WorldWideScience

Sample records for field theory state

  1. Topological Field Theory and Matrix Product States

    CERN Document Server

    Kapustin, Anton; You, Minyoung

    2016-01-01

    It is believed that most (perhaps all) gapped phases of matter can be described at long distances by Topological Quantum Field Theory (TQFT). On the other hand, it has been rigorously established that in 1+1d ground states of gapped Hamiltonians can be approximated by Matrix Product States (MPS). We show that the state-sum construction of 2d TQFT naturally leads to MPS in their standard form. In the case of systems with a global symmetry G, this leads to a classification of gapped phases in 1+1d in terms of Morita-equivalence classes of G-equivariant algebras. Non-uniqueness of the MPS representation is traced to the freedom of choosing an algebra in a particular Morita class. In the case of Short-Range Entangled phases, we recover the group cohomology classification of SPT phases.

  2. Matrix product states for gauge field theories.

    Science.gov (United States)

    Buyens, Boye; Haegeman, Jutho; Van Acoleyen, Karel; Verschelde, Henri; Verstraete, Frank

    2014-08-29

    The matrix product state formalism is used to simulate Hamiltonian lattice gauge theories. To this end, we define matrix product state manifolds which are manifestly gauge invariant. As an application, we study (1+1)-dimensional one flavor quantum electrodynamics, also known as the massive Schwinger model, and are able to determine very accurately the ground-state properties and elementary one-particle excitations in the continuum limit. In particular, a novel particle excitation in the form of a heavy vector boson is uncovered, compatible with the strong coupling expansion in the continuum. We also study full quantum nonequilibrium dynamics by simulating the real-time evolution of the system induced by a quench in the form of a uniform background electric field.

  3. Topological field theory and matrix product states

    Science.gov (United States)

    Kapustin, Anton; Turzillo, Alex; You, Minyoung

    2017-08-01

    It is believed that most (perhaps all) gapped phases of matter can be described at long distances by topological quantum field theory (TQFT). On the other hand, it has been rigorously established that in 1+1d ground states of gapped Hamiltonians can be approximated by matrix product states (MPS). We show that the state-sum construction of 2d TQFT naturally leads to MPS in their standard form. In the case of systems with a global symmetry G , this leads to a classification of gapped phases in 1+1d in terms of Morita-equivalence classes of G -equivariant algebras. Nonuniqueness of the MPS representation is traced to the freedom of choosing an algebra in a particular Morita class. In the case of short-range entangled phases, we recover the group cohomology classification of SPT phases.

  4. Matrix product states for lattice field theories

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, M.C.; Cirac, J.I. [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Saito, H. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Tsukuba Univ., Ibaraki (Japan). Graduate School of Pure and Applied Sciences

    2013-10-15

    The term Tensor Network States (TNS) refers to a number of families of states that represent different ansaetze for the efficient description of the state of a quantum many-body system. Matrix Product States (MPS) are one particular case of TNS, and have become the most precise tool for the numerical study of one dimensional quantum many-body systems, as the basis of the Density Matrix Renormalization Group method. Lattice Gauge Theories (LGT), in their Hamiltonian version, offer a challenging scenario for these techniques. While the dimensions and sizes of the systems amenable to TNS studies are still far from those achievable by 4-dimensional LGT tools, Tensor Networks can be readily used for problems which more standard techniques, such as Markov chain Monte Carlo simulations, cannot easily tackle. Examples of such problems are the presence of a chemical potential or out-of-equilibrium dynamics. We have explored the performance of Matrix Product States in the case of the Schwinger model, as a widely used testbench for lattice techniques. Using finite-size, open boundary MPS, we are able to determine the low energy states of the model in a fully non-perturbativemanner. The precision achieved by the method allows for accurate finite size and continuum limit extrapolations of the ground state energy, but also of the chiral condensate and the mass gaps, thus showing the feasibility of these techniques for gauge theory problems.

  5. Matrix Product States for Lattice Field Theories

    CERN Document Server

    Bañuls, Mari Carmen; Cirac, J Ignacio; Jansen, Karl; Saito, Hana

    2013-01-01

    The term Tensor Network States (TNS) refers to a number of families of states that represent different ans\\"atze for the efficient description of the state of a quantum many-body system. Matrix Product States (MPS) are one particular case of TNS, and have become the most precise tool for the numerical study of one dimensional quantum many-body systems, as the basis of the Density Matrix Renormalization Group method. Lattice Gauge Theories (LGT), in their Hamiltonian version, offer a challenging scenario for these techniques. While the dimensions and sizes of the systems amenable to TNS studies are still far from those achievable by 4-dimensional LGT tools, Tensor Networks can be readily used for problems which more standard techniques, such as Markov chain Monte Carlo simulations, cannot easily tackle. Examples of such problems are the presence of a chemical potential or out-of-equilibrium dynamics. We have explored the performance of Matrix Product States in the case of the Schwinger model, as a widely used ...

  6. Towards state locality in quantum field theory: free fermions

    CERN Document Server

    Oeckl, Robert

    2013-01-01

    We provide a restricted solution to the state locality problem in quantum field theory for the case of free fermions. Concretely, we present a functorial quantization scheme that takes as input a classical free fermionic field theory. Crucially, no data is needed beyond the classical structures evident from a Lagrangian setting. The output is a quantum field theory encoded in a weakened version of the positive formalism of the general boundary formulation. When the classical data is augmented with complex structures on hypersurfaces, the quantum data correspondingly augment to the full positive formalism and the standard quantization of free fermionic field theory is recovered. This augmentation can be performed selectively, i.e., it may be limited to a subcollection of hypersurfaces. The state locality problem arises from the fact that suitable complex structures only exist on a very restricted class of unbounded hypersurfaces. But standard quantization requires them on all hypersurfaces and is thus only abl...

  7. Do Mixed States save Effective Field Theory from BICEP?

    CERN Document Server

    Collins, Hael; Vardanyan, Tereza

    2014-01-01

    The BICEP2 collaboration has for the first time observed the B-mode polarization associated with inflationary gravitational waves. Their result has some discomfiting implications for the validity of an effective theory approach to single-field inflation since it would require an inflaton field excursion larger than the Planck scale. We argue that if the quantum state of the gravitons is a mixed state based on the Bunch-Davies vacuum, then the tensor to scalar ratio r measured by BICEP is different than the quantity that enters the Lyth bound. When this is taken into account, the tension between effective field theory and the BICEP result is alleviated.

  8. Local Thermal Equilibrium States in Relativistic Quantum Field Theory

    CERN Document Server

    Gransee, Michael

    2016-01-01

    It is well-known that thermal equilibrium states in quantum statistical mechanics and quantum field theory can be described in a mathematically rigorous manner by means of the so-called Kubo-Martin-Schwinger (KMS) condition, which is based on certain analyticity and periodicity properties of correlation functions. On the other hand, the characterization of non-equilibrium states which only locally have thermal properties still constitutes a challenge in quantum field theory. We discuss a recent proposal for characterization of such states by a generalized KMS condition. The connection of this proposal to a proposal by D. Buchholz, I. Ojima and H.-J. Roos for characterizing local thermal equilibrium states in quantum field theory is discussed.

  9. Modular Hamiltonian for Excited States in Conformal Field Theory.

    Science.gov (United States)

    Lashkari, Nima

    2016-07-22

    We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the Z_{n} replica symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories.

  10. Anomalous reparametrizations and butterfly states in string field theory

    CERN Document Server

    Schnabl, M

    2003-01-01

    The reparametrization symmetries of Witten's vertex in ordinary or vacuum string field theories can be used to extract useful information about classical solutions of the equations of motion corresponding to D-branes. It follows, that the vacuum string field theory in general has to be regularized. For the regularization recently considered by Gaiotto et al., we show that the identities we derive, are so constraining, that among all surface states they uniquely select the simplest butterfly projector discovered numerically by those authors. The reparametrization symmetries are also used to give a simple proof that the butterfly states and their generalizations are indeed projectors.

  11. Modular Hamiltonian of Excited States in Conformal Field Theory

    CERN Document Server

    Lashkari, Nima

    2015-01-01

    We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the replica Z_n symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories.

  12. Confinement in the q-state Potts field theory

    CERN Document Server

    Delfino, Gesualdo

    2007-01-01

    The q-state Potts field theory describes the universality class associated to the spontaneous breaking of the permutation symmetry of q colors. In two dimensions it is defined up to q=4 and exhibits duality and integrability away from critical temperature in absence of magnetic field. We show how, when a magnetic field is switched on, it provides the simplest model of confinement allowing for both mesons and baryons. Deconfined quarks (kinks) exist in a phase bounded by a first order transition on one side, and a second order transition on the other. The evolution of the mass spectrum with temperature and magnetic field is discussed.

  13. Mean-field theory of echo state networks

    Science.gov (United States)

    Massar, Marc; Massar, Serge

    2013-04-01

    Dynamical systems driven by strong external signals are ubiquitous in nature and engineering. Here we study “echo state networks,” networks of a large number of randomly connected nodes, which represent a simple model of a neural network, and have important applications in machine learning. We develop a mean-field theory of echo state networks. The dynamics of the network is captured by the evolution law, similar to a logistic map, for a single collective variable. When the network is driven by many independent external signals, this collective variable reaches a steady state. But when the network is driven by a single external signal, the collective variable is non stationary but can be characterized by its time averaged distribution. The predictions of the mean-field theory, including the value of the largest Lyapunov exponent, are compared with the numerical integration of the equations of motion.

  14. Twisted boundary states in c=1 coset conformal field theories

    CERN Document Server

    Ishikawa, H; Ishikawa, Hiroshi; Yamaguchi, Atsushi

    2003-01-01

    We study the mutual consistency of twisted boundary conditions in the coset conformal field theory G/H. We calculate the overlap of the twisted boundary states of G/H with the untwisted ones, and show that the twisted boundary states are consistently defined in the diagonal modular invariant. The overlap of the twisted boundary states is expressed by the branching functions of a twisted affine Lie algebra. As a check of our argument, we study the diagonal coset theory so(2n)_1 \\oplus so(2n)_1/so(2n)_2, which is equivalent with the orbifold S^1/\\Z_2. We construct the boundary states twisted by the automorphisms of the unextended Dynkin diagram of so(2n), and show their mutual consistency by identifying their counterpart in the orbifold. For the triality of so(8), the twisted states of the coset theory correspond to neither the Neumann nor the Dirichlet boundary states of the orbifold and yield the conformal boundary states that preserve only the Virasoro algebra.

  15. Weak confinement in the three-state Potts Field Theory

    Science.gov (United States)

    Rutkevich, Sergei

    Kink topological excitations are quite common in one-dimensional quantum ferromagnetic systems with the spontaneously broken discrete symmetry. Application of the external magnetic field h induces the long-range attractive force between kinks leading to their confinement. While in the Ising Field Theory the particle sector in the confinement regime contains only the two-kink bound states (''the mesons''), in the three-state Potts Field Theory (PFT) the three-kink bound states (''the baryons'') can exist as well. In the weak confinement regime, which is realized at small external magnetic fields, the meson masses in the PFT can be determined analytically in the leading order in h by means of the solution of a quantum-mechanical problem for two non-relativistic particles interacting with a linear attractive potential, and my means of the WKB method. The masses of lightest baryons in the three-state PFT were calculated by the numerical solution of a three-particle quantum-mechanical problem. The obtained mass spectra for the PFT mesons and baryons were confirmed recently by Lencés and Takács in numerical calculations based on the truncated conformal space approach.

  16. The Hoyle state in nuclear lattice effective field theory

    Indian Academy of Sciences (India)

    Timo A Lähde; Evgeny Epelbaum; Hermann Krebs; Dean Lee; Ulf-G Meißner; Gautam Rupak

    2014-11-01

    We review the calculation of the Hoyle state of 12C in nuclear lattice effective field theory (NLEFT) and its anthropic implications in the nucleosynthesis of 12C and 16O in red giant stars. We also analyse the extension of NLEFT to the regime of medium-mass nuclei, with emphasis on the determination of the ground-state energies of the nuclei 16O, 20Ne, 24Mg, and 28Si by Euclidean time projection. Finally, we discuss recent NLEFT results for the spectrum, electromagnetic properties, and α-cluster structure of 16O.

  17. Significance of Negative Energy States in Quantum Field Theory $(1) $

    CERN Document Server

    Chen Sow Hsin

    2002-01-01

    We suppose that there are both particles with negative energies described by $\\QTR{cal}{L}_{W}$ and particles with positive energies described by $\\QTR{cal}{L}_{F},$ $\\QTR{cal}{L=L}_{F\\text{}}+\\QTR{cal}{L}_{W},$ $\\QTR{cal}{L}_{F\\text{}}$ is equivalent to Lagragian density of the conventional QED, $\\QTR{cal}{L}_{W}$ and $\\QTR{cal}{L}_{F\\text{}}$ are symmetric, independent of each other before quantization and dependent on each other after quantization. From this we define transfomation operators and quantize free fields by the transformation operators replacing the creation and annihilation operators in the conventional QED. That the energy of the vacuum state is equal to zero is naturally obtained. Thus we can easily determine the cosmological constant according to data of astronomical observation, and it is possible to correct nonperturbational methods which depend on the energy of the ground state in quantum field theory.

  18. Solving Witten's string field theory using the butterfly state

    CERN Document Server

    Okawa, Y

    2003-01-01

    We solve the equation of motion of Witten's cubic open string field theory in a series expansion using the regulated butterfly state. The expansion parameter is given by the regularization parameter of the butterfly state, which can be taken to be arbitrarily small. Unlike the case of level truncation, the equation of motion can be solved for an arbitrary component of the Fock space up to a positive power of the expansion parameter. The energy density of the solution is well-defined and remains finite even in the singular butterfly limit, and it gives approximately 68% of the D25-brane tension for the solution at the leading order. Moreover, it simultaneously solves the equation of motion of vacuum string field theory, providing support for the conjecture at this order. We further improve our ansatz by taking into account next-to-leading terms, and find two numerical solutions which give approximately 88% and 109%, respectively, of the D25-brane tension for the energy density. These values are interestingly c...

  19. The Kodama state for topological quantum field theory beyond instantons

    CERN Document Server

    Cartas-Fuentevilla, R

    2005-01-01

    Constructing a symplectic structure that preserves the ordinary symmetries and the topological invariance for topological Yang-Mills theory, it is shown that the Kodama (Chern-Simons) state traditionally associated with a topological phase of unbroken diffeomorphism invariance for instantons, exists actually for the complete topological sector of the theory. The case of gravity is briefly discussed.

  20. Spin Topological Field Theory and Fermionic Matrix Product States

    CERN Document Server

    Kapustin, Anton; You, Minyoung

    2016-01-01

    We study state-sum constructions of G-equivariant spin-TQFTs and their relationship to Matrix Product States. We show that in the Neveu-Schwarz, Ramond, and twisted sectors, the states of the theory are generalized Matrix Product States. We apply our results to revisit the classification of fermionic Short-Range-Entangled phases with a unitary symmetry G. Interesting subtleties appear when the total symmetry group is a nontrivial extension of G by fermion parity.

  1. Computational approach for calculating bound states in quantum field theory

    Science.gov (United States)

    Lv, Q. Z.; Norris, S.; Brennan, R.; Stefanovich, E.; Su, Q.; Grobe, R.

    2016-09-01

    We propose a nonperturbative approach to calculate bound-state energies and wave functions for quantum field theoretical models. It is based on the direct diagonalization of the corresponding quantum field theoretical Hamiltonian in an effectively discretized and truncated Hilbert space. We illustrate this approach for a Yukawa-like interaction between fermions and bosons in one spatial dimension and show where it agrees with the traditional method based on the potential picture and where it deviates due to recoil and radiative corrections. This method permits us also to obtain some insight into the spatial characteristics of the distribution of the fermions in the ground state, such as the bremsstrahlung-induced widening.

  2. Mean field theory of charge-density wave state in magnetic field

    Science.gov (United States)

    Grigoriev, Pavel; Lyubshin, Dmitrij

    2005-03-01

    We develop a mean field theory of charge-density wave (CDW) state in magnetic field and study properties of this state below the transition temperature. We show that the CDW state with shifted wave vector in high magnetic field (CDWx phase) has a double harmonic modulation on the most part of the phase diagram. At perfect nesting the single harmonic CDW state with shifted wave vector exists only in a very narrow region near the triple point. We show that the transition from CDW0 to CDWx state below the critical temperature is accompanied by a jump of the CDW order parameter and of the CDW wave vector rather than by their continuous increase. This implies a first order transition between these CDW states and explains a strong hysteresis accompanying this transition. The similarities between CDW in high magnetic field and nonuniform LOFF superconducting phase are pointed out. Our investigation provides a theoretical description for recent experiments on organic metal α-(BEDT-TTF)2KHg(SCN)4 and other compounds. In particular, we explain the higher value of the kink transition field and provide the calculation of the phase diagram in the case of perfect nesting.

  3. Field theory

    CERN Document Server

    Roman, Steven

    2006-01-01

    Intended for graduate courses or for independent study, this book presents the basic theory of fields. The first part begins with a discussion of polynomials over a ring, the division algorithm, irreducibility, field extensions, and embeddings. The second part is devoted to Galois theory. The third part of the book treats the theory of binomials. The book concludes with a chapter on families of binomials - the Kummer theory. This new edition has been completely rewritten in order to improve the pedagogy and to make the text more accessible to graduate students.  The exercises have also been im

  4. Composite Fermion Theory for the High Field Wigner Crystal State

    Science.gov (United States)

    Narevich, Romanas; Murthy, Ganpathy; Fertig, Herbert

    2001-03-01

    The low filling fraction Quantum Hall Effect is reexamined using the hamiltonian composite fermion theory developed by Shankar and Murthy(R. Shankar and G. Murthy, Phys. Rev. Lett. 79), 4437 (1997). We address the experiment by Jiang et. al.(H. W. Jiang et. al., Phys. Rev. B 44), 8107 (1991) where the insulating phase surrounding the ν=1/5 quantum liquid was observed and its activation energies (gaps) measured. Previous studies either found gaps that were off by few orders of magnitude (Hartree-Fock calculations of the electronic Wigner crystal(D. Yoshioka and H. Fukuyama, J. Phys. Soc. Japan 47), 394 (1979)) or were unable to calculate them because of the computational complexity (Monte-Carlo studies of the correlated crystal(H. Yi and H. A. Fertig, Phys. Rev. B 58), 4019 (1998)). We use the Hartree-Fock approximation for the periodic density state of composite fermions and find gaps that have a correct order of magnitude and reproduce the experimental dependence on the filling factor. We also report the results of the shear modulus calculation relevant for the collective pinning of the crystal.

  5. A Proposal for the Vector State in Vacuum String Field Theory

    CERN Document Server

    Rashkov, R; Rashkov, Radoslav

    2002-01-01

    A previous calculation on the tachyon state arising as fluctuations of a $D$ brane in vacuum string field theory is extended to include the vector state. We use the boundary conformal field theory approach of Rastelli, Sen and Zwiebach to construct a vector state. It is shown that the vector field satisfies the linearized equations of motion provided the two conditions $k^2=0$ and $k^\\mu A_\\mu=0$ are satisfied. Earlier calculations using Fock space techniques by Hata and Kawano have found massless vector states that are not necessarily transverse.

  6. Quantum field theory and the internal states of elementary particles

    CSIR Research Space (South Africa)

    Greben, JM

    2011-01-01

    Full Text Available basic model considerably, we limit our- selves in this paper to the trivial Higgs solution, namely ` = 0. However, this also eliminates the Higgs param- eter ? from the model, so that it is unclear how this basic theory acquires a scale. The question... of the basic scale parameters in Nature has been considered in the context of cosmology elsewhere [2]. Interestingly, we flnd that for the light quarks general relativity has to be in- troduced to ensure the existence of the quarks, so that for this basic...

  7. Nonlocal continuum field theories

    CERN Document Server

    2002-01-01

    Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...

  8. Effective Field Theory Description of Two-Body Resonance States

    Science.gov (United States)

    Balalhabashi, Jaber

    2017-01-01

    The quantum-mechanical scattering of two particles around a resonance state appears in many areas of physics, for example in cold atoms near narrow, low-lying Feshbach resonances. We construct) an EFT that describes such scattering with contact, derivative interactions. We demonstrate that a careful choice of leading- and next-to-leading-order terms in an effective Lagrangian gives rise to a systematic expansion of the T matrix around the resonance, with controlled error estimates. We compare phase shifts and pole positions with those of a toy model. We are extending our EFT to include Coulomb interactions with the goal of describing nuclear resonances, such as those appearing in the scattering of alpha particles. This material is based upon work supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-04ER41338.

  9. Bounds for State Degeneracies in 2D Conformal Field Theory

    CERN Document Server

    Hellerman, Simeon

    2010-01-01

    In this note we explore the application of modular invariance in 2-dimensional CFT to derive universal bounds for quantities describing certain state degeneracies, such as the thermodynamic entropy, or the number of marginal operators. We show that the entropy at inverse temperature 2 pi satisfies a universal lower bound, and we enumerate the principal obstacles to deriving upper bounds on entropies or quantum mechanical degeneracies for fully general CFTs. We then restrict our attention to infrared stable CFT with moderately low central charge, in addition to the usual assumptions of modular invariance, unitarity and discrete operator spectrum. For CFT in the range c_left + c_right < 48 with no relevant operators, we are able to prove an upper bound on the thermodynamic entropy at inverse temperature 2 pi. Under the same conditions we also prove that a CFT can have a number of marginal deformations no greater than ((c_left + c_right) / (48 - c_left - c_right)) e^(4 Pi) - 2.

  10. On the stability of KMS states in perturbative algebraic quantum field theories

    CERN Document Server

    Drago, Nicolo; Pinamonti, Nicola

    2016-01-01

    We analyze the stability properties shown by KMS states for interacting massive scalar fields propagating over Minkowski spacetime, recently constructed in the framework of perturbative algebraic quantum field theories by Fredenhagen and Lindner \\cite{FredenhagenLindner}. In particular, we prove the validity of the return to equilibrium property when the interaction Lagrangean has compact spatial support. Surprisingly, this does not hold anymore, if the adiabatic limit is considered, namely when the interaction Lagrangean is invariant under spatial translations. Consequently, an equilibrium state under the adiabatic limit for a perturbative interacting theory evolved with the free dynamics does not converge anymore to the free equilibrium state. Actually, we show that its ergodic mean converges to a non equilibrium steady state for the free theory.

  11. Bound-state field theory approach to proton structure effects in muonic hydrogen

    CERN Document Server

    Mohr, Peter J; Sapirstein, J

    2013-01-01

    A bound-state field theory approach to muonic hydrogen is set up using a variant of the Furry representation in which the lowest-order Hamiltonian describes a muon in the presence of a point Coulomb field, but the origin of the binding field is taken to be three charged quarks in the proton which are modeled as Dirac particles that move freely within a spherical well. Bound-state field theory techniques are used to evaluate one- and two-photon effects. Particular attention is paid to two-photon exchange diagrams, which include the effect of proton polarizability. In addition the modification of the electromagnetic self energy of the proton by the electric field of the muon is examined. Finally, the model is used to carry out a calculation of the static electric polarizability of the proton.

  12. Projective Limits of State Spaces: Quantum Field Theory without a Vacuum

    CERN Document Server

    Lanéry, Suzanne

    2016-01-01

    Instead of formulating the states of a Quantum Field Theory (QFT) as density matrices over a single large Hilbert space, it has been proposed by Kijowski [Kijowski, 1977] to construct them as consistent families of partial density matrices, the latter being defined over small 'building block' Hilbert spaces. In this picture, each small Hilbert space can be physically interpreted as extracting from the full theory specific degrees of freedom. This allows to reduce the quantization of a classical field theory to the quantization of finite-dimensional sub-systems, thus sidestepping some of the common ambiguities (specifically, the issues revolving around the choice of a 'vacuum state'), while obtaining robust and well-controlled quantum states spaces. The present letter provides a self-contained introduction to this formalism, detailing its motivations as well as its relations to other approaches to QFT (such as conventional Fock-like Hilbert spaces, path-integral quantization, and the algebraic formulation). At...

  13. String states, loops and effective actions in noncommutative field theory and matrix models

    Directory of Open Access Journals (Sweden)

    Harold C. Steinacker

    2016-09-01

    Full Text Available Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.

  14. Matrix product states and variational methods applied to critical quantum field theory

    CERN Document Server

    Milsted, Ashley; Osborne, Tobias J

    2013-01-01

    We study the second-order quantum phase-transition of massive real scalar field theory with a quartic interaction in (1+1) dimensions on an infinite spatial lattice using matrix product states (MPS). We introduce and apply a naive variational conjugate gradient method, based on the time-dependent variational principle (TDVP) for imaginary time, to obtain approximate ground states, using a related ansatz for excitations to calculate the particle and soliton masses and to obtain the spectral density. We also estimate the central charge using finite-entanglement scaling. Our value for the critical parameter agrees well with recent Monte Carlo results, improving on an earlier study which used the related DMRG method, verifying that these techniques are well-suited to studying critical field systems. We also obtain critical exponents that agree, as expected, with those of the transverse Ising model. Additionally, we treat the special case of uniform product states (mean field theory) separately, showing that they ...

  15. String states, loops and effective actions in noncommutative field theory and matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Steinacker, Harold C., E-mail: harold.steinacker@univie.ac.at

    2016-09-15

    Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.

  16. Mixed-state form factors of U(1) twist fields in the Dirac theory

    Science.gov (United States)

    Chen, Yixiong

    2016-08-01

    Using the ‘Liouville space’ (the space of operators) of the massive Dirac theory, we define mixed-state form factors of U(1) twist fields. We consider mixed states with density matrices diagonal in the asymptotic particle basis. This includes the thermal Gibbs state as well as all generalized Gibbs ensembles of the Dirac theory. When the mixed state is specialized to a thermal Gibbs state, using a Riemann-Hilbert problem and low-temperature expansion, we obtain finite-temperature form factors of U(1) twist fields. We then propose the expression for form factors of U(1) twist fields in general diagonal mixed states. We verify that these form factors satisfy a system of nonlinear functional differential equations, which is derived from the trace definition of mixed-state form factors. At last, under weak analytic conditions on the eigenvalues of the density matrix, we write down the large distance form factor expansions of two-point correlation functions of these twist fields. Using the relation between the Dirac and Ising models, this provides the large-distance expansion of the Rényi entropy (for integer Rényi parameter) in the Ising model in diagonal mixed states.

  17. 2D fractional supersymmetry for rational conformal field theory application for third-integer spin states

    CERN Document Server

    Pérez, A; Simon, P; de Traubenberg, M Rausch

    1996-01-01

    A 2D- fractional supersymmetry theory is algebraically constructed. The Lagrangian is derived using an adapted superspace including, in addition to a scalar field, two fields with spins 1/3,2/3. This theory turns out to be a rational conformal field theory. The symmetry of this model goes beyond the super Virasoro algebra and connects these third-integer spin states. Besides the stress-momentum tensor, we obtain a supercurrent of spin 4/3. Cubic relations are involved in order to close the algebra; the basic algebra is no longer a Lie or a super-Lie algebra. The central charge of this model is found to be 4/3. Finally, we analyse the form that a local invariant action should take.

  18. 2D fractional supersymmetry for rational conformal field theory: application for third-integer spin states

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A. [Strasbourg-1 Univ., 67 (France). Lab. de Physique Theorique; Rausch de Traubenberg, M. [Strasbourg-1 Univ., 67 (France). Lab. de Physique Theorique]|[Centre de Recherches Nucleaires, Bat. 40/II, 67037 Strasbourg Cedex 2 (France); Simon, P. [Strasbourg-1 Univ., 67 (France). Lab. de Physique Theorique

    1996-12-23

    A 2D fractional supersymmetry theory is algebraically constructed. The Lagrangian is derived using an adapted superspace including, in addition to a scalar field, two fields with spins 1/3,2/3. This theory turns out to be a rational conformal field theory. The symmetry of this model goes beyond the super-Virasoro algebra and connects these third-integer spin states. Besides the stress-momentum tensor, we obtain a supercurrent of spin 4/3. Cubic relations are involved in order to close the algebra; the basic algebra is no longer a Lie or a super-Lie algebra. The central charge of this model is found to be 5/3. Finally, we analyze the form that a local invariant action should take. (orig.).

  19. Some exact computations on the twisted butterfly state in string field theory

    CERN Document Server

    Okawa, Y

    2004-01-01

    The twisted butterfly state solves the equation of motion of vacuum string field theory in the singular limit. The finiteness of the energy density of the solution is an important issue, but possible conformal anomaly resulting from the twisting has prevented us from addressing this problem. We present a description of the twisted regulated butterfly state in terms of a conformal field theory with a vanishing central charge which consists of the ordinary bc ghosts and a matter system with c=26. Various quantities relevant to vacuum string field theory are computed exactly using this description. We find that the energy density of the solution can be finite in the limit, but the finiteness depends on the subleading structure of vacuum string field theory. We further argue, contrary to our previous expectation, that contributions from subleading terms in the kinetic term to the energy density can be of the same order as the contribution from the leading term which consists of the midpoint ghost insertion.

  20. Effective field theory and non-Gaussianity from general inflationary states

    CERN Document Server

    Agarwal, Nishant; Tolley, Andrew J; Lin, Jennifer

    2013-01-01

    We study the effects of non-trivial initial quantum states for inflationary fluctuations within the context of the effective field theory for inflation constructed by Cheung et al. which allows us to discriminate between different initial states in a model-independent way. We develop a Green's function/path integral based formulation that incorporates initial state effects and use it to address questions such as how state-dependent is the consistency relation for the bispectrum, how many e-folds beyond the minimum required to solve the cosmological fine tunings of the big bang are we allowed so that some information from the initial state survives until late times, among others. We find that the so-called consistency condition relating the local limit of the bispectrum and the slow-roll parameter is a state-dependent statement that can be avoided for physically consistent initial states either with or without initial non-Gaussianities.

  1. Decoupling of Degenerate Positive-norm States in Witten's String Field Theory

    CERN Document Server

    Kao, H C; Kao, Hsien-Chung; Lee, Jen-Chi

    2003-01-01

    We show that the degenerate positive-norm physical propagating fields of the open bosonic string can be gauged to the higher rank fields at the same mass level. As a result, their scattering amplitudes can be determined from those of the higher spin fields. This phenomenon arises from the existence of two types of zero-norm states with the same Young representations as that of the degenerates positive-norm states in the old covariant first quantized (OCFQ) spectrum. It is demonstrated by using the lowest order gauge transformation of Witten's string field theory (WSFT) up to the fourth massive level (spin-five), and is found to be consistent with conformal field theory calculation based on the first quantized generalized sigma-model approach. In particular, on-shell conditions of zero-norm states in OCFQ stringy gauge transformation are found to correspond, in a one-to-one manner, to the background ghost fields in off-shell gauge transformation of WSFT. The implication of decoupling of scalar modes on Sen's c...

  2. Decoupling of degenerate positive-norm states in Witten's string field theory

    Science.gov (United States)

    Kao, Hsien-Chung; Lee, Jen-Chi

    2003-04-01

    We show that the degenerate positive-norm physical propagating fields of the open bosonic string can be gauged to the higher rank fields at the same mass level. As a result, their scattering amplitudes can be determined from those of the higher spin fields. This phenomenon arises from the existence of two types of zero-norm states with the same Young representations as those of the degenerate positive-norm states in the old covariant first quantized (OCFQ) spectrum. This is demonstrated by using the lowest order gauge transformation of Witten’s string field theory (WSFT) up to the fourth massive level (spin-five), and is found to be consistent with conformal field theory calculation based on the first quantized generalized sigma-model approach. In particular, on-shell conditions of zero-norm states in the OCFQ stringy gauge transformation are found to correspond, in a one-to-one manner, to the background ghost fields in off-shell gauge transformation of WSFT. The implication of decoupling of scalar modes on Sen’s conjectures is also briefly discussed.

  3. W_3 irregular states and isolated N=2 superconformal field theories

    CERN Document Server

    Kanno, Hiroaki; Shiba, Shotaro; Taki, Masato

    2013-01-01

    We explore the proposal that the six-dimensional (2,0) theory on the Riemann surface with irregular punctures leads to a four-dimensional gauge theory coupled to the isolated N=2 superconformal theories of Argyres-Douglas type, and to two-dimensional conformal field theory with irregular states. Following the approach of Gaiotto-Teschner for the Virasoro case, we construct W_3 irregular states by colliding a single SU(3) puncture with several regular punctures of simple type. If n simple punctures are colliding with the SU(3) puncture, the resulting irregular state is a simultaneous eigenvector of the positive modes L_n, ..., L_{2n} and W_{2n}, ..., W_{3n} of the W_3 algebra. We find the corresponding isolated SCFT with an SU(3) flavor symmetry as a nontrivial IR fixed point on the Coulomb branch of the SU(3) linear quiver gauge theories, by confirming that its Seiberg-Witten curve correctly predicts the conditions for the W_3 irregular states. We also show that these SCFT's are identical to the ones obtained...

  4. {{{W}}_3} irregular states and isolated {N}=2 superconformal field theories

    Science.gov (United States)

    Kanno, Hiroaki; Maruyoshi, Kazunobu; Shiba, Shotaro; Taki, Masato

    2013-03-01

    We explore the proposal that the six-dimensional (2, 0) theory on the Riemann surface with irregular punctures leads to a four-dimensional gauge theory coupled to the isolated {N}=2 superconformal theories of Argyres-Douglas type, and to two-dimensional conformal field theory with irregular states. Following the approach of Gaiotto-Teschner for the Virasoro case, we construct {{{W}}_3} irregular states by colliding a single SU(3) puncture with several regular punctures of simple type. If n simple punctures are colliding with the SU(3) puncture, the resulting irregular state is a simultaneous eigenvector of the positive modes L n , . . . , L 2 n and W 2 n , . . . , W 3 n of the {{{W}}_3} algebra. We find the corresponding isolated SCFT with an SU(3) flavor symmetry as a nontrivial IR fixed point on the Coulomb branch of the SU(3) linear quiver gauge theories, by confirming that its Seiberg-Witten curve correctly predicts the conditions for the {{{W}}_3} irregular states. We also compare these SCFT's with the ones obtained from the BPS quiver method.

  5. Particle spectrum of the 3-state Potts field theory: a numerical study

    CERN Document Server

    Lepori, Luca; Delfino, Gesualdo

    2009-01-01

    The three-state Potts field theory in two dimensions with thermal and magnetic perturbations provides the simplest model of confinement allowing for both mesons and baryons, as well as for an extended phase with deconfined quarks. We study numerically the evolution of the mass spectrum of this model in its whole parameter range, obtaining a pattern of confinement, particle decay and phase transitions which confirms recent predictions.

  6. A Note on the Tachyon State in Vacuum String Field Theory

    CERN Document Server

    Rashkov, R

    2001-01-01

    We re-examine the recent proposal of Rastelli, Sen and Zwiebach on the tachyon fluctuation of the vacuum string field theory representing a D25 brane, originally considered by Hata and Kawano. We show that the tachyon state satisfies the linearized equations of motion on-shell in the strong sense thereby allowing us to calculate the ratio of energy density to the tension of the D-brane to be $E_c/T_{25}\\simeq \\pi^2/3[1/16(ln2)^3]\\simeq 0.62$. Our proof relies on a careful handling of the limits ($n\\to\\infty$) involved in the conformal theory description of the sliver and tachyon states. We conjecture that the sliver state represents a single D25 brane.

  7. Correct Path-Integral Formulation of Quantum Thermal Field Theory in Coherent State Representation

    Institute of Scientific and Technical Information of China (English)

    SU Jun-Chen; ZHENG Fu-Hou

    2005-01-01

    The path-integral quantization of thermal scalar, vector, and spinor fields is performed newly in the coherent-state representation. In doing this, we choose the thermal electrodynamics and ψ4 theory as examples. By this quantization, correct expressions of the partition functions and the generating functionals for the quantum thermal electrodynamics and ψ4 theory are obtained in the coherent-state representation. These expressions allow us to perform analytical calculations of the partition functions and generating functionals and therefore are useful in practical applications. Especially, the perturbative expansions of the generating functionals are derived specifically by virtue of the stationary-phase method. The generating functionals formulated in the position space are re-derived from the ones given in the coherent-state representation.

  8. Decoherence and thermalization of a pure quantum state in quantum field theory.

    Science.gov (United States)

    Giraud, Alexandre; Serreau, Julien

    2010-06-11

    We study the real-time evolution of a self-interacting O(N) scalar field initially prepared in a pure, coherent quantum state. We present a complete solution of the nonequilibrium quantum dynamics from a 1/N expansion of the two-particle-irreducible effective action at next-to-leading order, which includes scattering and memory effects. We demonstrate that, restricting one's attention (or ability to measure) to a subset of the infinite hierarchy of correlation functions, one observes an effective loss of purity or coherence and, on longer time scales, thermalization. We point out that the physics of decoherence is well described by classical statistical field theory.

  9. Relative entropy of excited states in conformal field theories of arbitrary dimensions

    CERN Document Server

    Sárosi, Gábor

    2016-01-01

    Extending our previous work, we study the relative entropy between the reduced density matrices obtained from globally excited states in conformal field theories of arbitrary dimensions. We find a general formula in the small subsystem size limit. When one of the states is the vacuum of the CFT, our result matches with the holographic entanglement entropy computations in the corresponding bulk geometries, including AdS black branes. We also discuss the first asymmetric part of the relative entropy and comment on some implications of the results on the distinguishability of black hole microstates in AdS/CFT.

  10. Ground-State Properties of Z = 59 Nuclei in the Relativistic Mean-Field Theory

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong; MA Zhong-Yu; CHEN Bao-Qiu; LI Jun-Qing

    2000-01-01

    Ground-state properties of Pr isotopes are studied in a framework of the relativistic mean-field (RMF) theory using the recently proposed parameter set TM1. Bardeen-Cooper-Schrieffer (BCS) pproximation and blocking method is adopted to deal with pairing interaction and the odd nucleon, respectively. The pairing forces are taken to be isospin dependent. The domain of the validity of the BCS theory and the positions of neutron and proton drip lines are studied. It is shown that RMF theory has provided a good description of the binding energy,isotope shifts and deformation of nuclei over a large range of Pr isotopes, which are in good agreement with those obtained in the finite-range droplet model.

  11. Form the density-of-states method to finite density quantum field theory

    CERN Document Server

    Langfeld, Kurt

    2016-01-01

    During the last 40 years, Monte Carlo calculations based upon Importance Sampling have matured into the most widely employed method for determinig first principle results in QCD. Nevertheless, Importance Sampling leads to spectacular failures in situations in which certain rare configurations play a non-secondary role as it is the case for Yang-Mills theories near a first order phase transition or quantum field theories at finite matter density when studied with the re-weighting method. The density-of-states method in its LLR formulation has the potential to solve such overlap or sign problems by means of an exponential error suppression. We here introduce the LLR approach and its generalisation to complex action systems. Applications include U(1), SU(2) and SU(3) gauge theories as well as the Z3 spin model at finite densities and heavy-dense QCD.

  12. State-of-the-art of beyond mean field theories with nuclear density functionals

    CERN Document Server

    Egido, J Luis

    2016-01-01

    We present an overview of beyond mean field theories (BMFT) based on the generator coordinate method (GCM) and the recovery of symmetries used in nuclear physics with effective forces. After a reminder of the Hartree-Fock-Bogoliubov (HFB) theory a discussion of the shortcomings of any mean field approximation (MFA) is presented. The recovery of the symmetries spontaneously broken in the HFB approach, in particular the angular momentum, is necessary, among others, to describe excited states and transitions. Particle number projection is needed to guarantee the right number of protons and neutrons. Furthermore a projection before the variation prevents the pairing collapse in the weak pairing regime. The lack of fluctuations around the average values of the MFA is a shortcoming of this approach. To build in correlations in BMFT one selects the relevant degrees of freedom: quadrupole, octupole and the pairing vibrations as well as the single particle ones. In the GCM the operators representing these degrees of f...

  13. Scattering of Discrete States in Two Dimensional Open String Field Theory

    CERN Document Server

    Sevic, B U

    1993-01-01

    This is the second in a series of papers devoted to open string field theory in two dimensions. In this paper we aim to clarify the origin and the role of discrete physical states in the theory. To this end, we study interactions of discrete states and generic tachyons. In particular, we discuss at length four point amplitudes. We show that behavior of the correlation functions is governed by the number of generic tachyons involved and values of the kinematic invariants $s$, $t$ and $u$. Divergence of certain classes of correlators is shown to be the consequence of the fact certain kinematic invariants are non--positive integers in that case. Explicit examples are included. We check our results by standard conformal technique.

  14. Relative entropy of excited states in two dimensional conformal field theories

    CERN Document Server

    Sárosi, Gábor

    2016-01-01

    We study the relative entropy and the trace square distance, both of which measure the distance between reduced density matrices of two excited states in two dimensional conformal field theories. We find a general formula for the relative entropy between two primary states with the same conformal dimension in the limit of a single small interval and find that in this case the relative entropy is proportional to the trace square distance. We check our general formulae by calculating the relative entropy between two generalized free fields and the trace square distance between the spin and disorder operators of the critical Ising model. We also give the leading term of the relative entropy in the small interval expansion when the two operators have different conformal dimensions. This turns out to be universal when the CFT has no primaires lighter than the stress tensor. The result reproduces the previously known special cases.

  15. Asymptotic states and renormalization in Lorentz-violating quantum field theory

    CERN Document Server

    Cambiaso, Mauro; Potting, Robertus

    2014-01-01

    Asymptotic single-particle states in quantum field theories with small departures from Lorentz symmetry are investigated. To this end, one-loop radiative corrections for a sample Lorentz-violating Lagrangian contained in the Standard-Model Extension (SME) are studied. It is found that the spinor kinetic operator is modified in momentum space by Lorentz-violating operators not present in the original Lagrangian. It is demonstrated how both the standard renormalization procedure as well as the Lehmann-Symanzik-Zimmermann reduction formalism need to be adapted as a consequence of this result.

  16. Density of states techniques for lattice field theories using the functional fit approach (FFA)

    CERN Document Server

    Gattringer, Christof; Lehmann, Alexander; Törek, Pascal

    2015-01-01

    We discuss a variant of density of states (DoS) techniques for lattice field theories, the so-called "functional fit approach" (FFA). The DoS FFA is based on a density of states rho(x) which is parameterized on small intervals of the argument x of rho(x). On these intervals restricted Monte Carlo simulations with an additional Boltzmann factor exp(lambda x) allow to determine rho(x) very precisely by obtaining its parameters from fitting the Monte Carlo data to a known function of lambda. We describe the method in detail and show its applicability in four different systems, three of which have a complex action problem: The SU(3) spin model with a chemical potential, U(1) lattice gauge theory, the Z(3) spin model with chemical potential, and 2-dimensional U(1) lattice gauge theory with a topological term. In all cases we compare to reference calculations, which partly were done in a dual formulation where the complex action problem is absent. In all four cases we find a very encouraging performance of the DoS ...

