WorldWideScience

Sample records for field measurements compared

  1. Comparing Laboratory and Field Measured Bioaccumulation Endpoints

    NARCIS (Netherlands)

    Burkhard, L. P.; Arnot, J. A.; Embry, M. R.; Farley, K. J.; Hoke, R. A.; Kitano, M.; Leslie, H.A.; Lotufo, G. R.; Parkerton, T.F.; Sappington, K.G.; Tomy, G. T.; Woodburn, K.B.

    2011-01-01

    An approach for comparing laboratory and field measures of bioaccumulation is presented to facilitate the interpretation of different sources of bioaccumulation data. Differences in numerical scales and units are eliminated by converting the data to dimensionless fugacity (or

  2. Comparing i-Tree modeled ozone deposition with field measurements in a periurban Mediterranean forest

    Science.gov (United States)

    A. Morani; D. Nowak; S. Hirabayashi; G. Guidolotti; M. Medori; V. Muzzini; S. Fares; G. Scarascia Mugnozza; C. Calfapietra

    2014-01-01

    Ozone flux estimates from the i-Tree model were compared with ozone flux measurements using the Eddy Covariance technique in a periurban Mediterranean forest near Rome (Castelporziano). For the first time i-Tree model outputs were compared with field measurements in relation to dry deposition estimates. Results showed generally a...

  3. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    Science.gov (United States)

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Electric field measurements on Cluster: comparing the double-probe and electron drift techniques

    Directory of Open Access Journals (Sweden)

    A. I. Eriksson

    2006-03-01

    Full Text Available The four Cluster satellites each carry two instruments designed for measuring the electric field: a double-probe instrument (EFW and an electron drift instrument (EDI. We compare data from the two instruments in a representative sample of plasma regions. The complementary merits and weaknesses of the two techniques are illustrated. EDI operations are confined to regions of magnetic fields above 30 nT and where wave activity and keV electron fluxes are not too high, while EFW can provide data everywhere, and can go far higher in sampling frequency than EDI. On the other hand, the EDI technique is immune to variations in the low energy plasma, while EFW sometimes detects significant nongeophysical electric fields, particularly in regions with drifting plasma, with ion energy (in eV below the spacecraft potential (in volts. We show that the polar cap is a particularly intricate region for the double-probe technique, where large nongeophysical fields regularly contaminate EFW measurments of the DC electric field. We present a model explaining this in terms of enhanced cold plasma wake effects appearing when the ion flow energy is higher than the thermal energy but below the spacecraft potential multiplied by the ion charge. We suggest that these conditions, which are typical of the polar wind and occur sporadically in other regions containing a significant low energy ion population, cause a large cold plasma wake behind the spacecraft, resulting in spurious electric fields in EFW data. This interpretation is supported by an analysis of the direction of the spurious electric field, and by showing that use of active potential control alleviates the situation.

  5. Small Field Dosimetry Comparing Measured Data Versus the ADAC Pinnacle 3 Model

    National Research Council Canada - National Science Library

    Ludolph, Daniel

    2004-01-01

    .... While this method can optimize conformity to tumors and provide better sparing of surrounding tissue, it also presents a host of challenges due to reliance on dosimetry data for small field sizes...

  6. Measuring the Perception of Travel Security – Comparative Analysis of Students in Two Different Fields: Tourism and Security

    Directory of Open Access Journals (Sweden)

    Sebastjan Repnik

    2015-01-01

    Full Text Available The aim of the research was to determine how students/respondents perceive security on their travels in Europe. The respondents belong to two different study programmes, one focusing on the field of security (Faculty of Criminal Justice and Security, University of Maribor and the other on the field of tourism (Higher Vocational School for Catering and Tourism. Our main presumption was that students of the two institutions developed a different attitude towards travel security since their studies focus on two substantively different academic-professional fields. We examined their attitude towards security factors such as: security climate, self-protection and collective security. In our research we included a sample of 100 students/respondents. We used an instrument in the form of a questionnaire for the quantitative measurement of responses on a 5-point Likert scale. To portray the results of the research we also used various statistical indicators in the computer programme SPSS such as: arithmetic mean, Man-Whitney test, frequency distribution of responses, where independent variables are displayed. The findings suggest that the students/respondents attitude towards safety and their expectations on individual elements of all three security factors differ in the two target groups. The expectations of students/respondents of FCJS regarding the implementation and provision of security are higher compared to students/respondents of HVC. Respondents have different experience with security on their travels, as the number of travels varies quite substantially between students. Both institutions can use the results of the research in the evaluation processes of their study programmes. On the basis of the results of the research it is substantiated that the field and content of study have an impact on the students’ attitude to elements of security while travelling. The findings are intended to all researchers in the field of security and tourism, as

  7. Magnetic field measuring device

    International Nuclear Information System (INIS)

    Hara, Shigemitsu; Abe, Mitsushi.

