magnitude. This study contributes a validated application of SPI and SPEI, giving more

  9. The collection and field chemical analysis of water samples

    International Nuclear Information System (INIS)

    Korte, N.E.; Ealey, D.T.; Hollenbach, M.H.

    1984-01-01

    A successful water sampling program requires a clear understanding of appropriate measurement and sampling procedures in order to obtain reliable field data and representative samples. It is imperative that the personnel involved have a thorough knowledge of the limitations of the techniques being used. Though this seems self-evident, many sampling and field-chemical-analysis programs are still not properly conducted. Recognizing these problems, the Department of Energy contracted with Bendix Field Engineering Corporation through the Technical Measurements Center to develop and select procedures for water sampling and field chemical analysis at waste sites. The fundamental causese of poor field programs are addressed in this paper, largely through discussion of specific field-measurement techniques and their limitations. Recommendations for improvement, including quality-assurance measures, are also presented

  10. Sustainability of Water Cooled Reactors - Energy Balance for Low Grade Uranium Resources

    International Nuclear Information System (INIS)

    Strupczewski, A.

    2011-01-01

    The opponents of nuclear power claim that as uranium resources get exhausted the energy needed to mine low grade uranium ore will be larger than the energy that can be obtained from fission in a nuclear power plant. This would result in loss of sustainability of nuclear power, with the negative energy balance expected within the next 40-60 years. Since the opponents state clearly that the ore containing less than 0.013% U 3 O 8 cannot yield positive energy balance, the study of the Institute of Atomic Energy in Poland referenced three mines of decreasing ore grade: Ranger 0.234% U 3 O 8 , Rossing 0.028% U 3 O 8 and Trekkopje 0.00126% U 3 O 8 , that is with ore grade below the postulated cut off value. The study considered total energy needs for uranium mining, including not only electricity needed for mining and milling, for water treatment and delivery, but also fuel for transportation and ore crushing, explosives for rock blasting, chemicals for uranium leaching and the energy needed for mine reclamation after completed exploitation. It has been shown that the energy estimates of nuclear opponents are wrong for Ranger mine and go off much further for the mines with lower uranium ore grades. The reasons for erroneous reasoning of nuclear opponents have been found. Their errors arise from treating the uranium ore deposits as if their layout and properties were the same as those of uranium ore mined in the US in the 70-ies. This results in an oversimplified formula, which yields large errors when the thickness of the overlayer is less than it was in the US. In addition the energy needs claimed for mine reclamation are much too high. The study showed that the energy needed for very low grade uranium ore mining and milling increases but the overall energy balance of the nuclear fuel cycle remains strongly positive. (author)

  11. A Portable, Field-Deployable Analyzer for Isotopic Water Measurements

    Science.gov (United States)

    Berman, E. S.; Gupta, M.; Huang, Y. W.; Lacelle, D.; McKay, C. P.; Fortson, S.

    2015-12-01

    Water stable isotopes have for many years been used to study the hydrological cycle, catchment hydrology, and polar climate among other applications. Typically, discrete water samples are collected and transported to a laboratory for isotope analysis. Due to the expense and labor associated with such sampling, isotope studies have generally been limited in scope and time-resolution. Field sampling of water isotopes has been shown in recent years to provide dense data sets with the increased time resolution illuminating substantially greater short term variability than is generally observed during discrete sampling. A truly portable instrument also opens the possibility to utilize the instrument as a tool for identifying which water samples would be particularly interesting for further laboratory investigation. To make possible such field measurements of liquid water isotopes, Los Gatos Research has developed a miniaturized, field-deployable liquid water isotope analyzer. The prototype miniature liquid water isotope analyzer (mini-LWIA) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology in a rugged, Pelican case housing for easy transport and field operations. The analyzer simultaneously measures both δ2H and δ18O from liquid water, with both manual and automatic water introduction options. The laboratory precision for δ2H is 0.6 ‰, and for δ18O is 0.3 ‰. The mini-LWIA was deployed in the high Arctic during the summer of 2015 at Inuvik in the Canadian Northwest Territories. Samples were collected from Sachs Harbor, on the southwest coast of Banks Island, including buried basal ice from the Lurentide Ice Sheet, some ice wedges, and other types of ground ice. Methodology and water analysis results from this extreme field deployment will be presented.

  12. Modeling efficiency and water balance in PEM fuel cell systems with liquid fuel processing and hydrogen membranes

    Science.gov (United States)

    Pearlman, Joshua B.; Bhargav, Atul; Shields, Eric B.; Jackson, Gregory S.; Hearn, Patrick L.

    Integrating PEM fuel cells effectively with liquid hydrocarbon reforming requires careful system analysis to assess trade-offs associated with H 2 production, purification, and overall water balance. To this end, a model of a PEM fuel cell system integrated with an autothermal reformer for liquid hydrocarbon fuels (modeled as C 12H 23) and with H 2 purification in a water-gas-shift/membrane reactor is developed to do iterative calculations for mass, species, and energy balances at a component and system level. The model evaluates system efficiency with parasitic loads (from compressors, pumps, and cooling fans), system water balance, and component operating temperatures/pressures. Model results for a 5-kW fuel cell generator show that with state-of-the-art PEM fuel cell polarization curves, thermal efficiencies >30% can be achieved when power densities are low enough for operating voltages >0.72 V per cell. Efficiency can be increased by operating the reformer at steam-to-carbon ratios as high as constraints related to stable reactor temperatures allow. Decreasing ambient temperature improves system water balance and increases efficiency through parasitic load reduction. The baseline configuration studied herein sustained water balance for ambient temperatures ≤35 °C at full power and ≤44 °C at half power with efficiencies approaching ∼27 and ∼30%, respectively.

  13. The Water, Energy and Food Nexus: Finding the Balance in Infrastructure Investment

    Science.gov (United States)

    Huber-lee, A. T.; Wickel, B.; Kemp-Benedict, E.; Purkey, D. R.; Hoff, H.; Heaps, C.

    2013-12-01

    There is increasing evidence that single-sector infrastructure planning is leading to severely stressed human and ecological systems. There are a number of cross-sectoral impacts in these highly inter-linked systems. Examples include: - Promotion of biofuels that leads to conversion from food crops, reducing both food and water security. - Promotion of dams solely built for hydropower rather than multi-purpose uses, that deplete fisheries and affect saltwater intrusion dynamics in downstream deltas - Historical use of water for cooling thermal power plants, with increasing pressure from other water uses, as well as problems of increased water temperatures that affect the ability to cool plants efficiently. This list can easily be expanded, as these inter-linkages are increasing over time. As developing countries see a need to invest in new infrastructure to improve the livelihoods of the poor, developed countries face conditions of deteriorating infrastructure with an opportunity for new investment. It is crucial, especially in the face of uncertainty of climate change and socio-political realities, that infrastructure planning factors in the influence of multiple sectors and the potential impacts from the perspectives of different stakeholders. There is a need for stronger linkages between science and policy as well. The Stockholm Environment Institute is developing and implementing practical and innovative nexus planning approaches in Latin America, Africa and Asia that brings together stakeholders and ways of integrating uncertainty in a cross-sectoral quantitative framework using the tools WEAP (Water Evaluation and Planning) and LEAP (Long-range Energy Alternatives Planning). The steps used include: 1. Identify key actors and stakeholders via social network analysis 2. Work with these actors to scope out priority issues and decision criteria in both the short and long term 3. Develop quantitative models to clarify options and balances between the needs and

  14. A Force Field for Water over Pt(111): Development, Assessment and Comparison.

    Science.gov (United States)

    Steinmann, Stephan N; Ferreira de Morais, Rodrigo; Götz, Andreas W; Fleurat-Lessard, Paul; Iannuzzi, Marcella; Sautet, Philippe; Michel, Carine

    2018-04-16

    Metal/water interfaces are key in many natural and industrial processes, such as corrosion, atmospheric or environmental chemistry. Even today, the only practical approach to simulate large interfaces between a metal and water is to perform force field simulations. In this work, we propose a novel force field, GAL17, to describe the interaction of water and a Pt(111) surface. GAL17 builds on three terms: (i) a standard Lennard-Jones potential for the bonding interaction between the surface and water; (ii) a Gaussian term to improve the surface corrugation and (iii) two terms describing the angular dependence of the interaction energy. The 12 parameters of this force field are fitted against a set of 210 adsorption geometries of water on Pt(111). The performance of GAL17 is compared to several other approaches, that have not been validated against extensive first principles computations yet. Their respective accuracy is evaluated on an extended set of 802 adsorption geometries of H2O on Pt(111), 52 geometries derived from ice-like layers and an MD simulation of an interface between a c(4x6) Pt(111) surface and a water layer of 14 Å thickness. The newly developed GAL17 force field provides a significant improvement over previously existing force fields for Pt(111)/H2O interactions. Its well-balanced performance suggests that it is an ideal candidate to generate relevant geometries for the metal/water interface, paving the way to a representative sampling of the equilibrium distribution at the interface and to predict solvation free energies at the solid/liquid interface.

  15. A worldwide evaluation of basin-scale evapotranspiration estimates against the water balance method

    Science.gov (United States)

    Liu, Wenbin; Wang, Lei; Zhou, Jing; Li, Yanzhong; Sun, Fubao; Fu, Guobin; Li, Xiuping; Sang, Yan-Fang

    2016-07-01

    Evapotranspiration (ET) plays a critical role in linking the water and energy cycles but is difficult to estimate at regional and basin scales. In this study, we present a worldwide evaluation of nine ET products (three diagnostic products, three land surface model (LSM) simulations and three reanalysis-based products) against reference ET (ETwb) calculated using the water balance method corrected for the water storage change at an annual time scale over the period 1983-2006 for 35 global river basins. The results indicated that there was no significant intra-category discrepancy in the annual ET estimates for the 35 basins calculated using the different products in 35 basins, but some products performed better than others, such as the Global Land surface Evaporation estimated using the Amsterdam Methodology (GLEAM_E) in the diagnostic products, ET obtained from the Global Land Data Assimilation System version 1 (GLDAS 1) with the Community Land Model scheme (GCLM_E) in LSM simulations, and ET from the National Aeronautics and Space Administration (NASA) Modern Era Retrospective-analysis for Research and Applications reanalysis dataset (MERRA_E) in the reanalysis-based products. Almost all ET products (except MERRA_E) reasonably estimated the annual means (especially in the dry basins) but systematically underestimated the inter-annual variability (except for MERRA_E, GCLM_E and ET simulation from the GLDAS 1 with the MOSAIC scheme - GMOS_E) and could not adequately estimate the trends (e.g. GCLM_E and MERRA_E) of ETwb (especially in the energy-limited wet basins). The uncertainties in nine ET products may be primarily attributed to the discrepancies in the forcing datasets and model structural limitations. The enhancements of global forcing data (meteorological data, solar radiation, soil moisture stress and water storage changes) and model physics (reasonable consideration of the water and energy balance and vegetation processes such as canopy interception loss

  16. Estimation of the climate change impact on a catchment water balance using an ensemble of GCMs

    Science.gov (United States)

    Reshmidevi, T. V.; Nagesh Kumar, D.; Mehrotra, R.; Sharma, A.

    2018-01-01

    This work evaluates the impact of climate change on the water balance of a catchment in India. Rainfall and hydro-meteorological variables for current (20C3M scenario, 1981-2000) and two future time periods: mid of the 21st century (2046-2065) and end of the century (2081-2100) are simulated using Modified Markov Model-Kernel Density Estimation (MMM-KDE) and k-nearest neighbor downscaling models. Climate projections from an ensemble of 5 GCMs (MPI-ECHAM5, BCCR-BCM2.0, CSIRO-mk3.5, IPSL-CM4, and MRI-CGCM2) are used in this study. Hydrologic simulations for the current as well as future climate scenarios are carried out using Soil and Water Assessment Tool (SWAT) integrated with ArcGIS (ArcSWAT v.2009). The results show marginal reduction in runoff ratio, annual streamflow and groundwater recharge towards the end of the century. Increased temperature and evapotranspiration project an increase in the irrigation demand towards the end of the century. Rainfall projections for the future shows marginal increase in the annual average rainfall. Short and moderate wet spells are projected to decrease, whereas short and moderate dry spells are projected to increase in the future. Projected reduction in streamflow and groundwater recharge along with the increase in irrigation demand is likely to aggravate the water stress in the region under the future scenario.

  17. Balancing Catalytic Activity and Interface Energetics of Electrocatalyst-Coated Photoanodes for Photoelectrochemical Water Splitting.

    Science.gov (United States)

    Xu, Zhe; Wang, Haoyu; Wen, Yunzhou; Li, Wenchao; Sun, Chuyu; He, Yuting; Shi, Zhan; Pei, Lang; Chen, Yongda; Yan, Shicheng; Zou, Zhigang

    2018-01-31

    For photoelectrochemical (PEC) water splitting, the interface interactions among semiconductors, electrocatalysts, and electrolytes affect the charge separation and catalysis in turn. Here, through the changing of the bath temperature, Co-based oxygen evolution catalysts (OEC) with different crystallinities were electrochemically deposited on Ti-doped Fe 2 O 3 (Ti-Fe 2 O 3 ) photoanodes. We found: (1) the OEC with low crystallinity is highly ion-permeable, decreasing the interactions between OEC and photoanode due to the intimate interaction between semiconductor and electrolyte; (2) the OEC with high crystallinity is nearly ion-impermeable, is beneficial to form a constant buried junction with semiconductor, and exhibits the low OEC catalytic activity; and (3) the OEC with moderate crystallinity is partially electrolyte-screened, thus contributing to the formation of ideal band bending underneath surface of semiconductor for charge separation and the highly electrocatalytic activity of OEC for lowering over-potentials of water oxidation. Our results demonstrate that to balance the water oxidation activity of OEC and OEC-semiconductor interface energetics is crucial for highly efficient solar energy conversion; in particular, the energy transducer is a semiconductor with a shallow or moderate valence-band level.

  18. Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development.