  17. Effective field theory of Bose-Einstein condensation of $\\alpha$ clusters and Nambu-Goldstone-Higgs states in $^{12}$C

    CERN Document Server

    Nakamura, Y; Yamanaka, Y; Ohkubo, S

    2014-01-01

    An effective field theory of $\\alpha$ cluster condensation is formulated as a spontaneously broken symmetry in quantum field theory to understand the raison d'\\^etre and nature of the Hoyle and $\\alpha$ cluster states in $^{12}$C. The Nambu-Goldstone and Higgs mode operators in infinite systems are replaced with a pair of canonical operators whose Hamiltonian gives rise to discrete energy states in addition to the Bogoliubov-de Gennes excited states. The calculations reproduce well the experimental spectrum of the $\\alpha$ cluster states. The existence of the Nambu-Goldstone-Higgs states is demonstrated.

  18. Parent Hamiltonians for lattice Halperin states from free-boson conformal field theories

    Directory of Open Access Journals (Sweden)

    Anna Hackenbroich

    2017-03-01

    Full Text Available We introduce a family of many-body quantum states that describe interacting spin one-half hard-core particles with bosonic or fermionic statistics on arbitrary one- and two-dimensional lattices. The wave functions at lattice filling fraction ν=2/(2m+1 are derived from deformations of the Wess–Zumino–Witten model su(31 and are related to the (m+1,m+1,m Halperin fractional quantum Hall states. We derive long-range SU(2 invariant parent Hamiltonians for these states which in two dimensions are chiral t–J–V models with additional three-body interaction terms. In one dimension we obtain a generalisation to open chains of a periodic inverse-square t–J–V model proposed in [25]. We observe that the gapless low-energy spectrum of this model and its open-boundary generalisation can be described by rapidity sets with the same generalised Pauli exclusion principle. A two-component compactified free boson conformal field theory is identified as the low-energy effective theory for the periodic inverse-square t–J–V model.

  19. Modern Quantum Field Theory

    Science.gov (United States)

    Banks, Tom

    2008-09-01

    1. Introduction; 2. Quantum theory of free scalar fields; 3. Interacting field theory; 4. Particles of spin one, and gauge invariance; 5. Spin 1/2 particles and Fermi statistics; 6. Massive quantum electrodynamics; 7. Symmetries, Ward identities and Nambu Goldstone bosons; 8. Non-abelian gauge theory; 9. Renormalization and effective field theory; 10. Instantons and solitons; 11. Concluding remarks; Appendices; References; Index.

  20. Characterizing featureless Mott insulating state by quasiparticle interference: A dynamical mean field theory view

    Science.gov (United States)

    Mukherjee, Shantanu; Lee, Wei-Cheng

    2015-12-01

    The quasiparticle interferences (QPIs) of the featureless Mott insulators are investigated by a T -matrix formalism implemented with the dynamical mean field theory (T -DMFT). In the Mott insulating state, due to the singularity at zero frequency in the real part of the electron self-energy [Re Σ (ω )˜η /ω ] predicted by DMFT, where η can be considered as the "order parameter" for the Mott insulating state, QPIs are completely washed out at small bias voltages. However, a further analysis shows that Re Σ (ω ) serves as an energy-dependent chemical potential shift. As a result, the effective bias voltage seen by the system is e V'=e V -Re Σ (e V ) , which leads to a critical bias voltage e Vc˜√{η } satisfying e V'=0 if and only if η is nonzero. Consequently, the same QPI patterns produced by the noninteracting Fermi surfaces appear at this critical bias voltage e Vc in the Mott insulating state. We propose that this reentry of noninteracting QPI patterns at e Vc could serve as an experimental signature of the Mott insulating state, and the order parameter can be experimentally measured as η ˜(eVc) 2 .

  1. On the stringy nature of winding states in noncommutative thermal field theories

    NARCIS (Netherlands)

    Arcioni, G.; Barbon, J.L.F.; Gomis, J.; Vazquez-Mozo, M.A.

    2000-01-01

    We show that thermal noncommutative field theories admit a version of `channel duality' reminiscent of open/closed string duality, where non-planar thermal loops can be replaced by an infinite tower of tree-level exchanges of effective fields. These effective fields resemble closed strings in three

  2. Ground State Properties of Ds Isotopes Within the Relativistic Mean Field Theory

    Institute of Scientific and Technical Information of China (English)

    张海飞; 张鸿飞; 李君清

    2012-01-01

    The ground state properties of Ds (Z=110) isotopes (N=151-195) are studied in the framework of the relativistic mean field (RMF) theory with the effective interaction NL-Z2.The pairing correlation is treated within the conventional BCS approximation.The calculated binding energies are consistent with the results from finite-range droplet model (FRDM) and Macroscopic-microscopic method (MMM).The quadrupole deformation,α-decay energy,α-decay half-live,charge radius,two-neutron separation energy and single-particle spectra are analyzed for Ds isotopes to find new characteristics of superheavy nuclei (SHN).Among the calculated results it is rather distinct that the isotopic shift appears evidently at neutron number N=184.

  3. State-of-the-art of beyond mean field theories with nuclear density functionals

    Science.gov (United States)

    Egido, J. Luis

    2016-07-01

    We present an overview of different beyond mean field theories (BMFTs) based on the generator coordinate method (GCM) and the recovery of symmetries used in many body nuclear physics with effective forces. In a first step a short reminder of the Hartree-Fock-Bogoliubov (HFB) theory is given. A general discussion of the shortcomings of any mean field approximation (MFA), stemming either from the lack of the elementary symmetries (like particle number and angular momentum) or the absence of fluctuations around the mean values, is presented. The recovery of the symmetries spontaneously broken in the HFB approach, in particular the angular momentum, is necessary, among others, to describe excited states and transitions. Particle number projection is also needed to guarantee the right number of protons and neutrons. Furthermore a projection before the variation prevents the pairing collapse in the weak pairing regime. A whole chapter is devoted to illustrate with examples the convenience of recovering symmetries and the differences between the projection before and after the variation. The lack of fluctuations around the average values of the MFA is a big shortcoming inherent to this approach. To build in correlations in BMFT one selects the relevant degrees of freedom of the atomic nucleus. In the low energy part of the spectrum these are the quadrupole, octupole and the pairing vibrations as well as the single particle degrees of freedom. In the GCM the operators representing these degrees of freedom are used as coordinates to generate, by the constrained (projected) HFB theory, a collective subspace. The highly correlated GCM wave function is finally written as a linear combination of a projected basis of this space. The variation of the coefficients of the linear combination leads to the Hill-Wheeler equation. The flexibility of the GCM Ansatz allows to describe a whole palette of physical situations by conveniently choosing the generator coordinates. We discuss the

  4. Quantum Field Theory

    CERN Document Server

    Zeidler, Eberhard

    This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...

  5. Renormalizable Tensor Field Theories

    CERN Document Server

    Geloun, Joseph Ben

    2016-01-01

    Extending tensor models at the field theoretical level, tensor field theories are nonlocal quantum field theories with Feynman graphs identified with simplicial complexes. They become relevant for addressing quantum topology and geometry in any dimension and therefore form an interesting class of models for studying quantum gravity. We review the class of perturbatively renormalizable tensor field theories and some of their features.

  6. Advanced classical field theory

    CERN Document Server

    Giachetta, Giovanni; Sardanashvily, Gennadi

    2009-01-01

    Contemporary quantum field theory is mainly developed as quantization of classical fields. Therefore, classical field theory and its BRST extension is the necessary step towards quantum field theory. This book aims to provide a complete mathematical foundation of Lagrangian classical field theory and its BRST extension for the purpose of quantization. Based on the standard geometric formulation of theory of nonlinear differential operators, Lagrangian field theory is treated in a very general setting. Reducible degenerate Lagrangian theories of even and odd fields on an arbitrary smooth manifold are considered. The second Noether theorems generalized to these theories and formulated in the homology terms provide the strict mathematical formulation of BRST extended classical field theory

  7. Balanced Topological Field Theories

    Science.gov (United States)

    Dijkgraaf, R.; Moore, G.

    We describe a class of topological field theories called ``balanced topological field theories''. These theories are associated to moduli problems with vanishing virtual dimension and calculate the Euler character of various moduli spaces. We show that these theories are closely related to the geometry and equivariant cohomology of ``iterated superspaces'' that carry two differentials. We find the most general action for these theories, which turns out to define Morse theory on field space. We illustrate the constructions with numerous examples. Finally, we relate these theories to topological sigma-models twisted using an isometry of the target space.

  8. Balanced Topological Field Theories

    CERN Document Server

    Dijkgraaf, R

    1997-01-01

    We describe a class of topological field theories called ``balanced topological field theories.'' These theories are associated to moduli problems with vanishing virtual dimension and calculate the Euler character of various moduli spaces. We show that these theories are closely related to the geometry and equivariant cohomology of ``iterated superspaces'' that carry two differentials. We find the most general action for these theories, which turns out to define Morse theory on field space. We illustrate the constructions with numerous examples. Finally, we relate these theories to topological sigma-models twisted using an isometry of the target space.

  9. Local causal structures, Hadamard states and the principle of local covariance in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, Claudio [Erwin Schroedinger Institut fuer Mathematische Physik, Wien (Austria); Pinamonti, Nicola [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Porrmann, Martin [KwaZulu-Natal Univ. (South Africa). Quantum Research Group, School of Physics; National Institute for Theoretical Physics, Durban (South Africa)

    2010-01-15

    In the framework of the algebraic formulation, we discuss and analyse some new features of the local structure of a real scalar quantum field theory in a strongly causal spacetime. In particular we use the properties of the exponential map to set up a local version of a bulk-to-boundary correspondence. The bulk is a suitable subset of a geodesic neighbourhood of any but fixed point p of the underlying background, while the boundary is a part of the future light cone having p as its own tip. In this regime, we provide a novel notion for the extended *-algebra of Wick polynomials on the said cone and, on the one hand, we prove that it contains the information of the bulk counterpart via an injective *-homomorphism while, on the other hand, we associate to it a distinguished state whose pull-back in the bulk is of Hadamard form. The main advantage of this point of view arises if one uses the universal properties of the exponential map and of the light cone in order to show that, for any two given backgrounds M and M{sup '} and for any two subsets of geodesic neighbourhoods of two arbitrary points, it is possible to engineer the above procedure such that the boundary extended algebras are related via a restriction homomorphism. This allows for the pull-back of boundary states in both spacetimes and, thus, to set up a machinery which permits the comparison of expectation values of local field observables in M and M{sup '}. (orig.)

  10. Local causal structures, Hadamard states and the principle of local covariance in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, Claudio [Erwin Schroedinger Institut fuer Mathematische Physik, Wien (Austria); Pinamonti, Nicola [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Porrmann, Martin [KwaZulu-Natal Univ. (South Africa). Quantum Research Group, School of Physics; National Institute for Theoretical Physics, Durban (South Africa)

    2010-01-15

    In the framework of the algebraic formulation, we discuss and analyse some new features of the local structure of a real scalar quantum field theory in a strongly causal spacetime. In particular we use the properties of the exponential map to set up a local version of a bulk-to-boundary correspondence. The bulk is a suitable subset of a geodesic neighbourhood of any but fixed point p of the underlying background, while the boundary is a part of the future light cone having p as its own tip. In this regime, we provide a novel notion for the extended *-algebra of Wick polynomials on the said cone and, on the one hand, we prove that it contains the information of the bulk counterpart via an injective *-homomorphism while, on the other hand, we associate to it a distinguished state whose pull-back in the bulk is of Hadamard form. The main advantage of this point of view arises if one uses the universal properties of the exponential map and of the light cone in order to show that, for any two given backgrounds M and M{sup '} and for any two subsets of geodesic neighbourhoods of two arbitrary points, it is possible to engineer the above procedure such that the boundary extended algebras are related via a restriction homomorphism. This allows for the pull-back of boundary states in both spacetimes and, thus, to set up a machinery which permits the comparison of expectation values of local field observables in M and M{sup '}. (orig.)

  11. Landau-like theory for universality of critical exponents in quasistationary states of isolated mean-field systems

    Science.gov (United States)

    Ogawa, Shun; Yamaguchi, Yoshiyuki Y.

    2015-06-01

    An external force dynamically drives an isolated mean-field Hamiltonian system to a long-lasting quasistationary state, whose lifetime increases with population of the system. For second order phase transitions in quasistationary states, two nonclassical critical exponents have been reported individually by using a linear and a nonlinear response theories in a toy model. We provide a simple way to compute the critical exponents all at once, which is an analog of the Landau theory. The present theory extends the universality class of the nonclassical exponents to spatially periodic one-dimensional systems and shows that the exponents satisfy a classical scaling relation inevitably by using a key scaling of momentum.

  12. Landau-like theory for universality of critical exponents in quasistationary states of isolated mean-field systems.

    Science.gov (United States)

    Ogawa, Shun; Yamaguchi, Yoshiyuki Y

    2015-06-01

    An external force dynamically drives an isolated mean-field Hamiltonian system to a long-lasting quasistationary state, whose lifetime increases with population of the system. For second order phase transitions in quasistationary states, two nonclassical critical exponents have been reported individually by using a linear and a nonlinear response theories in a toy model. We provide a simple way to compute the critical exponents all at once, which is an analog of the Landau theory. The present theory extends the universality class of the nonclassical exponents to spatially periodic one-dimensional systems and shows that the exponents satisfy a classical scaling relation inevitably by using a key scaling of momentum.

  13. Solid state theory

    CERN Document Server

    Harrison, Walter A

    2011-01-01

    ""A well-written text . . . should find a wide readership, especially among graduate students."" - Dr. J. I. Pankove, RCA.The field of solid state theory, including crystallography, semi-conductor physics, and various applications in chemistry and electrical engineering, is highly relevant to many areas of modern science and industry. Professor Harrison's well-known text offers an excellent one-year graduate course in this active and important area of research. While presenting a broad overview of the fundamental concepts and methods of solid state physics, including the basic quantum theory o

  14. Nonequilibrium effective field theory for absorbing state phase transitions in driven open quantum spin systems

    Science.gov (United States)

    Buchhold, Michael; Everest, Benjamin; Marcuzzi, Matteo; Lesanovsky, Igor; Diehl, Sebastian

    2017-01-01

    Phase transitions to absorbing states are among the simplest examples of critical phenomena out of equilibrium. The characteristic feature of these models is the presence of a fluctuationless configuration which the dynamics cannot leave, which has proved a rather stringent requirement in experiments. Recently, a proposal to seek such transitions in highly tunable systems of cold-atomic gases offers to probe this physics and, at the same time, to investigate the robustness of these transitions to quantum coherent effects. Here, we specifically focus on the interplay between classical and quantum fluctuations in a simple driven open quantum model which, in the classical limit, reproduces a contact process, which is known to undergo a continuous transition in the "directed percolation" universality class. We derive an effective long-wavelength field theory for the present class of open spin systems and show that, due to quantum fluctuations, the nature of the transition changes from second to first order, passing through a bicritical point which appears to belong instead to the "tricritical directed percolation" class.

  15. Dynamical mean-field theory and path integral renormalisation group calculations of strongly correlated electronic states

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, D.B.

    2007-02-15

    The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)

  16. Classical field theory

    CERN Document Server

    Franklin, Joel

    2017-01-01

    Classical field theory, which concerns the generation and interaction of fields, is a logical precursor to quantum field theory, and can be used to describe phenomena such as gravity and electromagnetism. Written for advanced undergraduates, and appropriate for graduate level classes, this book provides a comprehensive introduction to field theories, with a focus on their relativistic structural elements. Such structural notions enable a deeper understanding of Maxwell's equations, which lie at the heart of electromagnetism, and can also be applied to modern variants such as Chern–Simons and Born–Infeld. The structure of field theories and their physical predictions are illustrated with compelling examples, making this book perfect as a text in a dedicated field theory course, for self-study, or as a reference for those interested in classical field theory, advanced electromagnetism, or general relativity. Demonstrating a modern approach to model building, this text is also ideal for students of theoretic...

  17. Strong-field S -matrix theory with final-state Coulomb interaction in all orders

    Science.gov (United States)

    Faisal, F. H. M.

    2016-09-01

    During the last several decades the so-called Keldysh-Faisal-Reiss or strong-field approximation (SFA) has been highly useful for the analysis of atomic and molecular processes in intense laser fields. However, it is well known that SFA does not account for the final-state Coulomb interaction which is, however, unavoidable for the ubiquitous ionization process. In this Rapid Communication we solve this long-standing problem and give a complete strong-field S -matrix expansion that accounts for the final-state Coulomb interaction in all orders, explicitly.

  18. Conformal field theory

    CERN Document Server

    Ketov, Sergei V

    1995-01-01

    Conformal field theory is an elegant and powerful theory in the field of high energy physics and statistics. In fact, it can be said to be one of the greatest achievements in the development of this field. Presented in two dimensions, this book is designed for students who already have a basic knowledge of quantum mechanics, field theory and general relativity. The main idea used throughout the book is that conformal symmetry causes both classical and quantum integrability. Instead of concentrating on the numerous applications of the theory, the author puts forward a discussion of the general

  19. Information field theory

    OpenAIRE

    Enßlin, Torsten

    2013-01-01

    Non-linear image reconstruction and signal analysis deal with complex inverse problems. To tackle such problems in a systematic way, I present information field theory (IFT) as a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms even for non-linear and non-Gaussian signal inference problems. IFT algorithms exploit spatial correlations of the signal fields and b...

  20. Superspace conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  1. Ground state energy of dilute neutron matter at next-to-leading order in lattice chiral effective field theory

    CERN Document Server

    Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G

    2008-01-01

    We present lattice calculations for the ground state energy of dilute neutron matter at next-to-leading order in chiral effective field theory. This study follows a series of recent papers on low-energy nuclear physics using chiral effective field theory on the lattice. In this work we introduce an improved spin- and isospin-projected leading-order action which allows for a perturbative treatment of corrections at next-to-leading order and smaller estimated errors. Using auxiliary fields and Euclidean-time projection Monte Carlo, we compute the ground state of 8, 12, and 16 neutrons in a periodic cube, covering a density range from 2% to 10% of normal nuclear density.

  2. Boundary Conformal Field Theory

    CERN Document Server

    Cardy, J L

    2004-01-01

    Boundary conformal field theory (BCFT) is simply the study of conformal field theory (CFT) in domains with a boundary. It gains its significance because, in some ways, it is mathematically simpler: the algebraic and geometric structures of CFT appear in a more straightforward manner; and because it has important applications: in string theory in the physics of open strings and D-branes, and in condensed matter physics in boundary critical behavior and quantum impurity models. In this article, however, I describe the basic ideas from the point of view of quantum field theory, without regard to particular applications nor to any deeper mathematical formulations.

  3. Quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sadovskii, Michael V.

    2013-06-01

    This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The work illustrates the unity of modern theoretical physics by combining approaches and concepts of the quantum field theory and modern condensed matter theory. The inductive approach allows a deep understanding of ideas and methods used for solving problems in this field.

  4. Variational approach to bound states in scalar-gluon field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, K.; Romer, H.

    1976-10-15

    Two variational approaches are employed to attack the bound-state problem of a charged scalar field interacting with an Abelian gauge field. The resulting variational equations allow for a qualitative discussion of all possible physical situations. Boundary conditions play a crucial role in their interpretation. A specially developed perturbation scheme yields hydrogenlike spectra. ''Self-trapping'' solutions and configurations with complete screening of the long-range force are discussed and are shown not to be obtainable by perturbation for small coupling. Metastable states appear for strong coupling. (AIP)

  5. Renyi entanglement entropies of descendant states in critical systems with boundaries: conformal field theory and spin chains

    Science.gov (United States)

    Taddia, Luca; Ortolani, Fabio; Pálmai, Tamás

    2016-09-01

    We discuss the Renyi entanglement entropies of descendant states in critical one-dimensional systems with boundaries, that map to boundary conformal field theories in the scaling limit. We unify the previous conformal-field-theory approaches to describe primary and descendant states in systems with both open and closed boundaries. We provide universal expressions for the first two descendants in the identity family. We apply our technique to critical systems belonging to different universality classes with non-trivial boundary conditions that preserve conformal invariance, and find excellent agreement with numerical results obtained for finite spin chains. We also demonstrate that entanglement entropies are a powerful tool to resolve degeneracy of higher excited states in critical lattice models.

  6. Dual Double Field Theory

    CERN Document Server

    Bergshoeff, Eric A; Penas, Victor A; Riccioni, Fabio

    2016-01-01

    We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O(D,D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O(D,D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for "exotic" dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.

  7. Strong-Field S-Matrix Theory With Coulomb-Volkov Final State in All Orders

    CERN Document Server

    Faisal, F H M

    2016-01-01

    Despite its long standing usefulness for the analysis of various processes in intense laser fields, it is well-known that the so-called strong-field KFR or SFA ansatz does not account for the final-state Coulomb interaction. Due to its importance for the ubiquitous ionisation process, numerous heuristic attempts have been made during the last several decades to account for the final state Coulomb interaction with in the SFA. Also to this end an ad hoc model with the so-called Coulomb-Volkov final state was introduced a long time ago. However, till now, no systematic strong-field S-matrix expansion using the Coulomb-Volkov final state could be found. Here we solve this long standing problem by determining the Coulomb-Volkov Hamiltonian, identifying the rest-interaction in the final state, and explicitly constructng the Coulomb-Volkov propagator (or Green's function). We employ them to derive the complete S-matrix series for the ionisation amplitude governed by the Coulomb-Volkov final state in all orders. The ...

  8. Engineering field theory

    CERN Document Server

    Baden Fuller, A J

    2014-01-01

    Engineering Field Theory focuses on the applications of field theory in gravitation, electrostatics, magnetism, electric current flow, conductive heat transfer, fluid flow, and seepage.The manuscript first ponders on electric flux, electrical materials, and flux function. Discussions focus on field intensity at the surface of a conductor, force on a charged surface, atomic properties, doublet and uniform field, flux tube and flux line, line charge and line sink, field of a surface charge, field intensity, flux density, permittivity, and Coulomb's law. The text then takes a look at gravitation

  9. Covariantizing Classical Field Theories

    CERN Document Server

    López, Marco Castrillón

    2010-01-01

    We show how to enlarge the covariance group of any classical field theory in such a way that the resulting "covariantized" theory is 'essentially equivalent' to the original. In particular, our technique will render any classical field theory generally covariant, that is, the covariantized theory will be spacetime diffeomorphism-covariant and free of absolute objects. Our results thus generalize the well-known parametrization technique of Dirac and Kucha\\v{r}. Our constructions apply equally well to internal covariance groups, in which context they produce natural derivations of both the Utiyama minimal coupling and St\\"uckelberg tricks.

  10. Quantum field theory

    CERN Document Server

    Mandl, Franz

    2010-01-01

    Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic

  11. Perturbative Topological Field Theory

    Science.gov (United States)

    Dijkgraaf, Robbert

    We give a review of the application of perturbative techniques to topological quantum field theories, in particular three-dimensional Chern-Simons-Witten theory and its various generalizations. To this end we give an introduction to graph homology and homotopy algebras and the work of Vassiliev and Kontsevich on perturbative knot invariants.

  12. Quantum field theory

    CERN Document Server

    de Wit, Bernard

    1990-01-01

    After a brief and practical introduction to field theory and the use of Feynman diagram, we discuss the main concept in gauge theories and their application in elementary particle physics. We present all the ingredients necessary for the construction of the standard model.

  13. Response of the Shockley surface state to an external electrical field: A density-functional theory study of Cu(111)

    Science.gov (United States)

    Berland, K.; Einstein, T. L.; Hyldgaard, P.

    2012-01-01

    The response of the Cu(111) Shockley surface state to an external electrical field is characterized by combining a density-functional theory calculation for a slab geometry with an analysis of the Kohn-Sham wave functions. Our analysis is facilitated by a decoupling of the Kohn-Sham states via a rotation in Hilbert space. We find that the surface state displays isotropic dispersion, quadratic until the Fermi wave vector but with a significant quartic contribution beyond. We calculate the shift in energetic position and effective mass of the surface state for an electrical field perpendicular to the Cu(111) surface; the response is linear over a broad range of field strengths. We find that charge transfer occurs beyond the outermost copper atoms and that accumulation of electrons is responsible for a quarter of the screening of the electrical field. This allows us to provide well converged determinations of the field-induced changes in the surface state for a moderate number of layers in the slab geometry.

  14. Covariant Hamiltonian field theory

    CERN Document Server

    Giachetta, G; Sardanashvily, G

    1999-01-01

    We study the relationship between the equations of first order Lagrangian field theory on fiber bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase space of covariant Hamiltonian field theory. The main peculiarity of these Hamilton equations lies in the fact that, for degenerate systems, they contain additional gauge fixing conditions. We develop the BRST extension of the covariant Hamiltonian formalism, characterized by a Lie superalgebra of BRST and anti-BRST symmetries.

  15. Unitarity of superstring field theory

    Science.gov (United States)

    Sen, Ashoke

    2016-12-01

    We complete the proof of unitarity of (compactified) heterotic and type II string field theories by showing that in the cut diagrams only physical states appear in the sum over intermediate states. This analysis takes into account the effect of mass and wave-function renormalization, and the possibility that the true vacuum may be related to the perturbative vacuum by small shifts in the string fields.

  16. Unitarity of Superstring Field Theory

    CERN Document Server

    Sen, Ashoke

    2016-01-01

    We complete the proof of unitarity of (compactified) heterotic and type II string field theories by showing that in the cut diagrams only physical states appear in the sum over intermediate states. This analysis takes into account the effect of mass and wave-function renormalization, and the possibility that the true vacuum may be related to the perturbative vacuum by small shifts in the string fields.

  17. R\\'enyi entanglement entropies of descendant states in critical systems with boundaries: conformal field theory and spin chains

    CERN Document Server

    Taddia, Luca; Pálmai, Tamás

    2016-01-01

    We discuss the R\\'enyi entanglement entropies of descendant states in critical one-dimensional systems with boundaries, that map to boundary conformal field theories (CFT) in the scaling limit. We unify the previous CFT approaches to describe primary and descendant states in systems with both open and closed boundaries. We apply the technique to critical systems belonging to different universality classes with non-trivial boundary conditions that preserve conformal invariance, and compare the results to numerical data obtained on finite spin chains.

  18. Ground state properties of La isotopes in reflection asymmetric relativistic mean field theory

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The ground state properties of La isotopes are investigated with the reflection asymmetric relativistic mean field(RAS-RMF) model.The calculation results of binding energies and the quadrupole moments are in good agreements with the experiment.The calculation results indicate the change of the quadrupole deformation with the nuclear mass number.The "kink" on the isotope shifts is observed at A = 139 where the neutron number is the magic number N = 82.It is also found that the octupole deformations may exist in the La isotopes with mass number A ~ 145-155.

  19. Ground state properties of La isotopes in reflection asymmetric relativistic mean field theory

    Institute of Scientific and Technical Information of China (English)

    WANG Nan; GUO Lu

    2009-01-01

    The ground state properties of La isotopes are investigated with the reflection asymmetric relativistic mean field (RAS-RMF) model.The calculation results of binding energies and the quadrupole moments are in good agreements with the experiment.The calculation results indicate the change of the quadrupole deformation with the nuclear mass number.The "kink" on the isotope shifts is observed at A=139 where the neutron number is the magic number N=82.It is also found that the octupole deformations may exist in the La isotopes with mass number A~ 145-155.

  20. Quantum theory of fields

    CERN Document Server

    Wentzel, Gregor

    2003-01-01

    A prominent figure in twentieth-century physics, Gregor Wentzel made major contributions to the development of quantum field theory, first in Europe and later at the University of Chicago. His Quantum Theory of Fields offers a knowledgeable view of the original literature of elementary quantum mechanics and helps make these works accessible to interested readers.An introductory volume rather than an all-inclusive account, the text opens with an examination of general principles, without specification of the field equations of the Lagrange function. The following chapters deal with particular

  1. Logarithmic conformal field theory

    Science.gov (United States)

    Gainutdinov, Azat; Ridout, David; Runkel, Ingo

    2013-12-01

    Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more

  2. Variational Transition State Theory

    Energy Technology Data Exchange (ETDEWEB)

    Truhlar, Donald G. [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-09-29

    This is the final report on a project involving the development and applications of variational transition state theory. This project involved the development of variational transition state theory for gas-phase reactions, including optimized multidimensional tunneling contributions and the application of this theory to gas-phase reactions with a special emphasis on developing reaction rate theory in directions that are important for applications to combustion. The development of variational transition state theory with optimized multidimensional tunneling as a useful computational tool for combustion kinetics involved eight objectives.

  3. Theory of electromagnetic fields

    CERN Document Server

    Wolski, Andrzej

    2011-01-01

    We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to radiofrequency systems in particle accelerators. We begin by reviewing Maxwell's equations and their physical significance. We show that in free space, there are solutions to Maxwell's equations representing the propagation of electromagnetic fields as waves. We introduce electromagnetic potentials, and show how they can be used to simplify the calculation of the fields in the presence of sources. We derive Poynting's theorem, which leads to expressions for the energy density and energy flux in an electromagnetic field. We discuss the properties of electromagnetic waves in cavities, waveguides and transmission lines.

  4. Experimental quantum field theory

    CERN Document Server

    Bell, J S

    1977-01-01

    Presented here, is, in the opinion of the author, the essential minimum of quantum field theory that should be known to cultivated experimental particle physicists. The word experimental describes not only the audience aimed at but also the level of mathematical rigour aspired to. (0 refs).

  5. Microcontinuum field theories

    CERN Document Server

    Eringen, A Cemal

    1999-01-01

    Microcontinuum field theories constitute an extension of classical field theories -- of elastic bodies, deformations, electromagnetism, and the like -- to microscopic spaces and short time scales. Material bodies are here viewed as collections of large numbers of deformable particles, much as each volume element of a fluid in statistical mechanics is viewed as consisting of a large number of small particles for which statistical laws are valid. Classical continuum theories are valid when the characteristic length associated with external forces or stimuli is much larger than any internal scale of the body under consideration. When the characteristic lengths are comparable, however, the response of the individual constituents becomes important, for example, in considering the fluid or elastic properties of blood, porous media, polymers, liquid crystals, slurries, and composite materials. This volume is concerned with the kinematics of microcontinua. It begins with a discussion of strain, stress tensors, balanc...

  6. Tree Quantum Field Theory

    CERN Document Server

    Gurau, R; Rivasseau, V

    2008-01-01

    We propose a new formalism for quantum field theory which is neither based on functional integrals, nor on Feynman graphs, but on marked trees. This formalism is constructive, i.e. it computes correlation functions through convergent rather than divergent expansions. It applies both to Fermionic and Bosonic theories. It is compatible with the renormalization group, and it allows to define non-perturbatively {\\it differential} renormalization group equations. It accommodates any general stable polynomial Lagrangian. It can equally well treat noncommutative models or matrix models such as the Grosse-Wulkenhaar model. Perhaps most importantly it removes the space-time background from its central place in QFT, paving the way for a nonperturbative definition of field theory in noninteger dimension.

  7. Invariants from classical field theory

    CERN Document Server

    Diaz, Rafael

    2007-01-01

    We introduce a method that generates invariant functions from classical field theories depending on external parameters. We apply our method to several field theories such as abelian BF, Chern-Simons and 2-dimensional Yang-Mills theory.

  8. Holographic effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' , Università di Padova,and INFN - Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,and INFN - Sezione di Milano-Bicocca, I-20126 Milano (Italy)

    2016-06-28

    We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.

  9. Painleve Field Theory

    CERN Document Server

    Aminov, G; Levin, A; Olshanetsky, M; Zotov, A

    2013-01-01

    We propose multidimensional versions of the Painleve VI equation and its degenerations. These field theories are related to the isomonodromy problems of flat holomorphic infinite rank bundles over elliptic curves and take the form of non-autonomous Hamiltonian equations. The modular parameter of curves plays the role of "time". Reduction of the field equations to the zero modes leads to SL(N,C) monodromy preserving equations. The latter coincide with the Painleve VI equation for N=2. We consider two types of the bundles. In the first one the group of automorphisms is the centrally and cocentrally extended loop group L(SL(N,C)) or some multiloop group. In the case of the Painleve VI field theory in D=1+1 four constants of the Painleve VI equation become dynamical fields. The second type of bundles are defined by the group of automorphisms of the noncommutative torus. They lead to the equations in dimension 2+1. In both cases we consider trigonometric, rational and scaling limits of the theories. Generically (e...

  10. Introduction to field theory

    CERN Document Server

    CERN. Geneva; CERN. Geneva

    2001-01-01

    Starting from the notion of path integrals as developed by Feynman, we discuss field theory in zero spacetime dimensions. The concepts of perturbation expansions, connected amplitudes, Feynman diagrams, classical solutions, renormalization and the effective action are developed. The model is extended to four spacetime dimensions, and the full Feynman rules for relativisitc scalar theory derived. The S matrix and the concept of unitarity are discussed, leading to the amputation rules for S matrix elements from considerations of unitarity. The rules are extended to include particles with spin-1/2 and spin-1. The high-energy behaviour of the theory is discussed as a method to derive the gauge symmetry of the various models.

  11. Gauge field theories

    CERN Document Server

    Frampton, Paul H

    2008-01-01

    This third edition on the classic Gauge Field Theories is an ideal reference for researchers starting work with the Large Hadron Collider and the future International Linear Collider. This latest title continues to offer an up to date reference containing revised chapters on electroweak interactions and model building including a completely new chapter on conformality. Within this essential reference logical organization of the material on gauge invariance, quantization, and renormalization is also discussed providing necessary reading for Cosmologists and Particle Astrophysicists

  12. Mean-field theory of random-site q-state Potts models

    NARCIS (Netherlands)

    van Enter, Aernout; Hemmen, Jan Leonard van; Pospiech, C.

    1988-01-01

    A class of random-site mean-field Potts models is introduced and solved exactly. The bifurcation properties of the resulting mean-field equations are analysed in detail. Particular emphasis is put on the relation between the solutions and the underlying symmetries of the model. It turns out that, in

  13. Gyrokinetic field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-08-01

    The Lagrangian formulation of the gyrokinetic theory is generalized in order to describe the particles' dynamics as well as the self-consistent behavior of the electromagnetic fields. The gyrokinetic equation for the particle distribution function and the gyrokinetic Maxwell's equations for the electromagnetic fields are both derived from the variational principle for the Lagrangian consisting of the parts of particles, fields, and their interaction. In this generalized Lagrangian formulation, the energy conservation property for the total nonlinear gyrokinetic system of equations is directly shown from the Noether's theorem. This formulation can be utilized in order to derive the nonlinear gyrokinetic system of equations and the rigorously conserved total energy for fluctuations with arbitrary frequency. (author)

  14. Polymer Parametrised Field Theory

    CERN Document Server

    Laddha, Alok

    2008-01-01

    Free scalar field theory on 2 dimensional flat spacetime, cast in diffeomorphism invariant guise by treating the inertial coordinates of the spacetime as dynamical variables, is quantized using LQG type `polymer' representations for the matter field and the inertial variables. The quantum constraints are solved via group averaging techniques and, analogous to the case of spatial geometry in LQG, the smooth (flat) spacetime geometry is replaced by a discrete quantum structure. An overcomplete set of Dirac observables, consisting of (a) (exponentials of) the standard free scalar field creation- annihilation modes and (b) canonical transformations corresponding to conformal isometries, are represented as operators on the physical Hilbert space. None of these constructions suffer from any of the `triangulation' dependent choices which arise in treatments of LQG. In contrast to the standard Fock quantization, the non- Fock nature of the representation ensures that the algebra of conformal isometries as well as tha...

  15. Response of the Shockley surface state on Cu(111) to an external electrical field: A density-functional theory study

    Science.gov (United States)

    Berland, Kristian; Hyldgaard, Per; Einstein, T. L.

    2011-03-01

    We study the response of the Cu(111) Shockley surface state to an external electrical field E by combining a density-functional theory calculation for a finite slab geometry with an analysis of the Kohn-Sham wavefunctions to obtain a well-converged characterization. We find that the surface state displays isotropic dispersion, quadratic until the Fermi wave vector but with a significant quartic contribution beyond. We find that the shift in band minimum and effective mass depend linearly on E. Most change in electrostatic potential profile, and charge transfer occurs outside the outermost copper atoms, and most of the screening is due to bulk electrons. Our analysis is facilitated by a method used to decouple the Kohn-Sham states due to the finite slab geometry, using a rotation in Hilbert space. We discuss applications to tuning the Fermi wavelength and so the many patterns attributed to metallic surface states. Supported by (KB and PH) Swedish Vetenskapsrådet VR 621-2008-4346 and (TLE) NSF CHE 07-50334 & UMD MRSEC DMR 05-20471.

  16. Geometries from field theories

    Science.gov (United States)

    Aoki, Sinya; Kikuchi, Kengo; Onogi, Tetsuya

    2015-10-01

    We propose a method to define a d+1-dimensional geometry from a d-dimensional quantum field theory in the 1/N expansion. We first construct a d+1-dimensional field theory from the d-dimensional one via the gradient-flow equation, whose flow time t represents the energy scale of the system such that trArr 0 corresponds to the ultraviolet and trArr infty to the infrared. We then define the induced metric from d+1-dimensional field operators. We show that the metric defined in this way becomes classical in the large-N limit, in the sense that quantum fluctuations of the metric are suppressed as 1/N due to the large-N factorization property. As a concrete example, we apply our method to the O(N) nonlinear σ model in two dimensions. We calculate the 3D induced metric, which is shown to describe an anti-de Sitter space in the massless limit. Finally, we discuss several open issues for future studies.

  17. Classical phase space and Hadamard states in the BRST formalism for gauge field theories on curved spacetime

    CERN Document Server

    Wrochna, Michał

    2014-01-01

    We investigate linearized gauge theories on globally hyperbolic spacetimes in the BRST formalism. A consistent definition of the classical phase space and of its Cauchy surface analogue is proposed. We prove it is isomorphic to the phase space in the subsidiary condition approach of Hack and Schenkel in the case of Maxwell, Yang-Mills, and Rarita-Schwinger fields. Defining Hadamard states in the BRST formalism in a standard way, their existence in the Maxwell and Yang-Mills case is concluded from known results in the subsidiary condition (or Gupta-Bleuler) formalism. Within our framework, we also formulate criteria for non-degeneracy of the phase space in terms of BRST cohomology and discuss special cases. These include an example in the Yang-Mills case, where degeneracy is not related to a non-trivial topology of the Cauchy surface.

  18. Matrix product states and equivariant topological field theories for bosonic symmetry-protected topological phases in (1+1) dimensions

    CERN Document Server

    Shiozaki, Ken

    2016-01-01

    Matrix Product States (MPSs) provide a powerful framework to study and classify gapped quantum phases --symmetry-protected topological (SPT) phases in particular--defined in one dimensional lattices. On the other hand, it is natural to expect that gapped quantum phases in the limit of zero correlation length are described by topological quantum field theories (TFTs or TQFTs). In this paper, for (1+1)-dimensional bosonic SPT phases protected by symmetry $G$, we bridge their descriptions in terms of MPSs, and those in terms of $G$-equivariant TFTs. In particular, for various topological invariants (SPT invariants) constructed previously using MPSs, we provide derivations from the point of view of (1+1) TFTs. We also discuss the connection between boundary degrees of freedom, which appear when one introduces a physical boundary in SPT phases, and "open" TFTs, which are TFTs defined on spacetimes with boundaries.

  19. Parent Hamiltonians for lattice Halperin states from free-boson conformal field theories

    CERN Document Server

    Hackenbroich, Anna

    2016-01-01

    We introduce a family of many-body quantum states that describe interacting spin one-half hard-core particles with bosonic or fermionic statistics on arbitrary one- and two-dimensional lattices. The wave functions at lattice filling fraction $\

  20. Higgs Effective Field Theories

    CERN Document Server

    2016-01-01

    The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.

  1. Unified field theories

    CERN Document Server

    Vizgin, Vladimir P

    2011-01-01

    Despite the rapidly expanding ambit of physical research and the continual appearance of new branches of physics, the main thrust in its development has been the attempt at a theoretical synthesis of the entire body of physical knowledge. Vladimir Vizgin's work presents perhaps the first systematic historico-scientific study of the formation and development of the unified field theories in the general context of 20th century physics. Concentrating on the first three decades of the century and drawing extensively on Russian sources, the author analyses the first successes, failures and paths of

  2. Topics in field theory

    CERN Document Server

    Karpilovsky, G

    1989-01-01

    This monograph gives a systematic account of certain important topics pertaining to field theory, including the central ideas, basic results and fundamental methods.Avoiding excessive technical detail, the book is intended for the student who has completed the equivalent of a standard first-year graduate algebra course. Thus it is assumed that the reader is familiar with basic ring-theoretic and group-theoretic concepts. A chapter on algebraic preliminaries is included, as well as a fairly large bibliography of works which are either directly relevant to the text or offer supplementary material of interest.

  3. Lectures on Matrix Field Theory

    Science.gov (United States)

    Ydri, Badis

    The subject of matrix field theory involves matrix models, noncommutative geometry, fuzzy physics and noncommutative field theory and their interplay. In these lectures, a lot of emphasis is placed on the matrix formulation of noncommutative and fuzzy spaces, and on the non-perturbative treatment of the corresponding field theories. In particular, the phase structure of noncommutative $\\phi^4$ theory is treated in great detail, and an introduction to noncommutative gauge theory is given.

  4. Variational methods for field theories

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Menahem, S.

    1986-09-01

    Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.

  5. Theory of interacting quantum fields

    CERN Document Server

    Rebenko, Alexei L

    2012-01-01

    This monograph is devoted to the systematic and encyclopedic presentation of the foundations of quantum field theory. It represents mathematical problems of the quantum field theory with regardto the new methods of the constructive and Euclidean field theory formed for the last thirty years of the 20th century on the basis of rigorous mathematical tools of the functional analysis, the theory of operators, and the theory of generalized functions. The book is useful for young scientists who desire to understand not only the formal structure of the quantum field theory but also its basic concepts and connection with classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of functional integration.

  6. Chameleon Field Theories

    CERN Document Server

    Khoury, Justin

    2013-01-01

    Chameleons are light scalar fields with remarkable properties. Through the interplay of self-interactions and coupling to matter, chameleon particles have a mass that depends on the ambient matter density. The manifestation of the fifth force mediated by chameleons therefore depends sensitively on their environment, which makes for a rich phenomenology. In this article, we review two recent results on chameleon phenomenology. The first result a pair of no-go theorems limiting the cosmological impact of chameleons and their generalizations: i) the range of the chameleon force at cosmological density today can be at most ~Mpc; ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time. These theorems imply that chameleons have negligible effect on the linear growth of structure, and cannot account for the observed cosmic acceleration except as some form of dark energy. The second result pertains to the quantum stability of chameleon theories. We ...