    1996-01-01

    If signal voltages are integrated with lapse of time in a thermonuclear device, erroneous voltages are also integrated with lapse of time thereby resulting in occurrence of measuring errors increased with lapse of time, and continuous measurement for magnetic fields at high accuracy for a long period of time has been difficult. Then, a movable coil is disposed in the magnetic fields to be measured in order to directly measure the magnetic fields at the periphery of the plasmas, and electric current is supplied to the coil and resulted electromagnetic force is measured to obtain a magnetic field. If electric current is supplied to the coil in the magnetic fields, electromagnetic force (rotational torque) directly in proportion to the magnetic fields is generated. If the electromagnetic force is measured, magnetic fields can be determined directly without using an integrator. If a resistor wire is disposed on one end of the coil so that the resistor wire extends/shrinks by the electromagnetic force and changes the resistance value, the electromagnetic force can be determined from the magnetic fields based on the change of the resistance values. Since the measurement using magnetic fields does not require semiconductor devices which are sensitive to radiation, and the magnetic fields can be measured directly, the measurement can be conducted at a constant accuracy even for a long period of time. (N.H.)

  8. Magnetic field measuring device

    International Nuclear Information System (INIS)

    Hara, Shigemitsu; Takeuchi, Kazuhiro; Hirota, Jun-ichi.

    1996-01-01

    In order to directly measure the magnetic fields in the vicinity of plasmas in a thermonuclear device, electric current is supplied to a conductor intersecting magnetic fields, and the position of the conductor is changed by generated electromagnetic forces, and the positional change of the conductor is measured to determine the magnetic fields. Namely, if electric current is supplied to the conductor crossing the magnetic fields, electromagnetic forces directly in proportion to the magnetic fields exert on the object. If the forces are measured, magnetic fields can be determined directly without using an integrator. If springs are attached to the conductor undergoing electromagnetic forces, as a method of measuring electromagnetic forces, since the distortion is in proportion to the electromagnetic forces, magnetic fields can be determined, for example, by changing the position of a contact of a variable resistor interlocking with the positional change of the spring. Since a semiconductor device which is sensitive to radiation is not necessary and the magnetic fields can be measured directly in this method for the measurement of the magnetic fields, the measurement can be conducted at a constant accuracy even in a long period of time. The device of the present invention can measure magnetic fields with no drift components of the integrator, has excellent radiation-resistance and can improve the plant safety. (N.H.)

  9. Efficient magnetic field measurements

    NARCIS (Netherlands)

    Setiawan, Iwan; Moonen, Niek; Buesink, Frits; Leferink, Frank

    2017-01-01

    Measuring magnetic fields of equipment under test at low frequencies which is received by loop antennas using an EMI receiver with small bandwidths takes much time and can even reach a week for a standard measurement. This waste in time could be avoided by applying time domain measurements.

  10. Measurement of radiofrequency fields

    International Nuclear Information System (INIS)

    Leonowich, J.A.

    1992-05-01

    We are literally surrounded by radiofrequency (RFR) and microwave radiation, from both natural and man-made sources. The identification and control of man-made sources of RFR has become a high priority of radiation safety professionals in recent years. For the purposes of this paper, we will consider RFR to cover the frequencies from 3 kHz to 300 MHz, and microwaves from 300 MHz to 300 GHz, and will use the term RFR interchangeably to describe both. Electromagnetic radiation and field below 3 kHz is considered Extremely Low Frequency (ELF) and will not be discussed in this paper. Unlike x- and gamma radiation, RFR is non-ionizing. The energy of any RFR photon is insufficient to produce ionizations in matter. The measurement and control of RFR hazards is therefore fundamentally different from ionizing radiation. The purpose of this paper is to acquaint the reader with the fundamental issues involved in measuring and safely using RFR fields. 23 refs

  11. Comparing Multiple Evapotranspiration-calculating Methods, Including Eddy Covariance and Surface Renewal, Using Empirical Measurements from Alfalfa Fields in the Sacramento-San Joaquin River Delta

    Science.gov (United States)

    Clay, J.; Kent, E. R.; Leinfelder-Miles, M.; Lambert, J. J.; Little, C.; Paw U, K. T.; Snyder, R. L.

