WorldWideScience

Sample records for field measurements compared

  1. Comparing i-Tree modeled ozone deposition with field measurements in a periurban Mediterranean forest

    Science.gov (United States)

    A. Morani; D. Nowak; S. Hirabayashi; G. Guidolotti; M. Medori; V. Muzzini; S. Fares; G. Scarascia Mugnozza; C. Calfapietra

    2014-01-01

    Ozone flux estimates from the i-Tree model were compared with ozone flux measurements using the Eddy Covariance technique in a periurban Mediterranean forest near Rome (Castelporziano). For the first time i-Tree model outputs were compared with field measurements in relation to dry deposition estimates. Results showed generally a...

  2. Comparing Hall Effect and Field Effect Measurements on the Same Single Nanowire.

    Science.gov (United States)

    Hultin, Olof; Otnes, Gaute; Borgström, Magnus T; Björk, Mikael; Samuelson, Lars; Storm, Kristian

    2016-01-13

    We compare and discuss the two most commonly used electrical characterization techniques for nanowires (NWs). In a novel single-NW device, we combine Hall effect and back-gated and top-gated field effect measurements and quantify the carrier concentrations in a series of sulfur-doped InP NWs. The carrier concentrations from Hall effect and field effect measurements are found to correlate well when using the analysis methods described in this work. This shows that NWs can be accurately characterized with available electrical methods, an important result toward better understanding of semiconductor NW doping.

  3. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    Science.gov (United States)

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Electric field measurements on Cluster: comparing the double-probe and electron drift techniques

    Directory of Open Access Journals (Sweden)

    A. I. Eriksson

    2006-03-01

    Full Text Available The four Cluster satellites each carry two instruments designed for measuring the electric field: a double-probe instrument (EFW and an electron drift instrument (EDI. We compare data from the two instruments in a representative sample of plasma regions. The complementary merits and weaknesses of the two techniques are illustrated. EDI operations are confined to regions of magnetic fields above 30 nT and where wave activity and keV electron fluxes are not too high, while EFW can provide data everywhere, and can go far higher in sampling frequency than EDI. On the other hand, the EDI technique is immune to variations in the low energy plasma, while EFW sometimes detects significant nongeophysical electric fields, particularly in regions with drifting plasma, with ion energy (in eV below the spacecraft potential (in volts. We show that the polar cap is a particularly intricate region for the double-probe technique, where large nongeophysical fields regularly contaminate EFW measurments of the DC electric field. We present a model explaining this in terms of enhanced cold plasma wake effects appearing when the ion flow energy is higher than the thermal energy but below the spacecraft potential multiplied by the ion charge. We suggest that these conditions, which are typical of the polar wind and occur sporadically in other regions containing a significant low energy ion population, cause a large cold plasma wake behind the spacecraft, resulting in spurious electric fields in EFW data. This interpretation is supported by an analysis of the direction of the spurious electric field, and by showing that use of active potential control alleviates the situation.

  5. When Theory Meets Data: Comparing Model Predictions Of Hillslope Sediment Size With Field Measurements.

    Science.gov (United States)

    Mahmoudi, M.; Sklar, L. S.; Leclere, S.; Davis, J. D.; Stine, A.

    2017-12-01

    The size distributions of sediment produced on hillslopes and supplied to river channels influence a wide range of fluvial processes, from bedrock river incision to the creation of aquatic habitats. However, the factors that control hillslope sediment size are poorly understood, limiting our ability to predict sediment size and model the evolution of sediment size distributions across landscapes. Recently separate field and theoretical investigations have begun to address this knowledge gap. Here we compare the predictions of several emerging modeling approaches to landscapes where high quality field data are available. Our goals are to explore the sensitivity and applicability of the theoretical models in each field context, and ultimately to provide a foundation for incorporating hillslope sediment size into models of landscape evolution. The field data include published measurements of hillslope sediment size from the Kohala peninsula on the island of Hawaii and tributaries to the Feather River in the northern Sierra Nevada mountains of California, and an unpublished data set from the Inyo Creek catchment of the southern Sierra Nevada. These data are compared to predictions adapted from recently published modeling approaches that include elements of topography, geology, structure, climate and erosion rate. Predictive models for each site are built in ArcGIS using field condition datasets: DEM topography (slope, aspect, curvature), bedrock geology (lithology, mineralogy), structure (fault location, fracture density), climate data (mean annual precipitation and temperature), and estimates of erosion rates. Preliminary analysis suggests that models may be finely tuned to the calibration sites, particularly when field conditions most closely satisfy model assumptions, leading to unrealistic predictions from extrapolation. We suggest a path forward for developing a computationally tractable method for incorporating spatial variation in production of hillslope

  6. Small Field Dosimetry Comparing Measured Data Versus the ADAC Pinnacle 3 Model

    National Research Council Canada - National Science Library

    Ludolph, Daniel

    2004-01-01

    .... While this method can optimize conformity to tumors and provide better sparing of surrounding tissue, it also presents a host of challenges due to reliance on dosimetry data for small field sizes...

  7. Comparative assessment of pressure field reconstructions from particle image velocimetry measurements and Lagrangian particle tracking

    NARCIS (Netherlands)

    van Gent, P.L.; Michaelis, D; van Oudheusden, B.W.; Weiss, P.E.; de Kat, R.; Laskari, A.; Jeon, Y.J.; David, L; Schanz, D; Huhn, F.; Gesemann, S; Novara, M.; McPhaden, C.; Neeteson, N. J.; Rival, David E.; Schneiders, J.F.G.; Schrijer, F.F.J.

    2017-01-01

    A test case for pressure field reconstruction from particle image velocimetry (PIV) and Lagrangian particle tracking (LPT) has been developed by constructing a simulated experiment from a zonal detached eddy simulation for an axisymmetric base flow at Mach 0.7. The test case comprises sequences

  8. Measuring the Perception of Travel Security – Comparative Analysis of Students in Two Different Fields: Tourism and Security

    Directory of Open Access Journals (Sweden)

    Sebastjan Repnik

    2015-01-01

    Full Text Available The aim of the research was to determine how students/respondents perceive security on their travels in Europe. The respondents belong to two different study programmes, one focusing on the field of security (Faculty of Criminal Justice and Security, University of Maribor and the other on the field of tourism (Higher Vocational School for Catering and Tourism. Our main presumption was that students of the two institutions developed a different attitude towards travel security since their studies focus on two substantively different academic-professional fields. We examined their attitude towards security factors such as: security climate, self-protection and collective security. In our research we included a sample of 100 students/respondents. We used an instrument in the form of a questionnaire for the quantitative measurement of responses on a 5-point Likert scale. To portray the results of the research we also used various statistical indicators in the computer programme SPSS such as: arithmetic mean, Man-Whitney test, frequency distribution of responses, where independent variables are displayed. The findings suggest that the students/respondents attitude towards safety and their expectations on individual elements of all three security factors differ in the two target groups. The expectations of students/respondents of FCJS regarding the implementation and provision of security are higher compared to students/respondents of HVC. Respondents have different experience with security on their travels, as the number of travels varies quite substantially between students. Both institutions can use the results of the research in the evaluation processes of their study programmes. On the basis of the results of the research it is substantiated that the field and content of study have an impact on the students’ attitude to elements of security while travelling. The findings are intended to all researchers in the field of security and tourism, as

  9. Comparing Harmonic Similarity Measures

    NARCIS (Netherlands)

    de Haas, W.B.; Robine, M.; Hanna, P.; Veltkamp, R.C.; Wiering, F.

    2010-01-01

    We present an overview of the most recent developments in polyphonic music retrieval and an experiment in which we compare two harmonic similarity measures. In contrast to earlier work, in this paper we specifically focus on the symbolic chord description as the primary musical representation and

  10. Measuring arterial oxygenation in a high altitude field environment: comparing portable pulse oximetry with blood gas analysis.

    Science.gov (United States)

    Ross, Elliot M; Matteucci, Michael J; Shepherd, Matthew; Barker, Matthew; Orr, Lance

    2013-06-01

    High altitude environments present unique medical treatment challenges. Medical providers often use small portable pulse oximetry devices to help guide their clinical decision making. A significant body of high altitude research is based on the use of these devices to monitor hypoxia, yet there is a paucity of evidence that these devices are accurate in these environments. We studied whether these devices perform accurately and reliably under true mountain conditions. Healthy unacclimatized active-duty military volunteers participating in mountain warfare training at 2100 m (6900 feet) above sea level were evaluated with several different pulse oximetry devices while in a cold weather, high altitude field environment and then had arterial blood gases (ABG) drawn using an i-STAT for comparison. The pulse oximeter readings were compared with the gold standard ABG readings. A total of 49 individuals completed the study. There was no statistically significant difference between any of the devices and the gold standard of ABG. The best performing device was the PalmSAT (PS) 8000SM finger probe with a mean difference of 2.17% and SD of 2.56 (95% CI, 1.42% to 2.92%). In decreasing order of performance were the PS 8000AA finger probe (mean ± SD, 2.54% ± 2.68%; 95% CI, 1.76% to 3.32%), the PS 8000Q ear probe (2.47% ± 4.36%; 95% CI, 1.21% to 3.75%), the Nonin Onyx 9500 (3.29% ± 3.12%; 95% CI, 2.39% to 4.20%), and finally the PS 8000R forehead reflectance sensor (5.15% ± 2.97%; 95% CI, 4.28% to 6.01%). Based on the results of this study, results of the newer portable pulse oximeters appear to be closely correlated to that of the ABG measurements when tested in true mountain conditions. Copyright © 2013 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  11. Measurement of radiofrequency fields

    International Nuclear Information System (INIS)

    Leonowich, J.A.

    1992-05-01

    We are literally surrounded by radiofrequency (RFR) and microwave radiation, from both natural and man-made sources. The identification and control of man-made sources of RFR has become a high priority of radiation safety professionals in recent years. For the purposes of this paper, we will consider RFR to cover the frequencies from 3 kHz to 300 MHz, and microwaves from 300 MHz to 300 GHz, and will use the term RFR interchangeably to describe both. Electromagnetic radiation and field below 3 kHz is considered Extremely Low Frequency (ELF) and will not be discussed in this paper. Unlike x- and gamma radiation, RFR is non-ionizing. The energy of any RFR photon is insufficient to produce ionizations in matter. The measurement and control of RFR hazards is therefore fundamentally different from ionizing radiation. The purpose of this paper is to acquaint the reader with the fundamental issues involved in measuring and safely using RFR fields. 23 refs

  12. Analysis of seasonal strain measurements in asphalt materials under accelerated pavement testing and comparing field performance and laboratory measured binder tension properties.

    Science.gov (United States)

    2009-06-01

    Seasonal variation of measured pavement responses with temperature and its relationship to pavement performance has not been : thoroughly evaluated for ALF Experiments II and III. Such information may be used to improve instrumentation strategies in ...

  13. Wake field measurements

    International Nuclear Information System (INIS)

    Palumbo, L.

    1989-01-01

    In this paper the concept of Wakefields and Machine Impedance are introduced. Several measurements technique of these quantities either in the laboratory before installation or from beam observation are presented

  14. Comparative studies of RNFL thickness measured by OCT with global index of visual fields in patients with ocular hypertension and early open angle glaucoma

    Directory of Open Access Journals (Sweden)

    Sergios Taliantzis

    2009-06-01

    Full Text Available Sergios Taliantzis, Dimitris Papaconstantinou, Chrysanthi Koutsandrea, Michalis Moschos, Michalis Apostolopoulos, Gerasimos GeorgopoulosAthens University Medical School, Department of Ophthalmology, Athens, GreecePurpose: To compare the functional changes in visual fields with optical coherence tomography (OCT findings in patients with ocular hypertension, open angle glaucoma, and suspected glaucoma. In addition, our purpose is to evaluate the correlation of global indices with the structural glaucomatous defect, to assess their statistical importance in all the groups of our study, and to estimate their validity to the clinical practice.Methods: One hundred sixty nine eyes (140 patients were enrolled. The patients were classified in three groups. Group 1 consisted of 54 eyes with ocular hypertension, group 2 of 42 eyes with preperimetric glaucoma, and group 3 of 73 eyes with chronic open angle glaucoma. All of them underwent ophthalmic examination according to a prefixed protocol, OCT exam (Stratus 3000 for retinal nerve fiber layer (RNFL thickness measurement with fast RNFL thickness protocol and visual fields (VF examination with Octopus perimeter (G2 program, central 30–2 threshold strategy. Pearson correlation was calculated between RNFL thickness and global index of VF.Results: A moderate correlation between RNFL thickness and indices mean sensitivity (MS, mean defect (MD and loss variance (LV of VF (0.547, -0.582, -0.527, respectively; P < 0.001 was observed for all patients. Correlations of the ocular hypertension and preperimetric groups are weak. Correlation of RNFL thickness with global indices becomes stronger as the structural alterations become deeper in OCT exam. Correlation of RNFL thickness with the global index of VF, in respective segments around optic disk was also calculated and was found significant in the nasal, inferior, superior, and temporal segments.Conclusion: RNFL average thickness is not a reliable index for early

  15. Measuring Earth's Magnetic Field Simply.

    Science.gov (United States)

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  16. Measurements of magnetic field alignment

    International Nuclear Information System (INIS)

    Kuchnir, M.; Schmidt, E.E.

    1987-01-01

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs

  17. Comparative measurements on different thermoluminescence materials for the dosimetry in mixed radiation fields; Vergleichende Messungen an unterschiedlichen Thermolumineszenzmaterialien fuer die Dosimetrie in gemischten Strahlenfeldern

    Energy Technology Data Exchange (ETDEWEB)

    Pillath, J.; Uray, I.

    2006-05-15

    LiF-based thermoluminescence materials (TL materials) have proved efficient and become established for dosimetry for many years now. In combination with suitable filtrations or moderators, they permit high-precision measurements of the radiation doses of all types of radiation relevant in radiation protection. The development of highly sensitive LiF materials with a doping of Mg, P and Cu has made it possible to measure doses down to one {mu}Sv. The measurements presented here specifically serve to phenomenologically analyse the glow curve structure of normally and highly sensitive LiF-TL materials in mixed gamma-neutron radiation fields. The sensitivity of the different TL materials to different types of radiation and the influence of the radiation types and of the evaluation parameters on the structure of the glow curves is examined. It is made apparent how information about the composition and doses of the individual components of a radiation field can be obtained by decomposing the glow curve into its individual peaks. (orig.)

  18. Validation of a Tablet Application for Assessing Dietary Intakes Compared with the Measured Food Intake/Food Waste Method in Military Personnel Consuming Field Rations

    Directory of Open Access Journals (Sweden)

    Mavra Ahmed

    2017-02-01

    Full Text Available The collection of accurate dietary intakes using traditional dietary assessment methods (e.g., food records from military personnel is challenging due to the demanding physiological and psychological conditions of training or operations. In addition, these methods are burdensome, time consuming, and prone to measurement errors. Adopting smart-phone/tablet technology could overcome some of these barriers. The objective was to assess the validity of a tablet app, modified to contain detailed nutritional composition data, in comparison to a measured food intake/waste method. A sample of Canadian Armed Forces personnel, randomized to either a tablet app (n = 9 or a weighed food record (wFR (n = 9, recorded the consumption of standard military rations for a total of 8 days. Compared to the gold standard measured food intake/waste method, the difference in mean energy intake was small (−73 kcal/day for tablet app and −108 kcal/day for wFR (p > 0.05. Repeated Measures Bland-Altman plots indicated good agreement for both methods (tablet app and wFR with the measured food intake/waste method. These findings demonstrate that the tablet app, with added nutritional composition data, is comparable to the traditional dietary assessment method (wFR and performs satisfactorily in relation to the measured food intake/waste method to assess energy, macronutrient, and selected micronutrient intakes in a sample of military personnel.

  19. Comparative Field Tests of Pressurised Rover Prototypes

    Science.gov (United States)

    Mann, G. A.; Wood, N. B.; Clarke, J. D.; Piechochinski, S.; Bamsey, M.; Laing, J. H.

    The conceptual designs, interior layouts and operational performances of three pressurised rover prototypes - Aonia, ARES and Everest - were field tested during a recent simulation at the Mars Desert Research Station in Utah. A human factors experiment, in which the same crew of three executed the same simulated science mission in each of the three vehicles, yielded comparative data on the capacity of each vehicle to safely and comfortably carry explorers away from the main base, enter and exit the vehicle in spacesuits, perform science tasks in the field, and manage geological and biological samples. As well as offering recommendations for design improvements for specific vehicles, the results suggest that a conventional Sports Utility Vehicle (SUV) would not be suitable for analog field work; that a pressurised docking tunnel to the main habitat is essential; that better provisions for spacesuit storage are required; and that a crew consisting of one driver/navigator and two field science crew specialists may be optimal. From a field operations viewpoint, a recurring conflict between rover and habitat crews at the time of return to the habitat was observed. An analysis of these incidents leads to proposed refinements of operational protocols, specific crew training for rover returns and again points to the need for a pressurised docking tunnel. Sound field testing, circulating of results, and building the lessons learned into new vehicles is advocated as a way of producing ever higher fidelity rover analogues.

  20. Field measurement for large bending magnets

    International Nuclear Information System (INIS)

    Lazzaro, A.; Cappuzzello, F.; Cunsolo, A.; Cavallaro, M.; Foti, A.; Orrigo, S.E.A.; Rodrigues, M.R.D.; Winfield, J.S.

    2008-01-01

    The results of magnetic field measurements of the large bending magnet of the MAGNEX spectrometer are presented. The experimental values are used to build an Enge function by the least-squares method. The resulting field is compared to the measured one, showing too large deviation for application to ray reconstruction techniques. Similarly, the experimental values are compared with results from a three-dimensional finite elements calculation. Again the deviations between measured and calculated field are too large for a direct application of the latter to ray reconstruction, while its reliability is sufficient for analysis purposes. In particular, it has been applied to study the effect of the inaccuracies in the probe location and orientation on the precision of field reconstruction, and to establish the requirements for the field interpolation. These inaccuracies are found to be rather important, especially for the transversal components of the field, with the consequence that their effect on the reconstructed field should be minimized by special interpolation algorithms

  1. A poloidal field measurement technique

    International Nuclear Information System (INIS)

    Jobes, F.C.

    1989-07-01

    The poloidal field of a tokamak can be determined by observing the light emitted by He + ions injected into the plasma by a perpendicular He 0 beam. These ions will orbit in small circles located where the neutral atom became ionized, and they will remain there for a few microseconds. During this time, some of these ions will also emit light at various spectral lines. The observed spectrum of any of these lines will have a peculiar and very wide shape, and it will be offset (Doppler shifted) with respect to the natural line location. The location and width of the spectral pattern provide independent information about the components of the poloidal field which are parallel and perpendicular to the beam velocity, and this information is local to the point where the light is emitted. For a horizontal beam, these components are b x and b y , respectively. The difference in Doppler shift between two measurement points above one another (at the top and bottom of the beam) is directly proportional to δb x , which in turn is proportional to the transform on that flux surface. Thus, this technique provides a means to measure directly local values of q(r). Simulation studies indicate that accurate measurements can be made in milliseconds. 6 refs., 8 figs

  2. Measuring and Comparing Energy Flexibilities

    DEFF Research Database (Denmark)

    Valsomatzis, Emmanouil; Hose, Katja; Pedersen, Torben Bach

    2015-01-01

    induced by time and amount individually, and by their com- bination. To this end, we introduce several flexibility measures that take into account the combined effect of time and energy on flex-offer flexibility and discuss their respective pros and cons through a number of realistic examples....

  3. Comparing sensitivity of ecotoxicological effect endpoints between laboratory and field

    DEFF Research Database (Denmark)

    Selck, H.; Riemann, B.; Christoffersen, K.

    2002-01-01

    multispecies field tests using tributyltin (TBT) and linear alkylbenzene sulfonates (LAS) were compared with published laboratory single-species test results and measured in situ concentrations. Extrapolation methods were evaluated by comparing predicted no-effect concentrations (PNECs), calculated by AF...

  4. Small fields measurements with radiochromic films.

    Science.gov (United States)

    Gonzalez-Lopez, Antonio; Vera-Sanchez, Juan-Antonio; Lago-Martin, Jose-Domingo

    2015-01-01

    The small fields in radiotherapy are widely used due to the development of techniques such as intensity-modulated radiotherapy and stereotactic radio surgery. The measurement of the dose distributions for small fields is a challenge. A perfect dosimeter should be independent of the radiation energy and the dose rate and should have a negligible volume effect. The radiochromic (RC) film characteristics fit well to these requirements. However, the response of RC films and their digitizing processes present a significant spatial inhomogeneity problem. The present work uses a method for two-dimensional (2D) measurement with RC films based on the reduction of the spatial inhomogeneity of both the film and the film digitizing process. By means of registering and averaging several measurements of the same field, the inhomogeneities are mostly canceled. Measurements of output factors (OFs), dose profiles (in-plane and cross-plane), and 2D dose distributions are presented. The field sizes investigated are 0.5 × 0.5 cm(2), 0.7 × 0.7 cm(2), 1 × 1 cm(2), 2 × 2 cm(2), 3 × 3 cm(2), 6 × 6 cm(2), and 10 × 10 cm(2) for 6 and 15 MV photon beams. The OFs measured with the RC film are compared with the measurements carried out with a PinPoint ionization chamber (IC) and a Semiflex IC, while the measured transversal dose profiles were compared with Monte Carlo simulations. The results obtained for the OFs measurements show a good agreement with the values obtained from RC films and the PinPoint and Semiflex chambers when the field size is greater or equal than 2 × 2 cm(2). These agreements give confidence on the accuracy of the method as well as on the results obtained for smaller fields. Also, good agreement was found between the measured profiles and the Monte Carlo calculated profiles for the field size of 1 × 1 cm(2). We expect, therefore, that the presented method can be used to perform accurate measurements of small fields.

  5. Fringing field measurement of dipole magnet

    International Nuclear Information System (INIS)

    Lu Hongyou; Jiang Weisheng; Mao Naifeng; Mao Xingwang

    1985-01-01

    The fringing field of a dipole magnet with a C-type circuit and homogeneous field in the gap has been measured including the distributions of fringing fields with and without magnetic shield. The measured data was analyzed by using the concept of virtual field boundary

  6. Field measurement program to determine far field plume dilution parameters

    International Nuclear Information System (INIS)

    Orth, R.C.; Carter, H.H.; Miyasaki, M.T.

    1974-01-01

    A description of the techniques used to obtain measurements of temperature, salinity, tidal velocity and tracer concentration required to determine the far field dilution in a shallow estuary is presented. The study was done to characterize the physical hydrography of the Bush River, a tributary estuary of the Chesapeake Bay, which is a possible recipient of the thermal discharge from a proposed power plant consisting of two 850 MWe nuclear generating units. Measurements of temperature and salinity along the axis of the estuary during periods of high and low fresh water inflow were obtained for use in the development of a one-dimensional-segmented transient state model of the estuary. Computer concentrations from the model compared favorably with measured dye concentrations for the same periods of high and low freshwater inflow

  7. Classical field approach to quantum weak measurements.

    Science.gov (United States)

    Dressel, Justin; Bliokh, Konstantin Y; Nori, Franco

    2014-03-21

    By generalizing the quantum weak measurement protocol to the case of quantum fields, we show that weak measurements probe an effective classical background field that describes the average field configuration in the spacetime region between pre- and postselection boundary conditions. The classical field is itself a weak value of the corresponding quantum field operator and satisfies equations of motion that extremize an effective action. Weak measurements perturb this effective action, producing measurable changes to the classical field dynamics. As such, weakly measured effects always correspond to an effective classical field. This general result explains why these effects appear to be robust for pre- and postselected ensembles, and why they can also be measured using classical field techniques that are not weak for individual excitations of the field.

  8. Ultraviolet radiation penetrating vehicle glass: a field based comparative study

    International Nuclear Information System (INIS)

    Kimlin, M.G.; Parisi, A.V.

    1999-01-01

    The solar UV transmitted through automobile glass was measured in the field in two cars using a spectroradiometer. The two cars were identical except that one of the cars had all of the windows (except the windshield) tinted. The measured spectral erythemal UV on a horizontal plane with the windows fully closed was reduced in the tinted car by a factor of 42 when compared with the erythemal UV measured in the untinted car. The ambient UVA irradiances at various locations within four different makes of car and a tractor were also measured with a broad band UVA hand-held meter. The average normalized daily UVA exposure (measured with a broad band UVA meter) was 1.3 times higher in a large family sedan when compared with that in a small hatchback and the UVA exposure in a car with tinted windows was 3.8 times less than in a similar untinted car. (author)

  9. Ultraviolet radiation penetrating vehicle glass: a field based comparative study

    Science.gov (United States)

    Kimlin, M. G.; Parisi, A. V.

    1999-04-01

    The solar UV transmitted through automobile glass was measured in the field in two cars using a spectroradiometer. The two cars were identical except that one of the cars had all of the windows (except the windshield) tinted. The measured spectral erythemal UV on a horizontal plane with the windows fully closed was reduced in the tinted car by a factor of 42 when compared with the erythemal UV measured in the untinted car. The ambient UVA irradiances at various locations within four different makes of car and a tractor were also measured with a broad band UVA hand-held meter. The average normalized daily UVA exposure (measured with a broad band UVA meter) was 1.3 times higher in a large family sedan when compared with that in a small hatchback and the UVA exposure in a car with tinted windows was 3.8 times less than in a similar untinted car.

  10. Lightning magnetic field measuring system in Bogota

    OpenAIRE

    Escobar Alvarado, Oscar Fernardo

    2013-01-01

    This thesis presents the configuration and performance of a lightning radiated electromagnetic field measuring system in Bogotá Colombia. The system is composed by both magnetic and electric field measuring systems working as separated sensors. The aim of the thesis is the design and construction of a Magnetic Field Measuring System and the implementation of a whole lightning measuring system in Bogotá. The theoretical background, design process, construction and implementation of the system ...

  11. Quality assurance in field radiation measurements

    International Nuclear Information System (INIS)

    Howell, W.P.

    1985-01-01

    In most cases, an ion chamber radiation measuring instrument is calibrated in a uniform gamma radiation field. This results in a uniform ionization field throughout the ion chamber. Measurement conditions encountered in the field often produce non-uniform ionization fields within the ion chamber, making determination of true dose rates to personnel difficult and prone to error. Extensive studies performed at Hanford have provided appropriate correction factors for use with one type of ion chamber instrument, the CP. Suitable corrections are available for the following distinct measurement circumstances: (1) contact measurements on large beta and gamma sources, (2) contact measurements on small beta and gamma sources, (3) contact measurements on small-diameter cylinders, (4) measurements in small gamma beams, and (5) measurements at a distance from large beta sources. Recommendations are made for the implementation of these correction factors, in the interest of improved quality assurance in field radiation measurements. 12 references, 10 figures

  12. Measurements of Solar Vector Magnetic Fields

    Science.gov (United States)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  13. Measurements of Solar Vector Magnetic Fields

    International Nuclear Information System (INIS)

    Hagyard, M.J.

    1985-05-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display

  14. Measurements of magnetic field sources in schools

    International Nuclear Information System (INIS)

    Johnson, G.B.

    1992-01-01

    The Electrical Systems Division of the Electric Power Research Institute (EPRI) has initiated several research projects to investigate magnetic field levels, their characteristics, and their sources. This paper describes measurements of magnetic field sources in schools. Magnetic field measurements were made at four schools in the service areas of two utility companies. Magnetic field measurements included profiles of the magnetic field versus distance near power lines, around the perimeter of the school buildings, and at several locations within each school. Twenty-four hour measurements were also made to record the temporal variation of the magnetic field at several locations at each school. The instrumentation, measurement techniques, and magnetic field sources identified are discussed

  15. Two devices for atmospheric electric field measurement

    International Nuclear Information System (INIS)

    Colombet, Andre; Hubert, Pierre.

    1977-02-01

    Two instruments installed at St Privat d'Allier for electric field measurement in connection with the rocket triggered lighting experiment program are described. The first one is a radioactive probe electrometer used as a warning device. The second is a field mill used for tape recording of electric field variation during the triggering events. Typical examples of such records are given [fr

  16. Measuring the Earth's Magnetic Field in a Laboratory

    Science.gov (United States)

    Cartacci, A.; Straulino, S.

    2008-01-01

    Two methods for measuring the Earth's magnetic field are described. In the former, according to Gauss, the Earth's magnetic field is compared with that of a permanent magnet; in the latter, a well-known method, the comparison is made with the magnetic field generated by a current. As all the used instruments are available off the shelf, both…

  17. Comparative effectiveness of malaria preventive measures on ...

    African Journals Online (AJOL)

    The burden of malaria and its associated problems in pregnancy can be reduced by the use of different malaria preventive measures. This study was conducted to determine the comparative effectiveness of three different malaria preventive measures on populations of parturient in Abeokuta, Ogun State, Nigeria.

  18. Programming the control of magnetic field measurements

    International Nuclear Information System (INIS)

    David, L.

    1998-01-01

    This paper gives a short review concerning the new NMR probe measurement control system. Then it presents the new program 'CYCLOCHAMP' attached to the magnetic field measurement which also allows to cycle the magnetic field inside the cyclotrons and to equilibrate it among the SSC sectors. (authors)

  19. Measurability of non-abelium gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Ivanenko, D.D.; Obukhov, Yu.N.

    New estimations of the accuracy of measurement of non-abeliar gauge field components are obtained on the base of qualitative analysis of the test body equations of motion. They generalize the Bohr and Rosenfeld results on the measurability of an electomagnetic field for the case of an arbitrary gauge group.

  20. Magnetic field measurements in xi Bootis A

    International Nuclear Information System (INIS)

    Boesgaard, A.M.; Chesley, D.; Preston, G.W.

    1975-01-01

    Four Zeeman spectrograms from Lick Observatory of xi Boo A and two of iota Peg at 2 A mm -1 have been measured to determine if a weak magnetic field is present in xi Boo A. The results indicate that the field is too weak to be measured by this technique on these spectrograms, although remeasurements of spectrograms from Mauna Kea at 3.4 A mm -1 still give a positive field of 170 gauss. (U.S.)

  1. On the measurement of stationary electric fields in air

    Science.gov (United States)

    Kirkham, H.

    2002-01-01

    Applications and measurement methods for field measurements are reviewed. Recent developments using optical technology are examined. The various methods are compared. It is concluded that the best general purpose instrument is the isolated cylindrical field mill, but MEMS technology could furnish better instruments in the future.

  2. Measurement of gradient magnetic field temporal characteristics

    International Nuclear Information System (INIS)

    Bartusek, K.; Jflek, B.

    1994-01-01

    We describe a technique of measuring the time dependence and field distortions of magnetic fields due to eddy currents (EC) produced by time-dependent magnetic field gradients. The EC measuring technique makes use of a large volume sample and selective RF excitation pulses and free induction decay (FID) (or a spin or gradient echo) to measure the out-of-phase component of the FID, which is proportional to γδB, i.e. the amount the signal is off resonance. The measuring technique is sensitive, easy to implement and interpret, and used for determining pre-emphasis compensation parameters

  3. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    2004-01-01

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation

  4. Local eddy current measurements in pulsed fields

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J.H. [SEPI-Electronica, ESIME-IPN, UPALM Edif. ' Z' . Zacatenco, Mexico DF 07738 (Mexico)], E-mail: jhespina@gmail.com; Groessinger, R. [Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Hallen, J.M. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)

    2008-07-15

    This work presents new eddy current measurements in pulsed fields. A commercial point pick-up coil is used to detect the induction signal along the radius of Cu and Al samples with cylindrical shape and diameters between 5 and 35 mm. Local eddy current measurements were performed on the surface of conducting materials due to the small dimensions of the coil. A simple electrical circuit, used as a model, is proposed to describe the local eddy current effect in pulsed fields. The proposed model allows to calculate the phase shift angle between the signal proportional to eddy currents and the applied external field in a pulsed field magnetometer.

  5. The measurement of solar magnetic fields

    International Nuclear Information System (INIS)

    Stenflo, J.O.

    1978-01-01

    Solar activity is basically caused by the interaction between magnetic fields, solar rotation and convective motions. Detailed mapping of the Sun's rapidly varying magnetic field helps in the understanding of the mechanisms of solar activity. Observations in recent years have revealed unexpected and intriguing properties of solar magnetic fields, the explanation of which has become a challenge to plasma physicists. This review deals primarily with how the Sun's magnetic field is measured, but it also includes a brief review of the present observational picture of the magnetic field, which is needed to understand the problems of how to properly interpret the observations. 215 references. (author)

  6. Evaluation of uncertainty in the measurement of environmental electromagnetic fields

    International Nuclear Information System (INIS)

    Vulevic, B.; Osmokrovic, P.

    2010-01-01

    With regard to Non-ionising radiation protection, the relationship between human exposure to electromagnetic fields and health is controversial. Electromagnetic fields have become omnipresent in the daily environment. This paper assesses the problem of how to compare a measurement result with a limit fixed by the standard for human exposure to electric, magnetic and electromagnetic fields (0 Hz-300 GHz). The purpose of the paper is an appropriate representation of the basic information about evaluation of measurement uncertainty. (authors)

  7. Field measuring probe for SSC magnets

    International Nuclear Information System (INIS)

    Ganetis, G.; Herrera, J.; Hogue, R.; Skaritka, J.; Wanderer, P.; Willen, E.

    1987-01-01

    The field probe developed for measuring the field in SSC dipole magnets is an adaptation of the rotating tangential coil system in use at Brookhaven for several years. Also known as the MOLE, it is a self-contained room-temperature mechanism that is pulled through the aperture of the magnet with regular stops to measure the local field. Several minutes are required to measure the field at each point. The probe measures the multipole components of the field as well as the field angle relative to gravity. The sensitivity of the coil and electronics is such that the field up to the full 6.6 T excitation of the magnet as well as the field when warm with only 0.01 T excitation can be measured. Tethers are attached to both ends of the probe to carry electrical connections and to supply dry nitrogen to the air motors that rotate the tangential windings as well as the gravity sensor. A small computer is attached to the probe for control and for data collection, analysis and storage

  8. COMPARING CORONAL AND HELIOSPHERIC MAGNETIC FIELDS OVER SEVERAL SOLAR CYCLES

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, J. S.; Virtanen, I. I.; Mursula, K., E-mail: jennimari.koskela@oulu.fi [University of Oulu, P.O. Box 3000, FI-90014 Oulu (Finland)

    2017-01-20

    Here we use the PFSS model and photospheric data from Wilcox Solar Observatory, SOHO /MDI, SDO/HMI, and SOLIS to compare the coronal field with heliospheric magnetic field measured at 1 au, compiled in the NASA/NSSDC OMNI 2 data set. We calculate their mutual polarity match and the power of the radial decay, p , of the radial field using different source surface distances and different number of harmonic multipoles. We find the average polarity match of 82% for the declining phase, 78%–79% for maxima, 76%–78% for the ascending phase, and 74%–76% for minima. On an average, the source surface of 3.25 R{sub S} gives the best polarity match. We also find strong evidence for solar cycle variation of the optimal source surface distance, with highest values (3.3 R{sub S}) during solar minima and lowest values (2.6 R{sub S}–2.7 R{sub S}) during the other three solar cycle phases. Raising the number of harmonic terms beyond 2 rarely improves the polarity match, showing that the structure of the HMF at 1 au is most of the time rather simple. All four data sets yield fairly similar polarity matches. Thus, polarity comparison is not affected by photospheric field scaling, unlike comparisons of the field intensity.

  9. Field measurement of dipole magnets for TARN

    International Nuclear Information System (INIS)

    Hori, T.; Noda, A.; Hattori, T.; Fujino, T.; Yoshizawa, M.

    1980-05-01

    Eight dipole magnets of window-frame type with zero field gradient have been fabricated for TARN. Various characteristics of the field were examined by a measuring system with a Hall and an NMR probes. The accuracy of the measurement was better than 1 x 10 -4 at the maximum field strength of --9 kG, and the uniformity of the field in the radial direction was better than +-2 x 10 -4 over the whole useful aperture. The deviations both of the field strengths and of the effective lengths among the eight magnets are smaller than +-2 x 10 -3 . The sextupole component of the field and the variation of the effective length over the beam orbits contribute to chromaticities of the ring as the amount of -1.59 and 0.93 in the horizontal and vertical directions, respectively. (author)

  10. Dark field electron holography for strain measurement

    Energy Technology Data Exchange (ETDEWEB)

    Beche, A., E-mail: armand.beche@fei.com [CEA-Grenoble, INAC/SP2M/LEMMA, F-38054 Grenoble (France); Rouviere, J.L. [CEA-Grenoble, INAC/SP2M/LEMMA, F-38054 Grenoble (France); Barnes, J.P.; Cooper, D. [CEA-LETI, Minatec Campus, F-38054 Grenoble (France)

    2011-02-15

    Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity. -- Research Highlights: {yields} Step by step explanation of the dark field electron holography technique. {yields} Presentation of the theoretical equations to obtain quantitative strain map. {yields} Description of experimental parameters influencing dark field holography results. {yields} Quantitative strain measurement on a SiGe layer embedded in a silicon matrix.

  11. On the measurement of comparative advantage

    NARCIS (Netherlands)

    Hoen, A.R.; Oosterhaven, J.

    This paper shows-that the standard measure of revealed comparative advantage (RCA), ranging from 0 to infinity, has problematic properties. Due to its multiplicative specification, it has a moving mean larger than its expected value of 1, while its distribution strongly depends on the number of

  12. On the measurement of comparative advantage

    NARCIS (Netherlands)

    Hoen, Alex R.

    2001-01-01

    This article shows that the distribution of the standard measure of revealed comparative advantage (RCA), which runs from 0 to 8, has problematic properties. Due to its multiplicative specification, it has a moving mean without a useful interpretation, while its distribution depends on the number of

  13. General temperature field measurement by digital holography

    Czech Academy of Sciences Publication Activity Database

    Doleček, Roman; Psota, Pavel; Lédl, Vít; Vít, Tomáš; Václavík, Jan; Kopecký, V.

    2013-01-01

    Roč. 52, č. 1 (2013), A319-A325 ISSN 1559-128X Institutional support: RVO:61389021 Keywords : digital holography * temperature field measurement * tomography Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.649, year: 2013

  14. Critical field measurements in a superconducting networks

    International Nuclear Information System (INIS)

    Pannetier, B.; Chaussy, J.; Rammal, R.

    1984-01-01

    We have measured the critical field of a periodic two-dimensional network of superconducting indium. At low fields, the critical line Hsub(c)(T) reflects the network topology and exhibits well-defined cusps due to flux quantization corresponding to both integer and rational number of flux quanta phi 0 = h/2e per unit loop of the network [fr

  15. Parameterization and measurements of helical magnetic fields

    International Nuclear Information System (INIS)

    Fischer, W.; Okamura, M.

    1997-01-01

    Magnetic fields with helical symmetry can be parameterized using multipole coefficients (a n , b n ). We present a parameterization that gives the familiar multipole coefficients (a n , b n ) for straight magnets when the helical wavelength tends to infinity. To measure helical fields all methods used for straight magnets can be employed. We show how to convert the results of those measurements to obtain the desired helical multipole coefficients (a n , b n )

  16. Magnetic Measurements of the Background Field in the Undulator Hall

    International Nuclear Information System (INIS)

    Fisher, Andrew

    2010-01-01

    The steel present in the construction of the undulator hall facility has the potential for changing the ambient fields present in the undulator hall. This note describes a measurement done to make a comparison between the fields in the hall and in the Magnetic Measurement Facility. In order for the undulators to have the proper tuning, the background magnetic field in the Undulator Hall should agree with the background field in the Magnetic Measurements Facility within .5 gauss. In order to verify that this was the case measurements were taken along the length of the undulator hall, and the point measurements were compared to the mean field which was measured on the MMF test bench.

  17. Magnetic field measurements and mapping techniques

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    These lectures will present an overview of the most common techniques used for the measurement of magnetic field in accelerator magnets. The formalism for a harmonic description of the magnetic field will be presented, including a discussion of harmonics allowed under various types of symmetries in the magnet. The harmonic coil technique for measurement of field harmonics will be covered in depth. Using examples from recent projects, magnetic measurements will be shown to be a powerful tool for monitoring magnet production. Measurements of magnetic axis using extensions of the harmonic coil technique, as well as other techniques, such as the colloidal cell and stretched wire, will be covered. Topics of interest in superconducting magnets, such as time decay and snapback, requiring relatively fast measurements of the harmonics, will also be described.

  18. Magnetic Field Response Measurement Acquisition System

    Science.gov (United States)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  19. Uranium isotope ratio measurements in field settings

    International Nuclear Information System (INIS)

    Shaw, R.W.; Barshick, C.M.; Young, J.P.; Ramsey, J.M.

    1997-01-01

    The authors have developed a technique for uranium isotope ratio measurements of powder samples in field settings. Such a method will be invaluable for environmental studies, radioactive waste operations, and decommissioning and decontamination operations. Immediate field data can help guide an ongoing sampling campaign. The measurement encompasses glow discharge sputtering from pressed sample hollow cathodes, high resolution laser spectroscopy using conveniently tunable diode lasers, and optogalvanic detection. At 10% 235 U enrichment and above, the measurement precision for 235 U/( 235 U+ 238 U) isotope ratios was ±3%; it declined to ±15% for 0.3% (i.e., depleted) samples. A prototype instrument was constructed and is described

  20. [Comparative quality measurements part 3: funnel plots].

    Science.gov (United States)

    Kottner, Jan; Lahmann, Nils

    2014-02-01

    Comparative quality measurements between organisations or institutions are common. Quality measures need to be standardised and risk adjusted. Random error must also be taken adequately into account. Rankings without consideration of the precision lead to flawed interpretations and enhances "gaming". Application of confidence intervals is one possibility to take chance variation into account. Funnel plots are modified control charts based on Statistical Process Control (SPC) theory. The quality measures are plotted against their sample size. Warning and control limits that are 2 or 3 standard deviations from the center line are added. With increasing group size the precision increases and so the control limits are forming a funnel. Data points within the control limits are considered to show common cause variation; data points outside special cause variation without the focus of spurious rankings. Funnel plots offer data based information about how to evaluate institutional performance within quality management contexts.

  1. Eddy currents in pulsed field measurements

    International Nuclear Information System (INIS)

    Kuepferling, M.; Groessinger, R.; Wimmer, A.; Taraba, M.; Scholz, W.

    2002-01-01

    Full text: One problem of pulsed field magnetometry is an error in magnetization, which appears in measurements of conducting samples. This error is due to eddy currents induced by a time varying field. To allow predictions how eddy currents exert influence on the hysteresis loop, systematic experimental and theoretical studies of pulsed field measurements of metallic samples were performed. The theoretical studies include analytical calculations as well as numerical ones using a 2D finite element software. In the measurements three physical parameters have been varied: i) the conductivity of the sample by using two different materials, in this case technical Cu and Al ii) size and shape of the sample by using cylinders, spheres and cuboids iii) the pulse duration of the external field by changing the capacitor battery from 8mF ( =9.1ms) to 24mF ( =15.7ms). The time dependence of the external field corresponds with a pulsed damped harmonic oscillation with a maximum value of 5.2T. The samples were studied in the as cast state (after machining) as well as after heat treatment. Theoretical calculations showed not only good agreement with the absolute values of the measured eddy current m agnetization , they also gave an explanation of the shape of the eddy current hysteresis and the dependence of the eddy current 'magnetization' on parameters as pulse duration of the external field and conductivity of the sample. (author)

  2. Magnetic field measuring system for remapping the ORIC magnetic field

    International Nuclear Information System (INIS)

    Mosko, S.W.; Hudson, E.D.; Lord, R.S.; Hensley, D.C.; Biggerstaff, J.A.

    1977-01-01

    The Holifield Heavy Ion Research Facility will integrate a new 25 MV tandem electrostatic acccelerator into the existing cyclotron laboratory which includes the Oak Ridge Isochronous Cyclotron (ORIC). Computations of ion paths for beam injection from the new tandem into ORIC require field mapping in the regions traversed by the beam. Additional field data is also desired for the higher levels (approx.19 kG) now used for most heavy ion beams. The magnetic field measurement system uses 39 flip coil/current integrator sets with computer controlled data scanning. The coils are spaced radially at 1 inch intervals in an arm which can be rotated azimuthally in 2 degree increments. The entire flip coil assembly can be shifted to larger radii to measure fields beyond the pole boundary. Temperature stabilization of electronic circuitry permits a measurement resolution of +-1 gauss over a dynamic range of +-25,000 gauss. The system will process a scan of 8000 points in about one hour

  3. Sampling Criterion for EMC Near Field Measurements

    DEFF Research Database (Denmark)

    Franek, Ondrej; Sørensen, Morten; Ebert, Hans

    2012-01-01

    An alternative, quasi-empirical sampling criterion for EMC near field measurements intended for close coupling investigations is proposed. The criterion is based on maximum error caused by sub-optimal sampling of near fields in the vicinity of an elementary dipole, which is suggested as a worst......-case representative of a signal trace on a typical printed circuit board. It has been found that the sampling density derived in this way is in fact very similar to that given by the antenna near field sampling theorem, if an error less than 1 dB is required. The principal advantage of the proposed formulation is its...

  4. Electric field measurements in the auroral E region

    International Nuclear Information System (INIS)

    Mahon, H.P.; Smiddy, M.; Sagalyn, R.C.

    1975-01-01

    Dipole electric field, positive ion and electron densities and temperatures, vehicle potential, and plasma sheath measurements have been made in the auroral E region by means of rockets flown from Fort Churchill, Canada. These results are described and compared over the altitude region 100 to 165 km. On a rocket flight launched on 10 December 1969 during very quiet conditions, adjacent to a stable, low intensity auroral arc, the plasma density and temperatures are found to be high and the electric fields large and steady. Electric field components of the order of -17 mv m -1 to +6 mv m -1 were measured along the Earth's magnetic field. The plasma results indicate that these fields may be contributing to enhanced electron temperatures. On a flight of 9 March 1970 during a large magnetic storm with widespread auroral activity, lower plasma densities and temperatures and much smaller and more erratic electric fields were observed with no significant component parallel to the magnetic field. (auth)

  5. Electric Field Quantitative Measurement System and Method

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  6. Measurement accuracy in shielded magnetic fields

    International Nuclear Information System (INIS)

    Bottauscio, Oriano; Chiampi, Mario; Crotti, Gabriella; Zucca, Mauro

    2005-01-01

    The measurement error due to both the probe size averaging effect and the coil arrangement is investigated when magnetic field measurements are performed in close proximity to different planar shields. The analysis is carried on through a hybrid FEM/BEM model which employs the 'thin shield' technique. Ferromagnetic, pure conductive and multilayer screens are taken into consideration and an estimation of the errors for concentric and non-concentric coil probes is given. The numerical results are validated by experiments

  7. Mixed field dose equivalent measuring instruments

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; McDonald, J.C.; Endres, G.W.R.; Quam, W.

    1985-01-01

    In the past, separate instruments have been used to monitor dose equivalent from neutrons and gamma rays. It has been demonstrated that it is now possible to measure simultaneously neutron and gamma dose with a single instrument, the tissue equivalent proportional counter (TEPC). With appropriate algorithms dose equivalent can also be determined from the TEPC. A simple ''pocket rem meter'' for measuring neutron dose equivalent has already been developed. Improved algorithms for determining dose equivalent for mixed fields are presented. (author)

  8. Non-ionizing radiation exposure: electric field strength measurement ...

    African Journals Online (AJOL)

    In this research, the measured values are compared with the international standard recommended by ICNIRP then were also compared with previous study from several locations around Malaysia. The result shows an increase in the values of electromagnetic field radiation. The result of this study could be used for health ...

  9. The significance of vector magnetic field measurements

    Science.gov (United States)

    Hagyard, M. J.

    1990-01-01

    Observations of four flaring solar active regions, obtained during 1980-1986 with the NASA Marshall vector magnetograph (Hagyard et al., 1982 and 1985), are presented graphically and characterized in detail, with reference to nearly simultaneous Big Bear Solar Observatory and USAF ASW H-alpha images. It is shown that the flares occurred where local photospheric magnetic fields differed most from the potential field, with initial brightening on either side of a magnetic-neutral line near the point of maximum angular shear (rather than that of maximum magnetic-field strength, typically 1 kG or greater). Particular emphasis is placed on the fact that these significant nonpotential features were detected only by measuring all three components of the vector magnetic field.

  10. Surface magnetic field measurement with magnetic shielding

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy

    2010-01-01

    Roč. 61, č. 7 (2010), 66-68 ISSN 1335-3632 Grant - others:AVČR(CZ) M100100906 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic hysteresis * magnetic field measurement * magnetic shielding * extrapolation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.270, year: 2010

  11. Electric Field Effects in RUS Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Timothy W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Allured, Bradley [UNIV NEVADA, RENO; Carpenter, Michael A [CAMBRIDGE UNIV. UK

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  12. Different injury pattern in goalkeepers compared to field players

    DEFF Research Database (Denmark)

    Eirale, Cristiano; Tol, Johannes L; Whiteley, Rod

    2014-01-01

    Goalkeepers have a specific physiological and biomechanical profile including hip loading with increased frontal plane kinetics and explosive side jumps. The aim of this study is to analyze the injury incidence in professional goalkeepers and to compare this with field players.......Goalkeepers have a specific physiological and biomechanical profile including hip loading with increased frontal plane kinetics and explosive side jumps. The aim of this study is to analyze the injury incidence in professional goalkeepers and to compare this with field players....

  13. Magnetic Field Measurements in Beam Guiding Magnets

    CERN Document Server

    Henrichsen, K N

    1998-01-01

    Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as well as the recently developed method of beam based alignment. References of historical nature as well as citations of recent work are given. The present commercial availability of the different sensors and asso-ciated equipment is indicated. Finally we shall try to analyze possible future needs for developments in those fields.

  14. Comparison of Simulated and Measured Non-linear Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are rst compared with the linear...... simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound eld is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both...... fundamental and second harmonic elds. The focused piston transducer with a center frequency of 5 MHz is excited by a waveform generator emitting a 6-cycle sine wave. The hydrophone is mounted in the focal plane 118 mm from the transducer. The point spread functions at the focal depth from Field II...

  15. Patch near field acoustic holography based on particle velocity measurements

    DEFF Research Database (Denmark)

    Zhang, Yong-Bin; Jacobsen, Finn; Bi, Chuan-Xing

    2009-01-01

    Patch near field acoustic holography (PNAH) based on sound pressure measurements makes it possible to reconstruct the source field near a source by measuring the sound pressure at positions on a surface. that is comparable in size to the source region of concern. Particle velocity is an alternative...... examines the use of particle velocity as the input of PNAH. Because the particle velocity decays faster toward the edges of the measurement aperture than the pressure does and because the wave number ratio that enters into the inverse propagator from pressure to velocity amplifies high spatial frequencies...

  16. Measuring propagation speed of Coulomb fields

    Energy Technology Data Exchange (ETDEWEB)

    Sangro, R. de; Finocchiaro, G.; Patteri, P.; Piccolo, M.; Pizzella, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati (Italy)

    2015-03-01

    The problem of gravity propagation has been subject of discussion for quite a long time: Newton, Laplace and, in relatively more modern times, Eddington pointed out that, if gravity propagated with finite velocity, planet motion around the sun would become unstable due to a torque originating from time lag of the gravitational interactions. Such an odd behavior can be found also in electromagnetism, when one computes the propagation of the electric fields generated by a set of uniformly moving charges. As a matter of fact the Lienard-Weichert retarded potential leads to the same formula as the one obtained assuming that the electric field propagate with infinite velocity. The Feynman explanation for this apparent paradox was based on the fact that uniform motions last indefinitely. To verify such an explanation, we performed an experiment to measure the time/space evolution of the electric field generated by an uniformly moving electron beam. The results we obtain, on a finite lifetime kinematical state, are compatible with an electric field rigidly carried by the beam itself. (orig.)

  17. Comparing the effectiveness of virtual and traditional forestry field tours

    OpenAIRE

    Easley, Elissa C.; Fletcher, Richard A.; Jensen, Edward C.; Rickenbach, Mark

    2002-01-01

    Virtual tours are among the many new Internet-based tools with potential applications in natural resource education. While technology exists to create virtual tour Web sites, little is understood about how they meet educational objectives and whether they can be complementary alternatives for traditional field tours. The Sustainable Forestry Partnership and the Forestry Media Center at Oregon State University created parallel virtual and field tours to compare these teaching techniques. Both ...

  18. Auditory evoked field measurement using magneto-impedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K., E-mail: o-kabou@echo.nuee.nagoya-u.ac.jp; Tajima, S.; Song, D.; Uchiyama, T. [Graduate School of Engineering, Nagoya University, Nagoya (Japan); Hamada, N.; Cai, C. [Aichi Steel Corporation, Tokai (Japan)

    2015-05-07

    The magnetic field of the human brain is extremely weak, and it is mostly measured and monitored in the magnetoencephalography method using superconducting quantum interference devices. In this study, in order to measure the weak magnetic field of the brain, we constructed a Magneto-Impedance sensor (MI sensor) system that can cancel out the background noise without any magnetic shield. Based on our previous studies of brain wave measurements, we used two MI sensors in this system for monitoring both cerebral hemispheres. In this study, we recorded and compared the auditory evoked field signals of the subject, including the N100 (or N1) and the P300 (or P3) brain waves. The results suggest that the MI sensor can be applied to brain activity measurement.

  19. Comparison of electric field exposure measurement methods under power lines

    International Nuclear Information System (INIS)

    Korpinen, L.; Kuisti, H.; Tarao, H.; Paeaekkoenen, R.; Elovaara, J.

    2014-01-01

    The object of the study was to investigate extremely low frequency (ELF) electric field exposure measurement methods under power lines. The authors compared two different methods under power lines: in Method A, the sensor was placed on a tripod; and Method B required the measurer to hold the meter horizontally so that the distance from him/her was at least 1.5 m. The study includes 20 measurements in three places under 400 kV power lines. The authors used two commercial three-axis meters, EFA-3 and EFA-300. In statistical analyses, they did not find significant differences between Methods A and B. However, in the future, it is important to take into account that measurement methods can, in some cases, influence ELF electric field measurement results, and it is important to report the methods used so that it is possible to repeat the measurements. (authors)

  20. Towards Comprehensive Food Security Measures: Comparing Key ...

    African Journals Online (AJOL)

    Food security is a multi-dimensional issue that has been difficult to measure comprehensively, given the one-dimensional focus of existing indicators. Three indicators dominate the food security measurement debate: Household Food Insecurity Access Scale (HFIAS), Dietary Diversity Score (DDS) and Coping Strategies ...

  1. Defining, Measuring, and Comparing Organisational Cultures

    NARCIS (Netherlands)

    van den Berg, Peter T.; Wilderom, Celeste P.M.

    2004-01-01

    La littérature portant sur la culture des organisations souffre d’un manque manifeste d’enquêtes extensives débouchant sur des études comparatives. Afin de rendre plus comparables les cultures organisationnelles, nous proposons une définition et une série de dimensions. La culture organisationnelle

  2. Sound field separation with cross measurement surfaces.

    Directory of Open Access Journals (Sweden)

    Jin Mao

    Full Text Available With conventional near-field acoustical holography, it is impossible to identify sound pressure when the coherent sound sources are located on the same side of the array. This paper proposes a solution, using cross measurement surfaces to separate the sources based on the equivalent source method. Each equivalent source surface is built in the center of the corresponding original source with a spherical surface. According to the different transfer matrices between equivalent sources and points on holographic surfaces, the weighting of each equivalent source from coherent sources can be obtained. Numerical and experimental studies have been performed to test the method. For the sound pressure including noise after separation in the experiment, the calculation accuracy can be improved by reconstructing the pressure with Tikhonov regularization and the L-curve method. On the whole, a single source can be effectively separated from coherent sources using cross measurement.