  7. Variational transition state theory

    Energy Technology Data Exchange (ETDEWEB)

    Truhlar, D.G. [Univ. of Minnesota, Minneapolis (United States)

    1993-12-01

    This research program involves the development of variational transition state theory (VTST) and semiclassical tunneling methods for the calculation of gas-phase reaction rates and selected applications. The applications are selected for their fundamental interest and/or their relevance to combustion.

  8. Double Field Theory Inspired Cosmology

    CERN Document Server

    Wu, Houwen

    2014-01-01

    Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We find two sets of solutions in double field theory cosmology, respecting or violating the strong (weak) constraint. Both sets of solutions naturally contain the pre- and post-big bang evolutions in one single line element. This novel feature opens a window for possible resolution of the cosmic amnesia. We also demonstrate that the scale factor duality in the standard string cosmology is nothing but the T-duality in double field theory. The scale dual dilatons in the standard string cosmology is simply the usual diffeomorphic scalar dilaton $\\phi$ and dual diffeomorphic scalar dilaton $\\tilde\\phi$ in double field theory. Furthermore, we identify the "sh...

  9. 自我状态理论在护理领域的研究进展%Research progress on ego state theory in nursing field

    Institute of Scientific and Technical Information of China (English)

    李彩宏; 郑萍; 姚秋丽

    2012-01-01

    综述了自我状态理论的概念、测量工具及其在护理领域的研究现状,探讨自我状态理论在护理理论研究和临床实践中的应用和发展趋势.%It reviewed the concept and measuring tools of ego state theory, and its research status in nursing field,so as to probe into the application and the development trend of ego state theory in nursing theory research and its clinical practice.

  10. Quantum field theory of fluids.

    Science.gov (United States)

    Gripaios, Ben; Sutherland, Dave

    2015-02-20

    The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.

  11. Parameterized quantum field theory without Haag's theorem

    CERN Document Server

    Seidewitz, Ed

    2015-01-01

    Under the normal assumptions of quantum field theory, Haag's theorem states that any field unitarily equivalent to a free field must itself be a free field. Unfortunately, the derivation of the Dyson series perturbation expansion relies on the use of the interaction picture, in which the interacting field is unitarily equivalent to the free field but must still account for interactions. Thus, the traditional perturbative derivation of the scattering matrix in quantum field theory is mathematically ill defined. Nevertheless, perturbative quantum field theory is currently the only practical approach for addressing scattering for realistic interactions, and it has been spectacularly successful in making empirical predictions. This paper explains this success by showing that quantum field theory can be formulated, using an invariant, fifth path parameter in addition to the usual four position parameters, in such a way that Haag's theorem no longer applies, but such that the Dyson perturbation expansion for the sc...

  12. Field redefinition invariance in quantum field theory

    CERN Document Server

    Apfeldorf, K M; Apfeldorf, Karyn M; Ordonez, Carlos

    1994-01-01

    We investigate the consequences of field redefinition invariance in quantum field theory by carefully performing nonlinear transformations in the path integral. We first present a ``paradox'' whereby a 1+1 freemassless scalar theory on a Minkowskian cylinder is reduced to an effectively quantum mechanical theory. We perform field redefinitions both before and after reduction to suggest that one should not ignore operator ordering issues in quantum field theory. We next employ a discretized version of the path integral for a free massless scalar quantum field in d dimensions to show that beyond the usual jacobian term, an infinite series of divergent ``extra'' terms arises in the action whenever a nonlinear field redefinition is made. The explicit forms for the first couple of these terms are derived. We evaluate Feynman diagrams to illustrate the importance of retaining the extra terms, and conjecture that these extra terms are the exact counterterms necessary to render physical quantities invariant under fie...

  13. Kinetic mean-field theories

    Science.gov (United States)

    Karkheck, John; Stell, George

    1981-08-01

    A kinetic mean-field theory for the evolution of the one-particle distribution function is derived from maximizing the entropy. For a potential with a hard-sphere core plus tail, the resulting theory treats the hard-core part as in the revised Enskog theory. The tail, weighted by the hard-sphere pair distribution function, appears linearly in a mean-field term. The kinetic equation is accompanied by an entropy functional for which an H theorem was proven earlier. The revised Enskog theory is obtained by setting the potential tail to zero, the Vlasov equation is obtained by setting the hard-sphere diameter to zero, and an equation of the Enskog-Vlasov type is obtained by effecting the Kac limit on the potential tail. At equilibrium, the theory yields a radial distribution function that is given by the hard-sphere reference system and thus furnishes through the internal energy a thermodynamic description which is exact to first order in inverse temperature. A second natural route to thermodynamics (from the momentum flux which yields an approximate equation of state) gives somewhat different results; both routes coincide and become exact in the Kac limit. Our theory furnishes a conceptual basis for the association in the heuristically based modified Enskog theory (MET) of the contact value of the radial distribution function with the ''thermal pressure'' since this association follows from our theory (using either route to thermodynamics) and moreover becomes exact in the Kac limit. Our transport theory is readily extended to the general case of a soft repulsive core, e.g., as exhibited by the Lennard-Jones potential, via by-now-standard statistical-mechanical methods involving an effective hard-core potential, thus providing a self-contained statistical-mechanical basis for application to such potentials that is lacking in the standard versions of the MET. We obtain very good agreement with experiment for the thermal conductivity and shear viscosity of several

  14. Theory of crystal field states for heavy rare-earth impurities in MgB sub 2

    CERN Document Server

    Welsch, F; Faehnle, M

    2002-01-01

    For isolated rare-earth impurities substituting for Mg atoms in the superconductor MgB sub 2 the crystal field parameters are calculated by the ab initio density functional electron theory with constraints for the 4f charge and spin density. The crystal field parameter A sub 6 sup 6 is extremely small due to the structure and bonding properties of MgB sub 2 , and therefore the crystal field levels are nearly exclusively determined by one magnetic quantum number M. Implications for the pair-breaking mechanism of the superconductivity in MgB sub 2 are discussed.

  15. On the unitary transformation between non-quasifree and quasifree state spaces and its application to quantum field theory on curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalk, Hanno [Bonn Univ. (Germany). Inst. fuer Angewandte Mathematik; Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2009-12-15

    Using *-calculus on the dual of the Borchers-Uhlmann algebra endowed with a combinatorial co-product, we develop a method to calculate a unitary transformation relating the GNS representations of a non-quasifree and a quasifree state of the free hermitian scalar field. The motivation for such an analysis and a further result is the fact that a unitary transformation of this kind arises naturally in scattering theory on non-stationary backgrounds. Indeed, employing the perturbation theory of the Yang-Feldman equations with a free CCR field in a quasifree state as an initial condition and making use of extended Feynman graphs, we are able to calculate the Wightman functions of the interacting and outgoing fields in a {phi}{sup p}-theory on arbitrary curved spacetimes. A further examination then reveals two major features of the aforementioned theory: firstly, the interacting Wightman functions fulfil the basic axioms of hermiticity, invariance, spectrality (on stationary spacetimes), perturbative positivity, and locality. Secondly, the outgoing field is free and fulfils the CCR, but is in general not in a quasifree state in the case of a non-stationary spacetime. In order to obtain a sensible particle picture for the outgoing field and, hence, a description of the scattering process in terms of particles (in asymptotically flat spacetimes), it is thus necessary to compute a unitary transformation of the abovementioned type. (orig.)

  16. Topics in Double Field Theory

    Science.gov (United States)

    Kwak, Seung Ki

    The existence of momentum and winding modes of closed string on a torus leads to a natural idea that the field theoretical approach of string theory should involve winding type coordinates as well as the usual space-time coordinates. Recently developed double field theory is motivated from this idea and it implements T-duality manifestly by doubling the coordinates. In this thesis we will mainly focus on the double field theory formulation of different string theories in its low energy limit: bosonic, heterotic, type II and its massive extensions, and N = 1 supergravity theory. In chapter 2 of the thesis we study the equivalence of different formulations of double field theory. There are three different formulations of double field theory: background field E formulation, generalized metric H formulation, and frame field EAM formulation. Starting from the frame field formalism and choosing an appropriate gauge, the equivalence of the three formulations of bosonic theory are explicitly verified. In chapter 3 we construct the double field theory formulation of heterotic strings. The global symmetry enlarges to O( D, D + n) for heterotic strings and the enlarged generalized metric features this symmetry. The structural form of bosonic theory can directly be applied to the heterotic theory with the enlarged generalized metric. In chapter 4 we develop a unified framework of double field theory for type II theories. The Ramond-Ramond potentials fit into spinor representations of the duality group O( D, D) and the theory displays Spin+( D, D) symmetry with its self-duality relation. For a specific form of RR 1-form the theory reduces to the massive deformation of type IIA theory due to Romans. In chapter 5 we formulate the N = 1 supersymmetric extension of double field theory including the coupling to n abelian vector multiplets. This theory features a local O(1, 9 + n) x O(1, 9) tangent space symmetry under which the fermions transform. (Copies available exclusively from

  17. Butterfly Tachyons in Vacuum String Field Theory

    CERN Document Server

    Matlock, P

    2003-01-01

    We use geometrical conformal field theory methods to investigate tachyon fluctuations about the butterfly projector state in Vacuum String Field Theory. We find that the on-shell condition for the tachyon field is equivalent to the requirement that the quadratic term in the string-field action vanish on shell. This further motivates the interpretation of the butterfly state as a D-brane. We begin a calculation of the tension of the butterfly, and conjecture that this will match the case of the sliver and further strengthen this interpretation.

  18. 5d Field Theories and M Theory

    OpenAIRE

    Kol, Barak

    1997-01-01

    5-brane configurations describing 5d field theories are promoted to an M theory description a la Witten in terms of polynomials in two complex variables. The coefficients of the polynomials are the Coulomb branch. This picture resolves apparent singularities at vertices and reveals exponentially small corrections. These corrections ask to be compared to world line instanton corrections. From a different perspective this procedure may be used to define a diagrammatic representation of polynomi...

  19. Properties of double field theory

    NARCIS (Netherlands)

    Penas, Victor Alejandro

    2016-01-01

    In this thesis we study several aspects of Double Field Theory (DFT). In general, Double Field Theory is subject to the so-called strong constraint. By using the Flux Formulation of DFT, we explore to what extent one can deal with the gauge consistency constraints of DFT without imposing the strong

  20. Casimir Effects in Renormalizable Quantum Field Theories

    CERN Document Server

    Graham, N; Weigel, H; Graham, Noah; Jaffe, Robert L.; Weigel, Herbert

    2002-01-01

    We review the framework we and our collaborators have developed for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.

  1. Casimir Effects in Renormalizable Quantum Field Theories

    Science.gov (United States)

    Graham, Noah; Jaffe, Robert L.; Weigel, Herbert

    We present a framework for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.

  2. Playing with QCD I: effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica

    2009-07-01

    The building blocks of hadrons are quarks and gluons, although color is confined into singlet states. QCD is believed to be the fundamental theory of strong interactions. Its asymptotically free nature puts the vacuum out of reach for perturbation theory. The Lagrangian of QCD and the Feynman rules associated were built by using the Gauge Principle, starting from the quark matter fields and obtaining gluons as connections. A simpler, and sometimes necessary or complementary, approach is provided by effective field theories or effective models, especially when one has to deal with the nonperturbative sector of the theory. (author)

  3. Resolving Witten's Superstring Field Theory

    CERN Document Server

    Erler, Theodore; Sachs, Ivo

    2014-01-01

    We regulate Witten's open superstring field theory by replacing the picture-changing insertion at the midpoint with a contour integral of picture changing insertions over the half-string overlaps of the cubic vertex. The resulting product between string fields is non-associative, but we provide a solution to the $A_\\infty$ relations defining all higher vertices. The result is an explicit covariant superstring field theory which by construction satisfies the classical BV master equation.

  4. Pilot-wave theory and quantum fields

    Science.gov (United States)

    Struyve, Ward

    2010-10-01

    Pilot-wave theories provide possible solutions to the measurement problem. In such theories, quantum systems are not only described by the state vector but also by some additional variables. These additional variables, also called beables, can be particle positions, field configurations, strings, etc. In this paper we focus our attention on pilot-wave theories in which the additional variables are field configurations. The first such theory was proposed by Bohm for the free electromagnetic field. Since Bohm, similar pilot-wave theories have been proposed for other quantum fields. The purpose of this paper is to present an overview and further development of these proposals. We discuss various bosonic quantum field theories such as the Schrödinger field, the free electromagnetic field, scalar quantum electrodynamics and the Abelian Higgs model. In particular, we compare the pilot-wave theories proposed by Bohm and by Valentini for the electromagnetic field, finding that they are equivalent. We further discuss the proposals for fermionic fields by Holland and Valentini. In the case of Holland's model we indicate that further work is required in order to show that the model is capable of reproducing the standard quantum predictions. We also consider a similar model, which does not seem to reproduce the standard quantum predictions. In the case of Valentini's model we point out a problem that seems hard to overcome.

  5. On 2-dimensional topological field theories

    CERN Document Server

    Dumitrescu, Florin

    2010-01-01

    In this paper we give a characterization of 2-dimensional topological field theories over a space $X$ as Frobenius bundles with connections over $LX$, the free loop space of $X$. This is a generalization of the folk theorem stating that 2-dimensional topological field theories (over a point) are described by finite-dimensional commutative Frobenius algebras. In another direction, this result extends the description of 1-dimensional topological field theories over a space $X$ as vector bundles with connections over $X$, cf. \\cite{DST}.

  6. The Nonlinear Field Space Theory

    Science.gov (United States)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2016-08-01

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the "Principle of finiteness" of physical theories, which once motivated the Born-Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  7. The Nonlinear Field Space Theory

    Energy Technology Data Exchange (ETDEWEB)

    Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Trześniewski, Tomasz, E-mail: tbwbt@ift.uni.wroc.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Institute for Theoretical Physics, University of Wrocław, pl. Borna 9, 50-204 Wrocław (Poland)

    2016-08-10

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  8. The Nonlinear Field Space Theory

    Directory of Open Access Journals (Sweden)

    Jakub Mielczarek

    2016-08-01

    Full Text Available In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity, as well as in condensed matter physics (e.g. continuous spin chains, and can shed new light on the issue of divergences in quantum field theories.

  9. Lectures on quantum field theory

    CERN Document Server

    Das, Ashok

    2008-01-01

    This book consists of the lectures for a two-semester course on quantum field theory, and as such is presented in a quite informal and personal manner. The course starts with relativistic one-particle systems, and develops the basics of quantum field theory with an analysis of the representations of the Poincaré group. Canonical quantization is carried out for scalar, fermion, Abelian and non-Abelian gauge theories. Covariant quantization of gauge theories is also carried out with a detailed description of the BRST symmetry. The Higgs phenomenon and the standard model of electroweak interactio

  10. N=2 gauge theories and degenerate fields of Toda theory

    CERN Document Server

    Kanno, Shoichi; Shiba, Shotaro; Tachikawa, Yuji

    2009-01-01

    We discuss the correspondence between degenerate fields of the W_N algebra and punctures of Gaiotto's description of the Seiberg-Witten curve of N=2 superconformal gauge theories. Namely, we find that the type of degenerate fields of the W_N algebra, with null states at level one, is classified by Young diagrams with N boxes, and that the singular behavior of the Seiberg-Witten curve near the puncture agrees with that of W_N generators. We also find how to translate mass parameters of the gauge theory to the momenta of the Toda theory.

  11. Quantum Field Theory, Revised Edition

    Science.gov (United States)

    Mandl, F.; Shaw, G.

    1994-01-01

    Quantum Field Theory Revised Edition F. Mandl and G. Shaw, Department of Theoretical Physics, The Schuster Laboratory, The University, Manchester, UK When this book first appeared in 1984, only a handful of W± and Z° bosons had been observed and the experimental investigation of high energy electro-weak interactions was in its infancy. Nowadays, W± bosons and especially Z° bosons can be produced by the thousand and the study of their properties is a precise science. We have revised the text of the later chapters to incorporate these developments and discuss their implications. We have also taken this opportunity to update the references throughout and to make some improvements in the treatment of dimen-sional regularization. Finally, we have corrected some minor errors and are grateful to various people for pointing these out. This book is designed as a short and simple introduction to quantum field theory for students beginning research in theoretical and experimental physics. The three main objectives are to explain the basic physics and formalism of quantum field theory, to make the reader fully proficient in theory calculations using Feynman diagrams, and to introduce the reader to gauge theories, which play such a central role in elementary particle physics. The theory is applied to quantum electrodynamics (QED), where quantum field theory had its early triumphs, and to weak interactions where the standard electro-weak theory has had many impressive successes. The treatment is based on the canonical quantization method, because readers will be familiar with this, because it brings out lucidly the connection between invariance and conservation laws, and because it leads directly to the Feynman diagram techniques which are so important in many branches of physics. In order to help inexperienced research students grasp the meaning of the theory and learn to handle it confidently, the mathematical formalism is developed from first principles, its physical

  12. Group field theories generating polyhedral complexes

    CERN Document Server

    Thürigen, Johannes

    2015-01-01

    Group field theories are a generalization of matrix models which provide both a second quantized reformulation of loop quantum gravity as well as generating functions for spin foam models. While states in canonical loop quantum gravity, in the traditional continuum setting, are based on graphs with vertices of arbitrary valence, group field theories have been defined so far in a simplicial setting such that states have support only on graphs of fixed valency. This has led to the question whether group field theory can indeed cover the whole state space of loop quantum gravity. In this contribution based on [1] I present two new classes of group field theories which satisfy this objective: i) a straightforward, but rather formal generalization to multiple fields, one for each valency and ii) a simplicial group field theory which effectively covers the larger state space through a dual weighting, a technique common in matrix and tensor models. To this end I will further discuss in some detail the combinatorial ...

  13. Lectures on matrix field theory

    CERN Document Server

    Ydri, Badis

    2017-01-01

    These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.

  14. Quantum field theory competitive models

    CERN Document Server

    Tolksdorf, Jürgen; Zeidler, Eberhard

    2009-01-01

    For more than 70 years, quantum field theory (QFT) can be seen as a driving force in the development of theoretical physics. Equally fascinating is the fruitful impact which QFT had in rather remote areas of mathematics. The present book features some of the different approaches, different physically viewpoints and techniques used to make the notion of quantum field theory more precise. For example, the present book contains a discussion including general considerations, stochastic methods, deformation theory and the holographic AdS/CFT correspondence. It also contains a discussion of more recent developments like the use of category theory and topos theoretic methods to describe QFT. The present volume emerged from the 3rd 'Blaubeuren Workshop: Recent Developments in Quantum Field Theory', held in July 2007 at the Max Planck Institute of Mathematics in the Sciences in Leipzig/Germany. All of the contributions are committed to the idea of this workshop series: 'To bring together outstanding experts working in...

  15. A Landscape of Field Theories

    CERN Document Server

    Maxfield, Travis; Sethi, Savdeep

    2015-01-01

    Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2,0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.

  16. A landscape of field theories

    Energy Technology Data Exchange (ETDEWEB)

    Maxfield, Travis [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States); Robbins, Daniel [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843-4242 (United States); Sethi, Savdeep [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States)

    2016-11-28

    Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2,0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.

  17. A landscape of field theories

    Science.gov (United States)

    Maxfield, Travis; Robbins, Daniel; Sethi, Savdeep

    2016-11-01

    Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2, 0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.

  18. The Theory of Conceptual Fields

    Science.gov (United States)

    Vergnaud, Gerard

    2009-01-01

    The theory of conceptual fields is a developmental theory. It has two aims: (1) to describe and analyse the progressive complexity, on a long- and medium-term basis, of the mathematical competences that students develop inside and outside school, and (2) to establish better connections between the operational form of knowledge, which consists in…

  19. The conceptual framework of quantum field theory

    CERN Document Server

    Duncan, Anthony

    2012-01-01

    The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quan...

  20. Double field theory inspired cosmology

    Science.gov (United States)

    Wu, Houwen; Yang, Haitang

    2014-07-01

    Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We construct solutions for vanishing and non-vanishing symmetry preserving dilaton potentials. The solutions assemble the pre- and post-big bang evolutions in one single line element. Our results show a smooth evolution from an anisotropic early stage to an isotropic phase without any special initial conditions in contrast to previous models. In addition, we demonstrate that the contraction of the dual space automatically leads to both an inflation phase and a decelerated expansion of the ordinary space during different evolution stages.

  1. Noncommutative quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, H. [Fakultaet fuer Physik, Universitaet Wien, Boltzmanngasse 5, 1090 Wien (Austria); Wulkenhaar, R. [Mathematisches Institut der Westfaelischen Wilhelms-Universitaet, Einsteinstrasse 62, 48149 Muenster (Germany)

    2014-09-11

    We summarize our recent construction of the φ{sup 4}-model on four-dimensional Moyal space. This is achieved by solving the quartic matrix model for a general external matrix in terms of the solution of a non-linear equation for the 2-point function and the eigenvalues of that matrix. The β-function vanishes identically. For the Moyal model, the theory of Carleman type singular integral equations reduces the construction to a fixed point problem. The resulting Schwinger functions in position space are symmetric and invariant under the full Euclidean group. The Schwinger 2-point function is reflection positive iff the diagonal matrix 2-point function is a Stieltjes function. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Neural fields theory and applications

    CERN Document Server

    Graben, Peter; Potthast, Roland; Wright, James

    2014-01-01

    With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...

  3. Nonlocal and quasilocal field theories

    Science.gov (United States)

    Tomboulis, E. T.

    2015-12-01

    We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasilocal (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasilocal kernels all acausal effects are confined within the compact support regions. We briefly discuss the extension to other types of fields and prospects of such theories.

  4. Lectures on Conformal Field Theory

    CERN Document Server

    Qualls, Joshua D

    2015-01-01

    These lectures notes are based on courses given at National Taiwan University, National Chiao-Tung University, and National Tsing Hua University in the spring term of 2015. Although the course was offered primarily for graduate students, these lecture notes have been prepared for a more general audience. They are intended as an introduction to conformal field theories in various dimensions, with applications related to topics of particular interest: topics include the conformal bootstrap program, boundary conformal field theory, and applications related to the AdS/CFT correspondence. We assume the reader to be familiar with quantum mechanics at the graduate level and to have some basic knowledge of quantum field theory. Familiarity with string theory is not a prerequisite for this lectures, although it can only help.

  5. Background Independent String Field Theory

    CERN Document Server

    Bars, Itzhak

    2014-01-01

    We develop a new background independent Moyal star formalism in bosonic open string field theory. The new star product is formulated in a half-phase-space, and because phase space is independent of any background fields, the interactions are background independent. In this basis there is a large amount of symmetry, including a supersymmetry OSp(d|2) that acts on matter and ghost degrees of freedom, and simplifies computations. The BRST operator that defines the quadratic kinetic term of string field theory may be regarded as the solution of the equation of motion A*A=0 of a purely cubic background independent string field theory. We find an infinite number of non-perturbative solutions to this equation, and are able to associate them to the BRST operator of conformal field theories on the worldsheet. Thus, the background emerges from a spontaneous-type breaking of a purely cubic highly symmetric theory. The form of the BRST field breaks the symmetry in a tractable way such that the symmetry continues to be us...

  6. Probability state modeling theory.

    Science.gov (United States)

    Bagwell, C Bruce; Hunsberger, Benjamin C; Herbert, Donald J; Munson, Mark E; Hill, Beth L; Bray, Chris M; Preffer, Frederic I

    2015-07-01

    As the technology of cytometry matures, there is mounting pressure to address two major issues with data analyses. The first issue is to develop new analysis methods for high-dimensional data that can directly reveal and quantify important characteristics associated with complex cellular biology. The other issue is to replace subjective and inaccurate gating with automated methods that objectively define subpopulations and account for population overlap due to measurement uncertainty. Probability state modeling (PSM) is a technique that addresses both of these issues. The theory and important algorithms associated with PSM are presented along with simple examples and general strategies for autonomous analyses. PSM is leveraged to better understand B-cell ontogeny in bone marrow in a companion Cytometry Part B manuscript. Three short relevant videos are available in the online supporting information for both of these papers. PSM avoids the dimensionality barrier normally associated with high-dimensionality modeling by using broadened quantile functions instead of frequency functions to represent the modulation of cellular epitopes as cells differentiate. Since modeling programs ultimately minimize or maximize one or more objective functions, they are particularly amenable to automation and, therefore, represent a viable alternative to subjective and inaccurate gating approaches.

  7. Impact of the neutron and nuclear matter equations of state on neutron skin and neutron drip lines in chiral effective field theory

    CERN Document Server

    Sammarruca, Francesca

    2016-01-01

    We present predictions of the binding energy per nucleon and the neutron skin thickness in highly neutron-rich isotopes of Oxygen, Magnesium, and Aluminum. The calculations are carried out at and below the neutron drip line. The nuclear properties are obtained via an energy functional whose input is the equation of state of isospin-asymmetric in?finite matter. The latter is based on a microscopic derivation applying chiral few-nucleon forces. We highlight the impact of the equation of state at diff?erent orders of chiral effective fi?eld theory and discuss the role of three-neutron forces.

  8. Systematic Calculation on Ground State Properties of Even-even Superheavy Nuclei Using Relativistic Mean Field Theory

    Institute of Scientific and Technical Information of China (English)

    ZhangHongfei; ZuoWei; SoojaeRenIm; ZhouXiaohong; LiJunqing

    2003-01-01

    In recent years the discovery of Super Heavy Element (SHE) with atomic number Z=108~116 has opened up a new era of research in nuclear physics, however, the extreme difficulties to synthesize SHE greatly restrict the experimental studies on it, so that the theoretical studies are very important. The Relativistic Mean Field theory (RMF) is proved to be a simple and successful theory due to its great success in describing the bulk properties at the β-stable valley, as well as nuclei far from the β-stable line, and gives good predictions for nuclei far beyond the end of the known periodic table. In the framework of RMF we have calculated the properties on SHN such as the binding energy, the deformation, single and double neutron separation energy, and the a-decay half-life and so on for nuclei Z=108~114 and N=156~190. The axial deformations considered by using the expansion of harmonic oscillator basis. The Lagrangian wc have used is as the following form:

  9. Self-consistent Bogoliubov-de Gennes theory of the vortex lattice state in a two-dimensional strongly type-II superconductor at high magnetic fields

    Science.gov (United States)

    Zhuravlev, Vladimir; Duan, Wenye; Maniv, Tsofar

    2017-01-01

    A self-consistent Bogoliubov-de Gennes theory of the vortex lattice state in a 2D strong type-II superconductor at high magnetic fields reveals a novel quantum mixed state around the semiclassical Hc 2, characterized by a well-defined Landau-Bloch band structure in the quasiparticle spectrum and suppressed order-parameter amplitude, which sharply crossover into the well-known semiclassical (Helfand-Werthamer) results upon decreasing magnetic field. Application to the 2D superconducting state observed recently on the surface of the topological insulator Sb2Te3 accounts well for the experimental data, revealing a strong type-II superconductor, with unusually low carrier density and very small cyclotron mass, which can be realized only in the strong coupling superconductor limit.

  10. Electromagnetic field theories for engineering

    CERN Document Server

    Salam, Md Abdus

    2014-01-01

    A four year Electrical and Electronic engineering curriculum normally contains two modules of electromagnetic field theories during the first two years. However, some curricula do not have enough slots to accommodate the two modules. This book, Electromagnetic Field Theories, is designed for Electrical and Electronic engineering undergraduate students to provide fundamental knowledge of electromagnetic fields and waves in a structured manner. A comprehensive fundamental knowledge of electric and magnetic fields is required to understand the working principles of generators, motors and transformers. This knowledge is also necessary to analyze transmission lines, substations, insulator flashover mechanism, transient phenomena, etc. Recently, academics and researches are working for sending electrical power to a remote area by designing a suitable antenna. In this case, the knowledge of electromagnetic fields is considered as important tool.

  11. Currents in supersymmetric field theories

    CERN Document Server

    Derendinger, Jean-Pierre

    2016-01-01

    A general formalism to construct and improve supercurrents and source or anomaly superfields in two-derivative N=1 supersymmetric theories is presented. It includes arbitrary gauge and chiral superfields and a linear superfield coupled to gauge fields. These families of supercurrent structures are characterized by their energy-momentum tensors and R currents and they display a specific relation to the dilatation current of the theory. The linear superfield is introduced in order to describe the gauge coupling as a background (or propagating) field. Supersymmetry does not constrain the dependence on this gauge coupling field of gauge kinetic terms and holomorphicity restrictions are absent. Applying these results to an effective (Wilson) description of super-Yang-Mills theory, matching or cancellation of anomalies leads to an algebraic derivation of the all-order NSVZ beta function.

  12. Phenomenology of Noncommutative Field Theories

    CERN Document Server

    Carone, C D

    2006-01-01

    Experimental limits on the violation of four-dimensional Lorentz invariance imply that noncommutativity among ordinary spacetime dimensions must be small. In this talk, I review the most stringent bounds on noncommutative field theories and suggest a possible means of evading them: noncommutativity may be restricted to extra, compactified spatial dimensions. Such theories have a number of interesting features, including Abelian gauge fields whose Kaluza-Klein excitations have self couplings. We consider six-dimensional QED in a noncommutative bulk, and discuss the collider signatures of the model.

  13. Bosonic colored group field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ben Geloun, Joseph [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France); University of Abomey-Calavi, Cotonou (BJ). International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair); Universite Cheikh Anta Diop, Departement de Mathematiques et Informatique, Faculte des Sciences et Techniques, Dakar (Senegal); Magnen, Jacques [Ecole Polytechnique, Centre de Physique Theorique, Palaiseau Cedex (France); Rivasseau, Vincent [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)

    2010-12-15

    Bosonic colored group field theory is considered. Focusing first on dimension four, namely the colored Ooguri group field model, the main properties of Feynman graphs are studied. This leads to a theorem on optimal perturbative bounds of Feynman amplitudes in the ''ultraspin'' (large spin) limit. The results are generalized in any dimension. Finally, integrating out two colors we write a new representation, which could be useful for the constructive analysis of this type of models. (orig.)

  14. Quantum Field Theory Without Divergence A

    CERN Document Server

    Chen Sow Hsin

    2002-01-01

    We anew explain the meaning of negative energies in the relativistic theory. On the basis we present two new conjectures. According to the conjectures, particles have two sorts of existing forms which are symmetric. From this we present a new Lagrangian density and a new quantization method for QED. That the energy of the vacuum state is equal to zero is naturally obtained. From this we can easily determine the cosmological constant according to experiments, and it is possible to correct nonperturbational methods which depend on the energy of the ground state in quantum field theory.

  15. Effective field theory for magnetic compactifications

    CERN Document Server

    Buchmuller, Wilfried; Dudas, Emilian; Schweizer, Julian

    2016-01-01

    Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of a symmetry of the six-dimensional theory by the background gauge field, with the Wilson line as Goldstone boson.

  16. On the derivation of effective field theories

    CERN Document Server

    Uzunov, D I

    2004-01-01

    A general self-consistency approach allows a thorough treatment of the corrections to the standard mean-field approximation (MFA). The natural extension of standard MFA with the help of a cumulant expansion leads to a new point of view on the effective field theories. The proposed approach can be used for a systematic treatment of fluctuation effects of various length scales and, perhaps, for the development of a new coarse graining procedure. We outline and justify our method by some preliminary calculations. Concrete results are given for the critical temperature and the Landau parameters of the $\\phi^4_d$-theory - the field counterpart of the Ising model. An important unresolved problem of the modern theory of phase transitions - the problem for the calculation of the true critical temperature, is considered within the framework of the present approach. A comprehensive description of the ground state properties of many-body systems is also demonstrated.

  17. Bohmian mechanics and quantum field theory.

    Science.gov (United States)

    Dürr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghì, Nino

    2004-08-27

    We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which, in particular, ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines for the particles can begin and end.

  18. Loops in exceptional field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bossard, Guillaume [Centre de Physique Théorique, Ecole Polytechnique, CNRS, Université Paris-Saclay,91128 Palaiseau cedex (France); Kleinschmidt, Axel [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Am Mühlenberg 1, DE-14476 Potsdam (Germany); International Solvay Institutes,ULB-Campus Plaine CP231, BE-1050 Brussels (Belgium)

    2016-01-27

    We study certain four-graviton amplitudes in exceptional field theory in dimensions D≥4 up to two loops. As the formulation is manifestly invariant under the U-duality group E{sub 11−D}(ℤ), our resulting expressions can be expressed in terms of automorphic forms. In the low energy expansion, we find terms in the M-theory effective action of type R{sup 4}, ∇{sup 4}R{sup 4} and ∇{sup 6}R{sup 4} with automorphic coefficient functions in agreement with independent derivations from string theory. This provides in particular an explicit integral formula for the exact string theory ∇{sup 6}R{sup 4} threshold function. We exhibit moreover that the usual supergravity logarithmic divergences cancel out in the full exceptional field theory amplitude, within an appropriately defined dimensional regularisation scheme. We also comment on terms of higher derivative order and the role of the section constraint for possible counterterms.

  19. A course in field theory

    CERN Document Server

    Baal, Pierre Van

    2014-01-01

    ""… a pleasant novelty that manages the impossible: a full course in field theory from a derivation of the Dirac equation to the standard electroweak theory in less than 200 pages. Moreover, the final chapter consists of a careful selection of assorted problems, which are original and either anticipate or detail some of the topics discussed in the bulk of the chapters. Instead of building a treatise out of a collection of lecture notes, the author took the complementary approach and constructed a course out of a number of well-known and classic treatises. The result is fresh and useful. … the

  20. Field Analysis and Potential Theory

    Science.gov (United States)

    1985-06-01

    T T T 430 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.5.7 But V2f [ dT - Z j V2 Jxdr T T hence V c2at 7- dT _- J2 (J2 dT T TT whence dalf [13 dT " 0 (5.7...8) at exterior points or dal pot [2] - O (5.7-8(a)) Similarly, dalf r dS - 0 (5.7-9) dal [y] ds - 0 (5.7-10) r Sec.5.7] RETARDED POTENTIAL THEORY 431

  1. Introduction to quantum field theory

    CERN Document Server

    Chang, Shau-Jin

    1990-01-01

    This book presents in a short volume the basics of quantum field theory and many body physics. The first part introduces the perturbative techniques without sophisticated apparatus and applies them to numerous problems including quantum electrodynamics (renormalization), Fermi and Bose gases, the Brueckner theory of nuclear system, liquid Helium and classical systems with noise. The material is clear, illustrative and the important points are stressed to help the reader get the understanding of what is crucial without overwhelming him with unnecessary detours or comments. The material in the s

  2. Einstein's theory of unified fields

    CERN Document Server

    Tonnelat, Marie Antoinette

    2014-01-01

    First published in1966, here is presented a comprehensive overview of one of the most elusive scientific speculations by the pre-eminent genius of the 20th century. The theory is viewed by some scientists with deep suspicion, by others with optimism, but all agree that it represents an extreme challenge. As the author herself affirms, this work is not intended to be a complete treatise or 'didactic exposition' of the theory of unified fields, but rather a tool for further study, both by students and professional physicists. Dealing with all the major areas of research whic

  3. Field reparametrization in effective field theories

    CERN Document Server

    Passarino, Giampiero

    2016-01-01

    Debate topic for Effective Field Theory (EFT) is the choice of a "basis" for $\\mrdim = 6$ operators Clearly all bases are equivalent as long as they are a "basis", containing a minimal set of operators after the use of equations of motion and respecting gauge invariance. From a more formal point of view a basis is characterized by its closure with respect to renormalization. Equivalence of bases should always be understood as a statement for the S-matrix and not for the Lagrangian, as dictated by the equivalence theorem. Any phenomenological approach that misses one of these ingredients is still acceptable for a preliminar analysis, as long as it does not pretend to be an EFT. Here we revisit the equivalence theorem and its consequences for EFT when two sets of higher dimensional operators are connected by a set of non-linear, noninvariant, field reparametrizations.

  4. Stress theory for classical fields

    OpenAIRE

    Kupferman, Raz; Olami, Elihu; Segev, Reuven

    2017-01-01

    Classical field theories together with the Lagrangian and Eulerian approaches to continuum mechanics are embraced under a geometric setting of a fiber bundle. The base manifold can be either the body manifold of continuum mechanics, space manifold, or space-time. Differentiable sections of the fiber bundle represent configurations of the system and the configuration space containing them is given the structure of an infinite dimensional manifold. Elements of the cotangent bundle of the config...

  5. Symmetries in Lagrangian Field Theory

    Science.gov (United States)

    Búa, Lucia; Bucataru, Ioan; León, Manuel de; Salgado, Modesto; Vilariño, Silvia

    2015-06-01

    By generalising the cosymplectic setting for time-dependent Lagrangian mechanics, we propose a geometric framework for the Lagrangian formulation of classical field theories with a Lagrangian depending on the independent variables. For that purpose we consider the first-order jet bundles J1π of a fiber bundle π : E → ℝk where ℝk is the space of independent variables. Generalized symmetries of the Lagrangian are introduced and the corresponding Noether theorem is proved.

  6. Dynamical Mean-Field Theory

    OpenAIRE

    Vollhardt, D.; Byczuk, K.; Kollar, M.

    2011-01-01

    The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combination of the DMFT with conventional methods for the calculation of electronic band structures has led to a powerful numerical approach which allows one to explore the properties of correlated materials. In this introductory article we discuss the ...

  7. Thermo-Field Extension of Open String Field Theory

    CERN Document Server

    Cantcheff, M Botta

    2015-01-01

    We study the implementation of Thermo Field Dynamics (TFD) to the covariant formulation of Open String Field Theory (OSFT). In this paper, we extend the state space and fields according to the duplication rules of TFD and construct the corresponding classical action. The result is a theory whose fields would encode the statistical information of open strings and, noticeably, present degrees of freedom that could be identified as those of closed strings. The physical spectrum of the free theory is studied through the cohomology of the extended BRST charge, and, as a result, we get new fields in the spectrum. We also show, however, that their appearing in the action is directly related to the choice of the inner product in the extended algebra, so that many fields could be eliminated from the theory by choosing that product conveniently. Finally, we study the extension of the three-vertex interaction and provide a simple prescription for it whose results at tree-level amplitudes agree with those of the conventi...

  8. Variational principles for multisymplectic second-order classical field theories

    Science.gov (United States)

    Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso

    2015-06-01

    We state a unified geometrical version of the variational principles for second-order classical field theories. The standard Lagrangian and Hamiltonian variational principles and the corresponding field equations are recovered from this unified framework.

  9. Variational principles for multisymplectic second-order classical field theories

    OpenAIRE

    Román Roy, Narciso; Prieto Martínez, Pedro Daniel

    2015-01-01

    We state a unified geometrical version of the variational principles for second-order classical field theories. The standard Lagrangian and Hamiltonian variational principles and the corresponding field equations are recovered from this unified framework. Peer Reviewed

  10. Dual Field Theories of Quantum Computation

    CERN Document Server

    Vanchurin, Vitaly

    2016-01-01

    Given two quantum states of $N$ q-bits we are interested to find the shortest quantum circuit consisting of only one- and two- q-bit gates that would transfer one state into another. We call it the quantum maze problem for the reasons described in the paper. We argue that in a large $N$ limit the quantum maze problem is equivalent to the problem of finding a semiclassical trajectory of some lattice field theory (the dual theory) on an $N+1$ dimensional space-time with geometrically flat, but topologically compact spatial slices. The spatial fundamental domain is an $N$ dimensional hyper-rhombohedron, and the temporal direction describes transitions from an arbitrary initial state to an arbitrary target state. We first consider a complex Klein-Gordon field theory and argue that it can only be used to study the shortest quantum circuits which do not involve generators composed of tensor products of multiple Pauli $Z$ matrices. Since such situation is not generic we call it the $Z$-problem. On the dual field the...

  11. Effective Field Theory of Cosmological Perturbations

    CERN Document Server

    Piazza, Federico

    2013-01-01

    The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu-Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry---that allows to write down the most general Lagrangian---and of the Stueckelberg "trick"---that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed ana...

  12. Quantum field theory from classical statistics

    CERN Document Server

    Wetterich, C

    2011-01-01

    An Ising-type classical statistical model is shown to describe quantum fermions. For a suitable time-evolution law for the probability distribution of the Ising-spins our model describes a quantum field theory for Dirac spinors in external electromagnetic fields, corresponding to a mean field approximation to quantum electrodynamics. All quantum features for the motion of an arbitrary number of electrons and positrons, including the characteristic interference effects for two-fermion states, are described by the classical statistical model. For one-particle states in the non-relativistic approximation we derive the Schr\\"odinger equation for a particle in a potential from the time evolution law for the probability distribution of the Ising-spins. Thus all characteristic quantum features, as interference in a double slit experiment, tunneling or discrete energy levels for stationary states, are derived from a classical statistical ensemble. Concerning the particle-wave-duality of quantum mechanics, the discret...

  13. Symmetries and defects in three-dimensional topological field theory

    CERN Document Server

    Fuchs, Jurgen

    2015-01-01

    Boundary conditions and defects of any codimension are natural parts of any quantum field theory. Surface defects in three-dimensional topological field theories of Turaev-Reshetikhin type have applications to two-dimensional conformal field theories, in solid state physics and in quantum computing. We explain an obstruction to the existence of surface defects that takes values in a Witt group. We then turn to surface defects in Dijkgraaf-Witten theories and their construction in terms of relative bundles; this allows one to exhibit Brauer-Picard groups as symmetry groups of three-dimensional topological field theories.

  14. Geometry, topology and quantum field theory (fundamental theories of physics)

    CERN Document Server

    Bandyopadhyay, P.

    2013-01-01

    This monograph deals with the geometrical and topological aspects related to quantum field theory with special reference to the electroweak theory and skyrmions. This book is unique in its emphasis on the topological aspects of a fermion manifested through chiral anomaly which is responsible for the generation of mass. This has its relevance in electroweak theory where it is observed that weak interaction gauge bosons attain mass topologically. These geometrical and topological features help us to consider a massive fermion as a skyrmion and for a composite state we can realise the internal symmetry of hadrons from reflection group. Also, an overview of noncommutative geometry has been presented and it is observed that the manifold M 4 x Z2 has its relevance in the description of a massive fermion as skyrmion when the discrete space is considered as the internal space and the symmetry breaking gives rise to chiral anomaly leading to topological features.