    2016-12-01

    Eddy covariance and surface renewal measurements were used to estimate evapotranspiration (ET) over a variety of crop fields in the Sacramento-San Joaquin River Delta during the 2016 growing season. However, comparing and evaluating multiple measurement systems and methods for determining ET was focused upon at a single alfalfa site. The eddy covariance systems included two systems for direct measurement of latent heat flux: one using a separate sonic anemometer and an open path infrared gas analyzer and another using a combined system (Campbell Scientific IRGASON). For these methods, eddy covariance was used with measurements from the Campbell Scientific CSAT3, the LI-COR 7500a, the Campbell Scientific IRGASON, and an additional R.M. Young sonic anemometer. In addition to those direct measures, the surface renewal approach included several energy balance residual methods in which net radiation, ground heat flux, and sensible heat flux (H) were measured. H was measured using several systems and different methods, including using multiple fast-response thermocouple measurements and using the temperatures measured by the sonic anemometers. The energy available for ET was then calculated as the residual of the surface energy balance equation. Differences in ET values were analyzed between the eddy covariance and surface renewal methods, using the IRGASON-derived values of ET as the standard for accuracy.

  12. Wake field measurements

    International Nuclear Information System (INIS)

    Palumbo, L.

    1989-01-01

    In this paper the concept of Wakefields and Machine Impedance are introduced. Several measurements technique of these quantities either in the laboratory before installation or from beam observation are presented

  13. Comparative studies of RNFL thickness measured by OCT with global index of visual fields in patients with ocular hypertension and early open angle glaucoma

    Directory of Open Access Journals (Sweden)

    Sergios Taliantzis

    2009-06-01

    Full Text Available Sergios Taliantzis, Dimitris Papaconstantinou, Chrysanthi Koutsandrea, Michalis Moschos, Michalis Apostolopoulos, Gerasimos GeorgopoulosAthens University Medical School, Department of Ophthalmology, Athens, GreecePurpose: To compare the functional changes in visual fields with optical coherence tomography (OCT findings in patients with ocular hypertension, open angle glaucoma, and suspected glaucoma. In addition, our purpose is to evaluate the correlation of global indices with the structural glaucomatous defect, to assess their statistical importance in all the groups of our study, and to estimate their validity to the clinical practice.Methods: One hundred sixty nine eyes (140 patients were enrolled. The patients were classified in three groups. Group 1 consisted of 54 eyes with ocular hypertension, group 2 of 42 eyes with preperimetric glaucoma, and group 3 of 73 eyes with chronic open angle glaucoma. All of them underwent ophthalmic examination according to a prefixed protocol, OCT exam (Stratus 3000 for retinal nerve fiber layer (RNFL thickness measurement with fast RNFL thickness protocol and visual fields (VF examination with Octopus perimeter (G2 program, central 30–2 threshold strategy. Pearson correlation was calculated between RNFL thickness and global index of VF.Results: A moderate correlation between RNFL thickness and indices mean sensitivity (MS, mean defect (MD and loss variance (LV of VF (0.547, -0.582, -0.527, respectively; P < 0.001 was observed for all patients. Correlations of the ocular hypertension and preperimetric groups are weak. Correlation of RNFL thickness with global indices becomes stronger as the structural alterations become deeper in OCT exam. Correlation of RNFL thickness with the global index of VF, in respective segments around optic disk was also calculated and was found significant in the nasal, inferior, superior, and temporal segments.Conclusion: RNFL average thickness is not a reliable index for early

  14. Measurements of magnetic field alignment

    International Nuclear Information System (INIS)

    Kuchnir, M.; Schmidt, E.E.