  3. Out-of-field dose measurements in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kaderka, Robert

    2011-07-13

    This thesis describes the results from measurements of the out-of-field dose in radiotherapy. The dose outside the treatment volume has been determined in a water phantom and an anthropomorphic phantom. Measurements were performed with linac photons, passively delivered protons, scanned protons, passively delivered carbon ions as well as scanned carbon ions. It was found that the use of charged particles for radiotherapy reduces the out-of-field dose by up to three orders of magnitude compared to conventional radiotherapy with photons.

  4. Magnetic-Field-Response Measurement-Acquisition System

    Science.gov (United States)

    Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2006-01-01

    A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a

  5. The Value in Comparing Organizational Fields and Forms

    DEFF Research Database (Denmark)

    Pinheiro, Rómulo; Ramirez, Francisco O.; Geschwind, Lars

    2016-01-01

    Following the spirit of an earlier volume in the series focusing on ‘Comparative Approaches to Organizational Research’, the mandate of the current volume is to provide a comparative account of dynamics across two organizational fields – health care and higher education – and, subsequently, two...... specific types of organizational forms – hospitals and universities. In so doing, we take a broader perspective encompassing various conceptual and theoretical points of departure emanating from, mostly, the institutional literature in the social sciences (and its various perspectives), but also from...... public policy and administration literatures – of relevance to scholars and the communities of practice working within either field. In this introductory paper to the volume, we provide a brief overview of developments across the two organizational fields and illuminate on the most important scholarly...

  6. A Power-Frequency Electric Field Sensor for Portable Measurement.

    Science.gov (United States)

    Xiao, Dongping; Ma, Qichao; Xie, Yutong; Zheng, Qi; Zhang, Zhanlong

    2018-03-31

    In this paper, a new type of electric field sensor is proposed for the health and safety protection of inspection staff in high-voltage environments. Compared with the traditional power frequency electric field measurement instruments, the portable instrument has some special performance requirements and, thus, a new kind of double spherical shell sensor is presented. First, the mathematical relationships between the induced voltage of the sensor, the output voltage of the measurement circuit, and the original electric field in free space are deduced theoretically. These equations show the principle of the proposed sensor to measure the electric field and the effect factors of the measurement. Next, the characteristics of the sensor are analyzed through simulation. The simulation results are in good agreement with the theoretical analysis. The influencing rules of the size and material of the sensor on the measurement results are summarized. Then, the proposed sensor and the matching measurement system are used in a physical experiment. After calibration, the error of the measurement system is discussed. Lastly, the directional characteristic of the proposed sensor is experimentally tested.

  7. Glyph-Based Comparative Visualization for Diffusion Tensor Fields.

    Science.gov (United States)

    Zhang, Changgong; Schultz, Thomas; Lawonn, Kai; Eisemann, Elmar; Vilanova, Anna

    2016-01-01

    Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject.

  8. Differential Detector for Measuring Radiation Fields

    International Nuclear Information System (INIS)

    Broide, A.; Marcus, E.; Brandys, I.; Schwartz, A.; Wengrowicz, U.; Levinson, S.; Seif, R.; Sattinger, D.; Kadmon, Y.; Tal, N.

    2004-01-01

    In case of a nuclear accident, it is essential to determine the source of radioactive contamination in order to analyze the risk to the environment and to the population. The radiation source may be a radioactive plume on the air or an area on the ground contaminated with radionuclides. Most commercial radiation detectors measure only the radiation field intensity but are unable to differentiate between the radiation sources. Consequently, this limitation causes a real problem in analyzing the potential risk to the near-by environment, since there is no data concerning the contamination ratios in the air and on the ground and this prevents us from taking the required steps to deal with the radiation event. This work presents a GM-tube-based Differential Detector, which enables to determine the source of contamination

  9. Comparative Measurement of Microcystins in Diverse Surface ...

    Science.gov (United States)

    The measurement of microcystins, cyanotoxins associated with cyanobacterial blooms which are increasingly prevalent in inland waters, is complicated by the diversity of congeners which have been observed in the environment. At present, more than 150 microcystin congeners have been identified, and this poses a significant challenge to analytical methods intended to assess human health risks in surface and drinking water systems. The most widely employed analytical method at present is the ADDA-ELISA technique which is potentially sensitive to all microcystins, but it is primarily intended as a semi-quantitative method, and questions have been raised regarding the potential for cross-reactivity and false positives. LC-MS/MS methods targeting specific congeners, such as US EPA Method 544, are intended for use as a secondary confirmation following a positive ELISA response, but these techniques can target only those congeners for which commercial standards are available. Accordingly, they are not suitable for ascertaining the safety of a given water sample, given the potential for omitting unknown microcystin congeners which might be present.An alternative approach involves oxidative transformation of microcystins to a common product, 2-methyl-3-methoxy-4-phenylbutyric acid, or MMPB. Measuring MMPB by LC-MS/MS can potentially provide a metric for the sum of all microcystin congeners present in a sample, subject to the efficiency and overall yield of conversion. The

  10. Electric Field Measurements At The Magnetopause

    Science.gov (United States)

    Lindqvist, P.-A.; Dunlop, M.

    The quasi-thermal noise (QTN) is due to the thermal motions of the particles, which produce electrostatic fluctuations. This noise is detected by any sensitive receiver at the ports of an electric antenna immersed in a plasma and can be used to measure in-situ the plasma density, temperature and bulk velocity. The basic reason is that this noise can be formally calculated as a function of both the particle velocity distribu- tions and the antenna geometry. So, conversely, the "spectroscopy" of this noise re- veals the local plasma properties. This method is routinely used on various spacecraft (Ulysses, Wind) in the solar wind or in planetary magnetospheres/ionospheres (Image at Earth, Cassini at Venus, Earth and soon at Saturn). This method has the advantage of being relatively immune to spacecraft potential and photoelectrons pertubations, since it senses a large plasma volume. It provides an accurate measurement of the electron density (a few %) because it is based on the detection of the strong signal peak near the local plasma frequency (which is close to a resonance for electrostatic waves). We will show that QTN may be as well adapted to measure 1) magnetized (anisotropic) plasmas (and deduce the magnetic field strength), 2) suprathermal or non-thermal component (as for example a kappa distribution), and 3) a wide range of core temperature, i.e from ~10 eV, as in the solar wind, to rather low temperatures (tron density and temperature for comparison with our models of Mercury/solar wind interaction.

  11. RF field measurements in the vicinity of an ICRF antenna

    International Nuclear Information System (INIS)

    Majeski, R.; Intrator, T.; Roberts, D.; Hershkowitz, N.; Tataronis, J.; Grossmann, W.

    1988-01-01

    Measurements of the rf fields near an ICRF antenna installed in the central cell of the Phaedrus-B tandem mirror have been made, both in vacuum and in the presence of plasma. The antenna is a Faraday shielded partial turn loop. The front surface of the Faraday shield is composed of cylindrical elements in an arrangement similar to the Faraday shield design employed on TFTR. The antenna is run at relatively low power levels, in the 3.5-10 MHz frequency range. Two other ICRF systems in the phaedrus-B central cell sustain and heat the plasma at the 400 KW level. The vacuum field measurements are compared with the predictions of the ARGUS code, which models details of the Faraday shield structure. Fields in the plasma are modelled by the ANTENA code. Particle currents collected by the Faraday shield during plasma operation are also observed

  12. Dispersion Modeling Using Ensemble Forecasts Compared to ETEX Measurements.

    Science.gov (United States)

    Straume, Anne Grete; N'dri Koffi, Ernest; Nodop, Katrin

    1998-11-01

    Numerous numerical models are developed to predict long-range transport of hazardous air pollution in connection with accidental releases. When evaluating and improving such a model, it is important to detect uncertainties connected to the meteorological input data. A Lagrangian dispersion model, the Severe Nuclear Accident Program, is used here to investigate the effect of errors in the meteorological input data due to analysis error. An ensemble forecast, produced at the European Centre for Medium-Range Weather Forecasts, is then used as model input. The ensemble forecast members are generated by perturbing the initial meteorological fields of the weather forecast. The perturbations are calculated from singular vectors meant to represent possible forecast developments generated by instabilities in the atmospheric flow during the early part of the forecast. The instabilities are generated by errors in the analyzed fields. Puff predictions from the dispersion model, using ensemble forecast input, are compared, and a large spread in the predicted puff evolutions is found. This shows that the quality of the meteorological input data is important for the success of the dispersion model. In order to evaluate the dispersion model, the calculations are compared with measurements from the European Tracer Experiment. The model manages to predict the measured puff evolution concerning shape and time of arrival to a fairly high extent, up to 60 h after the start of the release. The modeled puff is still too narrow in the advection direction.

  13. Thermomechanical fields measurement for fatigue investigation under cyclic thermal shocks

    International Nuclear Information System (INIS)

    Charbal, Ali

    2017-01-01

    Thermal fatigue occurs in nuclear power plant pipes. The temperature variations are due to the turbulent mixing of fluids that have different temperatures. Many experimental setups have been designed but the measured temperatures have only been punctual and out of the zone of interest (e.g., via thermocouples). The equivalent strain variation in the crack initiation region is calculated with numerical thermomechanical simulations. In many cases, the comparisons between numerical and experimental results have shown that the crack initiation predictions in thermal fatigue are non-conservative. a new testing setup is proposed where thermal shocks are applied with a pulsed laser beam while the thermal and kinematic fields on the specimen surface are measured with infrared (IR) and visible cameras, respectively. Experimental testings are performed and different measurement techniques for temperature and kinematic fields are used. IR camera and pyrometers allow to measure the temperature variations in the zone impacted by the laser beam. To estimate the absolute temperature, the surface emissivities at the respective wavelengths are determined by different methods. The absolute temperature field is then used to apply the actual thermal loading in a decoupled FE model after an identification process of the parameters of the laser beam. Once the thermal loading is generated based upon the experimental data, the stress and strain fields can be computed in the region of interest with an elastoplastic law.The experimental strain variations calculated from the DIC measurements are compared with the predictions obtained with the FE simulation. (author) [fr

  14. Electric field measurements in high pressure discharges

    International Nuclear Information System (INIS)

    Mitko, S.V.; Ochkin, V.N.; Serdyuchenko, A.Yu.; Tskhai, S.N.

    2001-01-01

    Electric fields define a wide range of interactions and phenomena at different phases of matter both on micro- and macro-level. Investigation of electric fields behavior provides a key for understanding of these phenomena and their application

  15. Communication linguistique: Etude comparative faite sur le terrain (Linguistic Communication: A Comparative Field Study).

    Science.gov (United States)

    Piron, Claude

    2002-01-01

    Compares the four international systems of linguistic communication used in the field (systems used in the United Nations, multinationals, the European Union, and Esperanto organizations) on select criteria (e.g., previous government investment). Discusses research that shows unilingual systems (English used alone, Esperanto) are those that…

  16. Uniocular and binocular fields of rotation measures: Octopus versus Goldmann.

    Science.gov (United States)

    Rowe, Fiona J; Hanif, Sahira

    2011-06-01

    To compare the range of ocular rotations measured by Octopus versus Goldmann perimetry. Forty subjects (20 controls and 20 patients with impaired ocular movements) were prospectively recruited, age range 21-83 years. Range of uniocular rotations was measured in six vectors corresponding to extraocular muscle actions: 0°, 67°, 141°, 180°, 216°, 293°. Fields of binocular single vision were assessed at 30° intervals. Vector measurements were utilised to calculate an area score for the field of uniocular rotations or binocular field of single vision. Two test speeds were used for Octopus testing: 3°/ and 10°/second. Test duration was two thirds quicker for Octopus 10°/second than for 3°/second stimulus speed, and slightly quicker for Goldmann. Mean area for control subjects for uniocular field was 7910.45 degrees(2) for Goldmann, 7032.14 for Octopus 3°/second and 7840.66 for Octopus 10°/second. Mean area for patient subjects of right uniocular field was 8567.21 degrees(2) for Goldmann, 5906.72 for Octopus 3°/second and 8806.44 for Octopus 10°/second. Mean area for left uniocular field was 8137.49 degrees(2) for Goldmann, 8127.9 for Octopus 3°/second and 8950.54 for Octopus 10°/second. Range of measured rotation was significantly larger for Octopus 10°/second speed. Our results suggest that the Octopus perimeter is an acceptable alternative method of assessment for uniocular ductions and binocular field of single vision. Speed of stimulus significantly alters test duration for Octopus perimetry. Comparisons of results from both perimeters show that quantitative measurements differ, although qualitatively the results are similar. Differences per mean vectors were less than 5° (within clinically accepted variances) for both controls and patients when comparing Goldmann to Octopus 10°/second speed. However, differences were almost 10° for the patient group when comparing Goldmann to Octopus 3°/second speed. Thus, speed of stimulus must be considered

  17. Calibration and uncertainty in electromagnetic fields measuring methods

    International Nuclear Information System (INIS)

    Anglesio, L.; Crotti, G.; Borsero, M.; Vizio, G.

    1999-01-01

    Calibration and reliability in electromagnetic field measuring methods are assured by calibration of measuring instruments. In this work are illustrated systems for generation of electromagnetic fields at low and high frequency, calibration standard and accuracy [it

  18. Method and apparatus for measuring weak magnetic fields

    DEFF Research Database (Denmark)

    1995-01-01

    When measuring weak magnetic fields, a container containing a medium, such as a solution containing a stable radical, is placed in a polarising magnetic field, which is essentially at right angles to the field to be measured. The polarising field is interrupted rapidly, the interruption being...

  19. Measuring magnetic field vector by stimulated Raman transitions

    International Nuclear Information System (INIS)

    Wang, Wenli; Wei, Rong; Lin, Jinda; Wang, Yuzhu; Dong, Richang; Zou, Fan; Chen, Tingting

    2016-01-01

    We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields, beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.

  20. Calculated and measured fields in superferric wiggler magnets

    Energy Technology Data Exchange (ETDEWEB)

    Blum, E.B.; Solomon, L. [Brookhaven National Lab., Upton, NY (United States)

    1995-02-01

    Although Klaus Halbach is widely known and appreciated as the originator of the computer program POISSON for electromagnetic field calculation, Klaus has always believed that analytical methods can give much more insight into the performance of a magnet than numerical simulation. Analytical approximations readily show how the different aspects of a magnet`s design such as pole dimensions, current, and coil configuration contribute to the performance. These methods yield accuracies of better than 10%. Analytical methods should therefore be used when conceptualizing a magnet design. Computer analysis can then be used for refinement. A simple model is presented for the peak on-axis field of an electro-magnetic wiggler with iron poles and superconducting coils. The model is applied to the radiator section of the superconducting wiggler for the BNL Harmonic Generation Free Electron Laser. The predictions of the model are compared to the measured field and the results from POISSON.

  1. Experiments of Accuracy Air Ion Field Measurement

    Czech Academy of Sciences Publication Activity Database

    Bartušek, Karel; Fiala, P.; Jirků, T.; Kadlecová, E.

    2007-01-01

    Roč. 3, č. 8 (2007), s. 1330-1333 ISSN 1931-7360 Institutional research plan: CEZ:AV0Z20650511 Keywords : air ion field * gerdien condenser * picoampermeter Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  2. Measurement of the electrostatic field in aurora by antarctic rocket

    International Nuclear Information System (INIS)

    Takeya, Yoshio; Minami, Shigeyuki

    1974-01-01

    The direct measurement of the electrostatic field produced by the flow of charged particles and geomagnetic field in aurora has been carried out by means of rockets or satellites. The construction of an electric field meter and its characteristics are described, which measures the vectors of electric field with antarctic rockets. New scheme is presented: three components of an electric field are directly obtained through the probes set in three directions. (Mori, K.)

  3. Field measurement of albedo for limited extent test surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sailor, David J. [Portland State University, Department of Mechanical and Materials Engineering, P.O. Box 751-ME, Portland, OR 97207 (United States); Resh, Kyle; Segura, Del [Tulane University, Department of Mechanical Engineering, 400 Lindy Boggs Center, New Orleans, LA 70118 (United States)

    2006-05-15

    A new method is introduced for field measurement of surface albedo. This method consists of the use of a cylindrical shade ring made of opaque fabric with a known (low) albedo placed over a test surface. The albedo measurement is accomplished using two small pyranometers situated so that the downward-facing pyranometer receives radiation only from the test surface and the shade ring. The upward-facing pyranometer simultaneously records the incoming solar radiation. The radiation received by the downward-facing pyramometer is a combination of reflected radiation from shaded and unshaded portions of these two surfaces, requiring detailed accounting of the resulting view factor geometries. The method presented here improves upon past approaches by allowing for smaller sample sizes, minimizing errors associated with reflective properties of the surroundings, and allowing for accurate measurements even under partially cloudy skies. In addition to these methodological improvements we introduce an approach for estimating the uncertainty in the resulting albedo measurements. Results from field measurements are presented to validate the measurement protocol, and to compare its accuracy with the accuracy of a published standard. (author)

  4. FITTING HELICAL SNAKE AND ROTATOR FIELD STRENGTH MEASUREMENTS IN RHIC

    International Nuclear Information System (INIS)

    RANJBAR, V.; LUCCIO, A.U.; MACKAY, W.W.; TSOUPAS, N.

    2001-01-01

    We examined recent multi-pole measurements for the helical snakes and rotators in RHIC to generate a full field map. Since multi-pole measurements yield real field values for B, field components we developed a unique technique to evaluate the full fields using a traditional finite element analysis software [1]. From these measurements we employed SNIG [2] to generate orbit and Spin plots. From orbit values we generated a transfer matrix for the first snake

  5. Comparative transcriptional and genomic analysis of Plasmodium falciparum field isolates.

    Directory of Open Access Journals (Sweden)

    Margaret J Mackinnon

    2009-10-01

    Full Text Available Mechanisms for differential regulation of gene expression may underlie much of the phenotypic variation and adaptability of malaria parasites. Here we describe transcriptional variation among culture-adapted field isolates of Plasmodium falciparum, the species responsible for most malarial disease. It was found that genes coding for parasite protein export into the red cell cytosol and onto its surface, and genes coding for sexual stage proteins involved in parasite transmission are up-regulated in field isolates compared with long-term laboratory isolates. Much of this variability was associated with the loss of small or large chromosomal segments, or other forms of gene copy number variation that are prevalent in the P. falciparum genome (copy number variants, CNVs. Expression levels of genes inside these segments were correlated to that of genes outside and adjacent to the segment boundaries, and this association declined with distance from the CNV boundary. This observation could not be explained by copy number variation in these adjacent genes. This suggests a local-acting regulatory role for CNVs in transcription of neighboring genes and helps explain the chromosomal clustering that we observed here. Transcriptional co-regulation of physical clusters of adaptive genes may provide a way for the parasite to readily adapt to its highly heterogeneous and strongly selective environment.

  6. Techniques to measure complex-plane fields

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2014-09-25

    Full Text Available In this work we construct coherent superpositions of Gaussian and vortex modes which can be described to occupy the complex-plane. We demonstrate how these fields can be experimentally constructed in a digital, controllable manner with a spatial...

  7. Field of Temperature Measurement by Virtual Instrumentation

    Directory of Open Access Journals (Sweden)

    Libor HARGAŠ

    2009-01-01

    Full Text Available This paper introduces about temperature determination for given dot of picture through image analysis. Heat transfer is the transition of thermal energy from a heated item to a cooler item. Main method of measurement of temperature in image is Pattern Matching, color scale detection and model detection. We can measure temperature dependency at time for selected point of thermo vision images. This measurement gives idea about the heat transfer at time dependences.

  8. Measurement and calculation of radiation fields of the Sandia irradiator for dried sewage solids

    International Nuclear Information System (INIS)

    Morris, M.E.

    1981-03-01

    The radiation field of the Sandia Irradiator for Dried Sewage Solids was measured. The results of the measurement are given in this report. In addition, theoretical calculations of the fields are given and then compared with the measured values. Elementary models of the radiation source geometry and irradiated product are found to be adequate and thus allow us to duplicate (through calculation) the important features of the measured fields

  9. Initial field measurements on the Chalk River superconducting cyclotron

    International Nuclear Information System (INIS)

    Ormrod, J.H.; Chan, K.C.; Hill, J.H.

    1980-12-01

    The midplane magnetic field of the Chalk River superconducting cyclotron has been mapped in detail over the full operating range of 2.5 to 5 tesla. The field measuring apparatus is described and results given include measurements of the field stability, reproducibility and harmonic content. (author)

  10. Accurate method of the magnetic field measurement of quadrupole magnets

    International Nuclear Information System (INIS)

    Kumada, M.; Sakai, I.; Someya, H.; Sasaki, H.

    1983-01-01

    We present an accurate method of the magnetic field measurement of the quadrupole magnet. The method of obtaining the information of the field gradient and the effective focussing length is given. A new scheme to obtain the information of the skew field components is also proposed. The relative accuracy of the measurement was 1 x 10 -4 or less. (author)

  11. PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-01-01

    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.

  12. The magnetic field for the ZEUS central detector - analysis and correction of the field measurement

    International Nuclear Information System (INIS)

    Mengel, S.

    1992-06-01

    The magnetic field in the central tracking region of the ZEUS-detector - a facility to investigate highly energetic electron-proton-collisions at the HERA-collider at DESY Hamburg - is generated by a superconducting coil and reaches 18 kG (1.8 T). Some of the tracking devices particularly the drift chambers in the proton forward and rear direction (FTD1-3 and RTD) are not fully contained within the coil and therefore situated in a highly inhomogeneous magnetic field: The radial component B r is up to 6.6 kG, maximum gradients are found to be 300 G/cm for δB r /δr. Evaluating the space drifttime relation necessitates a detailed knowledge of the magnetic field. To reach this goal we analysed the field measurements and corrected them for systematic errors. The corrected data were compared with the field calculations (TOSCA-maps). Measurements and calculations are confirmed by studying consistency with Maxwell's equations. The accuracy reached is better than 100 G throughout the forward and central drift chambers (FTD1-3, CTD) and better than 150 G in the RTD. (orig.) [de

  13. International Accounting Convergence in the Field of Fair Value Measurement

    Directory of Open Access Journals (Sweden)

    Diana Cozma Ighian

    2015-09-01

    Full Text Available The investors’ desire for high-quality, internationally comparable financial information that is useful for decision-making in increasingly global capital markets imposed an international convergence, the ultimate goal of which is a single set of international accounting standards that companies worldwide would use for both domestic and cross-border financial reporting. The guidance, set out in IFRS 13 Fair Value Measurement and the update to Topic 820 (formerly referred to as SFAS 157, completes a major project of the boards’ joint work to improve IFRSs and US GAAP and to bring about their convergence. This article describes the controversial history of fair value measurement and the main novelties in the field of fair value measurement, arising from the international convergence process.

  14. Quantum measurement and algebraic quantum field theories

    International Nuclear Information System (INIS)

    DeFacio, B.

    1976-01-01

    It is shown that the physics and semantics of quantum measurement provide a natural interpretation of the weak neighborhoods of the states on observable algebras without invoking any ideas of ''a reading error'' or ''a measured range.'' Then the state preparation process in quantum measurement theory is shown to give the normal (or locally normal) states on the observable algebra. Some remarks are made concerning the physical implications of normal state for systems with an infinite number of degrees of freedom, including questions on open and closed algebraic theories

  15. Measuring the complex field scattered by single submicron particles

    Energy Technology Data Exchange (ETDEWEB)

    Potenza, Marco A. C., E-mail: marco.potenza@unimi.it; Sanvito, Tiziano [Department of Physics, University of Milan, via Celoria, 16 – I-20133 Milan (Italy); CIMAINA, University of Milan, via Celoria, 16 – I-20133 Milan (Italy); EOS s.r.l., viale Ortles 22/4, I-20139 Milan (Italy); Pullia, Alberto [Department of Physics, University of Milan, via Celoria, 16 – I-20133 Milan (Italy)

    2015-11-15

    We describe a method for simultaneous measurements of the real and imaginary parts of the field scattered by single nanoparticles illuminated by a laser beam, exploiting a self-reference interferometric scheme relying on the fundamentals of the Optical Theorem. Results obtained with calibrated spheres of different materials are compared to the expected values obtained through a simplified analytical model without any free parameters, and the method is applied to a highly polydisperse water suspension of Poly(D,L-lactide-co-glycolide) nanoparticles. Advantages with respect to existing methods and possible applications are discussed.

  16. Measurements of vector fields with diode array

    Science.gov (United States)

    Wiehr, E. J.; Scholiers, W.

    1985-01-01

    A polarimeter was designed for high spatial and spectral resolution. It consists of a quarter-wave plate alternately operating in two positions for Stoke-V measurements and an additional quarter-wave plate for Stokes-U and -Q measurements. The spatial range covers 75 arcsec, the spectral window of about 1.8 a allows the simultaneous observations of neighboring lines. The block diagram of the data processing and acquisition system consists of five memories each one having a capacity of 10 to the 4th power 16-bit words. The total time to acquire profiles of Stokes parameters can be chosen by selecting the number of successive measurements added in the memories, each individual measurement corresponding to an integration time of 0.5 sec. Typical values range between 2 and 60 sec depending on the brightness of the structure, the amount of polarization and a compromise between desired signal-to-noise ratio and spatial resolution.

  17. Assessing Precision in Conventional Field Measurements of Individual Tree Attributes

    Directory of Open Access Journals (Sweden)

    Ville Luoma

    2017-02-01

    Full Text Available Forest resource information has a hierarchical structure: individual tree attributes are summed at the plot level and then in turn, plot-level estimates are used to derive stand or large-area estimates of forest resources. Due to this hierarchy, it is imperative that individual tree attributes are measured with accuracy and precision. With the widespread use of different measurement tools, it is also important to understand the expected degree of precision associated with these measurements. The most prevalent tree attributes measured in the field are tree species, stem diameter-at-breast-height (dbh, and tree height. For dbh and height, the most commonly used measuring devices are calipers and clinometers, respectively. The aim of our study was to characterize the precision of individual tree dbh and height measurements in boreal forest conditions when using calipers and clinometers. The data consisted of 319 sample trees at a study area in Evo, southern Finland. The sample trees were measured independently by four trained mensurationists. The standard deviation in tree dbh and height measurements was 0.3 cm (1.5% and 0.5 m (2.9%, respectively. Precision was also assessed by tree species and tree size classes; however, there were no statistically significant differences between the mensurationists for dbh or height measurements. Our study offers insights into the expected precision of tree dbh and height as measured with the most commonly used devices. These results are important when using sample plot data in forest inventory applications, especially now, at a time when new tree attribute measurement techniques based on remote sensing are being developed and compared to the conventional caliper and clinometer measurements.

  18. Effects of persistent insecticides on beneficial soil arthropod in conventional fields compared to organic fields, puducherry.

    Science.gov (United States)

    Anbarashan, Padmavathy; Gopalswamy, Poyyamoli

    2013-07-15

    The usage of synthetic fertilizers/insecticides in conventional farming has dramatically increased over the past decades. The aim of the study was to compare the effects of bio-pesticides and insecticides/pesticides on selected beneficial non targeted arthropods. Orders Collembola, Arachinida/Opiliones, Oribatida and Coleoptera were the main groups of arthropods found in the organic fields and Coleoptera, Oribatida, Gamasida and Collembola in conventional fields. Pesticides/insecticides had a significant effect on non-targeted arthropods order- Collembola, Arachinida/Opiliones, Hymenoptera and Thysonoptera were suppressed after pesticides/insecticides spraying. Bio-insecticides in organic fields had a non-significant effect on non targeted species and they started to increase in abundance after 7 days of spraying, whereas insecticide treatment in conventional fields had a significant long-term effect on non targeted arthropods and short term effect on pests/insects, it started to increase after 21 days of the spraying. These results indicate that insecticide treatment kept non targeted arthropods at low abundance. In conclusion, organic farming does not significantly affected the beneficial-non targeted arthropods biodiversity, whereas preventive insecticide application in conventional fields had significant negative effects on beneficial non targeted arthropods. Therefore, conventional farmers should restrict insecticide applications, unless pest densities reach the thresholds and more desirably can switch to organic farming practices.

  19. Cryogenic current comparators for precise ion beam current measurements

    International Nuclear Information System (INIS)

    Kurian, Febin

    2015-01-01

    The planned Facility for Antiproton and Ion Research (FAIR) at GSI has to cope with a wide range of beam intensities in its high-energy beam transport systems and in the storage rings. To meet the requirements of a non-intercepting intensity measurement down to nA range, it is planned to install a number of Cryogenic Current Comparator (CCC) units at different locations in the FAIR beamlines. In this work, the first CCC system for intensity measurement of heavy ion beams, which was developed at GSI, was re-commissioned and upgraded to be used as a 'GSI - CCC prototype' for extensive optimization and development of an improved CCC for FAIR. After installation of a new SQUID sensor and related electronics, as well as implementation of improved data acquisition components, successful beam current measurements were performed at a SIS18 extraction line. The measured intensity values were compared with those of a Secondary Electron Monitor (SEM). Furthermore, the spill-structure of a slowly extracted beam was measured and analyzed, investigating its improvement due to bunching during the slow-extraction process. Due to the extreme sensitivity of the superconducting sensor, the determined intensity values as well as the adjustment of the system for optimal performance are strongly influenced by the numerous noise sources of the accelerators environment. For this reason, detailed studies of different effects caused by noise have been carried out, which are presented together with proposals to reduce them. Similarly, studies were performed to increase the dynamic range and overcome slew rate limitations, the results of which are illustrated and discussed as well. By combining the various optimizations and characterizations of the GSI CCC prototype with the experiences made during beam operation, criteria for a more efficient CCC System could be worked out, which are presented in this work. The details of this new design are worked out with respect to the

  20. Electric field measurements in a xenon discharge using Spark spectroscopy

    NARCIS (Netherlands)

    Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W.

    2005-01-01

    Measurements of electric field distributions in a low-pressure xenon discharge are presented. The measurement technique is based on Stark spectroscopy, using a 2 + 1 excitation scheme with fluorescence dip detection. Electric fields can be measured by detecting Stark shifts of high-lying Rydberg

  1. Magnetometer for measuring planetary magnetic fields

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter

    , CHAMP and SAC-C missions. It can produce vector measurements at a rate of 50 Hz and with a precision of more than 21 bits. The thermal and long term stability of the instrument is less than 0.5 nT. The power consumption of the instrument is less than 0.5W for continuous operation. For an orbiting...

  2. Comparative Measurement of Stream Flow in the Ethiope River for ...

    African Journals Online (AJOL)

    This study investigates comparative measurement of stream flow in the Ethiope River for small hydropower development. Two methods – the Float and Current Meter or Bridge Broom Methods were investigated and values compared to determine best method for optimal power generation. Depth and width measurements ...

  3. Table 1. Summary of Field Testing and Measurement Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Key performance parameters measured during the field demonstration such as lining thickness, compressive strength, Flexural Strength, Modulus of Elasticity, bond...

  4. Estimation of complete temperature fields from measured temperatures

    International Nuclear Information System (INIS)

    Clegg, S.T.; Roemer, R.B.

    1984-01-01

    In hyperthermia treatments, it is desirable to be able to predict complete tissue temperature fields from sampled temperatures taken at a few locations. This is a difficult problem in hyperthermia treatments since the tissue blood perfusion is unknown. An initial attempt to do this automatically using unconstrained optimization techniques to minimize the differences between steady state temperatures measured during a treatment and temperatures (at the same locations) predicted from treatment simulations has been previously reported. A second technique using transient temperatures following a step decrease in power has been developed. This technique, which appears to be able to better predict complete temperature fields is presented and both it and the steady state technique are applied to data from both simulated and experimental hyperthermia treatments. The results of applying the two techniques are compared for one-dimensional situations. One particularly important problem which the transient technique can solve (and the steady state technique does not seem to be able to do as well) is that of predicting the complete temperature field in situations where the true maximum and/or minimum temperatures present are not measured by the available instrumentation

  5. Side abutment pressure distribution by field measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lian-guo Wang; Yang Song; Xing-hua He; Jian Zhang [State Key Laboratory for Geomechanics and Deep Underground Engineering, Xuzhou (China)

    2008-12-15

    Given the 7123 working face in the Qidong Coal Mine of the Wanbei Mining Group, nine dynamic roof monitors were installed in the crossheading to measure the amount and velocity of roof convergence in different positions and at different times and three steel bored stress sensors were installed in the return airway to measure rock stress at depth. On the basis of this arrangement, the rule of change of the distribution of the side abutment pressure with the advance of the working face and movement of overlying strata was studied. The rule of change and the stability of rock stress at depth were measured. Secondly, the affected area and stability time of the side abutment pressure were also studied. The results show that: 1) During working, the face advanced distance was from 157 m to 99 m, the process was not effected by mining induced pressure. When the distance was 82 m, the position of peak stress was 5 m away from the coal wall. When the distance was 37 m, the position of peak stress away from the coal wall was about 15 m to 20 m and finally reached a steady state; 2) the time and the range of the peak of side rock pressure obtained from stress sensors were consistent with the results from the dynamic roof monitors; 3) the position of the peak pressure was 25 m away from the coal wall. 14 refs., 6 figs.

  6. Recent attoclock measurements of strong field ionization

    International Nuclear Information System (INIS)

    Pfeiffer, Adrian N.; Cirelli, Claudio; Smolarski, Mathias; Keller, Ursula

    2013-01-01

    Highlights: ► The attoclock measures time by electron streaking with elliptically polarized light. ► Precision measurements reveal details about the laser-induced tunneling current flow. ► Multielectron effects play an important role when the polarizability is large. ► Double ionization experiments show evidence of novel electron correlation mechanisms. - Abstract: The attoclock is a powerful, new, and unconventional experimental tool to study fundamental attosecond dynamics on an atomic scale. We have demonstrated the first attoclock with the goal to measure the tunneling delay time in laser-induced ionization of helium and argon atoms, with surprising results. It was found that the time delay in tunneling is zero for helium and argon atoms within the experimental uncertainties of a few 10’s of attoseconds. Furthermore we showed that the single active electron approximation is not sufficient even for atoms such as argon and the parent-ion interaction is much more complex than normally assumed. For double ionization of argon we found again surprising results because the ionization time of the first electron is in good agreement with the predictions, whereas the ionization of the second electron occurs significantly earlier than predicted and the two electrons exhibit some unexpected correlation

  7. Recent attoclock measurements of strong field ionization

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, Adrian N., E-mail: apfeiff@phys.ethz.ch [Physics Department, ETH Zurich, 8093 Zurich (Switzerland); Cirelli, Claudio; Smolarski, Mathias; Keller, Ursula [Physics Department, ETH Zurich, 8093 Zurich (Switzerland)

    2013-03-12

    Highlights: ► The attoclock measures time by electron streaking with elliptically polarized light. ► Precision measurements reveal details about the laser-induced tunneling current flow. ► Multielectron effects play an important role when the polarizability is large. ► Double ionization experiments show evidence of novel electron correlation mechanisms. - Abstract: The attoclock is a powerful, new, and unconventional experimental tool to study fundamental attosecond dynamics on an atomic scale. We have demonstrated the first attoclock with the goal to measure the tunneling delay time in laser-induced ionization of helium and argon atoms, with surprising results. It was found that the time delay in tunneling is zero for helium and argon atoms within the experimental uncertainties of a few 10’s of attoseconds. Furthermore we showed that the single active electron approximation is not sufficient even for atoms such as argon and the parent-ion interaction is much more complex than normally assumed. For double ionization of argon we found again surprising results because the ionization time of the first electron is in good agreement with the predictions, whereas the ionization of the second electron occurs significantly earlier than predicted and the two electrons exhibit some unexpected correlation.

  8. Field instrumentation for hydrofracturing stress measurements

    International Nuclear Information System (INIS)

    Bjarnason, Bjarni; Torikka, Arne.

    1989-08-01

    A recently developed system for rock stress measurements by the hydraulic fracturing method is documented in detail. The new equipment is intended for measurement in vertical or nearvertical boreholes, down to a maximum depth of 1000 m. The minimum borehole, diameter required is 56 mm. Downhole instrumentation comprises a straddle packer assembly for borehole fracturing, equipment for determination of fracture orientations and a pressure transducer. The downhole tools are operated by means of a multihose system, containing high pressure hydraulic tubings, signal cable and carrying wire into one hose unit. The surface components of the equipment include a system for generation and control of water pressures up to approximately 75 MPa, an hydraulically operated drum for the multihose and a data acquisition system. All surface instrumentation is permanently mounted on a truck, which also serves as power source for the instrumentation. In addition to the description of instrumentation, the theoretical fundament and the testing procedures associated with the hydraulic fracturing method are briefly outlined

  9. Principles of planar near-field antenna measurements

    CERN Document Server

    Gregson, Stuart; Parini, Clive

    2007-01-01

    This single volume provides a comprehensive introduction and explanation of both the theory and practice of 'Planar Near-Field Antenna Measurement' from its basic postulates and assumptions, to the intricacies of its deployment in complex and demanding measurement scenarios.

  10. Comparative Administrative Law: Outlining a Field of Study

    Directory of Open Access Journals (Sweden)

    Susan Rose-Ackerman

    2010-10-01

    Full Text Available Comparative administrative law is emerging as a distinct field of inquiry after a period of neglect. To demonstrate this claim, the authors summarize their edited volume on the topic – a collection that aims to stimulate research across legal systems and scholarly disciplines. After a set of historical reflections, the authors consider key topics at the intersection of administrative and constitutional law, including the contested issue of administrative independence. Two further sections highlight tensions between expertise and accountability, drawing insights from economics and political science. The essay then considers the changing boundaries of the administrative state – both the public–private distinction and the links between domestic and transnational regulatory bodies, such as the European Union. The essay concludes with reflections on a core concern of administrative law: the way individuals and organizations across different systems test and challenge the legitimacy of public authority. Le droit administratif comparé est en train de se manifester comme domaine d’étude distinct suite à une période pendant laquelle il a été négligé. Pour démontrer cette affirmation, les auteurs présentent un sommaire du volume à ce sujet dont ils dirigent la publication – une collection qui vise à stimuler la recherche au sein de divers systèmes juridiques et diverses disciplines d’érudition. Après une série de réflexions historiques, les auteurs traitent de questions–clés qui relèvent en même temps du droit administratif et du droit constitutionnel, y compris la question controversée de l’indépendance administrative. Deux autres sections mettent en lumière des tensions entre l’expertise et l’obligation de rendre compte, puisant dans les sciences économique et politique. L’article traite ensuite des limites changeantes de l’état administratif – d’une part, quant à la distinction public–privé et d

  11. A comparative study of performance measurement standards of railway operator

    Directory of Open Access Journals (Sweden)

    Pongjirawut Siripong

    2017-01-01

    Full Text Available The European standard (EN 13816, is one of the widely accepted standards for measuring the quality of public passenger transport (PPT service. EN 13816 indicates 8 measurement criteria, 29 sub-criteria and 193 Key Performance Indicators (KPIs to be used to measure the performance of railway operators. Nowadays, there are other addition criteria beyond EN13816, developed by various organisations. This research firstly aims to explore the service performance measurement of railway operators used by actual railway operators at international level and in Thailand. After an intensive review of performance measurement standards, 9 standards are compiled and compared in terms of criteria, sub-criteria and KPIs using a cluster analysis methodology. The result found additional performance measurement aspects at 2 sub-criteria and 91 KPIs in addition to EN 13816. This research summarized and compared different performance measurement standards to measure service quality of metro rail line.

  12. A new device for production measurements of field integral and field direction of SC dipole magnets

    International Nuclear Information System (INIS)

    Preissner, H.; Bouchard, R.; Luethke, P.; Makulski, A.; Meinke, R.; Nesteruk, K.

    1990-01-01

    The performance of all superconducting magnets for HERA is tested in the DESY magnet test facility and their magnetic field is measured. For dipole magnets the magnitude and the direction of the field is measured point by point along the axis with a mole-type probe which is transported through the beam pipe. The positioning of the probe is done via a toothed belt with an accuracy of 1 mm. The probe houses two Hall probes perpendicular to each other, a gravitational tilt sensor and an NMR probe. The field in the plateau is measured by NMR, the fringe field is measured by the Hall probes and the field direction relative to gravity is obtained from the ratio of the two Hall voltages and the tilt sensor. The field integral is determined with an accuracy of 10 -4 and the average field direction is measured with an accuracy of 0.2 mrad. 4 refs., 4 figs

  13. Hotplate precipitation gauge calibrations and field measurements

    Science.gov (United States)

    Zelasko, Nicholas; Wettlaufer, Adam; Borkhuu, Bujidmaa; Burkhart, Matthew; Campbell, Leah S.; Steenburgh, W. James; Snider, Jefferson R.

    2018-01-01

    First introduced in 2003, approximately 70 Yankee Environmental Systems (YES) hotplate precipitation gauges have been purchased by researchers and operational meteorologists. A version of the YES hotplate is described in Rasmussen et al. (2011; R11). Presented here is testing of a newer version of the hotplate; this device is equipped with longwave and shortwave radiation sensors. Hotplate surface temperature, coefficients describing natural and forced convective sensible energy transfer, and radiative properties (longwave emissivity and shortwave reflectance) are reported for two of the new-version YES hotplates. These parameters are applied in a new algorithm and are used to derive liquid-equivalent accumulations (snowfall and rainfall), and these accumulations are compared to values derived by the internal algorithm used in the YES hotplates (hotplate-derived accumulations). In contrast with R11, the new algorithm accounts for radiative terms in a hotplate's energy budget, applies an energy conversion factor which does not differ from a theoretical energy conversion factor, and applies a surface area that is correct for the YES hotplate. Radiative effects are shown to be relatively unimportant for the precipitation events analyzed. In addition, this work documents a 10 % difference between the hotplate-derived and new-algorithm-derived accumulations. This difference seems consistent with R11's application of a hotplate surface area that deviates from the actual surface area of the YES hotplate and with R11's recommendation for an energy conversion factor that differs from that calculated using thermodynamic theory.

  14. Field measurements of radium in the human body

    International Nuclear Information System (INIS)

    Toohey, R.E.; May, H.A.

    1978-01-01

    Two whole body counting systems have been developed and employed for field measurements. The radium contents of nine previously unmeasured cases have been determined during three field trips. Future trips are being scheduled to make body radioactivity measurements on a specific subpopulation of CHR radium cases

  15. Comparative Study of the Volumetric Methods Calculation Using GNSS Measurements

    Science.gov (United States)

    Şmuleac, Adrian; Nemeş, Iacob; Alina Creţan, Ioana; Sorina Nemeş, Nicoleta; Şmuleac, Laura

    2017-10-01

    This paper aims to achieve volumetric calculations for different mineral aggregates using different methods of analysis and also comparison of results. To achieve these comparative studies and presentation were chosen two software licensed, namely TopoLT 11.2 and Surfer 13. TopoLT program is a program dedicated to the development of topographic and cadastral plans. 3D terrain model, level courves and calculation of cut and fill volumes, including georeferencing of images. The program Surfer 13 is produced by Golden Software, in 1983 and is active mainly used in various fields such as agriculture, construction, geophysical, geotechnical engineering, GIS, water resources and others. It is also able to achieve GRID terrain model, to achieve the density maps using the method of isolines, volumetric calculations, 3D maps. Also, it can read different file types, including SHP, DXF and XLSX. In these paper it is presented a comparison in terms of achieving volumetric calculations using TopoLT program by two methods: a method where we choose a 3D model both for surface as well as below the top surface and a 3D model in which we choose a 3D terrain model for the bottom surface and another 3D model for the top surface. The comparison of the two variants will be made with data obtained from the realization of volumetric calculations with the program Surfer 13 generating GRID terrain model. The topographical measurements were performed with equipment from Leica GPS 1200 Series. Measurements were made using Romanian position determination system - ROMPOS which ensures accurate positioning of reference and coordinates ETRS through the National Network of GNSS Permanent Stations. GPS data processing was performed with the program Leica Geo Combined Office. For the volumetric calculating the GPS used point are in 1970 stereographic projection system and for the altitude the reference is 1975 the Black Sea projection system.

  16. In-field radon measurement in water: a novel approach

    International Nuclear Information System (INIS)

    Talha, S.A.; Meijer, R.J. de; Lindsay, R.; Newman, R.T.; Maleka, P.P.; Hlatshwayo, I.N.

    2010-01-01

    This paper presents a novel approach of measuring radon in-water in the field by inserting a MEDUSA gamma-ray detector into a 210 L or 1000 L container. The experimental measurements include investigating the effect of ambient background gamma-rays on in-field radon measurement, calibrating the detector efficiency using several amounts of KCl salt dissolved in tap water, and measuring radon in borehole water. The results showed that there is fairly good agreement between the field and laboratory measurements of radon in water, based on measurements with Marinelli beakers on a HPGe detector. The MDA of the method is 0.5 Bq L -1 radon in-water. -- Research highlights: →Radon-in-water, large volume container, in-field measurements, MEDUSA gamma-ray detection system.

  17. Neighborhood walkability: field validation of geographic information system measures.

    Science.gov (United States)

    Hajna, Samantha; Dasgupta, Kaberi; Halparin, Max; Ross, Nancy A

    2013-06-01

    Given the health benefits of walking, there is interest in understanding how physical environments favor walking. Although GIS-derived measures of land-use mix, street connectivity, and residential density are commonly combined into indices to assess how conducive neighborhoods are to walking, field validation of these measures is limited. To assess the relationship between audit- and GIS-derived measures of overall neighborhood walkability and between objective (audit- and GIS-derived) and participant-reported measures of walkability. Walkability assessments were conducted in 2009. Street-level audits were conducted using a modified version of the Pedestrian Environmental Data Scan. GIS analyses were used to derive land-use mix, street connectivity, and residential density. Participant perceptions were assessed using a self-administered questionnaire. Audit, GIS, and participant-reported indices of walkability were calculated. Spearman correlation coefficients were used to assess the relationships between measures. All analyses were conducted in 2012. The correlation between audit- and GIS-derived measures of overall walkability was high (R=0.7 [95% CI=0.6, 0.8]); the correlations between objective (audit and GIS-derived) and participant-reported measures were low (R=0.2 [95% CI=0.06, 0.3]; R=0.2 [95% CI=0.04, 0.3], respectively). For comparable audit and participant-reported items, correlations were higher for items that appeared more objective (e.g., sidewalk presence, R=0.4 [95% CI=0.3, 0.5], versus safety, R=0.1 [95% CI=0.003, 0.3]). The GIS-derived measure of walkability correlated well with the in-field audit, suggesting that it is reasonable to use GIS-derived measures in place of more labor-intensive audits. Interestingly, neither audit- nor GIS-derived measures correlated well with participants' perceptions of walkability. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Measurement of electric fields in the H-1NF heliac

    International Nuclear Information System (INIS)

    James, B.W.; Howard, J.

    1999-01-01

    There are a number of laser induced fluorescence techniques which can be used to measure internal plasma electric fields. It is planned to use a technique based on Stark mixing of energy levels in a supersonic beam containing metastable helium atoms to measure radial electric fields in H-1NF. Enhanced values of radial electric field are associated with improved confinement modes in H-1NF and other magnetically confined plasmas

  19. Comparison of field-measured radon diffusion coefficients with laboratory-measured coefficients

    International Nuclear Information System (INIS)

    Lepel, E.A.; Silker, W.B.; Thomas, V.W.; Kalkwarf, D.R.

    1983-04-01

    Experiments were conducted to compare radon diffusion coefficients determined for 0.1-m depths of soils by a steady-state method in the laboratory and diffusion coefficients evaluated from radon fluxes through several-fold greater depths of the same soils covering uranium-mill tailings. The coefficients referred to diffusion in the total pore volume of the soils and are equivalent to values for the quantity, D/P, in the Generic Environmental Impact Statement on Uranium Milling prepared by the US Nuclear Regulatory Commission. Two soils were tested: a well-graded sand and an inorganic clay of low plasticity. For the flux evaluations, radon was collected by adsorption on charcoal following passive diffusion from the soil surface and also from air recirculating through an aluminum tent over the soil surface. An analysis of variance in the flux evaluations showed no significant difference between these two collection methods. Radon diffusion coefficients evaluated from field data were statistically indistinguishable, at the 95% confidence level, from those measured in the laboratory; however, the low precision of the field data prevented a sensitive validation of the laboratory measurements. From the field data, the coefficients were calculated to be 0.03 +- 0.03 cm 2 /s for the sand cover and 0.0036 +- 0.0004 cm 2 /s for the clay cover. The low precision in the coefficients evaluated from field data was attributed to high variation in radon flux with time and surface location at the field site

  20. Full-Field Indentation Damage Measurement Using Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Elías López-Alba

    2017-07-01

    Full Text Available A novel approach based on full-field indentation measurements to characterize and quantify the effect of contact in thin plates is presented. The proposed method has been employed to evaluate the indentation damage generated in the presence of bending deformation, resulting from the contact between a thin plate and a rigid sphere. For this purpose, the 3D Digital Image Correlation (3D-DIC technique has been adopted to quantify the out of plane displacements at the back face of the plate. Tests were conducted using aluminum thin plates and a rigid bearing sphere to evaluate the influence of the thickness and the material behavior during contact. Information provided by the 3D-DIC technique has been employed to perform an indirect measurement of the contact area during the loading and unloading path of the test. A symmetrical distribution in the contact damage region due to the symmetry of the indenter was always observed. In the case of aluminum plates, the presence of a high level of plasticity caused shearing deformation as the load increased. Results show the full-field contact damage area for different plates’ thicknesses at different loads. The contact damage region was bigger when the thickness of the specimen increased, and therefore, bending deformation was reduced. With the proposed approach, the elastic recovery at the contact location was quantified during the unloading, as well as the remaining permanent indentation damage after releasing the load. Results show the information obtained by full-field measurements at the contact location during the test, which implies a substantial improvement compared with pointwise techniques.

  1. Consistent measurements comparing the drift features of noble gas mixtures

    CERN Document Server

    Becker, U; Fortunato, E M; Kirchner, J; Rosera, K; Uchida, Y

    1999-01-01

    We present a consistent set of measurements of electron drift velocities and Lorentz deflection angles for all noble gases with methane and ethane as quenchers in magnetic fields up to 0.8 T. Empirical descriptions are also presented. Details on the World Wide Web allow for guided design and optimization of future detectors.

  2. Verification of Electromagnetic Field Measurements via Inter-laboratory Comparison Measurements

    Directory of Open Access Journals (Sweden)

    M. Mann

    2005-01-01

    Full Text Available An inter-laboratory comparison of field strength measurements was conducted in order to verify the comparability of high-frequency electromagnetic field measurements. For this purpose, 17 participating teams hosted by the working group "procedures of exposure determination" of the LAI (Länderausschuss für Immissionsschutz, state committee on immission control determined the field strength at given stations around a hospital situation. At those stations very different signals were generated, such as sine wave signals at 27MHz and 433MHz, signals from a diathermy device in Continuous-Wave (CW and Pulse-Width-Modulation (PWM mode, from a GSM base station at 900MHz and 1800MHz, from a UMTS base station, from a babyphone device and from a DECT cordless phone. This contribution describes the evaluation of the measured values and the approach to the computation of a reference value. Considering various sources of electromagnetic fields in the areas of personal safety at work and of immission control, the most important results are presented and the conclusions drawn are discussed.

  3. Comparing Measurement Error between Two Different Methods of Measurement of Various Magnitudes

    Science.gov (United States)

    Zavorsky, Gerald S.

    2010-01-01

    Measurement error is a common problem in several fields of research such as medicine, physiology, and exercise science. The standard deviation of repeated measurements on the same person is the measurement error. One way of presenting measurement error is called the repeatability, which is 2.77 multiplied by the within subject standard deviation.…

  4. Flow field measurements in the cell culture unit

    Science.gov (United States)

    Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy

    2002-01-01

    The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the

  5. ATLAS TileCal submodule B-field measurement

    International Nuclear Information System (INIS)

    Budagov, Yu.A.; Fedorenko, S.B.; Kalinichenko, V.V.; Lomakin, Yu.F.; Vorozhtsov, S.B.; Nessi, M.

    1997-01-01

    The work was done to cross check of the previous measurement done at CERN and to simulate the magnetic structure in the vicinity of the symmetry plane of the TileCal. To perform magnetic measurements for submodule the magnet E2 was chosen. The magnetometer used in the magnetic test of the submodule consists of Hall current supply and Hall voltage measuring device. The indium antimonide Hall probe used in this measurement is a model PKhE 606. Experimental set-up provides a true measurement accuracy of order ± 1%. External magnetic field measurements were conducted at the outer surface of the submodule. Two levels of the external field were applied: 108 Gs and 400 Gs. The result of this measurement in general confirms the data, obtained at CERN, but the shielding capability of the submodule under consideration was ∼ 20% higher than there. The field at the tile location is < 150 Gs up to the external field level 500 Gs and the tile field grows much less than the external field level in this range. The data obtained in this measurement could be used as a benchmark when producing a computer model of the TileCal magnetic field distribution

  6. New Limits on Extragalactic Magnetic Fields from Rotation Measures

    Science.gov (United States)

    Pshirkov, M. S.; Tinyakov, P. G.; Urban, F. R.

    2016-05-01

    We take advantage of the wealth of rotation measures data contained in the NRAO VLA Sky Survey catalog to derive new, statistically robust, upper limits on the strength of extragalactic magnetic fields. We simulate the extragalactic magnetic field contribution to the rotation measures for a given field strength and correlation length, by assuming that the electron density follows the distribution of Lyman-α clouds. Based on the observation that rotation measures from distant radio sources do not exhibit any trend with redshift, while the extragalactic contribution instead grows with distance, we constrain fields with Jeans' length coherence length to be below 1.7 nG at the 2 σ level, and fields coherent across the entire observable Universe below 0.65 nG. These limits do not depend on the particular origin of these cosmological fields.

  7. Field measuring probe for SSC [Superconducting Super Collider] magnets

    International Nuclear Information System (INIS)

    Ganetis, G.; Herrera, J.; Hogue, R.; Skaritka, J.; Wanderer, P.; Willen, E.

    1987-03-01

    The field probe developed for measuring the field in SSC dipole magnets is an adaptation of the rotating tangential coil system in use at Brookhaven for several years. Also known as the MOLE, it is a self-contained room-temperature mechanism that is pulled through the aperture of the magnet with regular stops to measure the local field. Several minutes are required to measure the field at each point. The probe measures the multipole components of the field as well as the field angle relative to gravity. The sensitivity of the coil and electronics is such that the field up to the full 6.6 T excitation of the magnet as well as the field when warm with only 0.01 T excitation can be measured. Tethers are attached to both ends of the probe to carry electrical connections and to supply dry nitrogen to the air motors that rotate the tangential windings as well as the gravity sensor. A small computer is attached to the probe for control and for data collection, analysis and storage. Digital voltmeters are used to digitize the voltages from the rotating coil and several custom circuits control motor speeds in the probe. The overall diameter of the probe is approximately 2 cm and its length is 2.4 m; the field sensitive windings are 0.6 m in length

  8. Pressure field in measurement section of wind tunnel

    Directory of Open Access Journals (Sweden)

    Hnidka Jakub

    2017-01-01

    Full Text Available The University of Defence in Brno has a new low-speed wind tunnel. In order to confirm the quality of the wind inside of the measurement section, several measurements of the dynamic pressure have been performed with the Pitot-static tube. The pressure fields are then analysed and quality of the field is evaluated. Measurement of a pressure drop on the body of a standing helicopter was conducted.

  9. A relativistic theory for continuous measurement of quantum fields

    International Nuclear Information System (INIS)

    Diosi, L.