  15. Zitterbewegung in quantum field theory

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Yong; Xiong Cai-Dong

    2008-01-01

    Traditionally,the zitterbewegung (ZB) of the Dirac electron has just been studied at the level of quantum mechanics.Seeing the fact that an old interest in ZB has recently been rekindled by the investigations on spintronic,graphene,and superconducting systems,etc.,this paper presents a quantum-field-theory investigation on ZB and obtains the con clusion that,the ZB of an electron arises from the influence of virtual electron-positron pairs (or vacuum fluctuations)on the electron.

  16. Quantum Transition-State Theory

    CERN Document Server

    Hele, Timothy J H

    2014-01-01

    This dissertation unifies one of the central methods of classical rate calculation, `Transition-State Theory' (TST), with quantum mechanics, thereby deriving a rigorous `Quantum Transition-State Theory' (QTST). The resulting QTST is identical to ring polymer molecular dynamics transition-state theory (RPMD-TST), which was previously considered a heuristic method, and whose results we thereby validate. The key step in deriving a QTST is alignment of the flux and side dividing surfaces in path-integral space to obtain a quantum flux-side time-correlation function with a non-zero $t\\to 0_+$ limit. We then prove that this produces the exact quantum rate in the absence of recrossing by the exact quantum dynamics, fulfilling the requirements of a QTST. Furthermore, strong evidence is presented that this is the only QTST with positive-definite Boltzmann statistics and therefore the pre-eminent method for computation of thermal quantum rates in direct reactions.

  17. Number theory arising from finite fields analytic and probabilistic theory

    CERN Document Server

    Knopfmacher, John

    2001-01-01

    ""Number Theory Arising from Finite Fields: Analytic and Probabilistic Theory"" offers a discussion of the advances and developments in the field of number theory arising from finite fields. It emphasizes mean-value theorems of multiplicative functions, the theory of additive formulations, and the normal distribution of values from additive functions. The work explores calculations from classical stages to emerging discoveries in alternative abstract prime number theorems.

  18. A Naturally Renormalized Quantum Field Theory

    OpenAIRE

    2006-01-01

    It was shown that quantum metric fluctuations smear out the singularities of Green's functions on the light cone [1], but it does not remove other ultraviolet divergences of quantum field theory. We have proved that the quantum field theory in Krein space, {\\it i.e.} indefinite metric quantization, removes all divergences of quantum field theory with exception of the light cone singularity [2,3]. In this paper, it is discussed that the combination of quantum field theory in Krein space togeth...

  19. Inflation from string field theory

    CERN Document Server

    Koshelev, Alexey S; Moniz, Paulo Vargas

    2016-01-01

    In the framework of string field theory (SFT) a setting where the closed string dilaton is coupled to the open string tachyon at the final stage of an unstable brane or brane-anti-brane pair decay is considered. We show that this configuration can lead to viable inflation by means of the dilaton becoming a non-local (infinite-derivative) inflaton. The structure of non-locality leads to interesting inflationary scenarios. We obtain (i) a class of single field inflation with universal attractor predictions at $n_{s}\\sim0.967$ with any value of $r<0.1$, where the tensor to scalar ratio $r$ can be solely regulated by parameters of the SFT; (ii) a new class of two field conformally invariant models with a peculiar quadratic cross-product of scalar fields. We analyze a specific case where a spontaneously broken conformal invariance leads to Starobinsky like inflation plus creating an uplifted potential minimum which accounts to vacuum energy after inflation.

  20. Effective Field Theories and Inflation

    CERN Document Server

    Burgess, C P; Holman, R

    2003-01-01

    We investigate the possible influence of very-high-energy physics on inflationary predictions focussing on whether effective field theories can allow effects which are parametrically larger than order H^2/M^2, where M is the scale of heavy physics and H is the Hubble scale at horizon exit. By investigating supersymmetric hybrid inflation models, we show that decoupling does not preclude heavy-physics having effects for the CMB with observable size even if H^2/M^2 << O(1%), although their presence can only be inferred from observations given some a priori assumptions about the inflationary mechanism. Our analysis differs from the results of hep-th/0210233, in which other kinds of heavy-physics effects were found which could alter inflationary predictions for CMB fluctuations, inasmuch as the heavy-physics can be integrated out here to produce an effective field theory description of low-energy physics. We argue, as in hep-th/0210233, that the potential presence of heavy-physics effects in the CMB does no...

  1. Field Theory of Fundamental Interactions

    Science.gov (United States)

    Wang, Shouhong; Ma, Tian

    2017-01-01

    First, we present two basic principles, the principle of interaction dynamics (PID) and the principle of representation invariance (PRI). Intuitively, PID takes the variation of the action under energy-momentum conservation constraint. We show that the PID is the requirement of the presence of dark matter and dark energy, the Higgs field and the quark confinement. PRI requires that the SU(N) gauge theory be independent of representations of SU(N). It is clear that PRI is the logic requirement of any gauge theory. With PRI, we demonstrate that the coupling constants for the strong and the weak interactions are the main sources of these two interactions, reminiscent of the electric charge. Second, we emphasize that symmetry principles-the principle of general relativity and the principle of Lorentz invariance and gauge invariance-together with the simplicity of laws of nature, dictate the actions for the four fundamental interactions. Finally, we show that the PID and the PRI, together with the symmetry principles give rise to a unified field model for the fundamental interactions, which is consistent with current experimental observations and offers some new physical predictions. The research is supported in part by the National Science Foundation (NSF) grant DMS-1515024, and by the Office of Naval Research (ONR) grant N00014-15-1-2662.

  2. Quantum Field Theory in (0 + 1) Dimensions

    Science.gov (United States)

    Boozer, A. D.

    2007-01-01

    We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…

  3. Noncommutative Dipole Field Theories And Unitarity

    CERN Document Server

    Chiou, D W; Chiou, Dah-Wei; Ganor, Ori J.

    2004-01-01

    We extend the argument of Gomis and Mehen for violation of unitarity in field theories with space-time noncommutativity to dipole field theories. In dipole field theories with a timelike dipole vector, we present 1-loop amplitudes that violate the optical theorem. A quantum mechanical system with nonlocal potential of finite extent in time also shows violation of unitarity.

  4. New motives in modern field theory

    CERN Document Server

    Isaev, A P

    2001-01-01

    A review of the basic tendencies in the modern development of field theory is given. Main approaches to the investigation of the nonperturbative quantum field theories are discussed. The ideas of duality conception, superstring and p-brane models, AdS/CFT correspondence, noncommutative field theories, etc. are briefly outlined

  5. Quasiparticle excitations in relativistic quantum field theory

    CERN Document Server

    Arteaga, Daniel

    2008-01-01

    We analyze the particle-like excitations arising in relativistic field theories in states different than the vacuum. The basic properties characterizing the quasiparticle propagation are studied using two different complementary methods. First we introduce a frequency-based approach, wherein the quasiparticle properties are deduced from the spectral analysis of the two-point propagators. Second, we put forward a real-time approach, wherein the quantum state corresponding to the quasiparticle excitation is explicitly constructed, and the time-evolution is followed. Both methods lead to the same result: the energy and decay rate of the quasiparticles are determined by the real and imaginary parts of the retarded self-energy respectively. Both approaches are compared, on the one hand, with the standard field-theoretic analysis of particles in the vacuum and, on the other hand, with the mean-field-based techniques in general backgrounds.

  6. Superconformal quantum field theories in string. Gauge theory dualities

    Energy Technology Data Exchange (ETDEWEB)

    Wiegandt, Konstantin

    2012-08-14

    In this thesis aspects of superconformal field theories that are of interest in the so-called AdS/CFT correspondence are investigated. The AdS/CFT correspondence states a duality between string theories living on Anti-de Sitter space and superconformal quantum field theories in Minkowski space. In the context of the AdS/CFT correspondence the so-called Wilson loop/amplitude duality was discovered, stating the equality of the finite parts of n-gluon MHV amplitudes and n-sided lightlike polygonal Wilson loops in N=4 supersymmetric Yang-Mills (SYM) theory. It is the subject of the first part of this thesis to investigate the Wilson loop side of a possible similar duality in N=6 superconformal Chern-Simons matter (ABJM) theory. The main result is, that the expectation value of n-sided lightlike polygonal Wilson loops vanishes at one-loop order and at two-loop order is identical in its functional form to the Wilson loop in N=4 SYM theory at one-loop order. Furthermore, an anomalous conformal Ward identity for Wilson loops in Chern-Simons theory is derived. Related developments and symmetries of amplitudes and correlators in ABJM theory are discussed as well. In the second part of this thesis we calculate three-point functions of two protected operators and one twist-two operator with arbitrary even spin j in N=4 SYM theory. In order to carry out the calculations, the indices of the spin j operator are projected to the light-cone and the correlator is evaluated in a soft-limit where the momentum coming in at the spin j operator becomes zero. This limit largely simplifies the perturbative calculation, since all three-point diagrams effectively reduce to two-point diagrams and the dependence on the one-loop mixing matrix drops out completely. The result is in agreement with the analysis of the operator product expansion of four-point functions of half-BPS operators by Dolan and Osborn in 2004.

  7. Conformal field theory, boundary conditions and applications to string theory

    OpenAIRE

    Schweigert, C.; Fuchs, J.; Walcher, J.

    2000-01-01

    This is an introduction to two-dimensional conformal field theory and its applications in string theory. Modern concepts of conformal field theory are explained, and it is outlined how they are used in recent studies of D-branes in the strong curvature regime by means of CFT on surfaces with boundary.

  8. Unified Gauge Field Theory and Topological Transitions

    CERN Document Server

    Patwardhan, A

    2004-01-01

    The search for a Unified description of all interactions has created many developments of mathematics and physics. The role of geometric effects in the Quantum Theory of particles and fields and spacetime has been an active topic of research. This paper attempts to obtain the conditions for a Unified Gauge Field Theory, including gravity. In the Yang Mills type of theories with compactifications from a 10 or 11 dimensional space to a spacetime of 4 dimensions, the Kaluza Klein and the Holonomy approach has been used. In the compactifications of Calabi Yau spaces and sub manifolds, the Euler number Topological Index is used to label the allowed states and the transitions. With a SU(2) or SL(2,C) connection for gravity and the U(1)*SU(2)*SU(3) or SU(5) gauge connection for the other interactions, a Unified gauge field theory is expressed in the 10 or 11 dimension space. Partition functions for the sum over all possible configurations of sub spaces labeled by the Euler number index and the Action for gauge and m...

  9. Neutrix Calculus and Finite Quantum Field Theory

    CERN Document Server

    Ng, Y J

    2004-01-01

    In general, quantum field theories require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like QED are not convergent series, but are asymptotic series in their interaction couplings. We propose to apply neutrix calculus, developed by van der Corput and Hadamard in connection with asymptotic series, to tackle divergent integrals, yielding finite renormalizations for the parameters in quantum field theories. We observe that quantum gravity theories are rendered more manageable, and that both renormalizable field theories and effective field theories can be accommodated in the framework of neutrix calculus.

  10. Nuclear effective field theory on the lattice

    CERN Document Server

    Krebs, H; Epelbaum, E; Lee, D; ner, Ulf-G Mei\\ss

    2008-01-01

    In the low-energy region far below the chiral symmetry breaking scale (which is of the order of 1 GeV) chiral perturbation theory provides a model-independent approach for quantitative description of nuclear processes. In the two- and more-nucleon sector perturbation theory is applicable only at the level of an effective potential which serves as input in the corresponding dynamical equation. To deal with the resulting many-body problem we put chiral effective field theory (EFT) on the lattice. Here we present the results of our lattice EFT study up to next-to-next-to-leading order in the chiral expansion. Accurate description of two-nucleon phase-shifts and ground state energy ratio of dilute neutron matter up to corrections of higher orders shows that lattice EFT is a promising tool for a quantitative description of low-energy few- and many-body systems.

  11. Effective Field Theory for Rydberg Polaritons

    Science.gov (United States)

    Gullans, M. J.; Thompson, J. D.; Wang, Y.; Liang, Q.-Y.; Vuletić, V.; Lukin, M. D.; Gorshkov, A. V.

    2016-01-01

    We develop an effective field theory (EFT) to describe the few- and many-body propagation of one dimensional Rydberg polaritons. We show that the photonic transmission through the Rydberg medium can be found by mapping the propagation problem to a non-equilibrium quench, where the role of time and space are reversed. We include effective range corrections in the EFT and show that they dominate the dynamics near scattering resonances in the presence of deep bound states. Finally, we show how the long-range nature of the Rydberg-Rydberg interactions induces strong effective N-body interactions between Rydberg polaritons. These results pave the way towards studying non-perturbative effects in quantum field theories using Rydberg polaritons. PMID:27661685

  12. Quantum field theory and critical phenomena

    CERN Document Server

    Zinn-Justin, Jean

    1996-01-01

    Over the last twenty years quantum field theory has become not only the framework for the discussion of all fundamental interactions except gravity, but also for the understanding of second-order phase transitions in statistical mechanics. This advanced text is based on graduate courses and summer schools given by the author over a number of years. It approaches the subject in terms of path and functional intergrals, adopting a Euclidean metric and using the language of partition and correlation functions. Renormalization and the renormalization group are examined, as are critical phenomena and the role of instantons. Changes for this edition 1. Extensive revision to eliminate a few bugs that had survived the second edition and (mainly) to improve the pedagogical presentation, as a result of experience gathered by lecturing. 2. Additional new topics; holomorphic or coherent state path integral; functional integral and representation of the field theory S-matrix in the holomorphic formalis; non-relativistic li...

  13. Encoding field theories into gravities

    CERN Document Server

    Aoki, Sinya; Onogi, Tetsuya

    2016-01-01

    We propose a method to give a $d+1$ geometry from a $d$ dimensional quantum field theory in the large N expansion. We first construct a $d+1$ dimensional field from the $d$ dimensional one using the gradient flow equation, whose flow time $t$ represents the energy scale of the system such that $t\\rightarrow 0$ corresponds to the ultra-violet (UV) while $t\\rightarrow\\infty$ to the infra-red (IR). We define the induced metric using $d+1$ dimensional field operators. We show that the metric defined in this way becomes classical in the large N limit: quantum fluctuations of the metric are suppressed as 1/N due to the large $N$ factorization property. As a concrete example, we apply our method to the O(N) non-linear $\\sigma$ model in two dimensions. We calculate the three dimensional induced metric, which describes an AdS space in the massless limit. We finally discuss several open issues for future investigations.

  14. Quantum Field Theory A Modern Perspective

    CERN Document Server

    Parameswaran Nair, V

    2005-01-01

    Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...

  15. Effect of physisorbed molecules and an external external fields on the metallic Shockley surface state of Cu(111): A density functional theory study

    Science.gov (United States)

    Berland, Kristian; Einstein, T. L.; Hyldgaard, Per

    2012-02-01

    To manipulate the Cu(111) partially-filled Shockley surface state, we study its response to an external fieldootnotetextKB, TLE, PH; arXiv 1109:6706 E and physisorbed PAHs and quinone molecules. We use density-functional theory calculations with periodic-boundary conditions. The van der Waals density functional version vdW-DF2 accounts for the molecular adsorption. The issue that the Kohn-Sham wave functions couple to both sides of the Cu slab is handled with a decoupling scheme based on a rotation in Hilbert space. A convergence study reveals that to obtain a proper Shockley surface state, 6 Cu layers is sufficient, while 15 is optimal. We use 6 layers for the response to the molecules and 15 to external field. We find that the surface state displays isotropic dispersion (up to order k^6), free-electron like until the Fermi wave vector but with a significant quartic component beyond. The shift in band minimum and effective mass depend linearly on E, with a smaller fractional change in the latter. Charge transfer occurs beyond the outermost copper atoms, and most of the screening is due to bulk electrons. We find that the molecular physisorption increases the band minimum, with the effect the of a quinone being much stronger than the corresponding PAH.

  16. Matrix field theory: Applications to superconductivity

    Science.gov (United States)

    Zhou, Lubo

    In this thesis a systematic, functional matrix field theory is developed to describe both clean and disordered s-wave and d-wave superconductors and the quantum phase transitions associated with them. The thesis can be divided into three parts. The first part includes chapters 1 to 3. In chapter one a general physical introduction is given. In chapters two and three the theory is developed and used to compute the equation of state as well as the number-density susceptibility, spin-density susceptibility, the sound attenuation coefficient, and the electrical conductivity in both clean and disordered s-wave superconductors. The second part includes chapter four. In this chapter we use the theory to describe the disorder-induced metal - superconductor quantum phase transition. The key physical idea here is that in addition to the superconducting order-parameter fluctuations, there are also additional soft fermionic fluctuations that are important at the transition. We develop a local field theory for the coupled fields describing superconducting and soft fermionic fluctuations. Using simple renormalization group and scaling ideas, we exactly determine the critical behavior at this quantum phase transition. Our theory justifies previous approaches. The third part includes chapter five. In this chapter we study the analogous quantum phase transition in disordered d-wave superconductors. This theory should be related to high Tc superconductors. Surprisingly, we show that in both the underdoped and overdoped regions, the coupling of superconducting fluctuations to the soft disordered fermionic fluctuations is much weaker than that in the s-wave case. The net result is that the disordered quantum phase transition in this case is a strong coupling, or described by an infinite disordered fixed point, transition and cannot be described by the perturbative RG description that works so well in the s-wave case. The transition appears to be related to the one that occurs in

  17. Quantum Mechanics and Quantum Field Theory

    Science.gov (United States)

    Dimock, Jonathan

    2011-02-01

    Introduction; Part I. Non-relativistic: 1. Mathematical prelude; 2. Classical mechanics; 3. Quantum mechanics; 4. Single particle; 5. Many particles; 6. Statistical mechanics; Part II. Relativistic: 7. Relativity; 8. Scalar particles and fields; 9. Electrons and photons; 10. Field theory on a manifold; Part III. Probabilistic Methods: 11. Path integrals; 12. Fields as random variables; 13. A nonlinear field theory; Appendices; References; Index.

  18. Instantons in Lifshitz field theories

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Toshiaki; Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan)

    2015-10-05

    BPS instantons are discussed in Lifshitz-type anisotropic field theories. We consider generalizations of the sigma model/Yang-Mills instantons in renormalizable higher dimensional models with the classical Lifshitz scaling invariance. In each model, BPS instanton equation takes the form of the gradient flow equations for “the superpotential” defining “the detailed balance condition”. The anisotropic Weyl rescaling and the coset space dimensional reduction are used to map rotationally symmetric instantons to vortices in two-dimensional anisotropic systems on the hyperbolic plane. As examples, we study anisotropic BPS baby Skyrmion 1+1 dimensions and BPS Skyrmion in 2+1 dimensions, for which we take Kähler 1-form and the Wess-Zumiono-Witten term as the superpotentials, respectively, and an anisotropic generalized Yang-Mills instanton in 4+1 dimensions, for which we take the Chern-Simons term as the superpotential.

  19. Families and degenerations of conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Roggenkamp, D.

    2004-09-01

    In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)

  20. Localisation in Quantum Field Theory

    CERN Document Server

    Balachandran, A P

    2016-01-01

    In nonrelativistic quantum mechanics , Born's principle of localisation is as follows: For a single particle, if a wave function $\\psi_K$ vanishes outside a spatial region $K$, it is said to be localised in $K$. In particular if a spatial region $K'$ is disjoint from $K$, a wave function $\\psi_{K'}$ localised in $K'$ is orthogonal to $\\psi_K$. Such a principle of localisation does not exist compatibly with relativity and causality in quantum field theory (Newton and Wigner) or interacting point particles (Currie,Jordan and Sudarshan).It is replaced by symplectic localisation of observables as shown by Brunetti, Guido and Longo, Schroer and others. This localisation gives a simple derivation of the spin-statistics theorem and the Unruh effect, and shows how to construct quantum fields for anyons and for massless particles with `continuous' spin. This review outlines the basic principles underlying symplectic localisation and shows or mentions its deep implications. In particular, it has the potential to affect...

  1. Propagation in Polymer Parameterised Field Theory

    CERN Document Server

    Varadarajan, Madhavan

    2016-01-01

    The Hamiltonian constraint operator in Loop Quantum Gravity acts ultralocally. Smolin has argued that this ultralocality seems incompatible with the existence of a quantum dynamics which propagates perturbations between macroscopically seperated regions of quantum geometry. We present evidence to the contrary within an LQG type `polymer' quantization of two dimensional Parameterised Field Theory (PFT). PFT is a generally covariant reformulation of free field propagation on flat spacetime. We show explicitly that while, as in LQG, the Hamiltonian constraint operator in PFT acts ultralocally, states in the joint kernel of the Hamiltonian and diffeomorphism constraints of PFT necessarily describe propagation effects. The particular structure of the finite triangulation Hamiltonian constraint operator plays a crucial role, as does the necessity of imposing (the continuum limit of) its kinematic adjoint as a constraint. Propagation is seen as a property encoded by physical states in the kernel of the constraints r...

  2. Monoidal categories and topological field theory

    CERN Document Server

    Turaev, Vladimir

    2017-01-01

    This monograph is devoted to monoidal categories and their connections with 3-dimensional topological field theories. Starting with basic definitions, it proceeds to the forefront of current research. Part 1 introduces monoidal categories and several of their classes, including rigid, pivotal, spherical, fusion, braided, and modular categories. It then presents deep theorems of Müger on the center of a pivotal fusion category. These theorems are proved in Part 2 using the theory of Hopf monads. In Part 3 the authors define the notion of a topological quantum field theory (TQFT) and construct a Turaev-Viro-type 3-dimensional state sum TQFT from a spherical fusion category. Lastly, in Part 4 this construction is extended to 3-manifolds with colored ribbon graphs, yielding a so-called graph TQFT (and, consequently, a 3-2-1 extended TQFT). The authors then prove the main result of the monograph: the state sum graph TQFT derived from any spherical fusion category is isomorphic to the Reshetikhin-Turaev surgery gr...

  3. Unusual signs in quantum field theory

    Science.gov (United States)

    O'Connell, Donal

    Quantum field theory is by now a mature field. Nevertheless, certain physical phenomena remain difficult to understand. This occurs in some cases because well-established quantum field theories are strongly coupled and therefore difficult to solve; in other cases, our current understanding of quantum field theory seems to be inadequate. In this thesis, we will discuss various modifications of quantum field theory which can help to alleviate certain of these problems, either in their own right or as a component of a greater computational scheme. The modified theories we will consider all include unusual signs in some aspect of the theory. We will also discuss limitations on what we might expect to see in experiments, imposed by sign constraints in the customary formulation of quantum field theory.

  4. Nuclear Dynamics with Effective Field Theories

    CERN Document Server

    Epelbaum, Evgeny

    2013-01-01

    These are the proceedings of the international workshop on "Nuclear Dynamics with Effective Field Theories" held at Ruhr-Universitaet Bochum, Germany from July 1 to 3, 2013. The workshop focused on effective field theories of low-energy QCD, chiral perturbation theory for nuclear forces as well as few- and many-body physics. Included are a short contribution per talk.

  5. Dynamics and causality constraints in field theory

    CERN Document Server

    De Souza, M M

    1997-01-01

    We discuss the physical meaning and the geometric interpretation of causality implementation in classical field theories. Causality is normally implemented through kinematical constraints on fields but we show that in a zero-distance limit they also carry a dynamical information, which calls for a revision of our standard concepts of interacting fields. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the lightcone; a finite and consistent field theory requires a lightcone generator as the field support.

  6. Recent Developments in D=2 String Field Theory

    Science.gov (United States)

    Kaku, Michio

    This review article is dedicated to the memory of Robert Marshak, who was a colleague and friend for the past 20 years. Prof. Marshak was an inspiration for all who knew him, especially at CCNY, both for this vision and insight into the fundamental interactions of matter, but also for his concern for social issues. Not only was Prof. Marshak the president of our college in a crucial time in its history, he was also a productive member of our high energy group. It will be hard to replace someone who could combine his many interests so well. He will be sorely missed. We review the recent developments in constructing string field theory in two-dimensions. We analyze the bewildering number of string field theories that have been proposed, all of which correctly reproduce the correlation functions of two-dimensional string theory. We will analyze discrete states, the w(∞) symmetry, and correlation functions in terms of these different string field theories. We will also comment on the relationship between these various field theories, which is still not well understood. (This article is a shortened version of a longer article to appear in the International Journal of Modern Physics.) These string field theories include: • free fermion field theory • collective string field theory • temporal gauge string field theory • non-polynomial string field theory

  7. On magnetohydrodynamic gauge field theory

    Science.gov (United States)

    Webb, G. M.; Anco, S. C.

    2017-06-01

    Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963 Can. J. Phys. 41 2241-51). It is shown how the polarization vector {P} in Calkin’s approach naturally arises from the Lagrange multiplier constraint equation for Faraday’s equation for the magnetic induction {B} , or alternatively from the magnetic vector potential form of Faraday’s equation. Gauss’s equation, (divergence of {B} is zero) is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether’s theorem coupled with the gauge symmetries is used to derive the conservation laws for (a) magnetic helicity, (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations which applies to Faraday’s equation and Gauss’s equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for the general case of a non-barotropic gas in which the gas pressure and internal energy density depend on both the entropy S and the gas density ρ. The cross helicity and fluid helicity conservation laws in the non-barotropic case are nonlocal conservation laws that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982 Phys. Rev. A 26 480-3) satisfy the Casimir determining equations.

  8. The $\\hbar$ Expansion in Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; Hoyer, Paul; /Southern Denmark U., CP3-Origins /Helsinki U. /Helsinki Inst. of Phys.

    2010-10-27

    We show how expansions in powers of Planck's constant {h_bar} = h = 2{pi} can give new insights into perturbative and nonperturbative properties of quantum field theories. Since {h_bar} is a fundamental parameter, exact Lorentz invariance and gauge invariance are maintained at each order of the expansion. The physics of the {h_bar} expansion depends on the scheme; i.e., different expansions are obtained depending on which quantities (momenta, couplings and masses) are assumed to be independent of {h_bar}. We show that if the coupling and mass parameters appearing in the Lagrangian density are taken to be independent of {h_bar}, then each loop in perturbation theory brings a factor of {h_bar}. In the case of quantum electrodynamics, this scheme implies that the classical charge e, as well as the fine structure constant are linear in {h_bar}. The connection between the number of loops and factors of {h_bar} is more subtle for bound states since the binding energies and bound-state momenta themselves scale with {h_bar}. The {h_bar} expansion allows one to identify equal-time relativistic bound states in QED and QCD which are of lowest order in {h_bar} and transform dynamically under Lorentz boosts. The possibility to use retarded propagators at the Born level gives valence-like wave-functions which implicitly describe the sea constituents of the bound states normally present in its Fock state representation.

  9. Accretion Disks and Dynamos: Toward a Unified Mean Field Theory

    CERN Document Server

    Blackman, Eric G

    2012-01-01

    Conversion of gravitational energy into radiation near stars and compact objects in accretion disks the origin of large scale magnetic fields in astrophysical rotators have long been distinct topics of active research in astrophysics. In semi-analytic work on both problems it has been useful to presume large scale symmetries, which necessarily results in mean field theories; magnetohydrodynamic turbulence makes the underlying systems locally asymmetric and highly nonlinear. Synergy between theory and simulations should aim for the development of practical, semi-analytic mean field models that capture the essential physics and can be used for observational modeling. Mean field dynamo (MFD) theory and alpha-viscosity accretion disc theory have exemplified such distinct pursuits. Both are presently incomplete, but 21st century MFD theory has nonlinear predictive power compared to 20th century MFD. in contrast, alpha-viscosity accretion theory is still in a 20th century state. In fact, insights from MFD theory ar...

  10. N=2 Quantum Field Theories and Their BPS Quivers

    CERN Document Server

    Alim, Murad; Cordova, Clay; Espahbodi, Sam; Rastogi, Ashwin; Vafa, Cumrun

    2011-01-01

    We explore the relationship between four-dimensional N=2 quantum field theories and their associated BPS quivers. For a wide class of theories including super-Yang-Mills theories, Argyres-Douglas models, and theories defined by M5-branes on punctured Riemann surfaces, there exists a quiver which implicitly characterizes the field theory. We study various aspects of this correspondence including the quiver interpretation of flavor symmetries, gauging, decoupling limits, and field theory dualities. In general a given quiver describes only a patch of the moduli space of the field theory, and a key role is played by quantum mechanical dualities, encoded by quiver mutations, which relate distinct quivers valid in different patches. Analyzing the consistency conditions imposed on the spectrum by these dualities results in a powerful and novel mutation method for determining the BPS states. We apply our method to determine the BPS spectrum in a wide class of examples, including the strong coupling spectrum of super-...

  11. Eigenstate Thermalization Hypothesis in Conformal Field Theory

    CERN Document Server

    Lashkari, Nima; Liu, Hong

    2016-01-01

    We investigate the eigenstate thermalization hypothesis (ETH) in d+1 dimensional conformal field theories by studying reduced density matrices in energy eigenstates. We show that if local probes of high energy primary eigenstates satisfy ETH, then any finite energy observable with support on a subsystem of finite size satisfies ETH. In two dimensions, we discover that if ETH holds locally, the finite size reduced density matrix of states created by heavy primary operators is well-approximated by a projection to the Virasoro identity block.

  12. Introductory Lectures on Quantum Field Theory

    CERN Document Server

    Alvarez-Gaumé, Luís

    2014-01-01

    In these lectures we present a few topics in Quantum Field Theory in detail. Some of them are conceptual and some more practical. They have been selected because they appear frequently in current applications to Particle Physics and String Theory.

  13. Toward a gauge field theory of gravity.

    Science.gov (United States)

    Yilmaz, H.

    Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.

  14. Magnetic Backgrounds and Noncommutative Field Theory

    OpenAIRE

    Szabo, Richard J.

    2004-01-01

    This paper is a rudimentary introduction, geared at non-specialists, to how noncommutative field theories arise in physics and their applications to string theory, particle physics and condensed matter systems.

  15. Towards weakly constrained double field theory

    Directory of Open Access Journals (Sweden)

    Kanghoon Lee

    2016-08-01

    Full Text Available We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.

  16. Towards weakly constrained double field theory

    Science.gov (United States)

    Lee, Kanghoon

    2016-08-01

    We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon) transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.

  17. Towards Weakly Constrained Double Field Theory

    CERN Document Server

    Lee, Kanghoon

    2015-01-01

    We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon) transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X- ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.

  18. Gauge field theories: various mathematical approaches

    CERN Document Server

    Jordan, François; Thierry, Masson

    2014-01-01

    This paper presents relevant modern mathematical formulations for (classical) gauge field theories, namely, ordinary differential geometry, noncommutative geometry, and transitive Lie algebroids. They provide rigorous frameworks to describe Yang-Mills-Higgs theories or gravitation theories, and each of them improves the paradigm of gauge field theories. A brief comparison between them is carried out, essentially due to the various notions of connection. However they reveal a compelling common mathematical pattern on which the paper concludes.

  19. Effective Theory of Higgs Sector Vacuum States

    CERN Document Server

    Egana-Ugrinovic, Daniel

    2015-01-01

    The effective field theory description for modifications of Standard Model-like Higgs boson interactions arising from tree-level mixing with heavy Higgs sector vacuum states without conserved quantum numbers is presented. An expansion in terms of effective operator dimension based on powers of the heavy mass scale rather than operator dimension is utilized to systematically organize interactions within the effective theory. Vacuum states arising from electroweak singlet extensions of the Higgs sector yield at leading order only two effective dimension-six operators. One of these uniformly dilutes all the interactions of a single physical Higgs boson as compared with Standard Model expectations, while the combination of the two operators give more general modifications of all remaining interactions with two or more physical Higgs bosons. Vacuum states arising from an additional electroweak doublet yield three types of effective dimension-six operators that modify physical Higgs boson couplings to fermion pairs...

  20. Conformal field theory on the plane

    CERN Document Server

    Ribault, Sylvain

    2014-01-01

    We provide an introduction to conformal field theory on the plane in the conformal bootstrap approach. We introduce the main ideas of the bootstrap approach to quantum field theory, and how they apply to two-dimensional theories with local conformal symmetry. We describe the mathematical structures which appear in such theories, from the Virasoro algebra and its representations, to the BPZ equations and their solutions. As examples, we study a number of models: Liouville theory, (generalized) minimal models, free bosonic theories, the $H_3^+$ model, and the $SU_2$ and $\\widetilde{SL}_2(\\mathbb{R})$ WZW models.

  1. Light-front variational approach to scalar field theories

    Energy Technology Data Exchange (ETDEWEB)

    Bartnik, E.A.; Gl-dash-barazek, S.

    1989-02-15

    We present a variational method of estimating the ground-state energy for quantum field theories on the light front in an arbitrary number of dimensions. For scalar fields, variational parameters are the constant background field and the boson mass. In this case our method is equivalent to the standard equal-time approach.

  2. Haag's Theorem and Parameterized Quantum Field Theory

    Science.gov (United States)

    Seidewitz, Edwin

    2017-01-01

    ``Haag's theorem is very inconvenient; it means that the interaction picture exists only if there is no interaction''. In traditional quantum field theory (QFT), Haag's theorem states that any field unitarily equivalent to a free field must itself be a free field. But the derivation of the Dyson series perturbation expansion relies on the use of the interaction picture, in which the interacting field is unitarily equivalent to the free field, but which must still account for interactions. So, the usual derivation of the scattering matrix in QFT is mathematically ill defined. Nevertheless, perturbative QFT is currently the only practical approach for addressing realistic scattering, and it has been very successful in making empirical predictions. This success can be understood through an alternative derivation of the Dyson series in a covariant formulation of QFT using an invariant, fifth path parameter in addition to the usual four position parameters. The parameterization provides an additional degree of freedom that allows Haag's Theorem to be avoided, permitting the consistent use of a form of interaction picture in deriving the Dyson expansion. The extra symmetry so introduced is then broken by the choice of an interacting vacuum.

  3. Inhomogeneous field theory inside the arctic circle

    Science.gov (United States)

    Allegra, Nicolas; Dubail, Jérôme; Stéphan, Jean-Marie; Viti, Jacopo

    2016-05-01

    Motivated by quantum quenches in spin chains, a one-dimensional toy-model of fermionic particles evolving in imaginary-time from a domain-wall initial state is solved. The main interest of this toy-model is that it exhibits the arctic circle phenomenon, namely a spatial phase separation between a critically fluctuating region and a frozen region. Large-scale correlations inside the critical region are expressed in terms of correlators in a (euclidean) two-dimensional massless Dirac field theory. It is observed that this theory is inhomogenous: the metric is position-dependent, so it is in fact a Dirac theory in curved space. The technique used to solve the toy-model is then extended to deal with the transfer matrices of other models: dimers on the honeycomb and square lattice, and the six-vertex model at the free fermion point (Δ =0 ). In all cases, explicit expressions are given for the long-range correlations in the critical region, as well as for the underlying Dirac action. Although the setup developed here is heavily based on fermionic observables, the results can be translated into the language of height configurations and of the gaussian free field, via bosonization. Correlations close to the phase boundary and the generic appearance of Airy processes in all these models are also briefly revisited in the appendix.

  4. Entanglement negativity in quantum field theory.

    Science.gov (United States)

    Calabrese, Pasquale; Cardy, John; Tonni, Erik

    2012-09-28

    We develop a systematic method to extract the negativity in the ground state of a 1+1 dimensional relativistic quantum field theory, using a path integral formalism to construct the partial transpose ρ(A)(T(2) of the reduced density matrix of a subsystem [formula: see text], and introducing a replica approach to obtain its trace norm which gives the logarithmic negativity E=ln//ρ(A)(T(2))//. This is shown to reproduce standard results for a pure state. We then apply this method to conformal field theories, deriving the result E~(c/4)ln[ℓ(1)ℓ(2)/(ℓ(1)+ℓ(2))] for the case of two adjacent intervals of lengths ℓ(1), ℓ(2) in an infinite system, where c is the central charge. For two disjoint intervals it depends only on the harmonic ratio of the four end points and so is manifestly scale invariant. We check our findings against exact numerical results in the harmonic chain.

  5. Perturbative algebraic quantum field theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Falk

    2013-08-15

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  6. Killing Vector Fields and Superharmonic Field Theories

    CERN Document Server

    Groeger, Josua

    2013-01-01

    The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, referred to as superharmonic action, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of the superharmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.

  7. Duality Covariant Solutions in Extended Field Theories

    CERN Document Server

    Rudolph, Felix J

    2016-01-01

    Double field theory and exceptional field theory are formulations of supergravity that make certain dualities manifest symmetries of the action. To achieve this, the geometry is extended by including dual coordinates corresponding to winding modes of the fundamental objects. This geometrically unifies the spacetime metric and the gauge fields (and their local symmetries) in a generalized geometry. Solutions to these extended field theories take the simple form of waves and monopoles in the extended space. From a supergravity point of view they appear as 1/2 BPS objects such as the string, the membrane and the fivebrane in ordinary spacetime. In this thesis double field theory and exceptional field theory are introduced, solutions to their equations of motion are constructed and their properties are analyzed. Further it is established how isometries in the extended space give rise to duality relations between the supergravity solutions. Extensions to these core ideas include studying Goldstone modes, probing s...

  8. Mathematical aspects of quantum field theories

    CERN Document Server

    Strobl, Thomas

    2015-01-01

    Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...

  9. Propagation in polymer parameterised field theory

    Science.gov (United States)

    Varadarajan, Madhavan

    2017-01-01

    The Hamiltonian constraint operator in loop quantum gravity acts ultralocally. Smolin has argued that this ultralocality seems incompatible with the existence of a quantum dynamics which propagates perturbations between macroscopically seperated regions of quantum geometry. We present evidence to the contrary within an LQG type ‘polymer’ quantization of two dimensional parameterised field theory (PFT). PFT is a generally covariant reformulation of free field propagation on flat spacetime. We show explicitly that while, as in LQG, the Hamiltonian constraint operator in PFT acts ultralocally, states in the joint kernel of the Hamiltonian and diffeomorphism constraints of PFT necessarily describe propagation effects. The particular structure of the finite triangulation Hamiltonian constraint operator plays a crucial role, as does the necessity of imposing (the continuum limit of) its kinematic adjoint as a constraint. Propagation is seen as a property encoded by physical states in the kernel of the constraints rather than that of repeated actions of the finite triangulation Hamiltonian constraint on kinematic states. The analysis yields robust structural lessons for putative constructions of the Hamiltonian constraint in LQG for which ultralocal action co-exists with a description of propagation effects by physical states.

  10. Effective Field Theory for Rydberg Polaritons

    CERN Document Server

    Gullans, M J; Thompson, J D; Liang, Q -Y; Vuletic, V; Lukin, M D; Gorshkov, A V

    2016-01-01

    We study non-perturbative effects in N-body scattering of Rydberg polaritons using effective field theory (EFT). We develop an EFT in one dimension and show how a suitably long medium can be used to prepare shallow N-body bound states. We then derive the effective N-body interaction potential for Rydberg polaritons and the associated N-body contact force that arises in the EFT. We use the contact force to find the leading order corrections to the binding energy of the N-body bound states and determine the photon number at which the EFT description breaks down. We find good agreement throughout between the predictions of EFT and numerical simulations of the exact two and three photon wavefunction transmission.

  11. Multivector field formulation of Hamiltonian field theories: equations and symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria-Enriquez, A.; Munoz-Lecanda, M.C.; Roman-Roy, N. [Departamento de Matematica Aplicada y Telematica, Edificio C-3, Campus Norte UPC, Barcelona (Spain)

    1999-12-03

    We state the intrinsic form of the Hamiltonian equations of first-order classical field theories in three equivalent geometrical ways: using multivector fields, jet fields and connections. Thus, these equations are given in a form similar to that in which the Hamiltonian equations of mechanics are usually given. Then, using multivector fields, we study several aspects of these equations, such as the existence and non-uniqueness of solutions, and the integrability problem. In particular, these problems are analysed for the case of Hamiltonian systems defined in a submanifold of the multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian equations is considered, and the relation between Cartan-Noether symmetries and general symmetries of the system is discussed. Noether's theorem is also stated in this context, both the 'classical' version and its generalization to include higher-order Cartan-Noether symmetries. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed. (author)

  12. The entropy of isolated horizons in non-minimally coupling scalar field theory from BF theory

    OpenAIRE

    Wang, Jingbo; Huang, Chao-Guang

    2015-01-01

    In this paper, the entropy of isolated horizons in non-minimally coupling scalar field theory and in the scalar-tensor theory of gravitation is calculated by counting the degree of freedom of quantum states in loop quantum gravity. Instead of boundary Chern-Simons theory, the boundary BF theory is used. The advantages of the new approaches are that no spherical symmetry is needed, and that the final result matches exactly with the Wald entropy formula.

  13. Haag's theorem in renormalised quantum field theories

    CERN Document Server

    Klaczynski, Lutz

    2016-01-01

    We review a package of no-go results in axiomatic quantum field theory with Haag's theorem at its centre. Since the concept of operator-valued distributions in this framework comes very close to what we believe canonical quantum fields are about, these results are of consequence to quantum field theory: they suggest the seeming absurdity that this highly victorious theory is incapable of describing interactions. We single out unitarity of the interaction picture's intertwiner as the most salient provision of Haag's theorem and critique canonical perturbation theory to argue that renormalisation bypasses Haag's theorem by violating this very assumption.

  14. Wavelet-Based Quantum Field Theory

    Directory of Open Access Journals (Sweden)

    Mikhail V. Altaisky

    2007-11-01

    Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.

  15. Worked examples in engineering field theory

    CERN Document Server

    Fuller, A J Baden

    1976-01-01

    Worked Examples in Engineering Field Theory is a product of a lecture course given by the author to first-year students in the Department of Engineering in the University of Leicester. The book presents a summary of field theory together with a large number of worked examples and solutions to all problems given in the author's other book, Engineering Field Theory. The 14 chapters of this book are organized into two parts. Part I focuses on the concept of flux including electric flux. This part also tackles the application of the theory in gravitation, ideal fluid flow, and magnetism. Part II d

  16. Lattice methods and effective field theory

    CERN Document Server

    Nicholson, Amy N

    2016-01-01

    Lattice field theory is a non-perturbative tool for studying properties of strongly interacting field theories, which is particularly amenable to numerical calculations and has quantifiable systematic errors. In these lectures we apply these techniques to nuclear Effective Field Theory (EFT), a non-relativistic theory for nuclei involving the nucleons as the basic degrees of freedom. The lattice formulation of [1,2] for so-called pionless EFT is discussed in detail, with portions of code included to aid the reader in code development. Systematic and statistical uncertainties of these methods are discussed at length, and extensions beyond pionless EFT are introduced in the final Section.

  17. Backgrounds in Boundary String Field Theory

    CERN Document Server

    Baumgartl, M

    2009-01-01

    We study the role of closed string backgrounds in boundary string field theory. Background independence requires the introduction of dual boundary fields, which are reminiscent of the doubled field formalism. We find a correspondence between closed string backgrounds and collective excitations of open strings described by vertex operators involving dual fields. Renormalization group flow, solutions and stability are discussed in an example.