    1987-01-01

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs

  15. Validation of a Tablet Application for Assessing Dietary Intakes Compared with the Measured Food Intake/Food Waste Method in Military Personnel Consuming Field Rations

    Directory of Open Access Journals (Sweden)

    Mavra Ahmed

    2017-02-01

    Full Text Available The collection of accurate dietary intakes using traditional dietary assessment methods (e.g., food records from military personnel is challenging due to the demanding physiological and psychological conditions of training or operations. In addition, these methods are burdensome, time consuming, and prone to measurement errors. Adopting smart-phone/tablet technology could overcome some of these barriers. The objective was to assess the validity of a tablet app, modified to contain detailed nutritional composition data, in comparison to a measured food intake/waste method. A sample of Canadian Armed Forces personnel, randomized to either a tablet app (n = 9 or a weighed food record (wFR (n = 9, recorded the consumption of standard military rations for a total of 8 days. Compared to the gold standard measured food intake/waste method, the difference in mean energy intake was small (−73 kcal/day for tablet app and −108 kcal/day for wFR (p > 0.05. Repeated Measures Bland-Altman plots indicated good agreement for both methods (tablet app and wFR with the measured food intake/waste method. These findings demonstrate that the tablet app, with added nutritional composition data, is comparable to the traditional dietary assessment method (wFR and performs satisfactorily in relation to the measured food intake/waste method to assess energy, macronutrient, and selected micronutrient intakes in a sample of military personnel.

  16. Validation of a Tablet Application for Assessing Dietary Intakes Compared with the Measured Food Intake/Food Waste Method in Military Personnel Consuming Field Rations

    Science.gov (United States)

    Ahmed, Mavra; Mandic, Iva; Lou, Wendy; Goodman, Len; Jacobs, Ira; L’Abbé, Mary R.

    2017-01-01

    The collection of accurate dietary intakes using traditional dietary assessment methods (e.g., food records) from military personnel is challenging due to the demanding physiological and psychological conditions of training or operations. In addition, these methods are burdensome, time consuming, and prone to measurement errors. Adopting smart-phone/tablet technology could overcome some of these barriers. The objective was to assess the validity of a tablet app, modified to contain detailed nutritional composition data, in comparison to a measured food intake/waste method. A sample of Canadian Armed Forces personnel, randomized to either a tablet app (n = 9) or a weighed food record (wFR) (n = 9), recorded the consumption of standard military rations for a total of 8 days. Compared to the gold standard measured food intake/waste method, the difference in mean energy intake was small (−73 kcal/day for tablet app and −108 kcal/day for wFR) (p > 0.05). Repeated Measures Bland-Altman plots indicated good agreement for both methods (tablet app and wFR) with the measured food intake/waste method. These findings demonstrate that the tablet app, with added nutritional composition data, is comparable to the traditional dietary assessment method (wFR) and performs satisfactorily in relation to the measured food intake/waste method to assess energy, macronutrient, and selected micronutrient intakes in a sample of military personnel. PMID:28264428

  17. Comparative Field Tests of Pressurised Rover Prototypes

    Science.gov (United States)

    Mann, G. A.; Wood, N. B.; Clarke, J. D.; Piechochinski, S.; Bamsey, M.; Laing, J. H.

    The conceptual designs, interior layouts and operational performances of three pressurised rover prototypes - Aonia, ARES and Everest - were field tested during a recent simulation at the Mars Desert Research Station in Utah. A human factors experiment, in which the same crew of three executed the same simulated science mission in each of the three vehicles, yielded comparative data on the capacity of each vehicle to safely and comfortably carry explorers away from the main base, enter and exit the vehicle in spacesuits, perform science tasks in the field, and manage geological and biological samples. As well as offering recommendations for design improvements for specific vehicles, the results suggest that a conventional Sports Utility Vehicle (SUV) would not be suitable for analog field work; that a pressurised docking tunnel to the main habitat is essential; that better provisions for spacesuit storage are required; and that a crew consisting of one driver/navigator and two field science crew specialists may be optimal. From a field operations viewpoint, a recurring conflict between rover and habitat crews at the time of return to the habitat was observed. An analysis of these incidents leads to proposed refinements of operational protocols, specific crew training for rover returns and again points to the need for a pressurised docking tunnel. Sound field testing, circulating of results, and building the lessons learned into new vehicles is advocated as a way of producing ever higher fidelity rover analogues.

  18. Comparing sensitivity of ecotoxicological effect endpoints between laboratory and field

    DEFF Research Database (Denmark)

    Selck, H.; Riemann, B.; Christoffersen, K.

    2002-01-01

    multispecies field tests using tributyltin (TBT) and linear alkylbenzene sulfonates (LAS) were compared with published laboratory single-species test results and measured in situ concentrations. Extrapolation methods were evaluated by comparing predicted no-effect concentrations (PNECs), calculated by AF...