    Directory of Open Access Journals (Sweden)

    Christopher Hepworth

    Full Text Available Root development is influenced by nutrient and water availabilities. Plants are able to adjust many attributes of their root in response to environmental signals including the size and shape of the primary root, lateral roots and root hairs. Here we investigated the response of roots to changes in the levels of leaf transpiration associated with altered stomatal frequency. We found that plants with high stomatal density and conductance produce a larger rooting area and as a result have enhanced phosphate uptake capacity whereas plants with low stomatal conductance produce a smaller root. Manipulating the growth environment of plants indicated that enhanced root growth is most likely a result of an increased demand for water rather than phosphate. Plants manipulated to have an increase or reduction in root hair growth show a reduction or increase respectively, in stomatal conductance and density. Our results demonstrate that plants can balance their water uptake and loss through coordinated regulation of both stomatal and root development.

  19. Cold-water immersion alters muscle recruitment and balance of basketball players during vertical jump landing.

    Science.gov (United States)

    Macedo, Christiane de Souza Guerino; Vicente, Rafael Chagas; Cesário, Mauricio Donini; Guirro, Rinaldo Roberto de Jesus

    2016-01-01

    The purpose of this study was to evaluate the effects of cold-water immersion on the electromyographic (EMG) response of the lower limb and balance during unipodal jump landing. The evaluation comprised 40 individuals (20 basketball players and 20 non-athletes). The EMG response in the lateral gastrocnemius, tibialis anterior, fibular longus, rectus femoris, hamstring and gluteus medius; amplitude and mean speed of the centre of pressure, flight time and ground reaction force (GRF) were analysed. All volunteers remained for 20 min with their ankle immersed in cold-water, and were re-evaluated immediately post and after 10, 20 and 30 min of reheating. The Shapiro-Wilk test, Friedman test and Dunn's post test (P jump flight time and GRF, greater amplitude and mean speed of centre of pressure were predominant in the athletes. Cold-water immersion decreased the EMG activity of the lower limb, flight time and GRF and increased the amplitude and mean speed of centre of pressure.

  20. Water balance of two earthen landfill caps in a semi-arid climate

    International Nuclear Information System (INIS)

    Khire, M.V.; Benson, C.H.; Bosscher, P.J.

    1997-01-01

    Water balance data are presented that were obtained from two earthen cap test sections located in a semi-arid region. The test sections were constructed on a municipal solid waste landfill in East Wenatchee, Washington, USA. One test section represents a traditional resistive barrier, and is constructed with a compacted silty clay barrier 60 cm thick and a vegetated silty clay surface layer 15 cm thick. The other test section represents a capillary barrier and has a sand layer 75 cm thick overlain by a 15-cm-thick vegetated surface layer of silt. Extensive hydrological and meteorological data have been collected since November 1992. Unsaturated hydraulic properties of soils, hydrologic parameters, and vegetation have been extensively characterized. Results of the study show that capillary barriers can be effective caps in semi-arid and arid regions. They are also cheaper to construct and can perform better than traditional resistive barriers

  1. Assessment of climate change impacts on water balance components of Heeia watershed in Hawaii

    Directory of Open Access Journals (Sweden)

    Olkeba Tolessa Leta

    2016-12-01

    New hydrological insights for the study region: Compared to continental watersheds, the Heeia watershed showed high rainfall initial abstraction due to high initial infiltration capacity of the soils. The simulated and observed streamflows generally showed a good agreement and satisfactory model performance demonstrating the applicability of SWAT for small island watersheds with large topographic, precipitation, and land-use gradients. The study also demonstrates methods to resolve data scarcity issues. Predicted climate change scenarios showed that the decrease in rainfall during wet season and marginal increase in dry season are the main factors for the overall decrease in water balance components. Specifically, the groundwater flow component may consistently decrease by as much as 15% due to predicted rainfall and temperature changes by 2100, which may have serious implications on groundwater availability in the watershed.

  2. Rainfall-Runoff and Water-Balance Models for Management of the Fena Valley Reservoir, Guam

    Science.gov (United States)

    Yeung, Chiu W.

    2005-01-01

    The U.S. Geological Survey's Precipitation-Runoff Modeling System (PRMS) and a generalized water-balance model were calibrated and verified for use in estimating future availability of water in the Fena Valley Reservoir in response to various combinations of water withdrawal rates and rainfall conditions. Application of PRMS provides a physically based method for estimating runoff from the Fena Valley Watershed during the annual dry season, which extends from January through May. Runoff estimates from the PRMS are used as input to the water-balance model to estimate change in water levels and storage in the reservoir. A previously published model was calibrated for the Maulap and Imong River watersheds using rainfall data collected outside of the watershed. That model was applied to the Almagosa River watershed by transferring calibrated parameters and coefficients because information on daily diversions at the Almagosa Springs upstream of the gaging station was not available at the time. Runoff from the ungaged land area was not modeled. For this study, the availability of Almagosa Springs diversion data allowed the calibration of PRMS for the Almagosa River watershed. Rainfall data collected at the Almagosa rain gage since 1992 also provided better estimates of rainfall distribution in the watershed. In addition, the discontinuation of pan-evaporation data collection in 1998 required a change in the evapotranspiration estimation method used in the PRMS model. These reasons prompted the update of the PRMS for the Fena Valley Watershed. Simulated runoff volume from the PRMS compared reasonably with measured values for gaging stations on Maulap, Almagosa, and Imong Rivers, tributaries to the Fena Valley Reservoir. On the basis of monthly runoff simulation for the dry seasons included in the entire simulation period (1992-2001), the total volume of runoff can be predicted within -3.66 percent at Maulap River, within 5.37 percent at Almagosa River, and within 10

  3. Variations in surface water-ground water interactions along a headwater mountain stream : comparisons between transient storage and water balance analyses

    Science.gov (United States)

    Ward, Adam S.; Payn, Robert A.; Gooseff, Michael N.; McGlynn, Brian L.; Bencala, Kenneth E.; Kelleher, Christa A.; Wondzell, Steven M.; Wagener, Thorsten

    2013-01-01

    The accumulation of discharge along a stream valley is frequently assumed to be the primary control on solute transport processes. Relationships of both increasing and decreasing transient storage, and decreased gross losses of stream water have been reported with increasing discharge; however, we have yet to validate these relationships with extensive field study. We conducted transient storage and mass recovery analyses of artificial tracer studies completed for 28 contiguous 100 m reaches along a stream valley, repeated under four base-flow conditions. We calculated net and gross gains and losses, temporal moments of tracer breakthrough curves, and best fit transient storage model parameters (with uncertainty estimates) for 106 individual tracer injections. Results supported predictions that gross loss of channel water would decrease with increased discharge. However, results showed no clear relationship between discharge and transient storage, and further analysis of solute tracer methods demonstrated that the lack of this relation may be explained by uncertainty and equifinality in the transient storage model framework. Furthermore, comparison of water balance and transient storage approaches reveals complications in clear interpretation of either method due to changes in advective transport time, which sets a the temporal boundary separating transient storage and channel water balance. We have little ability to parse this limitation of solute tracer methods from the physical processes we seek to study. We suggest the combined analysis of both transient storage and channel water balance more completely characterizes transport of solutes in stream networks than can be inferred from either method alone.

  4. Meeting the challenges of on-host and off-host water balance in blood-feeding arthropods

    Science.gov (United States)

    Benoit, Joshua B.; Denlinger, David L.

    2010-01-01

    In this review, we describe water balance requirements of blood-feeding arthropods, particularly contrasting dehydration tolerance during the unfed, off-host state and the challenges of excess water that accompany receipt of the bloodmeal. Most basic water balance characteristics during the off-host stage are applicable to other terrestrial arthropods, as well. A well-coordinated suite of responses enable arthropods to conserve water resources, enhance their desiccation tolerance, and increase their water supplies by employing a diverse array of molecular, structural and behavioral responses. Water loss rates during the off-host phase are particularly useful for generating a scheme to classify vectors according to their habitat requirements for water, thus providing a convenient tool with potential predictive power for defining suitable current and future vector habitats. Blood feeding elicits an entirely different set of challenges as the vector responds to overhydration by quickly increasing its rate of cuticular water loss and elevating the rate of diuresis to void excess water and condense the bloodmeal. Immature stages that feed on blood normally have a net increase in water content at the end of a blood-feeding cycle, but in adults the water content reverts to the prefeeding level when the cycle is completed. Common themes are evident in diverse arthropods that feed on blood, particularly the physiological mechanisms used to respond to the sudden influx of water as well as the mechanisms used to counter water shortfalls that are encountered during the nonfeeding, off-host state. PMID:20206630

  5. THE USE OF DRINKING WATER IN THE CONDITIONS OF MAINTAINING ECOLOGICAL BALANCE

    Directory of Open Access Journals (Sweden)

    Avtandil SILAGADZE

    2016-02-01

    pipelines. Thus, there is proposed a model of bacteriological pure underground artesian water supply from Georgia to Europe in the conditions of maintaining ecological balance. This model takes into account the analysis of water pipeline alternatives, “Georgia-Europe” pipeline construction, as Europe's population is in need of high-quality drinking water, and Georgia is interested in its export.

  6. Global, continental and regional water balance estimates from HYPE catchment modelling

    Science.gov (United States)

    Arheimer, Berit; Andersson, Jafet; Crochemore, Louise; Donnelly, Chantal; Gustafsson, David; Hasan, Abdoulghani; Isberg, Kristina; Pechlivanidis, Ilias; Pimentel, Rafael; Pineda, Luis

    2017-04-01

    In the past, catchment modelling mainly focused on simulating the lumped hydrological cycle at local to regional domains with high precision in a specific point of a river. Today, the level of maturity in hydrological process descriptions, input data and methods for parameter constraints makes it possible to apply these models also for multi-basins over large domains, still using the catchment modellers approach with high demands on agreement with observed data. HYPE is a process-oriented, semi-distributed and open-source model concept that is developed and used operationally in Sweden since a decade. Its finest calculation unit is hydrological response units (HRUs) in a catchment and these are assumed to give the same rainfall-runoff response. HRUs are normally made up of similar land cover and management, combined with soil type or elevation. Water divides are retrieved from topography and calculations are integrated for catchments, which can be of different spatial resolution and are coupled along the river network. In each catchment, HYPE calculates the water balance of a given time-step separately for various hydrological storages, such glaciers, active soil, groundwater, river channels, wetlands, floodplains, and lakes. The model is calibrated in a step-wise manner (following the water path-ways) against various sources additional data sources, including in-situ observations, Earth Observation products, soft information and expert judgements (Arheimer et al., 2012; Donnelly et al, 2016; Pechlivanidis and Arheimer 2015). Both the HYPE code and the model set-ups (i.e. input data and parameter values) are frequently released in new versions as they are continuously improved and updated. This presentation will show the results of aggregated water-balance components over large domains, such as the Arctic basin, the European continent, the Indian subcontinent and the Niger River basin. These can easily be compared to results from other kind of large-scale modelling

  7. Complex Interactions between Temperature and Relative Humidity on Water Balance of Adult Tsetse (Glossinidae, Diptera): Implications for Climate Change.

    Science.gov (United States)

    Kleynhans, Elsje; Terblanche, John S

    2011-01-01

    Insect water balance plays an important role in determining energy budgets, activity patterns, survival, and population dynamics and, hence, geographic distribution. Tsetse (Glossina spp.) are important vectors of human and animal disease occupying a wide range of habitats in Africa and are notable for their desiccation resistance in xeric environments. Here, we measure water balance and related traits [water loss rate (WLR), body water content (BWC), body lipid content (BLC) and body mass] in adult flies across a range of temperature (20-30°C) and relative humidity (0-99%) combinations in four tsetse species from both xeric and mesic habitats. WLRs were significantly affected by measurement under different temperature and relative humidity combinations, while BWC, BLC, and body mass were less affected. These results provide support for mass-independent inter- and intra-specific variation in WLRs and survival times. Furthermore, water balance responses to variation in temperature and relative humidity are complex in Glossina, and this response varies within and among species, subgroups, and ecotypes in terms of both magnitude of effects and the direction of change. Different effects of temperature and relative humidity within and among experimental conditions and species suggests cuticular permeability and saturation deficit are likely to be key factors in forecasting tsetse water balance responses to climate variability. This complicates potential forecasting of tsetse distribution in the face of climate change.