    1990-04-01

    A formal theory for the continuous measurement of relativistic quantum fields is proposed. The corresponding scattering equations were derived. The proposed formalism reduces to known equations in the Markovian case. Two recent models for spontaneous quantum state reduction have been recovered in the framework of this theory. A possible example of the relativistic continuous measurement has been outlined in standard Quantum Electrodynamics. The continuous measurement theory possesses an alternative formulation in terms of interacting quantum and stochastic fields. (author) 23 refs

  10. Measuring populism: comparing two methods of content analysis

    NARCIS (Netherlands)

    Rooduijn, M.; Pauwels, T.

    2011-01-01

    The measurement of populism - particularly over time and space - has received only scarce attention. In this research note two different ways to measure populism are compared: a classical content analysis and a computer-based content analysis. An analysis of political parties in the United Kingdom,

  11. Why Choice Matters: Revisiting and Comparing Measures of Democracy

    Directory of Open Access Journals (Sweden)

    Heiko Giebler

    2018-03-01

    Full Text Available Measures of democracy are in high demand. Scientific and public audiences use them to describe political realities and to substantiate causal claims about those realities. This introduction to the thematic issue reviews the history of democracy measurement since the 1950s. It identifies four development phases of the field, which are characterized by three recurrent topics of debate: (1 what is democracy, (2 what is a good measure of democracy, and (3 do our measurements of democracy register real-world developments? As the answers to those questions have been changing over time, the field of democracy measurement has adapted and reached higher levels of theoretical and methodological sophistication. In effect, the challenges facing contemporary social scientists are not only limited to the challenge of constructing a sound index of democracy. Today, they also need a profound understanding of the differences between various measures of democracy and their implications for empirical applications. The introduction outlines how the contributions to this thematic issue help scholars cope with the recurrent issues of conceptualization, measurement, and application, and concludes by identifying avenues for future research.

  12. [A focused sound field measurement system by LabVIEW].

    Science.gov (United States)

    Jiang, Zhan; Bai, Jingfeng; Yu, Ying

    2014-05-01

    In this paper, according to the requirement of the focused sound field measurement, a focused sound field measurement system was established based on the LabVIEW virtual instrument platform. The system can automatically search the focus position of the sound field, and adjust the scanning path according to the size of the focal region. Three-dimensional sound field scanning time reduced from 888 hours in uniform step to 9.25 hours in variable step. The efficiency of the focused sound field measurement was improved. There is a certain deviation between measurement results and theoretical calculation results. Focal plane--6 dB width difference rate was 3.691%, the beam axis--6 dB length differences rate was 12.937%.

  13. A Framework for Comparative Assessments of Energy Efficiency Policy Measures

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Helcio; Atkinson, Barbara; Lekov, Alex

    2011-05-24

    When policy makers propose new policies, there is a need to assess the costs and benefits of the proposed policy measures, to compare them to existing and alternative policies, and to rank them according to their effectiveness. In the case of equipment energy efficiency regulations, comparing the effects of a range of alternative policy measures requires evaluating their effects on consumers’ budgets, on national energy consumption and economics, and on the environment. Such an approach should be able to represent in a single framework the particularities of each policy measure and provide comparable results. This report presents an integrated methodological framework to assess prospectively the energy, economic, and environmental impacts of energy efficiency policy measures. The framework builds on the premise that the comparative assessment of energy efficiency policy measures should (a) rely on a common set of primary data and parameters, (b) follow a single functional approach to estimate the energy, economic, and emissions savings resulting from each assessed measure, and (c) present results through a set of comparable indicators. This framework elaborates on models that the U.S. Department of Energy (DOE) has used in support of its rulemakings on mandatory energy efficiency standards. In addition to a rigorous analysis of the impacts of mandatory standards, DOE compares the projected results of alternative policy measures to those projected to be achieved by the standards. The framework extends such an approach to provide a broad, generic methodology, with no geographic or sectoral limitations, that is useful for evaluating any type of equipment energy efficiency market intervention. The report concludes with a demonstration of how to use the framework to compare the impacts estimated for twelve policy measures focusing on increasing the energy efficiency of gas furnaces in the United States.

  14. Subwavelength position measurements with running-wave driving fields

    Energy Technology Data Exchange (ETDEWEB)

    Evers, Joerg [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Qamar, Sajid [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2011-08-15

    Subwavelength position measurement of quantum particles is discussed. Our setup is based on a closed-loop driving-field configuration, which enforces a sensitivity of the particle dynamics to the phases of the applied fields. Thus, running wave fields are sufficient, avoiding limitations associated with standing-wave-based localization schemes. Reversing the directions of the driving laser fields switches between different magnification levels for the position determination. This allows us to optimize the localization, and at the same time eliminates the need for additional classical measurements common to all previous localization schemes based on spatial periodicity.

  15. Magnetic field measurements of the superEBIS superconducting magnet

    International Nuclear Information System (INIS)

    Herschcovitch, A.; Kponou, A.; Clipperton, R.; Hensel, W.; Usack, F.

    1994-01-01

    SuperEBIS was designed to have a solenoidal magnetic field of a 5 Tesla strength with a 120 cm long bore. The field was specified to be straight within 1 part in 10000 within the bore, and uniform to within 1 part in 1000 within the central 90 cm. Magnetic field measurements were performed with a computerized magnetic field measuring setup that was borrowed from W. Sampson's group. A preliminary test was made of a scheme to determine if the magnetic and mechanical axes of the solenoid coincided, and, if not, by how much

  16. Magnetic field measurements of JT-60SA CS model coil

    Energy Technology Data Exchange (ETDEWEB)

    Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Murakami, Haruyuki; Natsume, Kyohei; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2015-01-15

    Highlights: • Magnetic fields of the JT-60SA CS model coil were measured. • While the coil current was held constant at 20 kA, magnetic fields varied slightly with several different long time constants. • We investigated coils consisting of CIC conductors and having long time constants. - Abstract: In a cold test of the JT-60SA CS model coil, which has a quad-pancake configuration consisting of a Nb{sub 3}Sn cable-in-conduit (CIC) conductor, magnetic fields were measured using Hall sensors. For a holding coil current of 20 kA, measured magnetic fields varied slightly with long time constants in the range 17–571 s, which was much longer than the time constant derived from a measurement using a short straight sample. To validate the measurements, the magnetic fields of the model coil were calculated using a computational model representing the positions of Nb{sub 3}Sn strands inside the CIC conductor. The calculated results were in good agreement with the measurements. Consequently, the validity of the magnetic field measurements was confirmed. Next, we investigated other coils consisting of CIC conductors and having long time constants. The only commonality among the coils was the use of CIC conductors. At present, there is no obvious way to prevent generation of such magnetic-field variations with long time constants.

  17. Field Trial Measurements to Validate a Stochastic Aircraft Boarding Model

    Directory of Open Access Journals (Sweden)

    Michael Schultz

    2018-03-01

    Full Text Available Efficient boarding procedures have to consider both operational constraints and the individual passenger behavior. In contrast to the aircraft handling processes of fueling, catering and cleaning, the boarding process is more driven by passengers than by airport or airline operators. This paper delivers a comprehensive set of operational data including classification of boarding times, passenger arrival times, times to store hand luggage, and passenger interactions in the aircraft cabin as a reliable basis for calibrating models for aircraft boarding. In this paper, a microscopic approach is used to model the passenger behavior, where the passenger movement is defined as a one-dimensional, stochastic, and time/space discrete transition process. This model is used to compare measurements from field trials of boarding procedures with simulation results and demonstrates a deviation smaller than 5%.

  18. Measurement of magnetic fields in the direct proximity of power line conductors

    International Nuclear Information System (INIS)

    Mamishev, A.V.; Russell, B.D.

    1995-01-01

    Modeling and managing of power frequency magnetic fields requires verification of theory with actual measurements. Measurements only at ground level are not always sufficient for comprehensive studies. The technique and the results of three-dimensional mapping of the power frequency magnetic fields high above ground level are presented in this paper. Comparative calculations illustrate relevance and approximations of the existing theoretical approach to field modeling. The influence of harmonics on the elliptical rotation of the magnetic field vector is illustrated. The possibility of use of the magnetic fields for the power line proximity detection is discussed

  19. Longitudinal and transverse electric field measurements in resonant cavities

    International Nuclear Information System (INIS)

    Tong Dechun; Chen Linfeng; Zheng Xiaoyue

    1994-01-01

    The paper presents a measuring technique for the electric field distribution of high order modes in resonant cavities. A perturbing bead-like cage made with metallic wires are developed for S-band field measurements, which can be used to detect a small electric field component in the presence of other strong electric or magnetic field components (That means high sensitivity and high directivity). In order to avoid orientation error for the cage with very high directivity, two parallel threads were used for supporting the perturbing cage. A simple mechanical set-up is described. The cage can be driven into the cavity on-axis or off-axis in any azimuth for the longitudinal and transverse electric field measurements

  20. Magnetic field measurements using the transient internal probe (TIP)

    International Nuclear Information System (INIS)

    Galambos, J.P.; Bohnet, M.A.; Jarboe, T.R.; Mattick, A.T.

    1995-01-01

    Knowledge of the internal magnetic field profile in hot plasmas is fundamental to understanding the structure and behavior of the current profile. The transient internal probe (TIP) is a novel diagnostic designed to measure internal magnetic fields in hot plasmas. The diagnostic involves shooting a magneto-optic probe through the plasma at high velocities (greater than 2 km/s) using a two stage light gas gun. Local fields are obtained by illuminating the probe with an argon ion laser and measuring the amount of Faraday rotation in the reflected beam. Initial development of the diagnostic is complete. Results of magnetic field measurements conducted at 2 km/s will be presented. Helium muzzle gas introduction to the plasma chamber has been limited to less than 0.4 Torr-ell. Magnetic field resolution of 40 Gauss and spatial resolution of 5 mm have been achieved. System frequency response is 10 MHz

  1. High speed pulsed magnetic fields measurements, using the Faraday effect

    International Nuclear Information System (INIS)

    Dillet, A.

    1964-12-01

    For these measures, the information used is the light polarization plane rotation induced by the magnetic field in a glass probe. This rotation is detected using a polarizer-analyzer couple. The detector is a photomultiplier used with high-current and pulsed light. In a distributed magnet (gap: 6 x 3 x 3 cm) magnetic fields to measure are 300 gauss, lasting 0.1 μs, with rise times ≤ 35 ns, repetition rate: 1/s. An oscilloscope is used to view the magnetic field from the P.M. plate signal. The value of the field is computed from a previous static calibration. Magnetic fields from 50 to 2000 gauss (with the probe now used) can be measured to about 20 gauss ± 5 per cent, with a frequency range of 30 MHz. (author) [fr

  2. Comparative study of bedside and laboratory measurements of hemoglobin.

    Science.gov (United States)

    Krenzischek, D A; Tanseco, F V

    1996-11-01

    The purpose of this study was to examine the effects of variations in technique on measurements of hemoglobin level done at the bedside and to compare these results with laboratory measurements of hemoglobin. In accordance with hospital policy, procedure, and protocol, various techniques were used to obtain samples of capillary and venous blood and of blood from arterial and central venous catheters. Levels of hemoglobin were measured at the bedside and in the laboratory, and the results were compared. The Johns Hopkins Hospital adult postanesthesia care unit. A total of 187 blood samples were obtained from 62 adults who had undergone general surgery. Group I comprised 20 subjects with capillary and venous blood samples. Group II comprised 21 subjects with arterial blood samples. Group III comprised 21 subjects with central venous blood samples. The results showed that the amount of blood to be discarded before obtaining samples of arterial and central venous blood need not be any larger than double the dead space of the catheter, and that shaking the blood sample for 10 seconds was sufficient to mix the sample before measurement of hemoglobin levels. Results of bedside and laboratory measurements of hemoglobin level were comparable. Bedside measurement of hemoglobin increases efficiency in patient care, decreases risk of blood-transmitted infection for staff, and decreases cost to the patient. However, the persons who perform the assay must be responsible in adhering to the standard of practice to minimize errors in the measurements.

  3. Physical Measurement Profile at Gilgel Gibe Field Research Center ...

    African Journals Online (AJOL)

    Physical Measurement Profile at Gilgel Gibe Field Research Center, ... hip circumference in under 35 years and body mass index in under 45 year age groups were ... Comparison with findings in other parts of the world showed that Ethiopians ...

  4. Measuring methods, registration and signal processing for magnetic field research

    International Nuclear Information System (INIS)

    Nagiello, Z.

    1981-01-01

    Some measuring methods and signal processing systems based on analogue and digital technics, which have been applied in magnetic field research using magnetometers with ferromagnetic transducers, are presented. (author)

  5. Measuring average angular velocity with a smartphone magnetic field sensor

    Science.gov (United States)

    Pili, Unofre; Violanda, Renante

    2018-02-01

    The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper, we present a further alternative that is smartphone-based, making use of the real-time magnetic field (simply called B-field in what follows) data gathering capability of the B-field sensor of the smartphone device as the timer for measuring average rotational period and average angular velocity. The in-built B-field sensor in smartphones has already found a number of uses in undergraduate experimental physics. For instance, in elementary electrodynamics, it has been used to explore the well-known Bio-Savart law and in a measurement of the permeability of air.

  6. The measurement of the modal strain fields using digital shearography

    Directory of Open Access Journals (Sweden)

    Gomes J.M.

    2010-06-01

    Full Text Available This work presents a Michelson shearography interferometer configuration associated with stroboscopic double illumination technique for the measurement of modal rotation fields and their strain fields on a clamped circular aluminium plate. The speckle pattern is frozen by the synchronization between the LASER illumination and the modal vibration of the object. The quantitative evaluation is performed for each digital shearogram using a time modulation technique. The setup of double illumination LASER with out-of-plane opposite sensitivity allows the two phase maps measurement of the modal spatial gradient. The modal rotation and strain fields are extracted by the combination of this two digital phase maps. Image processing techniques are applied on the phase maps to obtain full-field measurements using a dedicated post-processing algorithm. Finally, is presented a comparison between the experimental measurement and the numerical solution.

  7. Instructions for 104-SX liquid level measurement field tests

    International Nuclear Information System (INIS)

    Webb, R.H.

    1994-01-01

    This document provides detailed instructions for field testing a suggested solution of inserting a liner inside the 104-SX failed Liquid Observation Well to gain access for making temporary Liquid Level Measurement until a permanent solution has been provided

  8. Toward a direct comparison of field and laboratory goniometer measurements

    NARCIS (Netherlands)

    Dangel, S.; Verstraete, M.; Schopfer, J.; Kneubuehler, M.; Schaepman, M.E.; Itten, K.I.

    2005-01-01

    Field and laboratory goniometers are widely used in the remote sensing community to assess spectrodirectional reflection properties of selected targets. Even when the same target and goniometer system are used, field and laboratory results cannot directly be compared due to inherent differences,

  9. Mesodynamics in the SARS nucleocapsid measured by NMR field cycling

    Energy Technology Data Exchange (ETDEWEB)

    Clarkson, Michael W.; Lei Ming; Eisenmesser, Elan Z.; Labeikovsky, Wladimir [MS009 Brandeis University, Department of Biochemistry and Howard Hughes Medical Institute (United States); Redfield, Alfred [MS009 Brandeis University, Department of Biochemistry (United States)], E-mail: redfield@brandeis.edu; Kern, Dorothee [MS009 Brandeis University, Department of Biochemistry and Howard Hughes Medical Institute (United States)], E-mail: dkern@brandeis.edu

    2009-09-15

    Protein motions on all timescales faster than molecular tumbling are encoded in the spectral density. The dissection of complex protein dynamics is typically performed using relaxation rates determined at high and ultra-high field. Here we expand this range of the spectral density to low fields through field cycling using the nucleocapsid protein of the SARS coronavirus as a model system. The field-cycling approach enables site-specific measurements of R{sub 1} at low fields with the sensitivity and resolution of a high-field magnet. These data, together with high-field relaxation and heteronuclear NOE, provide evidence for correlated rigid-body motions of the entire {beta}-hairpin, and corresponding motions of adjacent loops with a time constant of 0.8 ns (mesodynamics). MD simulations substantiate these findings and provide direct verification of the time scale and collective nature of these motions.

  10. Advances in the measurement of weak magnetic fields

    International Nuclear Information System (INIS)

    Li Damin; Huang Minzhe.

    1992-01-01

    The state-of-art and general features of instruments for measuring weak magnetic fields (such as the non-directional magnetometer, induced coil magnetometer, proton magnetometer, optical pumping magnetometer, flux-gate magnetometer and superconducting quantum magnetometer) are briefly described. Emphasis is laid on the development of a novel technique used in the flux-gate magnetometer and the liquid nitrogen SQUID. Typical applications of the measuring techniques for weak magnetic fields are given

  11. Phase retrieval in near-field measurements by array synthesis

    DEFF Research Database (Denmark)

    Wu, Jian; Larsen, Flemming Holm

    1991-01-01

    The phase retrieval problem in near-field antenna measurements is formulated as an array synthesis problem. As a test case, a particular synthesis algorithm has been used to retrieve the phase of a linear array......The phase retrieval problem in near-field antenna measurements is formulated as an array synthesis problem. As a test case, a particular synthesis algorithm has been used to retrieve the phase of a linear array...

  12. In vivo rapid field map measurement and shimming

    International Nuclear Information System (INIS)

    Kanayama, Shoichi; Kassai, Yoshimori; Kondo, Masafumi; Kuhara, Shigehide; Satoh, Kozo; Seo, Yasutsugu.

    1992-01-01

    MR imaging and MR spectroscopy need a homogeneous static magnetic field. The static field characteristics are determined by the magnet's homogeneity, the set-up conditions, and the magnetic suspectibility of the subject itself. The field inhomogeneity is usually minimized only once when the apparatus is installed. However, field distortions arising from the magnetic susceptibility differ with each subject and region. To overcome this problem, in vivo shimming can be carried out to improve the homogeneity. The procedures are too lengthy when applying the conventional shimming techniques in vivo. We have developed a new field map measurement technique using a double gradient-recalled echo phase mapping. The values of the currents for the 13-channel shim coils are derived by least squares fitting to the field map and automatically applied to the shim coils. The proposed technique can rapidly and accurately measure the field map in vivo and correct the field inhomogeneity. The results show that this technique improves the homogeneity, especially in regions having a simple field distribution. However, local sharp field distortions which can not be practically corrected by shimming occur near the eyes, ears, heart, etc. due to abrupt susceptibility changes. (author)

  13. Influence of mechanical vibrations on the field quality measurements of LHC interaction region quadrupole magnets

    CERN Document Server

    Di Marco, J; Schlabach, P; Sylvester, C D; Tompkins, J C; Krzywinski, J

    2000-01-01

    The high gradient quadrupole magnets being developed by the US-LHC Accelerator Project for the LHC Interaction Regions have stringent field quality requirements. The field quality of these magnets will be measured using a rotating coil system presently under development. Mechanical vibrations of the coil during field quality measurements are of concern because such vibrations can introduce systematic errors in measurement results. This paper presents calculations of the expected influence of vibrations on field quality measurements and a technique to measure vibrations present in data acquired with standard "tangential-style" probes. Measured vibrations are reported and compared to simulations. Limits on systematic errors in multipole measurements are discussed along with implications for probe and measurement system design. (3 refs).

  14. The Virtual Fields Method Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements

    CERN Document Server

    Pierron, Fabrice

    2012-01-01

    The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements is the first book on the Virtual Fields Method (VFM), a technique to identify materials mechanical properties from full-field measurements. Firmly rooted with extensive theoretical description of the method, the book presents numerous examples of application to a wide range of materials (composites, metals, welds, biomaterials) and situations (static, vibration, high strain rate). The authors give a detailed training section with examples of progressive difficulty to lead the reader to program the VFM and include a set of commented Matlab programs as well as GUI Matlab-based software for more general situations. The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements is an ideal book for researchers, engineers, and students interested in applying the VFM to new situations motivated by their research.  

  15. Surface dose measurements in and out of field. Implications for breast radiotherapy with megavoltage photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Lonski, Peta; Kron, Tomas [Peter MacCallum Cancer Centre, Melbourne (Australia); RMIT Univ., Melbourne (Australia); Ramachandran, Prabhakar; Franich, Rick [Peter MacCallum Cancer Centre, Melbourne (Australia)

    2017-07-01

    This study examines the difference in surface dose between flat and flattening filter free (FFF) photon beams in the context of breast radiotherapy. The surface dose was measured for 6 MV, 6 MV FFF, 10 MV, 10 MV FFF and 18 MV photon beams using a thin window ionisation chamber for various field sizes. Profiles were acquired to ascertain the change in surface dose off-axis. Out-of-field measurements were included in a clinically representative half beam block tangential breast field. In the field centres of FFF beams the surface dose was found to be increased for small fields and decreased for large fields compared to flat beams. For FFF beams, surface dose was found to decrease off-axis and resulted in lower surface dose out-of-field compared to flat beams.

  16. Spindle vibration and sound field measurement using optical vibrometry

    OpenAIRE

    Tatar, Kourosh

    2008-01-01

    Mechanical systems often produce a considerable amount of vibration and noise. To be able to obtain a complete picture of the dynamic behaviour of these systems, vibration and sound measurements are of significant importance. Optical metrology is well-suited for non-intrusive measurements on complex objects. The development and the use of remote non-contact vibration measurement methods for spindles are described and vibration measurements on thin- walled structures and sound field measuremen...

  17. A comparative investigation of seven indirect attitude measures.

    Science.gov (United States)

    Bar-Anan, Yoav; Nosek, Brian A

    2014-09-01

    We compared the psychometric qualities of seven indirect attitude measures across three attitude domains (race, politics, and self-esteem) with a large sample (N = 23,413). We compared the measures on internal consistency, sensitivity to known effects, relationships with indirect and direct measures of the same topic, the reliability and validity of single-category attitude measurement, their ability to detect meaningful variance among people with nonextreme attitudes, and their robustness to the exclusion of misbehaving or well-behaving participants. All seven indirect measures correlated with each other and with direct measures of the same topic. These relations were always weak for self-esteem, moderate for race, and strong for politics. This pattern suggests that some of the sources of variation in the reliability and predictive validity of the indirect measures is a function of the concepts rather than the methods. The Implicit Association Test (IAT) and Brief IAT (BIAT) showed the best overall psychometric quality, followed by the Go–No-Go association task, Single-Target IAT (ST-IAT), Affective Misattribution Procedure (AMP), Sorting Paired Features task, and Evaluative Priming. The AMP showed a steep decline in its psychometric qualities when people with extreme attitude scores were removed. Single-category attitude scores computed for the IAT and BIAT showed good relationships with other attitude measures but no evidence of discriminant validity between paired categories. The other measures, especially the AMP and ST-IAT, showed better evidence for discriminant validity. These results inform us on the validity of the measures as attitude assessments, but do not speak to the implicitness of the measured constructs.

  18. Performance of field measuring probes for SSC magnets

    International Nuclear Information System (INIS)

    Thomas, R.; Ganetis, G.; Herrera, J.; Hogue, R.; Jain, A.; Louie, W.; Marone, A.; Wanderer, P.

    1994-01-01

    Several years of experience have been acquired on the operation of probes (open-quotes molesclose quotes) constructed for the measurement of the multipole components of the magnetic fields of SSC magnets. The field is measured by rotating coils contained in a 2.4-m long tube that is pulled through the aperture of the magnet by an external device - the transporter. In addition to the measuring coils, the tube contains motors for rotating the coil and a system for sensing local vertical using gravity sensors to provide an absolute reference for the field measurements. The authors describe the steps that must be taken in order to ensure accurate, repeatable measurements; the design changes that have been motivated by difficulties encountered (noise, vibration, variations in temperature); and other performance issues. The mechanical interface between the probe and the beam tube of the magnet is also described

  19. Performance of field measuring probes for SSC magnets

    International Nuclear Information System (INIS)

    Thomas, R.; Ganetis, G.; Herrera, J.; Hogue, R.; Jain, A.; Louie, W.; Marone, A.; Wanderer, P.

    1993-01-01

    Several years of experience have been acquired on the operation of probes (''moles'') constructed for the measurement of the multipole components of the magnetic fields of SSC magnets. The field is measured by rotating coils contained in a 2.4-m long tube that is pulled through the aperture of the magnet by an external device-the transporter. In addition to the measuring coils, the tube contains motors for rotating the coil and a system for sensing local vertical using gravity sensors to provide an absolute reference for the field measurements. We describe the steps that must be taken in order to ensure accurate, repeatable measurements; the design changes that have been motivated by difficulties encountered (noise, vibration, variations in temperature); and other performance issues. The mechanical interface between the probe and the hewn tube of the magnet is also described

  20. Measurement of spectrometric magnet field of EXCHARM setup

    International Nuclear Information System (INIS)

    Aleev, A.N.; Balandin, V.P.; Bordyukov, A.A.

    1998-01-01

    The EXCHARM spectrometer is used for studying charm, strange and exotic hadrons. It is located at the neutron 5N channel of U-70 accelerator (Protvino). The EXCHARM dipole magnet has external size 4.486 x 3.196 x 3.058 m 3 with aperture 2.74 x 0.489 m 2 . The field measurement was made by three-component Hall magnetometer on-line computer in measurement region 2.40 x 0.32 x 3.78 m 3 . The apparatus and methods of the field measuring are described. The results of the measurements of the magnetic field are presented. The estimation of the measurement precision is given. (author)

  1. Field hearing measurements of the Atlantic sharpnose shark Rhizoprionodon terraenovae.

    Science.gov (United States)

    Casper, B M; Mann, D A

    2009-12-01

    Field measurements of hearing thresholds were obtained from the Atlantic sharpnose shark Rhizoprionodon terraenovae using the auditory evoked potential method (AEP). The fish had most sensitive hearing at 20 Hz, the lowest frequency tested, with decreasing sensitivity at higher frequencies. Hearing thresholds were lower than AEP thresholds previously measured for the nurse shark Ginglymostoma cirratum and yellow stingray Urobatis jamaicensis at frequencies sharks which have been observed in acoustic field attraction experiments. The sound pressure levels that would be equivalent to the particle acceleration thresholds of R. terraenovae were much higher than the sound levels which attracted closely related sharks suggesting a discrepancy between the hearing threshold experiments and the field attraction experiments.

  2. Continuous measurements of N2O emissions from arable fields

    Science.gov (United States)

    Wallman, Magdalena; Lammirato, Carlo; Rütting, Tobias; Delin, Sofia; Weslien, Per; Klemedtsson, Leif

    2017-04-01

    Agriculture represents 59 % of the anthropogenic nitrous oxide (N2O) emissions, according to the IPCC (Ciais et al. 2013). N2O emissions are typically irregular and vary widely in time and space, which makes it difficult to get a good representation of the emissions (Henault et al. 2012), particularly if measurements have low frequency and/or cover only a short time period. Manual measurements are, for practical reasons, often short-term and low-frequent, or restricted to periods where emissions are expected to be high, e.g. after fertilizing. However, the nature of N2O emissions, being largely unpredictable, calls for continuous or near-continuous measurements over long time periods. So far, rather few long-term, high resolution measurements of N2O emissions from arable fields are reported; among them are Flessa et al. (2002) and Senapati et al. (2016). In this study, we have a two-year data set (2015-2017) with hourly measurements from ten automatic chambers, covering unfertilized controls as well as different nitrogen fertilizer treatments. Grain was produced on the field, and effects of tillage, harvest and other cropping measures were covered. What we can see from the experiment is that (a) the unfertilized control plots seem to follow the same emission pattern as the fertilized plots, at a level similar to the standard mineral fertilized plots (120 kg N ha-1 yr-1) and (b) freeze/thaw emissions are comparable in size to emissions after fertilizing. These two findings imply that the importance of fertilizing to the overall N2O emissions from arable soils may be smaller than previously expected. References: Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell et al. 2013: Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung et

  3. Air-borne shape measurement of parabolic trough collector fields

    Science.gov (United States)

    Prahl, Christoph; Röger, Marc; Hilgert, Christoph

    2017-06-01

    The optical and thermal efficiency of parabolic trough collector solar fields is dependent on the performance and assembly accuracy of its components such as the concentrator and absorber. For the purpose of optical inspection/approval, yield analysis, localization of low performing areas, and optimization of the solar field, it is essential to create a complete view of the optical properties of the field. Existing optical measurement tools are based on ground based cameras, facing restriction concerning speed, volume and automation. QFly is an airborne qualification system which provides holistic and accurate information on geometrical, optical, and thermal properties of the entire solar field. It consists of an unmanned aerial vehicle, cameras and related software for flight path planning, data acquisition and evaluation. This article presents recent advances of the QFly measurement system and proposes a methodology on holistic qualification of the complete solar field with minimum impact on plant operation.

  4. Magnetic field measurements of 1.5 meter model SSC collider dipole magnets at Fermilab

    International Nuclear Information System (INIS)

    Lamm, M.J.; Bleadon, M.; Coulter, K.J.; Delchamps, S.; Hanft, R.; Jaffery, T.S.; Kinney, W.; Koska, W.; Ozelis, J.P.; Strait, J.; Wake, M.; DiMarco, J.

    1991-09-01

    Magnetic field measurements have been performed at Fermilab on 1.5 m magnetic length model dipoles for the Superconducting Supercollider. Harmonic measurements are recorded at room temperature before and after the collared coil is assembled into the yoke and at liquid helium temperature. Measurements are made as a function of longitudinal position and excitation current. High field data are compared with room temperature measurements of both the collared coil and the completed yoked magnet and with the predicted fields for both the body of the magnet and the coil ends

  5. Dose Measurement and Calculation of Asymmetric X-Ray Fields from Therapeutic Linac

    International Nuclear Information System (INIS)

    El-Attar, A. L.; Abdel-Wanees, M. E.; Hashem, M. A.

    2011-01-01

    Linear accelerators with x-ray collimators that move independently are becoming increasingly common for treatment with asymmetric fields. In this paper we present a simplified approach to the calculation of dose for asymmetric fields. A method is described for calculating the beam profiles, depth doses and output factors for asymmetric fields of radiation produced by linear accelerators (siemens mevatron M2) with independent jaws. Values are calculated from data measured for symmetric fields. Symmetric field data are modified using opened off-axis factors (OAFs) and primary off-centre ratios (POCRs) which are obtained from in air measurements of the largest possible opened field. Beam hardening occurring within the flattening filter is taken into account using of attenuation coefficients for opened field and used to generate the opened POCR at different depths. A full investigation to compare measured and calculated profiles demonstrates favorable agreement.

  6. Measurement of Anisotropic Particle Interactions with Nonuniform ac Electric Fields.

    Science.gov (United States)

    Rupp, Bradley; Torres-Díaz, Isaac; Hua, Xiaoqing; Bevan, Michael A

    2018-02-20

    Optical microscopy measurements are reported for single anisotropic polymer particles interacting with nonuniform ac electric fields. The present study is limited to conditions where gravity confines particles with their long axis parallel to the substrate such that particles can be treated using quasi-2D analysis. Field parameters are investigated that result in particles residing at either electric field maxima or minima and with long axes oriented either parallel or perpendicular to the electric field direction. By nonintrusively observing thermally sampled positions and orientations at different field frequencies and amplitudes, a Boltzmann inversion of the time-averaged probability of states yields kT-scale energy landscapes (including dipole-field, particle-substrate, and gravitational potentials). The measured energy landscapes show agreement with theoretical potentials using particle conductivity as the sole adjustable material property. Understanding anisotropic particle-field energy landscapes vs field parameters enables quantitative control of local forces and torques on single anisotropic particles to manipulate their position and orientation within nonuniform fields.

  7. Field measurement and interpretation of beta doses and dose rates

    International Nuclear Information System (INIS)

    Selby, J.M.; Swinth, K.L.; Hooker, C.D.; Kenoyer, J.L.

    1983-01-01

    A large number of portable survey instruments employing G.M., ionization chamber, and scintillation detectors used for gamma measurements are also used for monitoring in beta fields by using removable shields to separate the beta and gamma components of the radiation field. The difference does not correspond to an absorbed dose rate for the beta field due to a variety of factors. Among these factors are the dependence on beta energy, source-detector geometries, mixed fields and variable ambient conditions. Attempting to use such measurements directly can lead to errors as high as a factor of 100. Appropriate calibrations and correction factors can be used to reduce the errors in beta measurements to a tolerable level

  8. Ambient temperature field measuring system for LHC superconducting dipoles

    International Nuclear Information System (INIS)

    Billan, J.; De Panfilis, S.; Giloteaux, D.; Pagano, O.

    1996-01-01

    It is foreseen to perform acceptance tests including field measurements of the collared coils assembly of the LHC superconducting dipoles to estimate, at an early production stage, the possible significant deviations from the expected multipole component value of these magnets. A sensitive measuring probe and efficient data acquisition are the consequence of a low magnetizing current necessary to limit the coils heating. This demands a high signals sensitivity and an enhanced signal-to-noise ratio to retrieve the higher multipole component. Moreover, the correlation with the multipoles content of the magnets at cryogenic temperature and nominal excitation current need to be identified before the manufacturing process may continue. The field probe of the mole-type is equipped with three radial rotating search coils, an angular encoder and gravity sensor. It has been designed to slide inside the bore of the dipole coils and to measure the local field at fixed positions. The field analysis resulting in terms of multipole components, field direction and field integrals, measured on four 10 m long, twin-aperture LHC dipole prototypes, will be described together with the performance of the measuring method

  9. Magnetic field measurement system of the VINCY Cyclotron

    International Nuclear Information System (INIS)

    Dobrosavljevic, A.; Cirkovic, S.; Zdravkovic, A.; Urosevic, Z.; Lucic, M.; Gemaljevic, M.

    1995-01-01

    This paper presents the magnetic field measurement system of the VINCY Cyclotron, main part of the TESLA accelerator installation whose construction has been going on in the Vinca Institute of Nuclear Sciences. Measurement system consists of mechanical structure and control unit for the automatic positioning of the measurement probe in the median plane, between the poles of the magnet, and corresponding measuring instrumentation, based on two digital tesla meters. Concept of the measurement system is defined by the TESLA team, while realisation of the measurement system is performed in co-operation with the LOLA Institute. (author)

  10. Comparing predicted estrogen concentrations with measurements in US waters

    International Nuclear Information System (INIS)

    Kostich, Mitch; Flick, Robert; Martinson, John

    2013-01-01

    The range of exposure rates to the steroidal estrogens estrone (E1), beta-estradiol (E2), estriol (E3), and ethinyl estradiol (EE2) in the aquatic environment was investigated by modeling estrogen introduction via municipal wastewater from sewage plants across the US. Model predictions were compared to published measured concentrations. Predictions were congruent with most of the measurements, but a few measurements of E2 and EE2 exceed those that would be expected from the model, despite very conservative model assumptions of no degradation or in-stream dilution. Although some extreme measurements for EE2 may reflect analytical artifacts, remaining data suggest concentrations of E2 and EE2 may reach twice the 99th percentile predicted from the model. The model and bulk of the measurement data both suggest that cumulative exposure rates to humans are consistently low relative to effect levels, but also suggest that fish exposures to E1, E2, and EE2 sometimes substantially exceed chronic no-effect levels. -- Highlights: •Conservatively modeled steroidal estrogen concentrations in ambient water. •Found reasonable agreement between model and published measurements. •Model and measurements agree that risks to humans are remote. •Model and measurements agree significant questions remain about risk to fish. •Need better understanding of temporal variations and their impact on fish. -- Our model and published measurements for estrogens suggest aquatic exposure rates for humans are below potential effect levels, but fish exposure sometimes exceeds published no-effect levels

  11. Comparing objective and subjective error measures for color constancy

    NARCIS (Netherlands)

    Lucassen, M.P.; Gijsenij, A.; Gevers, T.

    2008-01-01

    We compare an objective and a subjective performance measure for color constancy algorithms. Eight hyper-spectral images were rendered under a neutral reference illuminant and four chromatic illuminants (Red, Green, Yellow, Blue). The scenes rendered under the chromatic illuminants were color

  12. Comparative study of growth and linear body measurements in Anak ...

    African Journals Online (AJOL)

    The study was designed to compare the performance of two different breeds of broilers (Anak and Hubbard) using body weight and body linear measurements. Data on a total of 200 (100 each) Anak and Hubbard broiler breeds were collected weekly and the experiment lasted for 8 weeks. The parameters investigated ...

  13. Measurement of incident sound power using near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2009-01-01

    ; and it has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using ‘statistically optimised near field acoustic holography’ (SONAH...

  14. Science outside the laboratory measurement in field science and economics

    CERN Document Server

    Boumans, Marcel

    2015-01-01

    The conduct of most of social science occurs outside the laboratory. Such studies in field science explore phenomena that cannot for practical, technical, or ethical reasons be explored under controlled conditions. These phenomena cannot be fully isolated from their environment or investigated by manipulation or intervention. Yet measurement, including rigorous or clinical measurement, does provide analysts with a sound basis for discerning what occurs under field conditions, and why. In Science Outside the Laboratory, Marcel Boumans explores the state of measurement theory, its reliability, and the role expert judgment plays in field investigations from the perspective of the philosophy of science. Its discussion of the problems of passive observation, the calculus of observation, the two-model problem, and model-based consensus uses illustrations drawn primarily from economics. Rich in research and discussion, the volume clarifies the extent to which measurement provides valid information about objects an...

  15. The transient electric field measurement system for EAST device

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y., E-mail: wayong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Ji, Z.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Zhu, C.M. [The Experiment & Verification Center of State Grid Electric Power Research Institute (The Automation Equipment EMC Lab. of State Grid Co.), Nanjing, Jiangsu (China); Zhang, Z.C.; Ma, T.F.; Xu, Z.H. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China)

    2016-11-15

    The electromagnetic environment around the Experimental Advanced Superconducting Tokamak (EAST) device is very complex during plasma discharge experiment. In order to fully monitor the changes of electric field around the EAST device during plasma discharge, a transient electric field measurement system based on PCI eXtensions for Instrumentation (PXI) platform has been designed. A digitizer is used for high-speed data acquisition of raw signals from electric field sensors, and a Field Programmable Gate Array (FPGA) module is used for realizing an on-the-fly fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) algorithm including a beforehand identified antenna factor (AF) to achieve finally a calibrated and filtered electric field measurement, then these signals can be displayed and easily analyzed. The raw signals from electric field sensors are transferred through optical fiber by optical isolation to reduce electromagnetic interference (EMI). The high speed data streaming technology is used for data storage. A prototype of this system has been realized to measure the transient electric field strength, with the real-time processing and continuous acquisition ability of one channel of 14-bit resolution and up to 50 MHz sampling rate, and 6 KHz FFT frequency resolution.

  16. Fiber-optic evanescent-field sensor for attitude measurement

    Science.gov (United States)

    Liu, Yun; Chen, Shimeng; Liu, Zigeng; Guang, Jianye; Peng, Wei

    2017-11-01

    We proposed a new approach to attitude measurement by an evanescent field-based optical fiber sensing device and demonstrated a liquid pendulum. The device consisted of three fiber-optic evanescent-filed sensors which were fabricated by tapered single mode fibers and immersed in liquid. Three fiber Bragg gratings were used to measure the changes in evanescent field. And their reflection peaks were monitored in real time as measurement signals. Because every set of reflection responses corresponded to a unique attitude, the attitude of the device could be measured by the three fiber-optic evanescent-filed sensors. After theoretical analysis, computerized simulation and experimental verification, regular responses were obtained using this device for attitude measurement. The measurement ranges of dihedral angle and direction angle were 0°-50° and 0°-360°. The device is based on cost-effective power-referenced scheme. It can be used in electromagnetic or nuclear radiation environment.

  17. Electric field measurements at subcritical, oblique bow shock crossings

    International Nuclear Information System (INIS)

    Wygant, J.R.; Bensadoun, M.; Mozer, F.S.

    1987-01-01

    Electric field measurements at oblique, subcritical bow shock crossings are presented from the ISEE 1 University of California, Berkeley, double-probe electric field experiment. The measurements averaged over the 3-s spin period of the spacecraft provide the first observations of the large-scale (100 km) laminar oscillations in the longitudinal component of the electric field associated with the whistler precursor which is characteristic of these dispersive shocks. The amplitude of the oscillations increases from ∼0.5 mV/m to a maximum of 6 mV/m across the magnetic ramp of the shock (directed along the shock normal). The calculated electric potential drops across the shocks varied from 340 to 550 volts, which is 40-60% of the observed loss of kinetic energy associated with the bulk flow of the ions. These measurements suggest that at these shocks the additional deceleration of incident ions is due to the Lorentz force. The contributions to the normal component of the large-scale electric field at the shock due to the parallel and perpendicular components (relative to the magnetic field) of the electric field are evaluated. It is shown that the perpendicular component of the electric field dominates, accounting for most of the cross-shock potential, but that there is a nonnegligible parallel component. This large-scale parallel component has a magnitude of 1-2 mV/m which sometimes results in a potential well for electrons with a depth of ∼150 eV. It is experimentally demonstrated that the dominance of the perpendicular over the parallel component of the electric field resulted in a correlation between the longitudinal component of the large-scale electric field and the fluctuations in the magnetic field component perpendicular to the coplanarity plane

  18. COMPARATIVE FIELD EXPERIMENTAL INVESTIGATIONS OF DIFFERENT FLAT PLATE SOLAR COLLECTORS

    Directory of Open Access Journals (Sweden)

    Guangming Chen

    2015-12-01

    Full Text Available Full-scale traditional metal solar collectors and solar collector specimens fabricated from polymeric materials were investigated in the present study. A polymeric collector is 67.8% lighter than a traditional metal solar collector, and a metal solar collector with transparent plastic covering is 40.3% lighter than a traditional metal solar collector. Honeycomb multichannel plates made from polycarbonate were chosen to create a polymeric solar collector. A test rig for the natural circulation of the working fluid in a solar collector was built for a comparative experimental investigation of various solar collectors operating at ambient conditions. It was shown experimentally that the efficiency of a polymeric collector is 8–15% lower than the efficiency of a traditional collector.

  19. Comparing Measures of Late HIV Diagnosis in Washington State

    Directory of Open Access Journals (Sweden)

    Laura Saganic

    2012-01-01

    Full Text Available As more US HIV surveillance programs routinely use late HIV diagnosis to monitor and characterize HIV testing patterns, there is an increasing need to standardize how late HIV diagnosis is measured. In this study, we compared two measures of late HIV diagnosis, one based on time between HIV and AIDS, the other based on initial CD4+ results. Using data from Washington's HIV/AIDS Reporting System, we used multivariate logistic regression to identify predictors of late HIV diagnosis. We also conducted tests for trend to determine whether the proportion of cases diagnosed late has changed over time. Both measures lead us to similar conclusions about late HIV diagnosis, suggesting that being male, older, foreign-born, or heterosexual increase the likelihood of late HIV diagnosis. Our findings reaffirm the validity of a time-based definition of late HIV diagnosis, while at the same time demonstrating the potential value of a lab-based measure.

  20. Field measurements for low-aperture magnetic elements

    International Nuclear Information System (INIS)

    Mikhajlichenko, A.A.

    1989-01-01

    The method of the field measurements with help of bismuth wire in low aperture magnetic elements is revised. The quadrupole with permanent magnets was tested. It has aperture diameter about 4 mm and length 40 mm. Gradient about 38 kOe/cm was measured. The accuracy of the magnetic axis position definition is better than 1 μm. This method is a good kandidate for linear colider low aperture magnetic elements measurements. 7 refs.; 6 figs

  1. Precise measurements and shimming of magnetic field gradients in the low field regime

    Energy Technology Data Exchange (ETDEWEB)

    Allmendinger, Fabian; Schmidt, Ulrich [Physikalisches Institut, Universitaet Heidelberg (Germany); Grasdijk, Olivier; Jungmann, Klaus; Willmann, Lorenz [University of Groningen (Netherlands); Heil, Werner; Karpuk, Sergei; Repetto, Maricel; Sobolev, Yuri; Zimmer, Stefan [Institut fuer Physik, Universitaet Mainz (Germany); Krause, Hans-Joachim; Offenhaeuser, Andreas [Peter Gruenberg Institut, Forschungszentrum Juelich (Germany); Collaboration: MIXed-Collaboration

    2016-07-01

    For many experiments at the precision frontier of fundamental physics, the accurate measurement and knowledge of magnetic field gradients in particular in the low field regime (<μT) is a necessity: On the one hand, in the search for an Electric Dipole Moment (EDM) of free neutrons or atoms, field gradients contribute to geometric-phase-induced false EDM signals for particles in traps. On the other hand, clock comparison experiments like the {sup 3}He/{sup 129}Xe spin clock experiment suffer from gradients, since the coherent T{sub 2}*-time of free spin precession, and thus the measurement sensitivity, scales ∝ ∇ vector B{sup -2}. Here we report on a new and very effective method, to shim and to measure tiny magnetic field gradients in the range of pT/cm by using effective T{sub 2}*-measurement sequences in varying the currents of trim coils of known geometry.

  2. Estimation of magnetic field in a region from measurements of the field at discrete points

    International Nuclear Information System (INIS)

    Alexopoulos, Theodore; Dris, Manolis; Lucas, Demetrios.

    1984-12-01

    A method is given to estimate the magnetic field in a region from measurements of the field in its surface and its interior. The method might be useful in high energy physics and other experiments that use large area magnets. (author)

  3. Measurement of 50 Hz magnetic fields in some Norwegian households

    International Nuclear Information System (INIS)

    Karlsen, J.; Johnsson, A.

    1987-01-01

    An examination of 50 Hz magnetic fields has been made in ten different Norwegian dwellings. The aim was to measure the general background level of the 50 Hz magnetic fields. The investigation followed a protocol also used in Swedish measurements, and direct comparisons are therefore possible. A portable, commercial coil instrument was used. In september 1986 and January 1987 the magnetic fields in living rooms, sleeping rooms, and kitchens were measured according to the standardized procedure. Current consumption and temperature at the time of the measurements were also recorded. A clear correlation was noted between the magnetic field values and the current consumption. The mean values of the magnetic fields in the living rooms, sleeping rooms and kitchens, were 12 nT, 11 nT and 160 nT, respectively. The living and sleeping room values can be regarded as very low, and they are much lower than corresponding Swedish values. The kitchen values in the two countries seem, however, to be of the same order of magnitude. The report discusses the need for additional measurements in Norwegian houses

  4. Smile line assessment comparing quantitative measurement and visual estimation.

    Science.gov (United States)

    Van der Geld, Pieter; Oosterveld, Paul; Schols, Jan; Kuijpers-Jagtman, Anne Marie

    2011-02-01

    Esthetic analysis of dynamic functions such as spontaneous smiling is feasible by using digital videography and computer measurement for lip line height and tooth display. Because quantitative measurements are time-consuming, digital videography and semiquantitative (visual) estimation according to a standard categorization are more practical for regular diagnostics. Our objective in this study was to compare 2 semiquantitative methods with quantitative measurements for reliability and agreement. The faces of 122 male participants were individually registered by using digital videography. Spontaneous and posed smiles were captured. On the records, maxillary lip line heights and tooth display were digitally measured on each tooth and also visually estimated according to 3-grade and 4-grade scales. Two raters were involved. An error analysis was performed. Reliability was established with kappa statistics. Interexaminer and intraexaminer reliability values were high, with median kappa values from 0.79 to 0.88. Agreement of the 3-grade scale estimation with quantitative measurement showed higher median kappa values (0.76) than the 4-grade scale estimation (0.66). Differentiating high and gummy smile lines (4-grade scale) resulted in greater inaccuracies. The estimation of a high, average, or low smile line for each tooth showed high reliability close to quantitative measurements. Smile line analysis can be performed reliably with a 3-grade scale (visual) semiquantitative estimation. For a more comprehensive diagnosis, additional measuring is proposed, especially in patients with disproportional gingival display. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  5. COMPARATIVE STUDY ON MAIN SOLVENCY ASSESSMENT MODELS FOR INSURANCE FIELD

    Directory of Open Access Journals (Sweden)

    Daniela Nicoleta SAHLIAN

    2015-07-01

    Full Text Available During the recent financial crisis of insurance domain, there were imposed new aspects that have to be taken into account concerning the risks management and surveillance activity. The insurance societies could develop internal models in order to determine the minimum capital requirement imposed by the new regulations that are to be adopted on 1 January 2016. In this respect, the purpose of this research paper is to offer a real presentation and comparing with the main solvency regulation systems used worldwide, the accent being on their common characteristics and current tendencies. Thereby, we would like to offer a better understanding of the similarities and differences between the existent solvency regimes in order to develop the best regime of solvency for Romania within the Solvency II project. The study will show that there are clear differences between the existent Solvency I regime and the new approaches based on risk and will also point out the fact that even the key principles supporting the new solvency regimes are convergent, there are a lot of approaches for the application of these principles. In this context, the question we would try to find the answer is "how could the global solvency models be useful for the financial surveillance authority of Romania for the implementation of general model and for the development of internal solvency models according to the requirements of Solvency II" and "which would be the requirements for the implementation of this type of approach?". This thing makes the analysis of solvency models an interesting exercise.

  6. Comparative evaluation of ultrasound scanner accuracy in distance measurement

    Science.gov (United States)

    Branca, F. P.; Sciuto, S. A.; Scorza, A.

    2012-10-01

    The aim of the present study is to develop and compare two different automatic methods for accuracy evaluation in ultrasound phantom measurements on B-mode images: both of them give as a result the relative error e between measured distances, performed by 14 brand new ultrasound medical scanners, and nominal distances, among nylon wires embedded in a reference test object. The first method is based on a least squares estimation, while the second one applies the mean value of the same distance evaluated at different locations in ultrasound image (same distance method). Results for both of them are proposed and explained.

  7. Design of Electric Field Sensors for Measurement of Electromagnetic Pulse

    Directory of Open Access Journals (Sweden)

    Hui ZHANG

    2014-01-01

    Full Text Available In this paper, a D-dot electric field sensor and a fiber-optic transmission electric field sensor are developed for measurement of electromagnetic pulse. The D-dot sensor is a differential model sensor without source and has a simple structure. The fiber-optic transmission sensor is in the type of small dipole antenna, which uses its outside shielding layer as a pair of antennas. Design of the sensor circuit and the test system are introduced in this paper. A calibration system for these pulsed field sensors is established and the test results verified the ability of the developed sensors for measurement of the standard electromagnetic pulse field (the half peak width is 25 ns and the rising time is 2.5 ns.

  8. Measurement of the magnetic field errors on TCV

    International Nuclear Information System (INIS)

    Piras, F.; Moret, J.-M.; Rossel, J.X.

    2010-01-01

    A set of 24 saddle loops is used on the Tokamak a Configuration Variable (TCV) to measure the radial magnetic flux at different toroidal and vertical positions. The new system is calibrated together with the standard magnetic diagnostics on TCV. Based on the results of this calibration, the effective current in the poloidal field coils and their position is computed. These corrections are then used to compute the distribution of the error field inside the vacuum vessel for a typical TCV discharge. Since the saddle loops measure the magnetic flux at different toroidal positions, the non-axisymmetric error field is also estimated and correlated to a shift or a tilt of the poloidal field coils.

  9. Alfven waves in the auroral ionosphere: A numerical model compared with measurements

    International Nuclear Information System (INIS)

    Knudsen, D.J.; Kelley, M.C.; Vickrey, J.F.

    1992-01-01

    The authors solve a linear numerical model of Alfven waves reflecting from the high-latitude ionosphere, both to better understanding the role of the ionosphere in the magnetosphere/ionosphere coupling process and to compare model results with in situ measurements. They use the model to compute the frequency-dependent amplitude and phase relations between the meridional electric and the zonal magnetic fields due to Alfven waves. These relations are compared with measurements taken by an auroral sounding rocket flow in the morningside oval and by the HILAT satellite traversing the oval at local noon. The sounding rocket's trajectory was mostly parallel to the auroral oval, and is measured enhanced fluctuating field energy in regions of electron precipitation. The rocket-measured phase data are in excellent agreement with the Alfven wave model, and the relation between the modeled and the measured by HILAT are related by the height-integrated Pedersen conductivity Σ p , indicating that the measured field fluctuations were due mainly to structured field-aligned current systems. A reason for the relative lack of Alfven wave energy in the HILAT measurements could be the fact that the satellite traveled mostly perpendicular to the oval and therefore quickly traversed narrow regions of electron precipitation and associated wave activity

  10. A field study comparing two methods of transportation risk assessment

    International Nuclear Information System (INIS)

    Harmon, M.F.; Brey, R.R.; Gesell, T.F.; Oberg, S.G.

    1996-01-01

    RADTRAN 4 is a computer code used for; assessing risks associated with the transportation of nuclear materials. The code employs the common modeling practice of using default values for input variables to simplify the modeling of complex scenarios, thus producing conservative final risk determinations. To better address local public concerns it is of interest to quantify the introduced conservatism by taking a site-specific approach to radiation risk assessment. With RISKIND, incident-free and accident condition doses were calculated for two suburban population groups using both default input parameters; and site-specific values to describe population demographics of regions in Pocatello, Idaho, along the I-15 corridor. The use of site-specific parameters resulted in incident-free doses ranging from the same order of magnitude to one order of magnitude less than the doses calculated with default input parameters. Correcting accident condition doses for the age distribution of the populations and employing site-specific weather data resulted in doses 1.1 times lower than estimated using default input parameters. Dose-risks calculated with RISKIND for the two population groups using site-specific data were of the same order of magnitude as the risk calculated using RADTRAN 4 for the suburban population described in DOE/EIS-0203-D. This study revealed in one specific application that use of default and site-specific parameters resulted in comparable dose estimates. If this tendency were to hold generally true over other environments and model variables, then risk assessors might prefer to select codes on the basis of criteria such as (1) the number of variables to select from; (2) ability to calculate consequences directly, and (3) outputs geared to addressing public concerns

  11. Field Measurements of Black Carbon Yields from Gas Flaring.

    Science.gov (United States)

    Conrad, Bradley M; Johnson, Matthew R

    2017-02-07

    Black carbon (BC) emissions from gas flaring in the oil and gas industry are postulated to have critical impacts on climate and public health, but actual emission rates remain poorly characterized. This paper presents in situ field measurements of BC emission rates and flare gas volume-specific BC yields for a diverse range of flares. Measurements were performed during a series of field campaigns in Mexico and Ecuador using the sky-LOSA optical measurement technique, in concert with comprehensive Monte Carlo-based uncertainty analyses. Parallel on-site measurements of flare gas flow rate and composition were successfully performed at a subset of locations enabling direct measurements of fuel-specific BC yields from flares under field conditions. Quantified BC emission rates from individual flares spanned more than 4 orders of magnitude (up to 53.7 g/s). In addition, emissions during one notable ∼24-h flaring event (during which the plume transmissivity dropped to zero) would have been even larger than this maximum rate, which was measured as this event was ending. This highlights the likely importance of superemitters to global emission inventories. Flare gas volume-specific BC yields were shown to be strongly correlated with flare gas heating value. A newly derived correlation fitting current field data and previous lab data suggests that, in the context of recent studies investigating transport of flare-generated BC in the Arctic and globally, impacts of flaring in the energy industry may in fact be underestimated.

  12. Electric field measurement in an atmospheric or higher pressure gas by coherent Raman scattering of nitrogen

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi; Mueller, Sarah; Luggenhoelscher, Dirk; Czarnetzki, Uwe

    2009-01-01

    The feasibility of electric field measurement based on field-induced coherent Raman scattering is demonstrated for the first time in a nitrogen containing gas at atmospheric or higher pressure, including open air. The technique is especially useful for the determination of temporal and spatial profiles of the electric field in air-based microdischarges, where nitrogen is abundant. In our current experimental setup, the minimum detectable field strength in open air is about 100 V mm -1 , which is sufficiently small compared with the average field present in typical microdischarges. No further knowledge of other gas/plasma parameters such as the nitrogen density is required. (fast track communication)

  13. Measurement of oxygen consumption with the Cosmed K2: a comparative study

    NARCIS (Netherlands)

    Forkink, A.; Frings-Dresen, M. H.