  19. Measuring and Comparing Energy Flexibilities

    DEFF Research Database (Denmark)

    Valsomatzis, Emmanouil; Hose, Katja; Pedersen, Torben Bach

    2015-01-01

    Flexibility in energy supply and demand becomes more and more important with increasing Renewable Energy Sources (RES) production and the emergence of the Smart Grid. So-called prosumers, i.e., entities that produce and/or consume energy, can offer their inherent flexibilities through so......-called demand response and thus help stabilize the energy markets. Thus, prosumer flexibility becomes valuable and the ongoing Danish project TotalFlex [1] explores the use of prosumer flexibility in the energy market using the concept of a flex-offer [2], which captures energy flexibilities in time and...... induced by time and amount individually, and by their com- bination. To this end, we introduce several flexibility measures that take into account the combined effect of time and energy on flex-offer flexibility and discuss their respective pros and cons through a number of realistic examples....

  20. Fringing field measurement of dipole magnet

    International Nuclear Information System (INIS)

    Lu Hongyou; Jiang Weisheng; Mao Naifeng; Mao Xingwang

    1985-01-01

    The fringing field of a dipole magnet with a C-type circuit and homogeneous field in the gap has been measured including the distributions of fringing fields with and without magnetic shield. The measured data was analyzed by using the concept of virtual field boundary

  1. Classical field approach to quantum weak measurements.

    Science.gov (United States)

    Dressel, Justin; Bliokh, Konstantin Y; Nori, Franco

    2014-03-21

    By generalizing the quantum weak measurement protocol to the case of quantum fields, we show that weak measurements probe an effective classical background field that describes the average field configuration in the spacetime region between pre- and postselection boundary conditions. The classical field is itself a weak value of the corresponding quantum field operator and satisfies equations of motion that extremize an effective action. Weak measurements perturb this effective action, producing measurable changes to the classical field dynamics. As such, weakly measured effects always correspond to an effective classical field. This general result explains why these effects appear to be robust for pre- and postselected ensembles, and why they can also be measured using classical field techniques that are not weak for individual excitations of the field.

  2. Field Measurement of Thermal Inertia

    Science.gov (United States)

    Kahle, A. B.; Schieldge, J. P.; Marsh, S. E.

    1983-01-01

    Radiometric measurements determine thermal inertia for geologic materials. Measurements are correlated with data obtained by remote sensing, for discriminating varieties of rock encountered when exploring for minerals by aircraft or by satellites equipped with infrared scanners.

  3. Quality assurance in field radiation measurements

    International Nuclear Information System (INIS)

    Howell, W.P.

    1985-01-01

    In most cases, an ion chamber radiation measuring instrument is calibrated in a uniform gamma radiation field. This results in a uniform ionization field throughout the ion chamber. Measurement conditions encountered in the field often produce non-uniform ionization fields within the ion chamber, making determination of true dose rates to personnel difficult and prone to error. Extensive studies performed at Hanford have provided appropriate correction factors for use with one type of ion chamber instrument, the CP. Suitable corrections are available for the following distinct measurement circumstances: (1) contact measurements on large beta and gamma sources, (2) contact measurements on small beta and gamma sources, (3) contact measurements on small-diameter cylinders, (4) measurements in small gamma beams, and (5) measurements at a distance from large beta sources. Recommendations are made for the implementation of these correction factors, in the interest of improved quality assurance in field radiation measurements. 12 references, 10 figures

  4. Measurements of Solar Vector Magnetic Fields

    International Nuclear Information System (INIS)

    Hagyard, M.J.

    1985-05-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display

  5. Measurements of magnetic field sources in schools

    International Nuclear Information System (INIS)

    Johnson, G.B.

    1992-01-01

    The Electrical Systems Division of the Electric Power Research Institute (EPRI) has initiated several research projects to investigate magnetic field levels, their characteristics, and their sources. This paper describes measurements of magnetic field sources in schools. Magnetic field measurements were made at four schools in the service areas of two utility companies. Magnetic field measurements included profiles of the magnetic field versus distance near power lines, around the perimeter of the school buildings, and at several locations within each school. Twenty-four hour measurements were also made to record the temporal variation of the magnetic field at several locations at each school. The instrumentation, measurement techniques, and magnetic field sources identified are discussed

  6. Magnetic Field Measurement of induction Hobs

    OpenAIRE

    森, 秀樹||モリ, ヒデキ||Mori, Hideki; 松井, 景樹||マツイ, ケイジュ||Matsui, Keiju; 山本, 勇||ヤマモト, イサム||Yamamoto, Isamu

    2004-01-01

    Recently domestic induction hobs have rapidly come into wide use in Japan. When cooking a strong high frequency magnetic field is generated in the area of induction hob. However, there are few reports of the measurement of the magnetic field during actual cooking. The magnetic field resulting from various working conditions of several types of induction hobs are reported here. Measurements of the magnetic field due to differences in various types of converter, the size and materials of the co...