  8. Does plant diversity affect the water balance of established grassland systems?

    Science.gov (United States)

    Leimer, Sophia; Bischoff, Sebastian; Blaser, Stefan; Boch, Steffen; Busch, Verena; Escher, Peter; Fischer, Markus; Kaupenjohann, Martin; Kerber, Katja; Klaus, Valentin; Michalzik, Beate; Prati, Daniel; Schäfer, Deborah; Schmitt, Barbara; Schöning, Ingo; Schwarz, Martin T.; Siemens, Jan; Thieme, Lisa; Wilcke, Wolfgang

    2017-04-01

    The water cycle drives nutrient cycles and plant productivity. The impact of land use on the water cycle has been extensively studied and there is experimental evidence that biodiversity modifies the water cycle in grasslands. However, the combined influences of land-use and associated biodiversity on the water cycle in established land-use systems are unclear. Therefore, we investigated how evapotranspiration (ETa), downward water flux (DF), and capillary rise (CR) in topsoil and subsoil are related to land-use and plant diversity in established, commercially managed grassland and compared these results to findings from experiments where plant diversity was manipulated. In three Central European regions ("Biodiversity Exploratories"), we studied 29 grassland plots (50 m x 50 m; 9-11 plots per region) from 2010 to 2015. The land-use types cover pasture, mown pasture, and meadow in at least triplicate per region. On each plot, we measured soil water contents, meteorological data (hourly resolution), cumulative precipitation (biweekly), plant species richness, the number of plants in the functional groups of grasses, herbs, and legumes (annually), and root biomass (once). Potential evapotranspiration (ETp) was calculated from meteorological data per plot. Missing data points of ETp and soil water contents were estimated with Bayesian hierarchical models. ETa, DF, and CR were calculated for two soil layers with a soil water balance model. The model is based on changes in soil water storage between subsequent observation dates and ETp, which was partitioned between soil layers according to root distribution. Water fluxes in annual resolution were statistically analyzed for land-use and biodiversity effects using repeated-measures analysis of variance (ANOVA). Land-use type did not affect water fluxes. Species richness did not influence DF and CR. DF from topsoil was higher on plots with more grass species, which is opposite to the results from a manipulative

  9. An integrative water balance model framework for a changing glaciated catchment in the Andes of Peru

    Science.gov (United States)

    Drenkhan, Fabian; Huggel, Christian; García Hernández, Javier; Fluixá-Sanmartín, Javier; Seidel, Jochen; Muñoz Asmat, Randy

    2017-04-01

    In the Santa River catchment [SRC] (Cordillera Blanca, Andes of Peru), human livelihoods strongly depend on year-round streamflow from glaciers and reservoirs, particularly in the dry season and in adjacent arid lowlands. Perennial glacial streamflow represents a buffer to water shortages, annual discharge variability and river contamination levels. However, climate change impacts, consecutive glacier shrinkage as well as new irrigated agriculture and hydropower schemes, population growth and thus water allocation might increase water scarcity in several areas of the SRC. This situation exerts further pressure and conflict potential over water resources and stresses the need to analyze both water supply and demand trends in a multidisciplinary and interlinked manner. In this context, an integrative glacio-hydrological framework was developed based on the Glacier and Snow Melt (GSM) and SOil CONTribution (SOCONT) models using the semi-distributed free software RS MINERVE. This water balance model incorporates hydroclimatic, socioeconomic and hydraulic objects and data at daily scale (with several gaps) for the last 50 years (1965-2015). A particular challenge in this context represents the poor data availability both in quantity and quality. Therefore, the hydroclimatic dataset to be used had to be carefully selected and data gaps were filled applying a statistical copula-based approach. The socioeconomic dataset of water demand was elaborated using several assumptions based on further census information and experiences from other projects in the region. Reservoirs and hydropower models were linked with additional hydraulic data. In order to increase model performance within a complex topography of the 11660 km2 SRC, the area was divided into 22 glaciated (GSM) and 42 non-glaciated (SOCONT) subcatchment models. Additionally, 382 elevation bands at 300 m interval were created and grouped into 22 different calibration zones for the whole SRC. The model was calibrated

  10. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Commercial Proton Exchange Membrane Fuel Cell Stack

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    2016-01-01

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive (e.g. the Toyota Mirai) to stationary such as powering telecom backup units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce...... and increased degradation rates. Clearly, a fundamental understanding of all aspects of water management in PEMFC is imperative. This includes the fuel cell water balance, i.e. which fraction of the product water leaves the fuel cell via the anode channels versus the cathode channel. Our research group...... is currently developing a novel technique to obtain an ad-hoc and real time electrical signal of the fuel cell water balance by employing hot wire anemometry. In this work, the hot wire sensor is placed in the anode outlet of a commercial air-cooled fuel cell stack by Ballard Power Systems, and the voltage...

  11. Canopy water balance of windward and leeward Hawaiian cloud forests on Haleakalā, Maui, Hawai'i

    Science.gov (United States)

    Giambelluca, Thomas W.; DeLay, John K.; Nullet, Michael A.; Scholl, Martha A.; Gingerich, Stephen B.

    2011-01-01

    The contribution of intercepted cloud water to precipitation at windward and leeward cloud forest sites on the slopes of Haleakalā, Maui was assessed using two approaches. Canopy water balance estimates based on meteorological monitoring were compared with interpretations of fog screen measurements collected over a 2-year period at each location. The annual incident rainfall was 973 mm at the leeward site (Auwahi) and 2550 mm at the windward site (Waikamoi). At the leeward, dry forest site, throughfall was less than rainfall (87%), and, at the windward, wet forest site, throughfall exceeded rainfall (122%). Cloud water interception estimated from canopy water balance was 166 mm year−1 at Auwahi and 1212 mm year−1 at Waikamoi. Annual fog screen measurements of cloud water flux, corrected for wind-blown rainfall, were 132 and 3017 mm for the dry and wet sites respectively. Event totals of cloud water flux based on fog screen measurements were poorly correlated with event cloud water interception totals derived from the canopy water balance. Hence, the use of fixed planar fog screens to estimate cloud water interception is not recommended. At the wet windward site, cloud water interception made up 32% of the total precipitation, adding to the already substantial amount of rainfall. At the leeward dry site, cloud water interception was 15% of the total precipitation. Vegetation at the dry site, where trees are more exposed and isolated, was more efficient at intercepting the available cloud water than at the rainy site, but events were less frequent, shorter in duration and lower in intensity. A large proportion of intercepted cloud water, 74% and 83%, respectively for the two sites, was estimated to become throughfall, thus adding significantly to soil water at both sites

  12. Turbulent water vapor exchanges and two source energy balance model estimated fluxes of heterogeneous vineyard canopies

    Science.gov (United States)

    Los, S.; Hipps, L.; Alfieri, J. G.; Prueger, J. H.; Kustas, W. P.

    2017-12-01

    Agriculture in semi-arid regions is globally facing increasing stress on water resources. Hence, knowledge of water used in irrigated crops is essential for water resource management. However, quantifying spatial and temporal distribution of evapotranspiration (ET) has proven difficult because of the inherent complexities involved. Understanding of the complex biophysical relationships that govern ET is incomplete, particularly for heterogeneous vegetation. The USDA-ARS is developing a remotely-sensed ET modeling system that utilizes a two-source energy balance (TSEB) model capable of simulating turbulent water and energy exchange from measurements of radiometric land surface temperature. The modeling system has been tested over a number of vegetated surfaces and is currently being validated for vineyard sites in the Central Valley of California through the Grape Remote sensing Atmospheric Profiling & Evapotranspiration eXperiment (GRAPEX). The highly variable, elevated canopy structure and semi-arid climatic conditions of these sites give the opportunity to gain knowledge of both turbulent exchange processes and the TSEB model's ability to simulate turbulent fluxes for heterogeneous vegetation. Analyzed are fast-response (20 Hz) 3-D velocity, temperature, and humidity measurements gathered over 4 years at two vineyard sites. These data were collected at a height of 5 m, within the surface layer but above the canopy, and at 1.5 m, below the canopy top. Power spectra and cross-spectra are used to study behavior of turbulent water vapor exchanges and coupling between the canopy layer and surface layer under various atmospheric conditions. Frequent light winds and unstable daytime conditions, combined with the complicated canopy structure, often induce intermittent and episodic turbulence transport. This resulted in a modal behavior alternating between periods of more continuous canopy venting and periods where water vapor fluxes are dominated by transient, low

  13. Analysis of soil and vegetation patterns in semi-arid Mediterranean landscapes by way of a conceptual water balance model

    Directory of Open Access Journals (Sweden)

    I. Portoghese

    2008-06-01

    Full Text Available This paper investigates the impact of various vegetation types on water balance variability in semi-arid Mediterranean landscapes, and the different strategies they may have developed to succeed in such water-limited environments. The existence of preferential associations between soil water holding capacity and vegetation species is assessed through an extensive soil geo-database focused on a study region in Southern Italy. Water balance constraints that dominate the organization of landscapes are investigated by a conceptual bucket approach. The temporal water balance dynamics are modelled, with vegetation water use efficiency being parameterized through the use of empirically obtained crop coefficients as surrogates of vegetation behavior in various developmental stages. Sensitivity analyses with respect to the root zone depth and soil water holding capacity are carried out with the aim of explaining the existence of preferential soil-vegetation associations and, hence, the spatial distribution of vegetation types within the study region. Based on these sensitivity analyses the degrees of suitability and adaptability of each vegetation type to parts of the study region are explored with respect of the soil water holding capacity, and the model results were found consistent with the observed affinity patterns.

  14. Field test and sensitivity analysis of a sensible heat balance method to determine ice contents

    Science.gov (United States)

    Soil ice content impacts winter vadose zone hydrology. It may be possible to estimate changes in soil ice content with a sensible heat balance (SHB) method, using measurements from heat pulse (HP) sensors. Feasibility of the SHB method is unknown because of difficulties in measuring soil thermal pro...

  15. Ponds' water balance and runoff of endorheic watersheds in the Sahel

    Science.gov (United States)

    Gal, Laetitia; Grippa, Manuela; Kergoat, Laurent; Hiernaux, Pierre; Mougin, Eric; Peugeot, Christophe

    2015-04-01

    The Sahel has been characterized by a severe rainfall deficit since the mid-twentieth century, with extreme droughts in the early seventies and again in the early eighties. These droughts have strongly impacted ecosystems, water availability, fodder resources, and populations living in these areas. However, an increase of surface runoff has been observed during the same period, such as higher "summer discharge" of Sahelian's rivers generating local floods, and a general increase in pond's surface in pastoral areas of central and northern Sahel. This behavior, less rain but more surface runoff is generally referred to as the "Sahelian paradox". Various hypotheses have been put forward to explain this paradoxical situation. The leading role of increase in cropped areas, often cited for cultivated Sahel, does not hold for pastoral areas in central and northern Sahel. Processes such as degradation of vegetation subsequent to the most severe drought events, soils erosion and runoff concentration on shallow soils, which generate most of the water ending up in ponds, seem to play an important role. This still needs to be fully understood and quantified. Our study focuses on a model-based approach to better understand the hydrological changes that affected the Agoufou watershed (Gourma, Mali), typical of the central, non-cultivated Sahel. Like most of the Sahelian basins, the Agoufou watershed is ungauged. Therefore we used indirect data to provide the information required to validate a rainfall-runoff model approach. The pond volume was calculated by combining in-situ water level measurements with pond's surface estimations derived by remote sensing. Using the pond's water balance equation, the variations of pond volume combined to estimates of open water bodies' evaporation and infiltration determined an estimation for the runoff supplying the pond. This estimation highlights a spectacular runoff increase over the last sixty years on the Agoufou watershed. The runoff

  16. In situ unsaturated zone water stable isotope (2H and 18O) measurements in semi-arid environments: a soil water balance

    Science.gov (United States)

    Gaj, Marcel; Beyer, Matthias; Koeniger, Paul; Wanke, Heike; Hamutoko, Josefina; Himmelsbach, Thomas

    2016-02-01

    Stable isotopes (deuterium, 2H, and oxygen-18, 18O) of soil water were measured in the field using a liquid water isotope analyzer (tunable off-axis integrated cavity output spectroscope, OA-ICOS, LGR) and commercially available soil gas probes (BGL-30, UMS, Munich) in the semi-arid Cuvelai-Etosha Basin (CEB), Namibia. Results support the applicability of an in situ measurement system for the determination of stable isotopes in soil pore water. High spatial and temporal resolution was achieved in the study area with reasonable accuracy and measurements were in agreement with laboratory-based cryogenic vacuum extraction and subsequent cavity ring-down laser spectroscopic isotope analysis (CRDS, L2120-i, Picarro Inc.). After drift and span correction of the in situ isotope data, precision for over 140 measurements taken during two consecutive field campaigns (June and November 2014) was 1.8 and 0.48 ‰ for δ2H and δ18O, respectively. Mean measurement trueness is determined using quality check standards and was 5 and 0.3 ‰ for δ2H and δ18O, respectively. The isotope depth profiles are used quantitatively to calculate a soil water balance. The contribution of transpiration to total evapotranspiration ranged between 72 and 92 %. Shortly after a rain event, the contribution of transpiration was much lower, at 35 to 50 %. Potential limitations of such an in situ system are related to environmental conditions which could be minimized by using a temperature-controlled chamber for the laser spectrometer. Further, the applicability of the system using previously oven-dried soil material might be limited by physicochemical soil properties (i.e., clay minerals). Uncertainty in the in situ system is suggested to be reduced by improving the calibration procedure and further studying fractionation effects influencing the isotope ratios in the soil water, especially at low water contents. Furthermore, the influence of soil-respired CO2 on isotope values within the root zone

  17. Highly balanced single-layer high-temperature superconductor SQUID gradiometer freely movable within the Earth's magnetic field

    International Nuclear Information System (INIS)

    Schultze, Volkmar; IJsselsteijn, Rob; May, Torsten; Meyer, Hans-Georg

    2003-01-01

    We developed a gradiometer system based on a single-layer high-temperature superconductor dc superconducting quantum interference device (SQUID), which can be freely moved within the Earth's magnetic field during measurement. The problem of circumferential shielding currents in the parallel gradiometer pick-up loop is solved by the use of an appropriately designed magnetometer SQUID integrated on the gradiometer chip. The magnetometer's feedback coil of the flux-locked loop is laid out as a small Helmholtz coil pair, thus keeping the homogeneous magnetic field constant for both the magnetometer and the gradiometer. Therefore, the balance of the directly coupled gradiometer SQUID is enhanced from 100 up to 3800. The noise limited magnetic field gradient resolution of 45 pT m -1 Hz -1/2 is preserved down to frequencies of several Hz even after strong motion in the Earth's magnetic field

  18. Modelling of the carbon and water balances of olive (Olea europaea, L.)

    International Nuclear Information System (INIS)

    Villalobos, F.J.