    1994-01-01

    An instrument that accurately measures oxygen consumption (VO2) during field performance is valuable for investigations of physiological workload. Cosmed (Rome, Italy) has introduced such an instrument, the Cosmed K2. In this study the Cosmed K2 was compared with the Oxyconbeta (Jaeger, Breda, The

  14. Pulsed electric field sensor based on original waveform measurement

    International Nuclear Information System (INIS)

    Ma Liang; Wu Wei; Cheng Yinhui; Zhou Hui; Li Baozhong; Li Jinxi; Zhu Meng

    2010-01-01

    The paper introduces the differential and original waveform measurement principles for pulsed E-field, and develops an pulsed E-field sensor based on original waveform measurement along with its theoretical correction model. The sensor consists of antenna, integrator, amplifier and driver, optic-electric/electric-optic conversion module and transmission module. The time-domain calibration in TEM cell indicates that, its risetime response is shorter than 1.0 ns, and the output pulse width at 90% of the maximum amplitude is wider than 10.0 μs. The output amplitude of the sensor is linear to the electric field intensity in a dynamic range of 20 dB. The measurement capability can be extended to 10 V/m or 50 kV/m by changing the system's antenna and other relative modules. (authors)

  15. Full-field measurements and identification in solid mechanics

    CERN Document Server

    Grediac, Michel

    2008-01-01

    This timely book presents cutting-edge developments by experts in the field on the rapidly developing and scientifically challenging area of full-field measurement techniques used in solid mechanics - including photoelasticity, grid methods, deflectometry, holography, speckle interferometry and digital image correlation. The evaluation of strains and the use of the measurements in subsequent parameter identification techniques to determine material properties are also presented. Since parametric identification techniques require a close coupling of theoretical models and experimental measurements, the book focuses on specific modeling approaches that include finite element model updating, the equilibrium gap method, constitutive equation gap method, virtual field method and reciprocity gap method. In the latter part of the book, the authors discuss two particular applications of selected methods that are of special interest to many investigators: the analysis of localized phenomenon and connections between mi...

  16. Magnetic Field Measurements In Magnetized Plasmas Using Zeeman Broadening Diagnostics

    Science.gov (United States)

    Haque, Showera; Wallace, Matthew; Presura, Radu; Neill, Paul

    2017-10-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. This method is limited when plasma conditions are such that the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. We have measured magnetic fields in magnetized laser plasmas under conditions where the Zeeman splitting was not spectrally resolved. The magnetic field strength was determined from the difference in widths of two doublet components, using an idea proposed by Tessarin et al. (2011). Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. We explore the response of the Al III 4s 2S1/2 - 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. Radial magnetic field and electron density profiles were measured within the plasma plume. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  17. New Interpretations of Measured Antihydrogen Velocities and Field Ionization Spectra

    International Nuclear Information System (INIS)

    Pohl, T.; Sadeghpour, H. R.; Gabrielse, G.

    2006-01-01

    We present extensive Monte Carlo simulations, showing that cold antihydrogen (H) atoms are produced when antiprotons (p) are gently heated in the side wells of a nested Penning trap. The observed H with high energies, that had seemed to indicate otherwise, are instead explained by a surprisingly effective charge-exchange mechanism. We shed light on the previously measured field-ionization spectrum, and reproduce both the characteristic low-field power law as well as the enhanced H production at higher fields. The latter feature is shown to arise from H atoms too deeply bound to be described as guiding center atoms, atoms with internally chaotic motion

  18. Clinical tonometric measurements comparing three non-contact tonometers.

    Science.gov (United States)

    Walby, M A; Augsburger, A; Polasky, M

    1975-06-01

    Three American Optical Non-contact Tonometers were used to compare readings against each other. The attempt was to determine if all three tonometers were measuring the same IOP over a wide range of pressures. The assumption in practice is that all Non-contact Tonometers are manufactured within tolerance that should allow the examiner to find that same IOP on a patient regardless of the Non-contact Tonometer used. A preliminary study found no significant difference between the instruments.

  19. Evaluation of different field methods for measuring soil water infiltration

    Science.gov (United States)

    Pla-Sentís, Ildefonso; Fonseca, Francisco

    2010-05-01

    Soil infiltrability, together with rainfall characteristics, is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the direct measurement of water infiltration rates or its indirect deduction from other soil characteristics or properties has become indispensable for the evaluation and modelling of the previously mentioned processes. Indirect deductions from other soil characteristics measured under laboratory conditions in the same soils, or in other soils, through the so called "pedo-transfer" functions, have demonstrated to be of limited value in most of the cases. Direct "in situ" field evaluations have to be preferred in any case. In this contribution we present the results of past experiences in the measurement of soil water infiltration rates in many different soils and land conditions, and their use for deducing soil water balances under variable climates. There are also presented and discussed recent results obtained in comparing different methods, using double and single ring infiltrometers, rainfall simulators, and disc permeameters, of different sizes, in soils with very contrasting surface and profile characteristics and conditions, including stony soils and very sloping lands. It is concluded that there are not methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil conditions by the land management, but also due to the manipulation of the surface

  20. Comparing UV/EUV line parameters and magnetic field in a quiescent prominence with tornadoes

    Science.gov (United States)

    Levens, P. J.; Labrosse, N.; Schmieder, B.; López Ariste, A.; Fletcher, L.

    2017-10-01

    Context. Understanding the relationship between plasma and the magnetic field is important for describing and explaining the observed dynamics of solar prominences. Aims: We determine if a close relationship can be found between plasma and magnetic field parameters, measured at high resolution in a well-observed prominence. Methods: A prominence observed on 15 July 2014 by the Interface Region Imaging Spectrograph (IRIS), Hinode, the Solar Dynamics Observatory (SDO), and the Télescope Héliographique pour l'Étude du Magnétisme et des Instabilités Solaires (THEMIS) is selected. We perform a robust co-alignment of data sets using a 2D cross-correlation technique. Magnetic field parameters are derived from spectropolarimetric measurements of the He I D3 line from THEMIS. Line ratios and line-of-sight velocities from the Mg II h and k lines observed by IRIS are compared with magnetic field strength, inclination, and azimuth. Electron densities are calculated using Fe xii line ratios from the Hinode Extreme-ultraviolet Imaging Spectrometer, which are compared to THEMIS and IRIS data. Results: We find Mg II k/h ratios of around 1.4 everywhere, similar to values found previously in prominences. Also, the magnetic field is strongest ( 30 G) and predominantly horizontal in the tornado-like legs of the prominence. The k3 Doppler shift is found to be between ±10 km s-1 everywhere. Electron densities at a temperature of 1.5 × 106 K are found to be around 109 cm-3. No significant correlations are found between the magnetic field parameters and any of the other plasma parameters inferred from spectroscopy, which may be explained by the large differences in the temperatures of the lines used in this study. Conclusions: This is the first time that a detailed statistical study of plasma and magnetic field parameters has been performed at high spatial resolution in a prominence. Our results provide important constraints on future models of the plasma and magnetic field in

  1. A corotation electric field model of the Earth derived from Swarm satellite magnetic field measurements

    Science.gov (United States)

    Maus, Stefan

    2017-08-01

    Rotation of the Earth in its own geomagnetic field sets up a primary corotation electric field, compensated by a secondary electric field of induced electrical charges. For the geomagnetic field measured by the Swarm constellation of satellites, a derivation of the global corotation electric field inside and outside of the corotation region is provided here, in both inertial and corotating reference frames. The Earth is assumed an electrical conductor, the lower atmosphere an insulator, followed by the corotating ionospheric E region again as a conductor. Outside of the Earth's core, the induced charge is immediately accessible from the spherical harmonic Gauss coefficients of the geomagnetic field. The charge density is positive at high northern and southern latitudes, negative at midlatitudes, and increases strongly toward the Earth's center. Small vertical electric fields of about 0.3 mV/m in the insulating atmospheric gap are caused by the corotation charges located in the ionosphere above and the Earth below. The corotation charges also flow outward into the region of closed magnetic field lines, forcing the plasmasphere to corotate. The electric field of the corotation charges further extends outside of the corotating regions, contributing radial outward electric fields of about 10 mV/m in the northern and southern polar caps. Depending on how the magnetosphere responds to these fields, the Earth may carry a net electric charge.

  2. Technical Note: Response measurement for select radiation detectors in magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, M., E-mail: michaelreynolds@ualberta.net [Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Departments of Oncology and Physics, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Rathee, S. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, Medical Physics Division,University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2015-06-15

    Purpose: Dose response to applied magnetic fields for ion chambers and solid state detectors has been investigated previously for the anticipated use in linear accelerator–magnetic resonance devices. In this investigation, the authors present the measured response of selected radiation detectors when the magnetic field is applied in the same direction as the radiation beam, i.e., a longitudinal magnetic field, to verify previous simulation only data. Methods: The dose response of a PR06C ion chamber, PTW60003 diamond detector, and IBA PFD diode detector is measured in a longitudinal magnetic field. The detectors are irradiated with buildup caps and their long axes either parallel or perpendicular to the incident photon beam. In each case, the magnetic field dose response is reported as the ratio of detector signals with to that without an applied longitudinal magnetic field. The magnetic field dose response for each unique orientation as a function of magnetic field strength was then compared to the previous simulation only studies. Results: The measured dose response of each detector in longitudinal magnetic fields shows no discernable response up to near 0.21 T. This result was expected and matches the previously published simulation only results, showing no appreciable dose response with magnetic field. Conclusions: Low field longitudinal magnetic fields have been shown to have little or no effect on the dose response of the detectors investigated and further lend credibility to previous simulation only studies.

  3. Viscoelastic material properties' identification using high speed full field measurements on vibrating plates

    Science.gov (United States)

    Giraudeau, A.; Pierron, F.

    2010-06-01

    The paper presents an experimental application of a method leading to the identification of the elastic and damping material properties of isotropic vibrating plates. The theory assumes that the searched parameters can be extracted from curvature and deflection fields measured on the whole surface of the plate at two particular instants of the vibrating motion. The experimental application consists in an original excitation fixture, a particular adaptation of an optical full-field measurement technique, a data preprocessing giving the curvature and deflection fields and finally in the identification process using the Virtual Fields Method (VFM). The principle of the deflectometry technique used for the measurements is presented. First results of identification on an acrylic plate are presented and compared to reference values. Details about a new experimental arrangement, currently in progress, is presented. It uses a high speed digital camera to over sample the full-field measurements.

  4. Planetary science. Low-altitude magnetic field measurements by MESSENGER reveal Mercury's ancient crustal field.

    Science.gov (United States)

    Johnson, Catherine L; Phillips, Roger J; Purucker, Michael E; Anderson, Brian J; Byrne, Paul K; Denevi, Brett W; Feinberg, Joshua M; Hauck, Steven A; Head, James W; Korth, Haje; James, Peter B; Mazarico, Erwan; Neumann, Gregory A; Philpott, Lydia C; Siegler, Matthew A; Tsyganenko, Nikolai A; Solomon, Sean C

    2015-05-22

    Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data. Copyright © 2015, American Association for the Advancement of Science.

  5. Analysis of Surface Electric Field Measurements from an Array of Electric Field Mills

    Science.gov (United States)

    Lucas, G.; Thayer, J. P.; Deierling, W.

    2016-12-01

    Kennedy Space Center (KSC) has operated an distributed array of over 30 electric field mills over the past 18 years, providing a unique data set of surface electric field measurements over a very long timespan. In addition to the electric field instruments there are many meteorological towers around KSC that monitor the local meteorological conditions. Utilizing these datasets we have investigated and found unique spatial and temporal signatures in the electric field data that are attributed to local meteorological effects and the global electric circuit. The local and global scale influences on the atmospheric electric field will be discussed including the generation of space charge from the ocean surf, local cloud cover, and a local enhancement in the electric field that is seen at sunrise.

  6. An electromagnetic field measurement protocol for monitoring power lines

    International Nuclear Information System (INIS)

    Lubritto, C.; Iavazzo, A.; D'Onofrio, A.; Palmieri, A.; Sabbarese, C.; Terrasi, F.

    2002-01-01

    In the actions aiming to prevent risks related to the exposure to Low Frequencies Non Ionising electromagnetic Radiations (ELF-NIR), always arises the need to perform measurements in order to assess the field level existing in the considered sites. As a matter of fact very often it turns out difficult to predict, on the base of calculations, with sufficient approximation the field levels, due to extended variability of environmental conditions (e.g. coexistence of several sources, ground and building conformation, etc..). The measurement procedures must follow a methodology that could allow to minimise the interferences with the measurement set-up and the systematic and accidental errors. Risks for the operator and damages to the instrument should also be taken into account. One of the goal set for this research program was then the definition of the measurement protocol for electromagnetic field generated by low frequency non ionising radiation sources. In particular sources like power lines will be considered in order to validate the protocol by means of in-field measurements

  7. A Comparison of Acoustic Field Measurement by a Microphone and by an Optical Interferometric Probe

    Directory of Open Access Journals (Sweden)

    R. Bálek

    2002-01-01

    Full Text Available The objective of this work is to show that our optical method for measuring acoustic pressure is in some way superior to measurement using a microphone. Measurement of the integral acoustic pressure in the air by a laser interferometric probe is compared with measurement using a microphone. We determined the particular harmonic components in the acoustic field in the case of relatively high acoustic power in the ultrasonic frequency range.

  8. Single-case synthesis tools II: Comparing quantitative outcome measures.

    Science.gov (United States)

    Zimmerman, Kathleen N; Pustejovsky, James E; Ledford, Jennifer R; Barton, Erin E; Severini, Katherine E; Lloyd, Blair P

    2018-03-07

    Varying methods for evaluating the outcomes of single case research designs (SCD) are currently used in reviews and meta-analyses of interventions. Quantitative effect size measures are often presented alongside visual analysis conclusions. Six measures across two classes-overlap measures (percentage non-overlapping data, improvement rate difference, and Tau) and parametric within-case effect sizes (standardized mean difference and log response ratio [increasing and decreasing])-were compared to determine if choice of synthesis method within and across classes impacts conclusions regarding effectiveness. The effectiveness of sensory-based interventions (SBI), a commonly used class of treatments for young children, was evaluated. Separately from evaluations of rigor and quality, authors evaluated behavior change between baseline and SBI conditions. SBI were unlikely to result in positive behavior change across all measures except IRD. However, subgroup analyses resulted in variable conclusions, indicating that the choice of measures for SCD meta-analyses can impact conclusions. Suggestions for using the log response ratio in SCD meta-analyses and considerations for understanding variability in SCD meta-analysis conclusions are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Procedures for field measurements in the case of nuclear accident

    International Nuclear Information System (INIS)

    Barisic, D.; Lulic, S.

    2000-01-01

    Very simplified, reduced and shorted procedures for main objectives of emergency field monitoring in case of nuclear accident are given only. They could be implemented in Croatia using resources nowadays available. Procedures for gamma/beta dose rates in plume and ground deposition survey and unknown situation evaluation, procedures for alpha and gamma/beta surface contamination measurement, field personnel/equipment contamination and decontamination measurement as well as for in-situ gamma spectrometry measurements are presented. Purpose, short discussion, general precautions and limitations as well as basic equipment and supplies needed are given for all of procedures discussed also. Only measuring steps are given with more details in form of short and clear instructions. (author)

  10. Micro analysis of fringe field formed inside LDA measuring volume

    International Nuclear Information System (INIS)

    Ghosh, Abhijit; Nirala, A K

    2016-01-01

    In the present study we propose a technique for micro analysis of fringe field formed inside laser Doppler anemometry (LDA) measuring volume. Detailed knowledge of the fringe field obtained by this technique allows beam quality, alignment and fringe uniformity to be evaluated with greater precision and may be helpful for selection of an appropriate optical element for LDA system operation. A complete characterization of fringes formed at the measurement volume using conventional, as well as holographic optical elements, is presented. Results indicate the qualitative, as well as quantitative, improvement of fringes formed at the measurement volume by holographic optical elements. Hence, use of holographic optical elements in LDA systems may be advantageous for improving accuracy in the measurement. (paper)

  11. Comparative Visualization of Vector Field Ensembles Based on Longest Common Subsequence

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Richen; Guo, Hanqi; Zhang, Jiang; Yuan, Xiaoru

    2016-04-19

    We propose a longest common subsequence (LCS) based approach to compute the distance among vector field ensembles. By measuring how many common blocks the ensemble pathlines passing through, the LCS distance defines the similarity among vector field ensembles by counting the number of sharing domain data blocks. Compared to the traditional methods (e.g. point-wise Euclidean distance or dynamic time warping distance), the proposed approach is robust to outlier, data missing, and sampling rate of pathline timestep. Taking the advantages of smaller and reusable intermediate output, visualization based on the proposed LCS approach revealing temporal trends in the data at low storage cost, and avoiding tracing pathlines repeatedly. Finally, we evaluate our method on both synthetic data and simulation data, which demonstrate the robustness of the proposed approach.

  12. Measurement of full-field deformation induced by a dc electrical field in organic insulator films

    Directory of Open Access Journals (Sweden)

    Boudou L.

    2010-06-01

    Full Text Available Digital image correlation method (DIC using the correlation coefficient curve-fitting for full-field surface deformation measurements of organic insulator films is investigated in this work. First the validation of the technique was undertaken. The computer-generated speckle images and the measurement of coefficient of thermal expansion (CTE of aluminium are used to evaluate the measurement accuracy of the technique. In a second part the technique is applied to measure the mechanical deformation induced by electrical field application to organic insulators. For that Poly(ethylene naphthalene 2,6-dicarboxylate (PEN thin films were subjected to DC voltage stress and DIC provides the full-field induced deformations of the test films. The obtained results show that the DIC is a practical and robust tool for better comprehension of mechanical behaviour of the organic insulator films under electrical stress.

  13. Instrument for the measuring magnetic field characteristics of induction acceleration

    International Nuclear Information System (INIS)

    Novikov, V.M.; Romasheva, P.I.

    1976-01-01

    An instrument for the measuring instantaneous values of variable and pulsed magnetic fields with an amplitide of 0.005-2.0 and duration of 5x10 -6 -2x10 -2 sec is described. Time resolution is not less than 0.5 musec, measuring accuracy is about 1%. Induction coils are used as sensors. A digital voltmeter serves as a secondary recorder

  14. Planning and Optimization of Wireless LANs through Field Measurements

    OpenAIRE

    Mongia, Puneet Kumar; Singh, B. J.

    2013-01-01

    In this paper, the field measurements of signal strength taken at the frequency of 2432 MHz in indoor & outdoor environments are presented and analyzed. The received signal levels from the base station were monitored manually. Total coverage area considered for the measurement campaign consisted of a mixture of different propagation environments. Based on the experimental data obtained, path loss exponent and standard deviation of signal strength variability are derived. It is shown that the ...

  15. Teaching environmental physics with a field measurement campaign

    International Nuclear Information System (INIS)

    Boman, Johan; Dynefors, Bertil; Kuehlmann-Berenzon, Sharon

    2003-01-01

    With 15 years of experience of teaching environmental physics, we still need to develop our curriculum. In this paper we present our findings from teaching environmental physics in close association with mathematical statistics in an applied field measurement campaign. Here not only environmental physics is taught, but also the concept of experimental planning, design, implementation, and evaluation of a field measurement campaign. The field measurement gives the students the opportunity to follow the whole process starting from experimental planning, including formulating the questions to answer, through design of the experiment, sample collection, analysis, and evaluation, together with the writing of a final report. All possible aspects of the problem that the students are working on can be carefully investigated, but the emphasis has been on understanding the whole process of carrying out a field campaign. This holistic view gives the students more interest in and better motivation for exploring the subject. This course gave the students insight into the field of interdisciplinary environmental research, promoted their creativity, and also gave the teachers a feeling of satisfaction

  16. Electric field vector measurements in a surface ionization wave discharge

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Adamovich, Igor V; Lempert, Walter R; Böhm, Patrick S; Czarnetzki, Uwe

    2015-01-01

    This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ∼100, 600, and 1100 μm (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1 mm ns −1 . The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (∼100 μm). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ∼1 mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ≈3 kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85–95 Td, consistent with dc breakdown field estimated from the Paschen

  17. Compared performance of penetrometers and effect of soil water content on penetration resistance measurements

    Directory of Open Access Journals (Sweden)

    Edison Aparecido Mome Filho

    2014-06-01

    Full Text Available Modern agriculture techniques have a great impact on crops and soil quality, especially by the increased machinery traffic and weight. Several devices have been developed for determining soil properties in the field, aimed at managing compacted areas. Penetrometry is a widely used technique; however, there are several types of penetrometers, which have different action modes that can affect the soil resistance measurement. The objective of this study was to compare the functionality of two penetrometry methods (manual and automated mode in the field identification of compacted, highly mechanized sugarcane areas, considering the influence of soil water volumetric content (θ on soil penetration resistance (PR. Three sugarcane fields on a Rhodic Eutrudrox were chosen, under a sequence of harvest systems: one manual harvest (1ManH, one mechanized harvest (1MH and three mechanized harvests (3MH. The different degrees of mechanization were associated to cumulative compaction processes. An electronic penetrometer was used on PR measurements, so that the rod was introduced into the soil by hand (Manual and by an electromechanical motor (Auto. The θ was measured in the field with a soil moisture sensor. Results showed an effect of θ on PR measurements and that regression models must be used to correct data before comparing harvesting systems. The rod introduction modes resulted in different mean PR values, where the "Manual" overestimated PR compared to the "Auto" mode at low θ.

  18. Sound field separation with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance......In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field...

  19. Advanced measurements and techniques in high magnetic fields

    International Nuclear Information System (INIS)

    Campbell, L.J.; Rickel, D.G.; Lacerda, A.H.; Kim, Y.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). High magnetic fields present a unique environment for studying the electronic structure of materials. Two classes of materials were chosen for experiments at the national high Magnetic Field Laboratory at Los Alamos: highly correlated electron systems and semiconductors. Magnetotransport and thermodynamic experiments were performed on the renormalized ground states of highly correlated electron systems (such as heavy fermion materials and Kondo insulators) in the presence of magnetic fields that are large enough to disrupt the many-body correlations. A variety of optical measurements in high magnetic fields were performed on semiconductor heterostructures including GaAs/AlGaAs single heterojunctions (HEMT structure), coupled double quantum wells (CDQW), asymmetric coupled double quantum wells (ACDQW), multiple quantum wells and a CdTe single crystal thin film

  20. Pulsed beams as field probes for precision measurement

    International Nuclear Information System (INIS)

    Hudson, J. J.; Ashworth, H. T.; Kara, D. M.; Tarbutt, M. R.; Sauer, B. E.; Hinds, E. A.

    2007-01-01

    We describe a technique for mapping the spatial variation of static electric, static magnetic, and rf magnetic fields using a pulsed atomic or molecular beam. The method is demonstrated using a beam designed to measure the electric dipole moment of the electron. We present maps of the interaction region, showing sensitivity to (i) electric field variation of 1.5 V/cm at 3.3 kV/cm with a spatial resolution of 15 mm; (ii) magnetic field variation of 5 nT with 25 mm resolution; (iii) radio-frequency magnetic field amplitude with 15 mm resolution. This diagnostic technique is very powerful in the context of high-precision atomic and molecular physics experiments, where pulsed beams have not hitherto found widespread application

  1. Magnetic field measurements on board of altitude-research rockets

    International Nuclear Information System (INIS)

    Theile, B.; Luehr, H.

    1976-01-01

    Electric currents within the Earth's magneto- and ionosphere can be probed by measuring their magnetic fields. Different payloads of the national sounding rocket programme will carry magnetometers of high resolution and dynamic range. Thorough test procedures are necessary to evaluate the instrument's properties and possible interference problems. (orig.) [de

  2. Functional Measurement in the Field of Empirical Bioethics

    Science.gov (United States)

    Mullet, Etienne; Sorum, Paul C.; Teysseire, Nathalie; Nann, Stephanie; Martinez, Guadalupe Elizabeth Morales; Ahmed, Ramadan; Kamble, Shanmukh; Olivari, Cecilia; Sastre, Maria Teresa Munoz

    2012-01-01

    We present, in a synthetic way, some of the main findings from five studies that were conducted in the field of empirical bioethics, using the Functional Measurement framework. These studies were about (a) the rationing of rare treatments, (b) adolescents' abortions, (c) end-of-life decision-making regarding damaged neonates, (d) end-of-life…

  3. A.c. magnetic-field measurements using the fluxgate

    DEFF Research Database (Denmark)

    Ripka, Pavel; Primdahl, Fritz; Nielsen, Otto V

    1995-01-01

    Fluxgate sensors are mostly used in closed-loop d.c. magnetometer systems; they can also measure alternating fields up to severalkilohertz, either in open-loop mode or from an error signal in the slow-feedback loop as in the Thunderstorm rocket magnetometer, which has 0.1 nT resolution up to 3 k...

  4. Electric field measurements in moving ionization fronts during plasma breakdown

    NARCIS (Netherlands)

    Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W.

    2006-01-01

    We have performed time-resolved, direct measurements of electric field strengths in moving ionization fronts during the breakdown phase of a pulsed plasma. Plasma breakdown, or plasma ignition, is a highly transient process marking the transition from a gas to a plasma. Some aspects of plasma

  5. In-situ measurements in Vesivehmaa air field - STUK team

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, M.; Honkamaa, T.; Niskala, P. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1997-12-31

    Nineteen in-situ gamma-ray spectrometric measurements were performed in Vesivehmaa air field on 17th August 1995. The results for {sup 137}Cs and natural radionuclides are in good agreement with the results from soil sampling and laboratory analyses. (au).

  6. Simple System to Measure the Earth's Magnetic Field

    Science.gov (United States)

    Akoglu, R.; Halilsoy, M.; Mazharimousavi, S. Habib

    2010-01-01

    Our aim in this proposal is to use Faraday's law of induction as a simple lecture demonstration to measure the Earths magnetic field (B). This will also enable the students to learn about how electric power is generated from rotational motion. Obviously the idea is not original, yet it may be attractive in the sense that no sophisticated devices…

  7. Triggering for Magnetic Field Measurements of the LCLS Undulators

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, Kirsten

    2010-12-13

    A triggering system for magnetic field measurements of the LCLS undulators has been built with a National Instruments PXI-1002 and a Xylinx FPGA board. The system generates single triggers at specified positions, regardless of encoder sensor jitter about a linear scale.

  8. Triggering for Magnetic Field Measurements of the LCLS Undulators

    International Nuclear Information System (INIS)

    Hacker, Kirsten

    2010-01-01

    A triggering system for magnetic field measurements of the LCLS undulators has been built with a National Instruments PXI-1002 and a Xylinx FPGA board. The system generates single triggers at specified positions, regardless of encoder sensor jitter about a linear scale.

  9. Field technique for the measurement of uranium in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, J C [Scintrex Ltd., Concord, Ontario

    1978-05-01

    An analytical method suitable for field determination of trace levels of uranium in natural waters is described. Laser UV radiation causes persistent fluorescence of a uranyl complex. Electronic gating substantially rejects detection of short-lived natural organic matter fluorescence. Further work is required on effects of interferences in samples with complex matrices and interpretative aids such as concurrent conductivity and organic content measurements.

  10. Measurements of weak localization of graphene in inhomogeneous magnetic fields

    DEFF Research Database (Denmark)

    Lindvall, N.; Shivayogimath, Abhay; Yurgens, A.

    2015-01-01

    attribute this to the inhomogeneous field caused by vortices in the superconductor. The deviation, which depends on the carrier concentration in graphene, can be tuned by the gate voltage. In addition, collective vortex motion, known as vortex avalanches, is observed through magnetoresistance measurements...

  11. Measurement of the magnetic field coefficients of particle accelerator magnets

    International Nuclear Information System (INIS)

    Herrera, J.; Ganetis, G.; Hogue, R.; Rogers, E.; Wanderer, P.; Willen, E.

    1989-01-01

    An important aspect in the development of magnets to be used in particle accelerators is the measurement of the magnetic field in the beam aperture. In general it is necessary to measure the harmonic multipoles in the dipole, quadrupole, and sextupole magnets for a series of stationary currents (plateaus). This is the case for the Superconducting Super Collider (SSC) which will be ramped to high field over a long period (/approximately/1000 sec.) and then remain on the flat top for the duration of the particle collision phase. In contrast to this mode of operation, the Booster ring being constructed for the Brookhaven AGS, will have a fast ramp rate of approximately 10 Hz. The multipole fields for these Booster magnets must therefore be determined ''on the ramp.'' In this way the effect of eddy currents will be taken into account. The measurement system which we will describe in this paper is an outgrowth of that used for the SSC dipoles. It has the capability of measuring the field multipoles on both a plateau or during a fast ramp. In addition, the same basic coil assembly is used to obtain the magnetic multipoles in dipole, quadrupole, and sextupole magnets. 2 refs., 3 figs., 1 tab

  12. In-situ measurements in Vesivehmaa air field - STUK team

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, M; Honkamaa, T; Niskala, P [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1998-12-31

    Nineteen in-situ gamma-ray spectrometric measurements were performed in Vesivehmaa air field on 17th August 1995. The results for {sup 137}Cs and natural radionuclides are in good agreement with the results from soil sampling and laboratory analyses. (au).

  13. Specific absorption rate and electric field measurements in the near field of six mobile phone base station antennas.

    Science.gov (United States)

    Toivonen, Tommi; Toivo, Tim; Puranen, Lauri; Jokela, Kari

    2009-05-01

    In this article, the exposure to radio frequency electromagnetic fields was studied in close proximity (distances of 10, 100, 300, and 600 mm) to six base station antennas. The specific absorption rate (SAR) in 800 mm x 500 mm x 200 mm box phantom as well as unperturbed electric field (E) in air was measured. The results were used to determine whether the measurement of local maximum of unperturbed electric field can be used as a compliance check for local exposure. Also, the conservativeness of this assessment method compared to the ICNIRP basic restriction was studied. Moreover, the assessment of whole-body exposure was discussed and the distance ranges presented in which the ICNIRP limit for local exposure could be exceeded before the limit for whole-body SAR. These results show that the electric field measurement alone can be used for easy compliance check for the local exposure at all distances and for all antenna types studied. However, in some cases when the local peak value of E was compared directly to the ICNIRP reference level for unperturbed E, the exposure was overestimated only very slightly (by factor 1.1) compared to the basic restriction for localized SAR in a human, and hence these results can not be generalized to all antenna types. Moreover, it was shown that the limit for localized exposure could be exceeded before the limit for the whole-body average SAR, if the distance to the antenna was less than 240 mm. Copyright 2009 Wiley-Liss, Inc.

  14. Hazard surveillance for workplace magnetic fields. 1: Walkaround sampling method for measuring ambient field magnitude; 2: Field characteristics from waveform measurements

    Energy Technology Data Exchange (ETDEWEB)

    Methner, M.M.; Bowman, J.D.

    1998-03-01

    Recent epidemiologic research has suggested that exposure to extremely low frequency (ELF) magnetic fields (MF) may be associated with leukemia, brain cancer, spontaneous abortions, and Alzheimer`s disease. A walkaround sampling method for measuring ambient ELF-MF levels was developed for use in conducting occupational hazard surveillance. This survey was designed to determine the range of MF levels at different industrial facilities so they could be categorized by MF levels and identified for possible subsequent personal exposure assessments. Industries were selected based on their annual electric power consumption in accordance with the hypothesis that large power consumers would have higher ambient MFs when compared with lower power consumers. Sixty-two facilities within thirteen 2-digit Standard Industrial Classifications (SIC) were selected based on their willingness to participate. A traditional industrial hygiene walkaround survey was conducted to identify MF sources, with a special emphasis on work stations.

  15. LIDAR Wind Speed Measurements of Evolving Wind Fields

    Energy Technology Data Exchange (ETDEWEB)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  16. Enhanced UV exposure on a ski-field compared with exposures at sea level.

    Science.gov (United States)

    Allen, Martin; McKenzie, Richard

    2005-05-01

    Personal erythemal UV monitoring badges, which were developed to monitor the UV exposure of school children, were used to measure UV exposures received by one of the authors (MA) at the Mt Hutt ski-field, in New Zealand. These were then compared with measurements taken at the same times from a nearby sea level site in Christchurch city. The badges were designed to give instantaneous readings of erythemally-weighted (i.e., "sun burning") UV radiation and were cross-calibrated against meteorological grade UV instruments maintained by the National Institute of Water & Atmospheric Research (NIWA). All skiing and calibration days were clear and almost exclusively cloud free. It was found that the UV maxima for horizontal surfaces at the ski-field (altitude approximately 2 km) were 20-30% greater than at the low altitude site. Larger differences between the sites were observed when the sensor was oriented perpendicular to the sun. The personal doses of UV received by a sensor on the skier's lapel during two days of skiing activity were less than those received by a stationary detector on a horizontal surface near sea level. The exposures depended strongly on the time of year, and in mid-October the maximum UV intensity on the ski-field was 60% greater than in mid-September. The UV exposure levels experienced during skiing were smaller than the summer maxima at low altitudes.

  17. Implicit measures of environmental attitudes: a comparative study

    Directory of Open Access Journals (Sweden)

    Martha Patricia Sánchez

    2016-01-01

    Full Text Available The present investigation aims to inquire about the capacity of three implicit instruments to measure the attitude toward natural and urban environments. One hundred and three students from a Mexican public university participated in the investigation. The implicit instruments used were the affective priming technique, the implicit association test, and the affect misattribution procedure. Further, an explicit scale was used for comparison. The results showed that all instruments converge in the same way; the nature images were viewed as more pleasant compared to the city images. Also, most results indicated good effect size values, observed power, and reliability, with the exception of the affective priming technique, which established low values. In addition, all instruments indicated weak correlations between each other. The results were discussed in terms of the capacity of the instruments to measure environmental attitudes, and also possible theoretical and methodological implications.

  18. A comparative study of calculated and measured particle velocities

    International Nuclear Information System (INIS)

    Tariq, S.M.

    2005-01-01

    After an explosive is detonated in a blast hole, seismic waves are generated in the ground surrounding the blast hole. These waves cause the particles of rock to oscillate about its position. As the wave attenuate, the particles come back to their original position. The rapidity with which the particles move is called the particle velocity. The peak or maximum velocity is the value which is of prime concern. This value of peak particle velocity can be estimated by the equations determined by the United States Bureau of Mines and by the DUPONT. A research program was conducted by the author at the 'Beck Materials Quarry' situated near Rolla, Missouri, USA. The purpose was to draw a comparison between the predicted and measured particle velocities. It was generally found that the predicted peak particle velocities were quite high as compared to the velocities measured by the Seismographs. (author)

  19. Comparative Studies on the Bioretention of Radionuclides under Laboratory and Field Conditions

    International Nuclear Information System (INIS)

    Heyraud, M.; Fowler, S.W.

    1976-01-01

    The influence of different sea water treatments on radio-isotope flux rates was tested in three species. For any one species no significant differences in 65 Zn loss rate were noted between organisms held in sea water collected in situ and in those maintained in sea water from the laboratory system. Increased sea water zinc concentration accelerated 65 Zn flux rates; however, the more rapid 65 Zn loss compared to that measured in control sea water was only significant when the concentration was increased by 100μg zinc/liter. Simultaneous laboratory and field experiments indicated that loss rates in clams and mussels were similar whether animals were held in the field or in the laboratory. Experiments in which crabs were monitored for 65 Zn loss gave conflicting results. One experiment performed during the summer indicated that crabs lost 65 Zn significantly faster in the laboratory than in the field. Another experiment performed during the winter when water temperatures were lower indicated no differences in loss rates between the two systems. Differences in radioisotope flux rate may have been related to the intermolt cycle; nevertheless, it was concluded that for certain organisms care should be exercised when applying results of laboratory experiments to the field situation. (author)

  20. Field measurement and interpretation of beta doses and dose rates

    International Nuclear Information System (INIS)

    Selby, J.M.; Swinth, K.L.; Hooker, C.D.; Kenoyer, J.L.

    1983-01-01

    A wide variety of portable survey instruments employing GM, ionization chamber and scintillation detectors exist for the measurement of gamma exposure rates. Often these same survey instruments are used for monitoring beta fields. This is done by making measurements with and without a removable shield which is intended to shield out the non-penetrating component (beta) of the radiation field. The difference does not correspond to an absorbed dose rate for the beta field due to a variety of factors. Among these factors are the dependence on beta energy, source-detector geometries, mixed fields and variable ambient conditions. Attempting to use such measurements directly can lead to errors as high as a factor of 100. In many instances correction factors have been derived, that if properly applied, can reduce these errors substantially. However, this requires some knowledge of the beta spectra, calibration techniques and source geometry. This paper discusses some aspects of the proper use of instruments for beta measurements including the application of appropriate correction factors. Ionization type instruments are commonly used to measure beta dose rates. Through design and calibration these instruments will give an accurate reading only for uniform irradiation of the detection volume. Often in the field it is not feasible to meet these conditions. Large area uniform distributions of activity are not generally encountered and it is not possible to use large source-to-detector distances due to beta particle absorption in air. An example of correction factors required for various point sources is presented when a cutie pie ionization chamber is employed. The instrument reading is multiplied by the appropriate correction factor to obtain the dose rate at the window. When a different detector is used or for other geometries, a different set of correction factors must be used

  1. Comparison of neutron scattering, gravimetric and tensiometric methods for measuring soil water content in the field

    International Nuclear Information System (INIS)

    Jat, R.L.; Das, D.K.; Naskar, G.C.

    1975-01-01

    Water content of a sandy clay loam soil was measured by neutron scattering, gravimetric and tensiometric methods. Tensiometric measurement based on laboratory moisture retention curve gave comparatively higher moisture content than those obtained by other methods. No significant differences were observed among neutron meter, gravimetric and tensiometric measurement based on field calibration curve. Though for irrigation purposes all the methods can be used equally, use of tensiometric method with field calibration curve is suggested for easy and more accurate soil water content measurement where neutron meter is not available. (author)

  2. Field Measurement of Surface Ship Magnetic Signature Using Multiple AUVs

    Science.gov (United States)

    2009-10-01

    been equipped with a tri-axial fluxgate magnetometer and used to perform preliminary magnetic field measurements. Measurements of this type will be...mounted on the AUVs, shown in Fig. 1, was a three-axis fluxgate type [16] magnetometer with a range of ±100,000 nT and a sensitivity of 100μV/nT. The...surface ship. The system will employ a formation of multiple AUVs, each equipped with a magnetometer . The objective is to measure total magnetic

  3. Measurements of blade aerodynamics on a rotor in the field

    Energy Technology Data Exchange (ETDEWEB)

    Graham, J.M.R. [Imperical College, Dept. of Aeronautics, London (United Kingdom)

    1997-12-31

    This contribution describes the field test measurements undertaken on an instrumented rotor at the Rutherford Appleton Laboratory, Oxfordshire, UK, during the period 1994 - 97. The programme was directed at improving the prediction of the steady and unsteady rotor blade loading, particularly the loads arising from the stalling of the blade. The measured data consisted of blade surface pressure distributions sampled at 50Hz at 6 sections along the span of one blade of the 17m diameter, 3 bladed, fixed pitch, upwind H.A.W.T., together with measurements of the incident velocity. (au)

  4. Magnetic field measurements near stand-alone transformer stations.

    Science.gov (United States)

    Kandel, Shaiela; Hareuveny, Ronen; Yitzhak, Nir-Mordechay; Ruppin, Raphael

    2013-12-01

    Extremely low-frequency (ELF) magnetic field (MF) measurements around and above three stand-alone 22/0.4-kV transformer stations have been performed. The low-voltage (LV) cables between the transformer and the LV switchgear were found to be the major source of strong ELF MFs of limited spatial extent. The strong fields measured above the transformer stations support the assessment method, to be used in future epidemiological studies, of classifying apartments located right above the transformer stations as highly exposed to MFs. The results of the MF measurements above the ground around the transformer stations provide a basis for the assessment of the option of implementing precautionary procedures.

  5. Measurement of positron range in matter in strong magnetic fields

    International Nuclear Information System (INIS)

    Hammer, B.E.; Christensen, N.L.

    1995-01-01

    Positron range is one factor that places a limitation on Positron Emission Tomography (PET) resolution. The distance a positron travels through matter before it annihilates with an electron is a function of its initial energy and the electron density of the medium. A strong magnetic field limits positron range when momentum components are transverse to the field. Measurement of positron range was determined by deconvolving the effects of detector response and radioactive distribution from the measured annihilation spread function. The annihilation spread function for a 0.5 mm bead of 68 Ga was measured with 0.2 and 1.0 mm wide slit collimators. Based on the annihilation spread function FWHM (Full Width at Half Maximum) for a 1.0 mm wide slit the median positron range in tissue equivalent material is 0.87, 0.50, 0.22 mm at 0, 5.0 and 9.4 T, respectively

  6. Exposure estimates based on broadband elf magnetic field measurements versus the ICNIRP multiple frequency rule

    International Nuclear Information System (INIS)

    Paniagua, Jesus M.; Rufo, Montana; Jimenez, Antonio; Pachon, Fernando T.; Carrero, Julian

    2015-01-01

    The evaluation of exposure to extremely low-frequency (ELF) magnetic fields using broadband measurement techniques gives satisfactory results when the field has essentially a single frequency. Nevertheless, magnetic fields are in most cases distorted by harmonic components. This work analyses the harmonic components of the ELF magnetic field in an outdoor urban context and compares the evaluation of the exposure based on broadband measurements with that based on spectral analysis. The multiple frequency rule of the International Commission on Non-ionizing Radiation Protection (ICNIRP) regulatory guidelines was applied. With the 1998 ICNIRP guideline, harmonics dominated the exposure with a 55 % contribution. With the 2010 ICNIRP guideline, however, the primary frequency dominated the exposure with a 78 % contribution. Values of the exposure based on spectral analysis were significantly higher than those based on broadband measurements. Hence, it is clearly necessary to determine the harmonic components of the ELF magnetic field to assess exposure in urban contexts. (authors)

  7. Faraday Rotation Measure Study of Cluster Magnetic Fields

    Science.gov (United States)

    Frankel, M. M.; Clarke, T. E.

    2001-12-01

    Magnetic fields are thought to play an important role in galaxy cluster evolution. To this end in this study, we looked at polarized radio sources viewed at small impact parameters to the cores of non-cooling flow clusters. By looking at non-cooling flow clusters we hoped to establish what magnetic fields of clusters look like in the absence of the compressed central magnetic fields of the cooling-flow cores. Clarke, Kronberg and Boehringer (2001) examined Faraday rotation measures of radio probes at relatively large impact parameters to the cores of galaxy clusters. The current study is an extension of the Clarke et al. analysis to probe the magnetic fields in the cores of galaxy clusters. We looked at the Faraday rotation of electromagnetic waves from background or imbedded radio galaxies, which were observed with the VLA in A&B arrays. Our results are consistent with previous findings and exhibit a trend towards higher rotation measures and in turn higher magnetic fields at small impact parameters to cluster cores. This research was made possible through funding from the National Science Foundation.

  8. Executive function in fibromyalgia: Comparing subjective and objective measures.

    Science.gov (United States)

    Gelonch, Olga; Garolera, Maite; Valls, Joan; Rosselló, Lluís; Pifarré, Josep

    2016-04-01

    There is evidence to suggest the existence of an executive dysfunction in people diagnosed with fibromyalgia, although there are certain inconsistencies between studies. Here, we aim to compare executive performance between patients with fibromyalgia and a control group by using subjective and objective cognitive tests, analyzing the influence of patient mood on the results obtained, and studying associations between the two measures. 82 patients diagnosed with fibromyalgia and 42 healthy controls, matched by age and years of education, were assessed using the Behavioral Rating Inventory of Executive Function - Adult Version (BRIEF-A) as a subjective measure of executive functioning. A selection of objective cognitive tests were also used to measure a series of executive functions and to identify symptoms of depression and anxiety. Patients with fibromyalgia perceived greater difficulties than the control group on all of the BRIEF-A scales. However, after adjustments were made for depression and anxiety the only differences that remained were those associated with the working memory scale and the Metacognition and Global Executive Composite index. In the case of the objective cognitive tests, a significantly worse overall performance was evidenced for the fibromyalgia patients. However, this also disappeared when adjustments were made for depression and anxiety. After this adjustment, fibromyalgia patients only performed significantly worse for the interference effect in the Stroop Test. Although there were no significant associations between most of the objective cognitive tests and the BRIEF-A scales, depression and anxiety exhibited strong associations with almost all of the BRIEF-A scales and with several of the objective cognitive tests. Patients with fibromyalgia showed executive dysfunction in subjective and objective measures, although most of this impairment was associated with mood disturbances. Exceptions to this general rule were observed in the

  9. Air encapsulation. I. Measurement in a field soil

    International Nuclear Information System (INIS)

    Fayer, M.J.; Hillel, D.

    1986-01-01

    Encapsulated air is an important component of shallow water table fluctuations. Their objective was to measure the quantity and persistence of encapsulated air in a field setting. Using sprinkling rates of either 3.5 x 10 -6 or 3.8 x 10 -5 m s -1 , they brought the water table in a field soil from a depth of 1.5 m to the surface on several occasions. Moisture contents during and after sprinkling were monitored with a neutron probe. Twice following sprinkling, the water table was maintained at the surface for more than 20 d, during which time they continued to monitor moisture contents. With the water table at the surface, differences between the porosity and the measured moisture content were attributed to encapsulated air. Encapsulated air contents ranged from 1.1 to 6.3% of the bulk soil volume, depending on the rate of sprinkling, soil depth, and initial soil moisture content. During ponding, encapsulated air persisted at the 0.3-m depth for up to 28 d. The results indicate that encapsulated air is measurable in a field situation and that its quantity and persistence should be considered in analyzing the results of similar field experiments. 16 references

  10. Satellite measurements of the earth's crustal magnetic field

    Science.gov (United States)

    Schnetzler, C. C.

    1989-01-01

    The literature associated with the Magsat mission has evaluated the capabilities and limitations of satellite measurements of the earth's crustal magnetic field, and demonstrated that there exists a 300-3000 km magnetic field, related to major features in the earth's crust, which is primarily caused by induction. Due to its scale and sensitivity, satellite data have been useful in the development of models for such large crustal features as subduction zones, submarine platforms, continental accretion boundaries, and rifts. Attention is presently given to the lack of agreement between laboratory and satellite estimates of lower crustal magnetization.

  11. Instantaneous temperature field measurements using planar laser-induced fluorescence.

    Science.gov (United States)

    Seitzman, J M; Kychakoff, G; Hanson, R K

    1985-09-01

    A single-pulse, laser-induced-fluorescence diagnostic for the measurement of two-dimensional temperature fields in combustion flows is described. The method uses sheet illumination from a tunable laser to excite planar laserinduced fluorescence in a stable tracer molecule, seeded at constant mole fraction into the flow field. The temporal resolution of this technique is determined by the laser pulse length. Experimental results are presented for a rodstabilized, premixed methane-air flame, using the Q(1) (22) line of the nitric oxide A(2) Sigma(+) (v = 0) ? X(2)II((1/2))(v = 0) transition (lambda approximately 225.6 nm).

  12. Measurement and reconstruction of the BEBC magnetic field map

    CERN Document Server

    Häbel, E; Wittgenstein, F

    1973-01-01

    The superconducting magnet of the Big European Bubble Chamber (BEBC) has been excited with currents up to 5035 A corresponding to a magnetic induction of 3.1 Tesla at the center of the chamber. Since one expected that during the charging of the magnet coils long time constant eddy currents would be induced by the varying radial field components, a system of 181 Hall-probes was installed on the boundary of the chamber body allowing to survey the magnetic field map. This Hall-probe system together with an NMR-probe (nuclear magnetic resonance) enabled us to measure and reconstruct to an accuracy of better than 0.1% the field map of BEBC, which in itself is uniform to within 3% inside the visible fiducial volume of the Chamber. Direct evidence was also given for field map distortions due to the eddy current field which amounted to about 0.7% of the maximum recorded field values at the chamber center. (7 refs).

  13. Measurement and reconstruction of the BEBC magnetic field map

    CERN Document Server

    Häbel, E; Wittgenstein, F

    1973-01-01

    The superconducting magnet of the Big European Bubble Chamber (BEBC) has been excited with currents up to 5035 A corresponding to a magnetic induction of 3.1 Tesla at the center of the chamber. Since one expected that during the charging of the magnet coils long time constant eddy currents would be induced by the varying radial field components, a system of 181 Hall-probes was installed on the boundary of the chamber body allowing to survey the magnetic field map. This Hall-probe system together with an NMR-probe (nuclear magnetic resonance) enabled us to measure and reconstruct to an accuracy of better than 0.1the field map of BEBC, which in itself is uniform to within 3 191332nside the visible fiducial volume of the Chamber. Direct evidence was also given for field map distortions due to the eddy current field which amounted to about 0.723420f the maximum recorded field values at the chamber center. (7 refs).

  14. Internal magnetic field measurements in a translating field-reversed configuration

    International Nuclear Information System (INIS)

    Armstrong, W.T.; Chrien, R.E.; McKenna, K.F.; Rej, D.J.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

    1984-01-01

    Magnetic field probes have been employed to study the internal field structure of Field-Reversed Configurations (FRCs) translating past the probes in the FRX-C/T device. Internal closed flux surfaces can be studied in this manner with minimal perturbation because of the rapid transit of the plasma (translational velocity v/sub z/ approx. 10 cm/μs). Data have been taken using a low-field (5 kG), 5-mtorr-D 2 gas-puff mode of operation in the FRC source coil which yields an initial plasma density of approx. 1 x 10 15 cm -3 and x/sub s/ approx. 0.04. FRCs translate from the approx. 25 cm radius source coil into a 20 cm radius metal translation vessel. Two translation conditions are studied: (1) translation into a 4 kG guide field (matched guide-field case), resulting in similar plasma parameters but with x/sub s/ approx. .45, and (2) translation into a 1 kG guide field (reduced guide-field case), resulting in expansion of the FRC to conditions of density approx. 3 x 10 14 , external field B 0 approx. 2 kG and x/sub s/ approx. 0.7. The expected reversed B/sub z/ structure is observed in both cases. However, the field measurements indicate a possible sideways offset of the FRC from the machine axis in the matched case. There is also evidence of island structure in the reduced guide-field case. Fluctuating levels of B/sub theta/ are ovserved with amplitudes less than or equal to B 0 /3 in both cases. Field measurements on the FRC symmetry axis in the reduced guide-field case indicate β on the separatrix of β/sub s/ approx. = 0.3 (indexed to the external field) has been achieved. This decrease of β/sub s/ with increased x/sub s/ is expected, and desirable for improved plasma confinement

  15. An investigation of methods for free-field comparison calibration of measurement microphones

    DEFF Research Database (Denmark)

    Barrera-Figueroa, Salvador; Moreno Pescador, Guillermo; Jacobsen, Finn

    2010-01-01

    Free-field comparison calibration of measurement microphones requires that a calibrated reference microphone and a test microphone are exposed to the same sound pressure in a free field. The output voltages of the microphones can be measured either sequentially or simultaneously. The sequential...... method requires the sound field to have good temporal stability. The simultaneous method requires instead that the sound pressure is the same in the positions where the microphones are placed. In this paper the results of the application of the two methods are compared. A third combined method...

  16. Group velocity measurement using spectral interference in near-field scanning optical microscopy

    International Nuclear Information System (INIS)

    Mills, John D.; Chaipiboonwong, Tipsuda; Brocklesby, William S.; Charlton, Martin D. B.; Netti, Caterina; Zoorob, Majd E.; Baumberg, Jeremy J.

    2006-01-01

    Near-field scanning optical microscopy provides a tool for studying the behavior of optical fields inside waveguides. In this experiment the authors measure directly the variation of group velocity between different modes of a planar slab waveguide as the modes propagate along the guide. The measurement is made using the spectral interference between pulses propagating inside the waveguide with different group velocities, collected using a near-field scanning optical microscope at different points down the guide and spectrally resolved. The results are compared to models of group velocities in simple guides

  17. Magnetic field gradients inferred from multi-point measurements of Cluster FGM and EDI

    Science.gov (United States)

    Teubenbacher, Robert; Nakamura, Rumi; Giner, Lukas; Plaschke, Ferdinand; Baumjohann, Wolfgang; Magnes, Werner; Eichelberger, Hans; Steller, Manfred; Torbert, Roy

    2013-04-01

    We use Cluster data from fluxgate magnetometer (FGM) and electron drift instrument (EDI) to determine the magnetic field gradients in the near-Earth magnetotail. Here we use the magnetic field data from FGM measurements as well as the gyro-time data of electrons determined from the time of flight measurements of EDI. The results are compared with the values estimated from empirical magnetic field models for different magnetospheric conditions. We also estimated the spin axis offset of FGM based on comparison between EDI and FGM data and discuss the possible effect in determining the current sheet characteristics.

  18. Rocket measurements of electric fields, electron density and temperature during the three phases of auroral substorms

    International Nuclear Information System (INIS)

    Marklund, G.; Block, L.; Lindqvist, P.-A.

    1979-12-01

    On Jan. 27, 1979, three rocket payloads were launched from Kiruna, Sweden, into different phases of two successive auroral substorms. Among other experiments, the payloads carried the RIT double probe electric field experiments, providing electric field, electron density and temperature data, which are presented here. These are discussed in association with observations of particles, ionospheric drifts (STARE) and electric fields in the equatorial plane (GEOS). The motions of the auroral forms, as obtained from auroral pictures are compared with the E x B/B 2 drifts and the currents calculated from the rocket electric field and density measurements with the equivalent current system deduced from ground based magnetometer data (SMA). (Auth.)

  19. Spherical near-field antenna measurements — The most accurate antenna measurement technique

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2016-01-01

    The spherical near-field antenna measurement technique combines several advantages and generally constitutes the most accurate technique for experimental characterization of radiation from antennas. This paper/presentation discusses these advantages, briefly reviews the early history and present...

  20. Quantum optical measurements with undetected photons through vacuum field indistinguishability.

    Science.gov (United States)

    Lee, Sun Kyung; Yoon, Tai Hyun; Cho, Minhaeng

    2017-07-26

    Quantum spectroscopy and imaging with undetected idler photons have been demonstrated by measuring one-photon interference between the corresponding entangled signal fields from two spontaneous parametric down conversion (SPDC) crystals. In this Report, we present a new quantum optical measurement scheme utilizing three SPDC crystals in a cascading arrangement; here, neither the detection of the idler photons which interact with materials of interest nor their conjugate signal photons which do not interact with the sample is required. The coherence of signal beams in a single photon W-type path-entangled state is induced and modulated by indistinguishabilities of the idler beams and crucially the quantum vacuum fields. As a result, the optical properties of materials or objects interacting with the idler beam from the first SPDC crystal can be measured by detecting second-order interference between the signal beams generated by the other two SPDC crystals further down the set-up. This gedankenexperiment illustrates the fundamental importance of vacuum fields in generating an optical tripartite entangled state and thus its crucial role in quantum optical measurements.