  7. Microwave Measurements of Coronal Magnetic Field

    Science.gov (United States)

    Shibasaki, K.

    2006-08-01

    Magnetic field measurements of the solar corona using microwave observation are reviewed. The solar corona is filled with highly ionised plasma and magnetic field. Moving charged particles interact with magnetic field due to Lorentz force. This results in gyration motion perpendicular to the magnetic field and free motion along the magnetic field. Circularly polarized electro-magnetic waves interact with gyrating electrons efficiently and the interaction depends on the sense of circular polarization (right-handed or left-handed). This is the reason why we can measure magnetic field strength through microwave observations. This process does not require complicated quantum physics but the classical treatment is enough. Hence the inversion of measured values to magnetic field strength is simpler than in the case of optical and infrared measurements. There are several methods to measure magnetic field strength through microwave observations. We can divide them into two categories: one is based on emission mechanisms and the other is based on wave propagation. In the case of emission mechanisms, thermal f-f emission, thermal gyro-resonance emission and non-thermal gyro-synchrotron emission can be used to measure magnetic field strength. In the case of wave propagation, polarization reversal due to propagation through quasi-transverse magnetic field region can be used. Examples of distribution of magnetic field strength in the solar corona measured by Nobeyama Radioheliograph will be presented.

  8. Ultraviolet radiation penetrating vehicle glass: a field based comparative study

    International Nuclear Information System (INIS)

    Kimlin, M.G.; Parisi, A.V.

    1999-01-01

    The solar UV transmitted through automobile glass was measured in the field in two cars using a spectroradiometer. The two cars were identical except that one of the cars had all of the windows (except the windshield) tinted. The measured spectral erythemal UV on a horizontal plane with the windows fully closed was reduced in the tinted car by a factor of 42 when compared with the erythemal UV measured in the untinted car. The ambient UVA irradiances at various locations within four different makes of car and a tractor were also measured with a broad band UVA hand-held meter. The average normalized daily UVA exposure (measured with a broad band UVA meter) was 1.3 times higher in a large family sedan when compared with that in a small hatchback and the UVA exposure in a car with tinted windows was 3.8 times less than in a similar untinted car. (author)

  9. Ultraviolet radiation penetrating vehicle glass: a field based comparative study

    Science.gov (United States)

    Kimlin, M. G.; Parisi, A. V.

    1999-04-01

    The solar UV transmitted through automobile glass was measured in the field in two cars using a spectroradiometer. The two cars were identical except that one of the cars had all of the windows (except the windshield) tinted. The measured spectral erythemal UV on a horizontal plane with the windows fully closed was reduced in the tinted car by a factor of 42 when compared with the erythemal UV measured in the untinted car. The ambient UVA irradiances at various locations within four different makes of car and a tractor were also measured with a broad band UVA hand-held meter. The average normalized daily UVA exposure (measured with a broad band UVA meter) was 1.3 times higher in a large family sedan when compared with that in a small hatchback and the UVA exposure in a car with tinted windows was 3.8 times less than in a similar untinted car.

  10. Visual fields of four batoid fishes: a comparative study.

    Science.gov (United States)

    McComb, D Michelle; Kajiura, Stephen M

    2008-02-01

    The visual fields of elasmobranch fishes are not well characterized even though this is a fundamental element of the visual system. The batoid fishes (skates, rays) form a monophyletic clade within the subclass Elasmobranchii and exhibit a broad range of morphologies and corresponding ecologies. We hypothesized that their visual field characteristics would reflect their diverse morphology and ecology. This was tested by quantifying the monocular, binocular and cyclopean horizontal and vertical visual fields of four batoid species (Raja eglanteria, Urobatis jamaicensis, Dasyatis sabina and Rhinoptera bonasus) that encompassed a range from a basal skate to a more derived ray. The horizontal and vertical visual fields differed significantly among species; however, all species possessed horizontal anterior and dorsal binocular overlaps. Urobatis jamaicensis, a small reef-associated stingray, demonstrated a 360 degrees panoramic visual field in the horizontal plane, and R. bonasus, a schooling benthopelagic ray, a 360 degrees panoramic view in the vertical plane. Large anterior binocular overlaps were measured in D. sabina (72 degrees ) and R. bonasus (46 degrees ) but came at the expense of large posterior blind areas. The anterior binocular overlaps in R. eglanteria (28 degrees ) and U. jamaicensis (34 degrees ) were smaller but were coupled with large monocular fields that provided expansive peripheral views. The most phylogenetically basal species, the clearnose skate (Raja eglanteria), had the most reduced visual field in contrast to the more derived ray species. To our knowledge, this study represents the first comparative assessment of visual fields in basal vertebrates.