  18. Noncommutative field theory and Lorentz violation.

    Science.gov (United States)

    Carroll, S M; Harvey, J A; Kostelecký, V A; Lane, C D; Okamoto, T

    2001-10-01

    The role of Lorentz symmetry in noncommutative field theory is considered. Any realistic noncommutative theory is found to be physically equivalent to a subset of a general Lorentz-violating standard-model extension involving ordinary fields. Some theoretical consequences are discussed. Existing experiments bound the scale of the noncommutativity parameter to (10 TeV)(-2).

  19. Quantum field theory for the gifted amateur

    CERN Document Server

    Lancaster, Tom

    2014-01-01

    Quantum field theory is arguably the most far-reaching and beautiful physical theory ever constructed, with aspects more stringently tested and verified to greater precision than any other theory in physics. Unfortunately, the subject has gained a notorious reputation for difficulty, with forbidding looking mathematics and a peculiar diagrammatic language described in an array of unforgiving, weighty textbooks aimed firmly at aspiring professionals. However, quantum field theory is too important, too beautiful, and too engaging to be restricted to the professionals. This book on quantum field theory is designed to be different. It is written by experimental physicists and aims to provide the interested amateur with a bridge from undergraduate physics to quantum field theory. The imagined reader is a gifted amateur, possessing a curious and adaptable mind, looking to be told an entertaining and intellectually stimulating story, but who will not feel patronised if a few mathematical niceties are spelled out in ...

  20. Ostrogradsky in Theories with Multiple Fields

    CERN Document Server

    de Rham, Claudia

    2016-01-01

    We review how the (absence of) Ostrogradsky instability manifests itself in theories with multiple fields. It has recently been appreciated that when multiple fields are present, the existence of higher derivatives may not automatically imply the existence of ghosts. We discuss the connection with gravitational theories like massive gravity and beyond Horndeski which manifest higher derivatives in some formulations and yet are free of Ostrogradsky ghost. We also examine an interesting new class of Extended Scalar--Tensor Theories of gravity which has been recently proposed. We show that for a subclass of these theories, the tensor modes are either not dynamical or are infinitely strongly coupled. Among the remaining theories for which the tensor modes are well-defined one counts one new model that is not field-redefinable to Horndeski via a conformal and disformal transformation but that does require the vacuum to break Lorentz invariance. We discuss the implications for the effective field theory of dark ene...

  1. Quantum Field Theory in a Semiotic Perspective

    CERN Document Server

    Günter Dosch, Hans; Sieroka, Norman

    2005-01-01

    Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincaré, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly ac...

  2. The Global Approach to Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Fulling, S A [Texas A and M University (United States)

    2006-05-21

    temperature, black holes, and Euclideanization. Chapter 30, on black holes and Hawking radiation, will be very familiar to readers of DeWitt's influential review article. Chapter 28, on anomalies, makes a careful distinction (missing from many treatments) between 'critical' anomalies, which render equations of motion inconsistent in the (would-be) quantum theory, and harmless anomalies that merely invalidate predictions that would classically follow from certain symmetries. Examples of critical anomalies are the chiral anomaly of a spinor field coupled to a non-Abelian gauge field and the anomaly in the conservation law of the stress tensor of certain pathological theories. DeWitt's chapter calculates the trace and chiral anomalies in detail. The last two chapters of part VII treat the most important particular quantum field theories. Chapter 34 develops many of the textbook predictions of quantum eletrodynamics from DeWitt's starting point. Chapter 35 covers Yang-Mills fields and quantum gravity. The discussion of gravity is surprisingly brief, in view of DeWitt's lifelong preoccupation with that subject. He rejects renormalizable fourth-order modifications of four-dimensional gravity because he could not stomach unfriendly ghosts (states of negative norm or unboundedly negative energy) nor the technical difficulties of integrating such theories into the functional-integral formalism. Finally, there is part VIII, entitled 'Examples. Simple Exercises in the Use of the Global Formalism'. It consists of 25 short chapters numbered separately from those of the main text. The preface recommends reading these and the main text in parallel. Most valuable in my opinion is a string of successively more complicated fermionic models. Hidden in an appendix is a crucial motivational paragraph: Super Hilbert spaces are generalizations of ordinary Hilbert spaces, designed so as to enable one to consider quantum systems with supernumber

  3. Strings, Conformal Field Theory And Noncommutative Geometry

    CERN Document Server

    Matsubara, K

    2004-01-01

    This thesis describes some aspects of noncommutative geometry and conformal field theory. The motivation for the investigations made comes to a large extent from string theory. This theory is today considered to be the most promising way to find a solution to the problem of unifying the four fundamental interactions in one single theory. The thesis gives a short background presentation of string theory and points out how noncommutative geometry and conformal field theory are of relevance within the string theoretical framework. There is also given some further information on noncommutative geometry and conformal field theory. The results from the three papers on which the thesis is based are presented in the text. It is shown in Paper 1 that, for a gauge theory in a flat noncommutative background only the gauge groups U(N) can be used in a straightforward way. These theories can arise as low energy limits of string theory. Paper 2 concerns boundary conformal field theory, which can be used to describe open s...

  4. Noncommutative Field Theory on Homogeneous Gravitational Waves

    CERN Document Server

    Halliday, S; Halliday, Sam; Szabo, Richard J.

    2006-01-01

    We describe an algebraic approach to the time-dependent noncommutative geometry of a six-dimensional Cahen-Wallach pp-wave string background supported by a constant Neveu-Schwarz flux, and develop a general formalism to construct and analyse quantum field theories defined thereon. Various star-products are derived in closed explicit form and the Hopf algebra of twisted isometries of the plane wave is constructed. Scalar field theories are defined using explicit forms of derivative operators, traces and noncommutative frame fields for the geometry, and various physical features are described. Noncommutative worldvolume field theories of D-branes in the pp-wave background are also constructed.

  5. Conformal Field Theory Correlators from Classical Scalar Field Theory on $AdS_{d+1}$

    CERN Document Server

    Mück, W; Mueck, Wolfgang

    1998-01-01

    We use the correspondence between scalar field theory on $AdS_{d+1}$ and a conformal field theory on $R^d$ to calculate the 3- and 4-point functions of the latter. The classical scalar field theory action is evaluated at tree level.

  6. Black Holes as Conformal Field Theories on Horizons

    CERN Document Server

    Halyo, Edi

    2015-01-01

    We show that any nonextreme black hole can be described by a state with $L_0=E_R$ in a $D=2$ chiral conformal field theory with central charge $c=12E_R$ where $E_R$ is the dimensionless Rindler energy of the black hole. The theory lives in the very near horizon region, i.e. around the origin of Rindler space. Black hole hair is the momentum along the Euclidean dimensionless Rindler time direction. As evidence, we show that $D$--dimensional Schwarzschild black holes and $D=2$ dilatonic ones that are obtained from them by spherical reduction are described by the same conformal field theory states.

  7. Matrix string theory, contact terms, and superstring field theory

    CERN Document Server

    Dijkgraaf, R; Dijkgraaf, Robbert; Motl, Lubos

    2003-01-01

    In this note, we first explain the equivalence between the interaction Hamiltonian of Green-Schwarz light-cone gauge superstring field theory and the twist field formalism known from matrix string theory. We analyze the role of the large N limit in matrix string theory, in particular in relation with conformal perturbation theory around the orbifold SCFT that reproduces light-cone string perturbation theory. We show how the scaling with N is directly related to measures on the moduli space of Riemann surfaces. The scaling dimension 3 of the Mandelstam vertex as reproduced by the twist field interaction is in this way related to the dimension 3(h-1) of the moduli space. We analyze the structure and scaling of the higher order twist fields that represent the contact terms. We find one relevant twist field at each order. More generally, the structure of string field theory seems more transparent in the twist field formalism. Finally we also investigate the modifications necessary to describe the pp-wave backgrou...

  8. Resolving Witten’s superstring field theory

    Energy Technology Data Exchange (ETDEWEB)

    Erler, Theodore; Konopka, Sebastian; Sachs, Ivo [Arnold Sommerfeld Center, Ludwig-Maximilians University, Theresienstrasse 37, D-80333, Munich (Germany)

    2014-04-24

    We regulate Witten’s open superstring field theory by replacing the picture-changing insertion at the midpoint with a contour integral of picture changing insertions over the half-string overlaps of the cubic vertex. The resulting product between string fields is non-associative, but we provide a solution to the A{sub ∞} relations defining all higher vertices. The result is an explicit covariant superstring field theory which by construction satisfies the classical BV master equation.

  9. Local State and Sector Theory in Local Quantum Physics

    Science.gov (United States)

    Ojima, Izumi; Okamura, Kazuya; Saigo, Hayato

    2016-06-01

    We define a new concept of local states in the framework of algebraic quantum field theory (AQFT). Local states are a natural generalization of states and give a clear vision of localization in the context of QFT. In terms of them, we can find a condition from which follows automatically the famous DHR selection criterion in DHR-DR theory. As a result, we can understand the condition as consequences of physically natural state preparations in vacuum backgrounds. Furthermore, a theory of orthogonal decomposition of completely positive (CP) maps is developed. It unifies a theory of orthogonal decomposition of states and order structure theory of CP maps. Using it, localized version of sectors is formulated, which gives sector theory for local states with respect to general reference representations.

  10. Phases of antisymmetric tensor field theories

    CERN Document Server

    Quevedo, Fernando; Quevedo, Fernando; Trugenberger, Carlo

    1997-01-01

    We study the different phases of field theories of compact antisymmetric tensors of rank h-1 in arbitrary space-time dimensions D=d+1. Starting in a `Coulomb' phase, topological defects of dimension d-h-1 ((d-h-1)-branes) may condense leading to a generalized `confinement' phase. If the dual theory is also compact the model may also have a third, generalized `Higgs' phase, driven by the condensation of the dual (h-2)-branes. Developing on the work of Julia and Toulouse for ordered solid-state media, we obtain the low energy effective action for these phases. Each phase has two dual descriptions in terms of antisymmetric tensors of different ranks, which are massless for the Coulomb phase but massive for the Higgs and confinement phases. We illustrate our prescription in detail for compact QED in 4D. Compact QED and O(2) models in 3D, as well as a periodic scalar field in 2D (strings on a circle), are also discussed. In this last case we show how T-duality is maintained if one considers both worldsheet instant...

  11. The Superspinorial Field Theory in Riemannian Coordinates

    CERN Document Server

    Derbenev, Yaroslav

    2016-01-01

    The Superspinorial Dual-covariant Field Theory (SSFT) developed in papers [1, 2] is treated in terms of Riemannian coordinates (RC) [7, 8] in space of the N dimensions unified manifold (UM). Metric tensor of UM (grand metric, GM) is built on the split metric matrices (SM) [1] which are a proportion of the Cartan's affinors (an extended analog of Dirac's matrices) of his Theory of Spinors [3] as explicated in [2]. Transition to RC based on consideration of geodesics is described. A principal property of an orthogonal RC frame (ORC) utilized in the present paper is constancy of the rotation matrix A of the Riemannian space of UM, while transformation matrix B of the dual superspinorial state vector field (DSV) varies together with Cartan's affinors according to the dynamical law of SSFT derived in [2]. The spinorial genesis of notion of the orthogonality as aspect of irreducible SSFT is pointed out in the present paper. The main outcome of resorting to an orthogonal RC frame (ORC) is explication of the conforma...

  12. Topological field theories on manifolds with Wu structures

    Science.gov (United States)

    Monnier, Samuel

    We construct invertible field theories generalizing abelian prequantum spin Chern-Simons theory to manifolds of dimension 4ℓ + 3 endowed with a Wu structure of degree 2ℓ + 2. After analyzing the anomalies of a certain discrete symmetry, we gauge it, producing topological field theories whose path integral reduces to a finite sum, akin to Dijkgraaf-Witten theories. We take a general point of view where the Chern-Simons gauge group and its couplings are encoded in a local system of integral lattices. The Lagrangian of these theories has to be interpreted as a class in a generalized cohomology theory in order to obtain a gauge invariant action. We develop a computationally friendly cochain model for this generalized cohomology and use it in a detailed study of the properties of the Wu Chern-Simons action. In the 3-dimensional spin case, the latter provides a definition of the “fermionic correction” introduced recently in the literature on fermionic symmetry protected topological phases. In order to construct the state space of the gauged theories, we develop an analogue of geometric quantization for finite abelian groups endowed with a skew-symmetric pairing. The physical motivation for this work comes from the fact that in the ℓ = 1 case, the gauged 7-dimensional topological field theories constructed here are essentially the anomaly field theories of the 6-dimensional conformal field theories with (2, 0) supersymmetry, as will be discussed elsewhere.

  13. Supergeometry in locally covariant quantum field theory

    CERN Document Server

    Hack, Thomas-Paul; Schenkel, Alexander

    2015-01-01

    In this paper we analyze supergeometric locally covariant quantum field theories. We develop suitable categories SLoc of super-Cartan supermanifolds, which generalize Lorentz manifolds in ordinary quantum field theory, and show that, starting from a few representation theoretic and geometric data, one can construct a functor A : SLoc --> S*Alg to the category of super-*-algebras which can be interpreted as a non-interacting super-quantum field theory. This construction turns out to disregard supersymmetry transformations as the morphism sets in the above categories are too small. We then solve this problem by using techniques from enriched category theory, which allows us to replace the morphism sets by suitable morphism supersets that contain supersymmetry transformations as their higher superpoints. We construct super-quantum field theories in terms of enriched functors eA : eSLoc --> eS*Alg between the enriched categories and show that supersymmetry transformations are appropriately described within the en...

  14. A Field Theory with Curvature and Anticurvature

    Directory of Open Access Journals (Sweden)

    M. I. Wanas

    2014-01-01

    Full Text Available The present work is an attempt to construct a unified field theory in a space with curvature and anticurvature, the PAP-space. The theory is derived from an action principle and a Lagrangian density using a symmetric linear parameterized connection. Three different methods are used to explore physical contents of the theory obtained. Poisson’s equations for both material and charge distributions are obtained, as special cases, from the field equations of the theory. The theory is a pure geometric one in the sense that material distribution, charge distribution, gravitational and electromagnetic potentials, and other physical quantities are defined in terms of pure geometric objects of the structure used. In the case of pure gravity in free space, the spherical symmetric solution of the field equations gives the Schwarzschild exterior field. The weak equivalence principle is respected only in the case of pure gravity in free space; otherwise it is violated.

  15. Light-Front quantization of field theory

    CERN Document Server

    Srivastava, P P

    1996-01-01

    Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincarè algebra and the LF Spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons.

  16. Density functional theory in the solid state.

    Science.gov (United States)

    Hasnip, Philip J; Refson, Keith; Probert, Matt I J; Yates, Jonathan R; Clark, Stewart J; Pickard, Chris J

    2014-03-13

    Density functional theory (DFT) has been used in many fields of the physical sciences, but none so successfully as in the solid state. From its origins in condensed matter physics, it has expanded into materials science, high-pressure physics and mineralogy, solid-state chemistry and more, powering entire computational subdisciplines. Modern DFT simulation codes can calculate a vast range of structural, chemical, optical, spectroscopic, elastic, vibrational and thermodynamic phenomena. The ability to predict structure-property relationships has revolutionized experimental fields, such as vibrational and solid-state NMR spectroscopy, where it is the primary method to analyse and interpret experimental spectra. In semiconductor physics, great progress has been made in the electronic structure of bulk and defect states despite the severe challenges presented by the description of excited states. Studies are no longer restricted to known crystallographic structures. DFT is increasingly used as an exploratory tool for materials discovery and computational experiments, culminating in ex nihilo crystal structure prediction, which addresses the long-standing difficult problem of how to predict crystal structure polymorphs from nothing but a specified chemical composition. We present an overview of the capabilities of solid-state DFT simulations in all of these topics, illustrated with recent examples using the CASTEP computer program.

  17. Quantum theory of the solid state part B

    CERN Document Server

    Callaway, Joseph

    1974-01-01

    Quantum Theory of the Solid State, Part B describes the concepts and methods of the central problems of the quantum theory of solids. This book discusses the developed machinery applied to impurities, disordered systems, effects of external fields, transport phenomena, and superconductivity. The representation theory, low field diamagnetic susceptibility, electron-phonon interaction, and Landau theory of fermi liquids are also deliberated. This text concludes with an introduction to many-body theory and some applications. This publication is a suitable textbook for students who have completed

  18. Chaotic instantons in scalar field theory

    CERN Document Server

    Addazi, Andrea

    2016-01-01

    We consider a new class of instantons in context of quantum field theory of a scalar field coupled with a chaotic background source field. We show how the instanton associated to the quantum tunneling from a metastable false to the true vacuum will be corrected by an exponential enhancement factor. Possible implications are discussed.

  19. Problem Book in Quantum Field Theory

    CERN Document Server

    Radovanovič, Voja

    2008-01-01

    The Problem Book in Quantum Field Theory contains about 200 problems with solutions or hints that help students to improve their understanding and develop skills necessary for pursuing the subject. It deals with the Klein-Gordon and Dirac equations, classical field theory, canonical quantization of scalar, Dirac and electromagnetic fields, the processes in the lowest order of perturbation theory, renormalization and regularization. The solutions are presented in a systematic and complete manner. The material covered and the level of exposition make the book appropriate for graduate and undergraduate students in physics, as well as for teachers and researchers. The new edition is a corrected paperback edition for students.

  20. Superconformal field theory and Jack superpolynomials

    CERN Document Server

    Desrosiers, Patrick; Mathieu, Pierre

    2012-01-01

    We uncover a deep connection between the N=1 superconformal field theory in 2D and eigenfunctions of the supersymmetric Sutherland model known as Jack superpolynomials (sJacks). Specifically, the singular vector at level rs/2 of the Kac module labeled by the two integers r and s can be obtained explicitly as a sum of sJacks whose indexing diagrams are contained in a rectangle with r columns and s rows. As a second compelling evidence for the distinguished status of the sJack-basis in SCFT, we find that the degenerate Whittaker vectors (Gaiotto states), in both the Neveu-Schwarz and Ramond sectors, can be expressed rather simply in terms of sJacks. As a consequence, we are able to reformulate the supersymmetric version of the (degenerate) AGT conjecture in terms of the combinatorics of sJacks.

  1. Young's Double Slit Experiment in Quantum Field Theory

    CERN Document Server

    Kenmoku, Masakatsu

    2011-01-01

    Young's double slit experiment is formulated in the framework of canonical quantum field theory in view of the modern quantum optics. We adopt quantum scalar fields instead of quantum electromagnetic fields ignoring the vector freedom in gauge theory. The double slit state is introduced in Fock space corresponding to experimental setup. As observables, expectation values of energy density and positive frequency part of current with respect to the double slit state are calculated which give the interference term. Classical wave states are realized by coherent double slit states in Fock space which connect quantum particle states with classical wave states systematically. In case of incoherent sources, the interference term vanishes by averaging random phase angles as expected.

  2. Quantum Field Theory on Noncommutative Spaces

    CERN Document Server

    Szabó, R J

    2003-01-01

    A pedagogical and self-contained introduction to noncommutative quantum field theory is presented, with emphasis on those properties that are intimately tied to string theory and gravity. Topics covered include the Weyl-Wigner correspondence, noncommutative Feynman diagrams, UV/IR mixing, noncommutative Yang-Mills theory on infinite space and on the torus, Morita equivalences of noncommutative gauge theories, twisted reduced models, and an in-depth study of the gauge group of noncommutative Yang-Mills theory. Some of the more mathematical ideas and techniques of noncommutative geometry are also briefly explained.

  3. Ostrogradsky in theories with multiple fields

    Energy Technology Data Exchange (ETDEWEB)

    Rham, Claudia de; Matas, Andrew [CERCA, Department of Physics, Case Western Reserve University,10900 Euclid Ave, Cleveland, OH 44106 (United States)

    2016-06-23

    We review how the (absence of) Ostrogradsky instability manifests itself in theories with multiple fields. It has recently been appreciated that when multiple fields are present, the existence of higher derivatives may not automatically imply the existence of ghosts. We discuss the connection with gravitational theories like massive gravity and beyond Horndeski which manifest higher derivatives in some formulations and yet are free of Ostrogradsky ghost. We also examine an interesting new class of Extended Scalar-Tensor Theories of gravity which has been recently proposed. We show that for a subclass of these theories, the tensor modes are either not dynamical or are infinitely strongly coupled. Among the remaining theories for which the tensor modes are well-defined one counts one new model that is not field-redefinable to Horndeski via a conformal and disformal transformation but that does require the vacuum to break Lorentz invariance. We discuss the implications for the effective field theory of dark energy and the stability of the theory. In particular we find that if we restrict ourselves to the Extended Scalar-Tensor class of theories for which the tensors are well-behaved and the scalar is free from gradient or ghost instabilities on FLRW then we recover Horndeski up to field redefinitions.

  4. Bi-local Fields in Noncommutative Field Theory

    CERN Document Server

    Iso, S; Kitazawa, Y; Iso, Satoshi; Kawai, Hikaru; Kitazawa, Yoshihisa

    2000-01-01

    We propose a bi-local representation in noncommutative field theory. It provides a simple description for high momentum degrees of freedom. It also shows that the low momentum modes can be well approximated by ordinary local fields. Long range interactions are generated in the effective action for the lower momentum modes after integrating out the high momentum bi-local fields. The low momentum modes can be represented by diagonal blocks in the matrix model picture and the high momentum bi-local fields correspond to off-diagonal blocks. This block-block interaction picture simply reproduces the infrared singular behaviors of nonplanar diagrams in noncommutative field theory.

  5. Instabilities in strong magnetic fields in string theory

    CERN Document Server

    Kiritsis, Elias B; Kiritsis, Elias; Kounnas, Costas

    1995-01-01

    We construct groundstates of the string with non-zero mass gap and non-trivial chromo-magnetic fields as well as curvature. The exact spectrum as function of the chromo-magnetic fields and curvature is derived. We examine the behavior of the spectrum, and find that there is a maximal value for the magnetic field H_{\\rm max}\\sim M_{\\rm Plank}^2. At this value all states that couple to the magnetic field become infinitely massive and decouple. We also find tachyonic instabilities for strong background fields of the order {\\cal O}(\\mu M_{\\rm Planck}) where \\mu is the mass gap of the theory. Unlike the field theory case, we find that such ground states become stable again for magnetic fields of the order {\\cal O}(M^2_{\\rm Plank}). The implications of these results are discussed.

  6. Cutkosky Rules for Superstring Field Theory

    CERN Document Server

    Pius, Roji

    2016-01-01

    Superstring field theory expresses the perturbative S-matrix of superstring theory as a sum of Feynman diagrams each of which is manifestly free from ultraviolet divergences. The interaction vertices fall off exponentially for large space-like external momenta making the ultraviolet finiteness property manifest, but blow up exponentially for large time-like external momenta making it impossible to take the integration contours for loop energies to lie along the real axis. This forces us to carry out the integrals over the loop energies by choosing appropriate contours in the complex plane whose ends go to infinity along the imaginary axis but which take complicated form in the interior navigating around the various poles of the propagators. We consider the general class of quantum field theories with this property and prove Cutkosky rules for the amplitudes to all orders in perturbation theory. Besides having applications to string field theory, these results also give an alternative derivation of Cutkosky ru...

  7. Factorization algebras in quantum field theory

    CERN Document Server

    Costello, Kevin

    2017-01-01

    Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.

  8. Magnetic fields, special relativity and potential theory elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    1972-01-01

    Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec

  9. A New Theory of the Electromagnetic Field

    Science.gov (United States)

    Kriske, Richard

    2017-01-01

    This author has previously introduced a new theory of the Electromagnetic Field and its interaction with matter. There was from the start a problem with Einstein's formulation of Invariants and its use in describing The EM field. The photon produced by first varying a stationary Electric field in one observer's reference frame is not the same as a photon produced from varying the a stationary Magnetic Field. The Magnetic field photon is thought of as being ``off the mass shell''. The Quantum information seems to carry with it an ordering of these events. You see this ordering in Wick's theory and in Feynman diagrams. This author is proposing that other fields can vary first in another Observers reference frame, not just the ``Scalar Field'' or the ``Fermion Field'', but many other forms of Energy. If the ``Nuclear Field'' varies first, it results in Quantum information that produces a photon that has the Nuclear Field in it and also the Magnetic Field, this is the strange effect seen in Nuclear Magnetic Resonance. This author proposed that there is a large number of photons with different properties, because of this ordering of events that occurs in Quantum Information. One of these photons is the Neutrino which appears to be a three field photon. This is Kriske's Field Theory.

  10. Austerity and Geometric Structure of Field Theories

    Science.gov (United States)

    Kheyfets, Arkady

    The relation between the austerity idea and the geometric structure of the three basic field theories- -electrodynamics, Yang-Mills theory, and general relativity --is studied. The idea of austerity was originally suggested by J. A. Wheeler in an attempt to formulate the laws of physics in such a way that they would come into being only within "the gates of time" extending from big bang to big crunch, rather than exist from everlasting to everlasting. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity (PAR-DIFF)(CCIRC)(PAR -DIFF) = 0 used twice, at the 1-2-3-dimensional level (providing the homgeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories--electrodynamics, Yang-Mills theory, and general relativity. This dissertation: (a) analyses the difficulties by means of algebraic topology, integration theory and modern differential geometry based on the concepts of principal bundles and Ehresmann connections; (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for all the three theories and compatible with the original austerity idea; (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories, including the soldering form as a dynamical variable rather than as a background structure.

  11. Electromagnetic Field Theory A Collection of Problems

    CERN Document Server

    Mrozynski, Gerd

    2013-01-01

    After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems. Content Maxwell’s Equations - Electrostatic Fields - Stationary Current Distributions – Magnetic Field of Stationary Currents – Quasi Stationary Fields: Eddy Currents - Electromagnetic Waves Target Groups Advanced Graduate Students in Electrical Engineering, Physics, and related Courses Engineers and Physicists Authors Professor Dr.-Ing. Gerd Mrozynski...

  12. From exceptional field theory to heterotic double field theory via K3

    Science.gov (United States)

    Malek, Emanuel

    2017-03-01

    In this paper we show how to obtain heterotic double field theory from exceptional field theory by breaking half of the supersymmetry. We focus on the SL(5) exceptional field theory and show that when the extended space contains a generalised SU(2)-structure manifold one can define a reduction to obtain the heterotic SO(3 , n) double field theory. In this picture, the reduction on the SU(2)-structure breaks half of the supersymmetry of the exceptional field theory and the gauge group of the heterotic double field theory is given by the embedding tensor of the reduction used. Finally, we study the example of a consistent truncation of M-theory on K3 and recover the duality with the heterotic string on T 3. This suggests that the extended space can be made sense of even in the case of non-toroidal compactifications.

  13. Dynamical symmetry breaking in quantum field theories

    CERN Document Server

    Miransky, Vladimir A

    1993-01-01

    The phenomenon of dynamical symmetry breaking (DSB) in quantum field theory is discussed in a detailed and comprehensive way. The deep connection between this phenomenon in condensed matter physics and particle physics is emphasized. The realizations of DSB in such realistic theories as quantum chromodynamics and electroweak theory are considered. Issues intimately connected with DSB such as critical phenomenona and effective lagrangian approach are also discussed.

  14. Field theory for trapped atomic gases

    NARCIS (Netherlands)

    Stoof, H.T.C.

    2001-01-01

    In this course we give a selfcontained introduction to the quantum field theory for trapped atomic gases, using functional methods throughout. We consider both equilibrium and nonequilibrium phenomena. In the equilibrium case, we first derive the appropriate Hartree—Fock theory for the properties of

  15. N = 8 supersingleton quantum field theory

    NARCIS (Netherlands)

    Bergshoeff, Eric; Salam, Abdus; Sezgin, Ergin; Tanii, Yoshiaki

    1988-01-01

    We quantize the N = 8 supersymmetric singleton field theory which is formulated on the boundary of the four-dimensional anti-de Sitter spacetime (ADS4). The theory has rigid OSp(8, 4) symmetry which acts as a superconformal group on the boundary of AdS4. We show that the generators of this symmetry

  16. Computer animations of quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, E. (Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique)

    1992-07-01

    A visualization mehtod for quantum field theories based on the transfer matrix formalism is presented. It generates computer animations simulating the time evolution of complex physical systems subject to local Hamiltonians. The method may be used as a means of gaining insight to theories such as QCD, and as an educational tool in explaining high-energy physics. (orig.).

  17. Klein Topological Field Theories from Group Representations

    Directory of Open Access Journals (Sweden)

    Sergey A. Loktev

    2011-07-01

    Full Text Available We show that any complex (respectively real representation of finite group naturally generates a open-closed (respectively Klein topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the representation. We relate any complex simple Klein TFT to a real division ring.

  18. Field theory for trapped atomic gases

    NARCIS (Netherlands)

    Stoof, H.T.C.

    2001-01-01

    In this course we give a selfcontained introduction to the quantum field theory for trapped atomic gases, using functional methods throughout. We consider both equilibrium and nonequilibrium phenomena. In the equilibrium case, we first derive the appropriate Hartree-Fock theory for the properties of

  19. The conceptual basis of Quantum Field Theory

    NARCIS (Netherlands)

    Hooft, G. 't

    2007-01-01

    Relativistic Quantum Field Theory is a mathematical scheme to describe the sub-atomic particles and forces. The basic starting point is that the axioms of Special Relativity on the one hand and those of Quantum Mechanics on the other, should be combined into one theory. The fundamental ingredients f

  20. Medley in finite temperature field theory

    CERN Document Server

    Pisarski, R D

    1993-01-01

    I discuss three subjects in thermal field theory: why in \\sun gauge theories the \\zn symmetry is broken at high (instead of low) temperature, the possible singularity structure of gauge variant propagators, and the problem of how to compute the viscosity from the Kubo formula.

  1. Renormalizability of effective scalar field theory

    CERN Document Server

    Ball, R D

    1994-01-01

    We present a comprehensive discussion of the consistency of the effective quantum field theory of a single $Z_2$ symmetric scalar field. The theory is constructed from a bare Euclidean action which at a scale much greater than the particle's mass is constrained only by the most basic requirements; stability, finiteness, analyticity, naturalness, and global symmetry. We prove to all orders in perturbation theory the boundedness, convergence, and universality of the theory at low energy scales, and thus that the theory is perturbatively renormalizable in the sense that to a certain precision over a range of such scales it depends only on a finite number of parameters. We then demonstrate that the effective theory has a well defined unitary and causal analytic S--matrix at all energy scales. We also show that redundant terms in the Lagrangian may be systematically eliminated by field redefinitions without changing the S--matrix, and discuss the extent to which effective field theory and analytic S--matrix theory...

  2. Path integral quantization of parametrised field theory

    CERN Document Server

    Varadarajan, M

    2004-01-01

    Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrised field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrised field theory in order to analyse issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is non-trivial and is the analog of the Fradkin- Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrised field theory using key ideas of Schleich and show that our constructions imply the existence of non-standard `Wick rotations' of the standard free scalar field 2 point function. We develop a framework to study the problem of time through computations of scalar field 2 point functions. We illustra...

  3. Gravitation Field Dynamics in Jeans Theory

    Indian Academy of Sciences (India)

    A. A. Stupka

    2008-09-01

    Closed system of time equations for nonrelativistic gravitation field and hydrodynamic medium was obtained by taking into account binary correlations of the field, which is the generalization of Jeans theory. Distribution function of the systemwas built on the basis of the Bogolyubov reduced description method. Calculations were carried out up to the first order of a perturbation theory in interaction. Adiabatic and enthropic types of perturbations were corrected and two new types of perturbations were found.

  4. de Sitter entropy from conformal field theory

    CERN Document Server

    Kabat, D; Kabat, Daniel; Lifschytz, Gilad

    2002-01-01

    We propose that the entropy of de Sitter space can be identified with the mutual entropy of a dual conformal field theory. We argue that unitary time evolution in de Sitter space restricts the total number of excited degrees of freedom to be bounded by the de Sitter entropy, and we give a CFT interpretation of this restriction. We also clarify issues arising from the fact that both de Sitter and anti de Sitter have dual descriptions in terms of conformal field theory.

  5. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H

    1971-01-01

    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  6. Continuous point symmetries in Group Field Theories

    CERN Document Server

    Kegeles, Alexander

    2016-01-01

    We discuss the notion of symmetries in non-local field theories characterized by integro-differential equation of motion, from a geometric perspective. We then focus on Group Field Theory (GFT) models of quantum gravity. We provide a general analysis of their continuous point symmetry transformations, including the generalized conservation laws following from them, and apply it to several GFT models of interest to current research.

  7. Covariant Hamilton equations for field theory

    Energy Technology Data Exchange (ETDEWEB)

    Giachetta, Giovanni [Department of Mathematics and Physics, University of Camerino, Camerino (Italy); Mangiarotti, Luigi [Department of Mathematics and Physics, University of Camerino, Camerino (Italy)]. E-mail: mangiaro@camserv.unicam.it; Sardanashvily, Gennadi [Department of Theoretical Physics, Physics Faculty, Moscow State University, Moscow (Russian Federation)]. E-mail: sard@grav.phys.msu.su

    1999-09-24

    We study the relations between the equations of first-order Lagrangian field theory on fibre bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase space of covariant Hamiltonian field theory. If a Lagrangian is hyperregular, these equations are equivalent. A degenerate Lagrangian requires a set of associated Hamiltonian forms in order to exhaust all solutions of the Euler-Lagrange equations. The case of quadratic degenerate Lagrangians is studied in detail. (author)

  8. Gravitation Field Dynamics in Jeans Theory

    CERN Document Server

    Stupka, A A

    2016-01-01

    Closed system of time equations for nonrelativistic gravitation field and hydrodynamic medium was obtained by taking into account binary correlations of the field, which is the generalization of Jeans theory. Distribution function of the systemwas built on the basis of the Bogolyubov reduced description method. Calculations were carried out up to the first order of a perturbation theory in interaction. Adiabatic and enthropic types of perturbations were corrected and two new types of perturbations were found.

  9. A state-dependent noncontextuality inequality in algebraic quantum theory

    Science.gov (United States)

    Kitajima, Yuichiro

    2017-08-01

    The noncontextuality condition states that a value of any observable is independent of which other compatible observable is measured jointly with it. Klyachko, Can, Binicioğlu, and Shumovsky have introduced an inequality which holds if there is a noncontextual hidden variable theory. It is called KCBS inequality, which is state-dependent. Its violation shows a contradiction between predictions of quantum theory and noncontextual hidden variable theories. In the present paper, it is shown that there is a state which does not violate KCBS inequality in the case of quantum mechanics of finite degrees of freedom, and that any normal state violates it in the case of algebraic quantum field theory. It is a difference between quantum mechanics of finite degrees of freedom and algebraic quantum field theory from a point of view of KCBS inequality.

  10. N=3 four dimensional field theories

    CERN Document Server

    García-Etxebarria, Iñaki

    2015-01-01

    We introduce a class of four dimensional field theories constructed by quotienting ordinary $\\mathcal{N}=4$ $U(N)$ SYM by particular combinations of R-symmetry and $SL(2,\\mathbb{Z})$ automorphisms. These theories appear naturally on the worldvolume of D3 branes probing terminal singularities in F-theory, where they can be thought of as non-perturbative generalizations of the O3 plane. We focus on cases preserving only 12 supercharges, where the quotient gives rise to theories with coupling fixed at a value of order one. These constructions posses an unconventional large $N$ limit described by a non-trivial F-theory fibration with base $AdS_5\\times (S^5/\\mathbb{Z}_k)$. Upon reduction on a circle the $\\mathcal{N}=3$ theories flow to well-known $\\mathcal{N}=6$ ABJM theories.

  11. Effective Field Theories and Lattice QCD

    CERN Document Server

    Bernard, C

    2015-01-01

    I describe some of the many connections between lattice QCD and effective field theories, focusing in particular on chiral effective theory, and, to a lesser extent, Symanzik effective theory. I first discuss the ways in which effective theories have enabled and supported lattice QCD calculations. Particular attention is paid to the inclusion of discretization errors, for a variety of lattice QCD actions, into chiral effective theory. Several other examples of the usefulness of chiral perturbation theory, including the encoding of partial quenching and of twisted boundary conditions, are also described. In the second part of the talk, I turn to results from lattice QCD for the low energy constants of the two- and three-flavor chiral theories. I concentrate here on mesonic quantities, but the dependence of the nucleon mass on the pion mass is also discussed. Finally I describe some recent preliminary lattice QCD calculations by the MILC Collaboration relating to the three-flavor chiral limit.

  12. Quantum field theory in a semiotic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Dosch, H.G. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Mueller, V.F. [Technische Univ. Kaiserslautern (Germany). Fachbereich Physik; Sieroka, N. [Zurich Univ. (Switzerland)

    2005-07-01

    Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)

  13. Avoiding Haag's Theorem with Parameterized Quantum Field Theory

    Science.gov (United States)

    Seidewitz, Ed

    2017-03-01

    Under the normal assumptions of quantum field theory, Haag's theorem states that any field unitarily equivalent to a free field must itself be a free field. Unfortunately, the derivation of the Dyson series perturbation expansion relies on the use of the interaction picture, in which the interacting field is unitarily equivalent to the free field but must still account for interactions. Thus, the traditional perturbative derivation of the scattering matrix in quantum field theory is mathematically ill defined. Nevertheless, perturbative quantum field theory is currently the only practical approach for addressing scattering for realistic interactions, and it has been spectacularly successful in making empirical predictions. This paper explains this success by showing that Haag's Theorem can be avoided when quantum field theory is formulated using an invariant, fifth path parameter in addition to the usual four position parameters, such that the Dyson perturbation expansion for the scattering matrix can still be reproduced. As a result, the parameterized formalism provides a consistent foundation for the interpretation of quantum field theory as used in practice and, perhaps, for better dealing with other mathematical issues.

  14. Reflections on Topological Quantum Field Theory

    CERN Document Server

    Picken, R F

    1997-01-01

    (Talk presented at the XVth Workshop on Geometric Methods in Physics, Quantizations, Deformations and Coherent States, in Bialowieza, Poland, July 1-7, 1996.) The aim of this article is to introduce some basic notions of Topological Quantum Field Theory (TQFT) and to consider a modification of TQFT, applicable to embedded manifolds. After an introduction based around a simple example (Section 1) the notion of a d-dimensional TQFT is defined in category-theoretical terms, as a certain type of functor from a category of d-dimensional cobordisms to the category of vector spaces (Section 2). A construction due to Turaev, an operator-valued invariant of tangles, is discussed in Section 3. It bears a strong resemblance to 1-dimensional TQFTs, but carries much richer structure due to the fact that the 1-dimensional manifolds involved are embedded in a 3-dimensional space. This leads us, in Section 4, to propose a class of TQFT-like theories, appropriate to embedded, rather than pure, manifolds.

  15. Physical degrees of freedom in 2-D string field theories

    CERN Document Server

    Sakai, N; Sakai, Norisuke; Tanii, Yoshiaki

    1992-01-01

    States in the absolute (semi-relative) cohomology but not in the relative cohomology are examined through the component decomposition of the string field theory action for the 2-D string. It is found that they are auxiliary fields without kinetic terms, but are important for instance in the master equation for the Ward-Takahashi identities. The ghost structure is analyzed in the Siegel gauge, but it is noted that the absolute (semi-relative) cohomology states are lost.

  16. Space-Time Noncommutative Field Theories And Unitarity

    OpenAIRE

    Gomis, Jaume; Mehen, Thomas

    2000-01-01

    We study the perturbative unitarity of noncommutative scalar field theories. Field theories with space-time noncommutativity do not have a unitary S-matrix. Field theories with only space noncommutativity are perturbatively unitary. This can be understood from string theory, since space noncommutative field theories describe a low energy limit of string theory in a background magnetic field. On the other hand, there is no regime in which space-time noncommutative field theory is an appropriat...

  17. Discrete Scalar Quantum Field Theory

    CERN Document Server

    Gudder, Stan

    2016-01-01

    We begin with a description of spacetime by a 4-dimensional cubic lattice $\\sscript$. It follows from this framework that the the speed of light is the only nonzero instantaneous speed for a particle. The dual space $\\sscripthat$ corresponds to a cubic lattice of energy-momentum. This description implies that there is a discrete set of possible particle masses. We then define discrete scalar quantum fields on $\\sscript$. These fields are employed to define interaction Hamiltonians and scattering operators. Although the scattering operator $S$ cannot be computed exactly, approximations are possible. Whether $S$ is unitary is an unsolved problem. Besides the definitions of these operators, our main assumption is conservation of energy-momentum for a scattering process. This article concludes with various examples of perturbation approximations. These include simplified versions of electron-electron and electron-proton scattering as well as simple decay processes. We also define scattering cross-sections, decay ...

  18. Quantum entanglement of local operators in conformal field theories.

    Science.gov (United States)

    Nozaki, Masahiro; Numasawa, Tokiro; Takayanagi, Tadashi

    2014-03-21

    We introduce a series of quantities which characterize a given local operator in any conformal field theory from the viewpoint of quantum entanglement. It is defined by the increased amount of (Rényi) entanglement entropy at late time for an excited state defined by acting the local operator on the vacuum. We consider a conformal field theory on an infinite space and take the subsystem in the definition of the entanglement entropy to be its half. We calculate these quantities for a free massless scalar field theory in two, four and six dimensions. We find that these results are interpreted in terms of quantum entanglement of a finite number of states, including Einstein-Podolsky-Rosen states. They agree with a heuristic picture of propagations of entangled particles.

  19. Testing Conformal Theory:. 3-STATE Potts

    Science.gov (United States)

    Barkema, G. T.; McCabe, J.; Wydro, T.

    2001-04-01

    Conformal theory predictions and Monte Carlo measurements of structure constants in 3-state Potts model were reviewed. The results provide a direct confirmation of the quality of conformal theory predictions of universal 3-point amplitudes. The prediction of these type of universal amplitudes sparked much of the original interest in conformal models, but are almost untested outside of the Ising model. Structure constants, C123, are universal amplitudes that define 3-point correlations, i.e., = C123/ |X12|2(Δ1+Δ2-Δ3)·× cyclic perms. To predict the values of these universal numbers, one constructs a 4-point correlation as a sum of products of conformal blocks and then, determines coefficients that weight the sum by demanding that the 4-point correlation satisfy a bootstrap equation. The bootstrap equation imposes consistency of the 4-point correlation with operator product expansions in multiple channels. The 3-state Potts model was chosen, because this model is easy of simulate. But, this Potts model has an added complication, i.e., a discrete Z3 symmetry at criticality. The discrete symmetry had to be implemented to calculate structure constants. Conformal theory predicted that Cσσσ = 1.092 and Cɛσσ* = 0.546. Monte Carlo simulations were performed on 500 × 500 lattices on which sample configurations were generated by the cluster algorithm of Wolff. To obtain the structure constants both 2-point and 3-point correlations were measured. The 2-point correlations fixed non-universal normalizatons. The quality of the Monte-Carlo methods were tested by measuring structure constants of the Ising model-good agreement with known results was found. For 3-state Potts, the simulations found that Cσσσ = 1.116 ± 0.14 and Cɛσσ* = 0.61 ± 0.06. These results provide striking agreement with predictions and a confirmation of conformal field theory.