    1999-01-01

    Olive orchards are the main component of numerous agricultural systems in the Mediterranean region. In this work we present the development of a simulation model of olive orchards, which is used here to illustrate some specific features of the water and carbon balances of olives. The fraction of daily Photosynthetically-Active Radiation (PAR) intercepted by the trees (Qd) changes substantially with solar declination. For a given LAI Qd increases as tree size is smaller. Canopy volume has a much larger effect on Qd than Leaf Area Density (LAD), implying that a submodel for canopy volume will be required. Estimates of Radiation-Use Efficiency for yield are 0.35 g dry matter/(MJ PAR) and 0.16 g oil/(MJ PAR) which are around 80% of those for sunflower under the same environment. Crop evaporation in olive orchards is characterized by a high proportion of evaporation from the soil surface (Es) and by the response of stomata to air humidity. Results from a evapotranspiration corresponds to Es, and that Water-Use Efficiency relative to transpiration is 0.9 kg fruit dry matter m-3, which is equal to that of sunflower. Important gaps in our knowledge of olive ecophysiology (dry matter partitioning and growth) require further research

  19. Hydrological behaviour and water balance analysis for Xitiaoxi catchment of Taihu Basin

    Directory of Open Access Journals (Sweden)

    Xue Lijuan

    2008-09-01

    Full Text Available With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication of water bodies in the region. Investigation of surface flow and associated mass transport for the Xitiaoxi catchment is of a significant degree of importance as the Xitiaoxi catchment is one of the major catchments within the Taihu region. A SWAT-based distributed hydrological model was established for the Xitiaoxi catchment. The model was calibrated and verified using hydrometeorological data from 1988 to 2001. The results indicate that the modeled daily and annual stream flow match the observed data both in the calibration period and the verification period, with a linear regression coefficient R2 and a coefficient e for modeled daily stream flow greater than 0.8 at Hengtangcun and Fanjiacun gauge stations. The results show that the runoff process in the Xitiaoxi catchment is affected both by rainfall and human activities (e.g., reservoirs and polder areas. Moreover, the human activities weaken flood peaks more noticeably during rainstorms. The water balance analysis reveals the percentages of precipitation made up by surface flow, evapotranspiration, groundwater recharge and the change of soil storage, all of which are considered useful to the further understanding of the hydrological processes in the Xitiaoxi catchment. This study provides a good base for further studies in mass transport modeling and comparison of modeling results from similar hydrological models.

  20. Sustainable conversion of agriculture wastes into activated carbons: energy balance and arsenic removal from water.

    Science.gov (United States)

    Dieme, M M; Villot, A; Gerente, C; Andres, Y; Diop, S N; Diawara, C K

    2017-02-01

    The aims of this study are to investigate the production of activated carbons (AC) from Senegal agricultural wastes such as cashew shells, millet stalks and rice husks and to implement them in adsorption processes devoted to arsenic (V) removal. AC were produced by a direct physical activation with water steam without other chemicals. This production of AC has also led to co-products (gas and bio-oil) which have been characterized in terms of physical, chemical and thermodynamical properties for energy recovery. Considering the arsenic adsorption results and the energy balance for the three studied biomasses, the first results have shown that the millet stalks seem to be more interesting for arsenate removal from natural water and an energy recovery with a GEE elec of 18.9%. Cashew shells, which have shown the best energy recovery (34.3%), are not suitable for arsenate removal. This global approach is original and contributes to a recycling of biowastes with a joint recovery of energy and material.

  1. First insights on Lake General Carrera/Buenos Aires/Chelenko water balance

    Directory of Open Access Journals (Sweden)

    G. Zambrano

    2009-12-01

    Full Text Available Lago General Carrera (Chile also called Lago Buenos Aires (Argentina or originally Chelenko by the native habitants of the region is located in Patagonia on the Chilean-Argentinean border. It is the largest lake in Chile with a surface area of 1850 km2. The lake is of glacial/tectonic origin and surrounded by the Andes mountain range. The lake drains primarily to the Pacific Ocean to the west, through the Baker River (one of Chile's largest rivers, and intermittently eastward to the Atlantic Ocean. We report ongoing results from an investigation of the seasonal hydrological cycle of the lake basin. The contribution by river input through snowmelt from the Andes is of primary importance, though the lack of water input by ungaged rivers is also critical. We present the main variables involved in the water balance of Lake General Carrera/Buenos Aires/Chelenko, such as influent and effluent river flows, precipitation, and evaporation, all this based mostly in in-situ information.

  2. The Climate change impact on the water balance and use efficiency of two contrasting water limited Mediterranean ecosystems in Sardinia

    Science.gov (United States)

    Montaldo, Nicola; Corona, Roberto; Albertson, John

    2016-04-01

    . Sardinia island is a very interesting and representative region of Mediterranean ecosystems. It is low urbanized, and is not irrigated, except some plan areas close to the main cities where main agricultural activities are concentrated. The two case study sites are within the Flumendosa river basin, with similar height a.s.l., and close (distance of 4 km). But the first site is a typically grass site located on an alluvial plan valley with a soil depth more than 2m, while the second site is a patchy mixture of Mediterranean vegetation types with wild olive trees and C3 herbaceous (grass) species and the soil thickness varies from 15-40 cm. In both sites land-surface fluxes and CO2 fluxes are estimated by eddy correlation technique based micrometeorological towers. Soil moisture profiles were also continuously estimated using water content reflectometers and gravimetric method, and periodically leaf area index (LAI) PFTs are estimated from 2003. An ecohydrologic model is successfully tested to the case studies. It couples a vegetation dynamic model (VDM), which computes the change in biomass over time for the PFTs, and a 3-component (bare soil, grass and woody vegetation) land surface model (LSM). Model is first used for simulating historically land surface fluxes from 1922 at the two sites. Climate change scenarios are then generated using a stochastic weather generator. It simulates hydrometeorological variables from historical time series altered by IPCC meteorological change predictions. The VDM-LSM predicts soil water balance and vegetation dynamics for the generated hydrometeorological scenarios at the two sites. Results demonstrate that contrasting climate change effects (decrease of winter precipitation vs increase of spring-summer air temperature) are significantly impacting land surface interactions (evapotranspiration and runoff dynamics) but with different effects on the two contrasting sites, due to the key role of the soil depth. Water resources predictions

  3. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015

    Science.gov (United States)

    Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

  4. Water and earth sciences: Isotopes in the field

    International Nuclear Information System (INIS)

    Gonfiantini, R.; Hut, G.

    1987-01-01

    This article deals with the field of isotope hydrology. The distinction between artificial and environmental isotopes is made. Age determination of water is described. IAEA support and activities in relation to applications of isotope techniques to hydrology. Examples of applications carried out with Agency support in Northern Africa, Asia and Latin America are mentioned. The article also deals briefly with water resources in arid countries and training support. 1 tab

  5. Vegetation water stress monitoring with remote sensing-based energy balance modelling

    Science.gov (United States)

    González-Dugo, Maria P.; Andreu, Ana; Carpintero, Elisabet; Gómez-Giráldez, Pedro; José Polo, María

    2014-05-01

    Drought is one of the major hazards faced by agroforestry systems in southern Europe, and an increase in frequency is predicted under the conditions of climate change for the region. Timely and accurate monitoring of vegetation water stress using remote sensing time series may assist early-warning services, helping to assess drought impacts and the design of management actions leading to reduce the economic and environmental vulnerability of these systems. A holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is considered an example of sustainable land use, with great importance in the rural economy. Soil water dynamics is known to have a central role in current tree decline and the reduction of the forested area that is threatening its conservation. A two-source thermal-based evapotranspiration model (TSEB) has been applied to monitor the effect on vegetation water use of soil moisture stress in a dehesa located in southern Spain. The TSEB model separates the soil and canopy contributions to the radiative temperature and to the exchange of surface energy fluxes, so it is especially suited for partially vegetated landscapes. The integration of remotely sensed data in this model may support an evaluation of the whole ecosystem state at a large scale. During two consecutive summers, in 2012 and 2013, time series of optical and thermal MODIS images, with 250m and 1 km of spatial resolution respectively, have been combined with meteorological data provided by a ground station to monitor the evapotranspiration (ET) of the system. An eddy covariance tower (38°12' N; 4°17' W, 736 m a.s.l), equipped with instruments to measure all the components of the energy balance and 1 km of homogeneous fetch in the predominant wind

  6. Ecohydrology of saltcedar (Tamarix spp.) in the western United States and implications of water balance following a biocontrol agent introduction

    Science.gov (United States)

    Nagler, P. L.; Glenn, E. P.

    2012-12-01

    With increased demand on water sources for human use and likely diminished supplies due to climate change, it is important to understand the variation in evapotranspiration (ET) and vegetation water use by transpiration (T) in arid and semi-arid zone riparian areas in the western U.S. Understanding riparian plant water use is critical for accuracy of climate models, predictions used in water resources management, and assessment of land use change impacts on the water balance of ecosystems. Moore and Heilman (2011) suggested the following three principles for predicting when vegetation changes will impact the local or regional water budget: (i) variation will result if energy balance partitioning has been altered, (ii) if deeper or shallower active rooting depth has changed the amount of soil moisture accessible to plants, or (iii) if temporary changes in water use add up over longer time scales. They note that large changes in vegetation types do not necessarily result in changes in water discharge. We will use these principles to consider the case of saltcedar (Tamarix spp.) on western U.S. rivers. Once considered a high-water-use plant that out-competed native trees, research over the past two decades has shown that saltcedar water use is low to moderate, and less than native trees. Consequently, the prospects of salvaging water for human use by replacing saltcedar with native trees, once thought to be bright, now appear questionable. Furthermore, saltcedar has come to occupy ecohydrological niches on altered river systems that are no longer available to native plants. However, with the widespread introduction and spread of saltcedar leaf beetles (Diorhabda carinulata) on western rivers, introduced in part to reduce riparian water use through reduction of saltcedar abundance, saltcedar ecology has now entered a new phase. The talk will present a synthesis of the recent literature on saltcedar water use and provide an overview of saltcedar ecohydrology in terms of

  7. Water and nutrient balances in a large tile-drained agricultural catchment: a distributed modeling study

    Directory of Open Access Journals (Sweden)

    H. Li

    2010-11-01

    Full Text Available This paper presents the development and implementation of a distributed model of coupled water nutrient processes, based on the representative elementary watershed (REW approach, to the Upper Sangamon River Basin, a large, tile-drained agricultural basin located in central Illinois, mid-west of USA. Comparison of model predictions with the observed hydrological and biogeochemical data, as well as regional estimates from literature studies, shows that the model is capable of capturing the dynamics of water, sediment and nutrient cycles reasonably well. The model is then used as a tool to gain insights into the physical and chemical processes underlying the inter- and intra-annual variability of water and nutrient balances. Model predictions show that about 80% of annual runoff is contributed by tile drainage, while the remainder comes from surface runoff (mainly saturation excess flow and subsurface runoff. It is also found that, at the annual scale nitrogen storage in the soil is depleted during wet years, and is supplemented during dry years. This carryover of nitrogen storage from dry year to wet year is mainly caused by the lateral loading of nitrate. Phosphorus storage, on the other hand, is not affected much by wet/dry conditions simply because the leaching of it is very minor compared to the other mechanisms taking phosphorous out of the basin, such as crop harvest. The analysis then turned to the movement of nitrate with runoff. Model results suggested that nitrate loading from hillslope into the channel is preferentially carried by tile drainage. Once in the stream it is then subject to in-stream denitrification, the significant spatio-temporal variability of which can be related to the variation of the hydrologic and hydraulic conditions across the river network.

  8. A Hybrid of Optical Remote Sensing and Hydrological Modeling Improves Water Balance Estimation

    Science.gov (United States)

    Gleason, Colin J.; Wada, Yoshihide; Wang, Jida

    2018-01-01

    Declining gauging infrastructure and fractious water politics have decreased available information about river flows globally. Remote sensing and water balance modeling are frequently cited as potential solutions, but these techniques largely rely on these same in-decline gauge data to make accurate discharge estimates. A different approach is therefore needed, and we here combine remotely sensed discharge estimates made via at-many-stations hydraulic geometry (AMHG) and the PCR-GLOBWB hydrological model to estimate discharge over the Lower Nile. Specifically, we first estimate initial discharges from 87 Landsat images and AMHG (1984-2015), and then use these flow estimates to tune the model, all without using gauge data. The resulting tuned modeled hydrograph shows a large improvement in flow magnitude: validation of the tuned monthly hydrograph against a historical gauge (1978-1984) yields an RMSE of 439 m3/s (40.8%). By contrast, the original simulation had an order-of-magnitude flow error. This improvement is substantial but not perfect: tuned flows have a 1-2 month wet season lag and a negative base flow bias. Accounting for this 2 month lag yields a hydrograph RMSE of 270 m3/s (25.7%). Thus, our results coupling physical models and remote sensing is a promising first step and proof of concept toward future modeling of ungauged flows, especially as developments in cloud computing for remote sensing make our method easily applicable to any basin. Finally, we purposefully do not offer prescriptive solutions for Nile management, and rather hope that the methods demonstrated herein can prove useful to river stakeholders in managing their own water.

  9. Estimation of Transpiration and Water Use Efficiency Using Satellite and Field Observations

    Science.gov (United States)

    Choudhury, Bhaskar J.; Quick, B. E.

    2003-01-01

    Structure and function of terrestrial plant communities bring about intimate relations between water, energy, and carbon exchange between land surface and atmosphere. Total evaporation, which is the sum of transpiration, soil evaporation and evaporation of intercepted water, couples water and energy balance equations. The rate of transpiration, which is the major fraction of total evaporation over most of the terrestrial land surface, is linked to the rate of carbon accumulation because functioning of stomata is optimized by both of these processes. Thus, quantifying the spatial and temporal variations of the transpiration efficiency (which is defined as the ratio of the rate of carbon accumulation and transpiration), and water use efficiency (defined as the ratio of the rate of carbon accumulation and total evaporation), and evaluation of modeling results against observations, are of significant importance in developing a better understanding of land surface processes. An approach has been developed for quantifying spatial and temporal variations of transpiration, and water-use efficiency based on biophysical process-based models, satellite and field observations. Calculations have been done using concurrent meteorological data derived from satellite observations and four dimensional data assimilation for four consecutive years (1987-1990) over an agricultural area in the Northern Great Plains of the US, and compared with field observations within and outside the study area. The paper provides substantive new information about interannual variation, particularly the effect of drought, on the efficiency values at a regional scale.

  10. Analysis of the water balance of polymer electrolyte membrane fuel cells; Untersuchung zum Wasserhaushalt von Polymerelektrolytmembran-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Hakenjos, A.