  11. Two devices for atmospheric electric field measurement

    International Nuclear Information System (INIS)

    Colombet, Andre; Hubert, Pierre.

    1977-02-01

    Two instruments installed at St Privat d'Allier for electric field measurement in connection with the rocket triggered lighting experiment program are described. The first one is a radioactive probe electrometer used as a warning device. The second is a field mill used for tape recording of electric field variation during the triggering events. Typical examples of such records are given [fr

  12. Patch near field acoustic holography based on particle velocity measurements

    DEFF Research Database (Denmark)

    Zhang, Yong-Bin; Jacobsen, Finn; Bi, Chuan-Xing

    2009-01-01

    Patch near field acoustic holography (PNAH) based on sound pressure measurements makes it possible to reconstruct the source field near a source by measuring the sound pressure at positions on a surface. that is comparable in size to the source region of concern. Particle velocity is an alternative...

  13. Measurement of gradient magnetic field temporal characteristics

    International Nuclear Information System (INIS)

    Bartusek, K.; Jflek, B.

    1994-01-01

    We describe a technique of measuring the time dependence and field distortions of magnetic fields due to eddy currents (EC) produced by time-dependent magnetic field gradients. The EC measuring technique makes use of a large volume sample and selective RF excitation pulses and free induction decay (FID) (or a spin or gradient echo) to measure the out-of-phase component of the FID, which is proportional to γδB, i.e. the amount the signal is off resonance. The measuring technique is sensitive, easy to implement and interpret, and used for determining pre-emphasis compensation parameters

  14. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    2004-01-01

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation

  15. Local eddy current measurements in pulsed fields

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J.H. [SEPI-Electronica, ESIME-IPN, UPALM Edif. ' Z' . Zacatenco, Mexico DF 07738 (Mexico)], E-mail: jhespina@gmail.com; Groessinger, R. [Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Hallen, J.M. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)

    2008-07-15

    This work presents new eddy current measurements in pulsed fields. A commercial point pick-up coil is used to detect the induction signal along the radius of Cu and Al samples with cylindrical shape and diameters between 5 and 35 mm. Local eddy current measurements were performed on the surface of conducting materials due to the small dimensions of the coil. A simple electrical circuit, used as a model, is proposed to describe the local eddy current effect in pulsed fields. The proposed model allows to calculate the phase shift angle between the signal proportional to eddy currents and the applied external field in a pulsed field magnetometer.

  16. Endodontic Working Length Measurement Using Cone-beam Computed Tomographic Images Obtained at Different Voxel Sizes and Field of Views, Periapical Radiography, and Apex Locator: A Comparative Ex Vivo Study.

    Science.gov (United States)

    Yılmaz, Funda; Kamburoğlu, Kıvanç; Şenel, Buğra

    2017-01-01

    The aim of this study was to evaluate the accuracy of working length determination by using an electronic apex locator, periapical radiography, and cone-beam computed tomographic (CBCT) imaging obtained at different voxel sizes and field of views (FOVs) in extracted human teeth. Thirty extracted human mandibular premolar teeth were used. The electronic working length measurements were performed by using an electronic apex locator (Root ZX; J Morita Corp, Kyoto, Japan). Five different image sets were obtained as follows: (1) CBCT imaging: 40 × 40 mm FOV, 0.080 mm 3 (FOV 40 ); (2) CBCT imaging: 60 × 60 mm FOV, 0.125 mm 3 (FOV 60 ); (3) CBCT imaging: 80 × 80 mm FOV, 0.160 mm 3 (FOV 80 ); (4) CBCT imaging: 100 × 100 mm FOV, 0.250 mm 3 (FOV 100 ); and (5) periapical digital radiography. Direct measurements performed with an electronic digital caliper were considered as the gold standard and compared with the electronic apex locator, CBCT, and periapical image measurements. Data were analyzed using a 2-way analysis of variance test. Significance level was set at P  .05 and the Gage R&R value was 30%). There were significant differences in the methods in terms of mean differences from the gold standard (P < .05). This study showed that available CBCT scans with different FOVs can be used for working length measurement. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Comparative effectiveness of malaria preventive measures on ...