  1. Measurement of magnetic fields in the Area Metropolitana

    International Nuclear Information System (INIS)

    Masis Mesen, Juan Pablo

    2007-01-01

    The operation and proper handling of equipment for measuring EMR-300 electromagnetic waves are studied and apply that knowledge to determine which areas of the metropolitan area are mostly affected by exposure to the emission of radiation. This team is able to measure magnetic field strength, electric field strength and power density, also can measure the most important parameters in a simple manner. International standards provide maximum values for these parameters that limit human exposure to such radiation. These standards are based on epidemiological several and laboratory that have been carried out in order to determine in which circumstances a biological entity is exposed to a level of radiation that can cause harm to their health. It focuses on measuring the level of radiation in certain areas of interest, which were chosen because are areas with high population density and also in proximity to antennas that emit electromagnetic waves. Before carrying out the data collection was performed a detailed study of which are the recommendations to measure and avoid as far as possible sources of error, once that those recommendations are implemented the making data was started. Data obtained show that these areas do not present any health risk and that levels of magnetic field strength and power density are well below the limits set by both the International Commission on Non-Ionizing Radiation Protection and the Institute of Electrical and Electronics Engineers. On the other hand, based on the obtained results and the study already done before by the Instituto Costarricense de Electricidad, it was concluded that the power density conditions for plane wave is the parameter most effective to quantize the associated risk with different levels of radiation of radio frequency electromagnetic fields. (author) [es

  2. Field measurements of tracer gas transport by barometric pumping

    International Nuclear Information System (INIS)

    Lagus, P.L.; McKinnis, W.B.; Hearst, J.R.; Burkhard, N.R.; Smith, C.F.

    1994-01-01

    Vertical gas motions induced by barometric pressure variations can carry radioactive gases out of the rubblized region produced by an underground nuclear explosion, through overburden rock, into the atmosphere. To better quantify transit time and amount of transport, field experiments were conducted at two sites on Pahute Mesa, Kapelli and Tierra, where radioactive gases had been earlier detected in surface cracks. At each site, two tracer gases were injected into the rubblized chimney 300-400 m beneath the surface and their arrival was monitored by concentration measurements in gas samples extracted from shallow collection holes. The first ''active'' tracer was driven by a large quantity of injected air; the second ''passive'' tracer was introduced with minimal gas drive to observe the natural transport by barometric pumping. Kapelli was injected in the fall of 1990, followed by Tierra in the fall of 1991. Data was collected at both sites through the summer of 1993. At both sites, no surface arrival of tracer was observed during the active phase of the experiment despite the injection of several million cubic feet of air, suggesting that cavity pressurization is likely to induce horizontal transport along high permeability layers rather than vertical transport to the surface. In contrast, the vertical pressure gradients associated with barometric pumping brought both tracers to the surface in comparable concentrations within three months at Kapelli, whereas 15 months elapsed before surface arrival at Tierra. At Kapelli, a quasisteady pumping regime was established, with tracer concentrations in effluent gases 1000 times smaller than concentrations thought to exist in the chimney. Tracer concentrations observed at Tierra were typically an order of magnitude smaller. Comparisons with theoretical calculations suggest that the gases are traveling through ∼1 millimeter vertical fractures spaced 2 to 4 meters apart. 6 refs., 18 figs., 3 tabs

  3. Measurement and modeling of magnetic hysteresis under field and stress application in iron–gallium alloys

    International Nuclear Information System (INIS)

    Evans, Phillip G.; Dapino, Marcelo J.

    2013-01-01

    Measurements are performed to characterize the hysteresis in magnetomechanical coupling of iron–gallium (Galfenol) alloys. Magnetization and strain of production and research grade Galfenol are measured under applied stress at constant field, applied field at constant stress, and alternately applied field and stress. A high degree of reversibility in the magnetomechanical coupling is demonstrated by comparing a series of applied field at constant stress measurements with a single applied stress at constant field measurement. Accommodation is not evident and magnetic hysteresis for applied field and stress is shown to be coupled. A thermodynamic model is formulated for 3-D magnetization and strain. It employs a stress, field, and direction dependent hysteron that has an instantaneous loss mechanism, similar to Coulomb-friction or Preisach-type models. Stochastic homogenization is utilized to account for the smoothing effect that material inhomogeneities have on bulk processes. - Highlights: ► We conduct coupled experiments and develop nonlinear thermodynamic models for magnetostrictive iron–gallium (Galfenol) alloys. ► The measurements show unexpected kinematic reversibility in the magnetomechanical coupling. ► This is in contrast with the magnetomechanical coupling in steel which is both thermodynamically and kinematically irreversible. ► The model accurately describes the measurements and provides a framework for understanding hysteresis in ferromagnetic materials which exhibit kinematically reversible magnetomechanical coupling.

  4. Measuring the Earth’s Magnetic Field from Space

    DEFF Research Database (Denmark)

    Olsen, Nils; Hulot, G.; Sabaka, T. J.

    2010-01-01

    Observations of the Earth’s magnetic field from low-Earth orbiting (LEO) satellites started very early on, more than 50 years ago. Continuous such observations, relying on more advanced technology and mission concepts, have however only been available since 1999. The unprecedented time-space...... coverage of this recent data set opened revolutionary new possibilities for monitoring, understanding and exploring the Earth’s magnetic field. In the near future, the three-satellite Swarm constellation concept to be launched by ESA, will not only ensure continuity of such measurements, but also provide...... enhanced possibilities to improve on our ability to characterize and understand the many sources that produce this field. In the present paper we review and discuss the advantages and drawbacks of the various LEO space magnetometry concepts that have been used so far, and report on the motivations that led...

  5. Measurement of gravity and gauge fields using quantum mechanical probes

    International Nuclear Information System (INIS)

    Anandan, J.

    1986-01-01

    The author considers the question of which quantities are observed when the gravitational and gauge fields are measured by a quantum mechanical probe. The motion of a quantum mechanical particle can be constructed, via Huyghens' principle, by the interference of secondary wavelets. Three types of interference phenomena are considered: interference of two coherent beams separated in space-time during part of their motion; interference of two coherent beams which are in the same region in spacetime but differ in energy or mass; and the Josphson effect and its generalization. The author shows how to determine the gravitational field by means of quantum interference. The corresponding problem for gauge fields is treated and a simple proof of the previously proved theorem for the reconstruction of the connection from the holonomy transformations is presented. A heuristic principle for the gravitational interaction of two quantum mechanical particles is formulated which implies the equivalence of inertial and active gravitational masses

  6. The Philanthropic Mission of Comparative and International Education Bequeathed by Jullien: Continuing Capstone of the Field

    Science.gov (United States)

    Wolhuter, C. C.

    2017-01-01

    The aim of this lead article of this special issue of "Compare" is to assess the value of Jullien's vision for the field of comparative and international education today. The life, writings and ideas of Jullien are sketched, followed by a survey of the path of development of the field since the time of Jullien. In view of the exigencies…

  7. Airflow over Barchan dunes: field measurements, mathematical modelling and wind tunnel testing

    OpenAIRE

    Wiggs, G. F. S.

    1992-01-01

    There are few empirical measurements of velocity, shear velocity, sand transport, morphological change on the windward slopes of dunes.This thesis compares field measurements on a barchan dune in Oman with calculations using a mathematical model (FLOWSTAR) and measurements in a wind tunnel. All three techniques demonstrate similar patterns of velocity, confirming the acceleration of flow up the windward slope, deceleration between the crest and brink and significant flow decele...

  8. Open area E.M. field measurements for radiation hazard purposes

    International Nuclear Information System (INIS)

    Bevacqua, F.; Cipollone, E.; Morviducci, A.; Venditti, L.

    1989-01-01

    This article reports on an extensive set of measurements of the E.M. pollution that has been done for radiation hazard purposes. The measurement results are compared with international standards, regulations and laws. Special attention is devoted to the measurement of the E.M. field near hospitals and some important remarks are made on risks related to induced errors on pacemarker and medial instrumentation

  9. Electric Field Measurement of the Living Human Body for Biomedical Applications: Phase Measurement of the Electric Field Intensity

    Directory of Open Access Journals (Sweden)

    Ichiro Hieda

    2013-01-01

    Full Text Available The authors are developing a technique for conducting measurements inside the human body by applying a weak electric field at a radio frequency (RF. Low RF power is fed to a small antenna, and a similar antenna located 15–50 cm away measures the electric field intensity. Although the resolution of the method is low, it is simple, safe, cost-effective, and able to be used for biomedical applications. One of the technical issues suggested by the authors' previous studies was that the signal pattern acquired from measurement of a human body was essentially different from that acquired from a phantom. To trace the causes of this difference, the accuracy of the phase measurements was improved. This paper describes the new experimental system that can measure the signal phase and amplitude and reports the results of experiments measuring a human body and a phantom. The results were analyzed and then discussed in terms of their contribution to the phase measurement.

  10. Using Quartz Crystal Microbalance for Field Measurement of Liquid Viscosities

    Directory of Open Access Journals (Sweden)

    Qingsong Bai

    2016-01-01

    Full Text Available The field measurement of liquid viscosities, especially the high viscous liquids, is challenging and often requires expensive equipment, long processing time, and lots of reagent. We use quartz crystal microbalances (QCMs operating in solution which are also sensitive to the viscosity and density of the contacting solution. QCMs are typically investigated for sensor applications in which one surface of QCM completely immersed in Newtonian liquid, but the viscous damping in liquids would cause not only large frequency shifts but also large losses in the quality factor Q leading to instability and even cessation of oscillation. A novel mass-sensitivity-based method for field measurement of liquid viscosities using a QCM is demonstrated in this paper and a model describing the influence of the liquid properties on the oscillation frequency is established as well. Two groups of verified experiments were performed and the experimental results show that the presented method is effective and possesses potential applications.

  11. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....

  12. Instrumentation for electromagnetic field generation in biological measurements

    International Nuclear Information System (INIS)

    Malaric, K.; Malaric, R.; Tkalec, M.; Lenicek, I.; Sala, A.

    2005-01-01

    Electromagnetic fields (EMFs) are part of everyday life in modern world. Extremely low-frequency EMFs (50 Hz) are produced by most electric home appliance, electric power transmission and distribution lines. For the last ten years mobile phones have been widely used all around the world. They operate on the EMF frequencies from 400 MHz to 1900 MHz. The effects of EMFs on living organisms have been the subject of debate and research for the last thirty years. The instrumentation for generation of EMFs have been designed at the Faculty of Electrical Engineering and Computing, Zagreb, and can be used for controlled exposure to different EMFs. To study the effect of extremely low-frequency EMF, duckweed (Lemna minor) - the model plant in biological measurement, test setup was made for magnetic field in Helmholtz coil and for electric field between two parallel circle electrodes. For the effect of mobile phones frequencies, test setup with exposition to the electromagnetic field was done with Gigahertz Transversal Electromagnetic Mode (GTEM) cell. The research confirmed that instrumentation used in these experiments is suitable for evaluation of biological effects of EMFs. The effect of different field strengths, exposure times and modulation can be tested with these instrumentation.(author)

  13. Comparing definitions of outpatient surgery: Implications for quality measurement.

    Science.gov (United States)

    Mull, Hillary J; Rivard, Peter E; Legler, Aaron; Pizer, Steven D; Hawn, Mary T; Itani, Kamal M F; Rosen, Amy K

    2017-08-01

    Adverse event (AE) rates in outpatient surgery are inconsistently reported, partly because of the lack of a standard definition of outpatient surgery. We compared the types and rates of surgical procedures defined by two national healthcare agencies: Health Care Cost Institute (HCCI) and the Healthcare Cost and Utilization Project (HCUP) and considered implications for quality measurement. We used HCCI and HCUP definitions to identify FY2012-14 VA outpatient surgeries. There were six times as many HCCI surgeries as HCUP (6,575,830 versus 1,086,640). Ninety-nine percent of HCUP-defined surgeries were also identified by HCCI. More HCUP surgeries had higher average Medicare Relative Value Units then HCCI surgeries [5.3 (SD = 4.4) versus 1.6 (SD = 2.3) RVUs]. Rates and types of procedures vary widely between definitions. Quality measurement using HCCI versus HCUP may produce significantly lower AE rates because many of the surgeries included reflect low complexity and potentially low risk of AEs. Published by Elsevier Inc.

  14. Real-time temperature field measurement based on acoustic tomography

    International Nuclear Information System (INIS)

    Bao, Yong; Jia, Jiabin; Polydorides, Nick

    2017-01-01

    Acoustic tomography can be used to measure the temperature field from the time-of-flight (TOF). In order to capture real-time temperature field changes and accurately yield quantitative temperature images, two improvements to the conventional acoustic tomography system are studied: simultaneous acoustic transmission and TOF collection along multiple ray paths, and an offline iteration reconstruction algorithm. During system operation, all the acoustic transceivers send modulated and filtered wideband Kasami sequences simultaneously to facilitate fast and accurate TOF measurements using cross-correlation detection. For image reconstruction, the iteration process is separated and executed offline beforehand to shorten computation time for online temperature field reconstruction. The feasibility and effectiveness of the developed methods are validated in the simulation study. The simulation results demonstrate that the proposed method can reduce the processing time per frame from 160 ms to 20 ms, while the reconstruction error remains less than 5%. Hence, the proposed method has great potential in the measurement of rapid temperature change with good temporal and spatial resolution. (paper)

  15. Measurement of weak magnetic field of corrosion current of isolated corrosion center

    Directory of Open Access Journals (Sweden)

    I. V. Bardin

    2015-01-01

    Full Text Available A very small magnetic field of corrosion current, of the order of 10−4 Oe, generated by isolated zinc inclusion in a copper platelet placed in electrolyte has been measured for the first time with a highly sensitive giant magneto-impedance magnetometer. The total corrosion current of the inclusion is estimated comparing the measured magnetic field distribution with corresponding theoretical calculation. The estimated value of the total corrosion current turns out to be in reasonable agreement with that one obtained in the standard gravimetric measurement.

  16. Decreased functional diversity and biological pest control in conventional compared to organic crop fields.

    Directory of Open Access Journals (Sweden)

    Jochen Krauss

    Full Text Available Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short

  17. Decreased functional diversity and biological pest control in conventional compared to organic crop fields.

    Science.gov (United States)

    Krauss, Jochen; Gallenberger, Iris; Steffan-Dewenter, Ingolf

    2011-01-01

    Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid

  18. Comparing different stimulus configurations for population receptive field mapping in human fMRI

    Directory of Open Access Journals (Sweden)

    Ivan eAlvarez

    2015-02-01

    Full Text Available Population receptive field (pRF mapping is a widely used approach to measuring aggregate human visual receptive field properties by recording non-invasive signals using functional MRI. Despite growing interest, no study to date has systematically investigated the effects of different stimulus configurations on pRF estimates from human visual cortex. Here we compared the effects of three different stimulus configurations on a model-based approach to pRF estimation: size-invariant bars and eccentricity-scaled bars defined in Cartesian coordinates and traveling along the cardinal axes, and a novel simultaneous ‘wedge and ring’ stimulus defined in polar coordinates, systematically covering polar and eccentricity axes. We found that the presence or absence of eccentricity scaling had a significant effect on goodness of fit and pRF size estimates. Further, variability in pRF size estimates was directly influenced by stimulus configuration, particularly for higher visual areas including V5/MT+. Finally, we compared eccentricity estimation between phase-encoded and model-based pRF approaches. We observed a tendency for more peripheral eccentricity estimates using phase-encoded methods, independent of stimulus size. We conclude that both eccentricity scaling and polar rather than Cartesian stimulus configuration are important considerations for optimal experimental design in pRF mapping. While all stimulus configurations produce adequate estimates, simultaneous wedge and ring stimulation produced higher fit reliability, with a significant advantage in reduced acquisition time.

  19. Comparing erosion rates in burnt forests and agricultural fields for a mountain catchment in NW Iberia

    Science.gov (United States)

    Nunes, João Pedro; Marisa Santos, Juliana; Bernard-Jannin, Léonard; Keizer, Jan Jacob

    2013-04-01

    A large part of northwestern Iberia is nowadays covered by commercial forest plantations of eucalypts and maritime pines, which have partly replaced traditional agricultural land-uses. The humid Mediterranean climate, with mild wet winters and warm dry summers, creates favorable conditions for the occurrence of frequent and recurrent forest fires. Erosion rates in recently burnt areas have been the subject of numerous studies; however, there is still a lack of information on their relevance when compared with agricultural erosion rates, impairing a comprehensive assessment of the role of forests for soil protection. This study focuses on Macieira de Alcoba, head-water catchment in the Caramulo Mountain Range, north-central Portugal, with a mixture of agricultural fields (mostly a rotation between winter pastures and summer cereals) on the lower slopes and forest plantations (mostly eucalypts) on the upper slopes. Agricultural erosion in this catchment has been monitored since 2010; a forest fire in 2011 presented an opportunity to compare post-fire and agricultural erosion rates at nearby sites with comparable soil and climatic conditions. Erosion rates were monitored between 2010 and 2013 by repeated surveys of visible erosion features and, in particular, by mapping and measuring rills and gullies after important rainfall events. During the 2011/2012 hydrological year, erosion rates in the burnt forest were two orders of magnitude above those in agricultural fields, amounting to 17.6 and. 0.1 Mg ha-1, respectively. Rills were widespread in the burnt area, while in the agricultural area they were limited to a small number of fields with higher slope; these particular fields experienced an erosion rate of 2.3 Mg ha-1, still one order of magnitude lower than at the burnt forest site. The timing of the erosion features was also quite distinct for the burnt area and the agricultural fields. During the first nine months after the fire, rill formation was not observed in

  20. Field mapping measurements to determine spatial and field dependence of critical current density in YBCO tapes

    International Nuclear Information System (INIS)

    Leclerc, J.; Berger, K.; Douine, B.; Lévêque, J.

    2013-01-01

    Highlights: • A method for characterizing superconducting tapes from field mapping is presented. • A new and efficient field mapping apparatus has been setup. • This method allows the spatial characterization of superconducting tapes. • The critical current density is obtained as a function of the flux density. • This method has been experimentally tested on an YBCO tape. -- Abstract: In this paper a measurement method that allows the determination of the critical current density of superconducting tape from field mapping measurements is presented. This contact-free method allows obtaining characteristics of the superconductor as a function of the position and of the applied flux density. With some modifications, this technique can be used for reel-to-reel measurements. The determination of the critical current density is based on an inverse calculation. This involves calculating the current distribution in the tape from magnetic measurements. An YBaCuO tape has been characterized at 77 K. A defect in this superconductor has been identified. Various tests were carried out to check the efficiency of the method. The inverse calculation was tested theoretically and experimentally. Comparison with a transport current measurement was also performed

  1. Review of laser-induced fluorescence methods for measuring rf- and microwave electric fields in discharges

    International Nuclear Information System (INIS)

    Gavrilenko, V.; Oks, E.

    1994-01-01

    Development of methods for measuring rf- or μ-wave electric fields E(t) = E 0 cosωt in discharge plasmas is of a great practical importance. First, these are fields used for producing rf- or μ-wave discharges. Second, the fields E(t) may represent electromagnetic waves penetrating into a plasma from the outside. This paper reviews methods for diagnostics of the fields E(t) in low temperature plasmas based on Laser-Induced Fluorescence (LIF). Compared to emission (passive) methods, LIF-methods have a higher sensitivity as well as higher spatial and temporal resolutions. Underlying physical effects may be highlighted by an example of LIF of hydrogen atoms in a plasma. After a presentation of the underlying physical principles, the review focuses on key experiments where these principles were implemented for measurements of rf- and μ-wave electric fields in various discharges

  2. A Portable, Field-Deployable Analyzer for Isotopic Water Measurements

    Science.gov (United States)

    Berman, E. S.; Gupta, M.; Huang, Y. W.; Lacelle, D.; McKay, C. P.; Fortson, S.

    2015-12-01

    Water stable isotopes have for many years been used to study the hydrological cycle, catchment hydrology, and polar climate among other applications. Typically, discrete water samples are collected and transported to a laboratory for isotope analysis. Due to the expense and labor associated with such sampling, isotope studies have generally been limited in scope and time-resolution. Field sampling of water isotopes has been shown in recent years to provide dense data sets with the increased time resolution illuminating substantially greater short term variability than is generally observed during discrete sampling. A truly portable instrument also opens the possibility to utilize the instrument as a tool for identifying which water samples would be particularly interesting for further laboratory investigation. To make possible such field measurements of liquid water isotopes, Los Gatos Research has developed a miniaturized, field-deployable liquid water isotope analyzer. The prototype miniature liquid water isotope analyzer (mini-LWIA) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology in a rugged, Pelican case housing for easy transport and field operations. The analyzer simultaneously measures both δ2H and δ18O from liquid water, with both manual and automatic water introduction options. The laboratory precision for δ2H is 0.6 ‰, and for δ18O is 0.3 ‰. The mini-LWIA was deployed in the high Arctic during the summer of 2015 at Inuvik in the Canadian Northwest Territories. Samples were collected from Sachs Harbor, on the southwest coast of Banks Island, including buried basal ice from the Lurentide Ice Sheet, some ice wedges, and other types of ground ice. Methodology and water analysis results from this extreme field deployment will be presented.

  3. Occupational exposure measurements of static and pulsed gradient magnetic fields in the vicinity of MRI scanners

    Energy Technology Data Exchange (ETDEWEB)

    Kaennaelae, Sami; Toivo, Tim; Jokela, Kari [STUK-Radiation and Nuclear Safety Authority, PO Box 14, 00881 Helsinki (Finland); Alanko, Tommi [Finnish Institute of Occupational Health, New Technologies and Risks, Topeliuksenkatu 41a A, 00250 Helsinki (Finland)], E-mail: sami.kannala@stuk.fi

    2009-04-07

    Recent advances in magnetic resonance imaging (MRI) have increased occupational exposure to magnetic fields. In this study, we examined the assessment of occupational exposure to gradient magnetic fields and time-varying magnetic fields generated by motion in non-homogeneous static magnetic fields of MRI scanners. These magnetic field components can be measured simultaneously with an induction coil setup that detects the time rate of change of magnetic flux density (dB/dt). The setup developed was used to measure the field components around two MRI units (1 T open and 3 T conventional). The measured values can be compared with dB/dt reference levels derived from magnetic flux density reference levels given by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The measured motion-induced dB/dt values were above the dB/dt reference levels for both MRI units. The measured values for the gradient fields (echo planar imaging (EPI) and fast field echo (FFE) sequences) also exceeded the dB/dt reference levels in positions where the medical staff may have access during interventional procedures. The highest motion-induced dB/dt values were 0.7 T s{sup -1} for the 1 T scanner and 3 T s{sup -1} for the 3 T scanner when only the static field was present. Even higher values (6.5 T s{sup -1}) were measured for simultaneous exposure to motion-induced and gradient fields in the vicinity of the 3 T scanner.

  4. High frequency electric field levels: An example of determination of measurement uncertainty for broadband measurements

    Directory of Open Access Journals (Sweden)

    Vulević Branislav

    2016-01-01

    Full Text Available Determining high frequency electromagnetic field levels in urban areas represents a very complex task, having in mind the exponential growth of the number of sources embodied in public cellular telephony systems in the past twenty years. The main goal of this paper is a representation of a practical solution in the evaluation of measurement uncertainty for in-situ measurements in the case of spatial averaging. An example of the estimation of the uncertainty for electric field strength broadband measurements in the frequency range from 3 MHz to 18 GHz is presented.

  5. Electric field measurements in a nanosecond pulse discharge by picosecond CARS/4-wave mixing

    Science.gov (United States)

    Goldberg, Ben; Shkurenkov, Ivan; Adamovich, Igor; Lempert, Walter

    2014-10-01

    Time-resolved electric field measurements in hydrogen by picosecond CARS/4-wave mixing are presented. Measurements are carried out in a high voltage nanosecond pulse discharge in hydrogen in plane-to-plane geometry, at pressures of up to several hundred Torr, and with a time resolution of 0.2 ns. Absolute calibration of the diagnostics is done using a sub-breakdown high voltage pulse of 12 kV/cm. A diffuse discharge is obtained by applying a peak high voltage pulse of 40 kV/cm between the electrodes. It is found that breakdown occurs at a lower field, 15--20 kV/cm, after which the field in the plasma is reduced rapidly due to plasma self shielding The experimental results are compared with kinetic modeling calculations, showing good agreement between the measured and the predicted electric field.

  6. Evaluation of Protocols for Measuring Leaf Photosynthetic Properties of Field-Grown Rice

    Directory of Open Access Journals (Sweden)

    Chang Tian-gen

    2017-01-01

    Full Text Available Largely due to the heterogeneity of environmental parameters and the logistical difficulty of moving photosynthetic equipment in the paddy fields, effective measurement of lowland rice photosynthesis is still a challenge. In this study, we showed that measuring detached rice leaves in the laboratory can not effectively represent the parameters measured in situ. We further described a new indoor facility, high-efficiency all-weather photosynthetic measurement system (HAPS, and the associated measurement protocol to enable whole-weather measurement of photosynthetic parameters of rice grown in the paddy fields. Using HAPS, we can conduct photosynthetic measurements with a time span much longer than that appropriate for the outdoor measurements. Comparative study shows that photosynthetic parameters obtained with the new protocol can effectively represent the parameters in the fields. There was much less standard deviation for measurements using HAPS compared to the outdoor measurements, no matter for technical replications of each recording or for biological replications of each leaf position. This new facility and protocol enables rice photosynthetic physiology studies to be less tough but more efficient, and provides a potential option for large scale studies of rice leaf photosynthesis.

  7. Tunneling Time and Weak Measurement in Strong Field Ionization.

    Science.gov (United States)

    Zimmermann, Tomáš; Mishra, Siddhartha; Doran, Brent R; Gordon, Daniel F; Landsman, Alexandra S

    2016-06-10

    Tunneling delays represent a hotly debated topic, with many conflicting definitions and little consensus on when and if such definitions accurately describe the physical observables. Here, we relate these different definitions to distinct experimental observables in strong field ionization, finding that two definitions, Larmor time and Bohmian time, are compatible with the attoclock observable and the resonance lifetime of a bound state, respectively. Both of these definitions are closely connected to the theory of weak measurement, with Larmor time being the weak measurement value of tunneling time and Bohmian trajectory corresponding to the average particle trajectory, which has been recently reconstructed using weak measurement in a two-slit experiment [S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011)]. We demonstrate a big discrepancy in strong field ionization between the Bohmian and weak measurement values of tunneling time, and we suggest this arises because the tunneling time is calculated for a small probability postselected ensemble of electrons. Our results have important implications for the interpretation of experiments in attosecond science, suggesting that tunneling is unlikely to be an instantaneous process.

  8. Concentration inequalities for functions of Gibbs fields with application to diffraction and random Gibbs measures

    CERN Document Server

    Külske, C

    2003-01-01

    We derive useful general concentration inequalities for functions of Gibbs fields in the uniqueness regime. We also consider expectations of random Gibbs measures that depend on an additional disorder field, and prove concentration w.r.t the disorder field. Both fields are assumed to be in the uniqueness regime, allowing in particular for non-independent disorder field. The modification of the bounds compared to the case of an independent field can be expressed in terms of constants that resemble the Dobrushin contraction coefficient, and are explicitly computable. On the basis of these inequalities, we obtain bounds on the deviation of a diffraction pattern created by random scatterers located on a general discrete point set in the Euclidean space, restricted to a finite volume. Here we also allow for thermal dislocations of the scatterers around their equilibrium positions. Extending recent results for independent scatterers, we give a universal upper bound on the probability of a deviation of the random sc...

  9. Measurements by activation foils and comparative computations by MCNP code

    International Nuclear Information System (INIS)

    Kyncl, J.

    2008-01-01

    Systematic study of the radioactive waste minimisation problem is subject of the SPHINX project. Its idea is that burning or transmutation of the waste inventory problematic part will be realized in a nuclear reactor the fuel of which is in the form of liquid fluorides. In frame of the project, several experiments have been performed with so-called inserted experimental channel. The channel was filled up by the fluorides mixture, surrounded by six fuel assemblies with moderator and placed into LR-0 reactor vessel. This formation was brought to critical state and measurement with activation foil detectors were carried out at selected positions of the inserted channel. Main aim of the measurements was to determine reaction rates for the detectors mentioned. For experiment evaluation, comparative computations were accomplished by code MCNP4a. The results obtained show that very often, computed values of reaction rates differ substantially from the values that were obtained from the experiment. This contribution deals with analysis of the reasons of these differences from the point of view of computations by Monte Carlo method. The analysis of concrete cases shows that the inaccuracy of reaction rate computed is caused mostly by three circumstances:-space region that is occupied by detector is relatively very small;- microscopic effective cross-section R(E) of the reaction changes strongly with energy just in the energy interval that gives the greatest contribution to the reaction; - in the energy interval that gives the greatest contribution to reaction rate, the error of the computed neutron flux is great. These circumstances evoke that the computation of reaction rate with casual accuracy submits extreme demands on computing time. (Author)

  10. Electric field measurements with electro-optical sensor

    International Nuclear Information System (INIS)

    Brambilla, R.

    1992-03-01

    When electric field calculations on the surface of electrodes and electrical insulation present difficulties due to complex geometries and diverse dielectric properties, it is sometimes very useful to resort to direct measurements. However, conventional probes, based on the capacitive effect, are not quite suitable for this purpose due to strong perturbations introduced by probes themselves and to difficulties in isolating the sensors from the instrumentation at points of measurement with a high potential. To avoid these difficulties, a measurement system was developed which incorporates a Pockels effect crystal sensor, a moveable HeNe laser beam for signal transmission and beam polarization modulation, and a laser beam analyzer which detects variations in polarization induced by the sensor. This paper describes the key design, operation and performance characteristics of this device

  11. Measurement of the gamma field around Silene reactor

    International Nuclear Information System (INIS)

    Spurny, Frantisek; Medioni, Roger.

    1976-07-01

    A method for measuring the gamma component in the mixed field emitted by the Silene facility implanted in Valduc is investigated. Various thermoluminescent phosphors (natural LiF, 7 LiF, SO 4 Ca, Al 2 O 3 ) in containers of different sizes and types are used. The detectors results are corrected for their neutron sensitivity by using coefficients which were determined in previous studies. Alumina is shown to be the most suitable detector for this problem because of the dose ranges to be measured and its low sensitivity to neutrons. A series of measurements carried out at many points in the irradiation hall shows a good homogeneity in the gamma distribution. Results are given for different distances from the source and for a 10 17 fissions power of the reactor [fr

  12. Field nondestructive assay measurements as applied to process inventories

    International Nuclear Information System (INIS)

    Westsik, G.A.

    1979-08-01

    An annual process equipment holdup inventory measurement program for a plutonium processing plant was instituted by Rockwell Hanford Operations (Rockwell) at Richland, Washington. The inventories, performed in 1977 and 1978, were designed to improve plutonium accountability and control. The inventory method used field nondestructive assay (NDA) measurement techniques with portable electronics and sodium iodide detectors. Access to and movement of plutonium in work areas was curtailed during the inventory process using administrative controls. Comparison of the two annual inventories showed good reproducibility of results within the calculated error ranges. For items where no plutonium movement occurred and which contained greater than 20 grams plutonium, the average measurement difference between the two inventories was 22%. The procedures and equipment used and the operational experience from the inventories are described

  13. Measurement of the radial electric field in the ASDEX tokamak

    International Nuclear Information System (INIS)

    Field, A.R.; Fussmann, G.; Hofmann, J.V.

    1990-12-01

    The radial electric field (E Τ ) at the plasma periphery is determined by measuring the drift velocities of low-Z impurities ions (BIV, CIII and HeII). The measurements are performed with a scannable mirror system which allows the determination of the poloidal, perpendicular (to B vector) and toroidal components of the drift velocities from the differential Doppler shift of visible line emission observed along opposing viewing directions. The principle of the measurement is investigated in detail. In particular, it is shown that for radially localised emission shells there exits a line of sight oriented perpendicular to B vector along which E Τ may be inferred directly from the observed Doppler shift of the line emission. Along such a line of sight the net contribution to the shift from the diamagnetic drift and the radial gradient of the excitation probability is negligible. During the Ohmic- and L-phases the perpendicular drift velocity of the BIV ions measured approximately 2 cm inside the separatrix is small (≤ 2 kms -1 ) and in the ion diamagnetic drift direction. However, at the L → H-Mode transition it changes sign and begins to increase on the time-scale of the edge pressure gradients reaching the highest values at the end of the H * -phase. From these high perpendicular drift velocities it is infered that, in the H-mode, there exists a strong negative radial electric field (vertical strokeE τ vertical stroke ≤ kVm -1 ) just inside the separatrix. The dependence of the drift velocity of the BIV ions and E Τ on the NBI-heating power and the magnitude and direction of the plasma current and the magnetic field is investigated. (orig.)

  14. Field-Deployable Acoustic Digital Systems for Noise Measurement

    Science.gov (United States)

    Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.

    2000-01-01

    Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.

  15. Cryogenic Current Comparator for Absolute Measurement of the Dark Current of the Superconducting Cavities for Tesla

    CERN Document Server

    Knaack, K; Wittenburg, K

    2003-01-01

    A newly high performance SQUID based measurement system for detecting dark currents, generated by superconducting cavities for TESLA is proposed. It makes use of the Cryogenic Current Comparator principle and senses dark currents in the nA range with a small signal bandwidth of 70 kHz. To reach the maximum possible energy in the TESLA project is a strong motivation to push the gradients of the superconducting cavities closer to the physical limit of 50 MV/m. The field emission of electrons (the so called dark current) of the superconducting cavities at strong fields may limit the maximum gradient. The absolute measurement of the dark current in correlation with the gradient will give a proper value to compare and classify the cavities. This contribution describes a Cryogenic Current Comparator (CCC) as an excellent and useful tool for this purpose. The most important component of the CCC is a high performance DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the extracted ...

  16. Field evaluation of a novel haemoglobin measuring device ...

    African Journals Online (AJOL)

    Objective. To evaluate the use of a robust, cheap method for haemoglobin estimation by non-laboratory-trained personnel in a rural setting. Design. Comparative study. Setting. Tintswalo Hospital. Acomhoek. Participants. 7 nursing sisters, 4 medical students, 2 lay persons. Outcome measures. Haemoglobin estimates ...

  17. Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging.

    Science.gov (United States)

    Humphrey, V F

    2000-03-01

    In high amplitude ultrasonic fields, such as those used in medical ultrasound, nonlinear propagation can result in waveform distortion and the generation of harmonics of the initial frequency. In the nearfield of a transducer this process is complicated by diffraction effects associated with the source. The results of a programme to study the nonlinear propagation in the fields of circular, focused and rectangular transducers are described, and comparisons made with numerical predictions obtained using a finite difference solution to the Khokhlov-Zabolotskaya-Kuznetsov (or KZK) equation. These results are extended to consider nonlinear propagation in tissue-like media and the implications for ultrasonic measurements and ultrasonic heating are discussed. The narrower beamwidths and reduced side-lobe levels of the harmonic beams are illustrated and the use of harmonics to form diagnostic images with improved resolution is described.

  18. Radiation exposure of contrast-enhanced spectral mammography compared with full-field digital mammography.

    Science.gov (United States)

    Jeukens, Cécile R L P N; Lalji, Ulrich C; Meijer, Eduard; Bakija, Betina; Theunissen, Robin; Wildberger, Joachim E; Lobbes, Marc B I

    2014-10-01

    Contrast-enhanced spectral mammography (CESM) shows promising initial results but comes at the cost of increased dose as compared with full-field digital mammography (FFDM). We aimed to quantitatively assess the dose increase of CESM in comparison with FFDM. Radiation exposure-related data (such as kilovoltage, compressed breast thickness, glandularity, entrance skin air kerma (ESAK), and average glandular dose (AGD) were retrieved for 47 CESM and 715 FFDM patients. All examinations were performed on 1 mammography unit. Radiation dose values reported by the unit were validated by phantom measurements. Descriptive statistics of the patient data were generated using a statistical software package. Dose values reported by the mammography unit were in good qualitative agreement with those of phantom measurements. Mean ESAK was 10.5 mGy for a CESM exposure and 7.46 mGy for an FFDM exposure. Mean AGD for a CESM exposure was 2.80 mGy and 1.55 mGy for an FFDM exposure. Compared with our institutional FFDM, the AGD of a single CESM exposure is increased by 1.25 mGy (+81%), whereas ESAK is increased by 3.07 mGy (+41%). Dose values of both techniques meet the recommendations for maximum dose in mammography.

  19. Measurement of velocity field in pipe with classic twisted tape using matching refractive index technique

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Seop; Park, So Hyun; Kim, Eung Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    Many researchers conducted experiments and numerical simulations to measure or predict a Nusselt number or a friction factor in a pipe with a twisted tape while some other studies focused on the heat transfer performance enhancement using various twisted tape configurations. However, since the optical access to the inner space of a pipe with a twisted tape was limited, the detailed flow field data were not obtainable so far. Thus, researchers mainly relied on the numerical simulations to obtain the data of the flow field. In this study, a 3D printing technique was used to manufacture a transparent test section for optical access. And also, a noble refractive index matching technique was used to eliminate optical distortion. This two combined techniques enabled to measure the velocity profile with Particle Image Velocimetry (PIV). The measured velocity field data can be used either to understand the fundamental flow characteristics around a twisted tape or to validate turbulence models in Computational Fluid Dynamics (CFD). In this study, the flow field in the test-section was measured for various flow conditions and it was finally compared with numerically calculated data. Velocity fields in a pipe with a classic twisted tape was measured using a particle image velocimetry (PIV) system. To obtain undistorted particle images, a noble optical technique, refractive index matching, was used and it was proved that high-quality image can be obtained from this experimental equipment. The velocity data from the PIV was compared with the CFD simulations.

  20. Measurement of velocity field in pipe with classic twisted tape using matching refractive index technique

    International Nuclear Information System (INIS)

    Song, Min Seop; Park, So Hyun; Kim, Eung Soo

    2014-01-01

    Many researchers conducted experiments and numerical simulations to measure or predict a Nusselt number or a friction factor in a pipe with a twisted tape while some other studies focused on the heat transfer performance enhancement using various twisted tape configurations. However, since the optical access to the inner space of a pipe with a twisted tape was limited, the detailed flow field data were not obtainable so far. Thus, researchers mainly relied on the numerical simulations to obtain the data of the flow field. In this study, a 3D printing technique was used to manufacture a transparent test section for optical access. And also, a noble refractive index matching technique was used to eliminate optical distortion. This two combined techniques enabled to measure the velocity profile with Particle Image Velocimetry (PIV). The measured velocity field data can be used either to understand the fundamental flow characteristics around a twisted tape or to validate turbulence models in Computational Fluid Dynamics (CFD). In this study, the flow field in the test-section was measured for various flow conditions and it was finally compared with numerically calculated data. Velocity fields in a pipe with a classic twisted tape was measured using a particle image velocimetry (PIV) system. To obtain undistorted particle images, a noble optical technique, refractive index matching, was used and it was proved that high-quality image can be obtained from this experimental equipment. The velocity data from the PIV was compared with the CFD simulations

  1. Measures of School Integration: Comparing Coleman's Index to Measures of Species Diversity.

    Science.gov (United States)

    Mercil, Steven Bray; Williams, John Delane

    This study used species diversity indices developed in ecology as a measure of socioethnic diversity, and compared them to Coleman's Index of Segregation. The twelve indices were Simpson's Concentration Index ("ell"), Simpson's Index of Diversity, Hurlbert's Probability of Interspecific Encounter (PIE), Simpson's Probability of…

  2. Preliminary Findings from the One-Year Electric Field Study in the North Slope of Alaska (OYES-NSA), Atmospheric Radiation Measurement (ARM) Field Campaign

    Science.gov (United States)

    Lavigne, T.; Liu, C.

    2017-12-01

    Previous studies focusing on the comparison of the measured electric field to the physical properties of global electrified clouds have been conducted almost exclusively in the Southern Hemisphere. The One-Year Electric Field Study-North Slope of Alaska (OYES-NSA) aims to establish a long-running collection of this valuable electric field data in the Northern Hemisphere. Presented here is the six-month preliminary data and results of the OYES-NSA Atmospheric Radiation Mission (ARM) field campaign. The local electric field measured in Barrow, Alaska using two CS110 reciprocating shutter field meters, has been compared to simultaneous measurements from the ARM Ka-Band zenith radar, to better understand the influence and contribution of different types of clouds on the local electric field. The fair-weather electric field measured in Barrow has also been analyzed and compared to the climatology of electric field at Vostok Station, Antarctica. The combination of the electric field dataset in the Northern Hemisphere, alongside the local Ka cloud radar, global Precipitation Feature (PF) database, and quasi-global lightning activity (55oN-55oS), allows for advances in the physical understanding of the local electric field, as well as the Global Electric Circuit (GEC).

  3. Localized damage in soft rock: experiments with field measurement techniques

    International Nuclear Information System (INIS)

    Nguyen, T.L.

    2011-01-01

    The research presented in this thesis concerns, firstly, an experimental study on the process of fracture in uniaxial compression of rock samples containing narrow, rectilinear notches inclined with respect to the axis of loading. Secondly, we study the evolution of shear strain localisation towards fracturing and failure in specimens of the same materials with a particular geometry, involving two rounded notches. This geometry, inspired by the work of Meuwissen et al. (1998) for tension tests on metals, promotes the localisation of shear strain in simple compression before fracture. Two different materials were studied: a natural rock of volcanic origin (Neapolitan Tuff) and an artificial 'roc' (CPIR09). In the studies presented, three full-field measurement techniques have been employed in combination: (i) the Digital Image Correlation (DIC), for measurement of kinematic fields at a sample's surface; (ii)acoustic Emission measurements (AE) and AE source location, to follow the evolution of damage in samples during loading; (iii) X-ray tomography (pre-and post-mortem studies), to characterise preexisting defects and discontinuities in the specimens and to better understand the fracturing in 3D. (author)

  4. Relational description of the measurement process in quantum field theory

    International Nuclear Information System (INIS)

    Gambini, Rodolfo; Porto, Rafael A.

    2002-01-01

    We have recently introduced a realistic, covariant, interpretation for the reduction process in relativistic quantum mechanics. The basic problem for a covariant description is the dependence of the states on the frame within which collapse takes place. A suitable use of the causal structure of the devices involved in the measurement process allowed us to introduce a covariant notion for the collapse of quantum states. However, a fully consistent description in the relativistic domain requires the extension of the interpretation to quantum fields. The extension is far from straightforward. Besides the obvious difficulty of dealing with the infinite degrees of freedom of the field theory, one has to analyse the restrictions imposed by causality concerning the allowed operations in a measurement process. In this paper we address these issues. We shall show that, in the case of partial causally connected measurements, our description allows us to include a wider class of causal operations than the one resulting from the standard way of computing conditional probabilities. This alternative description could be experimentally tested. A verification of this proposal would give stronger support to the realistic interpretations of the states in quantum mechanics. (author)

  5. Measuring microbial fitness in a field reciprocal transplant experiment.

    Science.gov (United States)

    Boynton, Primrose J; Stelkens, Rike; Kowallik, Vienna; Greig, Duncan

    2017-05-01

    Microbial fitness is easy to measure in the laboratory, but difficult to measure in the field. Laboratory fitness assays make use of controlled conditions and genetically modified organisms, neither of which are available in the field. Among other applications, fitness assays can help researchers detect adaptation to different habitats or locations. We designed a competitive fitness assay to detect adaptation of Saccharomyces paradoxus isolates to the habitat they were isolated from (oak or larch leaf litter). The assay accurately measures relative fitness by tracking genotype frequency changes in the field using digital droplet PCR (DDPCR). We expected locally adapted S. paradoxus strains to increase in frequency over time when growing on the leaf litter type from which they were isolated. The DDPCR assay successfully detected fitness differences among S. paradoxus strains, but did not find a tendency for strains to be adapted to the habitat they were isolated from. Instead, we found that the natural alleles of the hexose transport gene we used to distinguish S. paradoxus strains had significant effects on fitness. The origin of a strain also affected its fitness: strains isolated from oak litter were generally fitter than strains from larch litter. Our results suggest that dispersal limitation and genetic drift shape S. paradoxus populations in the forest more than local selection does, although further research is needed to confirm this. Tracking genotype frequency changes using DDPCR is a practical and accurate microbial fitness assay for natural environments. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  6. Are voluntary wheel running and open-field behavior correlated in mice? Different answers from comparative and artificial selection approaches.

    Science.gov (United States)

    Careau, Vincent; Bininda-Emonds, Olaf R P; Ordonez, Genesis; Garland, Theodore

    2012-09-01

    Voluntary wheel running and open-field behavior are probably the two most widely used measures of locomotion in laboratory rodents. We tested whether these two behaviors are correlated in mice using two approaches: the phylogenetic comparative method using inbred strains of mice and an ongoing artificial selection experiment on voluntary wheel running. After taking into account the measurement error and phylogenetic relationships among inbred strains, we obtained a significant positive correlation between distance run on wheels and distance moved in the open-field for both sexes. Thigmotaxis was negatively correlated with distance run on wheels in females but not in males. By contrast, mice from four replicate lines bred for high wheel running did not differ in either distance covered or thigmotaxis in the open field as compared with mice from four non-selected control lines. Overall, results obtained in the selection experiment were generally opposite to those observed among inbred strains. Possible reasons for this discrepancy are discussed.

  7. Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents.

    Science.gov (United States)

    Roser, Katharina; Schoeni, Anna; Struchen, Benjamin; Zahner, Marco; Eeftens, Marloes; Fröhlich, Jürg; Röösli, Martin

    2017-02-01

    Adolescents belong to the heaviest users of wireless communication devices, but little is known about their personal exposure to radiofrequency electromagnetic fields (RF-EMF). The aim of this paper is to describe personal RF-EMF exposure of Swiss adolescents and evaluate exposure relevant factors. Furthermore, personal measurements were used to estimate average contributions of various sources to the total absorbed RF-EMF dose of the brain and the whole body. Personal exposure was measured using a portable RF-EMF measurement device (ExpoM-RF) measuring 13 frequency bands ranging from 470 to 3600MHz. The participants carried the device for three consecutive days and kept a time-activity diary. In total, 90 adolescents aged 13 to 17years participated in the study conducted between May 2013 and April 2014. In addition, personal measurement values were combined with dose calculations for the use of wireless communication devices to quantify the contribution of various RF-EMF sources to the daily RF-EMF dose of adolescents. Main contributors to the total personal RF-EMF measurements of 63.2μW/m 2 (0.15V/m) were exposures from mobile phones (67.2%) and from mobile phone base stations (19.8%). WLAN at school and at home had little impact on the personal measurements (WLAN accounted for 3.5% of total personal measurements). According to the dose calculations, exposure from environmental sources (broadcast transmitters, mobile phone base stations, cordless phone base stations, WLAN access points, and mobile phones in the surroundings) contributed on average 6.0% to the brain dose and 9.0% to the whole-body dose. RF-EMF exposure of adolescents is dominated by their own mobile phone use. Environmental sources such as mobile phone base stations play a minor role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Comparing an Annual and a Daily Time-Step Model for Predicting Field-Scale Phosphorus Loss.

    Science.gov (United States)

    Bolster, Carl H; Forsberg, Adam; Mittelstet, Aaron; Radcliffe, David E; Storm, Daniel; Ramirez-Avila, John; Sharpley, Andrew N; Osmond, Deanna

    2017-11-01

    A wide range of mathematical models are available for predicting phosphorus (P) losses from agricultural fields, ranging from simple, empirically based annual time-step models to more complex, process-based daily time-step models. In this study, we compare field-scale P-loss predictions between the Annual P Loss Estimator (APLE), an empirically based annual time-step model, and the Texas Best Management Practice Evaluation Tool (TBET), a process-based daily time-step model based on the Soil and Water Assessment Tool. We first compared predictions of field-scale P loss from both models using field and land management data collected from 11 research sites throughout the southern United States. We then compared predictions of P loss from both models with measured P-loss data from these sites. We observed a strong and statistically significant ( loss between the two models; however, APLE predicted, on average, 44% greater dissolved P loss, whereas TBET predicted, on average, 105% greater particulate P loss for the conditions simulated in our study. When we compared model predictions with measured P-loss data, neither model consistently outperformed the other, indicating that more complex models do not necessarily produce better predictions of field-scale P loss. Our results also highlight limitations with both models and the need for continued efforts to improve their accuracy. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Evaluation of measurement reproducibility using the standard-sites data, 1994 Fernald field characterization demonstration project

    International Nuclear Information System (INIS)

    Rautman, C.A.

    1996-02-01

    The US Department of Energy conducted the 1994 Fernald (Ohio) field characterization demonstration project to evaluate the performance of a group of both industry-standard and proposed alternative technologies in describing the nature and extent of uranium contamination in surficial soils. Detector stability and measurement reproducibility under actual operating conditions encountered in the field is critical to establishing the credibility of the proposed alternative characterization methods. Comparability of measured uranium activities to those reported by conventional, US Environmental Protection Agency (EPA)-certified laboratory methods is also required. The eleven (11) technologies demonstrated included (1) EPA-standard soil sampling and laboratory mass-spectroscopy analyses, and currently-accepted field-screening techniques using (2) sodium-iodide scintillometers, (3) FIDLER low-energy scintillometers, and (4) a field-portable x-ray fluorescence spectrometer. Proposed advanced characterization techniques included (5) alpha-track detectors, (6) a high-energy beta scintillometer, (7) electret ionization chambers, (8) and (9) a high-resolution gamma-ray spectrometer in two different configurations, (10) a field-adapted laser ablation-inductively coupled plasma-atomic emission spectroscopy (ICP-AES) technique, and (11) a long-range alpha detector. Measurement reproducibility and the accuracy of each method were tested by acquiring numerous replicate measurements of total uranium activity at each of two ''standard sites'' located within the main field demonstration area. Meteorological variables including temperature, relative humidity. and 24-hour rainfall quantities were also recorded in conjunction with the standard-sites measurements

  10. Magnetic field measurement in the analyzing magnet of NIS spectrometer

    Science.gov (United States)

    Avramenko, S. A.; Afanas'ev, S. V.; Voloshina, I. G.; Dolgii, S. A.; Yusupov, A. Yu.; Kalmykov, A. V.; Makoveev, V. K.; Nikolaevskii, G. P.; Ostrovskii, I. V.; Perepelkin, E. E.; Peresedov, V. F.; Plyashkevich, S. N.; Rossiiskaya, N. S.; Salmin, R. A.; Spodarets, V. K.; Strokovskii, E. A.; Yudin, I. P.

    2006-12-01

    The main goals of the Nucleon Intrinsic Strangeness experiment (NIS) are the search for the effects of hidden polarized strangeness in the nucleon and the exploration and study of exotic baryons (pentaquarks) in NN reactions. The setup is located in the Laboratory of High Energies at the Joint Institute for Nuclear Research in channel 4V of the Nuclotron extracted beam with the energy between 1 and 4 GeV. The 1SP-40-4V electromagnet of the spectrometer has the external dimensions 3.20 × 3.26 × 4.48 m and the aperture 2.74 × 0.68 m. The magnetic field measurement was performed using the three-component Hall magnetometer in the computer-controlled automated mode. The volume of measurements was 1.03 × 0.60 × 3.92 m. The description of the measuring equipment and measurement procedure is given. The results of the measurements are used for the Monte Carlo computer modeling of the experiment. These results will be used in the analysis of physical data after their acquisition.

  11. On the measurements of large scale solar velocity fields

    International Nuclear Information System (INIS)

    Andersen, B.N.

    1985-01-01

    A general mathematical formulation for the correction of the scattered light influence on solar Doppler shift measurements has been developed. This method has been applied to the straylight correction of measurements of solar rotation, limb effect, large scale flows and oscillations. It is shown that neglecting the straylight errors may cause spurious large scale velocity fields, oscillations and erronous values for the solar rotation and limb effect. The influence of active regions on full disc velocity measurements has been studied. It is shown that a 13 day periodicity in the global velocity signal will be introduced by the passage of sunspots over the solar disc. With different types of low resolution apertures, other periodicities may be introduced. Accurate measurements of the center-to-limb velocity shift are presented for a set of magnetic insensitive lines well suited for solar velocity measurements. The absolute wavelenght shifts are briefly discussed. The stronger lines have a ''supergravitational'' shift of 300-400 m/s at the solar limb. The results may be explained by the presence of a 20-25 m/s poleward meridional flow and a latitudinal dependence of the granular parameters. Using a simple model it is shown that the main properites of the observations are explained by a 5% increase in the granular size with latitude. Data presented indicate that the resonance line K I, 769.9 nm has a small but significant limb effect of 125 m/s from center to limb

  12. A lithospheric magnetic field model derived from the Swarm satellite magnetic field measurements

    Science.gov (United States)

    Hulot, G.; Thebault, E.; Vigneron, P.

    2015-12-01

    The Swarm constellation of satellites was launched in November 2013 and has since then delivered high quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency (ESA) to provide a number of scientific products which will be made available to the scientific community. Within this framework, specific tools were tailor-made to better extract the magnetic signal emanating from Earth's the lithospheric. These tools rely on the scalar gradient measured by the lower pair of Swarm satellites and rely on a regional modeling scheme that is more sensitive to small spatial scales and weak signals than the standard spherical harmonic modeling. In this presentation, we report on various activities related to data analysis and processing. We assess the efficiency of this dedicated chain for modeling the lithospheric magnetic field using more than one year of measurements, and finally discuss refinements that are continuously implemented in order to further improve the robustness and the spatial resolution of the lithospheric field model.

  13. Variability of Measured Runoff and Soil Loss from Field Plots

    Directory of Open Access Journals (Sweden)

    F. Asadzadeh

    2016-02-01

    Full Text Available Introduction: Field plots are widely used in studies related to the measurements of soil loss and modeling of erosion processes. Research efforts are needed to investigate factors affecting the data quality of plots. Spatial scale or size of plots is one of these factors which directly affects measuring runoff and soil loss by means of field plots. The effect of plot size on measured runoff or soil loss from natural plots is known as plot scale effect. On the other hand, variability of runoff and sediment yield from replicated filed plots is a main source of uncertainty in measurement of erosion from plots which should be considered in plot data interpretation processes. Therefore, there is a demand for knowledge of soil erosion processes occurring in plots of different sizes and of factors that determine natural variability, as a basis for obtaining soil loss data of good quality. This study was carried out to investigate the combined effects of these two factors by measurement of runoff and soil loss from replicated plots with different sizes. Materials and Methods: In order to evaluate the variability of runoff and soil loss data seven plots, differing in width and length, were constructed in a uniform slope of 9% at three replicates at Koohin Research Station in Qazvin province. The plots were ploughed up to down slope in September 2011. Each plot was isolated using soil beds with a height of 30 cm, to direct generated surface runoff to the lower part of the plots. Runoff collecting systems composed of gutters, pipes and tankswere installed at the end of each plot. During the two-year study period of 2011-2012, plots were maintained in bare conditions and runoff and soil loss were measured for each single event. Precipitation amounts and characteristics were directly measured by an automatic recording tipping-bucket rain gauge located about 200 m from the experimental plots. The entire runoff volume including eroded sediment was measured on

  14. Smile line assessment comparing quantitative measurement and visual estimation

    NARCIS (Netherlands)

    Geld, P. Van der; Oosterveld, P.; Schols, J.; Kuijpers-Jagtman, A.M.