  20. Ghost Structure and Closed Strings in Vacuum String Field Theory

    CERN Document Server

    Gaiotto, D; Sen, A; Zwiebach, B; Gaiotto, Davide; Rastelli, Leonardo; Sen, Ashoke; Zwiebach, Barton

    2001-01-01

    We complete the construction of vacuum string field theory by proposing a canonical choice of ghost kinetic term -- a local insertion of the ghost field at the string midpoint with an infinite normalization. This choice, supported by level expansion studies in the Siegel gauge, allows a simple analytic treatment of the ghost sector of the string field equations. As a result, solutions are just projectors, such as the sliver, of an auxiliary CFT built by combining the matter part with a twisted version of the ghost conformal theory. Level expansion experiments lead to surprising new projectors -- butterfly surface states, whose analytical expressions are obtained. With the help of a suitable open-closed string vertex we define open-string gauge invariant operators parametrized by on-shell closed string states. We use regulated vacuum string field theory to sketch how pure closed string amplitudes on surfaces without boundaries arise as correlators of such gauge invariant operators.

  1. Mutual information after a local quench in conformal field theory

    CERN Document Server

    Asplund, Curtis T

    2013-01-01

    We compute the entanglement entropy and mutual information for two disjoint intervals in two-dimensional conformal field theories as a function of time after a local quench, using the replica trick and boundary conformal field theory. We obtain explicit formulae for the universal contributions, which are leading in the regimes of, for example, close or well-separated intervals of fixed length. The results are largely consistent with the quasiparticle picture, in which entanglement above that present in the ground state is carried by pairs of entangled, freely propagating excitations. We also calculate the mutual information for two disjoint intervals in a proposed holographic local quench, whose holographic energy-momentum tensor matches the conformal field theory one. We find that the holographic mutual information shows qualitative differences from the conformal field theory results and we discuss possible interpretations of this.

  2. Quantum algorithms for quantum field theories.

    Science.gov (United States)

    Jordan, Stephen P; Lee, Keith S M; Preskill, John

    2012-06-01

    Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.

  3. Nilpotent weights in conformal field theory

    Directory of Open Access Journals (Sweden)

    S. Rouhani

    2001-12-01

    Full Text Available   Logarithmic conformal field theory can be obtained using nilpotent weights. Using such scale transformations various properties of the theory were derived. The derivation of four point function needs a knowledge of singular vectors which is derived by including nilpotent variables into the Kac determinant. This leads to inhomogeneous hypergeometric functions. Finally we consider the theory near a boundary and also introduce the concept of superfields where a multiplet of conformal fields are dealt with together. This leads to the OPE of superfields and a logarithmic partner for the energy momentum tensor.

  4. Noncommutative Time in Quantum Field Theory

    CERN Document Server

    Salminen, Tapio

    2011-01-01

    We analyze, starting from first principles, the quantization of field theories, in order to find out to which problems a noncommutative time would possibly lead. We examine the problem in the interaction picture (Tomonaga-Schwinger equation), the Heisenberg picture (Yang-Feldman-K\\"all\\'{e}n equation) and the path integral approach. They all indicate inconsistency when time is taken as a noncommutative coordinate. The causality issue appears as the key aspect, while the unitarity problem is subsidiary. These results are consistent with string theory, which does not admit a time-space noncommutative quantum field theory as its low-energy limit, with the exception of light-like noncommutativity.

  5. On level crossing in conformal field theories

    CERN Document Server

    Korchemsky, G P

    2015-01-01

    We study the properties of operators in a unitary conformal field theory whose scaling dimensions approach each other for some values of the parameters and satisfy von Neumann-Wigner non-crossing rule. We argue that the scaling dimensions of such operators and their OPE coefficients have a universal scaling behavior in the vicinity of the crossing point. We demonstrate that the obtained relations are in a good agreement with the known examples of the level-crossing phenomenon in maximally supersymmetric $\\mathcal N=4$ Yang-Mills theory, three-dimensional conformal field theories and QCD.

  6. Higher Spins as Rolling Tachyons in Open String Field Theory

    CERN Document Server

    Polyakov, Dimitri

    2016-01-01

    We find a simple analytic solution in open string field theory which, in the on-shell limit, generates a tower of higher spin vertex operators in bosonic string theory. The solution is related to irregular off-shell vertex operators for Gaiotto states. The wavefunctions for the irregular vertex operators are described by equations following from the cubic effective action for generalized rolling tachyons, indicating that the evolution from flat to collective higher-spin background in string field theory occurs according to cosmological pattern. We discuss the relation between nonlocalities of the rolling tachyon action and those of higher spin interactions.

  7. Intersection Theory, Integrable Hierarchies and Topological Field Theory

    OpenAIRE

    Dijkgraaf, Robbert

    1992-01-01

    In these lecture notes we review the various relations between intersection theory on the moduli space of Riemann surfaces, integrable hierarchies of KdV type, matrix models, and topological quantum field theories. We explain in particular why matrix integrals of the type considered by Kontsevich naturally appear as tau-functions associated to minimal models. Our starting point is the extremely simple form of the string equation for the topological (p,1) models, where the so-called Baker-Akhi...

  8. The Theory of Quantized Fields. II

    Science.gov (United States)

    Schwinger, J.

    1951-01-01

    The arguments leading to the formulation of the Action Principle for a general field are presented. In association with the complete reduction of all numerical matrices into symmetrical and anti-symmetrical parts, the general field is decomposed into two sets, which are identified with Bose-Einstein and Fermi-Dirac fields. The spin restriction on the two kinds of fields is inferred from the time reflection invariance requirement. The consistency of the theory is verified in terms of a criterion involving the various generators of infinitesimal transformations. Following a discussion of charged fields, the electromagnetic field is introduced to satisfy the postulate of general gauge invariance. As an aspect of the latter, it is recognized that the electromagnetic field and charged fields are not kinematically independent. After a discussion of the field-strength commutation relations, the independent dynamical variable of the electromagnetic field are exhibited in terms of a special gauge.

  9. "Quantum Field Theory and QCD"

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, Arthur M.

    2006-02-25

    This grant partially funded a meeting, "QFT & QCD: Past, Present and Future" held at Harvard University, Cambridge, MA on March 18-19, 2005. The participants ranged from senior scientists (including at least 9 Nobel Prize winners, and 1 Fields medalist) to graduate students and undergraduates. There were several hundred persons in attendance at each lecture. The lectures ranged from superlative reviews of past progress, lists of important, unsolved questions, to provocative hypotheses for future discovery. The project generated a great deal of interest on the internet, raising awareness and interest in the open questions of theoretical physics.

  10. Equilibration properties of classical integrable field theories

    Science.gov (United States)

    De Luca, Andrea; Mussardo, Giuseppe

    2016-06-01

    We study the equilibration properties of classical integrable field theories at a finite energy density, with a time evolution that starts from initial conditions far from equilibrium. These classical field theories may be regarded as quantum field theories in the regime of high occupation numbers. This observation permits to recover the classical quantities from the quantum ones by taking a proper \\hslash \\to 0 limit. In particular, the time averages of the classical theories can be expressed in terms of a suitable version of the LeClair-Mussardo formula relative to the generalized Gibbs ensemble. For the purposes of handling time averages, our approach provides a solution of the problem of the infinite gap solutions of the inverse scattering method.

  11. Entanglement entropy in warped conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Alejandra; Hofman, Diego M.; Iqbal, Nabil [Institute for Theoretical Physics, University of Amsterdam,Science Park 904, Postbus 94485, 1090 GL Amsterdam (Netherlands)

    2016-02-04

    We present a detailed discussion of entanglement entropy in (1+1)-dimensional Warped Conformal Field Theories (WCFTs). We implement the Rindler method to evaluate entanglement and Renyi entropies for a single interval and along the way we interpret our results in terms of twist field correlation functions. Holographically a WCFT can be described in terms of Lower Spin Gravity, a SL(2,ℝ)×U(1) Chern-Simons theory in three dimensions. We show how to obtain the universal field theory results for entanglement in a WCFT via holography. For the geometrical description of the theory we introduce the concept of geodesic and massive point particles in the warped geometry associated to Lower Spin Gravity. In the Chern-Simons description we evaluate the appropriate Wilson line that captures the dynamics of a massive particle.

  12. Quantum field theory in a nutshell

    CERN Document Server

    Zee, A

    2010-01-01

    Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. as well as an entirely new section describing recent developments in quantum field theory such as gravitational waves, the helicity spinor formalism, on-shell gluon scattering, recursion relations for amplitudes with complex momenta, and the hidden connection between Yang-Mills theory and Einstein gravity. Zee also provides added exercises, explanations, and examples, as well as detailed appendices, solutions to selected exercises, and suggestions for further reading

  13. Entanglement Entropy in Warped Conformal Field Theories

    CERN Document Server

    Castro, Alejandra; Iqbal, Nabil

    2015-01-01

    We present a detailed discussion of entanglement entropy in (1+1)-dimensional Warped Conformal Field Theories (WCFTs). We implement the Rindler method to evaluate entanglement and Renyi entropies for a single interval and along the way we interpret our results in terms of twist field correlation functions. Holographically a WCFT can be described in terms of Lower Spin Gravity, a SL(2,R)xU(1) Chern-Simons theory in three dimensions. We show how to obtain the universal field theory results for entanglement in a WCFT via holography. For the geometrical description of the theory we introduce the concept of geodesic and massive point particles in the warped geometry associated to Lower Spin Gravity. In the Chern-Simons description we evaluate the appropriate Wilson line that captures the dynamics of a massive particle.

  14. Towards the mathematics of quantum field theory

    CERN Document Server

    Paugam, Frédéric

    2014-01-01

    The aim of this book is to introduce mathematicians (and, in particular, graduate students) to the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in play. This should in turn promote interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, even if the mathematical one is the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second...

  15. Entanglement Entropy in Warped Conformal Field Theories

    NARCIS (Netherlands)

    Castro, A.; Hofman, D.M.; Iqbal, N.

    We present a detailed discussion of entanglement entropy in (1+1)-dimensional Warped Conformal Field Theories (WCFTs). We implement the Rindler method to evaluate entanglement and Renyi entropies for a single interval and along the way we interpret our results in terms of twist field correlation

  16. Maverick Examples of Coset Conformal Field Theories

    Science.gov (United States)

    Dunbar, David C.; Joshi, Keith G.

    We present coset conformal field theories whose spectrum is not determined by the identification current method. In these "Maverick" cosets there is a larger symmetry identifying primary fields than under the identification current. We find an A-D-E classification of these Mavericks.

  17. Chiral effective field theory and nuclear forces

    CERN Document Server

    Machleidt, R

    2011-01-01

    We review how nuclear forces emerge from low-energy QCD via chiral effective field theory. The presentation is accessible to the non-specialist. At the same time, we also provide considerable detailed information (mostly in appendices) for the benefit of researchers who wish to start working in this field.

  18. Massive gravitons from Extended Gravity to Effective Field Theories

    CERN Document Server

    Capozziello, Salvatore; Paolella, Mariacristina; Ricciardi, Giulia

    2013-01-01

    Massive gravitons in effective field theories can be recovered by extending General Relativity and taking into account generic functions of the curvature invariants not necessarily linear in the Ricci scalar R. In particular, adopting the minimal extension of f(R) gravity, an effective field theory with a massive state is straightforwardly recovered. This approach allows to evade shortcomings like ghosts and discontinuities if a suitable choice of expansion parameters is performed. We show that the massive state can be identified with a massive graviton.

  19. Energy flow in non-equilibrium conformal field theory

    Science.gov (United States)

    Bernard, Denis; Doyon, Benjamin

    2012-09-01

    We study the energy current and its fluctuations in quantum gapless 1d systems far from equilibrium modeled by conformal field theory, where two separated halves are prepared at distinct temperatures and glued together at a point contact. We prove that these systems converge towards steady states, and give a general description of such non-equilibrium steady states in terms of quantum field theory data. We compute the large deviation function, also called the full counting statistics, of energy transfer through the contact. These are universal and satisfy fluctuation relations. We provide a simple representation of these quantum fluctuations in terms of classical Poisson processes whose intensities are proportional to Boltzmann weights.

  20. Quantum Stability of Chameleon Field Theories

    CERN Document Server

    Upadhye, Amol; Khoury, Justin

    2012-01-01

    Chameleon scalar fields are dark energy candidates which suppress fifth forces in high density regions of the universe by becoming massive. We consider chameleon models as effective field theories and estimate quantum corrections to their potentials. Requiring that quantum corrections be small, so as to allow reliable predictions of fifth forces, leads to an upper bound $m 0.0042$\\,eV. An improvement of less than a factor of two in the range of fifth force experiments could test all classical chameleon field theories whose quantum corrections are well-controlled and couple to matter with nearly gravitational strength regardless of the specific form of the chameleon potential.

  1. Mean-field magnetohydrodynamics and dynamo theory

    CERN Document Server

    Krause, F

    2013-01-01

    Mean-Field Magnetohydrodynamics and Dynamo Theory provides a systematic introduction to mean-field magnetohydrodynamics and the dynamo theory, along with the results achieved. Topics covered include turbulence and large-scale structures; general properties of the turbulent electromotive force; homogeneity, isotropy, and mirror symmetry of turbulent fields; and turbulent electromotive force in the case of non-vanishing mean flow. The turbulent electromotive force in the case of rotational mean motion is also considered. This book is comprised of 17 chapters and opens with an overview of the gen

  2. From theory to field experiments

    Science.gov (United States)

    de Vos, Bram

    2016-04-01

    Peter Raats' achievements in Haren (NL) 1986-1997 were based on a solid theoretical insight in hydrology and transport process in soil. However, Peter was also the driving force behind many experimental studies and applied research. This will be illustrated by a broad range of examples ranging from the dynamics of composting processes of organic material; modelling and monitoring nutrient leaching at field-scale; wind erosion; water and nutrient dynamics in horticultural production systems; oxygen diffusion in soils; and processes of water and nutrient uptake by plant roots. Peter's leadership led to may new approaches and the introduction of innovative measurement techniques in Dutch research; ranging from TDR to nutrient concentration measurements in closed fertigation systems. This presentation will give a brief overview how Peter's theoretical and mathematical insights accelerated this applied research.

  3. Hadronic density of states from string theory.

    Science.gov (United States)

    Pando Zayas, Leopoldo A; Vaman, Diana

    2003-09-12

    We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.

  4. Nonequilibrium dynamical mean-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Eckstein, Martin

    2009-12-21

    The aim of this thesis is the investigation of strongly interacting quantum many-particle systems in nonequilibrium by means of the dynamical mean-field theory (DMFT). An efficient numerical implementation of the nonequilibrium DMFT equations within the Keldysh formalism is provided, as well a discussion of several approaches to solve effective single-site problem to which lattice models such as the Hubbard-model are mapped within DMFT. DMFT is then used to study the relaxation of the thermodynamic state after a sudden increase of the interaction parameter in two different models: the Hubbard model and the Falicov-Kimball model. In the latter case an exact solution can be given, which shows that the state does not even thermalize after infinite waiting times. For a slow change of the interaction, a transition to adiabatic behavior is found. The Hubbard model, on the other hand, shows a very sensitive dependence of the relaxation on the interaction, which may be called a dynamical phase transition. Rapid thermalization only occurs at the interaction parameter which corresponds to this transition. (orig.)

  5. String field theory solution corresponding to constant background magnetic field

    CERN Document Server

    Ishibashi, Nobuyuki; Takahashi, Tomohiko

    2016-01-01

    Following the method recently proposed by Erler and Maccaferri, we construct solutions to the equation of motion of Witten's cubic string field theory, which describe constant magnetic field background. We study the boundary condition changing operators relevant to such background and calculate the operator product expansions of them. We obtain solutions whose classical action coincide with the Born-Infeld action.

  6. Effective field theory in time-dependent settings

    CERN Document Server

    Collins, Hael; Ross, Andreas

    2012-01-01

    We use the in-in or Schwinger-Keldysh formalism to explore the construction and interpretation of effective field theories for time-dependent systems evolving out of equilibrium. Starting with a simple model consisting of a heavy and a light scalar field taken to be in their free vacuum states at a finite initial time, we study the effects from the heavy field on the dynamics of the light field by analyzing the equation of motion for the expectation value of the light background field. New terms appear which cannot arise from a local action of an effective field theory in terms of the light field, though they disappear in the adiabatic limit. We discuss the origins of these terms as well as their possible implications for time dependent situations such as inflation.

  7. Quantum gravity, effective fields and string theory

    CERN Document Server

    Bjerrum-Bohr, N E J

    2004-01-01

    We look at the various aspects of treating general relativity as a quantum theory. It is briefly studied how to consistently quantize general relativity as an effective field theory. A key achievement here is the long-range low-energy leading quantum corrections to both the Schwarzschild and Kerr metrics. The leading quantum corrections to the pure gravitational potential between two sources are also calculated, both in the mixed theory of scalar QED and quantum gravity and in the pure gravitational theory. The (Kawai-Lewellen-Tye) string theory gauge/gravity relations is next dealt with. We investigate if the KLT-operator mapping extends to the case of higher derivative effective operators. The KLT-relations are generalized, taking the effective field theory viewpoint, and remarkable tree-level amplitude relations between the field theory operators are derived. Quantum gravity is finally looked at from the the perspective of taking the limit of infinitely many spatial dimensions. It is verified that only a c...

  8. Cutkosky rules for superstring field theory

    Science.gov (United States)

    Pius, Roji; Sen, Ashoke

    2016-10-01

    Superstring field theory expresses the perturbative S-matrix of superstring theory as a sum of Feynman diagrams each of which is manifestly free from ultraviolet divergences. The interaction vertices fall off exponentially for large space-like external momenta making the ultraviolet finiteness property manifest, but blow up exponentially for large time-like external momenta making it impossible to take the integration contours for loop energies to lie along the real axis. This forces us to carry out the integrals over the loop energies by choosing appropriate contours in the complex plane whose ends go to infinity along the imaginary axis but which take complicated form in the interior navigating around the various poles of the propagators. We consider the general class of quantum field theories with this property and prove Cutkosky rules for the amplitudes to all orders in perturbation theory. Besides having applications to string field theory, these results also give an alternative derivation of Cutkosky rules in ordinary quantum field theories.

  9. Mass Renormalization in String Theory: General States

    CERN Document Server

    Pius, Roji; Sen, Ashoke

    2014-01-01

    In a previous paper we described a procedure for computing the renormalized masses and S-matrix elements in bosonic string theory for a special class of massive states which do not mix with unphysical states under renormalization. In this paper we extend this result to general states in bosonic string theory, and argue that only the squares of renormalized physical masses appear as the locations of the poles of the S-matrix of other physical states. We also discuss generalizations to Neveu-Schwarz sector states in heterotic and superstring theories.

  10. Effective field theory for halo nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Philipp Robert

    2014-02-19

    We investigate properties of two- and three-body halo systems using effective field theory. If the two-particle scattering length a in such a system is large compared to the typical range of the interaction R, low-energy observables in the strong and the electromagnetic sector can be calculated in halo EFT in a controlled expansion in R/ vertical stroke a vertical stroke. Here we focus on universal properties and stay at leading order in the expansion. Motivated by the existence of the P-wave halo nucleus {sup 6}He, we first set up an EFT framework for a general three-body system with resonant two-particle P-wave interactions. Based on a Lagrangian description, we identify the area in the effective range parameter space where the two-particle sector of our model is renormalizable. However, we argue that for such parameters, there are two two-body bound states: a physical one and an additional deeper-bound and non-normalizable state that limits the range of applicability of our theory. With regard to the three-body sector, we then classify all angular-momentum and parity channels that display asymptotic discrete scale invariance and thus require renormalization via a cut-off dependent three-body force. In the unitary limit an Efimov effect occurs. However, this effect is purely mathematical, since, due to causality bounds, the unitary limit for P-wave interactions can not be realized in nature. Away from the unitary limit, the three-body binding energy spectrum displays an approximate Efimov effect but lies below the unphysical, deep two-body bound state and is thus unphysical. Finally, we discuss possible modifications in our halo EFT approach with P-wave interactions that might provide a suitable way to describe physical three-body bound states. We then set up a halo EFT formalism for two-neutron halo nuclei with resonant two-particle S-wave interactions. Introducing external currents via minimal coupling, we calculate observables and universal correlations for

  11. Effective field theory approaches for tensor potentials

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Maximilian

    2016-11-14

    Effective field theories are a widely used tool to study physical systems at low energies. We apply them to systematically analyze two and three particles interacting via tensor potentials. Two examples are addressed: pion interactions for anti D{sup 0}D{sup *0} scattering to dynamically generate the X(3872) and dipole interactions for two and three bosons at low energies. For the former, the one-pion exchange and for the latter, the long-range dipole force induce a tensor-like structure of the potential. We apply perturbative as well as non-perturbative methods to determine low-energy observables. The X(3872) is of major interest in modern high-energy physics. Its exotic characteristics require approaches outside the range of the quark model for baryons and mesons. Effective field theories represent such methods and provide access to its peculiar nature. We interpret the X(3872) as a hadronic molecule consisting of neutral D and D{sup *} mesons. It is possible to apply an effective field theory with perturbative pions. Within this framework, we address chiral as well as finite volume extrapolations for low-energy observables, such as the binding energy and the scattering length. We show that the two-point correlation function for the D{sup *0} meson has to be resummed to cure infrared divergences. Moreover, next-to-leading order coupling constants, which were introduced by power counting arguments, appear to be essential to renormalize the scattering amplitude. The binding energy as well as the scattering length display a moderate dependence on the light quark masses. The X(3872) is most likely deeper bound for large light quark masses. In a finite volume on the other hand, the binding energy significantly increases. The dependence on the light quark masses and the volume size can be simultaneously obtained. For bosonic dipoles we apply a non-perturbative, numerical approach. We solve the Lippmann-Schwinger equation for the two-dipole system and the Faddeev

  12. Field theories without a holographic dual

    Science.gov (United States)

    McInnes, Brett

    2016-12-01

    In applying the gauge-gravity duality to the quark-gluon plasma, one models the plasma using a particular kind of field theory with specified values of the temperature, magnetic field, and so forth. One then assumes that the bulk, an asymptotically AdS black hole spacetime with properties chosen to match those of the boundary field theory, can be embedded in string theory. But this is not always the case: there are field theories with no bulk dual. The question is whether these theories might include those used to study the actual plasmas produced at such facilities as the RHIC experiment or the relevant experiments at the LHC. We argue that, provided that due care is taken to include the effects of the angular momentum associated with the magnetic fields experienced by the plasmas produced by peripheral collisions, the existence of the dual can be established for the RHIC plasmas. In the case of the LHC plasmas, the situation is much more doubtful.

  13. Weak gravity conjecture and effective field theory

    Science.gov (United States)

    Saraswat, Prashant

    2017-01-01

    The weak gravity conjecture (WGC) is a proposed constraint on theories with gauge fields and gravity, requiring the existence of light charged particles and/or imposing an upper bound on the field theory cutoff Λ . If taken as a consistency requirement for effective field theories (EFTs), it rules out possibilities for model building including some models of inflation. I demonstrate simple models which satisfy all forms of the WGC, but which through Higgsing of the original gauge fields produce low-energy EFTs with gauge forces that badly violate the WGC. These models illustrate specific loopholes in arguments that motivate the WGC from a bottom-up perspective; for example the arguments based on magnetic monopoles are evaded when the magnetic confinement that occurs in a Higgs phase is accounted for. This indicates that the WGC should not be taken as a veto on EFTs, even if it turns out to be a robust property of UV quantum gravity theories. However, if the latter is true, then parametric violation of the WGC at low energy comes at the cost of nonminimal field content in the UV. I propose that only a very weak constraint is applicable to EFTs, Λ ≲(log 1/g )-1 /2Mpl , where g is the gauge coupling, motivated by entropy bounds. Remarkably, EFTs produced by Higgsing a theory that satisfies the WGC can saturate but not violate this bound.

  14. Field Theories Without a Holographic Dual

    CERN Document Server

    McInnes, Brett

    2016-01-01

    In applying the gauge-gravity duality to the quark-gluon plasma, one models the plasma using a particular kind of field theory with specified values of the temperature, magnetic field, and so forth. One then assumes that the bulk, an asymptotically AdS black hole spacetime with properties chosen to match those of the boundary field theory, can be embedded in string theory. But this is not always the case: there are field theories with no bulk dual. The question is whether these theories might include those used to study the actual plasmas produced at such facilities as the RHIC experiment or the relevant experiments at the LHC. We argue that, \\emph{provided} that due care is taken to include the effects of the angular momentum associated with the magnetic fields experienced by the plasmas produced by peripheral collisions, the existence of the dual can be established for the RHIC plasmas. In the case of the LHC plasmas, the situation is much more doubtful.

  15. On space of integrable quantum field theories

    Science.gov (United States)

    Smirnov, F. A.; Zamolodchikov, A. B.

    2017-02-01

    We study deformations of 2D Integrable Quantum Field Theories (IQFT) which preserve integrability (the existence of infinitely many local integrals of motion). The IQFT are understood as "effective field theories", with finite ultraviolet cutoff. We show that for any such IQFT there are infinitely many integrable deformations generated by scalar local fields Xs, which are in one-to-one correspondence with the local integrals of motion; moreover, the scalars Xs are built from the components of the associated conserved currents in a universal way. The first of these scalars, X1, coincides with the composite field (T T bar) built from the components of the energy-momentum tensor. The deformations of quantum field theories generated by X1 are "solvable" in a certain sense, even if the original theory is not integrable. In a massive IQFT the deformations Xs are identified with the deformations of the corresponding factorizable S-matrix via the CDD factor. The situation is illustrated by explicit construction of the form factors of the operators Xs in sine-Gordon theory. We also make some remarks on the problem of UV completeness of such integrable deformations.

  16. Wilson lines in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Cherednikov, Igor Olegovich [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.; Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Mertens, Tom; Veken, Frederik F. van der [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.

    2014-07-01

    Wilson lines (also known as gauge links or eikonal lines) can be introduced in any gauge field theory. Although the concept of the Wilson exponentials finds an enormously wide range of applications in a variety of branches of modern quantum field theory, from condensed matter and lattice simulations to quantum chromodynamics, high-energy effective theories and gravity, there are surprisingly few books or textbooks on the market which contain comprehensive pedagogical introduction and consecutive exposition of the subject. The objective of this book is to get the potential reader acquainted with theoretical and mathematical foundations of the concept of the Wilson loops in the context of modern quantum field theory, to teach him/her to perform independently some elementary calculations with Wilson lines, and to familiarize him/her with the recent development of the subject in different important areas of research. The target audience of the book consists of graduate and postgraduate students working in various areas of quantum field theory, as well as researchers from other fields.

  17. Statistical mechanics of vortices from field theory

    CERN Document Server

    Kajantie, Keijo; Neuhaus, T; Rajantie, A; Rummukainen, K

    1999-01-01

    We study with lattice Monte Carlo simulations the interactions and macroscopic behaviour of a large number of vortices in the 3-dimensional U(1) gauge+Higgs field theory, in an external magnetic field. We determine non-perturbatively the (attractive or repelling) interaction energy between two or more vortices, as well as the critical field strength H_c, the thermodynamical discontinuities, and the surface tension related to the boundary between the Meissner phase and the Coulomb phase in the type I region. We also investigate the emergence of vortex lattice and vortex liquid phases in the type II region. For the type I region the results obtained are in qualitative agreement with mean field theory, except for small values of H_c, while in the type II region there are significant discrepancies. These findings are relevant for superconductors and some models of cosmic strings, as well as for the electroweak phase transition in a magnetic field.

  18. The Supersymmetric Effective Field Theory of Inflation

    CERN Document Server

    Delacretaz, Luca V; Senatore, Leonardo

    2016-01-01

    We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable St\\"uckelberg transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplif...

  19. Simple Recursion Relations for General Field Theories

    CERN Document Server

    Cheung, Clifford; Trnka, Jaroslav

    2015-01-01

    On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we define a covering space of recursion relations which naturally generalizes all existing constructions, including those of BCFW and Risager. The validity of each recursion relation hinges on the large momentum behavior of an n-point scattering amplitude under an m-line momentum shift, which we determine solely from dimensional analysis, Lorentz invariance, and locality. We show that all amplitudes in a renormalizable theory are 5-line constructible. Amplitudes are 3-line constructible if an external particle carries spin or if the scalars in the theory carry equal charge under a global or gauge symmetry. Remarkably, this implies the 3-...

  20. Semi-Classical field theory as Decoherence Free Subspaces

    CERN Document Server

    Varela, Jaime

    2014-01-01

    We formulate semi-classical field theory as an approximate decoherence-free-subspace of a finite-dimensional quantum-gravity hilbert space. A complementarity construction can be realized as a unitary transformation which changes the decoherence-free-subspace. This can be translated to signify that field theory on a global slice, in certain space-times, is the simultaneous examination of two different superselected sectors of a gauge theory. We posit that a correct course graining procedure of quantum gravity should be WKB states propagating in a curved background in which particles exiting a horizon have imaginary components to their phases. The field theory appears non-unitary, but it is due to the existence of approximate decoherence free sub-spaces. Furthermore, the importance of operator spaces in the course-graining procedure is discussed. We also briefly touch on Firewalls.

  1. Lattice Field Theory Study of Magnetic Catalysis in Graphene

    CERN Document Server

    DeTar, Carleton; Zafeiropoulos, Savvas

    2016-01-01

    We discuss the simulation of the low-energy effective field theory (EFT) for graphene in the presence of an external magnetic field. Our fully nonperturbative calculation uses methods of lattice gauge theory to study the theory using a hybrid Monte Carlo approach. We investigate the phenomenon of magnetic catalysis in the context of graphene by studying the chiral condensate which is the order parameter characterizing the spontaneous breaking of chiral symmetry. In the EFT, the symmetry breaking pattern is given by $U(4) \\to U(2) \\times U(2)$. We also comment on the difficulty, in this lattice formalism, of studying the time-reversal-odd condensate characterizing the ground state in the presence of a magnetic field. Finally, we study the mass spectrum of the theory, in particular the Nambu-Goldstone (NG) mode as well as the Dirac quasiparticle, which is predicted to obtain a dynamical mass.

  2. Field theory on evolving fuzzy two-sphere

    CERN Document Server

    Sasakura, N

    2004-01-01

    I construct field theory on an evolving fuzzy two-sphere, which is based on the idea of evolving non-commutative worlds of the previous paper. The equations of motion are similar to the one that can be obtained by dropping the time-derivative term of the equation derived some time ago by Banks, Peskin and Susskind for pure-into-mixed-state evolutions. The equations do not contain an explicit time, and therefore follow the spirit of the Wheeler-de Witt equation. The basic properties of field theory such as action, gauge invariance and charge conservation are studied. The continuum limit of the scalar field theory shows that the background geometry of the corresponding continuum theory is given by $ds^2 = -dt^2+t d\\Omega^2$, which saturates the cosmic holographic principle.

  3. Final Technical Report: Variational Transition State Theory

    Energy Technology Data Exchange (ETDEWEB)

    Truhlar, Donald G. [University of Minnesota; Truhlar, Donald G. [University of Minnesota

    2016-09-15

    Complex molecules often have many structures (conformations) of the reactants and the transition states, and these structures may be connected by coupled-mode torsions and pseudorotations; some but not all structures may have hydrogen bonds in the transition state or reagents. A quantitative theory of the reaction rates of complex molecules must take account of these structures, their coupledmode nature, their qualitatively different character, and the possibility of merging reaction paths at high temperature. We have recently developed a coupled-mode theory called multi-structural variational transition state theory (MS-VTST) and an extension, called multi-path variational transition state theory (MP-VTST), that includes a treatment of the differences in the multidimensional tunneling paths and their contributions to the reaction rate. The MP-VTST method was presented for unimolecular reactions in the original paper and has now been extended to bimolecular reactions. The MS-VTST and MPVTST formulations of variational transition state theory include multi-faceted configuration-space dividing surfaces to define the variational transition state. They occupy an intermediate position between single-conformation variational transition state theory (VTST), which has been used successfully for small molecules, and ensemble-averaged variational transition state theory (EAVTST), which has been used successfully for enzyme kinetics. The theories are illustrated and compared here by application to three thermal rate constants for reactions of ethanol with hydroxyl radical—reactions with 4, 6, and 14 saddle points.

  4. Double Field Theory on Group Manifolds (Thesis)

    CERN Document Server

    Hassler, Falk

    2015-01-01

    This thesis deals with Double Field Theory (DFT), an effective field theory capturing the low energy dynamics of closed strings on a torus. It renders T-duality on a torus manifest by adding $D$ winding coordinates in addition to the $D$ space time coordinates. An essential consistency constraint of the theory, the strong constraint, only allows for field configurations which depend on half of the coordinates of the arising doubled space. I derive DFT${}_\\mathrm{WZW}$, a generalization of the current formalism. It captures the low energy dynamics of a closed bosonic string propagating on a compact group manifold. Its classical action and the corresponding gauge transformations arise from Closed String Field Theory up to cubic order in the massless fields. These results are rewritten in terms of a generalized metric and extended to all orders in the fields. There is an explicit distinction between background and fluctuations. For the gauge algebra to close, the latter have to fulfill a modified strong constrai...

  5. Tephra: field, theory and application

    Science.gov (United States)

    Pouget, Solene

    In this work we briefly introduced the current state of the art for plume dynamics and plume modelling (chapters 1 and 2). From these, it was found that several questions remained unanswered. One of them what about adding some quantitative methodology to tephra identification when using geochemistry. Using discontinuous two tephra layers discovered at Burney Spring Mountain, northern California, this aspect was explored. Stratigraphic relationships suggest that they are two distinct tephras. Binary plots and standard similarity coefficients of electron probe microanalysis data have been supplemented with principal component analysis in log-ratio transformed data to correlate the two tephra layers to known regional tephras. Using principal component analysis, we are furthermore able to bound our uncertainty in the correlation of the two tephra layers (chapter 3). After removal of outliers, within the 95% prediction interval, we can say that one tephra layer is likely the Rockland tephra, aged 565-610 ka, and the second layer is likely from Mt Mazama, the Trego Hot Springs tephra, aged ~29 ka. Using cluster analysis on several vectors of chemical elements another quantitative methodology was explored (chapter 4). It was found that in most cases, geochemical analysis of a tephra layer will be assign to a single cluster, however in some cases the analysis are spread over several clusters. This spreading is a direct result of mixing and reworking happening in the tephra layer. The dynamics of volcanic plumes were also investigated. We introduce a new method to estimate mass eruption rate (MER) and mass loading from the growth of a volcanic umbrella cloud or downwind plume using satellite images, or photographs where ground-based observations are available with a gravity current model (chapter 5). The results show a more fully characterised MER as a function of time than do the results given by pre-existing methods, and allow a faster, remote assessment of the mass

  6. Folding defect affine Toda field theories

    CERN Document Server

    Robertson, C

    2013-01-01

    A folding process is applied to fused a^(1)_r defects to construct defects for the non-simply laced affi?ne Toda ?field theories of c^(1)_n, d^(2)_n and a^(2)_n at the classical level. Support for the hypothesis that these defects are integrable in the folded theories is provided by the observation that transmitted solitons retain their form. Further support is given by the demonstration that energy and momentum are conserved.

  7. An Introduction to Quantum Field Theory

    CERN Document Server

    Peskin, Michael E

    1995-01-01

    An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the sta

  8. Quantum Finite Elements for Lattice Field Theory

    CERN Document Server

    Brower, Richard C; Gasbarro, Andrew; Raben, Timothy; Tan, Chung-I; Weinberg, Evan

    2016-01-01

    Viable non-perturbative methods for lattice quantum field theories on curved manifolds are difficult. By adapting features from the traditional finite element methods (FEM) and Regge Calculus, a new simplicial lattice Quantum Finite Element (QFE) Lagrangian is constructed for fields on a smooth Riemann manifold. To reach the continuum limit additional counter terms must be constructed to cancel the ultraviolet distortions. This is tested by the comparison of phi 4-th theory at the Wilson-Fisher fixed point with the exact Ising (c =1/2) CFT on a 2D Riemann sphere. The Dirac equation is also constructed on a simplicial lattice approximation to a Riemann manifold by introducing a lattice vierbein and spin connection on each link. Convergence of the QFE Dirac equation is tested against the exact solution for the 2D Riemann sphere. Future directions and applications to Conformal Field Theories are suggested.

  9. Magnetic Catalysis in Graphene Effective Field Theory

    CERN Document Server

    DeTar, Carleton; Zafeiropoulos, Savvas

    2016-01-01

    We report on the first observation of magnetic catalysis at zero temperature in a fully nonperturbative simulation of the graphene effective field theory. Using lattice gauge theory, a nonperturbative analysis of the theory of strongly-interacting, massless, (2+1)-dimensional Dirac fermions in the presence of an external magnetic field is performed. We show that in the zero-temperature limit, a nonzero value for the chiral condensate is obtained which signals the spontaneous breaking of chiral symmetry. This result implies a nonzero value for the dynamical mass of the Dirac quasiparticle. This in turn has been posited to account for the quantum-Hall plateaus that are observed at large magnetic fields.

  10. Multisymplectic effective General Boundary Field Theory

    CERN Document Server

    Arjang, Mona

    2013-01-01

    The transfer matrix in lattice field theory connects the covariant and the initial data frameworks; in spin foam models, it can be written as a composition of elementary cellular amplitudes/propagators. We present a framework for discrete spacetime classical field theory in which solutions to the field equations over elementary spacetime cells may be amalgamated if they satisfy simple gluing conditions matching the composition rules of cellular amplitudes in spin foam models. Furthermore, the formalism is endowed with a multisymplectic structure responsible for local conservation laws. Some models within our framework are effective theories modeling a system at a given scale. Our framework allows us to study coarse graining and the continuum limit.

  11. Confinement in Einstein's unified field theory

    CERN Document Server

    Antoci, S; Mihich, L

    2006-01-01

    After recalling the mathematical structure of Einstein's Hermitian extension of the gravitational theory of 1915, the problem, whether its field equations should admit of phenomenological sources at their right-hand sides, and how this addition should be done, is expounded by relying on a thread of essential insights and achievements by Schr\\"odinger, Kursunoglu, Lichnerowicz, H\\'ely and Borchsenius. When sources are appended to all the field equations, from the latter and from the contracted Bianchi identities a sort of gravoelectrodynamics appears, that totally departs from the so called Einstein-Maxwell theory, since its constitutive equation, that rules the link between inductions and fields, is a very complicated differential relation that allows for a much wider, still practically unexplored range of possible occurrences. In this sort of theory one can allow for both an electric and a magnetic four-current, which are not a physically wrong replica of each other, like it would occur if both these current...

  12. The tissue organization field theory of cancer: A testable replacement for the somatic mutation theory

    Science.gov (United States)

    Soto, Ana M.; Sonnenschein, Carlos

    2014-01-01

    The somatic mutation theory (SMT) of cancer has been and remains the prevalent theory attempting to explain how neoplasms arise and progress. This theory proposes that cancer is a clonal, cell-based disease, and implicitly assumes that quiescence is the default state of cells in multicellular organisms. The SMT has not been rigorously tested, and several lines of evidence raise questions that are not addressed by this theory. Herein, we propose experimental strategies that may validate the SMT. We also call attention to an alternative theory of carcinogenesis, the tissue organization field theory (TOFT), which posits that cancer is a tissue-based disease and that proliferation is the default state of all cells. Based on epistemological and experimental evidence, we argue that the TOFT compellingly explains carcinogenesis, while placing it within an evolutionarily relevant context. PMID:21503935

  13. Conformal field theory with gauge symmetry

    CERN Document Server

    Ueno, Kenji

    2008-01-01

    This book presents a systematic approach to conformal field theory with gauge symmetry from the point of view of complex algebraic geometry. After presenting the basic facts of the theory of compact Riemann surfaces and the representation theory of affine Lie algebras in Chapters 1 and 2, conformal blocks for pointed Riemann surfaces with coordinates are constructed in Chapter 3. In Chapter 4 the sheaf of conformal blocks associated to a family of pointed Riemann surfaces with coordinates is constructed, and in Chapter 5 it is shown that this sheaf supports a projective flat connection-one of

  14. Completely local interpretation of quantum field theory

    CERN Document Server

    Sverdlov, Roman

    2010-01-01

    The purpose of this paper is to come up with a framework that "converts" existing concepts from configuration space to ordinary one. This is done by modeling our universe as a big "computer" that simulates configuration space. If that "computer" exists in ordinary space and is ran by "classical" laws, our theory becomes "classical" by default. We have first applied this concept to a version of quantum field theory in which elementary particles have size (that is, a theory that does not yet exists). After that, we have also done the same with Pilot Wave model of discrete jumps, due to D\\"urr et el.

  15. A geometric formulation of exceptional field theory

    CERN Document Server

    Bosque, Pascal du; Lust, Dieter; Malek, Emanuel

    2016-01-01

    We formulate the full bosonic SL(5) exceptional field theory in a coordinate-invariant manner. Thereby we interpret the 10-dimensional extended space as a manifold with $\\mathrm{SL}(5)\\times\\mathbb{R}^+$-structure. We show that the algebra of generalised diffeomorphisms closes subject to a set of closure constraints which are reminiscent of the quadratic and linear constraints of maximal seven-dimensional gauged supergravities, as well as the section condition. We construct an action for the full bosonic SL(5) exceptional field theory, even when the $\\mathrm{SL}(5)\\times\\mathbb{R}^+$-structure is not locally flat.

  16. Effective field theory for deformed atomic nuclei

    Science.gov (United States)

    Papenbrock, T.; Weidenmüller, H. A.

    2016-05-01

    We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.

  17. Field theory a path integral approach

    CERN Document Server

    Das, Ashok

    2006-01-01

    This unique book describes quantum field theory completely within the context of path integrals. With its utility in a variety of fields in physics, the subject matter is primarily developed within the context of quantum mechanics before going into specialized areas.Adding new material keenly requested by readers, this second edition is an important expansion of the popular first edition. Two extra chapters cover path integral quantization of gauge theories and anomalies, and a new section extends the supersymmetry chapter, where singular potentials in supersymmetric systems are described.