    2006-09-14

    Within this thesis, instruments for the localised characterisation of fuel cells and fuel cell stacks have been created. The simultaneous multi-channel impedance spectroscopy was implemented and applied to fuel cells for the first time. A measurement device has been developed that can be used to simultaneously apply various localised measurement methods to fuel cells during operation. Within this work, mainly current density and localized impedance measurements were used. Additionally, the temperature distribution of the active fuel cell area was determined and the water condensation was visualised. Several fuel cells have been developed, constructed and assembled to carry out localised characterisation. An algorithm has been developed to evaluate impedance spectra that separate the processes in the fuel cell according to their different time constants. This algorithm is based on a system of physical model equations that provide time- and location-dependent descriptions of the different processes in the cell. This allows the quantitive extraction of physical parameters from the impedance spectroscopy results. To perform localised simulation, a three-dimensional, two-phase, stationary model was adopted cell. A simple one-dimensional fuel cell geometry was used to demonstrate that the three-dimensional model reliably describes the processes under various operation conditions. The model validation was also successfully carried out for various complex fuel cell geometries. With the localised characterisation methods, air flow field geometries of fuel cells were successfully analysed. It could be explained how the microporous coating of the diffusion layer influences the current density distribution. The water balance of a number of different gas flow geometries was successfully characterised. As a result, an optimised flow field design with a double meander has been developed. The water content has been improved so that the efficiency is increased, and the current

  11. A short history of the development of the Turc-Mezentsev water balance formula

    Science.gov (United States)

    Andréassian, Vazken; Lebecherel, Laure

    2013-04-01

    In the 1950s, a formula linking long term average evaporation to long-term average precipitation and potential evaporation was quasi-simultaneously proposed in France and in the Soviet Union. However, because Turc and Mezentsev published in French and Russian respectively, their work has received limited attention, and the formula they proposed is often given different names. • Work of Lucien Turc in France (1954) Lucien Turc, a French soil scientist, worked at the Versailles soil science laboratory of the French National Agronomical Research Institute. For agronomic purposes, he was interested in developing a formula to estimate actual evapotranspiration from precipitation and temperature data. Since lysimeter data were so scarce at that time, he had the idea to derive such a formula from catchment water balance. With the help of the hydrologist Maurice Pardé, he assembled a set of data on 254 catchments from all over the world. He derived long-term average actual evapotranspiration (E) from estimates of long-term average precipitation (P) and long-term average discharge (Q). Then, Turc looked for a mathematical function linking two non-dimensional terms: the aridity index (the ratio of precipitation P and potential evapotranspiration E0) and the evapotranspiration rate (the ratio of E and E0). He proposed the following formulation: E/P=1/[1+(P/E0)**n]**(1/n) in which n is an exponent to estimate. Turc graphically looked for the most convenient value for n, and concluded that the best fit was "with n=3, or may be n=2" (Turc, 1954, p.563). • Work of Varfolomeï Mezentsev in the Soviet Union (1955) Mezentsev (1955) worked at the University of Omsk in Siberia. He started his analysis from a formula proposed by Bagrov (1953): dE/dP=1-(E/E0)**n (Eq.1) This formula presents the interesting property to integrate into the Schreiber (1904) water balance formula for n=1:and into the Ol'Dekop (1911) water balance formula for n=2. But it had no analytical solution for

  12. Similarity index between irrigation water and soil saturation extract in the experimental field of Yachay University, Ecuador

    Science.gov (United States)

    Carrera-Villacrés, D. V.; Sánchez-Gómez, V. P.; Portilla-Bravo, O. A.; Bolaños-Guerrón, D. R.

    2017-08-01

    Soil monitoring is a job that demands a lot of time and money. therefore, measuring the same parameters in the water becomes simple because it can be done in situ. The objective of this work was to find a similarity index for the validation of mathematical correlation models based on physicochemical parameters to verify if there is a balance between irrigation water and soil saturation extract in the experimental field Yachay that is known as the city of knowledge that is located in Imbabura province, Ecuador, for which, the sampling of water was carried out in two representative periods (dry and rainy). Sampling of 10 soil profiles was also performed, covering the total area; these samples were obtained results of Electrical Conductivity (EC), pH and total dissolved salts (TDS). With correlation models between soils and water, it is possible to predict concentrations of elements in the irrigation water. It was concluded that there is a balance between soil and water, so that the salts present in the soil are highly soluble, in addition, there is a high probability that the elements in the irrigation water are in the soil. In sample water, the same concentrations were found in the soil, at their saturation point, and very close to the field capacity.

  13. Potential groundwater recharge for the State of Minnesota using the Soil-Water-Balance model, 1996-2010

    Science.gov (United States)

    Smith, Erik A.; Westenbroek, Stephen M.

    2015-01-01

    Groundwater recharge is one of the most difficult components of a water budget to ascertain, yet is an important boundary condition necessary for the quantification of water resources. In Minnesota, improved estimates of recharge are necessary because approximately 75 percent of drinking water and 90 percent of agricultural irrigation water in Minnesota are supplied from groundwater. The water that is withdrawn must be supplied by some combination of (1) increased recharge, (2) decreased discharge to streams, lakes, and other surface-water bodies, and (3) removal of water that was stored in the system. Recent pressure on groundwater resources has highlighted the need to provide more accurate recharge estimates for various tools that can assess the sustainability of long-term water use. As part of this effort, the U.S. Geological Survey, in cooperation with the Minnesota Pollution Control Agency, used the Soil-Water-Balance model to calculate gridded estimates of potential groundwater recharge across Minnesota for 1996‒2010 at a 1-kilometer (0.621-mile) resolution. The potential groundwater recharge estimates calculated for Minnesota from the Soil-Water Balance model included gridded values (1-kilometer resolution) of annual mean estimates (that is, the means for individual years from 1996 through 2010) and mean annual estimates (that is, the mean for the 15-year period 1996−2010).

  14. Nuclear techniques to evaluate the water use of field crops irrigated in different stages of their cycles

    International Nuclear Information System (INIS)

    Libardi, P.L.; Moraes, S.O.; Saad, M.A.; Jong Van Lier, Q.; Vieira, O.; Luis Tuon, R.

    1995-01-01

    The search for soil - water management systems that rationalize the water use of field crops should always be emphasized. The present coordinated research programme of the joint division FAO/ AEA has the objective to contribute to a better understanding of this subject by improving the use efficiency of water resources in irrigated agriculture. This project is a contribution to this programme and consisted in the identification of specified development stages of bean ( phaseolus vulgaris, L ) and corn (Zea mays, L ) crops in which plants are less sensitive to water deficit. Experiments were carried out in a tropical soil of agricultural importance in a traditional irrigation field site of the state of Sao Paulo, Brazil. Neutron probe tensiometers were used to determine the soil water balance in different treatments. 3 tabs, 16 refs, (Author)

  15. Quantum mechanical force field for water with explicit electronic polarization.

    Science.gov (United States)

    Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali

    2013-08-07

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across

  16. Harmonic balancing approach to nonlinear oscillations of a punctual charge in the electric field of charged ring

    International Nuclear Information System (INIS)

    Belendez, A.; Fernandez, E.; Rodes, J.J.; Fuentes, R.; Pascual, I.

    2009-01-01

    The harmonic balance method is used to construct approximate frequency-amplitude relations and periodic solutions to an oscillating charge in the electric field of a ring. By combining linearization of the governing equation with the harmonic balance method, we construct analytical approximations to the oscillation frequencies and periodic solutions for the oscillator. To solve the nonlinear differential equation, firstly we make a change of variable and secondly the differential equation is rewritten in a form that does not contain the square-root expression. The approximate frequencies obtained are valid for the complete range of oscillation amplitudes and excellent agreement of the approximate frequencies and periodic solutions with the exact ones are demonstrated and discussed

  17. Advanced oxidation of bromide-containing drinking water: a balance between bromate and trihalomethane formation control.

    Science.gov (United States)

    Wang, Yongjing; Yu, Jianwei; Han, Po; Sha, Jing; An, Tao; Li, Wei; Liu, Juan; Yang, Min

    2013-11-01

    Addition of H202 has been employed to repress bromate formation during ozonation of bromide-containing source water. However, the addition of H2O2 will change the oxidation pathways of organic compounds due to the generation of abundant hydroxyl radicals, which could affect the removal efficacy of trihalomethane precursors via the combination of ozone and biological activated carbon (O3-BAC). In this study, we evaluated the effects of H2O2 addition on bromate formation and trihalomethane formation potential (THMFP) reduction during treatment of bromide-containing (97.6-129.1 microg/L) source water by the O3-BAC process. At an ozone dose of 4.2 mg/L, an H2O2/O3 (g/g) ratio of over 1.0 was required to maintain the bromate concentration below 10.0 microg/L, while a much lower H2O2/O3 ratio was sufficient for a lower ozone dose. An H2O2/O3 (g/g) ratio below 0.3 should be avoided since the bromate concentration will increase with increasing H2O2 dose below this ratio. However, the addition of H202 at an ozone dose of 3.2 mg/L and an H2O2/O3 ratio of 1.0 resulted in a 43% decrease in THMFP removal when comparedwith the O3-BAC process. The optimum H2O2/O3 (g/g) ratio for balancing bromate and trihalomethane control was about 0.7-1.0. Fractionation of organic materials showed that the addition of H2O2 decreased the removal efficacy of the hydrophilic matter fraction of DOC by ozonation and increased the reactivity of the hydrophobic fractions during formation of trihalomethane, which may be the two main reasons responsible for the decrease in THMFP reduction efficacy. Overall, this study clearly demonstrated that it is necessary to balance bromate reduction and THMFP control when adopting an H2O2 addition strategy.

  18. A method for the ad hoc and real-time determination of the water balance in a PEMFC

    DEFF Research Database (Denmark)

    Berning, Torsten

    2014-01-01

    A novel method for the ad hoc and real-time determination of the water balance in a proton exchange membrane fuel cell is presented. The method requires the anode side of the fuel cell to be operated in open-ended mode and to use dry, pure hydrogen as is typical for vehicular applications...

  19. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Andreasen, Søren Juhl; Berning, Torsten

    2016-01-01

    In order to better understand and more accurately measure the water balance in a proton exchange membrane fuel cell, our group has recently proposed to apply hot wire anemometry in the fuel cell's anode outlet. It was theoretically shown that the electrical signal obtained from the hot wire senso...

  20. Assessing the controls of the snow energy balance and water available for runoff in a rain-an-snow environment

    Science.gov (United States)

    Adam B. Mazurkiewicz; David G. Callery; Jeffrey J. McDonnell

    2008-01-01

    Rain-on-snow (ROS) melt production and its contribution to water available for runoff is poorly understood. In the Pacific Northwest (PNW) of the USA, ROS drives many runoff events with turbulent energy exchanges dominating the snow energy balance (EB). While previous experimental work in the PNW (most notably the H.J. Andrews Experimental Forest (HJA» has quantified...

  1. Vertical water and DOC/DIC flux estimates in a hummocky soil landscape - from pedon to field scale

    Science.gov (United States)

    Rieckh, Helene; Gerke, Horst H.

    2017-04-01

    Arable hummocky soil landscapes of formerly glaciated terrains are characterized by 3D spatial patterns of soil types resulting from tillage and water erosion. Erosion and deposition processes have implication for the water and carbon (C) balance of the hummocky soil landscape. The objective of this study was to estimate the leaching of dissolved C as a crucial component to the terrestrial net ecosystem C balance for (i) pedon scale at different terrain positions and (ii) field scale. At pedon scale, the interactions between erosion affected soil properties, the water balances, and the crop growth and feedback effects of erosion on the leaching rates were studied. The 1D water movements were described using the Richards equation as implemented using the numerical solution in the HYDRUS program. Measured DOC/DIC concentrations were combined with calculated water fluxes to obtain the solute fluxes for certain depth and positions. For the field scale estimation dissolved carbon fluxes a weight average per soil type was chosen, whereas soil types were determined by characteristic multi-parameter delineating landform units and by soil soundings. For a typical section of the hummocky soil landscape, i.e. the CarboZALF-D plot, the average seepage water flux for the three years period 2010-2012 was 96 mm yr-1, the average leaching of DOC 0.6 g m-2 yr-1 and of DIC 7.0 g m-2 yr-1 below the root zone at approximately 200 cm depth. The water and dissolved carbon fluxes varied in direction and magnitude depending on terrain position and erosion history. The depth of the water table was identified as a major influential factor. The temporal variations of dissolved carbon fluxes seem to be dominantly controlled by water fluxes rather than by temporal varying dissolved carbon concentrations. The consideration of soil-crop interactions lead to more spatial differences of water and dissolved carbon fluxes as well as to faster soil development.

  2. Determining the Field Capacity, Wilting point and Available Water ...

    African Journals Online (AJOL)

    Water is a unique material resource which plays a vital role in nature and in agriculture. The objective of this study was to find out the applicability of saturation percentage (SP) to estimate field capacity (FC) and permanent wilting point (PWP) of soils across different texture in southeast Nigeria. Top 0-20 cm soil sample were ...

  3. Pedotransfer functions to estimate soil water content at field capacity ...

    Indian Academy of Sciences (India)

    Priyabrata Santra

    2018-03-27

    Mar 27, 2018 ... Pedotransfer functions to estimate soil water content at field capacity and permanent wilting point in hot Arid Western India. Priyabrata Santra1,*, Mahesh Kumar1, R N Kumawat1, D K Painuli1,. K M Hati2, G B M Heuvelink3 and N H Batjes. 3. 1. ICAR-Central Arid Zone Research Institute (CAZRI), Jodhpur ...

  4. Mapping of the real evapotranspiration and the water balance using infra red thermography

    International Nuclear Information System (INIS)

    Seguin, B.