    2011-01-01

    INTRODUCTION: Esthetic analysis of dynamic functions such as spontaneous smiling is feasible by using digital videography and computer measurement for lip line height and tooth display. Because quantitative measurements are time-consuming, digital videography and semiquantitative (visual) estimation

  15. Nordic Internationalists' Contribution to the Field of Comparative and International Education

    Science.gov (United States)

    Genova, Teodora

    2016-01-01

    This paper stems from a PhD dissertation research focusing on the Nordic representatives' contribution to the field of comparative and international education (CIE) since the middle of the 20th century to the present days. Following the idea of the clear-cut distinction between the two component parts of the field in the region in question, the…

  16. Measurement of deformation field in CT specimen using laser speckle

    International Nuclear Information System (INIS)

    Jeon, Moon Chang; Kang, Ki Ju

    2001-01-01

    To obtain A 2 experimentally in the J-A 2 theory, deformation field on the lateral surface of a CT specimen was to be determined using laser speckle method. The crack growth was measured using direct current potential drop method and most procedure of experimental and data reduction was performed according to ASTM Standard E1737-96. Laser speckle images during crack propagation were monitored by two CCD cameras to cancel the effect of rotation and translation of the specimen. An algorithm to pursue displacement of a point from each image was developed and successfully used to measure A 2 continuously as the crack tip was propagated. The effects of specimen thickness on J-R curve and A 2 were explored

  17. Reality, measurement and locality in Quantum Field Theory

    International Nuclear Information System (INIS)

    Tommasini, Daniele

    2002-01-01

    It is currently believed that the local causality of Quantum Field Theory (QFT) is destroyed by the measurement process. This belief is also based on the Einstein-Podolsky-Rosen (EPR) paradox and on the so-called Bell's theorem, that are thought to prove the existence of a mysterious, instantaneous action between distant measurements. However, I have shown recently that the EPR argument is removed, in an interpretation-independent way, by taking into account the fact that the Standard Model of Particle Physics prevents the production of entangled states with a definite number of particles. This result is used here to argue in favor of a statistical interpretation of QFT and to show that it allows for a full reconciliation with locality and causality. Within such an interpretation, as Ballentine and Jarret pointed out long ago, Bell's theorem does not demonstrate any nonlocality. (author)

  18. Field soil-water properties measured through radiation techniques

    International Nuclear Information System (INIS)

    1984-07-01

    This report shows a major effort to make soil physics applicable to the behaviour of the field soils and presents a rich and diverse set of data which are essential for the development of effective soil-water management practices that improve and conserve the quality and quantity of agricultural lands. This piece of research has shown that the neutron moisture meter together with some complementary instruments like tensiometers, can be used not only to measure soil water contents but also be extremely handy to measure soil hydraulic characteristics and soil water flow. It is, however, recognized that hydraulic conductivity is highly sensitive to small changes in soil water content and texture, being extremely variable spatially and temporally

  19. Sliding bearing diagnosis with magnetic field measuring; Gleitlagerdiagnose mittels Magnetfeldmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, H. [HWTS Zittau (Germany). Fachgebiet Instandhaltung/Technische Diagnostik; Kluth, T. [HWTS Zittau (Germany). Fachgebiet Instandhaltung/Technische Diagnostik

    1995-09-01

    Account of their properties sliding bearings are in high demanded and important aggregats. The destruction of a bearing will be almost followed by the destruction of the aggregate. Various methods are existing for sliding bearing diagnosis. This methods often not permit the condition recognition. A new electromagnetical method will be developed. This method permits the condition recognition during working time of the aggregate. It also permits the recognition of wear. The method bases on a measuring of leak current over measuring the generated magnetic fields with Rogowski-coils. (orig.) [Deutsch] Gleitlager befinden sich wegen ihrer Eigenschaften in hoch beanspruchten und exponierten Aggregaten. Die Zerstoerung eines Gleitlagers fuehrt meist auch zur Zerstoerung des gefuehrten Aggregats. Zur Gleitlagerdiagnose existiert eine Reihe Verfahren. Ihnen wird ein elektromagnetisches Verfahren gegenuebergestellt. Damit koennen Gleitlagerzustaende waehrend des Aggregatebetriebs identifiziert werden. Das Verfahren erlaubt gleichermassen die Bestimmung des Lagerverschleisses. Es basiert auf der Ableitstrommessung, bei der sich ausbildende Magnetfelder durch Rogowskispulen ausgemessen werden. (orig.)

  20. SQUID based cryogenic current comparator for measurements of the dark current of superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Vodel, W.; Nietzsche, S.; Neubert, R.; Nawrodt, R. [Friedrich Schiller Univ. Jena (Germany); Peters, A. [GSI Darmstadt (Germany); Knaack, K.; Wendt, M.; Wittenburg, K. [DESY Hamburg (Germany)

    2005-07-01

    The linear accelerator technology, based on super-conducting L-band (1.3 GHz) is currently under study at DESY (Hamburg, Germany). The two 10 km long main Linacs will be equipped with a total of nearly 20.000 cavities. The dark current due to the emission of electrons in these high gradient field super-conducting cavities is an unwanted particle source. A newly high performance SQUID based measurement system for detecting dark currents is proposed. It makes use of the Cryogenic Current Comparator principle and senses dark currents in the pA range with a measurement bandwidth of up to 70 kHz. The use of a cryogenic current comparator as dark current sensor has some important advantages: -) the measurement of the absolute value of the dark current, -) the non-dependence on the electron trajectories, -) the accurate absolute calibration with an additional wire loop, and -) extremely high resolution.

  1. Experimental Measurement of the Flow Field of Heavy Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Fred Browand; Charles Radovich

    2005-05-31

    Flat flaps that enclose the trailer base on the sides and top are known to reduce truck drag and reduce fuel consumption. Such flapped-truck geometries have been studied in laboratory wind tunnels and in field tests. A recent review of wind tunnel data for a variety of truck geometries and flow Reynolds numbers show roughly similar values of peak drag reduction, but differ in the determination of the optimum flap angle. Optimum angles lie in the range 12 degrees-20 degrees, and may be sensitive to Reynolds number and truck geometry. The present field test is undertaken to provide additional estimates of the magnitude of the savings to be expected on a typical truck for five flap angles 10, 13, 16, 19, and 22 degrees. The flaps are constructed from a fiberglass-epoxy-matrix material and are one-quarter of the base width in length (about 61 cm, or 2 feet). They are attached along the rear door hinge lines on either side of the trailer, so that no gap appears at the joint between the flap and the side of the trailer The flap angle is adjusted by means of two aluminum supports. The present test is performed on the NASA Crows Landing Flight Facility at the northern end of the San Joaquin valley in California. The main runway is approximately 2400 meters in length, and is aligned approximately in a north-south direction The test procedure is to make a series of runs starting at either end of the runway. All runs are initiated under computer control to accelerate the truck to a target speed of 60 mph (96 6 km/hr), to proceed at the target speed for a fixed distance, and to decelerate at the far end of the runway. During a run, the broadcast fuel rate, the engine rpm, forward speed, elapsed time--as well as several other parameters (10 in all)--are digitized at a rate of 100 digitizations per second. Various flapped-conditions are interspersed with the ''no flaps'' control, and are sequenced in a different order on different days. Approximately 310 runs

  2. Measurability of quantum fields and the energy-time uncertainty relation

    International Nuclear Information System (INIS)

    Mensky, Mikhail B

    2011-01-01

    Quantum restrictions on the measurability of an electromagnetic field strength and their relevance to the energy-time uncertainty relation are considered. The minimum errors in measuring electromagnetic field strengths, as they were estimated by the author (1988) in the framework of the phenomenological method of restricted path integral (RPI), are compared with the analogous estimates found by Landau and Peierls (1931) and by Bohr and Rosenfeld (1933) with the help of certain measurement setups. RPI-based restrictions, including those of Landau and Peierls as a special case, hold for any measuring schemes meeting the strict definition of measurement. Their fundamental nature is confirmed by the fact that their associated field detectability condition has the form of the energy-time uncertainty relation. The weaker restrictions suggested by Bohr and Rosenfeld rely on an extended definition of measurement. The energy-time uncertainty relation, which is the condition for the electromagnetic field to be detectable, is applied to the analysis of how the near-field scanning microscope works. (methodological notes)

  3. Electric field measurements in nanosecond pulse discharges in air over liquid water surface

    Science.gov (United States)

    Simeni Simeni, Marien; Baratte, Edmond; Zhang, Cheng; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field in nanosecond pulse discharges in ambient air is measured by picosecond four-wave mixing, with absolute calibration by a known electrostatic field. The measurements are done in two geometries, (a) the discharge between two parallel cylinder electrodes placed inside quartz tubes, and (b) the discharge between a razor edge electrode and distilled water surface. In the first case, breakdown field exceeds DC breakdown threshold by approximately a factor of four, 140 ± 10 kV cm-1. In the second case, electric field is measured for both positive and negative pulse polarities, with pulse durations of ˜10 ns and ˜100 ns, respectively. In the short duration, positive polarity pulse, breakdown occurs at 85 kV cm-1, after which the electric field decreases over several ns due to charge separation in the plasma, with no field reversal detected when the applied voltage is reduced. In a long duration, negative polarity pulse, breakdown occurs at a lower electric field, 30 kV cm-1, after which the field decays over several tens of ns and reverses direction when the applied voltage is reduced at the end of the pulse. For both pulse polarities, electric field after the pulse decays on a microsecond time scale, due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Measurements 1 mm away from the discharge center plane, ˜100 μm from the water surface, show that during the voltage rise, horizontal field component (Ex ) lags in time behind the vertical component (Ey ). After breakdown, Ey is reduced to near zero and reverses direction. Further away from the water surface (≈0.9 mm), Ex is much higher compared to Ey during the entire voltage pulse. The results provide insight into air plasma kinetics and charge transport processes near plasma-liquid interface, over a wide range of time scales.

  4. Evaluation of Occupational Cold Environments: Field Measurements and Subjective Analysis

    Science.gov (United States)

    OLIVEIRA, A. Virgílio M.; GASPAR, Adélio R.; RAIMUNDO, António M.; QUINTELA, Divo A.

    2014-01-01

    The present work is dedicated to the study of occupational cold environments in food distribution industrial units. Field measurements and a subjective assessment based on an individual questionnaire were considered. The survey was carried out in 5 Portuguese companies. The field measurements include 26 workplaces, while a sample of 160 responses was considered for the subjective assessment. In order to characterize the level of cold exposure, the Required Clothing Insulation Index (IREQ) was adopted. The IREQ index highlights that in the majority of the workplaces the clothing ensembles worn are inadequate, namely in the freezing chambers where the protection provided by clothing is always insufficient. The questionnaires results show that the food distribution sector is characterized by a female population (70.6%), by a young work force (60.7% are less than 35 yr old) and by a population with a medium-length professional career (80.1% in this occupation for less than 10 yr). The incidence of health effects which is higher among women, the distribution of protective clothing (50.0% of the workers indicate one garment) and the significant percentage of workers (>75%) that has more difficulties in performing the activity during the winter represent other important results of the present study. PMID:24583510

  5. Velocity field measurements on high-frequency, supersonic microactuators

    Science.gov (United States)

    Kreth, Phillip A.; Ali, Mohd Y.; Fernandez, Erik J.; Alvi, Farrukh S.

    2016-05-01

    The resonance-enhanced microjet actuator which was developed at the Advanced Aero-Propulsion Laboratory at Florida State University is a fluidic-based device that produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet that flows into a cylindrical cavity with a single, 1-mm-diameter exhaust orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1-mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and two-component particle image velocimetry. These are the first direct measurements of the velocity fields produced by such actuators. Comparisons are made between the flow visualizations and the velocity field measurements. The results clearly show that the microactuator produces pulsed, supersonic jets with velocities exceeding 400 m/s for roughly 60 % of their cycles. With high unsteady momentum output, this type of microactuator has potential in a range of ow control applications.

  6. Evaluation of occupational cold environments: field measurements and subjective analysis.

    Science.gov (United States)

    Oliveira, A Virgílio M; Gaspar, Adélio R; Raimundo, António M; Quintela, Divo A

    2014-01-01

    The present work is dedicated to the study of occupational cold environments in food distribution industrial units. Field measurements and a subjective assessment based on an individual questionnaire were considered. The survey was carried out in 5 Portuguese companies. The field measurements include 26 workplaces, while a sample of 160 responses was considered for the subjective assessment. In order to characterize the level of cold exposure, the Required Clothing Insulation Index (IREQ) was adopted. The IREQ index highlights that in the majority of the workplaces the clothing ensembles worn are inadequate, namely in the freezing chambers where the protection provided by clothing is always insufficient. The questionnaires results show that the food distribution sector is characterized by a female population (70.6%), by a young work force (60.7% are less than 35 yr old) and by a population with a medium-length professional career (80.1% in this occupation for less than 10 yr). The incidence of health effects which is higher among women, the distribution of protective clothing (50.0% of the workers indicate one garment) and the significant percentage of workers (>75%) that has more difficulties in performing the activity during the winter represent other important results of the present study.

  7. Velocity field measurement in micro-bubble emission boiling

    International Nuclear Information System (INIS)

    Ito, Daisuke; Saito, Yasushi; Natazuka, Jun

    2017-01-01

    Liquid inlet behavior to a heat surface in micro-bubble emission boiling (MEB) was investigated by flow measurement using particle image velocimetry (PIV). Subcooled pool boiling experiments under atmospheric pressure were carried out using a heat surface with a diameter of 10 mm. An upper end of a heater block made of copper was used as the heat surface. Working fluid was the deionized water and the subcooling was varied from 40 K to 70 K. Three K-type thermocouples were installed in the copper block to measure the temperature gradient, and the heat flux and wall superheat were estimated from these temperature data to make a boiling curve. The flow visualization around the heat surface was carried out using a high-speed video camera and a light sheet. The microbubbles generated in the MEB were used as tracer particles and the velocity field was obtained by PIV analysis of the acquired image sequence. As a result, the higher heat fluxes than the critical heat flux could be obtained in the MEB region. In addition, the distribution characteristics of the velocity in MEB region were studied using the PIV results and the location of the stagnation point in the velocity fields was discussed. (author)

  8. Happiness economics: a new road to measuring and comparing happiness

    NARCIS (Netherlands)

    van Praag, B.M.S.; Ferrer-i-Carbonell, A.

    2011-01-01

    This paper deals with the concept of happiness in economics. Of late there has come into life a branch of happiness economics and it is this field that will be our concern. Actually, not only economists are interested in quantifications of happiness but also researchers in other disciplines. Notably

  9. The use of single-crystal iron frames in transient field measurements, ch. 3

    International Nuclear Information System (INIS)

    Zalm, P.C.

    1977-01-01

    An experimental technique for measuring g-factors of short-lived states (tausub(m)=0.1-10 ps) is discussed. In this method, one uses the strong hyperfine interaction caused by the transient magnetic field. The transient field method dates from 1967. A gain in measuring time of at least a factor of four is shown to be obtained by the use of a single crystal iron frame as a ferromagnetic target backing in which the excited nuclei, formed in a nuclear reaction, recoil. Such frames can be fully magnetized with low external fields as shown by magneto-optical Kerr-effect measurements. The important improvement is that the associated magnetic fringing field near the target is negligible. This is in contrast to the conventional set-up in which strong external fields, with corresponding large disturbing fringing fields, were necessary. The single-crystal set-up is compared to the conventional set-up in several transient field experiments and proves to be successful

  10. Electric field measurements in a dielectric barrier nanosecond pulse discharge with sub-nanosecond time resolution

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Shkurenkov, Ivan; Adamovich, Igor V; Lempert, Walter R; O’Byrne, Sean

    2015-01-01

    The paper presents the results of time-resolved electric field measurements in a nanosecond discharge between two plane electrodes covered by dielectric plates, using picosecond four-wave mixing diagnostics. For absolute calibration, the IR signal was measured in hydrogen at a pressure of 440 Torr, for electrostatic electric field ranging from 0 to 8 kV cm −1 . The calibration curve (i.e. the square root of IR signal intensity versus electric field) was shown to be linear. By measuring the intensities of the pump, Stokes, and IR signal beam for each laser shot during the time sweep across the high-voltage pulse, temporal evolution of the electric field in the nanosecond pulse discharge was determined with sub-nanosecond time resolution. The results are compared to kinetic modeling predictions, showing good agreement, including non-zero electric field offset before the main high voltage pulse, breakdown moment, and reduction of electric field in the plasma after breakdown. The difference between the experimental results and model predictions is likely due to non-1D structure of the discharge. Comparison with the kinetic modeling predictions shows that electric field in the nanosecond pulse discharge is controlled primarily by electron impact excitation and charge accumulation on the dielectric surfaces. (paper)

  11. New measurements of photospheric magnetic fields in late-type stars and emerging trends

    Science.gov (United States)

    Saar, S. H.; Linsky, J. L.

    1986-01-01

    The magnetic fields of late-type stars are measured using the method of Saar et al. (1986). The method includes radiative transfer effects and compensation for line blending; the photospheric magnetic field parameters are derived by comparing observed and theoretical line profiles using an LTE code that includes line saturation and full Zeeman pattern. The preliminary mean active region magnetic field strengths (B) and surface area coverages for 20 stars are discussed. It is observed that there is a trend of increasing B towards the cooler dwarfs stars, and the linear correlation between B and the equipartition value of the magnetic field strength suggests that the photospheric gas pressure determines the photospheric magnetic field strengths. A tendency toward larger filling factors at larger stellar angular velocities is also detected.

  12. Comparative investigation of three dose rate meters for their viability in pulsed radiation fields

    International Nuclear Information System (INIS)

    Gotz, M; Karsch, L; Pawelke, J

    2015-01-01

    Pulsed radiation fields, characterized by microsecond pulse duration and correspondingly high pulse dose rates, are increasingly used in therapeutic, diagnostic and research applications. Yet, dose rate meters which are used to monitor radiation protection areas or to inspect radiation shielding are mostly designed, characterized and tested for continuous fields and show severe deficiencies in highly pulsed fields. Despite general awareness of the problem, knowledge of the specific limitations of individual instruments is very limited, complicating reliable measurements. We present here the results of testing three commercial dose rate meters, the RamION ionization chamber, the LB 1236-H proportional counter and the 6150AD-b scintillation counter, for their response in pulsed radiation fields of varied pulse dose and duration. Of these three the RamION proved reliable, operating in a pulsed radiation field within its specifications, while the other two instruments were only able to measure very limited pulse doses and pulse dose rates reliably. (paper)

  13. Measurement and tricubic interpolation of the magnetic field for the OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, J.C. [Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA (United States); Diefenbach, J. [Hampton University, Hampton, VA (United States); Elbakian, G. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Gavrilov, G. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Goerrissen, N. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Hasell, D.K.; Henderson, B.S. [Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA (United States); Holler, Y. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Karyan, G. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Ludwig, J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Marukyan, H. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Naryshkin, Y. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); O' Connor, C.; Russell, R.L.; Schmidt, A. [Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA (United States); Schneekloth, U. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Suvorov, K.; Veretennikov, D. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation)

    2016-07-01

    The OLYMPUS experiment used a 0.3 T toroidal magnetic spectrometer to measure the momenta of outgoing charged particles. In order to accurately determine particle trajectories, knowledge of the magnetic field was needed throughout the spectrometer volume. For that purpose, the magnetic field was measured at over 36,000 positions using a three-dimensional Hall probe actuated by a system of translation tables. We used these field data to fit a numerical magnetic field model, which could be employed to calculate the magnetic field at any point in the spectrometer volume. Calculations with this model were computationally intensive; for analysis applications where speed was crucial, we pre-computed the magnetic field and its derivatives on an evenly spaced grid so that the field could be interpolated between grid points. We developed a spline-based interpolation scheme suitable for SIMD implementations, with a memory layout chosen to minimize space and optimize the cache behavior to quickly calculate field values. This scheme requires only one-eighth of the memory needed to store necessary coefficients compared with a previous scheme (Lekien and Marsden, 2005 [1]). This method was accurate for the vast majority of the spectrometer volume, though special fits and representations were needed to improve the accuracy close to the magnet coils and along the toroidal axis.

  14. Magnetic Field Measurements of the GOLIATH Magnet in EHN1

    CERN Document Server

    Rosenthal, Marcel; Chatzidaki, Panagiota; Margraf, Rachel; Wilkens, Henric; Bergsma, Felix; Giudici, Pierre-Ange; CERN. Geneva. ATS Department

    2018-01-01

    This note describes the measurement campaign of the magnetic field of the GOLIATH magnet conducted in 2017. It documents the applied measurement procedure and the consecutive analysis of the recorded data. The shape of the magnetic field along the beam axis is discussed and compared with a previous measurement taken in the 1980s. Overall a very good agreement of both data sets is observed. The integrated vertical magnetic field is obtained by analytical descriptions fitted to the data. Additionally, the influence of different configurations of the power converters, as for example in the case of a differ- ent powering scheme of the upper and lower coil of the GOLIATH magnet, on the magnetic field are discussed.

  15. Technical Note: Out-of-field dose measurement at near surface with plastic scintillator detector.

    Science.gov (United States)

    Bourgouin, Alexandra; Varfalvy, Nicolas; Archambault, Louis

    2016-09-08

    Out-of-field dose depends on multiple factors, making peripheral dosimetry com-plex. Only a few dosimeters have the required features for measuring peripheral dose. Plastic scintillator dosimeters (PSDs) offer numerous dosimetric advantages as required for out-of-field dosimetry. The purpose of this study is to determine the potential of using PSD as a surface peripheral dosimeter. Measurements were performed with a parallel-plate ion chamber, a small volume ion chamber, and with a PSD. Lateral-dose measurements (LDM) at 0.5 cm depth and depth-dose curve (PDD) were made and compared to the dose calculation provided by a treatment planning system (TPS). This study shows that a PSD can measure a dose as low as 0.51 ± 0.17 cGy for photon beam and 0.58 ± 0.20 cGy for electron beam with a difference of 0.2 and 0.1 cGy compared to a parallel-plate ion chamber. This study demonstrates the potential of using PSD as an out-of-field dosimeter since measure-ments with PSD avoid averaging over a too-large depth, at 1 mm diameter, and can make precise measurement at very low dose. Also, electronic equilibrium is easier to reach with PSD due to its small sensitive volume and its water equivalence. © 2016 The Authors.

  16. Comparing downside risk measures for heavy tailed distributions

    NARCIS (Netherlands)

    Daníelsson, J.; Jorgensen, B.N.; Sarma, M.; Vries, de C.G.

    2006-01-01

    Using regular variation to define heavy tailed distributions, we show that prominent downside risk measures produce similar and consistent ranking of heavy tailed risk. Thus, regardless of the particular risk measure being used, assets will be ranked in a similar and consistent manner for heavy

  17. Comparative analysis of colour change measurement devices in textile industry

    Directory of Open Access Journals (Sweden)

    Paulina Gilewicz

    2014-08-01

    Full Text Available In the paper there is presented a trial of application of new measurement principle of colour change with the use of DigiEye device. Comparison of DigiEye with commonly use in the textile industry spectrophotometer Macbeth 2020 was an aim of determination of relationship between parameters of both measurement systems. Samples for the colour change assessment on both measurement systems were first aged in the Xenotest 150. Ageing process was done according to the method of blues scale. Results were obtained by the colour measurement devices before and after the ageing test each releasing the diaphragms during exposing the examined samples on the light. Result of colour change were obtained in the colour system CIE L*a*b*. The measurements were done for PES fabrics destined on the outer layers of clothing. [b]Keywords[/b]: textiles, spectrophotometer, colorimeter [b][/b

  18. Comparing the Measured and Latent Dark Triad: Are Three Measures Better than One?

    Directory of Open Access Journals (Sweden)

    Peter K. Jonason

    2011-10-01

    Full Text Available Could measurement level be a factor worth considering when studying the Dark Triad (i.e., narcissism, psychopathy, and Machiavellianism? In two studies (N  = 465, we compared the relative fit of two Dark Triad models: one that treats the three measures as separate-yet-related personality traits and another that treats the measures as tapping a single, latent construct. Mid-level personality traits, such as mate-retention strategies (Study 1 were best explained by a three-measure model, whereas the higher-order trait of sociosexuality (Study 2, were best explained by a single, latent-factor model. When considering mid-level measurement in personality, the three traits may provide independent effects for interpersonal relationships, whereas at the higher-order level, the three traits may function as a single entity relating to other higher-order traits. We suggest one should consider level of measurement between the predictor and criterion variables to better predict correlations among variables such as the Dark Triad. DOI: 10.2458/azu_jmmss.v2i1.12363

  19. Fast fluence measurement for JOYO irradiation field using niobium dosimeter

    International Nuclear Information System (INIS)

    Ito, Chikara

    2004-03-01

    Neutron fluence and spectrum are key parameters in various irradiation tests and material surveillance tests so they need to be evaluated accurately. The reactor dosimetry test has been conducted by the multiple foil activation method, and a niobium dosimeter has been developed for measurement of fast neutron fluence in the experimental fast reactor JOYO. The inelastic scattering reaction of 93 Nb has a low threshold energy, about 30 keV, and the energy distribution of reaction cross section is similar to the displacement cross section for iron. Therefore, a niobium dosimeter is suitable for evaluation of the fast neutron fluence and the displacement per atom for iron. Moreover, a niobium dosimeter is suited to measure neutron fluence in long-term irradiation test because 93 Nb, which is produced by the reaction, has a long half-life (16.4 years). This study established a high precision measurement technique using the niobium reaction rate. The effect of self-absorption was decreased by the solution and evaporation to dryness of niobium dosimeter. The dosimeter weight was precisely measured using the inductively coupled plasma mass spectrometer. This technique was applied to JOYO dosimetry. The fast neutron fluences (E > 0.1 MeV) found by measuring the reaction rate in the niobium dosimeter were compared with the values evaluated using the multiple foil activation method. The ratio of measured fast neutron fluences by means of niobium dosimeter and multiple foil activation method range from 0.97 to 1.03 and agree within the experimental uncertainty. The measurement errors of fast neutron fluence by niobium dosimeter range from 4.5% (fuel region) to 10.1% (in-vessel storage rack). As a result of this study, the high precision measurement of fast neutron fluence by niobium dosimeters was confirmed. The accuracy of fast reactor dosimetry will be improved by application of niobium dosimeters to the irradiation tests in the JOYO MK-III core. (author)

  20. Mapping of radio frequency electromagnetic field exposure levels in outdoor environment and comparing with reference levels for general public health.

    Science.gov (United States)

    Cansiz, Mustafa; Abbasov, Teymuraz; Kurt, M Bahattin; Celik, A Recai

    2018-03-01

    In this study, radio frequency electromagnetic field exposure levels were measured on the main streets in the city center of Diyarbakır, Turkey. Measured electric field levels were plotted on satellite imagery of Diyarbakır and were compared with exposure guidelines published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Exposure measurements were performed in dense urban, urban and suburban areas each day for 7 consecutive days. The measurement system consisted of high precision and portable spectrum analyzer, three-axis electric field antenna, connection cable and a laptop which was used to record the measurement samples as a data logger. The highest exposure levels were detected for two places, which are called Diclekent and Batıkent. It was observed that the highest instantaneous electric field strength value for Batıkent was 7.18 V/m and for Diclekent was 5.81 V/m. It was statistically determined that the main contributor band to the total exposure levels was Universal Mobile Telecommunications System band. Finally, it was concluded that all measured exposure levels were lower than the reference levels recommended by ICNIRP for general public health.

  1. Soil surface roughness: comparing old and new measuring methods and application in a soil erosion model

    Science.gov (United States)

    Thomsen, L. M.; Baartman, J. E. M.; Barneveld, R. J.; Starkloff, T.; Stolte, J.

    2015-04-01

    Quantification of soil roughness, i.e. the irregularities of the soil surface due to soil texture, aggregates, rock fragments and land management, is important as it affects surface storage, infiltration, overland flow, and ultimately sediment detachment and erosion. Roughness has been measured in the field using both contact methods (such as roller chain and pinboard) and sensor methods (such as stereophotogrammetry and terrestrial laser scanning (TLS)). A novel depth-sensing technique, originating in the gaming industry, has recently become available for earth sciences: the Xtion Pro method. Roughness data obtained using various methods are assumed to be similar; this assumption is tested in this study by comparing five different methods to measure roughness in the field on 1 m2 agricultural plots with different management (ploughing, harrowing, forest and direct seeding on stubble) in southern Norway. Subsequently, the values were used as input for the LISEM soil erosion model to test their effect on the simulated hydrograph at catchment scale. Results show that statistically significant differences between the methods were obtained only for the fields with direct seeding on stubble; for the other land management types the methods were in agreement. The spatial resolution of the contact methods was much lower than for the sensor methods (10 000 versus at least 57 000 points per square metre). In terms of costs and ease of use in the field, the Xtion Pro method is promising. Results from the LISEM model indicate that especially the roller chain overestimated the random roughness (RR) values and the model subsequently calculated less surface runoff than measured. In conclusion, the choice of measurement method for roughness data matters and depends on the required accuracy, resolution, mobility in the field and available budget. It is recommended to use only one method within one study.

  2. A Comparative Study on the Positive Lightning Return Stroke Electric Fields in Different Meteorological Conditions

    Directory of Open Access Journals (Sweden)

    Chin-Leong Wooi

    2015-01-01

    Full Text Available Positive cloud-ground lightning is considerably more complex and less studied compared to the negative lightning. This paper aims to measure and characterize the significant parameters of positive return strokes electric field, namely, the zero-to-peak rise time, 10–90% rise time, slow front duration, fast transition rise time (10–90%, zero-crossing time, and opposite polarity overshoot relative to peak. To the best of the authors’ knowledge, this is the first time such detailed characteristics of positive lightning in Malaysia are thoroughly analyzed. A total of 41 positive lightning flashes containing 48 return strokes were analyzed. The average multiplicity is 1.2 strokes per flash. The majority of positive lightning was initiated from the primary positive charge rather than as a byproduct of in-cloud discharges. The cumulative probability distribution of rise time parameters, opposite polarity overshoot relative to peak, and slow front amplitude relative to peak are presented. A comparison between studies in four countries representing tropic, subtropic, and temperate regions was also carried out. Measured parameters in Florida, Sweden, and Japan are generally lower than those in Malaysia. Positive lightning occurrences in tropical regions should be further studied and analyzed to improve our current understanding on positive return strokes.

  3. Dose measurements in pulsed radiation fields with commercially available measuring components

    International Nuclear Information System (INIS)

    Friedrich, Sabrina; Hupe, Oliver

    2016-01-01

    Dose measurements in pulsed radiation fields with dosemeters using the counting technique are known to be inappropriate. Therefore, there is a demand for a portable device able to measure the dose in pulsed radiation fields. As a detector, ionisation chambers seem to be a good alternative. In particular, using a secondary standard ionisation chamber in combination with a reliable charge-measuring system would be a good solution. The Physikalisch-Technische Bundesanstalt (PTB) uses secondary standard ionisation chambers in combination with PTB-made measuring electronics for dose measurements at its reference fields. However, for general use, this equipment is too complex. For measurements on-site, a mobile special electronic system [Hupe, O. and Ankerhold, U. Determination of ambient and personal dose equivalent for personnel and cargo security screening. Radiat. Prot. Dosim. 121(4), 429-437 (2006)] has been used successfully. Still, for general use, there is a need for a much simpler but a just as good solution. A measuring instrument with very good energy dependence for H*(10) is the secondary standard ionisation chamber HS01. An easy-to-use and commercially available electrometer for measuring the generated charges is the UNIDOS by PTW Freiburg. Depending on the expected dose values, the ionisation chamber used can be selected. In addition, measurements have been performed by using commercially available area dosemeters, e.g. the Mini SmartION 2120S by Thermo Scientific, using an ionisation chamber and the Szintomat 6134 A/H by Automess, using a scintillation detector. (authors)

  4. Electric field metrology for SI traceability: Systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor

    Science.gov (United States)

    Holloway, Christopher L.; Simons, Matt T.; Gordon, Joshua A.; Dienstfrey, Andrew; Anderson, David A.; Raithel, Georg

    2017-06-01

    We investigate the relationship between the Rabi frequency (ΩRF, related to the applied electric field) and Autler-Townes (AT) splitting, when performing atom-based radio-frequency (RF) electric (E) field strength measurements using Rydberg states and electromagnetically induced transparency (EIT) in an atomic vapor. The AT splitting satisfies, under certain conditions, a well-defined linear relationship with the applied RF field amplitude. The EIT/AT-based E-field measurement approach derived from these principles is currently being investigated by several groups around the world as a means to develop a new SI-traceable RF E-field measurement technique. We establish conditions under which the measured AT-splitting is an approximately linear function of the RF electric field. A quantitative description of systematic deviations from the linear relationship is key to exploiting EIT/AT-based atomic-vapor spectroscopy for SI-traceable field measurement. We show that the linear relationship is valid and can be used to determine the E-field strength, with minimal error, as long as the EIT linewidth is small compared to the AT-splitting. We also discuss interesting aspects of the thermal dependence (i.e., hot- versus cold-atom) of this EIT-AT technique. An analysis of the transition from cold- to hot-atom EIT in a Doppler-mismatched cascade system reveals a significant change of the dependence of the EIT linewidth on the optical Rabi frequencies and of the AT-splitting on ΩRF.

  5. Potassium ion influx measurements on cultured Chinese hamster cells exposed to 60-hertz electromagnetic fields

    International Nuclear Information System (INIS)

    Stevenson, A.P.; Tobey, R.A.

    1985-01-01

    Potassium ion influx was measured by monitoring 42 KCl uptake by Chinese hamster ovary (CHO) cells grown in suspension culture and exposed in the culture medium to 60-Hz electromagnetic fields up to 2.85 V/m. In the presence of the field CHO cells exhibited two components of uptake, the same as previously observed for those grown under normal conditions; both these components of influx were decreased when compared to sham-exposed cells. Although decreases were consistently observed in exposed cells when plotted as loge of uptake, the differences between the means of the calculated fluxes of exposed and sham-exposed cells were quite small (on the order of 4-7%). When standard deviations were calculated, there was no significant difference between these means; however, when time-paired uptake data were analyzed, the differences were found to be statistically significant. Cells exposed only to the magnetic field exhibited similar small decreases in influx rates when compared to sham-exposed cells, suggesting that the reduction in K+ uptake could be attributed to the magnetic field. Additionally, intracellular K+ levels were measured over a prolonged exposure period (96 h), and no apparent differences in intracellular K+ levels were observed between field-exposed and sham-exposed cultures. These results indicate that high-strength electric fields have a small effect on the rate of transport of potassium ions but no effect on long-term maintenance of intracellular K+

  6. Cloud Physics Lidar Measurements During the SAFARI-2000 Field Campaign

    Science.gov (United States)

    McGill, Matthew; Hlavka, Dennis; Hart, William; Spinhirne, James; Scott, Stan; Starr, David OC. (Technical Monitor)

    2001-01-01

    A new remote sensing instrument, the Cloud Physics Lidar (CPL) has been built for use on the ER-2 aircraft. The first deployment for CPL was the SAFARI-2000 field campaign during August-September 2000. The CPL is a three-wavelength lidar designed for studies of cirrus, subvisual cirrus, and boundary layer aerosols. The CPL utilizes a high repetition rate, low pulse energy laser with photon counting detectors. A brief description of the CPL instrument will be given, followed by examples of CPL data products. In particular, examples of aerosol backscatter, including boundary layer smoke and cirrus clouds will be shown. Resulting optical depth estimates derived from the aerosol measurements will be shown. Comparisons of the CPL optical depth and optical depth derived from microPulse Lidar and the AATS-14 sunphotomer will be shown.

  7. Field measurements of irradiation: first use in Italian geology

    Energy Technology Data Exchange (ETDEWEB)

    Cassinis, R; Lechi, G M; Tonelli, A M

    1972-01-01

    General considerations in the field of remote sensing are discussed, particularly geological applications of infrared measurements. The theory of electromagnetic radiation as described by Planck's law is briefly reviewed. IR scanning and radiometry are the most commonly used techniques. Scanning provides photographic images of the spatial distribution of surface radiation. This technique was first used in Italy to obtain radiation data at Solfatara di Pozznoli. The primary causes of error in the technique are variable atmospheric transmissivity, angular inclination, and variable emission. Problems involved in calibration are discussed. The data derived from surveys of volcanic regions are presented in tables and the thermal images and maps are provided. This technique is useful in surveying volcanoes and for the detection of high temperature geothermal resources.

  8. MVAC Submarine cable, magnetic fields measurements and analysis

    DEFF Research Database (Denmark)

    Arentsen, Martin Trolle; Expethit, Adrian; Pedersen, Morten Virklund

    2017-01-01

    Standard 60287. Researchers believe that the wire armour of three phased submarine cables is the reason for the inaccurate calculations by the standard. Studies show that the magnetic behaviour of these cables are changed due to the wire armour. In order to investigate this hypothesis, this paper intends...... to supply the theoretical research with data from magnetic field measurements on a wire armoured 3-phase submarine cable, together with an investigation of the induced currents in the different cable components. The influence of the physical arrangement of the armour wires on the electric behaviour is also...... investigated, since several researchers believe that the twisting of the armour wires result in zero net induced voltage over one helix length. This is shown to be valid for the tested cable. Finally a replica of the armour has been built with just a single conductor in the centre. This setup was used...

  9. Chemical, Biological, and Explosive Sensors for Field Measurements

    International Nuclear Information System (INIS)

    Kyle, Kevin; Manard, Manuel; Weeks, Stephan

    2009-01-01

    Special Technologies Laboratory (STL) is developing handheld chemical, biological, and explosive (CBE) detection systems and sensor motes for wireless networked field operations. The CBE sensors are capable of detecting and identifying multiple targeted toxic industrial chemicals (TICs) and high-explosive vapor components. The CBE devices are based on differential mobility spectrometry (DMS) coupled with fast gas chromatography (GC) or mass spectrometry. The systems all include the concepts of: (1) Direct air/particulate 'smart' sampling; (2) Selective, continuous real-time (∼1 sec) alert monitoring using DMS; and (3) Highly selective, rapid dual technology separation/verification analysis The biosensor technology is based on Raman aerosol particle flow cytometry for target detection and identification. Monitoring and identifying trace level chemical vapors directly from ambient air will allow First Responders to quickly adapt situational response strategies and personal protective equipment needs to the specific response scenario being encountered. First Responders require great confidence in the measurements and ability of a given system to detect CBE below threshold levels without interferences. The concept of determining the background matrix in near real-time to allow subsequent automated field-programmable method selection and cueing of high-value assets in a wide range of environs will be presented. This provides CBE information for decisions prior to First Responders entering the response site or sending a portable mobile unit for a remote site survey of the hazards. The focus is on real-time information needed by those responsible for emergency response and national security

  10. Upper critical field measurements in high-Tc superconducting oxides

    Science.gov (United States)

    Ousset, J. C.; Bobo, J. F.; Ulmet, J. P.; Rakoto, H.; Cheggour, N.

    We present upper critical field measurements on the superconducting oxides RE Ba2Cu3O7-δ (RE = Y, Gd) performed in a pulsed magnetic field up to 43 T. Values for Hc2 as high as 52 T and 77 T for Y and Gd respectively, are expected at 77 K. However, in order to observe no resistive behaviour up to 43 T the temperature must be decreased down to 50 K. In the case of oxygen deficient systems the magnetoresistance reveals two superconducting phases wich could be related to two different orders of oxygen vacancies. Nous présentons des mesures de champ critique Hc2 sur les supraconducteurs TR Ba 2Cu3O7-δ (TR = Y, Gd) réalisées en champ magnétique pulsé jusqu'à 43 T. Elles permettent de prévoir des valeurs de H c2 de 52 T et 77 T respectivement pour Y et Gd à 77 K. Cependant, pour ne pas observer de comportement résistif jusqu'au champ maximum, il est nécessaire de refroidir l'échantillon jusqu'à 50 K. Dans le cas des systèmes déficients en oxygène (δ important) nous mettons en évidence l'existence de deux phases supraconductrices qui pourraient être dues à deux ordres différents des lacunes d'oxygène.

  11. Field measurements in the wake of a model wind turbine

    International Nuclear Information System (INIS)

    Pol, Suhas; Taylor, Amelia; Doostalab, Ali; Novoa, Santiago; Castillo, Luciano; Bilbao, Argenis; Sheng, Jian; Giesselmann, Michael; Westergaard, Carsten; Hussain, Fazle; Ren, Beibei; Glauser, Mark

    2014-01-01

    As a first step to study the dynamics of a wind farm' we experimentally explored the flow field behind a single wind turbine of diameter 1.17 m at a hub height of 6.25 m. A 10 m tower upstream of the wind farm characterizes the atmospheric conditions and its influence on the wake evolution. A vertical rake of sonic anemometers is clustered around the hub height on a second tower' 6D downstream of the turbine. We present preliminary observations from a 1- hour block of data recorded in near-neutral atmospheric conditions. The ratio of the standard deviation of power to the inflow velocity is greater than three' revealing adverse effects of inflow turbulence on the power and load fluctuations. Furthermore' the wake defect and Reynolds stress and its gradient are pronounced at 6D. The flux of energy due to Reynolds stresses is similar to that reported in wind tunnel studies. The swirl and mixing produces a constant temperature wake which results in a density jump across the wake interface. Further field measurements will explore the dynamics of a model wind farm' including the effects of atmospheric variability

  12. Comparison of magnetic field meters used for Elf exposure measurement

    International Nuclear Information System (INIS)

    Magne, I.; Azoulay, A.; Lambrozo, J.; Souques, M.

    2006-01-01

    Objective The question of the biological effects of E.L.F. electromagnetic fields (50/60 Hz) has lead to many experimental and epidemiological works, in occupational exposure and in residential exposure. One of the main difficulties is to integrate the maximum of information about the environmental exposures during the everyday life without limitation to the exposure of the home. The objective of this study is to analyse experimentally the metrology associated with human exposure to 50 Hz magnetic field, in the optic of a study of the French population exposure. Method 4 meters were tested: the E.M.D.E.X. II, currently used in epidemiological studies, the E.M.D.E.X. L.I.T.E., which is more recent, the H.T.300, an Italian meter, and the F.D.3, which is made by Combinova A calibration was performed with an Helmoltz coil. The immunity of these meters to GSM signal was also tested. The influence of the sample rate was evaluated. Results and conclusion The meter chosen for performing the measurements of the exposure study will be selected in function of the following criteria: - easiness of use - precision - low sample rate - memory size and reliability of data stocking - immunity to GSM perturbations. (authors)

  13. Technical report on levels of electromagnetic fields created by Linky meters. Part 1: laboratory measurements; Part 2: laboratory additional measurements; Part 3: field measurements

    International Nuclear Information System (INIS)

    2016-05-01

    The first part of this study reports measurements of electromagnetic radiations induced by remote-metering reading devices present in new power meters and using the Power-Line Communication (PLC or, in French, CPL) technology, such as the Linky meter. After a recall of legislation regarding exposure to electromagnetic waves, this first part present the two tested meters (Linky of first and third generation, G1 and G3), the performed tests, measurements devices and method. It more precisely reports investigations performed on these both meters, and a comparison with other home appliances. The second part reports additional measurements performed with both meters according to the same methodology, but with the use of a new electric field probe which allows more precise measurements. Maximum electric and magnetic fields have been measured. The third part reports field measurements performed with the same methodology but in dwellings equipped with Linky meters of first generation (G1). Exposure levels have been measured at the vicinity of meters and in other parts of the dwelling

  14. The perception of visual emotion: comparing different measures of awareness.

    Science.gov (United States)

    Szczepanowski, Remigiusz; Traczyk, Jakub; Wierzchoń, Michał; Cleeremans, Axel

    2013-03-01

    Here, we explore the sensitivity of different awareness scales in revealing conscious reports on visual emotion perception. Participants were exposed to a backward masking task involving fearful faces and asked to rate their conscious awareness in perceiving emotion in facial expression using three different subjective measures: confidence ratings (CRs), with the conventional taxonomy of certainty, the perceptual awareness scale (PAS), through which participants categorize "raw" visual experience, and post-decision wagering (PDW), which involves economic categorization. Our results show that the CR measure was the most exhaustive and the most graded. In contrast, the PAS and PDW measures suggested instead that consciousness of emotional stimuli is dichotomous. Possible explanations of the inconsistency were discussed. Finally, our results also indicate that PDW biases awareness ratings by enhancing first-order accuracy of emotion perception. This effect was possibly a result of higher motivation induced by monetary incentives. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Electromagnetic fields and health impact: measurements, monitoring and environmental indicators

    International Nuclear Information System (INIS)

    Lubritto, C.; Vetromile, C.; Petraglia, A.; Racioppoli, M.; D'Onofrio, A.

    2008-01-01

    Full text: During the last 10 years there has been a remarkable growth of the attention for problems related to the electromagnetic pollution, motivated by the alert connected to potential risk for the health of persons and due to the increasing diffusion of Bats for mobile telecommunication as EMF sources. Many projects are being realized about the environmental and health impact of electromagnetic field and an important social role is played by specific actions to minimize the risk perception of the population. This study aims to find an innovative approach to these problems through the use of a system of continuous time monitoring of the electromagnetic fields and the individuation of appropriate environmental indicators. The proposed system monitors the electromagnetic fields continuously over time, and is already operating in many southern Italian cities. It works in a very efficient way as a mean for: a) Info to the citizens, thanks to diffusion of daily collected data on Internet Web; b) Control for local administrations and Authorities, due to capability of the system itself to alert when measured values exceed the limits reported by the Italian laws; c) Planning, for the implementation of : 1) New procedures agreed among local environmental control agency, local administrations and mobile Companies for network planning and management of alarm situations; 2) New local guidelines documents concerning the installation and operation of telecommunications apparatus. Moreover, starting from the general principles of the Strategic Environmental Evaluation (VAS), the environmental impacts of EMS field is studied. Based on the model DPSIR (Drivers, Pressure, State, Impacts, Responses), 12 environmental indicators have been chosen providing an immediate and understandable tool to obtain very important information on electromagnetic pollution generated by radio-telecommunication systems. The selected environmental indicators have been applied to 11 cities of the

  16. Measuring strain and rotation fields at the dislocation core in graphene

    Science.gov (United States)

    Bonilla, L. L.; Carpio, A.; Gong, C.; Warner, J. H.

    2015-10-01

    Strain fields, dislocations, and defects may be used to control electronic properties of graphene. By using advanced imaging techniques with high-resolution transmission electron microscopes, we have measured the strain and rotation fields about dislocations in monolayer graphene with single-atom sensitivity. These fields differ qualitatively from those given by conventional linear elasticity. However, atom positions calculated from two-dimensional (2D) discrete elasticity and three-dimensional discrete periodized Föppl-von Kármán equations (dpFvKEs) yield fields close to experiments when determined by geometric phase analysis. 2D theories produce symmetric fields whereas those from experiments exhibit asymmetries. Numerical solutions of dpFvKEs provide strain and rotation fields of dislocation dipoles and pairs that also exhibit asymmetries and, compared with experiments, may yield information on out-of-plane displacements of atoms. While discrete theories need to be solved numerically, analytical formulas for strains and rotation about dislocations can be obtained from 2D Mindlin's hyperstress theory. These formulas are very useful for fitting experimental data and provide a template to ascertain the importance of nonlinear and nonplanar effects. Measuring the parameters of this theory, we find two characteristic lengths between three and four times the lattice spacings that control dilatation and rotation about a dislocation. At larger distances from the dislocation core, the elastic fields decay to those of conventional elasticity. Our results may be relevant for strain engineering in graphene and other 2D materials of current interest.

  17. Comparing Alternative Instruments to Measure Service Quality in Higher Education

    Science.gov (United States)

    Brochado, Ana

    2009-01-01

    Purpose: The purpose of this paper is to examine the performance of five alternative measures of service quality in the high education sector--service quality (SERVQUAL), importance-weighted SERVQUAL, service performance (SERVPERF), importance-weighted SERVPERF, and higher education performance (HEdPERF). Design/methodology/approach: Data were…

  18. Ultrasound measurements of testicular volume: Comparing the three ...

    African Journals Online (AJOL)

    T.U. Mbaeri

    The ultrasound measurements of the testicular volume were calculated using the following three formulas: (a) length ... ticular growth, development and function. Studies in ... of the components of a minimum full evaluation of male infertility is palpation of ... opted for orchidectomy after counseling in our center. Subjects and ...

  19. Comparing measured with simulated vertical soil stress under vehicle load

    DEFF Research Database (Denmark)

    Keller, Thomas; Lamandé, Mathieu; Arvidsson, Johan

    The load transfer within agricultural soil is typically modelled on the basis of the theory of stress transmission in elastic media, usually in the semi-empirical form that includes the “concentration factor” (v). Measurements of stress in soil are needed to evaluate model calculations, but may...

  20. Comparison of measured and calculated doses for narrow MLC defined fields

    International Nuclear Information System (INIS)

    Lydon, J.; Rozenfeld, A.; Lerch, M.

    2002-01-01

    Full text: The introduction of Intensity Modulated Radiotherapy (IMRT) has led to the use of narrow fields in the delivery of radiation doses to patients. Such fields are not well characterized by calculation methods commonly used in radiotherapy treatment planning systems. The accuracy of the dose calculation algorithm must therefore be investigated prior to clinical use. This study looked at symmetrical and asymmetrical 0.1 to 3cm wide fields delivered with a Varian CL2100C 6MV photon beam. Measured doses were compared to doses calculated using Pinnacle, the ADAC radiotherapy treatment planning system. Two high resolution methods of measuring dose were used. A MOSFET detector in a water phantom and radiographic film in a solid water phantom with spatial resolutions of 10 and 89μm respectively. Dose calculations were performed using the collapsed cone convolution algorithm in Pinnacle with a 0.1cm dose calculation grid in the MLC direction. The effect of Pinnacle not taking into account the rounded leaf ends was simulated by offsetting the leaves by 0.1cm in the dose calculation. Agreement between measurement and calculation is good for fields of 1cm and wider. However, fields of less than 1cm width can show a significant difference between measurement and calculation

  1. Comparison of Echo 7 field line length measurements to magnetospheric model predictions

    International Nuclear Information System (INIS)

    Nemzek, R.J.; Winckler, J.R.; Malcolm, P.R.

    1992-01-01

    The Echo 7 sounding rocket experiment injected electron beams on central tail field lines near L = 6.5. Numerous injections returned to the payload as conjugate echoes after mirroring in the southern hemisphere. The authors compare field line lengths calculated from measured conjugate echo bounce times and energies to predictions made by integrating electron trajectories through various magnetospheric models: the Olson-Pfitzer Quiet and Dynamic models and the Tsyganenko-Usmanov model. Although Kp at launch was 3-, quiet time magnetic models est fit the echo measurements. Geosynchronous satellite magnetometer measurements near the Echo 7 field lies during the flight were best modeled by the Olson-Pfitzer Dynamic Model and the Tsyganenko-Usmanov model for Kp = 3. The discrepancy between the models that best fit the Echo 7 data and those that fit the satellite data was most likely due to uncertainties in the small-scale configuration of the magnetospheric models. The field line length measured by the conjugate echoes showed some temporal variation in the magnetic field, also indicated by the satellite magnetometers. This demonstrates the utility an Echo-style experiment could have in substorm studies

  2. RUMINATIONS ON NDA MEASUREMENT UNCERTAINTY COMPARED TO DA UNCERTAINTY

    Energy Technology Data Exchange (ETDEWEB)

    Salaymeh, S.; Ashley, W.; Jeffcoat, R.

    2010-06-17

    It is difficult to overestimate the importance that physical measurements performed with nondestructive assay instruments play throughout the nuclear fuel cycle. They underpin decision making in many areas and support: criticality safety, radiation protection, process control, safeguards, facility compliance, and waste measurements. No physical measurement is complete or indeed meaningful, without a defensible and appropriate accompanying statement of uncertainties and how they combine to define the confidence in the results. The uncertainty budget should also be broken down in sufficient detail suitable for subsequent uses to which the nondestructive assay (NDA) results will be applied. Creating an uncertainty budget and estimating the total measurement uncertainty can often be an involved process, especially for non routine situations. This is because data interpretation often involves complex algorithms and logic combined in a highly intertwined way. The methods often call on a multitude of input data subject to human oversight. These characteristics can be confusing and pose a barrier to developing and understanding between experts and data consumers. ASTM subcommittee C26-10 recognized this problem in the context of how to summarize and express precision and bias performance across the range of standards and guides it maintains. In order to create a unified approach consistent with modern practice and embracing the continuous improvement philosophy a consensus arose to prepare a procedure covering the estimation and reporting of uncertainties in non destructive assay of nuclear materials. This paper outlines the needs analysis, objectives and on-going development efforts. In addition to emphasizing some of the unique challenges and opportunities facing the NDA community we hope this article will encourage dialog and sharing of best practice and furthermore motivate developers to revisit the treatment of measurement uncertainty.

  3. Ruminations On NDA Measurement Uncertainty Compared TO DA Uncertainty

    International Nuclear Information System (INIS)

    Salaymeh, S.; Ashley, W.; Jeffcoat, R.

    2010-01-01

    It is difficult to overestimate the importance that physical measurements performed with nondestructive assay instruments play throughout the nuclear fuel cycle. They underpin decision making in many areas and support: criticality safety, radiation protection, process control, safeguards, facility compliance, and waste measurements. No physical measurement is complete or indeed meaningful, without a defensible and appropriate accompanying statement of uncertainties and how they combine to define the confidence in the results. The uncertainty budget should also be broken down in sufficient detail suitable for subsequent uses to which the nondestructive assay (NDA) results will be applied. Creating an uncertainty budget and estimating the total measurement uncertainty can often be an involved process, especially for non routine situations. This is because data interpretation often involves complex algorithms and logic combined in a highly intertwined way. The methods often call on a multitude of input data subject to human oversight. These characteristics can be confusing and pose a barrier to developing and understanding between experts and data consumers. ASTM subcommittee C26-10 recognized this problem in the context of how to summarize and express precision and bias performance across the range of standards and guides it maintains. In order to create a unified approach consistent with modern practice and embracing the continuous improvement philosophy a consensus arose to prepare a procedure covering the estimation and reporting of uncertainties in non destructive assay of nuclear materials. This paper outlines the needs analysis, objectives and on-going development efforts. In addition to emphasizing some of the unique challenges and opportunities facing the NDA community we hope this article will encourage dialog and sharing of best practice and furthermore motivate developers to revisit the treatment of measurement uncertainty.

  4. SQUID Based Cryogenic Current Comparator for Measurements of the Dark Current of Superconducting Cavities

    CERN Document Server

    Vodel, W; Neubert, R; Nietzsche, S

    2005-01-01

    This contribution presents a LTS-SQUID based Cryogenic Current Comparator (CCC) for detecting dark currents, generated e.g. by superconducting cavities for the upcoming X-FEL project at DESY. To achieve the maximum possible energy the gradients of the superconducting RF cavities should be pushed close to the physical limit of 50 MV/m. The measurement of the undesired field emission of electrons (the so-called dark current) in correlation with the gradient will give a proper value to compare and classify the cavities. The main component of the CCC is a high performance LTS-DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the extracted dark current. For this reason the input coil of the SQUID is connected across a special designed toroidal niobium pick-up coil (inner diameter: about 100 mm) for the passing electron beam. A noise limited current resolution of nearly 2 pA/√(Hz) with a measurement bandwidth of up to 70 kHz was achieved without the pick-up coil. Now, ...