  18. Effective field theory for deformed atomic nuclei

    CERN Document Server

    Papenbrock, T

    2015-01-01

    We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband $E2$ transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.

  19. Global Anomalies and Effective Field Theory

    CERN Document Server

    Golkar, Siavash

    2015-01-01

    We show that matching anomalies under large gauge transformations and large diffeomorphisms can explain the appearance and non-renormalization of couplings in effective field theory. We focus on %thermal partition functions and thermal effective field theory where we argue that the appearance of certain unusual Chern-Simons couplings is a consequence of global anomalies. As an example, we show that a mixed global anomaly in four dimensions fixes the chiral vortical effect coefficient. This is an experimentally measurable prediction from a global anomaly. For certain situations, we propose a simpler method for calculating global anomalies which uses correlation functions rather than eta invariants.

  20. Field theory approaches to new media practices

    DEFF Research Database (Denmark)

    Hartley, Jannie Møller; Willig, Ida; Waltorp, Karen

    2015-01-01

    to develop field theory in this context. Secondly, we present the four thematic articles in this issue and the articles outside the theme, which includes two translations of classic texts within communication and media research. This introduction article concludes by encouraging media scholars to embark...... on more studies within a field theory framework, as the ability of the comprehensive theoretical work and the ideas of a reflexive sociology is able to trigger the good questions, more than it claims to offer a complete and self-sufficient sociology of media and inherent here also new media....

  1. A geometric formulation of exceptional field theory

    Science.gov (United States)

    du Bosque, Pascal; Hassler, Falk; Lüst, Dieter; Malek, Emanuel

    2017-03-01

    We formulate the full bosonic SL(5) exceptional field theory in a coordinateinvariant manner. Thereby we interpret the 10-dimensional extended space as a manifold with SL(5) × ℝ +-structure. We show that the algebra of generalised diffeomorphisms closes subject to a set of closure constraints which are reminiscent of the quadratic and linear constraints of maximal seven-dimensional gauged supergravities, as well as the section condition. We construct an action for the full bosonic SL(5) exceptional field theory, even when the SL(5) × ℝ +-structure is not locally flat.

  2. Mean field theory for fermion-based U(2) anyons

    CERN Document Server

    McGraw, P

    1996-01-01

    The energy density is computed for a U(2) Chern-Simons theory coupled to a non-relativistic fermion field (a theory of ``non-Abelian anyons'') under the assumptions of uniform charge and matter density. When the matter field is a spinless fermion, we find that this energy is independent of the two Chern-Simons coupling constants and is minimized when the non-Abelian charge density is zero. This suggests that there is no spontaneous breaking of the SU(2) subgroup of the symmetry, at least in this mean-field approximation. For spin-1/2 fermions, we find self-consistent mean-field states with a small non-Abelian charge density, which vanishes as the theory of free fermions is approached.

  3. The Global Approach to Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Folacci, Antoine; Jensen, Bruce [Faculte des Sciences, Universite de Corse (France); Department of Mathematics, University of Southampton (United Kingdom)

    2003-12-12

    Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi{sup i} defined on a given spacetime M, the set of all varphi{sup i}(x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the

  4. Noncommutative Geometry in M-Theory and Conformal Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Morariu, Bogdan [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    In the first part of the thesis I will investigate in the Matrix theory framework, the subgroup of dualities of the Discrete Light Cone Quantization of M-theory compactified on tori, which corresponds to T-duality in the auxiliary Type II string theory. After a review of matrix theory compactification leading to noncommutative supersymmetric Yang-Mills gauge theory, I will present solutions for the fundamental and adjoint sections on a two-dimensional twisted quantum torus and generalize to three-dimensional twisted quantum tori. After showing how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories on dual noncommutative tori I will relate this to the mathematical concept of Morita equivalence of C*-algebras. As a further generalization, I consider arbitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the toroidally compactified Matrix theory corresponding to quantized electric fluxes on two and three tori. In the second part of the thesis I will present an application to conformal field theory involving quantum groups, another important example of a noncommutative space. First, I will give an introduction to Poisson-Lie groups and arrive at quantum groups using the Feynman path integral. I will quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of Uq(SU(2)). I discuss the X-structure of SU(2)* and give a detailed description of its leaves using various parametrizations. Then, I will introduce a new reality structure on the Heisenberg double of Funq (SL(N,C)) for q phase, which can be interpreted as the quantum phase space of a particle on the q-deformed mass-hyperboloid. I also present evidence that the above real form describes zero modes of certain non-compact WZNW-models.

  5. Near-field optical thin microcavity theory

    Science.gov (United States)

    Wu, Jiu Hui; Hou, Jiejie

    2016-01-01

    The thin microcavity theory for near-field optics is proposed in this study. By applying the power flow theorem and the variable theorem,the bi-harmonic differential governing equation for electromagnetic field of a three-dimensional thin microcavity is derived for the first time. Then by using the Hankel transform, this governing equation is solved exactly and all the electromagnetic components inside and outside the microcavity can be obtained accurately. According to the above theory, the near-field optical diffraction from a subwavelength aperture embedded in a thin conducting film is investigated, and numerical computations are performed to illustrate the edge effect by an enhancement factor of 1.8 and the depolarization phenomenon of the near-field transmission in terms of the distance from the film surface. This thin microcavity theory is verified by the good agreement between our results and those in the previous literatures. The thin microcavity theory presented in the study should be useful in the possible applications of the thin microcavities in near-field optics and thin-film optics.

  6. On space of integrable quantum field theories

    CERN Document Server

    Smirnov, F A

    2016-01-01

    We study deformations of 2D Integrable Quantum Field Theories (IQFT) which preserve integrability (the existence of infinitely many local integrals of motion). The IQFT are understood as "effective field theories", with finite ultraviolet cutoff. We show that for any such IQFT there are infinitely many integrable deformations generated by scalar local fields $X_s$, which are in one-to-one correspondence with the local integrals of motion; moreover, the scalars $X_s$ are built from the components of the associated conserved currents in a universal way. The first of these scalars, $X_1$, coincides with the composite field $(T{\\bar T})$ built from the components of the energy-momentum tensor. The deformations of quantum field theories generated by $X_1$ are "solvable" in a certain sense, even if the original theory is not integrable. In a massive IQFT the deformations $X_s$ are identified with the deformations of the corresponding factorizable S-matrix via the CDD factor. The situation is illustrated by explicit...

  7. On space of integrable quantum field theories

    Directory of Open Access Journals (Sweden)

    F.A. Smirnov

    2017-02-01

    Full Text Available We study deformations of 2D Integrable Quantum Field Theories (IQFT which preserve integrability (the existence of infinitely many local integrals of motion. The IQFT are understood as “effective field theories”, with finite ultraviolet cutoff. We show that for any such IQFT there are infinitely many integrable deformations generated by scalar local fields Xs, which are in one-to-one correspondence with the local integrals of motion; moreover, the scalars Xs are built from the components of the associated conserved currents in a universal way. The first of these scalars, X1, coincides with the composite field (TT¯ built from the components of the energy–momentum tensor. The deformations of quantum field theories generated by X1 are “solvable” in a certain sense, even if the original theory is not integrable. In a massive IQFT the deformations Xs are identified with the deformations of the corresponding factorizable S-matrix via the CDD factor. The situation is illustrated by explicit construction of the form factors of the operators Xs in sine-Gordon theory. We also make some remarks on the problem of UV completeness of such integrable deformations.

  8. The classical theory of fields electromagnetism

    CERN Document Server

    Helrich, Carl S

    2012-01-01

    The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green’s Functions and Laplace’s Equation and a discussion of Faraday’s Experiment further deepen the understanding. The chapter on Einstein’s relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dis...

  9. Free Quantum Field Theory from Quantum Cellular Automata

    Science.gov (United States)

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Tosini, Alessandro

    2015-10-01

    After leading to a new axiomatic derivation of quantum theory (see D'Ariano et al. in Found Phys, 2015), the new informational paradigm is entering the domain of quantum field theory, suggesting a quantum automata framework that can be regarded as an extension of quantum field theory to including an hypothetical Planck scale, and with the usual quantum field theory recovered in the relativistic limit of small wave-vectors. Being derived from simple principles (linearity, unitarity, locality, homogeneity, isotropy, and minimality of dimension), the automata theory is quantum ab-initio, and does not assume Lorentz covariance and mechanical notions. Being discrete it can describe localized states and measurements (unmanageable by quantum field theory), solving all the issues plaguing field theory originated from the continuum. These features make the theory an ideal framework for quantum gravity, with relativistic covariance and space-time emergent solely from the interactions, and not assumed a priori. The paper presents a synthetic derivation of the automata theory, showing how the principles lead to a description in terms of a quantum automaton over a Cayley graph of a group. Restricting to Abelian groups we show how the automata recover the Weyl, Dirac and Maxwell dynamics in the relativistic limit. We conclude with some new routes about the more general scenario of non-Abelian Cayley graphs. The phenomenology arising from the automata theory in the ultra-relativistic domain and the analysis of corresponding distorted Lorentz covariance is reviewed in Bisio et al. (Found Phys 2015, in this same issue).

  10. On the History of Unified Field Theories

    Directory of Open Access Journals (Sweden)

    Goenner Hubert F.M.

    2004-01-01

    Full Text Available This article is intended to give a review of the history of the classical aspects of unified field theories in the 20th century. It includes brief technical descriptions of the theories suggested, short biographical notes concerning the scientists involved, and an extensive bibliography. The present first installment covers the time span between 1914 and 1933, i.e., when Einstein was living and working in Berlin - with occasional digressions into other periods. Thus, the main theme is the unification of the electromagnetic and gravitational fields augmented by short-lived attempts to include the matter field described by Schrödinger's or Dirac's equations. While my focus lies on the conceptual development of the field, by also paying attention to the interaction of various schools of mathematicians with the research done by physicists, some prosopocraphical remarks are included.

  11. Nonrelativistic effective field theory for axions

    Science.gov (United States)

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-10-01

    Axions can be described by a relativistic field theory with a real scalar field ϕ whose self-interaction potential is a periodic function of ϕ . Low-energy axions, such as those produced in the early Universe by the vacuum misalignment mechanism, can be described more simply by a nonrelativistic effective field theory with a complex scalar field ψ whose effective potential is a function of ψ*ψ . We determine the coefficients in the expansion of the effective potential to fifth order in ψ*ψ by matching low-energy axion scattering amplitudes. In order to describe a Bose-Einstein condensate of axions that is too dense to truncate the expansion of the effective potential in powers of ψ*ψ , we develop a sequence of systematically improvable approximations to the effective potential that resum terms of all orders in ψ*ψ .

  12. Astrophysical data analysis with information field theory

    Energy Technology Data Exchange (ETDEWEB)

    Enßlin, Torsten, E-mail: ensslin@mpa-garching.mpg.de [Max Planck Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching, Germany and Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 München (Germany)

    2014-12-05

    Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.

  13. Nonrelativistic Effective Field Theory for Axions

    CERN Document Server

    Braaten, Eric; Zhang, Hong

    2016-01-01

    Axions can be described by a relativistic field theory with a real scalar field $\\phi$ whose self-interaction potential is a periodic function of $\\phi$. Low-energy axions, such as those produced in the early universe by the vacuum misalignment mechanism, can be described more simply by a nonrelativistic effective field theory with a complex scalar field $\\psi$ whose effective potential is a function of $\\psi^*\\psi$. We determine the coefficients in the expansion of the effective potential to fifth order in $\\psi^*\\psi$ by matching low-energy axion scattering amplitudes. In order to describe a Bose-Einstein condensate of axions that is too dense to expand the effective potential in powers of $\\psi^*\\psi$, we develop a sequence of systematically improvable approximations to the effective potential that include terms of all orders in $\\psi^*\\psi$.

  14. Astrophysical data analysis with information field theory

    CERN Document Server

    Enßlin, Torsten

    2014-01-01

    Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.

  15. Natural discretization in noncommutative field theory

    Energy Technology Data Exchange (ETDEWEB)

    Acatrinei, Ciprian Sorin, E-mail: acatrine@theory.nipne.ro [Department of Theoretical Physics, Horia Hulubei National Institute for Nuclear Physics, Bucharest (Romania)

    2015-12-07

    A discretization scheme for field theory is developed, in which the space time coordinates are assumed to be operators forming a noncommutative algebra. Generic waves without rotational symmetry are studied in (2+1) - dimensional scalar field theory with Heisenberg-type noncommutativity. In the representation chosen, the radial coordinate is naturally rendered discrete. Nonlocality along this coordinate, induced by noncommutativity, accounts for the angular dependence of the fields. A complete solution and the interpretation of its nonlocal features are given. The exact form of standing and propagating waves on such a discrete space is found in terms of finite series. A precise correspondence is established between the degree of nonlocality and the angular momentum of a field configuration. At small distance no classical singularities appear, even at the location of the sources. At large radius one recovers the usual commutative/continuum behaviour.

  16. Natural discretization in noncommutative field theory

    Science.gov (United States)

    Acatrinei, Ciprian Sorin

    2015-12-01

    A discretization scheme for field theory is developed, in which the space time coordinates are assumed to be operators forming a noncommutative algebra. Generic waves without rotational symmetry are studied in (2+1) - dimensional scalar field theory with Heisenberg-type noncommutativity. In the representation chosen, the radial coordinate is naturally rendered discrete. Nonlocality along this coordinate, induced by noncommutativity, accounts for the angular dependence of the fields. A complete solution and the interpretation of its nonlocal features are given. The exact form of standing and propagating waves on such a discrete space is found in terms of finite series. A precise correspondence is established between the degree of nonlocality and the angular momentum of a field configuration. At small distance no classical singularities appear, even at the location of the sources. At large radius one recovers the usual commutative/continuum behaviour.

  17. Scalar Quantum Field Theory on Fractals

    CERN Document Server

    Kar, Arnab

    2011-01-01

    We construct a family of measures for random fields based on the iterated subdivision of simple geometric shapes (triangles, squares, tetrahedrons) into a finite number of similar shapes. The intent is to construct continuum limits of scale invariant scalar field theories, by imitating Wiener's construction of the measure on the space of functions of one variable. These are Gaussian measures, except for one example of a non-Gaussian fixed point for the Ising model on a fractal. In the continuum limits what we construct have correlation functions that vary as a power of distance. In most cases this is a positive power (as for the Wiener measure) but we also find a few examples with negative exponent. In all cases the exponent is an irrational number, which depends on the particular subdivision scheme used. This suggests that the continuum limits corresponds to quantum field theories (random fields) on spaces of fractional dimension.

  18. Intersection Theory, Integrable Hierarchies and Topological Field Theory

    CERN Document Server

    Dijkgraaf, R

    1992-01-01

    In these lecture notes we review the various relations between intersection theory on the moduli space of Riemann surfaces, integrable hierarchies of KdV type, matrix models, and topological quantum field theories. We explain in particular why matrix integrals of the type considered by Kontsevich naturally appear as tau-functions associated to minimal models. Our starting point is the extremely simple form of the string equation for the topological (p,1) models, where the so-called Baker-Akhiezer function is given by a (generalized) Airy function.

  19. Generalized Quantum Theory and Mathematical Foundations of Quantum Field Theory

    Science.gov (United States)

    Maroun, Michael Anthony

    This dissertation is divided into two main topics. The first is the generalization of quantum dynamics when the Schrodinger partial differential equation is not defined even in the weak mathematical sense because the potential function itself is a distribution in the spatial variable, the same variable that is used to define the kinetic energy operator, i.e. the Laplace operator. The procedure is an extension and broadening of the distributional calculus and offers spectral results as an alternative to the only other two known methods to date, namely a) the functional calculi; and b) non-standard analysis. Furthermore, the generalizations of quantum dynamics presented within give a resolution to the time asymmetry paradox created by multi-particle quantum mechanics due to the time evolution still being unitary. A consequence is the randomization of phases needed for the fundamental justification Pauli master equation. The second topic is foundations of the quantum theory of fields. The title is phrased as ``foundations'' to emphasize that there is no claim of uniqueness but rather a proposal is put forth, which is markedly different than that of constructive or axiomatic field theory. In particular, the space of fields is defined as a space of generalized functions with involutive symmetry maps (the CPT invariance) that affect the topology of the field space. The space of quantum fields is then endowed the Frechet property and interactions change the topology in such a way as to cause some field spaces to be incompatible with others. This is seen in the consequences of the Haag theorem. Various examples and discussions are given that elucidate a new view of the quantum theory of fields and its (lack of) mathematical structure.

  20. Chiral deformations of conformal field theories

    Science.gov (United States)

    Dijkgraaf, Robbert

    1997-02-01

    We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the W1+∞ algebra, that is treated in detail.

  1. Chiral Deformations of Conformal Field Theories

    CERN Document Server

    Dijkgraaf, R

    1996-01-01

    We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the $W_{1+\\infty}$ algebra, that is treated in detail.

  2. Chiral deformations of conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R. [Amsterdam Univ. (Netherlands). Dept. of Math.

    1997-06-02

    We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the W{sub 1+{infinity}} algebra, that is treated in detail. (orig.).

  3. Chiral Deformations of Conformal Field Theories

    OpenAIRE

    Dijkgraaf, R.

    1996-01-01

    We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the $W_{1+\\infty}$ algebra, that is treat...

  4. Symmetry analysis for anisotropic field theories

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Lorena; Vergara, J. David [Instituto de Ciencias Nucleares, UNAM, Circuito Exterior s/n, Ciudad Universitaria. Delg. Coyoacan. C.P. 04510 Mexico DF (Mexico)

    2012-08-24

    The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.

  5. Quantum Field Theory from First Principles

    OpenAIRE

    Esposito, Giampiero

    2000-01-01

    When quantum fields are studied on manifolds with boundary, the corresponding one-loop quantum theory for bosonic gauge fields with linear covariant gauges needs the assignment of suitable boundary conditions for elliptic differential operators of Laplace type. There are however deep reasons to modify such a scheme and allow for pseudo-differential boundary-value problems. When the boundary operator is allowed to be pseudo-differential while remaining a projector, the conditions on its kernel...

  6. Theory of Metastable State Relaxation in a Gravitational Field for Non-Critical Binary Systems with Non-Conserved Order Parameter

    Science.gov (United States)

    Izmailov, Alexander F.; Myerson, Allan S.

    1993-01-01

    A new mathematical ansatz is developed for solution of the time-dependent Ginzburg-Landau nonlinear partial differential equation describing metastable state relaxation in binary (solute+solvent) non-critical solutions with non-conserved scalar order parameter in presence of a gravitational field. It has been demonstrated analytically that in such systems metastability initiates heterogeneous solute redistribution which results in the formation of a non-equilibrium singly-periodic spatial solute structure in the new solute-rich phase. The critical radius of nucleation and the induction time in these systems are gravity-dependent. It has also been proved that metastable state relaxation in vertical columns of supersaturated non-critical binary solutions leads to formation of the solute concentration gradient. Analytical expression for this concentration gradient is found and analysed. It is concluded that gravity can initiate phase separation (nucleation or spinodal decomposition).

  7. Quantum statistical correlations in thermal field theories: boundary effective theory

    CERN Document Server

    Bessa, A; de Carvalho, C A A; Fraga, E S

    2010-01-01

    We show that the one-loop effective action at finite temperature for a scalar field with quartic interaction has the same renormalized expression as at zero temperature if written in terms of a certain classical field $\\phi_c$, and if we trade free propagators at zero temperature for their finite-temperature counterparts. The result follows if we write the partition function as an integral over field eigenstates (boundary fields) of the density matrix element in the functional Schr\\"{o}dinger field-representation, and perform a semiclassical expansion in two steps: first, we integrate around the saddle-point for fixed boundary fields, which is the classical field $\\phi_c$, a functional of the boundary fields; then, we perform a saddle-point integration over the boundary fields, whose correlations characterize the thermal properties of the system. This procedure provides a dimensionally-reduced effective theory for the thermal system. We calculate the two-point correlation as an example.

  8. New covariant Lagrange formulation for field theories

    CERN Document Server

    Ootsuka, T

    2012-01-01

    A novel approach for Lagrange formulation for field theories is proposed in terms of Kawaguchi geometry (areal metric space). On the extended configuration space M for classical field theory composed of spacetime and field configuration space, one can define a geometrical structure called Kawaguchi areal metric K from the field Lagrangian and (M,K) can be regarded as Kawaguchi manifold. The geometrical action functional is given by K and the dynamics of field is determined by covariant Euler-Lagrange equation derived from the variational principle of the action. The solution to the equation becomes a minimal hypersurface on (M,K) which has the same dimension as spacetime. We propose that this hypersurface is what we should regard as our real spacetime manifold, while the usual way to understand spacetime is to consider it as the parameter spacetime (base manifold) of a fibre bundle. In this way, the dynamics of field and spacetime structure is unified by Kawaguchi geometry. The theory has the property of stro...

  9. Euclidean quantum field theory: Curved spacetimes and gauge fields

    Science.gov (United States)

    Ritter, William Gordon

    This thesis presents a new formulation of quantum field theory (QFT) on curved spacetimes, with definite advantages over previous formulations, and an introduction to the millennium prize problem on four-dimensional gauge theory. Our constructions are completely rigorous, making QFT on curved spacetimes into a subfield of mathematics, and we achieve the first analytic control over nonperturbative aspects of interacting theories on curved spacetimes. The success of Euclidean path integrals to capture nonperturbative aspects of QFT has been striking. The Euclidean path integral is the most accurate method of calculating strong-coupling effects in gauge theory (such as glueball masses). Euclidean methods are also useful in the study of black holes, as evidenced by the Hartle-Hawking calculation of black-hole radiance. From a mathematical point of view, on flat spacetimes the Euclidean functional integral provides the most elegant method of constructing examples of interacting relativistic field theories. Yet until now, the incredibly-useful Euclidean path integral had never been given a definitive mathematical treatment on curved backgrounds. It is our aim to rectify this situation. Along the way, we discover that the Dirac operator on an arbitrary Clifford bundle has a resolvent kernel which is the Laplace transform of a positive measure. In studying spacetime symmetries, we discover a new way of constructing unitary representations of noncompact Lie groups. We also define and explore an interesting notion of convergence for Laplacians. The same mathematical framework applies to scalar fields, fermions, and gauge fields. The later chapters are devoted to gauge theory. We present a rigorous, self-contained introduction to the subject, aimed at mathematicians and using the language of modern mathematics, with a view towards nonperturbative renormalization in four dimensions. The latter ideas are unfinished. A completion of the final chapter would imply the construction

  10. Theory of sound field in a room - re-examination

    Institute of Scientific and Technical Information of China (English)

    MAA Dah-You

    2002-01-01

    The theory of steady-state sound field in a room is re-examined. It is shown thatthe normal-mode solution of the wave equation is not the exact solution, and the derivation isincorrect... The exact solution of the wave equation in a reflective room should contain boththe free space solution (direct sound field) and the standing wave solution (reverberant soundfield), the latter is formed by all the reflected waves to a group of allowed wave types (thenormal modes of vibration ).

  11. Thermodynamics of spinning branes and their dual field theories

    DEFF Research Database (Denmark)

    Harmark, Troels; Obers, N. A.

    2000-01-01

    We discuss general spinning p-branes of string and M-theory and use their thermodynamics along with the correspondence between near-horizon brane solutions and field theories with 16 supercharges to describe the thermodynamic behavior of these theories in the presence of voltages under the R...... limits are remarkably close and (ii) The tree-level R^4 corrections to the spinning D3-brane generate a decrease in the free energy at strong coupling towards the weak coupling result. We also comment on the generalization to spinning brane bound states and their thermodynamics, which are relevant...

  12. Dirac-Kahler Theory and Massless Fields

    CERN Document Server

    Pletyukhov, V A

    2010-01-01

    Three massless limits of the Dirac-Kahler theory are considered. It is shown that the Dirac-Kahler equation for massive particles can be represented as a result of the gauge-invariant mixture (topological interaction) of the above massless fields.

  13. Monopole in the dilatonic gauge field theory

    CERN Document Server

    Karczewska, D

    2000-01-01

    A numerical study of coupled to the dilaton field, static, spherically symmetric monopole solutions inspired by the Kaluza-Klein theory with large extra dimensions are presented. The generalized Prasad-Sommerfield solution is obtained. We show that monopole may have also the dilaton cloud configurations.

  14. Modular bootstrap in Liouville field theory

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, Leszek, E-mail: hadasz@th.if.uj.edu.p [M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Jaskolski, Zbigniew, E-mail: jask@ift.uni.wroc.p [Institute of Theoretical Physics, University of Wroclaw, pl. M. Borna, 50-204 Wroclaw (Poland); Suchanek, Paulina, E-mail: paulina@ift.uni.wroc.p [Institute of Theoretical Physics, University of Wroclaw, pl. M. Borna, 50-204 Wroclaw (Poland)

    2010-02-22

    The modular matrix for the generic 1-point conformal blocks on the torus is expressed in terms of the fusion matrix for the 4-point blocks on the sphere. The modular invariance of the toric 1-point functions in the Liouville field theory with DOZZ structure constants is proved.

  15. Modular bootstrap in Liouville field theory

    CERN Document Server

    Hadasz, Leszek; Suchanek, Paulina

    2009-01-01

    The modular matrix for the generic 1-point conformal blocks on the torus is expressed in terms of the fusion matrix for the 4-point blocks on the sphere. The modular invariance of the toric 1-point functions in the Liouville field theory with DOZZ structure constants is proved.

  16. Wilson lines in quantum field theory

    CERN Document Server

    Cherednikov, Igor O; Veken, Frederik F van der

    2014-01-01

    The objective of this book is to get the reader acquainted with theoretical and mathematical foundations of the concept of Wilson loops in the context of modern quantum field theory. It teaches how to perform independently with some elementary calculations on Wilson lines, and shows the recent development of the subject in different important areas of research.

  17. Scalar Field Theory on Fuzzy S^4

    CERN Document Server

    Medina, J; Medina, Julieta; Connor, Denjoe O'

    2003-01-01

    Scalar fields are studied on fuzzy $S^4$ and a solution is found for the elimination of the unwanted degrees of freedom that occur in the model. The resulting theory can be interpreted as a Kaluza-Klein reduction of CP^3 to S^4 in the fuzzy context.

  18. Perturbative quantum gravity in double field theory

    Science.gov (United States)

    Boels, Rutger H.; Horst, Christoph

    2016-04-01

    We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.

  19. Perturbative quantum gravity in double field theory

    CERN Document Server

    Boels, Rutger H

    2015-01-01

    We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.

  20. An Introduction to Effective Field Theory

    Science.gov (United States)

    Burgess, C. P.

    2007-11-01

    This review summarizes effective field theory techniques, which are the modern theoretical tools for exploiting the existence of hierarchies of scale in a physical problem. The general theoretical framework is described and evaluated explicitly for a simple model. Power-counting results are illustrated for a few cases of practical interest, and several applications to quantum electrodynamics are described.

  1. Nonlocal and quasi-local field theories

    CERN Document Server

    Tomboulis, E T

    2015-01-01

    We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasi-local (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasi-local kernels all acausal effects are confined within the compact support regi...

  2. Observable currents in lattice field theories

    CERN Document Server

    Zapata, José A

    2016-01-01

    Observable currents are spacetime local objects that induce physical observables when integrated on an auxiliary codimension one surface. Since the resulting observables are independent of local deformations of the integration surface, the currents themselves carry most of the information about the induced physical observables. I study observable currents in a multisymplectic framework for Lagrangian field theory over discrete spacetime. A weak version of observable currents preserves many of their properties, while inducing a family of observables capable of separating points in the space of physically distinct solutions. A Poisson bracket gives the space of observable currents the structure of a Lie algebra. Peierls bracket for bulk observables gives an algebra homomorphism mapping equivalence classes of bulk observables to weak observable currents. The study covers scalar fields, nonlinear sigma models and gauge theories (including gauge theory formulations of general relativity) on the lattice. Even when ...

  3. Investigations In Higher Derivative Field Theories

    CERN Document Server

    Paul, Biswajit

    2015-01-01

    Canonical analysis leading to formal quantisation of the higher derivative theories are considered. The first order formalism is adopted where all the configuration space variables along with their higher time derivatives are considered to be independent fields. A systematic algorithm of abstracting the independent gauge symmetries is developed which is an extension of the method developed by Banerjee et al. for the usual first order theories. For the massive relativistic particle model with curvature, we solve the mismatch in the no of independent gauge parameters and no of independent primary fist class constarints. In addition, we show a direct connection between the gauge symmetry and the $W_3$-algebra for the rigid relativistic particle. Also, BRST symmetries for both the massive and massless particle models have been considered and its connection to $W_3$-algebras is demonstrated. The exact mapping of this gauge symmetry is shown with the reparametrisation invariance. Different models from field theory,...

  4. Field theories of condensed matter physics

    CERN Document Server

    Fradkin, Eduardo

    2013-01-01

    Presenting the physics of the most challenging problems in condensed matter using the conceptual framework of quantum field theory, this book is of great interest to physicists in condensed matter and high energy and string theorists, as well as mathematicians. Revised and updated, this second edition features new chapters on the renormalization group, the Luttinger liquid, gauge theory, topological fluids, topological insulators and quantum entanglement. The book begins with the basic concepts and tools, developing them gradually to bring readers to the issues currently faced at the frontiers of research, such as topological phases of matter, quantum and classical critical phenomena, quantum Hall effects and superconductors. Other topics covered include one-dimensional strongly correlated systems, quantum ordered and disordered phases, topological structures in condensed matter and in field theory and fractional statistics.

  5. Causality Constraints in Conformal Field Theory

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d-dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂φ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinni...

  6. Causality Constraints in Conformal Field Theory

    CERN Document Server

    Hartman, Thomas; Kundu, Sandipan

    2015-01-01

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d-dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the $(\\partial\\phi)^4$ coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning o...

  7. String amplitudes: from field theories to number theory

    CERN Document Server

    CERN. Geneva

    2017-01-01

    In a variety of recent developments, scattering amplitudes hint at new symmetries of and unexpected connections between physical theories which are otherwise invisible in their conventional description via Feynman diagrams or Lagrangians. Yet, many of these hidden structures are conveniently accessible to string theory where gauge interactions and gravity arise as the low-energy excitations of open and closed strings. In this talk, I will give an intuitive picture of gravity as a double copy of gauge interactions and extend the web of relations to scalar field theories including chiral Lagrangians for Goldstone bosons. The string corrections to gauge and gravity amplitudes beyond their point-particle limit exhibit elegant mathematical structures and offer a convenient laboratory to explore modern number-theoretic concepts in a simple context. As a common theme with Feynman integrals, string amplitudes introduce a variety of periods and special functions including multiple zeta values and polylogarithms, orga...

  8. Relating field theories via stochastic quantization

    Science.gov (United States)

    Dijkgraaf, Robbert; Orlando, Domenico; Reffert, Susanne

    2010-01-01

    This note aims to subsume several apparently unrelated models under a common framework. Several examples of well-known quantum field theories are listed which are connected via stochastic quantization. We highlight the fact that the quantization method used to obtain the quantum crystal is a discrete analog of stochastic quantization. This model is of interest for string theory, since the (classical) melting crystal corner is related to the topological A-model. We outline several ideas for interpreting the quantum crystal on the string theory side of the correspondence, exploring interpretations in the Wheeler-De Witt framework and in terms of a non-Lorentz invariant limit of topological M-theory.

  9. Relating field theories via stochastic quantization

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, Robbert [KdV Institute for Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam (Netherlands); Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands); Orlando, Domenico [Institute for the Mathematics and Physics of the Universe, University of Tokyo, Kashiwa-no-Ha 5-1-5, Kashiwa-shi, 277-8568 Chiba (Japan); Reffert, Susanne, E-mail: susanne.reffert@impu.j [Institute for the Mathematics and Physics of the Universe, University of Tokyo, Kashiwa-no-Ha 5-1-5, Kashiwa-shi, 277-8568 Chiba (Japan)

    2010-01-11

    This note aims to subsume several apparently unrelated models under a common framework. Several examples of well-known quantum field theories are listed which are connected via stochastic quantization. We highlight the fact that the quantization method used to obtain the quantum crystal is a discrete analog of stochastic quantization. This model is of interest for string theory, since the (classical) melting crystal corner is related to the topological A-model. We outline several ideas for interpreting the quantum crystal on the string theory side of the correspondence, exploring interpretations in the Wheeler-De Witt framework and in terms of a non-Lorentz invariant limit of topological M-theory.

  10. Relating Field Theories via Stochastic Quantization

    CERN Document Server

    Dijkgraaf, Robbert; Reffert, Susanne

    2009-01-01

    This note aims to subsume several apparently unrelated models under a common framework. Several examples of well-known quantum field theories are listed which are connected via stochastic quantization. We highlight the fact that the quantization method used to obtain the quantum crystal is a discrete analog of stochastic quantization. This model is of interest for string theory, since the (classical) melting crystal corner is related to the topological A-model. We outline several ideas for interpreting the quantum crystal on the string theory side of the correspondence, exploring interpretations in the Wheeler-De Witt framework and in terms of a non-Lorentz invariant limit of topological M-theory.

  11. Gravitational Goldstone fields from affine gauge theory

    CERN Document Server

    Tresguerres, R

    2000-01-01

    In order to facilitate the application of standard renormalization techniques, gravitation should be decribed, if possible, in pure connection formalism, as a Yang-Mills theory of a certain spacetime group, say the Poincare or the affine group. This embodies the translational as well as the linear connection. However, the coframe is not the standard Yang-Mills type gauge field of the translations, since it lacks the inhomogeneous gradient term in the gauge transformations. By explicitly restoring the "hidden" piece responsible for this behavior within the framework of nonlinear realizations, the usual geometrical interpretation of the dynamical theory becomes possible, and in addition one can avoid the metric or coframe degeneracy which would otherwise interfere with the integrations within the path integral. We claim that nonlinear realizations provide a general mathematical scheme clarifying the foundations of gauge theories of spacetime symmetries. When applied to construct the Yang-Mills theory of the aff...

  12. Approaches to the sign problem in lattice field theory

    CERN Document Server

    Gattringer, Christof

    2016-01-01

    Quantum field theories (QFTs) at finite densities of matter generically involve complex actions. Standard Monte-Carlo simulations based upon importance sampling, which have been producing quantitative first principle results in particle physics for almost fourty years, cannot be applied in this case. Various strategies to overcome this so-called Sign Problem or Complex Action Problem were proposed during the last thirty years. We here review the sign problem in lattice field theories, focussing on two more recent methods: Dualization to world-line type of representations and the density-of-states approach.

  13. Approaches to the sign problem in lattice field theory

    Science.gov (United States)

    Gattringer, Christof; Langfeld, Kurt

    2016-08-01

    Quantum field theories (QFTs) at finite densities of matter generically involve complex actions. Standard Monte Carlo simulations based upon importance sampling, which have been producing quantitative first principle results in particle physics for almost forty years, cannot be applied in this case. Various strategies to overcome this so-called sign problem or complex action problem were proposed during the last thirty years. We here review the sign problem in lattice field theories, focusing on two more recent methods: dualization to worldline type of representations and the density-of-states approach.

  14. Quantum Mind from a Classical Field Theory of the Brain

    CERN Document Server

    Zizzi, Paola

    2011-01-01

    We suggest that, with regard to a theory of quantum mind, brain processes can be described by a classical, dissipative, non-abelian gauge theory. In fact, such a theory has a hidden quantum nature due to its non-abelian character, which is revealed through dissipation, when the theory reduces to a quantum vacuum, where temperatures are of the order of absolute zero, and coherence of quantum states is preserved. We consider in particular the case of pure SU(2) gauge theory with a special anzatz for the gauge field, which breaks Lorentz invariance. In the ansatz, a contraction mapping plays the role of dissipation. In the limit of maximal dissipation, which corresponds to the attractive fixed point of the contraction mapping, the gauge fields reduce, up to constant factors, to the Pauli quantum gates for one-qubit states. Then tubuline-qubits can be processed in the quantum vacuum of the classical field theory of the brain, where decoherence is avoided due to the extremely low temperature. Finally, we interpret...

  15. Scattering matrix theory for stochastic scalar fields.

    Science.gov (United States)

    Korotkova, Olga; Wolf, Emil

    2007-05-01

    We consider scattering of stochastic scalar fields on deterministic as well as on random media, occupying a finite domain. The scattering is characterized by a generalized scattering matrix which transforms the angular correlation function of the incident field into the angular correlation function of the scattered field. Within the accuracy of the first Born approximation this matrix can be expressed in a simple manner in terms of the scattering potential of the scatterer. Apart from determining the angular distribution of the spectral intensity of the scattered field, the scattering matrix makes it possible also to determine the changes in the state of coherence of the field produced on scattering.

  16. A periodic table of effective field theories

    Science.gov (United States)

    Cheung, Clifford; Kampf, Karol; Novotny, Jiri; Shen, Chia-Hsien; Trnka, Jaroslav

    2017-02-01

    We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTs with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d < 6 and verify that they correspond to known theories in the literature. Our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.

  17. Gaussian Markov random fields theory and applications

    CERN Document Server

    Rue, Havard

    2005-01-01

    Gaussian Markov Random Field (GMRF) models are most widely used in spatial statistics - a very active area of research in which few up-to-date reference works are available. This is the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects. This book includes extensive case-studies and, online, a c-library for fast and exact simulation. With chapters contributed by leading researchers in the field, this volume is essential reading for statisticians working in spatial theory and its applications, as well as quantitative researchers in a wide range of science fields where spatial data analysis is important.

  18. Polarization-free Quantization of Linear Field Theories

    CERN Document Server

    Lanéry, Suzanne

    2016-01-01

    It is well-known that there exist infinitely-many inequivalent representations of the canonical (anti)-commutation relations of Quantum Field Theory (QFT). A way out, suggested by Algebraic QFT, is to instead define the quantum theory as encompassing all possible (abstract) states. In the present paper, we describe a quantization scheme for general linear (aka. free) field theories that can be seen as intermediate between traditional Fock quantization and full Algebraic QFT, in the sense that: * it provides a constructive, explicit description of the resulting space of quantum states; * it does not require the choice of a polarization, aka. the splitting of classical solutions into positive vs. negative-frequency modes: in fact, any Fock representation corresponding to a "reasonable" choice of polarization is naturally embedded; * it supports the implementation of a "large enough" class of linear symplectomorphisms of the classical, infinite-dimensional phase space. The proposed quantization (like Algebraic Q...

  19. De Sitter Space, Interacting Quantum Field Theory And Alpha Vacua

    CERN Document Server

    Goldstein, K

    2005-01-01

    Inspired by recent evidence for a positive cosmological constant, this thesis considers some of the implications of trying to incorporate approximately seventy percent of the universe, namely dark energy, consistently into quantum field theory on a curved background. Such considerations may have implications for inflation, the understanding of dark energy at the present time and finally the challenging topic of trying to incorporate a positive cosmological constant into string theory. We will mainly examine various aspects of the one parameter family of de Sitter invariant states—the so called α-vacua. On the phenomenological side, not only could such states provide a window into trans-planckian physics through their imprint on the cosmological microwave background (CMB), but they may also be a source of ultra-high energy cosmic rays (UHECR) at the present time. From a purely theoretical perspective, formulating interacting quantum field theory in these states is a challenging problem whic...

  20. Nonlocal scalar quantum field theory from causal sets

    Science.gov (United States)

    Belenchia, Alessio; Benincasa, Dionigi M. T.; Liberati, Stefano

    2015-03-01

    We study a non-local scalar quantum field theory in flat spacetime derived from the dynamics of a scalar field on a causal set. We show that this non-local QFT contains a continuum of massive modes in any dimension. In 2 dimensions the Hamiltonian is positive definite and therefore the quantum theory is well-defined. In 4-dimensions, we show that the unstable modes of the non-local d'Alembertian are propagated via the so called Wheeler propagator and hence do not appear in the asymptotic states. In the free case studied here the continuum of massive mode are shown to not propagate in the asymptotic states. However the Hamiltonian is not positive definite, therefore potential issues with the quantum theory remain. Finally, we conclude with hints toward what kind of phenomenology one might expect from such non-local QFTs.

  1. Nonlocal Scalar Quantum Field Theory from Causal Sets

    CERN Document Server

    Belenchia, Alessio; Liberati, Stefano

    2014-01-01

    We study a non-local scalar quantum field theory in flat spacetime derived from the dynamics of a scalar field on a causal set. We show that this non-local QFT contains a continuum of massive modes in any dimension. In 2 dimensions the Hamiltonian is positive definite and therefore the quantum theory is well-defined. In 4-dimensions, we show that the unstable modes of the non-local d'Alembertian are propagated via the so called Wheeler propagator and hence do not appear in the asymptotic states. In the free case studied here the continuum of massive mode are shown to not propagate in the asymptotic states. However the Hamiltonian is not positive definite, therefore potential issues with the quantum theory remain. Finally, we conclude with hints toward what kind of phenomenology one might expect from such non-local QFTs.

  2. Group field cosmology: a cosmological field theory of quantum geometry

    CERN Document Server

    Calcagni, Gianluca; Oriti, Daniele

    2012-01-01

    Following the idea of a field quantization of gravity as realized in group field theory, we construct a minisuperspace model where the wavefunction of canonical quantum cosmology (either Wheeler-DeWitt or loop quantum cosmology) is promoted to a field, the coordinates are minisuperspace variables, the kinetic operator is the Hamiltonian constraint operator, and the action features a nonlinear and possibly nonlocal interaction term. We discuss free-field classical solutions, the quantum propagator, and a mean-field approximation linearizing the equation of motion and augmenting the Hamiltonian constraint by an effective term mixing gravitational and matter variables. Depending on the choice of interaction, this can reproduce, for example, a cosmological constant, a scalar-field potential, or a curvature contribution.

  3. Effective field theory approach to quasi-single field inflation

    CERN Document Server

    Noumi, Toshifumi; Yokoyama, Daisuke

    2012-01-01

    We apply the effective field theory approach to quasi-single field inflation, which contains an additional scalar field with Hubble scale mass other than inflaton. Based on the time-dependent spatial diffeomorphism, which is not broken by the time-dependent background evolution, the most generic action of quasi-single field inflation is constructed up to third order fluctuations. Using the obtained action, the effects of the additional massive scalar field on the primordial curvature perturbations are discussed. In particular, we calculate the power spectrum and discuss the momentum-dependence of three point functions in the squeezed limit for general settings of quasi-single field inflation. Our framework can be also applied to inflation models with heavy particles. We make a qualitative discussion on the effects of heavy particles during inflation and that of sharp turning trajectory in our framework.