    1984-01-01

    Remote sensing appears as a new tool for mapping spatial variations of climatic parameters. In the field of water problems, more precisely of actual évapotranspiration ET estimation in order to characterize water status of vegetative canopies, I.R. thermography and microwave instruments both appear as promising techniques. Setting up adapted methodologies is a preliminary task. That was the aim of a cooperative experiment on the site of Crau plain (north of Marseille) during 1978 to 1980 years. It combined ground measurements and NOAA-5 satellite data use, in order to set up methods for the derivation of ET from Ts data. For that, it used both sites in dry areas and irrigated surfaces. Main results are briefly recalled and discussed. Present possibilities and future perspectives are discussed, remote sensing informations being essential for characterizing variation [fr

  5. Assessing the impact of climate variability on catchment water balance and vegetation cover

    Directory of Open Access Journals (Sweden)

    X. Xu

    2012-01-01

    Full Text Available Understanding the interactions among climate, vegetation cover and the water cycle lies at the heart of the study of watershed ecohydrology. Recently, considerable attention is being paid to the effect of climate variability on catchment water balance and also associated vegetation cover. In this paper, we investigate the general pattern of long-term water balance and vegetation cover (as reflected by fPAR among 193 study catchments in Australia through statistical analysis. We then employ the elasticity analysis approach for quantifying the effects of climate variability on hydrologic partitioning (including total, surface and subsurface runoff and on vegetation cover (including total, woody and non-woody vegetation cover. Based on the results of statistical analysis, we conclude that annual runoff (R, evapotranspiration (E and runoff coefficient (R/P increase with vegetation cover for catchments in which woody vegetation is dominant and annual precipitation is relatively high. Control of water available on annual evapotranspiration in non-woody dominated catchments is relatively stronger compared to woody dominated ones. The ratio of subsurface runoff to total runoff (Rg/R also increases with woody vegetation cover. Through the elasticity analysis of catchment runoff, it is shown that precipitation (P in current year is the most important factor affecting the change in annual total runoff (R, surface runoff (Rs and subsurface runoff (Rg. The significance of other controlling factors is in the order of annual precipitation in previous years (P−1 and P−2, which represents the net effect of soil moisture and annual mean temperature (T in current year. Change of P by +1% causes a +3.35% change of R, a +3.47% change of Rs and a +2.89% change of

  6. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norfolk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norfolk, CT (United States)

    2016-02-05

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publically available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(TM), A.O. Smith Voltex(R), and Stiebel Eltron Accelera(R) 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  7. Environmental contaminants in oil field produced waters discharged into wetlands

    International Nuclear Information System (INIS)

    Ramirez, P. Jr.

    1994-01-01

    The 866-acre Loch Katrine wetland complex in Park County, Wyoming provides habitat for many species of aquatic birds. The complex is sustained primarily by oil field produced waters. This study was designed to determine if constituents in oil field produced waters discharged into Custer Lake and to Loch Katrine pose a risk to aquatic birds inhabiting the wetlands. Trace elements, hydrocarbons and radium-226 concentrations were analyzed in water, sediment and biota collected from the complex during 1992. Arsenic, boron, radium-226 and zinc were elevated in some matrices. The presence of radium-226 in aquatic vegetation suggests that this radionuclide is available to aquatic birds. Oil and grease concentrations in water from the produced water discharge exceeded the maximum 10 mg/l permitted by the WDEQ (1990). Total aliphatic and aromatic hydrocarbon concentrations in sediments were highest at the produced water discharge, 6.376 μg/g, followed by Custer Lake, 1.104 μg/g. The higher levels of hydrocarbons found at Custer Lake, compared to Loch Katrine, may be explained by Custer Lake's closer proximity to the discharge. Benzo(a)pyrene was not detected in bile from gadwalls collected at Loch Katrine but was detected in bile from northern shovelers collected at Custer Lake. Benzo(a)pyrene concentrations in northern shoveler bile ranged from 500 to 960 ng/g (ppb) wet weight. The presence of benzo(a)pyrene in the shovelers indicates exposure to petroleum hydrocarbons

  8. Balancing Control and Complexity in Field Studies of Neonicotinoids and Honey Bee Health

    OpenAIRE

    Suryanarayanan, Sainath

    2013-01-01

    Amidst ongoing declines in honey bee health, the contributory role of the newer systemic insecticides continues to be intensely debated. Scores of toxicological field experiments, which bee scientists and regulators in the United States have looked to for definitive causal evidence, indicate a lack of support. This paper analyzes the methodological norms that shape the design and interpretation of field toxicological studies. I argue that contemporary field studies of honey bees and pesticide...

  9. Constraining the annual groundwater contribution to the water balance of an agricultural floodplain using radon: The importance of floods

    Science.gov (United States)

    Webb, Jackie R.; Santos, Isaac R.; Robson, Barbara; Macdonald, Ben; Jeffrey, Luke; Maher, Damien T.

    2017-01-01

    The water balance of drained floodplains is highly dynamic with complex groundwater-surface water interactions operating over varying spatial and temporal scales. Here we hypothesize that the majority of groundwater discharge will follow flood events in a modified wetland. To test this hypothesis, we developed a detailed water balance that quantifies the contribution of groundwater discharge to the annual water budget of an extensively drained agricultural floodplain. A clear relationship between surface water radon measurements and groundwater level indicated alternating connection-disconnection dynamics between the drains and shallow groundwater. This relationship was used to develop a radon mass balance to quantitatively model groundwater discharge continuously throughout the year. Groundwater discharge varied by four orders of magnitude over the study period, with daily average rates ranging from 0 to 27,200 m3 d-1, peaking just a few hours after floods receded. Flood events occurred only 12% of the time yet contributed 72-76% of the total groundwater discharge. During flood recession periods, aerial groundwater discharge rates reached up to 325 cm d-1 which were some of the highest rates ever estimated. We proposed that the high drainage density of this site (12.4 km constructed drains km-2 catchment area) enhanced groundwater discharge during wet periods due to increased connectivity with the soil. Overall, groundwater discharge contributed 30-80% to the total surface water discharge. This study offers insight into the dynamic behavior of groundwater within an extensively drained floodplain, and the importance of capturing flood events to quantify total groundwater contribution to floodplain water balances.

  10. Inferring Soil Moisture Memory from Streamflow Observations Using a Simple Water Balance Model

    Science.gov (United States)

    Orth, Rene; Koster, Randal Dean; Seneviratne, Sonia I.

    2013-01-01

    Soil moisture is known for its integrative behavior and resulting memory characteristics. Soil moisture anomalies can persist for weeks or even months into the future, making initial soil moisture a potentially important contributor to skill in weather forecasting. A major difficulty when investigating soil moisture and its memory using observations is the sparse availability of long-term measurements and their limited spatial representativeness. In contrast, there is an abundance of long-term streamflow measurements for catchments of various sizes across the world. We investigate in this study whether such streamflow measurements can be used to infer and characterize soil moisture memory in respective catchments. Our approach uses a simple water balance model in which evapotranspiration and runoff ratios are expressed as simple functions of soil moisture; optimized functions for the model are determined using streamflow observations, and the optimized model in turn provides information on soil moisture memory on the catchment scale. The validity of the approach is demonstrated with data from three heavily monitored catchments. The approach is then applied to streamflow data in several small catchments across Switzerland to obtain a spatially distributed description of soil moisture memory and to show how memory varies, for example, with altitude and topography.

  11. A history of diabetes insipidus: paving the road to internal water balance.

    Science.gov (United States)

    Eknoyan, Garabed

    2010-12-01

    Diabetes insipidus is an ancient disease considered under the rubric of diabetes, the Greek descriptive term for polyuria, which was unrecognized even after the sweetness of urine was reported as a characteristic of diabetes mellitus in the 17th century. It would be another century before diabetes insipidus was identified from the insipid rather than saccharine taste of urine in cases of polyuria. After its increased recognition, pathologic observations and experimental studies connected diabetes insipidus to the pituitary gland in the opening decades of the 20th century. Simultaneously, posterior pituitary lobe extracts were shown to be vasoconstrictive (vasopressin) and antidiuretic (antidiuretic hormone). As vasopressin was purified and synthesized and its assay became available, it was shown to be released in response to both osmotic and volume stimuli that are integrated in the hypothalamus, and vasopressin thereby was essential to maintaining internal water balance. The antidiuretic properties of vasopressin to treat the rare cases of diabetes insipidus were of limited clinical utility until its vasoconstrictive effects were resuscitated in the 1970s, with the consequent increasing wider use of vasopressin for the treatment of compromised hemodynamic states. In addition, the discovery of antidiuretic hormone receptor blockers has led to their increasing use in managing hypo-osmolar states. Copyright © 2010 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  12. Water balance of forest and semi natural areas in Hungary (2000-2008)

    Science.gov (United States)

    Csáki, Péter

    2017-04-01

    Water balance of forest and semi natural areas in Hungary was analyzed using remote-sensing based evapotranspiration (ET ) maps (1ṡ1 km spatial resolution) by CREMAP model over the 2000-2008 period. Recharge (R) was calculated as the difference of precipitation and evapotranspiration: R = P - ET . For Hungary, the mean annual ET and R in the percentage of the mean annual precipitation were about 90 percent and 10 percent, respectively. ET and R were analyzed in the context of land cover types (artificial surfaces, agricultural areas, forest and semi natural areas, wetlands, water bodies), based on Corine Land Cover 2006. As the ET and R maps have 1 km2 while the land cover map has higher resolution, a number of ET and R pixels would be calculated to more than one land cover types. Thus, there were selected only the pixels that have 90 percent of their area belong to only one land cover type ("clear pixels"). For forest and semi natural areas 4424 "clear pixels" were selected. The ET and R of forest and semi natural areas were analyzed by regions, in the context of groundwater depth, soil texture and leaf area index (LAI). Among the regions, Little Plain (riparian forest ecosystems) presented the highest ET mean (633 mm), while Southern Transdanubia (mostly sandy areas with good infiltration capacity) presented the highest R mean (106 mm) for forests. An interesting phenomenon that, in the case of forests (especially for the Great Plain region), an increasing ET tendency can be detected with the groundwater depth, down to ten meters. This research has been partly supported by the Agroclimate.2 VKSZ_12-1-2013-0034 project.

  13. Local effects on the water balance in flood plains induced by dam filling in Mediterranean environments

    Science.gov (United States)

    Aguilar, Cristina; Polo, María José

    2011-11-01

    Dams are common structures in order to guarantee water supply and control flash floods in Mediterranean mountainous watersheds. Even though they are known to modify in space and time the natural regimen of natural flows, little has been said about local effects on the ecosystem along the river banks upstream the dam. In 2002, Rules dam (southern Spain) started to function. This work presents the effects of the dam filling on the water balance in flood plains. The influence of the enhanced soil moisture in the surroundings of the free surface of the reservoir on the vegetation cover status was analyzed and related to meteorological agents and topographic features, before and after the construction of the dam. Meteorological, topographic, soil and land use data were analyzed in the contributing area of the dam, together with Landsat TM images during the period 1984-2010 to derive NDVI values. Results showed higher NDVI values (close to 20-30%) once the dam was filled and NDVI values in very dry years similar to the ones obtained in medium-wet years prior to the construction. Besides, NDVI values after the filling of the dam proved to be highly related to meteorological variables. Principal Component Analysis (PCA) was carried out in order to identify individual and combined interactions of meteorological and dam-derived effects. 85% of the total variance can be explained with the combination of three Principal Components (PC) in which the first one includes the combination of NDVI, meteorological (rainfall) and hydrological variables (interception, infiltration, evapotranspiration from the soil), whilst the second and third PC mainly include topographic features. These results quantify the dam influence along the river banks and the superficial recharge effects in dry years.

  14. Impacts of deforestation on water balance components of a watershed on the Brazilian East Coast

    Directory of Open Access Journals (Sweden)

    Donizete dos Reis Pereira

    2014-08-01

    Full Text Available The Brazilian East coast was intensely affected by deforestation, which drastically cut back the original biome. The possible impacts of this process on water resources are still unknown. The purpose of this study was an evaluation of the impacts of deforestation on the main water balance components of the Galo creek watershed, in the State of Espírito Santo, on the East coast of Brazil. Considering the real conditions of the watershed, the SWAT model was calibrated with data from 1997 to 2000 and validated for the period between 2001 and 2003. The calibration and validation processes were evaluated by the Nash-Sutcliffe efficiency coefficient and by the statistical parameters (determination coefficient, slope coefficient and F test of the regression model adjusted for estimated and measured flow data. After calibration and validation of the model, new simulations were carried out for three different land use scenarios: a scenario in compliance with the law (C1, assuming the preservation of PPAs (permanent preservation areas; an optimistic scenario (C2, which considers the watershed to be almost entirely covered by native vegetation; and a pessimistic scenario (C3, in which the watershed would be almost entirely covered by pasture. The scenarios C1, C2 and C3 represent a soil cover of native forest of 76, 97 and 0 %, respectively. The results were compared with the simulation, considering the real scenario (C0 with 54 % forest cover. The Nash-Sutcliffe coefficients were 0.65 and 0.70 for calibration and validation, respectively, indicating satisfactory results in the flow simulation. A mean reduction of 10 % of the native forest cover would cause a mean annual increase of approximately 11.5 mm in total runoff at the watershed outlet. Reforestation would ensure minimum flows in the dry period and regulate the maximum flow of the main watercourse of the watershed.

  15. Assessment of the phenology impact on SVAT modelling through a crop growth model over a Mediterranean crop site : Consequences on the water balance under climate change conditions.

    Science.gov (United States)

    Moulin, S.; Garrigues, S.; Olioso, A.; Ruget, F.; Desfonds, V.; Bertrand, N.; Lecharpentier, P.; Ripoche, D.; Launay, M.; Brisson, N.

    2012-04-01

    project, Brisson et al, 2010), we show that the range of phenology simulated by ISBA is much wider than the one simulated by STICS. The large variability obtained with ISBA is not realistic and does not match with the genetic characteristics of the studied crops. In a second step, STICS and ISBA-a-gs are run over the same field of durum wheat cultivated during 5 years on a well instrumented site (Avignon crop observatory site). Their simulations are compared, in terms of LAI (driven by phenology), biomass (crop production), and evapotranspiration (water balance). The last step consists in forcing the SVAT model with the LAI simulated by STICS and assess the impact on the water and energy balance simulation accuracy.