  5. Visual field examination method using virtual reality glasses compared with the Humphrey perimeter

    Directory of Open Access Journals (Sweden)

    Tsapakis S

    2017-08-01

    Full Text Available Stylianos Tsapakis, Dimitrios Papaconstantinou, Andreas Diagourtas, Konstantinos Droutsas, Konstantinos Andreanos, Marilita M Moschos, Dimitrios Brouzas 1st Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece Purpose: To present a visual field examination method using virtual reality glasses and evaluate the reliability of the method by comparing the results with those of the Humphrey perimeter.Materials and methods: Virtual reality glasses, a smartphone with a 6 inch display, and software that implements a fast-threshold 3 dB step staircase algorithm for the central 24° of visual field (52 points were used to test 20 eyes of 10 patients, who were tested in a random and consecutive order as they appeared in our glaucoma department. The results were compared with those obtained from the same patients using the Humphrey perimeter.Results: High correlation coefficient (r=0.808, P<0.0001 was found between the virtual reality visual field test and the Humphrey perimeter visual field.Conclusion: Visual field examination results using virtual reality glasses have a high correlation with the Humphrey perimeter allowing the method to be suitable for probable clinical use. Keywords: visual fields, virtual reality glasses, perimetry, visual fields software, smartphone

  6. Measurements of flux pumping activation of trapped field magnets

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Roy; Parks, Drew; Sawh, Ravi-Persad [Texas Center for Superconductivity, 202 Houston Science Center, University of Houston, Houston, TX 77204-5002 (United States); Davey, Kent [Physics Department, 617 Science and Research Building I, University of Houston, Houston, TX 77204-5005 (United States)

    2010-11-15

    Large grains of high temperature superconducting (HTS) material can be utilized as trapped field magnets (TFMs). Persistent currents are set up in the HTS when it is cooled in a magnetic field, or exposed to a magnetic field after cooling. TFMs have been improved over the past two decades by the efforts of a large number of worldwide research groups. However, applications using TFMs have lagged, in part due to the problem of high fields needed for activation. We describe herein experiments designed to observe the behaviour of TFM activation using repeated applications of low fields (called 'pumping'). Significant partial activation is obtained using a non-uniform pumping field (e.g., a small permanent magnet) which is higher in the centre of the HTS than at the periphery. Cooling in zero field followed by pumping with such a field results in trapping the full applied field, in comparison to half of the applied field being trapped by cooling in zero field followed by application of a uniform field. We find that for partial activation by cooling in a field and subsequent activation by pumping, the resulting fields are additive. We also conclude that for activation by fluxoid pumping, creep assists the process.

  7. Comparing the lived experience to objective measures of Accessibility

    OpenAIRE

    Angela Curl; John Nelson; Jillian Anable

    2011-01-01

    This paper presents work undertaken to date as part of PhD research into the process of Accessibility Planning in the UK and how existing objective measures of accessibility relate to individual perceptions or the "lived experience" of accessibility. Since 1997, Accessibility has been framed in the social exclusion context within UK transport planning and policy, focusing on the ability of people to participate fully in society, which is seen as being limited by poor accessibility. This appro...

  8. Field measurement of basal forces generated by erosive debris flows

    Science.gov (United States)

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  9. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.

    Science.gov (United States)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-16

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  10. Measurements of Electric Field in a Nanosecond Pulse Discharge by 4-WAVE Mixing

    Science.gov (United States)

    Baratte, Edmond; Adamovich, Igor V.; Simeni Simeni, Marien; Frederickson, Kraig

    2017-06-01

    -pressure Raman cell, providing access only to a few N2 rotational levels. Because of this, the four-wave mixing signal in the flame is lower by more than an order of magnitude compared to the signal generated in room temperature air plasma. Preliminary experiments demonstrated four-wave mixing signal generated by the electric field in the flame, following ns pulse discharge breakdown. The electric field in the flame is estimated using four-wave mixing signal calibration vs. temperature in electrostatic electric field generated in heated air. Further measurements in the flame are underway.

  11. Validation of the GOES-16 magnetometer using multipoint measurements and magnetic field models

    Science.gov (United States)

    Califf, S.; Loto'aniu, P. T. M.; Redmon, R. J.; Sarris, T. E.; Brito, T.

    2017-12-01

    The Geostationary Operational Environmental Satellites (GOES) have been providing continuous geomagnetic field measurements for over 40 years. While the primary purpose of GOES is operational, the magnetometer data are also widely used in the scientific community. In an effort to validate the recently launched GOES-16 magnetometer, we compare the measurements to existing magnetic field models and other GOES spacecraft currently on orbit. There are four concurrent measurements from GOES-13, 14, 15 and 16 spanning 75W to 135W longitude. Also, GOES-13 is being replaced by GOES-16 in the GOES-East location, and during the transition, GOES-13 and GOES-16 will be parked nearby in order to assist with calibration of the new operational satellite. This work explores techniques to quantify the performance of the GOES-16 magnetometer by comparison to data from nearby spacecraft. We also build on previous work to assimilate in situ measurements with existing magnetic field models to assist in comparing data from different spatial locations. Finally, we use this unique dataset from four simultaneous geosynchronous magnetometer measurements and the close separation between GOES-13 and GOES-16 to study the spatial characteristics of ULF waves and other magnetospheric processes.

  12. Photon small-field measurements with a CMOS active pixel sensor.

    Science.gov (United States)

    Spang, F Jiménez; Rosenberg, I; Hedin, E; Royle, G

    2015-06-07

    In this work the dosimetric performance of CMOS active pixel sensors for the measurement of small photon beams is presented. The detector used consisted of an array of 520  × 520 pixels on a 25 µm pitch. Dosimetric parameters measured with this sensor were compared with data collected with an ionization chamber, a film detector and GEANT4 Monte Carlo simulations. The sensor performance for beam profiles measurements was evaluated for field sizes of 0.5  × 0.5 cm(2). The high spatial resolution achieved with this sensor allowed the accurate measurement of profiles, beam penumbrae and field size under lateral electronic disequilibrium. Field size and penumbrae agreed within 5.4% and 2.2% respectively with film measurements. Agreements with ionization chambers better than 1.0% were obtained when measuring tissue-phantom ratios. Output factor measurements were in good agreement with ionization chamber and Monte Carlo simulation. The data obtained from this imaging sensor can be easily analyzed to extract dosimetric information. The results presented in this work are promising for the development and implementation of CMOS active pixel sensors for dosimetry applications.

  13. Magnetic field measurements of superconducting magnets for the colliding beam accelerator

    International Nuclear Information System (INIS)

    Herrera, J.; Kirk, H.; Prodell, A.; Willen, E.

    1983-01-01

    An important aspect of the development and production of superconducting magnets for the Colliding Beam Accelerator is the measurement of the magnetic field in the aperture of these magnets. The measurements have the three-fold purpose of determining the field quality as compared to the lattice requirements of the CBA, of obtaining the survey data necessary to position the magnets in the CBA tunnel, and lastly, of characterizing the magnetic fields for use in initial and future orbit studies of the CBA proton beams. Since for a superconducting storage accelerator it is necessary to carry out these detailed measurements on many (approx. 1000) magnets and at many current values (approx. 1000), we have chosen, in agreement with previous experience, to develop a system which Fourier analyses the voltages induced in a number of rotating windings and thereby obtains the multipole field components. The important point is that such a measuring system can be fast and precise. It has been used for horizontal measurements of the CBA ring dipoles

  14. Mechanoreceptor afferent activity compared with receptor field dimensions and pressure changes in feline urinary bladder.

    Science.gov (United States)

    Downie, J W; Armour, J A

    1992-11-01

    The relationship between vesical mechanoreceptor field dimensions and afferent nerve activity recorded in pelvic plexus nerve filaments was examined in chloralose-anesthetized cats. Orthogonal receptor field dimensions were monitored with piezoelectric ultrasonic crystals. Reflexly generated bladder contractile activity made measurements difficult, therefore data were collected from cats subjected to actual sacral rhizotomy. Afferent activity was episodic and was initiated at different pressure and receptor field dimension thresholds. Maximum afferent activity did not correlate with maximum volume or pressure. Furthermore, activity was not linearly related to intravesical pressure, receptor field dimensions, or calculated wall tension. Pressure-length hysteresis of the receptor fields occurred. The responses of identified afferent units and their associated receptor field dimensions to brief contractions elicited by the ganglion stimulant 1,1-dimethyl-4-phenylpiperazinium iodide (2.5-20 micrograms i.a.), studied under constant volume or constant pressure conditions, are compatible with bladder mechanoreceptors behaving as tension receptors. Because activity generated by bladder mechanoreceptors did not correlate in a simple fashion with intravesical pressure or receptor field dimensions, it is concluded that such receptors are influenced by the viscoelastic properties of the bladder wall. Furthermore, as a result of the heterogeneity of the bladder wall, receptor field tension appears to offer a more precise relationship with the activity of bladder wall mechanoreceptors than does intravesical pressure.

  15. Calculation of acoustic field based on laser-measured vibration velocities on ultrasonic transducer surface

    Science.gov (United States)

    Hu, Liang; Zhao, Nannan; Gao, Zhijian; Mao, Kai; Chen, Wenyu; Fu, Xin

    2018-05-01

    Determination of the distribution of a generated acoustic field is valuable for studying ultrasonic transducers, including providing the guidance for transducer design and the basis for analyzing their performance, etc. A method calculating the acoustic field based on laser-measured vibration velocities on the ultrasonic transducer surface is proposed in this paper. Without knowing the inner structure of the transducer, the acoustic field outside it can be calculated by solving the governing partial differential equation (PDE) of the field based on the specified boundary conditions (BCs). In our study, the BC on the transducer surface, i.e. the distribution of the vibration velocity on the surface, is accurately determined by laser scanning measurement of discrete points and follows a data fitting computation. In addition, to ensure the calculation accuracy for the whole field even in an inhomogeneous medium, a finite element method is used to solve the governing PDE based on the mixed BCs, including the discretely measured velocity data and other specified BCs. The method is firstly validated on numerical piezoelectric transducer models. The acoustic pressure distributions generated by a transducer operating in an homogeneous and inhomogeneous medium, respectively, are both calculated by the proposed method and compared with the results from other existing methods. Then, the method is further experimentally validated with two actual ultrasonic transducers used for flow measurement in our lab. The amplitude change of the output voltage signal from the receiver transducer due to changing the relative position of the two transducers is calculated by the proposed method and compared with the experimental data. This method can also provide the basis for complex multi-physical coupling computations where the effect of the acoustic field should be taken into account.

  16. Visual field measurement with motion sensitivity screening test

    African Journals Online (AJOL)

    has been shown that early ocular lesions which manifest as visual field defects or ... easy-to-understand computer perimetry that could be useful in monitoring visual field changes in onchocer- .... education with the equivalent of ordinary level.

  17. COMPARATIVE STUDIES OF THREE METHODS FOR MEASURING PEPSIN ACTIVITY

    Science.gov (United States)

    Loken, Merle K.; Terrill, Kathleen D.; Marvin, James F.; Mosser, Donn G.

    1958-01-01

    Comparison has been made of a simple method originated by Absolon and modified in our laboratories for assay of proteolytic activity using RISA (radioactive iodinated serum albumin—Abbott Laboratories), with the commonly used photometric methods of Anson and Kunitz. In this method, pepsin was incubated with an albumin substrate containing RISA, followed by precipitation of the undigested substrate with trichloroacetic acid and measurement of radioactive digestion products in the supernatant fluid. The I131—albumin bond was shown in the present studies to be altered only by the proteolytic activity, and not by the incubation procedures at various values of pH. Any free iodine present originally in the RISA was removed by a single passage through a resin column (amberlite IRA-400-C1). Pepsin was shown to be most stable in solution at a pH of 5.5. Activity of pepsin was shown to be maximal when it was incubated with albumin at a pH of 2.5. Pepsin activity was shown to be altered in the presence of various electrolytes. Pepsin activity measured by the RISA and Anson methods as a function of concentration or of time of incubation indicated that these two methods are in good agreement and are equally sensitive. Consistently smaller standard errors were obtained by the RISA method of pepsin assay than were obtained with either of the other methods. PMID:13587910

  18. Neutrons field in the neutronic measurements room of the Polytechnic University of Madrid

    International Nuclear Information System (INIS)

    Vega C, H. R.; Gallego, E.; Lorente, A.; Rubio O, I. P.

    2010-09-01

    Through of measurements and calculations of a Monte Carlo series has been characterized the neutronic field of the neutronic measurements room of Nuclear Engineering Department of the Polytechnic University of Madrid. The measurements were realized with the Bonner Spheres Spectrometer that allowed establish the spectra on the new stainless steel panel and at different distances measured regarding the source. The values of the speed of environmental equivalent dose were measured with an area monitor Bert hold Lb 6411. Through of Monte Carlo methods was built a detailed model of the room with the panel and the spectra were calculated and, with these the values of the environmental equivalent dose were obtained using the conversion coefficients of the ICRP 74 and the Bert hold Lb 6411 response. The calculated values were compared with those measured and was consistency among the results. (Author)

  19. Magnetic field measurements and data acquisition of a model magnet for the B-factory

    International Nuclear Information System (INIS)

    Zhou Wenming; Endo, Kuninori

    1994-01-01

    In this paper we describe magnetic field measurements and the field data-acquisition system used to measure the model magnet for the B-factory booster. The results of the measurements indicate that the method adopted here is good for acquiring field data. This type of measurement is highly accurate and involves almost no temperature coefficient. The instrument is used not only for ac, but also dc field measurements. It is especially good for field measurements in the case of simultaneous ac and dc field excitation. (author)

  20. Comparative Measurements of Indoor Radon in Homes and Floating Houses

    International Nuclear Information System (INIS)

    Changmuang, Wirote; Tantawiroon, Malulee; Polphong, Pornsri

    2003-06-01

    A survey of the radon ( 222 Rn) concentrations in 318 homes and 152 floating houses (1410 samples) in Phitsanulok province, using a passive 222 Rn charcoal canister and measurement by gamma spectrometry. Floating houses showed significant lower mean levels (8.22 Bqm -3 ) than homes (21.56 Bqm -3 ) (p 222 Rn concentrations indicated that concrete homes had a higher level than wooden homes and homes lying on ground had a higher level than those built at 1 meter or more above ground. The estimated annual mean effective dose equivalent 0.35 mSvy -1 and the annual lung dose equivalent of 5.94 mSvy -1 were only one-third of the world mean estimates

  1. International Workshop on Comparing Ice Nucleation Measuring Systems 2014

    Energy Technology Data Exchange (ETDEWEB)

    Cziczo, Daniel [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-04-30

    The relationship of ambient aerosol particles to the formation of ice-containing clouds is one of the largest uncertainties in understanding the Earth’s climate. The uncertainty is due to several poorly understood processes and measurements including, but not limited to: (1) the microphysics of how particles nucleate ice, (2) the number of ice forming particles as a function of atmospheric properties such as temperature and relative humidity, (3) the atmospheric distribution of ice forming particles and (4) the role of anthropogenic activities in producing or changing the behavior of ice forming particles. The ways in which ice forming particles can impact climate is also multi-faceted. More ice forming particles can lead to clouds with more ice crystals and different optical properties than clouds with less ice forming particles. More effective ice forming particles can lead to ice at higher temperature and/or lower saturation, resulting in clouds at lower altitude or latitude which also changes the Earth’s radiative balance. Ice nucleation also initiates most of the Earth’s precipitation, even in the mid- and low-latitudes, since cloud-top temperatures are often below freezing. The limited measurements and lack of understanding directly translates to restrictions in our ability to model atmospheric ice formation and project changes into the future. The importance of ice nucleation research is further exemplified by Figure 1 which shows the publications per decade and citations per year on the topic of ice nucleation [DeMott et al., 2011]. After a lull at the end of the last century, there has been a dramatic increase in both publications and citations related to ice nucleation; this directly corresponds to the importance of ice nucleation on the Earth’s climate and the uncertainty in this area noted by the Solomon [2007].

  2. Results from laboratory and field testing of nitrate measuring spectrophotometers

    Science.gov (United States)

    Snazelle, Teri T.

    2015-01-01

    Five ultraviolet (UV) spectrophotometer nitrate analyzers were evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) during a two-phase evaluation. In Phase I, the TriOS ProPs (10-millimeter (mm) path length), Hach NITRATAX plus sc (5-mm path length), Satlantic Submersible UV Nitrate Analyzer (SUNA, 10-mm path length), and S::CAN Spectro::lyser (5-mm path length) were evaluated in the HIF Water-Quality Servicing Laboratory to determine the validity of the manufacturer's technical specifications for accuracy, limit of linearity (LOL), drift, and range of operating temperature. Accuracy specifications were met in the TriOS, Hach, and SUNA. The stock calibration of the S::CAN required two offset adjustments before the analyzer met the manufacturer's accuracy specification. Instrument drift was observed only in the S::CAN and was the result of leaching from the optical path insert seals. All tested models, except for the Hach, met their specified LOL in the laboratory testing. The Hach's range was found to be approximately 18 milligrams nitrogen per liter (mg-N/L) and not the manufacturer-specified 25 mg-N/L. Measurements by all of the tested analyzers showed signs of hysteresis in the operating temperature tests. Only the SUNA measurements demonstrated excessive noise and instability in temperatures above 20 degrees Celsius (°C). The SUNA analyzer was returned to the manufacturer at the completion of the Phase II field deployment evaluation for repair and recalibration, and the performance of the sensor improved significantly.

  3. Noncontact measurement of electrostatic fields: Verification of modeled potentials within ion mobility spectrometer drift tube designs

    International Nuclear Information System (INIS)

    Scott, Jill R.; Tremblay, Paul L.

    2007-01-01

    The heart of an ion mobility spectrometer is the drift region where ion separation occurs. While the electrostatic potentials within a drift tube design can be modeled, no method for independently validating the electrostatic field has previously been reported. Two basic drift tube designs were modeled using SIMION 7.0 to reveal the expected electrostatic fields: (1) A traditional alternating set of electrodes and insulators and (2) a truly linear drift tube. One version of the alternating electrode/insulator drift tube and two versions of linear drift tubes were then fabricated. The stacked alternating electrodes/insulators were connected through a resistor network to generate the electrostatic gradient in the drift tube. The two linear drift tube designs consisted of two types of resistive drift tubes with one tube consisting of a resistive coating within an insulating tube and the other tube composed of resistive ferrites. The electrostatic fields within each type of drift tube were then evaluated by a noncontact method using a Kelvin-Zisman type electrostatic voltmeter and probe (results for alternative measurement methods provided in supplementary material). The experimental results were then compared with the electrostatic fields predicted by SIMION. Both the modeling and experimental measurements reveal that the electrostatic fields within a stacked ion mobility spectrometer drift tube are only pseudo-linear, while the electrostatic fields within a resistive drift tube approach perfect linearity

  4. Conformal fields in prostate radiotherapy: A comparison between measurement, calculation and simulation

    Directory of Open Access Journals (Sweden)

    Seied R Mahdavi

    2012-01-01

    Full Text Available Aims: The objective of this study is to evaluate the accuracy of a treatment planning system (TPS for calculating the dose distribution parameters in conformal fields (CF. Dosimetric parameters of CF′s were compared between measurement, Monte Carlo simulation (MCNP4C and TPS calculation. Materials and Methods: Field analyzer water phantom was used for obtaining percentage depth dose (PDD curves and beam profiles (BP of different conformal fields. MCNP4C was used to model conformal fields dose specification factors and head of linear accelerator varian model 2100C/D. Results: Results showed that the distance to agreement (DTA and dose difference (DD of our findings were well within the acceptance criteria of 3 mm and 3%, respectively. Conclusions: According to this study it can be revealed that TPS using equivalent tissue air ratio calculation method is still convenient for dose prediction in non small conformal fields normally used in prostate radiotherapy. It was also showed that, since there is a close correlation with Monte Carlo simulation, measurements and TPS, Monte Carlo can be further confirmed for implementation and calculation dose distribution in non standard and complex conformal irradiation field for treatment planning systems.

  5. Alfaxalone for maintenance of anaesthesia in ponies undergoing field castration: continuous infusion compared with intravenous boluses.

    Science.gov (United States)

    Deutsch, Julia; Ekiri, Abel; de Vries, Annemarie

    2017-07-01

    To compare alfaxalone as continuous intravenous (IV) infusion with intermittent IV injections for maintenance of anaesthesia in ponies undergoing castration. Prospective, randomized, 'blinded' clinical study. A group of 33 entire male Welsh ponies undergoing field castration. After preanaesthetic medication with IV detomidine (10 μg kg -1 ) and butorphanol (0.05 mg kg -1 ), anaesthesia was induced with IV diazepam (0.05 mg kg -1 ) followed by alfaxalone (1 mg kg -1 ). After random allocation, anaesthesia was maintained with either IV alfaxalone 2 mg kg -1  hour -1 (group A; n = 16) or saline administered at equal volume (group S; n = 17). When necessary, additional alfaxalone (0.2 mg kg -1 ) was administered IV. Ponies were breathing room air. Using simple descriptive scales, surgical conditions and anaesthesia recovery were scored. Total amount of alfaxalone, ponies requiring additional alfaxalone and time to administration, time from induction to end of infusion and end of infusion to standing were noted. Indirect arterial blood pressure, pulse and respiratory rates, end-expiratory carbon dioxide partial pressure and arterial haemoglobin oxygen saturation were recorded every 5 minutes. Data were analysed using Student t, Mann-Whitney U and chi-square tests, where appropriate (p < 0.05). Total amount of alfaxalone administered after induction of anaesthesia (0.75 ± 0.27 versus 0.17 ± 0.23 mg kg -1 ; p < 0.0001) and time to standing (14.8 ± 4 versus 11.6 ± 4 minutes; p = 0.044) were higher in group A compared to group S. Ponies requiring additional alfaxalone boluses [four (group A) versus seven (group S)] and other measured variables were similar between groups; five ponies required oxygen supplementation [three (group A) versus two (group S)]. Continuous IV infusion and intermittent administration of alfaxalone provided similar anaesthesia quality and surgical conditions in ponies undergoing field castration. Less alfaxalone

  6. Carboxylated magnetic nanoparticles as MRI contrast agents: Relaxation measurements at different field strengths

    Energy Technology Data Exchange (ETDEWEB)

    Jedlovszky-Hajdu, Angela, E-mail: angela.hajdu@net.sote.hu [Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvarad Sq 4, H-1089 Budapest (Hungary); Tombacz, Etelka, E-mail: tombacz@chem.u-szeged.hu [Department of Physical Chemistry and Material Science, University of Szeged, Aradi Vt. Sq 1, Szeged 6720 (Hungary); Banyai, Istvan, E-mail: banyai.istvan@science.unideb.hu [Department of Colloid and Environmental Chemistry, University of Debrecen (Hungary); Babos, Magor, E-mail: babosmagor@yahoo.com [Euromedic Diagnostics Szeged Ltd., Semmelweis St 6, Szeged 6720 (Hungary); Palko, Andras, E-mail: palko@radio.szote.u-szeged.hu [Faculty of Medicine, Department of Radiology, University of Szeged (Hungary)

    2012-09-15

    At the moment the biomedical applications of magnetic fluids are the subject of intensive scientific interest. In the present work, magnetite nanoparticles (MNPs) were synthesized and stabilized in aqueous medium with different carboxylic compounds (citric acid (CA), polyacrylic acid (PAA), and sodium oleate (NaOA)), in order to prepare well stabilized magnetic fluids (MFs). The magnetic nanoparticles can be used in the magnetic resonance imaging (MRI) as contrast agents. Magnetic resonance relaxation measurements of the above MFs were performed at different field strengths (i.e., 0.47, 1.5 and 9.4 T) to reveal the field strength dependence of their magnetic responses, and to compare them with that of ferucarbotran, a well-known superparamagnetic contrast agent. The measurements showed characteristic differences between the tested magnetic fluids stabilized by carboxylic compounds and ferucarbotran. It is worthy of note that our magnetic fluids have the highest r2 relaxivities at the field strength of 1.5 T, where the most of the MRI works in worldwide. - Highlights: Black-Right-Pointing-Pointer Magnetic resonance relaxation measurements were done at different field strengths. Black-Right-Pointing-Pointer Results show characteristic differences between the tested carboxylated MFs. Black-Right-Pointing-Pointer r1 and r2 relaxivities depend on the thickness of the protecting layer. Black-Right-Pointing-Pointer MFs have high r2/r1 ratios at each magnetic field.

  7. Magnetic field vector and electron density diagnostics from linear polarization measurements in 14 solar prominences

    Science.gov (United States)

    Bommier, V.

    1986-01-01

    The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.

  8. Application of computer picture processing to dynamic strain measurement under electromagnetic field

    International Nuclear Information System (INIS)

    Yagawa, G.; Soneda, N.

    1987-01-01

    For the structural design of fusion reactors, it is very important to ensure the structural integrity of components under various dynamic loading conditions due to a solid-electromagnetic field interaction, an earthquake, MHD effects and so on. As one of the experimental approaches to assess the dynamic fracture, we consider the strain measurement near a crack tip under a transient electromagnetic field, which in general involves several experimental difficulties. The authors have developed a strain measurement method using a picture processing technique. In this method, locations of marks printed on a surface of specimen are determined by the picture processing. The displacement field is interpolated using the mark displacements and finite elements. Finally the strain distribution is calculated by differentiating the displacement field. In the present study, the method is improved and automated apply to the measurement of dynamic strain distribution under an electromagnetic field. Then the effects of dynamic loading on the strain distribution are investigated by comparing the dynamic results with the static ones. (orig./GL)

  9. Field Quality Measurements of LARP Nb$_{3}$Sn Magnet HQ02

    CERN Document Server

    DiMarco, J; Buehler, M; Chlachidze, G; Orris, D; Sylvester, C; Tartaglia, M; Velev, G; Yu, M; Zlobin, A; Ghosh, A; Schmalzle, J; Wanderer, P; Borgnolutti, F; Cheng, D; Dietderich, D; Felice, H; Godeke, A; Hafalia, R; Joseph, J; Lizarazo, J; Marchevsky, M; Prestemon, S O; Sabbi, G L; Salehi, A,; Wang, X; Ferracin, P; Todesco, E

    2014-01-01

    Large-aperture, high-field, Nb$_{3}$Sn quadrupoles are being developed by the US LHC accelerator research program (LARP) for the High luminosity upgrade of the Large Hadron Collider (HiLumi-LHC). The first 1 m long, 120 mm aperture prototype, HQ01, was assembled with various sets of coils and tested at LBNL and CERN. Based on these results, several design modifications have been introduced to improve the performance for HQ02, the latest model. From the field quality perspective, the most relevant improvements are a cored cable for reduction of eddy current effects, and more uniform coil components and fabrication processes. This paper reports on the magnetic measurements of HQ02 during recent testing at the Vertical Magnet Test Facility at Fermilab. Results of baseline measurements performed with a new multi-layer circuit board probe are compared with the earlier magnet. An analysis of probe and measurement system performance is also presented.

  10. Underground localization using dual magnetic field sequence measurement and pose graph SLAM for directional drilling

    International Nuclear Information System (INIS)

    Park, Byeolteo; Myung, Hyun

    2014-01-01

    With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments. (paper)

  11. Underground localization using dual magnetic field sequence measurement and pose graph SLAM for directional drilling

    Science.gov (United States)

    Park, Byeolteo; Myung, Hyun

    2014-12-01

    With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments.

  12. A method for measuring the velocity flow field in the vicinity of a moving cascade

    International Nuclear Information System (INIS)

    Bammert, K.; Mobarak, A.

    1977-01-01

    Centrifugal compressors and blowers are often used for recycling the coolant gas in gas-cooled reactors. To achieve the required pressure ratios, highly loaded centrifugal compressors are built. The paper deals with a method of measuring the flow field in the vicinity of a moving impeller or cascade with hot wires. The relative flow pattern induced ahead of a cascade or impeller or the rotating wakes behind a moving cascade (which is important for loss evaluation) could be now measured with the help of a single hot wire. The wire should be rotated about the axis of the probe for 3 different inclinations with respect to the approaching flow. The method has been used for measuring the flow field in the vicinity of the inducer of a highly loaded centrifugal compressor. The results and the accuracy of the method are discussed and the mean values have been compared with the theoretically estimated velocities. (orig.) [de

  13. Mercury's plasma belt: hybrid simulations results compared to in-situ measurements

    Science.gov (United States)

    Hercik, D.; Travnicek, P. M.; Schriver, D.; Hellinger, P.

    2012-12-01

    The presence of plasma belt and trapped particles region in the Mercury's inner magnetosphere has been questionable due to small dimensions of the magnetosphere of Mercury compared to Earth, where these regions are formed. Numerical simulations of the solar wind interaction with Mercury's magnetic field suggested that such a structure could be found also in the vicinity of Mercury. These results has been recently confirmed also by MESSENGER observations. Here we present more detailed analysis of the plasma belt structure and quasi-trapped particle population characteristics and behaviour under different orientations of the interplanetary magnetic field.The plasma belt region is constantly supplied with solar wind protons via magnetospheric flanks and tail current sheet region. Protons inside the plasma belt region are quasi-trapped in the magnetic field of Mercury and perform westward drift along the planet. This region is well separated by a magnetic shell and has higher average temperatures and lower bulk proton current densities than surrounding area. On the day side the population exhibits loss cone distribution function matching the theoretical loss cone angle. Simulations results are also compared to in-situ measurements acquired by MESSENGER MAG and FIPS instruments.

  14. A proposal of comparative Maunder minimum cosmogenic isotope measurements

    International Nuclear Information System (INIS)

    Attolini, M.R.; Nanni, T.; Galli, M.; Povinec, P.

    1989-01-01

    There are at present contraddictory conclusions about solar activity and cosmogenic isotope production variation during Maunder Minimum. The interaction of solar wind with galactic cosmic rays, the dynamic behaviour of the Sun either as a system having an internal clock, and/or as a forced non linear system, are important aspects that can shed new light on solar physics, the Earth-Sun relationship and the climatic variation. An essential progress in the matter might be made by clarifying the cosmogenic isotope production during the mentioned interval. As it seems that during Maunder Minimum the Be10 production oscillates of about a factor of two, the authors have also to expect short scale enhanced variations in tree rings radiocarbon concentrations for the same interval. It is therefore highly desirable that for the same interval, that the authors would identify with 1640-1720 AD, detailed concentration measurements both of Be10 (in dated polar ice in addition to those of Beer et al.) and of tree ring radiocarbon, be made with cross-checking, in samples of different latitudes, longitudes and within short and large distance of the sea. The samples could be taken, as for example in samples from the central Mediterranean region, in the Baltic region and in other sites from central Europe and Asia

  15. Molecular modeling studies of structural properties of polyvinyl alcohol: a comparative study using INTERFACE force field.

    Science.gov (United States)

    Radosinski, Lukasz; Labus, Karolina

    2017-10-05

    Polyvinyl alcohol (PVA) is a material with a variety of applications in separation, biotechnology, and biomedicine. Using combined Monte Carlo and molecular dynamics techniques, we present an extensive comparative study of second- and third-generation force fields Universal, COMPASS, COMPASS II, PCFF, and the newly developed INTERFACE, as applied to this system. In particular, we show that an INTERFACE force field provides a possibility of composing a reliable atomistic model to reproduce density change of PVA matrix in a narrow temperature range (298-348 K) and calculate a thermal expansion coefficient with reasonable accuracy. Thus, the INTERFACE force field may be used to predict mechanical properties of the PVA system, being a scaffold for hydrogels, with much greater accuracy than latter approaches. Graphical abstract Molecular Dynamics and Monte Carlo studies indicate that it is possible to predict properties of the PVA in narrow temperature range by using the INTERFACE force field.

  16. Field reconstruction and estimation of the antenna support structure effect on the measurement uncertainty of the BTS1940 antenna

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Pivnenko, Sergey

    2014-01-01

    the effect of the support structure on the measured field, by reconstructing the currents induced on the support frame with DIATOOL. The field obtained by filtering these currents is presented. Moreover, the spatial resolution obtained by the 3D reconstruction is discussed and compared with the one obtained...

  17. Comparative study on skin dose measurement using MOSFET and TLD for pediatric patients with acute lymphatic leukemia.

    Science.gov (United States)

    Al-Mohammed, Huda I; Mahyoub, Fareed H; Moftah, Belal A

    2010-07-01

    The object of this study was to compare the difference of skin dose measured in patients with acute lymphatic leukemia (ALL) treated with total body irradiation (TBI) using metal oxide semiconductor field-effect transistors (mobile MOSFET dose verification system (TN-RD-70-W) and thermoluminescent dosimeters (TLD-100 chips, Harshaw/ Bicron, OH, USA). Because TLD has been the most-commonly used technique in the skin dose measurement of TBI, the aim of the present study is to prove the benefit of using the mobile MOSFET (metal oxide semiconductor field effect transistor) dosimeter, for entrance dose measurements during the total body irradiation (TBI) over thermoluminescent dosimeters (TLD). The measurements involved 10 pediatric patients ages between 3 and 14 years. Thermoluminescent dosimeters and MOSFET dosimetry were performed at 9 different anatomic sites on each patient. The present results show there is a variation between skin dose measured with MOSFET and TLD in all patients, and for every anatomic site selected, there is no significant difference in the dose delivered using MOSFET as compared to the prescribed dose. However, there is a significant difference for every anatomic site using TLD compared with either the prescribed dose or MOSFET. The results indicate that the dosimeter measurements using the MOSFET gave precise measurements of prescribed dose. However, TLD measurement showed significant increased skin dose of cGy as compared to either prescribed dose or MOSFET group. MOSFET dosimeters provide superior dose accuracy for skin dose measurement in TBI as compared with TLD.

  18. Accessibility of shared space for visually impaired persons : A comparative field study

    NARCIS (Netherlands)

    Havik, Else; Steyvers, Franciscus J.J.M.; Kooijman, Aart; Melis, Bart

    Shared Space is a concept that comprises the design and planning process of a public space. There are concerns about the accessibility of Shared Spaces for people who are visually impaired. In a comparative field study, the wayfinding performance of 25 visually impaired persons (VIPs) was observed

  19. Field experiment provides ground truth for surface nuclear magnetic resonance measurement

    Science.gov (United States)

    Knight, R.; Grunewald, E.; Irons, T.; Dlubac, K.; Song, Y.; Bachman, H.N.; Grau, B.; Walsh, D.; Abraham, J.D.; Cannia, J.

    2012-01-01

    The need for sustainable management of fresh water resources is one of the great challenges of the 21st century. Since most of the planet's liquid fresh water exists as groundwater, it is essential to develop non-invasive geophysical techniques to characterize groundwater aquifers. A field experiment was conducted in the High Plains Aquifer, central United States, to explore the mechanisms governing the non-invasive Surface NMR (SNMR) technology. We acquired both SNMR data and logging NMR data at a field site, along with lithology information from drill cuttings. This allowed us to directly compare the NMR relaxation parameter measured during logging,T2, to the relaxation parameter T2* measured using the SNMR method. The latter can be affected by inhomogeneity in the magnetic field, thus obscuring the link between the NMR relaxation parameter and the hydraulic conductivity of the geologic material. When the logging T2data were transformed to pseudo-T2* data, by accounting for inhomogeneity in the magnetic field and instrument dead time, we found good agreement with T2* obtained from the SNMR measurement. These results, combined with the additional information about lithology at the site, allowed us to delineate the physical mechanisms governing the SNMR measurement. Such understanding is a critical step in developing SNMR as a reliable geophysical method for the assessment of groundwater resources.

  20. Comparative interpretations of renormalization inversion technique for reconstructing unknown emissions from measured atmospheric concentrations

    Science.gov (United States)

    Singh, Sarvesh Kumar; Kumar, Pramod; Rani, Raj; Turbelin, Grégory

    2017-04-01

    The study highlights a theoretical comparison and various interpretations of a recent inversion technique, called renormalization, developed for the reconstruction of unknown tracer emissions from their measured concentrations. The comparative interpretations are presented in relation to the other inversion techniques based on principle of regularization, Bayesian, minimum norm, maximum entropy on mean, and model resolution optimization. It is shown that the renormalization technique can be interpreted in a similar manner to other techniques, with a practical choice of a priori information and error statistics, while eliminating the need of additional constraints. The study shows that the proposed weight matrix and weighted Gram matrix offer a suitable deterministic choice to the background error and measurement covariance matrices, respectively, in the absence of statistical knowledge about background and measurement errors. The technique is advantageous since it (i) utilizes weights representing a priori information apparent to the monitoring network, (ii) avoids dependence on background source estimates, (iii) improves on alternative choices for the error statistics, (iv) overcomes the colocalization problem in a natural manner, and (v) provides an optimally resolved source reconstruction. A comparative illustration of source retrieval is made by using the real measurements from a continuous point release conducted in Fusion Field Trials, Dugway Proving Ground, Utah.

  1. Neutron measurements in the stray field produced by 158 GeV/c lead ion beams

    International Nuclear Information System (INIS)

    Agosteo, S.; Birattari, C.; Foglio Para, A.; Nava, E.; Silari, M.; Ulrici, L.

    1997-01-01

    This paper discusses measurements carried out at CERN in the stray radiation field produced by 158 GeV/c 208 Pb 82+ ions. The purpose was to test and intercompare the response of several detectors, mainly neutron measuring devices, and to determine the neutron spectral fluence as well as the microdosimetric (absorbed dose and dose equivalent) distributions in different locations around the shielding. Both active instruments and passive dosimeters were employed, including different types of Andersson-Braun rem counters, a tissue equivalent proportional counter, a set of superheated drop detectors, a Bonner sphere system and different types of ion chambers. Activation measurements with 12 C plastic scintillators and with 32 S pellets were also performed to assess the neutron yield of high energy lead ions interacting with a thin gold target. The results are compared with previous measurements and with measurements made during proton runs. (author)

  2. COMPAR

    International Nuclear Information System (INIS)

    Kuefner, K.

    1976-01-01

    COMPAR works on FORTRAN arrays with four indices: A = A(i,j,k,l) where, for each fixed k 0 ,l 0 , only the 'plane' [A(i,j,k 0 ,l 0 ), i = 1, isub(max), j = 1, jsub(max)] is held in fast memory. Given two arrays A, B of this type COMPAR has the capability to 1) re-norm A and B ind different ways; 2) calculate the deviations epsilon defined as epsilon(i,j,k,l): =[A(i,j,k,l) - B(i,j,k,l)] / GEW(i,j,k,l) where GEW (i,j,k,l) may be chosen in three different ways; 3) calculate mean, standard deviation and maximum in the array epsilon (by several intermediate stages); 4) determine traverses in the array epsilon; 5) plot these traverses by a printer; 6) simplify plots of these traverses by the PLOTEASY-system by creating input data blocks for this system. The main application of COMPAR is given (so far) by the comparison of two- and three-dimensional multigroup neutron flux-fields. (orig.) [de

  3. Geomechanical Model Calibration Using Field Measurements for a Petroleum Reserve

    Science.gov (United States)

    Park, Byoung Yoon; Sobolik, Steven R.; Herrick, Courtney G.

    2018-03-01

    A finite element numerical analysis model has been constructed that consists of a mesh that effectively captures the geometries of Bayou Choctaw (BC) Strategic Petroleum Reserve (SPR) site and multimechanism deformation (M-D) salt constitutive model using the daily data of actual wellhead pressure and oil-brine interface location. The salt creep rate is not uniform in the salt dome, and the creep test data for BC salt are limited. Therefore, the model calibration is necessary to simulate the geomechanical behavior of the salt dome. The cavern volumetric closures of SPR caverns calculated from CAVEMAN are used as the field baseline measurement. The structure factor, A 2, and transient strain limit factor, K 0, in the M-D constitutive model are used for the calibration. The value of A 2, obtained experimentally from BC salt, and the value of K 0, obtained from Waste Isolation Pilot Plant salt, are used for the baseline values. To adjust the magnitude of A 2 and K 0, multiplication factors A 2 F and K 0 F are defined, respectively. The A 2 F and K 0 F values of the salt dome and salt drawdown skins surrounding each SPR cavern have been determined through a number of back analyses. The cavern volumetric closures calculated from this model correspond to the predictions from CAVEMAN for six SPR caverns. Therefore, this model is able to predict behaviors of the salt dome, caverns, caprock, and interbed layers. The geotechnical concerns associated with the BC site from this analysis will be explained in a follow-up paper.

  4. Optimal distribution of temperature points in μSR measurement of local field

    International Nuclear Information System (INIS)

    Pełka, R.; Zieliński, P.M.; Konieczny, P.; Wasiutyński, T.

    2013-01-01

    Three possible distributions of temperature points in the μSR measurement of local field (order parameter) are discussed. The least square method is applied to estimate the scale of the deviations of the fitted parameters from the true values. It indicates that the distribution corresponding to a uniform section of the order parameter values (uniform-in-signal) incurs the smallest errors. The distribution constructed on the basis of the zeros of the Chebyshev polynomials yields comparable uncertainties, while the uniform-in-temperature distribution turns out to be least effective incurring considerably larger errors. These findings can be useful while planning an order parameter measurement in the μSR experiment

  5. Exposure to electromagnetic fields from smart utility meters in GB; part I) laboratory measurements.

    Science.gov (United States)

    Peyman, Azadeh; Addison, Darren; Mee, Terry; Goiceanu, Cristian; Maslanyj, Myron; Mann, Simon

    2017-05-01

    Laboratory measurements of electric fields have been carried out around examples of smart meter devices used in Great Britain. The aim was to quantify exposure of people to radiofrequency signals emitted from smart meter devices operating at 2.4 GHz, and then to compare this with international (ICNIRP) health-related guidelines and with exposures from other telecommunication sources such as mobile phones and Wi-Fi devices. The angular distribution of the electric fields from a sample of 39 smart meter devices was measured in a controlled laboratory environment. The angular direction where the power density was greatest was identified and the equivalent isotropically radiated power was determined in the same direction. Finally, measurements were carried out as a function of distance at the angles where maximum field strengths were recorded around each device. The maximum equivalent power density measured during transmission around smart meter devices at 0.5 m and beyond was 15 mWm -2 , with an estimation of maximum duty factor of only 1%. One outlier device had a maximum power density of 91 mWm -2 . All power density measurements reported in this study were well below the 10 W m -2 ICNIRP reference level for the general public. Bioelectromagnetics. 2017;38:280-294. © 2017 Crown copyright. BIOELECTROMAGNETICS © 2017 Wiley Periodicals, Inc. © 2017 Crown copyright. BIOELECTROMAGNETICS © 2017 Wiley Periodicals, Inc.

  6. A rigorous assessment of tree height measurements obtained using airborne LIDAR and conventional field methods.

    Science.gov (United States)

    Hans-Erik Andersen; Stephen E. Reutebuch; Robert J. McGaughey

    2006-01-01

    Tree height is an important variable in forest inventory programs but is typically time-consuming and costly to measure in the field using conventional techniques. Airborne light detection and ranging (LIDAR) provides individual tree height measurements that are highly correlated with field-derived measurements, but the imprecision of conventional field techniques does...

  7. A Comparative Field Based Study of Katz and Barthel Indices in North Indian City of Dehradun

    Directory of Open Access Journals (Sweden)

    Megha Luthra

    2016-03-01

    Full Text Available Background: Elderly persons are one of the most vulnerable groups of society and have more chances of disease and disabilities (restriction or lack of ability to perform an activity in the manner or within the range considered normal for a human being. It reflects how well an individual is able to function in general areas of life. Magnitude of disability has become an important indicator in measuring disease burden along with morbidity and mortality rates. Katz and Barthel Indices have been largely used to assess disability in activities of daily living among elderly people.Aim & objectives: This community-based cross-sectional study was conducted among persons aged 60 years and above in urban field practice area of SGRRIM&HS, Dehradun, Uttarakhand with the aim of comparing these two indices in community setting. The specific objectives were to find ADL dependence by both the indices, find the factors which significantly affect ADL dependence and to find the degree of agreement which is not by chance between Katz and Barthel Indices.Material methods: An interview schedule was developed and administered to participants in Hindi, by trained investigators. Information on age, marital status, living status education, occupation and economic dependence was recorded. House-to-house visits were conducted in the selected area to collect the data. All elderly persons residing in the selected area were included in the study.Results: Prevalence of ADL dependence was 8.23% as per Katz Index and 28.45% as per Barthel Index, taking a score of less than 20 for BI and less than 6 for KI as criterion for ADL dependence. That there is a moderate degree of agreement between Katz and Barthel Scores which is not by chance was estimated by Kappa Statistic.Conclusion: Katz Index is better suited for ADL estimation in a community setting.

  8. Research on Radar Cross Section Measurement Based on Near-field Imaging of Cylindrical Scanning

    Directory of Open Access Journals (Sweden)

    Xing Shu-guang

    2015-04-01

    Full Text Available A new method of Radar Cross Section (RCS measurement based on near-field imaging of cylindrical scanning surface is proposed. The method is based on the core assumption that the target consists of ideal isotropic scattered centers. Three-dimensional radar scattered images are obtained by using the proposed method, and then to obtain the RCS of the target, the scattered far field is calculated by summing the fields generated by the equivalent scattered centers. Not only three dimensional radar reflectivity images but also the RCS of targets in certain three dimensional angle areas can be obtained. Compared with circular scanning that can only obtain twodimensional radar reflectivity images and RCS results in two-dimensional angle areas, cylindrical scanning can provide more information about the scattering properties of the targets. The method has strong practicability and its validity is verified by simulations.

  9. Field measurements of temperature profile for floatovoltaic dryer in the tropics

    Science.gov (United States)

    Osman, F. A.; Ya'acob, M. E.; Iskandar, A. Noor

    2017-09-01

    Most of the equator region in a tropical climate zone experiences hot and humid weather but sometimes heavy rain and thunderstorms which occur stochastically in monsoon season. Sunlight which is the energy source can be harvested approximately 8 hours (on average basis) daily throughout the year which leads to the promotion of Solar PV technologies. This works projects the field performance for a new Floatovoltaic Dryer prototype with flexible PV roofing structures covering the top of the dryer system. The field measurements are collected on the lake of Engineering Faculty, UPM supported with 4-parameter weather station. Temperature profile with RH measurements inside the Floatovoltaic Dryer compartments as compared to direct-sun drying mechanism are the main contributions of this work and it projects more than 12 W of convection heat energy could be harvested by using the clean system. The field measurements imply various points of thermocouple and humidity sensor throughout the experiment. Temperature and humidity will be the main elements recorded to analyze the differences under monocrystalline PV panel as compared to natural drying.

  10. Can field-in-field technique replace wedge filter in radiotherapy treatment planning: a comparative analysis in various treatment sites

    International Nuclear Information System (INIS)

    Prabhakar, R.; Julka, P.K.; Rath, G.K.

    2008-01-01

    The aim of the study was to show whether field-in-field (FIF) technique can be used to replace wedge filter in radiation treatment planning. The study was performed in cases where wedges are commonly used in radiotherapy treatment planning. Thirty patients with different malignancies who received radiotherapy were studied. This includes patients with malignancies of brain, head and neck, breast, upper and lower abdomen. All the patients underwent computed tomography scanning and the datasets were transferred to the treatment planning system. Initially, wedge based planning was performed to achieve the best possible dose distribution inside the target volume with multileaf collimators (Plan1). Wedges were removed from a copy of the same plan and FIF plan was generated (Plan2). The two plans were then evaluated and compared for mean dose, maximum dose, median dose, doses to 2% (D 2 ) and 98% (D 9 8) of the target volume, volume receiving greater than 107% of the prescribed dose (V>107%), volume receiving less than 95% of the prescribed dose (V 2 , V>107% and CI for more of the sites with statistically significant reduction in monitor units. FIF results in better dose distribution in terms of homogeneity in most of the sites. It is feasible to replace wedge filter with FIF in radiotherapy treatment planning.

  11. Helicon wave field measurements in Proto-MPEX

    Science.gov (United States)

    Caneses, Juan Francisco; Piotrowicz, Pawel; Goulding, Richard; Caughman, John; Showers, Missy; Kafle, Nischal; Rapp, Juergen; Campbell, Ian; Proto-MPEX Team

    2016-10-01

    A high density Deuterium discharge (ne 5e19 m-3, Te 4 eV) has been recently observed in ProtoMPEX (Prototype Material Plasma Exposure eXperiment). The discharge (100 kW, 13.56 MHz, D2, 700 G at the source, 1e4 G at the Target) begins with a low density plasma with hollow Te profile and transitions in about 100 ms to a high density mode with flat Te profile. It is believed that the transition to the high density mode is produced by a ``helicon resonance'' as evidenced by the centrally-peaked power deposition profile observed with IR imaging on a 2 mm thick metallic target plate. In this work, we present b-dot probe measurements of the radial helicon wavefields 30 cm downstream of the antenna during both the low and high density modes. In addition, we compare the experimental results with full wave simulations. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  12. PIV Measurements of Gas Flow Fields from Burning End

    Science.gov (United States)

    Huang, Yifei; Wu, Junzhang; Zeng, Jingsong; Tang, Darong; Du, Liang

    2017-12-01

    To study the influence of cigarette gas on the environment, it is necessary to know the cigarette gas flow fields from burning end. By using PIV technique, in order to reveal velocity characteristics of gas flow fields, the velocities of cigarette gas flow fields was analyzed with different stepping motor frequencies corresponding to suction pressures, and the trend of velocity has been given with image fitting. The results shows that the velocities of the burning end increased with suction pressures; Between velocities of the burning end and suction pressures, the relations present polynomial rule; The cigarette gas diffusion in combustion process is faster than in the smoldering process.

  13. Field test of available methods to measure remotely SOx and NOx emissions from ships

    Science.gov (United States)

    Balzani Lööv, J. M.; Alfoldy, B.; Gast, L. F. L.; Hjorth, J.; Lagler, F.; Mellqvist, J.; Beecken, J.; Berg, N.; Duyzer, J.; Westrate, H.; Swart, D. P. J.; Berkhout, A. J. C.; Jalkanen, J.-P.; Prata, A. J.; van der Hoff, G. R.; Borowiak, A.

    2014-08-01

    Methods for the determination of ship fuel sulphur content and NOx emission factors based on remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the available literature on ship emission measurements. They were either optical (LIDAR, Differential Optical Absorption Spectroscopy (DOAS), UV camera), combined with model-based estimates of fuel consumption, or based on the so called "sniffer" principle, where SO2 or NOx emission factors are determined from simultaneous measurement of the increase of CO2 and SO2 or NOx concentrations in the plume of the ship compared to the background. The measurements were performed from stations at land, from a boat and from a helicopter. Mobile measurement platforms were found to have important advantages compared to the land-based ones because they allow optimizing the sampling conditions and sampling from ships on the open sea. Although optical methods can provide reliable results it was found that at the state of the art level, the "sniffer" approach is the most convenient technique for determining both SO2 and NOx emission factors remotely. The average random error on the determination of SO2 emission factors comparing two identical instrumental set-ups was 6%. However, it was found that apparently minor differences in the instrumental characteristics, such as response time, could cause significant differences between the emission factors determined. Direct stack measurements showed that about 14% of the fuel sulphur content was not emitted as SO2. This was supported by the remote measurements and is in agreement with the results of other field studies.

  14. Field test of available methods to measure remotely SO2 and NOx emissions from ships

    Science.gov (United States)

    Balzani Lööv, J. M.; Alfoldy, B.; Beecken, J.; Berg, N.; Berkhout, A. J. C.; Duyzer, J.; Gast, L. F. L.; Hjorth, J.; Jalkanen, J.-P.; Lagler, F.; Mellqvist, J.; Prata, F.; van der Hoff, G. R.; Westrate, H.; Swart, D. P. J.; Borowiak, A.

    2013-11-01

    Methods for the determination of ship fuel sulphur content and NOx emission factors from remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the available literature on ship emission measurements. They were either optical (LIDAR, DOAS, UV camera), combined with model based estimates of fuel consumption, or based on the so called "sniffer" principle, where SO2 or NOx emission factors are determined from simultaneous measurement of the increase of CO2 and SO2 or NOx concentrations in the plume of the ship compared to the background. The measurements were performed from stations at land, from a boat, and from a helicopter. Mobile measurement platforms were found to have important advantages compared to the landbased ones because they allow to optimize the sampling conditions and to sample from ships on the open sea. Although optical methods can provide reliable results, it was found that at the state of the art, the "sniffer" approach is the most convenient technique for determining both SO2 and NOx emission factors remotely. The average random error on the determination of SO2 emission factors comparing two identical instrumental set-ups was 6%. However, it was found that apparently minor differences in the instrumental characteristics, such as response time, could cause significant differences between the emission factors determined. Direct stack measurements showed that about 14% of the fuel sulphur content was not emitted as SO2. This was supported by the remote measurements and is in agreement with the results of other field studies.

  15. Technical note: comparing von Luschan skin color tiles and modern spectrophotometry for measuring human skin pigmentation.

    Science.gov (United States)

    Swiatoniowski, Anna K; Quillen, Ellen E; Shriver, Mark D; Jablonski, Nina G

    2013-06-01

    Prior to the introduction of reflectance spectrophotometry into anthropological field research during the 1950s, human skin color was most commonly classified by visual skin color matching using the von Luschan tiles, a set of 36 standardized, opaque glass tiles arranged in a chromatic scale. Our goal was to establish a conversion formula between the tile-based color matching method and modern reflectance spectrophotometry to make historical and contemporary data comparable. Skin pigmentation measurements were taken on the forehead, inner upper arms, and backs of the hands using both the tiles and a spectrophotometer on 246 participants showing a broad range of skin pigmentation. From these data, a second-order polynomial conversion formula was derived by jackknife analysis to estimate melanin index (M-index) based on tile values. This conversion formula provides a means for comparing modern data to von Luschan tile measurements recorded in historical reports. This is particularly important for populations now extinct, extirpated, or admixed for which tile-based measures of skin pigmentation are the only data available. Copyright © 2013 Wiley Periodicals, Inc.

  16. Individual laboratory-measured discount rates predict field behavior.

    Science.gov (United States)

    Chabris, Christopher F; Laibson, David; Morris, Carrie L; Schuldt, Jonathon P; Taubinsky, Dmitry

    2008-12-01

    We estimate discount rates of 555 subjects using a laboratory task and find that these individual discount rates predict inter-individual variation in field behaviors (e.g., exercise, BMI, smoking). The correlation between the discount rate and each field behavior is small: none exceeds 0.28 and many are near 0. However, the discount rate has at least as much predictive power as any variable in our dataset (e.g., sex, age, education). The correlation between the discount rate and field behavior rises when field behaviors are aggregated: these correlations range from 0.09-0.38. We present a model that explains why specific intertemporal choice behaviors are only weakly correlated with discount rates, even though discount rates robustly predict aggregates of intertemporal decisions.

  17. Measurement of the hyperfine magnetic field on rhodium in chromium

    International Nuclear Information System (INIS)

    Peretto, P.; Teisseron, G.; Berthier, J.

    1978-01-01

    Hyperfine magnetic field of rhodium in a chromium matrix is studied. Anisotropy of rhodium 100 is + 0.17. Time dependence of angular correlation is given with a sample containing 145 ppm of rhodium despite the short life [fr

  18. DOM. A dewar for optical measurements in magnetic field

    International Nuclear Information System (INIS)

    Baldacchini, G.

    1975-01-01

    A cryostat for low helium temperature has been designed and realized with the aim to perform optical investigations at high magnetic fields. The superconductor magnet is also described and the performance of the whole system presented

  19. Global Mapping of Near-Earth Magnetic Fields Measured by KITSAT-1 and KITSAT-2

    Directory of Open Access Journals (Sweden)

    Yoo-Surn Pyo

    1994-06-01

    Full Text Available The magnetic field measurements from the KitSat-1 and KitSat-2 were tested by comparing with the IGRF model. The magnetic data have been collected by a three-axis fluxgate magnetometer on each satellite at an altitude of 1,325km and 820km, respectively. To avoid highly variable magnetic disturbances at the polar region, the field map has been drawn within the limits of 50 degrees in latitude. Each data is averaged over the square of 5x5 degrees in both latitude and longitude. In these results, the relatively quiet periods were selected and the sampling rate was 30 seconds. It is shown that the results from these measurements are consistent with the IGRF map over the global surface map.

  20. Measurements of Integral Cross Section Ratios in Two Dosimetry Benchmark Neutron Fields

    International Nuclear Information System (INIS)

    Fabry, A.; Czock, K.H.

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the 103 Rh(n,n') 103m Rh and 58 Ni(n,p) 58 Co integral cross sections have been accurately measured relatively to the 115 In(n,n') 115m In cross section in the 235 U thermal dission neutron spectrum and in the MOLΣΣ Intermediate-Energy Standard Neutron field. In this last neutron field, the data are related also to the 235 U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific 103 Rh(n,n') 103m Rh differential-energy cross section among the existing, conflicting data. (author)

  1. Measurements of integral cross section ratios in two dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; Czock, K.H.