  4. A computational theory of visual receptive fields.

    Science.gov (United States)

    Lindeberg, Tony

    2013-12-01

    A receptive field constitutes a region in the visual field where a visual cell or a visual operator responds to visual stimuli. This paper presents a theory for what types of receptive field profiles can be regarded as natural for an idealized vision system, given a set of structural requirements on the first stages of visual processing that reflect symmetry properties of the surrounding world. These symmetry properties include (i) covariance properties under scale changes, affine image deformations, and Galilean transformations of space-time as occur for real-world image data as well as specific requirements of (ii) temporal causality implying that the future cannot be accessed and (iii) a time-recursive updating mechanism of a limited temporal buffer of the past as is necessary for a genuine real-time system. Fundamental structural requirements are also imposed to ensure (iv) mutual consistency and a proper handling of internal representations at different spatial and temporal scales. It is shown how a set of families of idealized receptive field profiles can be derived by necessity regarding spatial, spatio-chromatic, and spatio-temporal receptive fields in terms of Gaussian kernels, Gaussian derivatives, or closely related operators. Such image filters have been successfully used as a basis for expressing a large number of visual operations in computer vision, regarding feature detection, feature classification, motion estimation, object recognition, spatio-temporal recognition, and shape estimation. Hence, the associated so-called scale-space theory constitutes a both theoretically well-founded and general framework for expressing visual operations. There are very close similarities between receptive field profiles predicted from this scale-space theory and receptive field profiles found by cell recordings in biological vision. Among the family of receptive field profiles derived by necessity from the assumptions, idealized models with very good qualitative

  5. General principles of quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bogolubov, N.N.; Logunov, A.A. (AN SSSR, Moscow (USSR) Moskovskij Gosudarstvennyj Univ., Moscow (USSR)); Oksak, A.I. (Institute for High Energy Physics, Moscow (USSR)); Todorov, I.T. (Bylgarska Akademiya na Naukite, Sofia (Bulgaria) Bulgarian Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria))

    1990-01-01

    This major volume provides a account of general quantum field theory, with an emphasis on model-independent methods. The important aspects of the development of the subject are described in detail and are shown to have promising links with many branches of modern mathematics and theoretical physics, such as random fields (probability), statistical physics, and elemantary particles. The material is presented in a thorough, systematic way and the mathematical methods of quantum field theory are also given. The text is self-contained and contains numerous exercises. Topics of independent interest are given in appendices. The book also contains a large bibliography. (author). 1181 refs. Includes index of notation and subject index; includes 1181 refs.

  6. Phase-space quantization of field theory.

    Energy Technology Data Exchange (ETDEWEB)

    Curtright, T.; Zachos, C.

    1999-04-20

    In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999.

  7. Effective Field Theory for Jet Processes.

    Science.gov (United States)

    Becher, Thomas; Neubert, Matthias; Rothen, Lorena; Shao, Ding Yu

    2016-05-13

    Processes involving narrow jets receive perturbative corrections enhanced by logarithms of the jet opening angle and the ratio of the energies inside and outside the jets. Analyzing cone-jet processes in effective field theory, we find that in addition to soft and collinear fields their description requires degrees of freedom that are simultaneously soft and collinear to the jets. These collinear-soft particles can resolve individual collinear partons, leading to a complicated multi-Wilson-line structure of the associated operators at higher orders. Our effective field theory provides, for the first time, a factorization formula for a cone-jet process, which fully separates the physics at different energy scales. Its renormalization-group equations control all logarithmically enhanced higher-order terms, in particular also the nonglobal logarithms.

  8. Gauge Field Theories, 2nd Edition

    Science.gov (United States)

    Frampton, Paul H.

    2000-08-01

    The first edition of Gauge Field Theories, published in 1985, quickly became widely used in universities and other institutions of higher learning around the world. Written by well-known physicist Paul Frampton, the new edition continues to offer a first-rate mathematical treatment of gauge field theories, while thoroughly updating all chapters to keep pace with developments in the field. Frampton emphasizes formalism rather than experiments and provides sufficient detail for readers wishing to do their own calculations or pursue theoretical physics research. Special features of the Second Edition include: * Improved, logical organization of the material on gauge invariance, quantization, and renormalization * Major revision of the chapter on electroweak interactions, incorporating the latest precision data and discovery of the top quark * Discussions of renormalization group and quantum chromodynamics * A completely new chapter on model building

  9. Quantum Lifshitz Field Theory of a Frustrated Ferromagnet.

    Science.gov (United States)

    Balents, Leon; Starykh, Oleg A

    2016-04-29

    We propose a universal nonlinear sigma model field theory for one-dimensional frustrated ferromagnets, which applies in the vicinity of a "quantum Lifshitz point," at which the ferromagnetic state develops a spin wave instability. We investigate the phase diagram resulting from perturbations of the exchange and of magnetic field away from the Lifshitz point, and uncover a rich structure with two distinct regimes of different properties, depending upon the value of a marginal, dimensionless, parameter of the theory. In the regime relevant for one-dimensional systems with low spin, we find a metamagnetic transition line to a vector chiral phase. This line terminates in a critical end point, beyond which there is at least one multipolar or "spin nematic" phase. We show that the field theory is asymptotically exactly soluble near the Lifshitz point.

  10. Light-like tachyon condensation in Open String Field Theory

    CERN Document Server

    Hellerman, Simeon

    2008-01-01

    We use open string field theory to study the dynamics of unstable branes in the bosonic string theory, in the background of a generic linear dilaton. We find a simple exact solution describing a dynamical interpolation between the perturbative vacuum and the recently discovered nonperturbative tachyon vacuum. In our solution, the open string tachyon increases exponentially along a null direction, after which nonlinearities set in and cause the solution to asymptote to a static state. In particular, the wild oscillations of the open string fields which plague the time-like rolling tachyon solution are entirely absent. Our model thus represents the first example proving that the true tachyon vacuum of open string field theory can be realized as the endpoint of a dynamical transition from the perturbative vacuum.

  11. Nonequilibrium Dynamical Mean-Field Theory for Bosonic Lattice Models

    Science.gov (United States)

    Strand, Hugo U. R.; Eckstein, Martin; Werner, Philipp

    2015-01-01

    We develop the nonequilibrium extension of bosonic dynamical mean-field theory and a Nambu real-time strong-coupling perturbative impurity solver. In contrast to Gutzwiller mean-field theory and strong-coupling perturbative approaches, nonequilibrium bosonic dynamical mean-field theory captures not only dynamical transitions but also damping and thermalization effects at finite temperature. We apply the formalism to quenches in the Bose-Hubbard model, starting from both the normal and the Bose-condensed phases. Depending on the parameter regime, one observes qualitatively different dynamical properties, such as rapid thermalization, trapping in metastable superfluid or normal states, as well as long-lived or strongly damped amplitude oscillations. We summarize our results in nonequilibrium "phase diagrams" that map out the different dynamical regimes.

  12. Scaling behaviour of three-dimensional group field theory

    CERN Document Server

    Magnen, Jacques; Rivasseau, Vincent; Smerlak, Matteo

    2009-01-01

    Group field theory is a generalization of matrix models, with triangulated pseudomanifolds as Feynman diagrams and state sum invariants as Feynman amplitudes. In this paper, we consider Boulatov's three-dimensional model and its Freidel-Louapre positive regularization (hereafter the BFL model) with a `ultraviolet' cutoff, and study rigorously their scaling behavior in the large cutoff limit. We prove an optimal bound on large order Feynman amplitudes, which shows that the BFL model is perturbatively more divergent than the former. We then upgrade this result to the constructive level, using, in a self-contained way, the modern tools of constructive field theory: we construct the Borel sum of the BFL perturbative series via a convergent `cactus' expansion, and establish the `ultraviolet' scaling of its Borel radius. Our method shows how the `sum over triangulations' in quantum gravity can be tamed rigorously, and paves the way for the renormalization program in group field theory.

  13. Nonrelativistic Fermions in Magnetic Fields a Quantum Field Theory Approach

    CERN Document Server

    Espinosa, Olivier R; Lepe, S; Méndez, F

    2001-01-01

    The statistical mechanics of nonrelativistic fermions in a constant magnetic field is considered from the quantum field theory point of view. The fermionic determinant is computed using a general procedure that contains all possible regularizations. The nonrelativistic grand-potential can be expressed in terms polylogarithm functions, whereas the partition function in 2+1 dimensions and vanishing chemical potential can be compactly written in terms of the Dedekind eta function. The strong and weak magnetic fields limits are easily studied in the latter case by using the duality properties of the Dedekind function.

  14. Field theory description of neutrino oscillations

    CERN Document Server

    Dvornikov, Maxim

    2010-01-01

    We review various field theory approaches to the description of neutrino oscillations in vacuum and external fields. First we discuss a relativistic quantum mechanics based approach which involves the temporal evolution of massive neutrinos. To describe the dynamics of the neutrinos system we use exact solutions of wave equations in presence of an external field. It allows one to exactly take into account both the characteristics of neutrinos and the properties of an external field. In particular, we examine flavor oscillations an vacuum and in background matter as well as spin flavor oscillations in matter under the influence of an external electromagnetic field. Moreover we consider the situation of hypothetical nonstandard neutrino interactions with background fermions. In the case of ultrarelativistic particles we reproduce an effective Hamiltonian which is used in the standard quantum mechanical approach for the description of neutrino oscillations. The corrections to the quantum mechanical Hamiltonian a...

  15. Building Theory from Data in the Field of Entrepreneurship

    DEFF Research Database (Denmark)

    Mäkelä, Markus; Turcan, Romeo V.

    to usefully define “grounded theory” and “case study research.” Based on this discussion, we elaborate the overlapping areas of grounded theory research and case study research and make suggestions for the usage of these terms. Second, we seek to firmly link our discussion to the potential value of grounded......In this paper, we describe the process of building of grounded theory. We have an emphasis on the field of entrepreneurship: we describe and analyse current grounded theory research in entrepreneurship and point out directions and potential improvements for future research. A basis for our...... assessment of the current state of grounded theory research in entrepreneurship and for our suggestions for the future is provided by an analysis that we have conducted of recent grounded theory-based entrepreneurship research that has been published in top-tier research journals. Our paper has two goals...

  16. Recursion equations in gauge field theories

    Science.gov (United States)

    Migdal, A. A.

    An approximate recursion equation is formulated, describing the scale transformation of the effective action of a gauge field. In two-dimensional space-time the equation becomes exact. In four-dimensional theories it reproduces asymptotic freedom to an accuracy of 30% in the coefficients of the β-function. In the strong-coupling region the β-function remains negative and this results in an asymptotic prison in the infrared region. Possible generalizations and applications to the quark-gluon gauge theory are discussed.

  17. Tachyon Vacuum in Cubic Superstring Field Theory

    CERN Document Server

    Erler, Theodore

    2008-01-01

    In this paper we give an exact analytic solution for tachyon condensation in the modified (picture 0) cubic superstring field theory. We prove the absence of cohomology and, crucially, reproduce the correct value for the D-brane tension. The solution is surprising for two reasons: First, the existence of a tachyon vacuum in this theory has not been definitively established in the level expansion. Second, the solution {\\it vanishes} in the GSO$(-)$ sector, implying a ``tachyon vacuum'' solution exists even for a {\\it BPS} D-brane.

  18. On field theory quantization around instantons

    CERN Document Server

    Anselmi, D

    2009-01-01

    With the perspective of looking for experimentally detectable physical applications of the so-called topological embedding, a procedure recently proposed by the author for quantizing a field theory around a non-discrete space of classical minima (instantons, for example), the physical implications are discussed in a ``theoretical'' framework, the ideas are collected in a simple logical scheme and the topological version of the Ginzburg-Landau theory of superconductivity is solved in the intermediate situation between type I and type II superconductors.

  19. Melonic phase transition in group field theory

    CERN Document Server

    Baratin, Aristide; Oriti, Daniele; Ryan, James P; Smerlak, Matteo

    2013-01-01

    Group field theories have recently been shown to admit a 1/N expansion dominated by so-called `melonic graphs', dual to triangulated spheres. In this note, we deepen the analysis of this melonic sector. We obtain a combinatorial formula for the melonic amplitudes in terms of a graph polynomial related to a higher dimensional generalization of the Kirchhoff tree-matrix theorem. Simple bounds on these amplitudes show the existence of a phase transition driven by melonic interaction processes. We restrict our study to the Boulatov-Ooguri models, which describe topological BF theories and are the basis for the construction of four dimensional models of quantum gravity.

  20. Knot Invariants from Classical Field Theories

    CERN Document Server

    Leal, L C

    1999-01-01

    We consider the Non-Abelian Chern-Simons term coupled to external particles, in a gauge and diffeomorphism invariant form. The classical equations of motion are perturbativelly studied, and the on-shell action is shown to produce knot-invariants associated with the sources. The first contributions are explicitly calculated, and the corresponding knot-invariants are recognized. We conclude that the interplay between Knot Theory and Topological Field Theories is manifested not only at the quantum level, but in a classical context as well.

  1. Linearized theory of peridynamic states.

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart Andrew

    2009-04-01

    A state-based peridynamic material model describes internal forces acting on a point in terms of the collective deformation of all the material within a neighborhood of the point. In this paper, the response of a state-based peridynamic material is investigated for a small deformation superposed on a large deformation. The appropriate notion of a small deformation restricts the relative displacement between points, but it does not involve the deformation gradient (which would be undefined on a crack). The material properties that govern the linearized material response are expressed in terms of a new quantity called the modulus state. This determines the force in each bond resulting from an incremental deformation of itself or of other bonds. Conditions are derived for a linearized material model to be elastic, objective, and to satisfy balance of angular momentum. If the material is elastic, then the modulus state is obtainable from the second Frechet derivative of the strain energy density function. The equation of equilibrium with a linearized material model is a linear Fredholm integral equation of the second kind. An analogue of Poincare's theorem is proved that applies to the infinite dimensional space of all peridynamic vector states, providing a condition similar to irrotationality in vector calculus.

  2. Linearized theory of peridynamic states.

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart Andrew

    2009-04-01

    A state-based peridynamic material model describes internal forces acting on a point in terms of the collective deformation of all the material within a neighborhood of the point. In this paper, the response of a state-based peridynamic material is investigated for a small deformation superposed on a large deformation. The appropriate notion of a small deformation restricts the relative displacement between points, but it does not involve the deformation gradient (which would be undefined on a crack). The material properties that govern the linearized material response are expressed in terms of a new quantity called the modulus state. This determines the force in each bond resulting from an incremental deformation of itself or of other bonds. Conditions are derived for a linearized material model to be elastic, objective, and to satisfy balance of angular momentum. If the material is elastic, then the modulus state is obtainable from the second Frechet derivative of the strain energy density function. The equation of equilibrium with a linearized material model is a linear Fredholm integral equation of the second kind. An analogue of Poincare's theorem is proved that applies to the infinite dimensional space of all peridynamic vector states, providing a condition similar to irrotationality in vector calculus.

  3. Hermeneutical Field Theory and the Structural Character of Understanding.

    Science.gov (United States)

    Whitehouse, William Leonard

    Through a series of exploratory case studies focusing on hermeneutics, phenomenology, relativity, field theory, quantum mechanics, chronobiology, chaos theory, holographic theory and various aspects of mathematics, a set of hermeneutical constraints and degrees of freedom are generated. There are a set of eight field equations given in the thesis which give qualitative symbolic expression to the aforementioned spectrum of constraints and degrees of freedom that constitute the structural character of understanding. However, as is sometimes the case with their quantitative mathematical counterparts, the hermeneutical field equations are capable of giving a variety of descriptions or solutions for one and the same set of conditions. The task, therefore, is to try to sort out those solutions which have reflective properties with respect to the structural character of reality from those which do not have such properties. The thesis addresses this task by introducing the idea of hermeneutical field theory. In this theory the notion of a semiotic operator or semiotic quantum plays a central role. More specifically, this quantum is considered to be the carrier of hermeneutical force. It arises as a field property at the complex, horizontal membrane-manifold linking human consciousness with different levels of scale of reality. When taken collectively, the aforementioned set of equations gives expression to the structural character of hermeneutical field theory. Therefore, when one begins to run concrete variables through the theory underlying these equations, one encounters various kinds of hermeneutical constraints and degrees of freedom. These constraints and degrees of freedom characterize the dialectical engagement of consciousness and reality as one seeks to acquire understanding concerning the above mentioned variables and the context which gives rise to them. Hermeneutical field theory is really the study of the factors that affect the state of the six internal

  4. Hamiltonian truncation approach to quenches in the Ising field theory

    CERN Document Server

    Rakovszky, Tibor; Collura, Mario; Kormos, Márton; Takács, Gábor

    2016-01-01

    In contrast to lattice systems where powerful numerical techniques such as matrix product state based methods are available to study the non-equilibrium dynamics, the non-equilibrium behaviour of continuum systems is much harder to simulate. We demonstrate here that Hamiltonian truncation methods can be efficiently applied to this problem, by studying the quantum quench dynamics of the 1+1 dimensional Ising field theory using a truncated free fermionic space approach. After benchmarking the method with integrable quenches corresponding to changing the mass in a free Majorana fermion field theory, we study the effect of an integrability breaking perturbation by the longitudinal magnetic field. In both the ferromagnetic and paramagnetic phases of the model we find persistent oscillations with frequencies set by the low-lying particle excitations even for moderate size quenches. In the ferromagnetic phase these particles are the various non-perturbative confined bound states of the domain wall excitations, while...

  5. Searching for pathways involving dressed states in optimal control theory.

    Science.gov (United States)

    von den Hoff, Philipp; Kowalewski, Markus; de Vivie-Riedle, Regina

    2011-01-01

    Selective population of dressed states has been proposed as an alternative control pathway in molecular reaction dynamics [Wollenhaupt et al., J. Photochem. Photobiol. A: Chem., 2006, 180, 248]. In this article we investigate if, and under which conditions, this strong field pathway is included in the search space of optimal control theory. For our calculations we used the proposed example of the potassium dimer, in which the different target states can be reached via dressed states by resonant transition. Especially, we investigate whether the optimization algorithm is able to find the route involving the dressed states although the target state lies out of resonance in the bare state picture.

  6. Multiconfigurational self-consistent reaction field theory for nonequilibrium solvation

    DEFF Research Database (Denmark)

    Mikkelsen, Kurt V.; Cesar, Amary; Ågren, Hans

    1995-01-01

    We present multiconfigurational self-consistent reaction field theory and implementation for solvent effects on a solute molecular system that is not in equilibrium with the outer solvent. The approach incorporates two different polarization vectors for studying the influence of the solvent...... states influenced by the two types of polarization vectors. The general treatment of the correlation problem through the use of complete and restricted active space methodologies makes the present multiconfigurational self-consistent reaction field approach general in that it can handle any type of state......, open-shell, excited, and transition states. We demonstrate the theory by computing solvatochromatic shifts in optical/UV spectra of some small molecules and electron ionization and electron detachment energies of the benzene molecule. It is shown that the dependency of the solvent induced affinity...

  7. Thermodynamic States in Explosion Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L

    2010-03-12

    We investigate the thermodynamic states occurring in explosion fields from condensed explosive charges. These states are often modeled with a Jones-Wilkins-Lee (JWL) function. However, the JWL function is not a Fundamental Equation of Thermodynamics, and therefore cannot give a complete specification of such states. We use the Cheetah code of Fried to study the loci of states of the expanded detonation products gases from C-4 charges, and their combustion products air. In the Le Chatelier Plane of specific-internal-energy versus temperature, these loci are fit with a Quadratic Model function u(T), which has been shown to be valid for T < 3,000 K and p < 1k-bar. This model is used to derive a Fundamental Equation u(v,s) for C-4. Given u(v,s), one can use Maxwell's Relations to derive all other thermodynamic functions, such as temperature: T(v,s), pressure: p(v,s), enthalpy: h(v,s), Gibbs free energy: g(v,s) and Helmholz free energy: f(v,s); these loci are displayed in figures for C-4. Such complete equations of state are needed for numerical simulations of blast waves from explosive charges, and their reflections from surfaces.

  8. Thermodynamic States in Explosion Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L

    2009-10-16

    Here we investigate the thermodynamic states occurring in explosion fields from the detonation of condensed explosives in air. In typical applications, the pressure of expanded detonation products gases is modeled by a Jones-Wilkins-Lee (JWL) function: P{sub JWL} = f(v,s{sub CJ}); constants in that function are fit to cylinder test data. This function provides a specification of pressure as a function of specific volume, v, along the expansion isentrope (s = constant = s{sub CJ}) starting at the Chapman-Jouguet (CJ) state. However, the JWL function is not a fundamental equation of thermodynamics, and therefore gives an incomplete specification of states. For example, explosions inherently involve shock reflections from surfaces; this changes the entropy of the products, and in such situations the JWL function provides no information on the products states. In addition, most explosives are not oxygen balanced, so if hot detonation products mix with air, they after-burn, releasing the heat of reaction via a turbulent combustion process. This raises the temperature of explosion products cloud to the adiabatic flame temperature ({approx}3,000K). Again, the JWL function provides no information on the combustion products states.

  9. Decoherence and dynamical entropy generation in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Koksma, Jurjen F., E-mail: J.F.Koksma@uu.nl [Institute for Theoretical Physics (ITP) and Spinoza Institute, Utrecht University, Postbus 80195, 3508 TD Utrecht (Netherlands); Prokopec, Tomislav, E-mail: T.Prokopec@uu.nl [Institute for Theoretical Physics (ITP) and Spinoza Institute, Utrecht University, Postbus 80195, 3508 TD Utrecht (Netherlands); Schmidt, Michael G., E-mail: M.G.Schmidt@thphys.uni-heidelberg.de [Institut fuer Theoretische Physik, Heidelberg University, Philosophenweg 16, D-69120 Heidelberg (Germany)

    2012-01-20

    We formulate a novel approach to decoherence based on neglecting observationally inaccessible correlators. We apply our formalism to a renormalised interacting quantum field theoretical model. Using out-of-equilibrium field theory techniques we show that the Gaussian von Neumann entropy for a pure quantum state increases to the interacting thermal entropy. This quantifies decoherence and thus measures how classical our pure state has become. The decoherence rate is equal to the single particle decay rate in our model. We also compare our approach to existing approaches to decoherence in a simple quantum mechanical model. We show that the entropy following from the perturbative master equation suffers from physically unacceptable secular growth.

  10. Positive Energy Conditions in 4D Conformal Field Theory

    CERN Document Server

    Farnsworth, Kara; Prilepina, Valentina

    2015-01-01

    We argue that all consistent 4D quantum field theories obey a spacetime-averaged weak energy inequality $\\langle T^{00} \\rangle \\ge -C/L^4$, where $L$ is the size of the smearing region, and $C$ is a positive constant that depends on the theory. If this condition is violated, the theory has states that are indistinguishable from states of negative total energy by any local measurement, and we expect instabilities or other inconsistencies. We apply this condition to 4D conformal field theories, and find that it places constraints on the OPE coefficients of the theory. The constraints we find are weaker than the "conformal collider" constraints of Hofman and Maldacena. We speculate that there may be theories that violate the Hofman-Maldacena bounds, but satisfy our bounds. In 3D CFTs, the only constraint we find is equivalent to the positivity of 2-point function of the energy-momentum tensor, which follows from unitarity. Our calculations are performed using momentum-space Wightman functions, which are remarka...

  11. The Effective Field Theory of Multifield Inflation

    CERN Document Server

    Senatore, Leonardo

    2010-01-01

    We generalize the Effective Field Theory of Inflation to include additional light scalar degrees of freedom that are in their vacuum at the time the modes of interest are crossing the horizon. In order to make the scalars light in a natural way we consider the case where they are the Goldstone bosons of a global symmetry group or are partially protected by an approximate supersymmetry. We write the most general Lagrangian that couples the scalar mode associated to the breaking of time translation during inflation to the additional light scalar fields. This Lagrangian is constrained by diffeomorphism invariance and the additional symmetries that keep the new scalars light. This Lagrangian describes the fluctuations around the time of horizon crossing and it is supplemented with a general parameterization describing how the additional fluctuating fields can affect cosmological perturbations. We find that multifield inflation can reproduce the non-Gaussianities that can be generated in single field inflation but...

  12. Second-order multisymplectic field theory: A variational approach to second-order multisymplectic field theory

    OpenAIRE

    Kouranbaeva, Shinar; Shkoller, Steve

    1999-01-01

    This paper presents a geometric-variational approach to continuous and discrete {\\it second-order} field theories following the methodology of \\cite{MPS}. Staying entirely in the Lagrangian framework and letting $Y$ denote the configuration fiber bundle, we show that both the multisymplectic structure on $J^3Y$ as well as the Noether theorem arise from the first variation of the action function. We generalize the multisymplectic form formula derived for first order field theories in \\cite{MPS...

  13. Magnetic fields and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Salsbury Jr., Freddie [Univ. of California, Berkeley, CA (United States)

    1999-02-01

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.

  14. Probabilities and Signalling in Quantum Field Theory

    CERN Document Server

    Dickinson, Robert; Millington, Peter

    2016-01-01

    We present an approach to computing probabilities in quantum field theory for a wide class of source-detector models. The approach works directly with probabilities and not with squared matrix elements, and the resulting probabilities can be written in terms of expectation values of nested commutators and anti-commutators. We present results that help in the evaluation of these, including an expression for the vacuum expectation values of general nestings of commutators and anti-commutators in scalar field theory. This approach allows one to see clearly how faster-than-light signalling is prevented, because it leads to a diagrammatic expansion in which the retarded propagator plays a prominent role. We illustrate the formalism using the simple case of the much-studied Fermi two-atom problem.

  15. The Topology of Double Field Theory

    CERN Document Server

    Hassler, Falk

    2016-01-01

    We describe the doubled space of Double Field Theory as a group manifold $G$ with an arbitrary generalized metric. Local information from the latter is not relevant to our discussion and so $G$ only captures the topology of the doubled space. Strong Constraint solutions are maximal isotropic submanifold $M$ in $G$. We construct them and their Generalized Geometry in Double Field Theory on Group Manifolds. In general, $G$ admits different physical subspace $M$ which are T-dual to each other. By studying two examples, we reproduce the topology changes induced by T-duality with non-trivial $H$-flux which were discussed by Bouwknegt, Evslin and Mathai [hep-th/0306062].

  16. The Effective Field Theory of Dark Energy

    CERN Document Server

    Gubitosi, Giulia; Vernizzi, Filippo

    2012-01-01

    We propose a universal description of dark energy and modified gravity that includes all single-field models. By extending a formalism previously applied to inflation, we consider the metric universally coupled to matter fields and we write in terms of it the most general unitary gauge action consistent with the residual unbroken symmetries of spatial diffeomorphisms. Our action is particularly suited for cosmological perturbation theory: the background evolution depends on only three operators. All other operators start at least at quadratic order in the perturbations and their effects can be studied independently and systematically. In particular, we focus on the properties of a few operators which appear in non-minimally coupled scalar-tensor gravity and galileon theories. In this context, we study the mixing between gravity and the scalar degree of freedom. We assess the quantum and classical stability, derive the speed of sound of fluctuations and the renormalization of the Newton constant. The scalar ca...

  17. Quantum field theory on projective modules

    CERN Document Server

    Gayral, V; Krajewski, T; Wulkenhaar, R

    2006-01-01

    We propose a general formulation of perturbative quantum field theory on (finitely generated) projective modules over noncommutative algebras. This is the analogue of scalar field theories with non-trivial topology in the noncommutative realm. We treat in detail the case of Heisenberg modules over noncommutative tori and show how these models can be understood as large rectangular pxq matrix models, in the limit p/q->theta, where theta is a possibly irrational number. We find out that the modele is highly sensitive to the number-theoretical aspect of theta and suffers from an UV/IR-mixing. We give a way to cure the entanglement and prove one-loop renormalizability.

  18. Gravity duals for nonrelativistic conformal field theories.

    Science.gov (United States)

    Balasubramanian, Koushik; McGreevy, John

    2008-08-08

    We attempt to generalize the anti-de Sitter/conformal field theory correspondence to nonrelativistic conformal field theories which are invariant under Galilean transformations. Such systems govern ultracold atoms at unitarity, nucleon scattering in some channels, and, more generally, a family of universality classes of quantum critical behavior. We construct a family of metrics which realize these symmetries as isometries. They are solutions of gravity with a negative cosmological constant coupled to pressureless dust. We discuss realizations of the dust, which include a bulk superconductor. We develop the holographic dictionary and find two-point correlators of the correct form. A strange aspect of the correspondence is that the bulk geometry has two extra noncompact dimensions.

  19. A 1+1 field theory spectrum from M theory

    CERN Document Server

    Rodríguez, M J; Rodriguez, Maria Jose; Talavera, Pere

    2005-01-01

    The spectrum of a 1+1 dimensional field theory with dynamical quarks is constructed. We focus in testing the possible brane embeddings that can support fundamental matter. The requirement on the wave function normalisation and the dependence on the quark mass of the quark condensate allow to discard most of the embeddings. We pay attention to some more general considerations comparing the behaviour of the non-compact theory at different dimensions. In particular we explored the possibility that the AdS/CFT duality ``formalism'' introduce a scale breaking parameter at (1+1)d allowing the existence of classical glueballs and its possible relation with point-like string configurations. The screening effects and the appearance of a possible phase transition is also discussed.

  20. Conformal invariance in quantum field theory

    CERN Document Server

    Todorov, Ivan T; Petkova, Valentina B

    1978-01-01

    The present volume is an extended and up-to-date version of two sets of lectures by the first author and it reviews more recent work. The notes aim to present a self-contained exposition of a constructive approach to conformal invariant quantum field theory. Other parts in application of the conformal group to quantum physics are only briefly mentioned. The relevant mathematical material (harmonic analysis on Euclidean conformal groups) is briefly summarized. A new exposition of physical applications is given, which includes an explicit construction of the vacuum operator product expansion for the free zero mass fields.

  1. Scalar Field Theories with Polynomial Shift Symmetries

    CERN Document Server

    Griffin, Tom; Horava, Petr; Yan, Ziqi

    2014-01-01

    We continue our study of naturalness in nonrelativistic QFTs of the Lifshitz type, focusing on scalar fields that can play the role of Nambu-Goldstone (NG) modes associated with spontaneous symmetry breaking. Such systems allow for an extension of the constant shift symmetry to a shift by a polynomial of degree $P$ in spatial coordinates. These "polynomial shift symmetries" in turn protect the technical naturalness of modes with a higher-order dispersion relation, and lead to a refinement of the proposed classification of infrared Gaussian fixed points available to describe NG modes in nonrelativistic theories. Generic interactions in such theories break the polynomial shift symmetry explicitly to the constant shift. It is thus natural to ask: Given a Gaussian fixed point with polynomial shift symmetry of degree $P$, what are the lowest-dimension operators that preserve this symmetry, and deform the theory into a self-interacting scalar field theory with the shift symmetry of degree $P$? To answer this (essen...

  2. On level crossing in conformal field theories

    OpenAIRE

    Korchemsky, G.

    2016-01-01

    We study the properties of operators in a unitary conformal field theory whose scaling dimensions approach each other for some values of the parameters and satisfy von Neumann-Wigner non-crossing rule. We argue that the scaling dimensions of such operators and their OPE coefficients have a universal scaling behavior in the vicinity of the crossing point. We demonstrate that the obtained relations are in a good agreement with the known examples of the level-crossing phenomenon in maximally sup...

  3. Cosmological phase transitions from lattice field theory

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2011-11-22

    In this proceedings contribution we discuss the fate of the electroweak and the quantum chromodynamics phase transitions relevant for the early stage of the universe at non-zero temperature. These phase transitions are related to the Higgs mechanism and the breaking of chiral symmetry, respectively. We will review that non-perturbative lattice field theory simulations show that these phase transitions actually do not occur in nature and that physical observables show a completely smooth behaviour as a function of the temperature.

  4. A product formula and combinatorial field theory

    CERN Document Server

    Horzela, A; Duchamp, G H E; Penson, K A; Solomon, A I

    2004-01-01

    We treat the problem of normally ordering expressions involving the standard boson operators a, a* where [a,a*]=1. We show that a simple product formula for formal power series - essentially an extension of the Taylor expansion - leads to a double exponential formula which enables a powerful graphical description of the generating functions of the combinatorial sequences associated with such functions - in essence, a combinatorial field theory. We apply these techniques to some examples related to specific physical Hamiltonians.

  5. Bosonic Dynamical Mean-Field Theory

    Science.gov (United States)

    Snoek, Michiel; Hofstetter, Walter

    2013-02-01

    We derive the bosonic dynamical mean-field equations for bosonic atoms in optical lattices with arbitrary lattice geometry. The equations are presented as a systematic expansion in 1/z, z being the number of lattice neighbours. Hence the theory is applicable in sufficiently high-dimensional lattices. We apply the method to a two-component mixture, for which a rich phase diagram with spin order is revealed.

  6. Halo Effective Field Theory of 6He

    Directory of Open Access Journals (Sweden)

    Thapaliya Arbin

    2016-01-01

    Full Text Available 6He has a cluster structure with a tight 4He (α core surrounded by two loosely bound neutrons (n making it a halo nucleus. The leading-order (LO Halo Effective Field Theory (EFT [1, 2] calculations using momentum-space Faddeev equations pertinent to a bound 6He were carried out in [3]. In this work, we investigate 6He up to next-to-leading order (NLO within Halo EFT.

  7. p-Mechanics and Field Theory

    OpenAIRE

    Kisil, Vladimir V.

    2004-01-01

    The orbit method of Kirillov is used to derive the p-mechanical brackets [math-ph/0007030, quant-ph/0212101]. They generate the quantum (Moyal) and classic (Poisson) brackets on respective orbits corresponding to representations of the Heisenberg group. The extension of p-mechanics to field theory is made through the De Donder--Weyl Hamiltonian formulation. The principal step is the substitution of the Heisenberg group with Galilean. Keywords: Classic and quantum mechanics, Moyal brackets, Po...

  8. Conformal Field Theories and Deep Inelastic Scattering

    CERN Document Server

    Komargodski, Zohar; Parnachev, Andrei; Zhiboedov, Alexander

    2016-01-01

    We consider Deep Inelastic Scattering (DIS) thought experiments in unitary Conformal Field Theories (CFTs). We explore the implications of the standard dispersion relations for the OPE data. We derive positivity constraints on the OPE coefficients of minimal-twist operators of even spin s \\geq 2. In the case of s=2, when the leading-twist operator is the stress tensor, we reproduce the Hofman-Maldacena bounds. For s>2 the bounds are new.

  9. Steady electric fields and currents elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    2013-01-01

    Steady Electric Fields and Currents, Volume 1 is an introductory text to electromagnetism and potential theory. This book starts with the fields associated with stationary charges and unravels the stationary condition to allow consideration of the flow of steady currents in closed circuits. The opening chapter discusses the experimental results that require mathematical explanation and discussion, particularly those referring to phenomena that question the validity of the simple Newtonian concepts of space and time. The subsequent chapters consider steady-state fields, electrostatics, dielectr

  10. General Relativistic Mean Field Theory for rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Madokoro, Hideki [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Matsuzaki, Masayuki

    1998-03-01

    The {sigma}-{omega} model Lagrangian is generalized to an accelerated frame by using the technique of general relativity which is known as tetrad formalism. We apply this model to the description of rotating nuclei within the mean field approximation, which we call General Relativistic Mean Field Theory (GRMFT) for rotating nuclei. The resulting equations of motion coincide with those of Munich group whose formulation was not based on the general relativistic transformation property of the spinor fields. Some numerical results are shown for the yrast states of the Mg isotopes and the superdeformed rotational bands in the A {approx} 60 mass region. (author)

  11. Superconformal partial waves in Grassmannian field theories

    CERN Document Server

    Doobary, Reza

    2015-01-01

    We derive superconformal partial waves for all scalar four-point functions on a super Grassmannian space Gr(m|n,2m|2n) for all m,n. This family of four-point functions includes those of all (arbitrary weight) half BPS operators in both N=4 SYM (m=n=2) and in N=2 superconformal field theories in four dimensions (m=2,n=1) on analytic superspace. It also includes four-point functions of all (arbitrary dimension) scalar fields in non-supersymmetric conformal field theories (m=2,n=0) on Minkowski space, as well as those of a certain class of representations of the compact SU(2n) coset spaces. As an application we then specialise to N=4 SYM and use these results to perform a detailed superconformal partial wave analysis of the four- point functions of arbitrary weight half BPS operators. We discuss the non-trivial separation of protected and unprotected sectors for the , and cases in an SU(N) gauge theory at finite N. The correlator predicts a non-trivial protected twist four sector for which we can completely ...

  12. Fermionic ghosts in Moyal string field theory

    Science.gov (United States)

    Bars, Itzhak; Kishimoto, Isao; Matsuo, Yutaka

    2003-07-01

    We complete the construction of the Moyal star formulation of bosonic open string field theory (MSFT) by providing a detailed study of the fermionic ghost sector. In particular, as in the case of the matter sector, (1) we construct a map from Witten's star product to the Moyal product, (2) we propose a regularization scheme which is consistent with the matter sector and (3) as a check of the formalism, we derive the ghost Neumann coefficients algebraically directly from the Moyal product. The latter satisfy the Gross-Jevicki nonlinear relations even in the presence of the regulator, and when the regulator is removed they coincide numerically with the expression derived from conformal field theory. After this basic construction, we derive a regularized action of string field theory in the Siegel gauge and define the Feynman rules. We give explicitly the analytic expression of the off-shell four point function for tachyons, including the ghost contribution. Some of the results in this paper have already been used in our previous publications. This paper provides the technical details of the computations which were omitted there.

  13. Fermionic Ghosts in Moyal String Field Theory

    CERN Document Server

    Bars, Itzhak; Matsuo, Y

    2003-01-01

    We complete the construction of the Moyal star formulation of bosonic open string field theory (MSFT) by providing a detailed study of the fermionic ghost sector. In particular, as in the case of the matter sector, (1) we construct a map from Witten's star product to the Moyal product, (2) we propose a regularization scheme which is consistent with the matter sector and (3) as a check of the formalism, we derive the ghost Neumann coefficients algebraically directly from the Moyal product. The latter satisfy the Gross-Jevicki nonlinear relations even in the presence of the regulator, and when the regulator is removed they coincide numerically with the expression derived from conformal field theory. After this basic construction, we derive a regularized action of string field theory in the Siegel gauge and define the Feynman rules. We give explicitly the analytic expression of the off-shell four point function for tachyons, including the ghost contribution. Some of the results in this paper have already been us...

  14. A Periodic Table of Effective Field Theories

    CERN Document Server

    Cheung, Clifford; Novotny, Jiri; Shen, Chia-Hsien; Trnka, Jaroslav

    2016-01-01

    We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTs with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d<6 and verify that they correspond to known theories in the literature. Our results suggest that the exceptional theories are the natural EFT analogs of gauge theor...

  15. Undergraduate Lecture Notes in Topological Quantum Field Theory

    OpenAIRE

    2008-01-01

    These third-year lecture notes are designed for a 1-semester course in topological quantum field theory (TQFT). Assumed background in mathematics and physics are only standard second-year subjects: multivariable calculus, introduction to quantum mechanics and basic electromagnetism. Keywords: quantum mechanics/field theory, path integral, Hodge decomposition, Chern-Simons and Yang-Mills gauge theories, conformal field theory

  16. Tensor networks for gauge field theories

    CERN Document Server

    Buyens, Boye; Verstraete, Frank; Van Acoleyen, Karel

    2015-01-01

    Over the last decade tensor network states (TNS) have emerged as a powerful tool for the study of quantum many body systems. The matrix product states (MPS) are one particular class of TNS and are used for the simulation of (1+1)-dimensional systems. In this proceeding we use MPS to determine the elementary excitations of the Schwinger model in the presence of an electric background field. We obtain an estimate for the value of the background field where the one-particle excitation with the largest energy becomes unstable and decays into two other elementary particles with smaller energy.

  17. ΛΛ6He in cluster effective field theory

    Science.gov (United States)

    Ando, S.-I.; Oh, Y.

    2016-03-01

    The bound state of ΛΛ6He is studied as a three-body (ΛΛα) system in a cluster effective field theory at leading order. We find that the system exhibits the limit cycle that is associated with the formation of bound states called the Efimov states. This implies that the three-body contact interaction should be promoted to the leading order. The relationship of the binding energy and the ΛΛ scattering length is discussed as well as the role of the scale of this system.

  18. ΛΛ6He in cluster effective field theory

    Directory of Open Access Journals (Sweden)

    Ando S.-I.

    2016-01-01

    Full Text Available The bound state of ΛΛ6He is studied as a three-body (ΛΛα system in a cluster effective field theory at leading order. We find that the system exhibits the limit cycle that is associated with the formation of bound states called the Efimov states. This implies that the three-body contact interaction should be promoted to the leading order. The relationship of the binding energy and the ΛΛ scattering length is discussed as well as the role of the scale of this system.

  19. The Theory of the Legal State

    Directory of Open Access Journals (Sweden)

    L. J. Du Plessis

    1981-03-01

    Full Text Available In this article, which has not been published before, the late Prof. du Plessis lays bare the philosophical roots of the liberal-democratic state, or the legal state, as he preferred to call it. After a recapitulative version of the theory of the legal state, het indicates the origin of this form in Greek philosophy and in Medieval thought. The stress, however, is on the Modem Era, in which he distinuishes two main periods in the development of the theory of the legal state:the jusnaturalistic period and thepositivistic or formal period.He argues that positivism has destroyed the original ideal o f individual freedom in facts by regarding justice as a purely formal matter susceptible to any content. All guarantees for individual freedom which rested on a universal normative system fe ll away. The state defines its own competence and limits itself to legal forms in all its activities. The legal state thus merely becomes the state, any state as determined by fixed rules o f its own making to which it binds itselfin all its functioning. Law sinks to a mere form in which the juristic personality of the state manifests its supremacy, and from this there is only one step to the concept that the state is identical with law, so that any state necessarily is a legal state, and any state action which is formally correct, is legal. The article concludes with a brief representation o f the author’s own political and legal vision.

  20. Quantum field theories of extended objects

    CERN Document Server

    Friedan, Daniel

    2016-01-01

    First steps are taken in a project to construct a general class of conformal and perhaps, eventually, non-conformal quantum field theories of (n-1)-dimensional extended objects in a d=2n dimensional conformal space-time manifold M. The fields live on the spaces E of relative integral (n-1)-cycles in M -- the integral (n-1)-currents of given boundary. Each E is a complete metric space geometrically analogous to a Riemann surface $\\Sigma$. For example, if $M=S^d$, $\\Sigma = S^2$. The quantum fields on E are to be mapped to observables in a 2d CFT on $\\Sigma$. The correlation functions on E are to be given by the 2d correlation functions on $\\Sigma$. The goal is to construct a CFT of extended objects in d=2n dimensions for every 2d CFT, and eventually a non-conformal QFT of extended objects for every non-conformal 2d QFT, so that all the technology of 2d QFT can be applied to the construction and analysis of quantum field theories of extended objects. The project depends crucially on settling some mathematical q...