  16. Effects of Land Cover / Land Use, Soil Texture, and Vegetation on the Water Balance of Lake Chad Basin

    Science.gov (United States)

    Babamaaji, R. A.; Lee, J.

    2013-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the effects of land use / land cover must be a first step to find how they disturb cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and disuse recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires reliable forecasting of changes in the major climatic variables and other spatial variations including the land use/land cover, soil texture, topographic slope, and vegetation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal and spatial distribution of surface runoff, interception, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB. The study shows that major role in the water balance of LCB. The mean yearly actual evapotranspiration (ET) from the basin range from 60mm - 400 mm, which is 90 % (69mm - 430) of the annual precipitation from 2003 - 2010. It is striking that about 50 - 60 % of the total runoff is produced on build-up (impervious surfaces), while much smaller contributions are obtained from vegetated

  17. Photo-active float for field water disinfection.

    Science.gov (United States)

    Shwetharani, R; Balakrishna, R Geetha

    2016-03-01

    The present study investigates the antibacterial activity of a photoactive float fabricated with visible light active N-F-TiO2 for the disinfection of field water widely contaminated with Gram positive and Gram negative bacteria like, Salmonella typhimurium (Gram negative), Escherichia coli (Gram negative), Staphylococcus aureus (Gram positive), Bacillus species (Gram positive), and Pseudomonas species (Gram negative). The antibacterial activity can be attributed to the unique properties of the photocatalyst, which releases reactive oxygen species in aqueous solution, under the illumination of sunlight. N-F-TiO2 nanoparticles efficiently photocatalyse the destruction of all the bacteria present in the contaminated water, giving clean water. The inactivation of bacteria is confirmed by a standard plate count method, MDA, RNA and DNA analysis. The purity of water was further validated by SPC indicating nil counts of bacteria after two days of storing and testing. The photocatalysts were characterized by XRD, BET measurement, SEM, EDX, UV-Vis and PL analysis.

  18. Field soil-water properties measured through radiation techniques

    International Nuclear Information System (INIS)

    1984-07-01

    This report shows a major effort to make soil physics applicable to the behaviour of the field soils and presents a rich and diverse set of data which are essential for the development of effective soil-water management practices that improve and conserve the quality and quantity of agricultural lands. This piece of research has shown that the neutron moisture meter together with some complementary instruments like tensiometers, can be used not only to measure soil water contents but also be extremely handy to measure soil hydraulic characteristics and soil water flow. It is, however, recognized that hydraulic conductivity is highly sensitive to small changes in soil water content and texture, being extremely variable spatially and temporally

  19. Dual permeability soil water dynamics and water uptake by roots in irrigated potato fields

    DEFF Research Database (Denmark)

    Dolezal, Frantisek; Zumr, David; Vacek, Josef

    2007-01-01

    Water movement and uptake by roots in a drip-irrigated potato field was studied by combining field experiments, outputs of numerical simulations and summary results of an EU project (www.fertorganic.org). Detailed measurements of soil suction and weather conditions in the Bohemo-Moravian highland...

  20. Determination of the metal balance shift induced in small fresh water fish by X-ray irradiation using PIXE analysis

    International Nuclear Information System (INIS)

    Yukawa, M.; Iso, H.; Kodama, K.; Imaseki, H.; Aoki, K.; Ishikawa, Y.

    2007-01-01

    The balance of essential elements in organisms can be changed by environmental stresses. A small fresh water fish, the medaka, was irradiated with X-rays (total dose: 17 Gy, which is not a lethal dose for this fish). Essential elements in the liver, gall bladder, kidney, spleen, heart and brain of the fish were measured by the particle induced X-ray emission (PIXE) method and compared with those of a control fish. Various changes in the elemental balance shift were observed. The PIXE method can analyze many elements in a small sample simultaneously, and so the changes in elemental content induced by irradiation were readily determined. (author)

  1. Recharge contribution to the Guarani Aquifer System estimated from the water balance method in a representative watershed.

    Science.gov (United States)

    Wendland, Edson; Gomes, Luis H; Troeger, Uwe

    2015-01-01

    The contribution of recharge to regional groundwater flow systems is essential information required to establish sustainable water resources management. The objective of this work was to determine the groundwater outflow in the Ribeirão da Onça Basin using a water balance model of the saturated soil zone. The basin is located in the outcrop region of the Guarani Aquifer System (GAS). The water balance method involved the determination of direct recharge values, groundwater storage variation and base flow. The direct recharge was determined by the water table fluctuation method (WTF). The base flow was calculated by the hydrograph separation method, which was generated by a rain-flow model supported by biweekly streamflow measurements in the control section. Undisturbed soil samples were collected at depths corresponding to the variation zone of the groundwater level to determine the specific yield of the soil (drainable porosity). Water balances were performed in the saturated zone for the hydrological years from February 2004 to January 2007. The direct recharge ranged from 14.0% to 38.0%, and groundwater outflow from 0.4% to 2.4% of the respective rainfall during the same period.

  2. Influence of copper sulphate on the water and electrolyte balance of the freshwater snail Bulinus (Bulinus) tropicus

    Energy Technology Data Exchange (ETDEWEB)

    Van Aardt, W.J. (Potchefstroom University for C.H.E. (South Africa). Dept. of Zoology); Coertze, D.J. (Durban-Westville Univ. (South Africa). Dept of Physiology)

    1981-01-01

    The water and electrolyte balance of Bulinus (Bulinus) tropicus, a freshwater pulmonate, was determined when subjected to different sublethal concentrations of copper sulphate. It was found that the lethal dose (LD/sub 50/), which is the dose lethal to 50% of the snails, is 1,0 ppm in water of pH 8,5. Increasing dosages disturb the ionic and water balance. Haemolymph concentrations of Na+, Ca/sup 2/+ and Cl- decrease markedly. The rates of ion influx and efflux for Ca/sup 2/+, Na+, Cl- and /sup 3/H/sub 2/O, measured with their corresponding radioisotopes, were drastically changed. The results indicate that the physiological effects of copper are not limited to particular organs or tissues but probably occur throughout the snail body. The possible effects of copper sulphate on the integumental exchange mechanisms for Ca/sup 2/+, HCO/sub 3/-, Na+, K+ and Cl- are discussed.

  3. User manual of Visual Balan V. 1.0 Interactive code for water balances and refueling estimation

    International Nuclear Information System (INIS)

    Samper, J.; Huguet, L.; Ares, J.; Garcia, M. A.

    1999-01-01

    This document contains the Users Manual of Visual Balan V1.0, an updated version of Visual Balan V0.0 (Samper et al., 1997). Visual Balan V1.0 performs daily water balances in the soil, the unsaturated zone and the aquifer in a user-friendly environment which facilitates both the input data process and the postprocessing of results. The main inputs of the balance are rainfall and irrigation while the outputs are surface runoff, evapotranspiration, interception, inter flow and groundwater flow. The code evaluates all these components in a sequential manner by starting with rainfall and irrigation, which must be provided by the user, and continuing with interception, surface runoff, evapotranspiration, and potential recharge (water flux crossing the bottom of the soil). This potential recharge is the input to the unsaturated zone where water can flow horizontally as subsurface flow (inter flow) or vertically as percolation into the aquifer. (Author)

  4. Warfighter Physiological Status Monitoring (WPSM): Energy Balance and Thermal Status During a 10-Day Cold Weather U.S. Marine Corps Infantry Officer Course Field Exercise

    National Research Council Canada - National Science Library

    Hoyt, Reed

    2001-01-01

    ...) during a 10-day field exercise (FEX) at Quantico, VA. Question: Does intense physical activity, limited sleep, and restricted rations, combined with cold/damp weather, result in excessively negative energy balance and hypothermia? Methods...

  5. Meeting the challenges of on-host and off-host water balance in blood-feeding arthropods.

    Science.gov (United States)

    Benoit, Joshua B; Denlinger, David L

    2010-10-01

    In this review, we describe water balance requirements of blood-feeding arthropods, particularly contrasting dehydration tolerance during the unfed, off-host state and the challenges of excess water that accompany receipt of the bloodmeal. Most basic water balance characteristics during the off-host stage are applicable to other terrestrial arthropods, as well. A well-coordinated suite of responses enable arthropods to conserve water resources, enhance their desiccation tolerance, and increase their water supplies by employing a diverse array of molecular, structural and behavioral responses. Water loss rates during the off-host phase are particularly useful for generating a scheme to classify vectors according to their habitat requirements for water, thus providing a convenient tool with potential predictive power for defining suitable current and future vector habitats. Blood-feeding elicits an entirely different set of challenges as the vector responds to overhydration by quickly increasing its rate of cuticular water loss and elevating the rate of diuresis to void excess water and condense the bloodmeal. Immature stages that feed on blood normally have a net increase in water content at the end of a blood-feeding cycle, but in adults the water content reverts to the pre-feeding level when the cycle is completed. Common themes are evident in diverse arthropods that feed on blood, particularly the physiological mechanisms used to respond to the sudden influx of water as well as the mechanisms used to counter water shortfalls that are encountered during the non-feeding, off-host state. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Analysis of a solar collector field water flow network

    Science.gov (United States)

    Rohde, J. E.; Knoll, R. H.

    1976-01-01

    A number of methods are presented for minimizing the water flow variation in the solar collector field for the Solar Building Test Facility at the Langley Research Center. The solar collector field investigated consisted of collector panels connected in parallel between inlet and exit collector manifolds to form 12 rows. The rows were in turn connected in parallel between the main inlet and exit field manifolds to complete the field. The various solutions considered included various size manifolds, manifold area change, different locations for the inlets and exits to the manifolds, and orifices or flow control valves. Calculations showed that flow variations of less than 5 percent were obtainable both inside a row between solar collector panels and between various rows.

  7. Physical treatment of water from heater circuit by magnetic fields

    International Nuclear Information System (INIS)

    Curuia, Marian; Culcer, Mihai; Culcer, Ioan; Stefanescu, Mariana; Iliescu, Gheorghe; Titescu, Gheorghe

    2001-01-01

    Magnetic scale control technologies can be used as a replacement for most water-softening equipment. Specifically, chemical softening, ion exchange and reverse osmosis, when used for control of hardness, could be replaced by magnetic water treatment technologies which use a magnetic field to alter the reaction between scale-forming ions in hard water. Hard water contains high levels of calcium, and other divalent cations. When subjected to heating, the divalent ions forms insoluble compounds with anions such as carbonate. These insoluble compounds have a much lower heat transfer capability than the metal. Because they are insulators, additional fuel consumption would be required to transfer on equivalent amount of energy. The general principle for the magnetic technology is a result of physical interaction between a magnetic field and a moving electric charge, in this case in the form of ions. When ions pass through the magnetic field, a force is exerted on each ion. The forces on ions of opposite charges are in opposite directions. The redirection of the particles tends to increase the frequency with which ions of opposite charge collide and combine to form a mineral precipitate, or insoluble compound. Since this reaction takes place in a low temperature region of a heat exchange system, the scale formed is non-adherent. The magnetic field can be realized with permanent magnets or electromagnets. There are two electromagnetic devices: invasive and non-invasive. Invasive devices have parts or the whole operating equipment within the flow field. This device requires the removal of a pipe section for insertion. Non-invasive devices are completely external to pipe, and thus can be installed while the pipe is in operation. We have under study a non-invasive electromagnetic device. In the paper it is largely presented. (authors)

  8. Physical treatment of water from heater circuit by magnetic fields

    International Nuclear Information System (INIS)

    Culcer, Mihai; Curuia, Marian; Stefanescu, Ioan; Iliescu, Mariana; Titescu, Gheorghe; Vitan, Eugen

    2002-01-01

    Magnetic scale control technologies can be used as a replacement for most water-softening equipment. Specifically, chemical softening, ion exchange and reverse osmosis, when used for control of hardness, could be replaced by magnetic water treatment technologies which use a magnetic field to alter the reaction between scale-forming ions in hard water. Hard water contains high levels of calcium, and other divalent cations. When subjected to heating, the divalent ions forms insoluble compounds with anions such as carbonate. These insoluble compounds have a much lower heat transfer capability than metal. Because they are insulators, additional fuel consumption would be required to transfer on equivalent amount of energy. The general principle for the magnetic technology is a result of physical interaction between a magnetic field and a moving electric charge, in this case in the form of ions. When ions pass through the magnetic field, a force is exerted on each ion. The forces on ions of opposite charges are in opposite directions. The redirection of the particles tends to increase the frequency with which ions of opposite charge collide and combine to form a mineral precipitate, or insoluble compound. Since this reaction takes place in a low temperature region of a heat exchange system, the scale formed is non-adherent. The magnetic field can be realized with permanent magnets or electromagnets. There are two electromagnetic devices: invasive and non-invasive. Invasive devices have parts or the whole operating equipment within the flow field. This device requires the removal of a pipe section for insertion. Non-invasive devices are completely external to pipe, and thus can be installed while the pipe is in operation. We have under study a non-invasive electromagnetic device. In the paper it is largely presented. (authors)

  9. Effects of climate and water balance across grasslands of varying C3 and C4 grass cover

    Science.gov (United States)

    Witwicki, Dana L.; Munson, Seth M.; Thoma, David P.

    2016-01-01

    Climate change in grassland ecosystems may lead to divergent shifts in the abundance and distribution of C3 and C4 grasses. Many studies relate mean climate conditions over relatively long time periods to plant cover, but there is still much uncertainty about how the balance of C3and C4 species will be affected by climate at a finer temporal scale than season (individual events to months). We monitored cover at five grassland sites with co-dominant C3 and C4 grass species or only dominant C3 grass species for 6 yr in national parks across the Colorado Plateau region to assess the influence of specific months of climate and water balance on changes in grass cover. C4 grass cover increased and decreased to a larger degree than C3 grass cover with extremely dry and wet consecutive years, but this response varied by ecological site. Climate and water balance explained 10–49% of the inter-annual variability of cover of C3 and C4 grasses at all sites. High precipitation in the spring and in previous year monsoon storms influenced changes in cover of C4 grasses, with measures of water balance in the same months explaining additional variability. C3 grasses in grasslands where they were dominant were influenced primarily by longer periods of climate, while C3 grasses in grasslands where they were co-dominant with C4 grasses were influenced little by climate anomalies at either short or long periods of time. Our results suggest that future changes in spring and summer climate and water balance are likely to affect cover of both C3 and C4 grasses, but cover of C4 grasses may be affected more strongly, and the degree of change will depend on soils and topography where they are growing and the timing of the growing season.