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the 103 Rh(n,n') 103m Rh and 58 Ni(n,p) 58 Co integral cross sections have been accurately measured relatively to the 115 In(n,n') 115m In cross section in the 235 U thermal fission neutron spectrum and in the MOL-ΣΣ intermediate-energy standard neutron field. In this last neutron field, the data are related also to the 235 U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific 103 Rh(n,n') 103m Rh differential-energy cross section among the existing, conflicting data. (author)

  2. Measurements of integral cross section ratios in two dosimetry benchmark neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A [CEN-SCK, Mol (Belgium); Czock, K H [International Atomic Energy Agency, Laboratory Seibersdorf, Vienna (Austria)

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the {sup 103}Rh(n,n'){sup 103m}Rh and {sup 58}Ni(n,p){sup 58}Co integral cross sections have been accurately measured relatively to the {sup 115}In(n,n'){sup 115m} In cross section in the {sup 235}U thermal fission neutron spectrum and in the MOL-{sigma}{sigma} intermediate-energy standard neutron field. In this last neutron field, the data are related also to the {sup 235}U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific {sup 103}Rh(n,n'){sup 103m}Rh differential-energy cross section among the existing, conflicting data. (author)

  3. Measurements of Integral Cross Section Ratios in Two Dosimetry Benchmark Neutron Fields

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A. [CEN-SCK, Mol (Belgium); Czock, K. H. [International Atomic Energy Agency, Vienna (Austria)

    1974-12-15

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the {sup 103}Rh(n,n'){sup 103m}Rh and {sup 58}Ni(n,p){sup 58}Co integral cross sections have been accurately measured relatively to the {sup 115}In(n,n'){sup 115m}In cross section in the {sup 235}U thermal dission neutron spectrum and in the MOL{Sigma}{Sigma} Intermediate-Energy Standard Neutron field. In this last neutron field, the data are related also to the {sup 235}U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific {sup 103}Rh(n,n'){sup 103m}Rh differential-energy cross section among the existing, conflicting data. (author)

  4. Three-dimensional instantaneous velocity field measurement using ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... Abstract. In the present study, a digital holography microscope has been developed to study instantaneous 3D velocity field in a square channel of 1000 × 1000 μm2 cross-section. The flow field is seeded with polystyrene microspheres of size dp = 2.1 μm. The volumetric flow rate is set equal to 20 μl/min.

  5. Electric field measurements in a near atmospheric pressure nanosecond pulse discharge with picosecond electric field induced second harmonic generation

    Science.gov (United States)

    Goldberg, Benjamin M.; Chng, Tat Loon; Dogariu, Arthur; Miles, Richard B.

    2018-02-01

    We present an optical electric field measurement method for use in high pressure plasma discharges. The method is based upon the field induced second harmonic generation technique and can be used for localized electric field measurements with sub-nanosecond resolution in any gaseous species. When an external electric field is present, a dipole is induced in the typically centrosymmetric medium, allowing for second harmonic generation with signal intensities which scale by the square of the electric field. Calibrations have been carried out in 100 Torr room air, and a minimum sensitivity of 450 V/cm is demonstrated. Measurements were performed with nanosecond or faster temporal resolution in a 100 Torr room air environment both with and without a plasma present. It was shown that with no plasma present, the field follows the applied voltage to gap ratio, as measured using the back current shunt method. When the electric field is strong enough to exceed the breakdown threshold, the measured field was shown to exceed the anticipated voltage to gap ratio which is taken as an indication of the ionization wave front as it sweeps through the plasma volume.

  6. Comparative and Mixture Effect of Cynodon Dactylon, ElectroMagnetic Field and Insulin on Diabetic Mouse.

    Science.gov (United States)

    Nafisi, Saeid; Nezhady, Mohammad Ali Mohammad; Asghari, Mohammad Hossein

    2012-12-01

    New investigations are in progress to find some alternative treatments for diabetes mellitus. Herbs are some of the interesting medications in this regard. Cynodon dactylon (C.d) is a potential plant to be considered as a new medication. On the other hand, the effect of the Electromagnetic Field (EMF) on bio organisms is becoming clearer. In this study, the effect of C.d, EMF and insulin have been investigated on the diabetic mouse. Diabetes was induced by a combination of ketamine (60 mg/Kg) and xylazine (10 mg/Kg) which induces a sustained hyperglycemia. Mice were divided into 12 groups: 1) control, 2) normal saline, 3 and 4) 50mg/Kg C.d, 5 and 6) 100 mg/Kg C.d, 7) insulin, 8) insulin and C.d, 9) EMF (110 KHz, 700±20 mG), 10) insulin and EMF, 11) EMF plus C.d and 12) insulin plus C.d and EMF. Blood glucose level was measured after 5 and 60 minutes in C.d administrated groups, and 5 minutes in the other groups by a glucometer set. The data were analyzed by ANOVA and different means were compared by Tukey and Bonferroni tests (p<0.05). According to results, both dosages of C.d had significant lowering effect on blood glucose level. The first dose was more effective than the second, and its impact was just like insulin. The 6(th), 9(th) and 10(th) groups were significant, also. However, they did not show a higher effect than insulin or C.d. The application of EMF had a significant effect compared to the second group, but it did not reduce the glucose level to the normal range. The effect of the 8th group was very impressive and the mean glucose levels in this group were lower than the control group. Considering the data, C.d is a good alternative medication for diabetes mellitus.

  7. First Spectropolarimetric Measurement of a Brown Dwarf Magnetic Field in Molecular Bands

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmychov, Oleksii; Berdyugina, Svetlana V. [Kiepenheuer-Institut für Sonnenphysik Schöneckstr, 6 D-79104 Freiburg (Germany); Harrington, David M., E-mail: oleksii@leibniz-kis.de [National Solar Observatory (Maui), 8 Kiopa’a Street Pukalani, HI 96768 (United States)

    2017-09-20

    We present the first measurements of the surface magnetic field of a late-M dwarf, LSR J1835+3259, with the help of the full-Stokes spectropolarimetry in the bands of diatomic molecules. Our measurements at different rotational phases of a dwarf yielded one 5 σ and two 3 σ magnetic field detections. The observational data have been obtained with the LRISp polarimeter at the Keck observatory on 2012 August 22 and 23. These data have been compared against synthetic full-Stokes spectra in the bands of the molecules CrH, FeH, and TiO, which have been calculated for a range of the stellar parameters and magnetic field strengths. Making use of χ {sup 2}-minimization and maximum likelihood estimation, we determine the net magnetic field strength B (and not flux Bf ) of LSR J1835+3259 to ∼5 kG with the help of the Paschen–Back effect in the CrH lines. Our measurements at different rotational phases suggest that the dwarf’s surface might be covered with strong small-scale magnetic fields. In addition, recent findings of the dwarf’s hydrogen emission and the Stokes V signal from the lower chromosphere indicate that its surface magnetic field might be changing rapidly giving rise to flare activity, similar to young dMe dwarfs. We substantiate the substellar origin of LSR J1835+3259 by making use of our own data as well as the photometric data from the all-sky surveys 2MASS and WISE .

  8. Comparing Dislodgeable 2,4-D Residues across Athletic Field Turfgrass Species and Time.

    Directory of Open Access Journals (Sweden)

    Matthew D Jeffries

    Full Text Available 2,4-dimethylamine salt (2,4-D is an herbicide commonly applied on athletic fields for broadleaf weed control that can dislodge from treated turfgrass. Dislodge potential is affected by numerous factors, including turfgrass canopy conditions. Building on previous research confirming herbicide-turfgrass dynamics can vary widely between species, field research was initiated in 2014 and 2015 in Raleigh, NC, USA to quantify dislodgeable 2,4-D residues from dormant hybrid bermudagrass (Cynodon dactylon L. x C. transvaalensis and hybrid bermudagrass overseeded with perennial ryegrass (Lolium perenne L., which are common athletic field playing surfaces in subtropical climates. Additionally, dislodgeable 2,4-D was compared at AM (7:00 eastern standard time and PM (14:00 sample timings within a day. Samples collected from perennial ryegrass consistently resulted in greater 2,4-D dislodgment immediately after application (9.4 to 9.9% of applied compared to dormant hybrid bermudagrass (2.3 to 2.9%, as well as at all AM compared to PM timings from 1 to 3 d after treatment (DAT; 0.4 to 6.3% compared to 0.1 to 0.8%. Dislodgeable 2,4-D did not differ across turfgrass species at PM sample collections, with ≤ 0.1% of the 2,4-D applied dislodged from 1 to 6 DAT, and 2,4-D detection did not occur at 12 and 24 DAT. In conclusion, dislodgeable 2,4-D from treated turfgrass can vary between species and over short time-scales within a day. This information should be taken into account in human exposure risk assessments, as well as by turfgrass managers and athletic field event coordinators to minimize 2,4-D exposure.

  9. Effective x-ray attenuation measurements with full field digital mammography

    International Nuclear Information System (INIS)

    Heine, John J.; Behera, Madhusmita

    2006-01-01

    This work shows that effective x-ray attenuation coefficients may be estimated by applying Beer's Law to phantom image data acquired with the General Electric Senographe 2000D full field digital mammography system. Theoretical developments are provided indicating that an approximate form of the Beer's relation holds for polychromatic x-ray beams. The theoretical values were compared with experimentally determined measured values, which were estimated at various detector locations. The measured effective attenuation coefficients are in agreement with those estimated with theoretical developments and numerical integration. The work shows that the measured quantities show little spatial variation. The main ideas are demonstrated with polymethylmethacrylate and breast tissue equivalent phantom imaging experiments. The work suggests that the effective attenuation coefficients may be used as known values for radiometric standardization applications that compensate for the image acquisition influences. The work indicates that it is possible to make quantitative attenuation coefficient measurements from a system designed for clinical purposes

  10. Inversion of double-difference measurements from optical levelling for the Groningen gas field

    Directory of Open Access Journals (Sweden)

    P. A. Fokker

    2015-11-01

    Full Text Available Hydrocarbon extraction lead to compaction of the gas reservoir which is visible as subsidence on the surface. Subsidence measurements can therefore be used to better estimate reservoir parameters. Total subsidence is derived from the result of the measurement of height differences between optical benchmarks. The procedure from optical height difference measurements to absolute subsidence is an inversion, and the result is often used as an input for consequent inversions on the reservoir. We have used the difference measurements directly to invert for compaction of the Groningen gas reservoir in the Netherlands. We have used a linear inversion exercise to update an already existing reservoir compaction model of the field. This procedure yielded areas of increased and decreased levels of compaction compared to the existing compaction model in agreement with observed discrepancies in porosity and aquifer activity.

  11. Urban and marine corrosion: Comparative behaviour between field and laboratory conditions

    Energy Technology Data Exchange (ETDEWEB)

    Iribarren Laco, J.I.; Liesa Mestres, F.; Bilurbina Alter, L. [Departament d' Enginyeria Quimica E.T.S.E.I.B. Universitat Politecnica de Catalunya, Barcelona (Spain); Cadena Villota, F. [Departamento de Materiales, Escuela Politecnica Nacional, Quito (Ecuador)

    2004-09-01

    A detailed study of the corrosion phenomena of carbon steel has been investigated in this work by means of the comparison of field and laboratory tests. Two areas of the metropolitan area of Barcelona (Spain) were selected to carry out the field tests, whereas two different solutions of sodium chloride and sodium hydrogen sulfite were used to simulate the field conditions by means of cyclic laboratory tests. The corrosion rate has been evaluated from the weight loss of the specimens and the morphology surface has been visualized by optical and scanning electron microscopy. Corrosion products and contaminants have been analyzed by X-ray diffraction and energy-dispersive X-ray spectroscopy, respectively. The penetration results can be adjusted to the Passano equation and the corrosivity degree can be assigned in accordance with ISO standards. A correlation between field and laboratory tests has been found, by comparing the specimens with the same degree of corrosion, showing the validity of the accelerated laboratory tests in order to simulate the field conditions. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  12. Neutron activation analysis measurements of sub micron aerosol deposition onto a cylinder energized with an alternating electric field

    Energy Technology Data Exchange (ETDEWEB)

    Fila, M S [Toronto Univ., ON (Canada). Dept. of Chemical Engineering and Applied Chemistry

    1994-12-31

    Experimental measurements of aerosol deposition onto a cylinder energized with a 60 Hz electric field were conducted using a neutron activation analysis technique with a hafnium salt aerosol. The measured collection efficiencies were compared to theoretical expressions based on an electrostatic collection mechanism and fair agreement was found. (author). 5 refs., 1 tab., 2 figs.

  13. Relative localization in wireless sensor networks for measurement of electric fields under HVDC transmission lines.

    Science.gov (United States)

    Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing

    2015-02-04

    In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.

  14. Relative Localization in Wireless Sensor Networks for Measurement of Electric Fields under HVDC Transmission Lines

    Directory of Open Access Journals (Sweden)

    Yong Cui

    2015-02-01

    Full Text Available In the wireless sensor networks (WSNs for electric field measurement system under the High-Voltage Direct Current (HVDC transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes’ neighbor lists based on the Received Signal Strength Indicator (RSSI values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.

  15. On the extraction of pressure fields from PIV velocity measurements in turbines

    Science.gov (United States)

    Villegas, Arturo; Diez, Fancisco J.

    2012-11-01

    In this study, the pressure field for a water turbine is derived from particle image velocimetry (PIV) measurements. Measurements are performed in a recirculating water channel facility. The PIV measurements include calculating the tangential and axial forces applied to the turbine by solving the integral momentum equation around the airfoil. The results are compared with the forces obtained from the Blade Element Momentum theory (BEMT). Forces are calculated by using three different methods. In the first method, the pressure fields are obtained from PIV velocity fields by solving the Poisson equation. The boundary conditions are obtained from the Navier-Stokes momentum equations. In the second method, the pressure at the boundaries is determined by spatial integration of the pressure gradients along the boundaries. In the third method, applicable only to incompressible, inviscid, irrotational, and steady flow, the pressure is calculated using the Bernoulli equation. This approximated pressure is known to be accurate far from the airfoil and outside of the wake for steady flows. Additionally, the pressure is used to solve for the force from the integral momentum equation on the blade. From the three methods proposed to solve for pressure and forces from PIV measurements, the first one, which is solved by using the Poisson equation, provides the best match to the BEM theory calculations.

  16. Indirect measurement of the magnetocaloric effect using a novel differential scanning calorimeter with magnetic field.

    Science.gov (United States)

    Jeppesen, S; Linderoth, S; Pryds, N; Kuhn, L Theil; Jensen, J Buch

    2008-08-01

    A simple and high-sensitivity differential scanning calorimeter (DSC) unit operating under magnetic field has been built for indirect determination of the magnetocaloric effect. The principle of the measuring unit in the calorimeter is based on Peltier elements as heat flow sensors. The high sensitivity of the apparatus combined with a suitable calibration procedure allows very fast and accurate heat capacity measurements under magnetic field to be made. The device was validated from heat capacity measurements for the typical DSC reference material gallium (Ga) and a La(0.67)Ca(0.33)MnO(3) manganite system and the results were highly consistent with previous reported data for these materials. The DSC has a working range from 200 to 340 K and has been tested in magnetic fields reaching 1.8 T. The signal-to-noise ratio is in the range of 10(2)-10(3) for the described experiments. Finally the results have been compared to results from a Quantum Design(R) physical properties measuring system. The configuration of the system also has the advantage of being able to operate with other types of magnets, e.g., permanent magnets or superconducting coils, as well as the ability to be expanded to a wider temperature range.

  17. Sensor Interaction as a Source of the Electromagnetic Field Measurement Error

    Directory of Open Access Journals (Sweden)

    Hartansky R.

    2014-12-01

    Full Text Available The article deals with analytical calculation and numerical simulation of interactive influence of electromagnetic sensors. Sensors are components of field probe, whereby their interactive influence causes the measuring error. Electromagnetic field probe contains three mutually perpendicular spaced sensors in order to measure the vector of electrical field. Error of sensors is enumerated with dependence on interactive position of sensors. Based on that, proposed were recommendations for electromagnetic field probe construction to minimize the sensor interaction and measuring error.

  18. Optical measurement of acoustic radiation pressure of the near-field acoustic levitation through transparent object

    OpenAIRE

    Nakamura, Satoshi; Furusawa, Toshiaki; Sasao, Yasuhiro; Katsura, Kogure; Naoki, Kondo

    2013-01-01

    It is known that macroscopic objects can be levitated for few to several hundred micrometers by near-field acoustic field and this phenomenon is called near-field acoustic levitation (NFAL). Although there are various experiments conducted to measure integrated acoustic pressure on the object surface, up to now there was no direct method to measure pressure distribution. In this study we measured the acoustic radiation pressure of the near-field acoustic levitation via pressure-sensitive paint.

  19. Magnetic field measurements on the perpendicular biased RF booster cavity for the proposed TRIUMF KAON Factory

    International Nuclear Information System (INIS)

    Enchevich, I.B.; Poirier, R.L.

    1992-08-01

    The successful operation of the full scale KAON Factory Ferrite tuned Booster Accelerating Cavity Prototype allowed us to do ac magnetic field measurements in the tuner. The field measured is close to that calculated. The measured data are discussed. They may be used for reliable computation of the perturbation of the beam dynamics due to the ferrite biasing magnetic field. Methods to compensate the disturbing magnetic fields are discussed. 7 refs., 7 figs

  20. A Comparative Study of Simulated and Measured Gear-Flap Flow Interaction

    Science.gov (United States)

    Khorrami, Mehdi R.; Mineck, Raymond E.; Yao, Chungsheng; Jenkins, Luther N.; Fares, Ehab

    2015-01-01

    The ability of two CFD solvers to accurately characterize the transient, complex, interacting flowfield asso-ciated with a realistic gear-flap configuration is assessed via comparison of simulated flow with experimental measurements. The simulated results, obtained with NASA's FUN3D and Exa's PowerFLOW® for a high-fidelity, 18% scale semi-span model of a Gulfstream aircraft in landing configuration (39 deg flap deflection, main landing gear on and off) are compared to two-dimensional and stereo particle image velocimetry measurements taken within the gear-flap flow interaction region during wind tunnel tests of the model. As part of the bench-marking process, direct comparisons of the mean and fluctuating velocity fields are presented in the form of planar contour plots and extracted line profiles at measurement planes in various orientations stationed in the main gear wake. The measurement planes in the vicinity of the flap side edge and downstream of the flap trailing edge are used to highlight the effects of gear presence on tip vortex development and the ability of the computational tools to accurately capture such effects. The present study indicates that both computed datasets contain enough detail to construct a relatively accurate depiction of gear-flap flow interaction. Such a finding increases confidence in using the simulated volumetric flow solutions to examine the behavior of pertinent aer-odynamic mechanisms within the gear-flap interaction zone.

  1. Hybrid micro-/nano-particle image velocimetry for 3D3C multi-scale velocity field measurement in microfluidics

    International Nuclear Information System (INIS)

    Min, Young Uk; Kim, Kyung Chun

    2011-01-01

    The conventional two-dimensional (2D) micro-particle image velocimetry (micro-PIV) technique has inherent bias error due to the depth of focus along the optical axis to measure the velocity field near the wall of a microfluidics device. However, the far-field measurement of velocity vectors yields good accuracy for micro-scale flows. Nano-PIV using the evanescent wave of total internal reflection fluorescence microscopy can measure near-field velocity vectors within a distance of around 200 nm from the solid surface. A micro-/nano-hybrid PIV system is proposed to measure both near- and far-field velocity vectors simultaneously in microfluidics. A near-field particle image can be obtained by total internal reflection fluorescence microscopy using nanoparticles, and the far-field velocity vectors are measured by three-hole defocusing micro-particle tracking velocimetry (micro-PTV) using micro-particles. In order to identify near- and far-field particle images, lasers of different wavelengths are adopted and tested in a straight microchannel for acquiring the three-dimensional three-component velocity field. We found that the new technique gives superior accuracy for the velocity profile near the wall compared to that of conventional nano-PIV. This method has been successfully applied to precisely measure wall shear stress in 2D microscale Poiseulle flows

  2. Electric field measuring and display system. [for cloud formations

    Science.gov (United States)

    Wojtasinski, R. J.; Lovall, D. D. (Inventor)

    1974-01-01

    An apparatus is described for monitoring the electric fields of cloud formations within a particular area. It utilizes capacitor plates that are alternately shielded from the clouds for generating an alternating signal corresponding to the intensity of the electric field of the clouds. A synchronizing signal is produced for controlling sampling of the alternating signal. Such samplings are fed through a filter and converted by an analogue to digital converter into digital form and subsequently fed to a transmitter for transmission to the control station for recording.

  3. First in situ measurement of electric field fluctuations during strong spread F in the Indian zone

    Directory of Open Access Journals (Sweden)

    H. S. S. Sinha

    2000-05-01

    Full Text Available An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR (14°N, 80°E, dip 14°N along with other experiments, as a part of equatorial spread F (ESF campaign, to study the nature of irregularities in electric field and electron density. The rocket was launched at 2130 local time (LT and it attained an apogee of 348 km. Results of vertical and horizontal electric field fluctuations are presented here. Scale sizes of electric field fluctuations were measured in the vertical direction only. Strong ESF irregularities were observed in three regions, viz., 160-190 km, 210-257 km and 290-330 km. Some of the valley region vertical electric field irregularities (at 165 km and 168 km, in the intermediate-scale size range, observed during this flight, show spectral peak at kilometer scales and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of a new type. Scale sizes of vertical electric field fluctuations showed a decrease with increasing altitude. The most prominent scales were of the order of a few kilometers around 170 km and a few hundred meters around 310 km. Spectra of intermediate-scale vertical electric field fluctuations below the base of the F region (210-257 km showed a tendency to become slightly flatter (spectral index n = -2.1 ± 0.7 as compared to the valley region (n = -3.6 ± 0.8 and the region below the F peak (n = -2.8 ± 0.5. Correlation analysis of the electron density and vertical electric field fluctuations suggests the presence of a sheared flow of current in 160-330 km region.Keywords: Ionosphere (Electric fields and currents; ionospheric irregularities; Radio science (ionospheric physics

  4. The Evolution of the Solar Magnetic Field: A Comparative Analysis of Two Models

    Science.gov (United States)

    McMichael, K. D.; Karak, B. B.; Upton, L.; Miesch, M. S.; Vierkens, O.

    2017-12-01

    Understanding the complexity of the solar magnetic cycle is a task that has plagued scientists for decades. However, with the help of computer simulations, we have begun to gain more insight into possible solutions to the plethora of questions inside the Sun. STABLE (Surface Transport and Babcock Leighton) is a newly developed 3D dynamo model that can reproduce features of the solar cycle. In this model, the tilted bipolar sunspots are formed on the surface (based on the toroidal field at the bottom of the convection zone) and then decay and disperse, producing the poloidal field. Since STABLE is a 3D model, it is able to solve the full induction equation in the entirety of the solar convection zone as well as incorporate many free parameters (such as spot depth and turbulent diffusion) which are difficult to observe. In an attempt to constrain some of these free parameters, we compare STABLE to a surface flux transport model called AFT (Advective Flux Transport) which solves the radial component of the magnetic field on the solar surface. AFT is a state-of-the-art surface flux transport model that has a proven record of being able to reproduce solar observations with great accuracy. In this project, we implement synthetic bipolar sunspots into both models, using identical surface parameters, and run the models for comparison. We demonstrate that the 3D structure of the sunspots in the interior and the vertical diffusion of the sunspot magnetic field play an important role in establishing the surface magnetic field in STABLE. We found that when a sufficient amount of downward magnetic pumping is included in STABLE, the surface magnetic field from this model becomes insensitive to the internal structure of the sunspot and more consistent with that of AFT.

  5. Evaluation of patient dose saving in grid-less x-ray mammography acquisition compared with full field digital mammography (FFDMG) acquisition

    DEFF Research Database (Denmark)

    Abdi, Ahmed Jibril; Mussmann, Bo Redder

    2017-01-01

    to investigate the dose saving in grid-less acquisition compared with conventional full-field digital mammography (FFDMG) acquisitions. A Piranha 657 was used to measure the entrance exposure. The entrance exposure was directly measured on different PMMA thicknesses of 20-70mm in steps of 10mm. The PMMA block...

  6. Field oxide radiation damage measurements in silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, M [Particle Detector Group, Fermilab, Batavia, IL (United States) Research Inst. for High Energy Physics (SEFT), Helsinki (Finland); Singh, P; Shepard, P F [Dept. of Physics and Astronomy, Univ. Pittsburgh, PA (United States)

    1993-04-01

    Surface radiation damage in planar processed silicon detectors is caused by radiation generated holes being trapped in the silicon dioxide layers on the detector wafer. We have studied charge trapping in thick (field) oxide layers on detector wafers by irradiating FOXFET biased strip detectors and MOS test capacitors. Special emphasis was put on studying how a negative bias voltage across the oxide during irradiation affects hole trapping. In addition to FOXFET biased detectors, negatively biased field oxide layers may exist on the n-side of double-sided strip detectors with field plate based n-strip separation. The results indicate that charge trapping occurred both close to the Si-SiO[sub 2] interface and in the bulk of the oxide. The charge trapped in the bulk was found to modify the electric field in the oxide in a way that leads to saturation in the amount of charge trapped in the bulk when the flatband/threshold voltage shift equals the voltage applied over the oxide during irradiation. After irradiation only charge trapped close to the interface is annealed by electrons tunneling to the oxide from the n-type bulk. (orig.).

  7. Visual Field Measurement with Motion Sensitivity Screening Test in ...

    African Journals Online (AJOL)

    Eye disease is a frequent complication of onchocerciasis in countrise where the disease is highly endemic. It has been shown that early ocular lesions which manifest as visual field defects or reduction in visual acuity can be reversed following treatment with ivermectin. At the community level, it is important to detect ...

  8. Internal magnetic field measurement in tokamak plasmas using a ...

    Indian Academy of Sciences (India)

    vice [1], laser-light scattering [2], parametric interaction of microwave ... As we know that, each level of an atom in a weak magnetic field is split into 2В + 1 .... signal detection channel consists of two channels, one is the signal which is the sum ...

  9. Measuring Undrained Shear Strength using CPT and Field Vane

    DEFF Research Database (Denmark)

    Luke, Kirsten

    1992-01-01

    This paper presents the results of CPT's and Field Vane tests from two small test areas with different soils, Glacial Till and Yoldia Clay. An average of Nk = qt/cv for the Yoldia Clay is 7.7 with a standard deviation of 0.7. The average of Nk for the Glacial Till is 9.7 with a standard deviation...

  10. Electromagnetic Near Field Measurements of Two Critical Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Goettee, Jeffrey David

    2015-11-03

    The reactors employed, Godiva IV and WSMR Fast Burst Reactor, are described first. Then the point reactor kinetics model, electromagnetic potential, and the measurement of kinetics quantities are successively discussed. In summary, reactor power produces measurable electric energy. The electric signal mimics power curve for prompt burst operations - features in logarithmic derivatives match. The electric signature should be dependent on the power and not the derivative; therefore, steady-state modes should be measurable.

  11. Properties of the vacuum in models for QCD. Holography vs. resummed field theory. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Zayakin, Andrey V.

    2011-01-17

    This Thesis is dedicated to a comparison of the two means of studying the electromagnetic properties of the QCD vacuum - holography and resummed field theory. I compare two classes of distinct models for the dynamics of the condensates. The first class consists of the so-called holographic models of QCD. Based upon the Maldacena conjecture, it tries to establish the properties of QCD correlation functions from the behavior of classical solutions of field equations in a higher-dimensional theory. Yet in many aspects the holographic approach has been found to be in an excellent agreement with data. These successes are the prediction of the very small viscosity-to-entropy ratio and the predictions of meson spectra up to 5% accuracy in several models. On the other hand, the resummation methods in field theory have not been discarded so far. Both classes of methods have access to condensates. Thus a comprehensive study of condensates becomes possible, in which I compare my calculations in holography and resummed field theory with each other, as well as with lattice results, field theory and experiment. I prove that the low-energy theorems of QCD keep their validity in holographic models with a gluon condensate in a non-trivial way. I also show that the so-called decoupling relation holds in holography models with chiral and gluon condensates, whereas this relation fails in the Dyson-Schwinger approach. On the contrary, my results on the chiral magnetic effect in holography disagree with the weak-field prediction; the chiral magnetic effect (that is, the electric current generation in a magnetic field) is three times less than the current in the weakly-coupled QCD. The chiral condensate behavior is found to be quadratic in external field both in the Dyson-Schwinger approach and in holography, yet we know that in the exact limit the condensate must be linear, thus both classes of models are concluded to be deficient for establishing the correct condensate behaviour in the

  12. Properties of the vacuum in models for QCD. Holography vs. resummed field theory. A comparative study

    International Nuclear Information System (INIS)

    Zayakin, Andrey V.

    2011-01-01

    This Thesis is dedicated to a comparison of the two means of studying the electromagnetic properties of the QCD vacuum - holography and resummed field theory. I compare two classes of distinct models for the dynamics of the condensates. The first class consists of the so-called holographic models of QCD. Based upon the Maldacena conjecture, it tries to establish the properties of QCD correlation functions from the behavior of classical solutions of field equations in a higher-dimensional theory. Yet in many aspects the holographic approach has been found to be in an excellent agreement with data. These successes are the prediction of the very small viscosity-to-entropy ratio and the predictions of meson spectra up to 5% accuracy in several models. On the other hand, the resummation methods in field theory have not been discarded so far. Both classes of methods have access to condensates. Thus a comprehensive study of condensates becomes possible, in which I compare my calculations in holography and resummed field theory with each other, as well as with lattice results, field theory and experiment. I prove that the low-energy theorems of QCD keep their validity in holographic models with a gluon condensate in a non-trivial way. I also show that the so-called decoupling relation holds in holography models with chiral and gluon condensates, whereas this relation fails in the Dyson-Schwinger approach. On the contrary, my results on the chiral magnetic effect in holography disagree with the weak-field prediction; the chiral magnetic effect (that is, the electric current generation in a magnetic field) is three times less than the current in the weakly-coupled QCD. The chiral condensate behavior is found to be quadratic in external field both in the Dyson-Schwinger approach and in holography, yet we know that in the exact limit the condensate must be linear, thus both classes of models are concluded to be deficient for establishing the correct condensate behaviour in the

  13. Stakeholder engagement in comparative effectiveness research: how will we measure success?

    Science.gov (United States)

    Lavallee, Danielle C; Williams, Carla J; Tambor, Ellen S; Deverka, Patricia A

    2012-09-01

    Stakeholder engagement in comparative effectiveness research continues to gain national attention. While various methods are used to gather stakeholder expertise and form recommendations, evaluation of the stakeholder experience is often missing. The lack of evaluation prohibits assessing how effective and meaningful engagement practices are for enhancing research efforts and limits the ability to identify areas for future improvement. We propose that an evaluation plan of engagement processes be developed before stakeholder involvement begins and be required as part of a request for proposal or research grant where stakeholder input is being sought. Furthermore, we recommend the inclusion of six meta-criteria that represent normative goals of multiple studies: respect, trust, legitimacy, fairness, competence and accountability. To aid in the development of future evaluations, we have developed definitions for and matched specific examples of measuring each meta-criterion to serve a guide for others in the field.

  14. Analysis of Fringe Field Formed Inside LDA Measurement Volume Using Compact Two Hololens Imaging Systems

    Science.gov (United States)

    Ghosh, Abhijit; Nirala, A. K.; Yadav, H. L.

    2018-03-01

    We have designed and fabricated four LDA optical setups consisting of aberration compensated four different compact two hololens imaging systems. We have experimentally investigated and realized a hololens recording geometry which is interferogram of converging spherical wavefront with mutually coherent planar wavefront. Proposed real time monitoring and actual fringe field analysis techniques allow complete characterizations of fringes formed at measurement volume and permit to evaluate beam quality, alignment and fringe uniformity with greater precision. After experimentally analyzing the fringes formed at measurement volume by all four imaging systems, it is found that fringes obtained using compact two hololens imaging systems get improved both qualitatively and quantitatively compared to that obtained using conventional imaging system. Results indicate qualitative improvement of non-uniformity in fringe thickness and micro intensity variations perpendicular to the fringes, and quantitative improvement of 39.25% in overall average normalized standard deviations of fringe width formed by compact two hololens imaging systems compare to that of conventional imaging system.

  15. Measurement of neutron and gamma absorbed doses in phantoms exposed to mixed fields

    International Nuclear Information System (INIS)

    Beraud-Sudreau, E.; Lemaire, G.; Maas, J.

    1985-01-01

    In order to study the dosimetric characteristics of PIN junctions, the absorbed doses measured by junctions and FLi7 in air and water phantoms were compared with the doses measured by classical neutron dosimetry in mixed fields. The validity of the experimental responses of PIN junctions being thus checked and established, neutron and gamma dose distributions in tissue equivalent plastic phantoms (plastinaut) and mammals (piglets) were evaluated as well as the absorbed dose distributions in the pig bone-marrow producing areas. By using correlatively a Monte-Carlo calculation method and applying some simplifying assumptions, the absorbed doses were derived from the spectrum of SILENE's neutrons at various depths inside a cubic water phantom and the results were compared with some from the literature [fr

  16. Magnetic field measurement and correction of VECC K500 superconducting cyclotron

    International Nuclear Information System (INIS)

    Dey, M.K.; Debnath, J.; Bhunia, U.; Pradhan, J.; Rashid, H.; Paul, S.; Dutta, A.; Naser, Z.A.; Singh, V.; Pal, G.; Nandi, C.; Dasgupta, S.; Bhattacharya, S.; Pal, S.; Roy, A.; Bhattacharya, T.; Bhole, R.B.; Bhale, D.; Chatterjee, M.; Prasad, R.; Nabhiraj, P.Y.; Hazra, D.P.; Mallik, C.; Bhandari, R.K.

    2006-01-01

    The VECC K500 superconducting cyclotron magnet is commissioned and magnetic field measurement and correction program was successfully completed in March 2006. Here we report the analysis of the measured field data and subsequent correction of the magnet to improve the field quality. (author)

  17. Measuring of electric fields with laser-induced fluorescence-dip Stark spectroscopy

    NARCIS (Netherlands)

    Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W.

    2007-01-01

    The electric field is an important quantity in low-pressure gas discharges, driving many fundamental processes. Unfortunately, it is difficult to measure electric field distributions in plasmas directly. The goal of this research was to develop a diagnostic technique to measure electric fields in

  18. Measurement of the magnetic field inside the holes of a drilled bulk high-Tc superconductor

    Science.gov (United States)

    Lousberg, Gregory P.; Fagnard, Jean-François; Noudem, Jacques G.; Ausloos, Marcel; Vanderheyden, Benoit; Vanderbemden, Philippe

    2009-04-01

    We use macroscopic holes drilled in a bulk YBCO superconductor to probe its magnetic properties in the volume of the sample. The sample is subjected to an AC magnetic flux with a density ranging from 30 to 130 mT and the flux in the superconductor is probed by miniature coils inserted in the holes. In a given hole, three different penetration regimes can be observed: (i) the shielded regime, where no magnetic flux threads the hole; (ii) the gradual penetration regime, where the waveform of the magnetic field has a clipped sine shape whose fundamental component scales with the applied field; and (iii) the flux concentration regime, where the waveform of the magnetic field is nearly a sine wave, with an amplitude exceeding that of the applied field by up to a factor of two. The distribution of the penetration regimes in the holes is compared with that of the magnetic flux density at the top and bottom surfaces of the sample, and is interpreted with the help of optical polarized light micrographs of these surfaces. We show that the measurement of the magnetic field inside the holes can be used as a local characterization of the bulk magnetic properties of the sample.

  19. The measurement of localised fields in different iron compounds by means of the Moessbauer effect

    International Nuclear Information System (INIS)

    Solomon, I.

    1961-01-01

    We have observed the Moessbauer effect in substances: a) which have a zero local field; b) which have an instantaneous local field value which is not zero but which, as a result of rapid fluctuations, has a field which averages zero, c) such as garnets for which the values of the local field have been measured for the two sites. (author) [fr

  20. Measuring Average Angular Velocity with a Smartphone Magnetic Field Sensor

    Science.gov (United States)

    Pili, Unofre; Violanda, Renante

    2018-01-01

    The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper,…

  1. Investigating Call Drops with Field Measurements on Commercial Mobile Phones

    DEFF Research Database (Denmark)

    Messina, Alessandro; Caragea, Gabriel; Compta, Pol Torres

    2013-01-01

    can be done per day. In this paper we present a new methodology to investigate call drops by using mobile phones to do the measurements following the concept of citizen sensing. Therefore, a mobile application for Android is made that collects all necessary data and dumps the measurement results...

  2. Student measurement of blood pressure using a simulator arm compared with a live subject's arm.

    Science.gov (United States)

    Lee, Jennifer J; Sobieraj, Diana M; Kuti, Effie L

    2010-06-15

    To compare accuracy of blood pressure measurements using a live subject and a simulator arm, and to determine students' preferences regarding measurement. This was a crossover study comparing blood pressure measurements from a live subject and a simulator arm. Students completed an anonymous survey instrument defining opinions on ease of measurement. Fifty-seven students completed blood pressure measurements on live subjects while 72 students completed blood pressure measurements using the simulator arm. There were no significant systematic differences between the 2 measurement techniques. Systolic blood pressure measurements from a live subject arm were less likely to be within 4 mm Hg compared with measurements of a simulator arm. Diastolic blood pressure measurements were not significantly different between the 2 techniques. Accuracy of student measurement of blood pressure using a simulator arm was similar to the accuracy with a live subject. There was no difference in students' preferences regarding measurement techniques.

  3. Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, James Tharp [Univ. of Wisconsin, Madison, WI (United States)

    1998-09-01

    The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8-20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation.

  4. Relationship among visual field, blood flow, and neural structure measurements in glaucoma.

    Science.gov (United States)

    Hwang, John C; Konduru, Ranjith; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Varma, Rohit; Sehi, Mitra; Greenfield, David S; Sadda, Srinivas R; Huang, David

    2012-05-17

    To determine the relationship among visual field, neural structural, and blood flow measurements in glaucoma. Case-control study. Forty-seven eyes of 42 patients with perimetric glaucoma were age-matched with 27 normal eyes of 27 patients. All patients underwent Doppler Fourier-domain optical coherence tomography to measure retinal blood flow and standard glaucoma evaluation with visual field testing and quantitative structural imaging. Linear regression analysis was performed to analyze the relationship among visual field, blood flow, and structure, after all variables were converted to logarithmic decibel scale. Retinal blood flow was reduced in glaucoma eyes compared to normal eyes (P flow and structural loss of rim area and retinal nerve fiber layer (RNFL). There was no correlation or paradoxical correlation between blood flow and structure. Multivariate regression analysis revealed that reduced blood flow and structural loss are independent predictors of visual field loss. Each dB decrease in blood flow was associated with at least 1.62 dB loss in mean deviation (P ≤ 0.001), whereas each dB decrease in rim area and RNFL was associated with 1.15 dB and 2.56 dB loss in mean deviation, respectively (P ≤ 0.03). There is a close link between reduced retinal blood flow and visual field loss in glaucoma that is largely independent of structural loss. Further studies are needed to elucidate the causes of the vascular dysfunction and potential avenues for therapeutic intervention. Blood flow measurement may be useful as an independent assessment of glaucoma severity.

  5. Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch

    International Nuclear Information System (INIS)

    Chapman, J.T.

    1998-09-01

    The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8--20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation

  6. Comparative performance of three experimental hut designs for measuring malaria vector responses to insecticides in Tanzania.

    Science.gov (United States)

    Massue, Dennis J; Kisinza, William N; Malongo, Bernard B; Mgaya, Charles S; Bradley, John; Moore, Jason D; Tenu, Filemoni F; Moore, Sarah J

    2016-03-15

    Experimental huts are simplified, standardized representations of human habitations that provide model systems to evaluate insecticides used in indoor residual spray (IRS) and long-lasting insecticidal nets (LLINs) to kill disease vectors. Hut volume, construction materials and size of entry points impact mosquito entry and exposure to insecticides. The performance of three standard experimental hut designs was compared to evaluate insecticide used in LLINs. Field studies were conducted at the World Health Organization Pesticide Evaluation Scheme (WHOPES) testing site in Muheza, Tanzania. Three East African huts, three West African huts, and three Ifakara huts were compared using Olyset(®) and Permanet 2.0(®) versus untreated nets as a control. Outcomes measured were mortality, induced exophily (exit rate), blood feeding inhibition and deterrence (entry rate). Data were analysed using linear mixed effect regression and Bland-Altman comparison of paired differences. A total of 613 mosquitoes were collected in 36 nights, of which 13.5% were Anopheles gambiae sensu lato, 21% Anopheles funestus sensu stricto, 38% Mansonia species and 28% Culex species. Ifakara huts caught three times more mosquitoes than the East African and West African huts, while the West African huts caught significantly fewer mosquitoes than the other hut types. Mosquito densities were low, very little mosquito exit was measured in any of the huts with no measurable exophily caused by the use of either Olyset or Permanet. When the huts were directly compared, the West African huts measured greater exophily than other huts. As unholed nets were used in the experiments and few mosquitoes were captured, it was not possible to measure difference in feeding success either between treatments or hut types. In each of the hut types there was increased mortality when Permanet or Olyset were present inside the huts compared to the control, however this did not vary between the hut types. Both East African

  7. Transient-field strength measurements for 52Cr traversing Fe hosts at high velocity and polarization transfer mechanisms

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Doran, C.E.; Byrne, A.P.; Bolotin, H.H.; Dracoulis, G.D.

    1986-12-01

    Transient-field strengths were measured for 52 Cr ions traversing polarized Fe hosts at velocities up to 12v>=o (v>=o = c/137 = Bohr velocity). The results are compared with predictions of various transient field parametrizations and discussed in terms of possible mechanisms by which polarization might be transferred from the Fe host to inner vacancies of the moving Cr ions. The g-factor of the first 2 + state of 52 Cr was also measured by the transient field technique and found to be in accord with shell-model calculations

  8. Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data

    Science.gov (United States)

    Veltman, K.; Huijbregts, M.A.J.; Vijver, M.G.; Peijnenburg, W.J.G.M.; Hobbelen, P.H.F.; Koolhaas, J.E.; van Gestel, C.A.M.; van Vliet, P.C.J.; Jan, Hendriks A.

    2007-01-01

    The mechanistic bioaccumulation model OMEGA (Optimal Modeling for Ecotoxicological Applications) is used to estimate accumulation of zinc (Zn), copper (Cu), cadmium (Cd) and lead (Pb) in the earthworm Lumbricus rubellus. Our validation to field accumulation data shows that the model accurately predicts internal cadmium concentrations. In addition, our results show that internal metal concentrations in the earthworm are less than linearly (slope < 1) related to the total concentration in soil, while risk assessment procedures often assume the biota-soil accumulation factor (BSAF) to be constant. Although predicted internal concentrations of all metals are generally within a factor 5 compared to field data, incorporation of regulation in the model is necessary to improve predictability of the essential metals such as zinc and copper. ?? 2006 Elsevier Ltd. All rights reserved.

  9. Comparing artistic and geometrical perspective depictions of space in the visual field.

    Science.gov (United States)

    Baldwin, Joseph; Burleigh, Alistair; Pepperell, Robert

    2014-01-01

    Which is the most accurate way to depict space in our visual field? Linear perspective, a form of geometrical perspective, has traditionally been regarded as the correct method of depicting visual space. But artists have often found it is limited in the angle of view it can depict; wide-angle scenes require uncomfortably close picture viewing distances or impractical degrees of enlargement to be seen properly. Other forms of geometrical perspective, such as fisheye projections, can represent wider views but typically produce pictures in which objects appear distorted. In this study we created an artistic rendering of a hemispherical visual space that encompassed the full visual field. We compared it to a number of geometrical perspective projections of the same space by asking participants to rate which best matched their visual experience. We found the artistic rendering performed significantly better than the geometrically generated projections.

  10. Biological effects from electromagnetic fields: Research progress and exposure measurements

    International Nuclear Information System (INIS)

    Mauro, F.; Lovisolo, G.A.; Raganella, L.

    1992-01-01

    Although it is commonly accepted that exposure to high levels of electromagnetic, micro- and radiofrequency waves produces harmful effects to the health of man, the formulation of exposure limits is still an open process and dependent upon the evolving level of knowledge in this field. This paper surveys the current level of knowledge gained through 'in vitro' and 'in vivo' radiological and epidemiological studies on different types of electromagnetic radiation derived effects - chromosomal, mutagenic, carcinogenic. It then reviews efforts by international organizations, e. g., the International Radiation Protection Association, to establish exposure limits for radiofrequency electromagnetic fields. Brief notes are given on the electromagnetic radiation monitoring campaign being performed by public health authorities in the Lazio Region of Italy

  11. Characterization of field-measured soil-water properties

    International Nuclear Information System (INIS)

    Nielsen, D.R.; Reichardt, K.; Wierenga, P.J.

    1983-01-01

    As part of a five-year co-ordinated research programme of the International Atomic Energy Agency, the Use of Radiation and Isotope Techniques in Studies of Soil-Water Regimes, soil physicists examined soil-water properties of one or two field sites in 11 different countries (Brazil, Belgium, Cyprus, Chile, Israel, Japan, Madagascar, Nigeria, Senegal, Syria and Thailand). The results indicate that the redistribution method yields values of soil-water properties that have a large degree of uncertainty, and that this uncertainty is not necessarily related to the kind of soil being analysed. Regardless of the fundamental cause of this uncertainty (experimental and computational errors versus natural soil variability), the conclusion is that further developments of field technology depend upon stochastic rather than deterministic concepts

  12. L2F and LDV velocimetry measurement and analysis of the 3-D flow field in a centrifugal compressor

    Science.gov (United States)

    Fagan, John R., Jr.; Fleeter, Sanford

    1989-01-01

    The flow field in the Purdue Research Centrifugal Compressor is studied using a laser two-focus (L2F) velocimeter. L2F data are obtained which quantify: (1) the compressor inlet flow field; (2) the steady-state velocity field in the impeller blade passages; and (3) the flow field in the radial diffuser. The L2F data are compared with both laser Doppler velocimetry (LDV) data and predictions from three-dimensional inviscid and viscous flow models. In addition, a model is developed to calculate the effect on the measurement volume geometry of refraction by curved windows. Finally, the advantages and disadvantages of using the L2F for turbomachinery measurements is discussed in terms of measurement accuracy, ease of use, including sample time per correlated event and the ability to make measurements in regions of high noise due to stray radiation from wall reflections.

  13. Measurement of the terrestrial magnetic field and its anomalies

    International Nuclear Information System (INIS)

    Duret, D.

    1994-01-01

    After a presentation of the terrestrial magnetic field and its various anomalies, the different types of magnetometers commonly used are reviewed with their characteristics and performances: scalar magnetometers (free precession and continuous polarization proton magnetometers, dynamic polarization proton magnetometers, optical pumping magnetometers, electronic resonance scalar magnetometers (without pumping)); vectorial magnetometers (flux gate magnetometers, induction magnetometers, suspended magnet magnetometers, superconducting magnetometers, integrated magnetometers, resonance directional magnetometers). The magnetometry market and applications are discussed. 20 figs., 9 tabs., 72 refs

  14. Measurement of surface charges on the dielectric film based on field mills under the HVDC corona wire

    Science.gov (United States)

    Donglai, WANG; Tiebing, LU; Yuan, WANG; Bo, CHEN; Xuebao, LI

    2018-05-01

    The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current (HVDC) power lines. HVDC lines may cross the greenhouses due to the restricted transmission corridors. Under the condition of ion flow field, the dielectric films on the greenhouses will be charged, and the electric fields in the greenhouses may exceed the limit value. Field mills are widely used to measure the ground-level direct current electric fields under the HVDC power lines. In this paper, the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields. The advantages of hiding the field mill probes in the ground are studied. The charge inversion algorithm is optimized in order to decrease the impact of measurement errors. Based on the experimental results, the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied. The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height. Compared with the total electric field strengths, the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.

  15. A Comparative Field Monitoring of Column Shortenings in Tall Buildings Using Wireless and Wired Sensor Network Systems

    Directory of Open Access Journals (Sweden)

    Sungho Lee

    2016-01-01

    Full Text Available A comparative field measurement for column shortening of tall buildings is presented in this study, with a focus on the reliability and stability of a wireless sensor network. A wireless sensor network was used for monitoring the column shortenings of a 58-story building under construction. The wireless sensor network, which was composed of sensor and master nodes, employed the ultra-high-frequency band and CDMA communication methods. To evaluate the reliability and stability of the wireless sensor network system, the column shortenings were also measured using a conventional wired monitoring system. Two vibration wire gauges were installed in each of the selected 7 columns and 3 walls. Measurements for selected columns and walls were collected for 270 days after casting of the concrete. The results measured by the wireless sensor network were compared with the results of the conventional method. The strains and column shortenings measured using both methods showed good agreement for all members. It was verified that the column shortenings of tall buildings could be monitored using the wireless sensor network system with its reliability and stability.

  16. Power and loads for wind turbines in yawed conditions. Analysis of field measurements and aerodynamic predictions

    Energy Technology Data Exchange (ETDEWEB)

    Boorsma, K. [ECN Wind Energy, Petten (Netherlands)

    2012-11-15

    A description is given of the work carried out within the framework of the FLOW (Far and Large Offshore Wind) project on single turbine performance in yawed flow conditions. Hereto both field measurements as well as calculations with an aerodynamic code are analyzed. The rotors of horizontal axis wind turbines follow the changes in the wind direction for optimal performance. The reason is that the power is expected to decrease for badly oriented rotors. So, insight in the effects of the yaw angle on performance is important for optimization of the yaw control of each individual turbine. The effect of misalignment on performance and loads of a single 2.5 MW wind turbine during normal operation is investigated. Hereto measurements at the ECN Wind Turbine Test Site Wieringermeer (EWTW) are analyzed from December 2004 until April 2009. Also, the influence of yaw is studied using a design code and results from this design code are compared with wind tunnel measurements.

  17. Comparison of mobility extraction methods based on field-effect measurements for graphene

    Directory of Open Access Journals (Sweden)

    Hua Zhong

    2015-05-01

    Full Text Available Carrier mobility extraction methods for graphene based on field-effect measurements are explored and compared according to theoretical analysis and experimental results. A group of graphene devices with different channel lengths were fabricated and measured, and carrier mobility is extracted from those electrical transfer curves using three different methods. Accuracy and applicability of those methods were compared. Transfer length method (TLM can obtain accurate density dependent mobility and contact resistance at relative high carrier density based on data from a group of devices, and then can act as a standard method to verify other methods. As two of the most popular methods, direct transconductance method (DTM and fitting method (FTM can extract mobility easily based on transfer curve of a sole graphene device. DTM offers an underestimated mobility at any carrier density owing to the neglect of contact resistances, and the accuracy can be improved through fabricating field-effect transistors with long channel and good contacts. FTM assumes a constant mobility independent on carrier density, and then can obtain mobility, contact resistance and residual density stimulations through fitting a transfer curve. However, FTM tends to obtain a mobility value near Dirac point and then overestimates carrier mobility of graphene. Comparing with the DTM and FTM, TLM could offer a much more accurate and carrier density dependent mobility, that reflects the complete properties of graphene carrier mobility.

  18. Exploring the nearshore marine wind profile from field measurements and numerical hindcast

    Science.gov (United States)

    del Jesus, F.; Menendez, M.; Guanche, R.; Losada, I.

    2012-12-01

    Wind power is the predominant offshore renewable energy resource. In the last years, offshore wind farms have become a technically feasible source of electrical power. The economic feasibility of offshore wind farms depends on the quality of the offshore wind conditions compared to that of onshore sites. Installation and maintenance costs must be balanced with more hours and a higher quality of the available resources. European offshore wind development has revealed that the optimum offshore sites are those in which the distance from the coast is limited with high available resource. Due to the growth in the height of the turbines and the complexity of the coast, with interactions between inland wind/coastal orography and ocean winds, there is a need for field measurements and validation of numerical models to understand the marine wind profile near the coast. Moreover, recent studies have pointed out that the logarithmic law describing the vertical wind profile presents limitations. The aim of this work is to characterize the nearshore vertical wind profile in the medium atmosphere boundary layer. Instrumental observations analyzed in this work come from the Idermar project (www.Idermar.es). Three floating masts deployed at different locations on the Cantabrian coast provide wind measurements from a height of 20 to 90 meters. Wind speed and direction are measured as well as several meteorological variables at different heights of the profile. The shortest wind time series has over one year of data. A 20 year high-resolution atmospheric hindcast, using the WRF-ARW model and focusing on hourly offshore wind fields, is also analyzed. Two datasets have been evaluated: a European reanalysis with a ~15 Km spatial resolution, and a hybrid downscaling of wind fields with a spatial resolution of one nautical mile over the northern coast of Spain.. These numerical hindcasts have been validated based on field measurement data. Several parameterizations of the vertical wind

  19. Combining virtual observatory and equivalent source dipole approaches to describe the geomagnetic field with Swarm measurements

    Science.gov (United States)

    Saturnino, Diana; Langlais, Benoit; Amit, Hagay; Civet, François; Mandea, Mioara; Beucler, Éric

    2018-03-01

    A detailed description of the main geomagnetic field and of its temporal variations (i.e., the secular variation or SV) is crucial to understanding the geodynamo. Although the SV is known with high accuracy at ground magnetic observatory locations, the globally uneven distribution of the observatories hampers the determination of a detailed global pattern of the SV. Over the past two decades, satellites have provided global surveys of the geomagnetic field which have been used to derive global spherical harmonic (SH) models through some strict data selection schemes to minimise external field contributions. However, discrepancies remain between ground measurements and field predictions by these models; indeed the global models do not reproduce small spatial scales of the field temporal variations. To overcome this problem we propose to directly extract time series of the field and its temporal variation from satellite measurements as it is done at observatory locations. We follow a Virtual Observatory (VO) approach and define a global mesh of VOs at satellite altitude. For each VO and each given time interval we apply an Equivalent Source Dipole (ESD) technique to reduce all measurements to a unique location. Synthetic data are first used to validate the new VO-ESD approach. Then, we apply our scheme to data from the first two years of the Swarm mission. For the first time, a 2.5° resolution global mesh of VO time series is built. The VO-ESD derived time series are locally compared to ground observations as well as to satellite-based model predictions. Our approach is able to describe detailed temporal variations of the field at local scales. The VO-ESD time series are then used to derive global spherical harmonic models. For a simple SH parametrization the model describes well the secular trend of the magnetic field both at satellite altitude and at the surface. As more data will be made available, longer VO-ESD time series can be derived and consequently used to

  20. Remote sensing of chlorophyll a fluorescence of vegetation canopies. 1. Near and far field measurement techniques

    International Nuclear Information System (INIS)

    Cecchi, G.; Mazzinghi, P.; Pantani, L.; Valentini, R.; Tirelli, D.; De Angelis, P.

    1994-01-01

    This article presents instruments and techniques, used in several vegetation monitoring experiments. Simultaneous monitoring was performed with different approaches, including fluorescence lidar and passive remote sensing, leaf level reflectance, and laser fluorimetry, and compared with physiological measurements. Most of the instrumentation described was designed and built for this application. Experiments were carried out in the laboratory and in the field, to investigate the relationship between chlorophyll fluorescence spectra and plant ecophysiology. Remote sensing, spectroscopy, and ecophysiology data were then collected by an intensive research team, joining different experiences and working in national and international projects