  10. Water dynamics and nitrogen balance under different agricultural management practices in the low-lying plain of north-east Italy

    Science.gov (United States)

    Camarotto, Carlo; Dal Ferro, Nicola; Piccoli, Ilaria; Polese, Riccardo; Furlan, Lorenzo; Chiarini, Francesca; Berti, Antonio; Morari, Francesco

    2017-04-01

    In the last decades the adoption of sustainable land management practices (e.g. conservation agriculture, use of cover crops) has been largely subsidized by the EU policy in an attempt to combine competitive agricultural production with environmental protection, e.g. reduce nitrogen losses and optimize water management. However, the real environmental benefits of these practices is still questioned since strongly dependent on local pedo-climatic variability. This study aimed to evaluate water and nitrogen balances in sustainable land management systems including conservation agriculture (CA) practices or use of cover crops (CC). The experimental fields, established in 2010, are localized in the low-lying plain of the Veneto Region (NE Italy), characterized by a shallow water table and identified as Nitrate Vulnerable Zone. In March 2016, a total of nine soil-water monitoring stations have been installed in CA, CC and conventional fields. The stations (three per each field) were set up with multi-sensors probes (10 cm, 30 cm and 60 cm depth) for the continuous monitoring of soil electrical conductivity (EC, dS m-1), soil temperature (T, °C) and volumetric water content (WC, m3 m-3). A wireless system in ISM band has been designed to connect the soil-water monitoring stations to a unique access point, where the data were sent to a cloud platform via GSM. Water samples at each station were collected every two weeks using a suction cups (installed at 60 cm depth) and a phreatic wells, which were also used to record the water table level. Climatic data, collected from a weather station located in the experimental field, were combined with soil-water data to estimate water and nitrogen fluxes in the root zone. During the first year, relevant differences in water and nitrogen dynamics were observed between the treatments. It can be hypothesized that the combined effect of undisturbed soil conditions and continuous soil cover were major factors to affect water

  11. Fresh water disinfection by pulsed low electric field

    International Nuclear Information System (INIS)

    Zheng, C; Xu, Y; Liu, Z; Yan, K

    2013-01-01

    In this paper, we describe a pulsed low electric field process for water disinfection. Electric intensity of 0.6–1.7 kV cm −1 is applied. Experiments are performed with a 1.2 L axis-cylinder reactor. A bipolar pulsed power source with pulsed width of 25 μs and frequency of 100–3000 Hz is used. Water conductivity of 3–200 μs cm −1 is investigated, which can significantly affect pulsed voltage-current waveforms and injected energy. Energy per pulse rises with increased water conductivity. The initial E. Coli density and water conductivity are two major factors influencing the disinfection. No disinfection effect is performed with deionized water of 3 μs cm −1 . When water conductivity is 25 μs cm −1 and bacteria density is 10 4 –10 6 cfu ml −1 , significant disinfection effect is observed. More than 99% of the cells can be disinfected with an energy density of less than 70 J ml −1 , while water temperature is below 30 °C.

  12. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive to stationary such as powering telecom back-up units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce electricity and waste......-hoc and real time electrical signal of the fuel cell water balance by employing hot wire anemometry. The hot wire sensor is placed into a binary mixture of hydrogen and water vapour, and the voltage signal received gives valuable insight into heat and mass transfer phenomena in a PEMFC. A central question...

  13. A MASS BALANCE OF SURFACE WATER GENOTOXICITY IN PROVIDENCE RIVER (RHODE ISLAND USA)

    Science.gov (United States)

    White and Rasmussen (Mutation Res. 410:223-236) used a mass balance approach to demonstrate that over 85% of the total genotoxic loading to the St. Lawrence River at Montreal is non-industrial. To validate the mass balance approach and investigate the sources of genotoxins in sur...

  14. Variations in surface water-ground water interactions along a headwater mountain stream: comparisons between transient storage and water balance analyses

    Science.gov (United States)

    Adam S. Ward; Robert A. Payn; Michael N. Gooseff; Brian L. McGlynn; Kenneth E. Bencala; Christa A. Kellecher; Steven M. Wondzell; Thorsten. Wagener

    2013-01-01

    The accumulation of discharge along a stream valley is frequently assumed to be the primary control on solute transport processes. Relationships of both increasing and decreasing transient storage, and decreased gross losses of stream water have been reported with increasing discharge; however, we have yet to validate these relationships with extensive field study. We...

  15. Field assessment of balance in 10 to 14 year old children, reproducibility and validity of the Nintendo Wii board.

    Science.gov (United States)

    Larsen, Lisbeth Runge; Jørgensen, Martin Grønbech; Junge, Tina; Juul-Kristensen, Birgit; Wedderkopp, Niels

    2014-06-10

    Because body proportions in childhood are different to those in adulthood, children have a relatively higher centre of mass location. This biomechanical difference and the fact that children's movements have not yet fully matured result in different sway performances in children and adults. When assessing static balance, it is essential to use objective, sensitive tools, and these types of measurement have previously been performed in laboratory settings. However, the emergence of technologies like the Nintendo Wii Board (NWB) might allow balance assessment in field settings. As the NWB has only been validated and tested for reproducibility in adults, the purpose of this study was to examine reproducibility and validity of the NWB in a field setting, in a population of children. Fifty-four 10-14 year-olds from the CHAMPS-Study DK performed four different balance tests: bilateral stance with eyes open (1), unilateral stance on dominant (2) and non-dominant leg (3) with eyes open, and bilateral stance with eyes closed (4). Three rounds of the four tests were completed with the NWB and with a force platform (AMTI). To assess reproducibility, an intra-day test-retest design was applied with a two-hour break between sessions. Bland-Altman plots supplemented by Minimum Detectable Change (MDC) and concordance correlation coefficient (CCC) demonstrated satisfactory reproducibility for the NWB and the AMTI (MDC: 26.3-28.2%, CCC: 0.76-0.86) using Centre Of Pressure path Length as measurement parameter. Bland-Altman plots demonstrated satisfactory concurrent validity between the NWB and the AMTI, supplemented by satisfactory CCC in all tests (CCC: 0.74-0.87). The ranges of the limits of agreement in the validity study were comparable to the limits of agreement of the reproducibility study. Both NWB and AMTI have satisfactory reproducibility for testing static balance in a population of children. Concurrent validity of NWB compared with AMTI was satisfactory. Furthermore, the

  16. Modeling water outflow from tile-drained agricultural fields.

    Science.gov (United States)

    Kuzmanovski, Vladimir; Trajanov, Aneta; Leprince, Florence; Džeroski, Sašo; Debeljak, Marko

    2015-02-01

    The estimation of the pollution risk of surface and ground water with plant protection products applied on fields depends highly on the reliable prediction of the water outflows over (surface runoff) and through (discharge through sub-surface drainage systems) the soil. In previous studies, water movement through the soil has been simulated mainly using physically-based models. The most frequently used models for predicting soil water movement are MACRO, HYDRUS-1D/2D and Root Zone Water Quality Model. However, these models are difficult to apply to a small portion of land due to the information required about the soil and climate, which are difficult to obtain for each plot separately. In this paper, we focus on improving the performance and applicability of water outflow modeling by using a modeling approach based on machine learning techniques. It allows us to overcome the major drawbacks of physically-based models e.g., the complexity and difficulty of obtaining the information necessary for the calibration and the validation, by learning models from data collected from experimental fields that are representative for a wider area (region). We evaluate the proposed approach on data obtained from the La Jaillière experimental site, located in Western France. This experimental site represents one of the ten scenarios contained in the MACRO system. Our study focuses on two types of water outflows: discharge through sub-surface drainage systems and surface runoff. The results show that the proposed modeling approach successfully extracts knowledge from the collected data, avoiding the need to provide the information for calibration and validation of physically-based models. In addition, we compare the overall performance of the learned models with the performance of existing models MACRO and RZWQM. The comparison shows overall improvement in the prediction of discharge through sub-surface drainage systems, and partial improvement in the prediction of the surface

  17. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields

    Science.gov (United States)

    Zhu, Wuming; Trickey, S. B.

    2017-12-01

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li+, Be+, and B+, in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.

  18. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields.

    Science.gov (United States)

    Zhu, Wuming; Trickey, S B

    2017-12-28

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li + , Be + , and B + , in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B

  19. Urban outdoor water use and response to drought assessed through mobile energy balance and vegetation greenness measurements

    Science.gov (United States)

    Liang, L. L.; Anderson, R. G.; Shiflett, S. A.; Jenerette, G. D.

    2017-08-01

    Urban vegetation provides many highly valued ecosystem services but also requires extensive urban water resources. Increasingly, cities are experiencing water limitations and managing outdoor urban water use is an important concern. Quantifying the water lost via evapotranspiration (ET) is critical for urban water management and conservation, especially in arid or semi-arid regions. In this study, we deployed a mobile energy balance platform to measure evaporative fraction throughout Riverside, California, a warm, semi-arid, city. We observed the relationship between evaporative fraction and satellite derived vegetation index across 29 sites, which was then used to map whole-city ET for a representative mid-summer period. Resulting ET distributions were strongly associated with both neighborhood population density and income. By comparing 2014 and 2015 summer-period water uses, our results show 7.8% reductions in evapotranspiration, which were also correlated with neighborhood demographic characteristics. Our findings suggest a mobile energy balance measurement platform coupled with satellite imagery could serve as an effective tool in assessing the outdoor water use at neighborhood to whole city scales.

  20. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balances

    Directory of Open Access Journals (Sweden)

    G. Tang

    2012-08-01

    Full Text Available Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i modify a DGVM for simulating land surface water balances; (ii evaluate the modified model in simulating actual evapotranspiration (ET, soil moisture, and surface runoff at regional or watershed scales; and (iii gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ DGVM. To evaluate the model we ran LH using historical (1981–2006 climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981–2006 (R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficient > 0.52. The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences < 15% with observed values for these rivers. Compared to a degree-day method for snowmelt computation, the addition of the solar radiation effect on snowmelt

  1. Water balances of old-growth and regenerating montane cloud forests in central Veracruz, Mexico

    Science.gov (United States)

    Muñoz-Villers, L. E.; Holwerda, F.; Gómez-Cárdenas, M.; Equihua, M.; Asbjornsen, H.; Bruijnzeel, L. A.; Marín-Castro, B. E.; Tobón, C.

    2012-09-01

    SummaryThis paper compares the water budgets of two adjacent micro-catchments covered by mature (MAT) and 20-year-old secondary (SEC) lower montane cloud forests, respectively, in central Veracruz, Mexico over a 2-year period. Rainfall (P) and streamflow (Q) were measured continuously, whereas dry canopy evaporation (transpiration Et), wet canopy evaporation (rainfall interception I), and cloud water interception (CWI) were quantified using a combination of field measurements and modeling. Mean annual P was 3467 mm, of which typically 80% fell during the wet season (May-October). Fog interception occurred exclusively during the dry season (November-April), and was ⩽2% of annual P for both forests. Rainfall interception loss was dominated by post-event evaporation of intercepted water rather than by within-event evaporation. Therefore, the higher overall I (i.e. including CWI) by the MAT (16% of P vs. 8% for the SEC) reflects a higher canopy storage capacity, related in turn to higher leaf area index and greater epiphyte biomass. Annual Et totals derived from sapflow measurements were nearly equal for the MAT and SEC (˜790 mm each). Total annual water yield calculated as P minus (Et + I) was somewhat higher for the SEC (2441 mm) than for the MAT (2077 mm), and mainly reflects the difference in I. Mean annual Q was also higher for the SEC (1527 mm) than for the MAT (1338 mm), and consisted mostly of baseflow (˜90%). Baseflow recession rates were nearly equal between the two forests, as were stormflow coefficients (4% and 5% for MAT and SEC, respectively). The very low runoff response to rainfall is attributed to the high infiltration and water retention capacities of the volcanic soils throughout the ˜2 m deep profile. The water budget results indicate that ˜875 and 700 mm year-1 leave the SEC and MAT as deep groundwater leakage, which is considered plausible given the fractured geology in the study area. It is concluded that 20 years of natural regeneration

  2. How would peak rainfall intensity affect runoff predictions using conceptual water balance models?

    Directory of Open Access Journals (Sweden)

    B. Yu

    2015-06-01

    Full Text Available Most hydrological models use continuous daily precipitation and potential evapotranspiration for streamflow estimation. With the projected increase in mean surface temperature, hydrological processes are set to intensify irrespective of the underlying changes to the mean precipitation. The effect of an increase in rainfall intensity on the long-term water balance is, however, not adequately accounted for in the commonly used hydrological models. This study follows from a previous comparative analysis of a non-stationary daily series of stream flow of a forested watershed (River Rimbaud in the French Alps (area = 1.478 km2 (1966–2006. Non-stationarity in the recorded stream flow occurred as a result of a severe wild fire in 1990. Two daily models (AWBM and SimHyd were initially calibrated for each of three distinct phases in relation to the well documented land disturbance. At the daily and monthly time scales, both models performed satisfactorily with the Nash–Sutcliffe coefficient of efficiency (NSE varying from 0.77 to 0.92. When aggregated to the annual time scale, both models underestimated the flow by about 22% with a reduced NSE at about 0.71. Exploratory data analysis was undertaken to relate daily peak hourly rainfall intensity to the discrepancy between the observed and modelled daily runoff amount. Preliminary results show that the effect of peak hourly rainfall intensity on runoff prediction is insignificant, and model performance is unlikely to improve when peak daily precipitation is included. Trend analysis indicated that the lar