    African Journals Online (AJOL)

    The burden of malaria and its associated problems in pregnancy can be reduced by the use of different malaria preventive measures. This study was conducted to determine the comparative effectiveness of three different malaria preventive measures on populations of parturient in Abeokuta, Ogun State, Nigeria.

  18. General temperature field measurement by digital holography

    Czech Academy of Sciences Publication Activity Database

    Doleček, Roman; Psota, Pavel; Lédl, Vít; Vít, Tomáš; Václavík, Jan; Kopecký, V.

    2013-01-01

    Roč. 52, č. 1 (2013), A319-A325 ISSN 1559-128X Institutional support: RVO:61389021 Keywords : digital holography * temperature field measurement * tomography Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.649, year: 2013

  19. Parameterization and measurements of helical magnetic fields

    International Nuclear Information System (INIS)

    Fischer, W.; Okamura, M.

    1997-01-01

    Magnetic fields with helical symmetry can be parameterized using multipole coefficients (a n , b n ). We present a parameterization that gives the familiar multipole coefficients (a n , b n ) for straight magnets when the helical wavelength tends to infinity. To measure helical fields all methods used for straight magnets can be employed. We show how to convert the results of those measurements to obtain the desired helical multipole coefficients (a n , b n )

  20. Magnetic field measurements and mapping techniques

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    These lectures will present an overview of the most common techniques used for the measurement of magnetic field in accelerator magnets. The formalism for a harmonic description of the magnetic field will be presented, including a discussion of harmonics allowed under various types of symmetries in the magnet. The harmonic coil technique for measurement of field harmonics will be covered in depth. Using examples from recent projects, magnetic measurements will be shown to be a powerful tool for monitoring magnet production. Measurements of magnetic axis using extensions of the harmonic coil technique, as well as other techniques, such as the colloidal cell and stretched wire, will be covered. Topics of interest in superconducting magnets, such as time decay and snapback, requiring relatively fast measurements of the harmonics, will also be described.

  1. Non-perturbative measurement of evanescent fields

    Science.gov (United States)

    Kawata, Yoshimasa; Okamoto, Taihei; Inami, Wataru

    2018-03-01

    Evanescent electromagnetic fields that decay exponentially with distance from a substrate surface are challenging to measure accurately because the experimental procedure usually perturbs the distribution. We propose a non-perturbative method of characterizing an evanescent field by scanning a particle that is illuminated by a second wavefront that creates a controlled interference pattern. Because it can always be located in a dark region of the interference fringes, the particle does not scatter light and distort the evanescent field. We demonstrate the measurement principle with Finite-difference time-domain numerical simulations.

  2. Magnetic field measurements of the BLAST spectrometer

    International Nuclear Information System (INIS)

    Dow, Karen A.; Botto, Tancredi; Goodhue, Abigail; Hasell, Douglas; Loughnan, Dylan; Murphy, Kilian; Smith, Timothy Paul; Ziskin, Vitaliy

    2009-01-01

    The Bates Large Acceptance Spectrometer Toroid has been built to study nuclear physics reactions using a stored, polarized electron beam and a variety of polarized targets internal to the storage ring. The spectrometer consists of eight coils surrounding the target cell. There is a requirement of nominally zero field along the centerline of the spectrometer for proper electron beam storage. In addition, the polarized internal targets require a low field gradient in the target region. Magnetic field measurements were made near the beam centerline to guide the alignment of the coils and satisfy the field magnitude and gradient requirements. After the coils were aligned, the magnetic field was measured in the detector regions to provide information for particle tracking.

  3. COMPARING CORONAL AND HELIOSPHERIC MAGNETIC FIELDS OVER SEVERAL SOLAR CYCLES

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, J. S.; Virtanen, I. I.; Mursula, K., E-mail: jennimari.koskela@oulu.fi [University of Oulu, P.O. Box 3000, FI-90014 Oulu (Finland)

    2017-01-20

    Here we use the PFSS model and photospheric data from Wilcox Solar Observatory, SOHO /MDI, SDO/HMI, and SOLIS to compare the coronal field with heliospheric magnetic field measured at 1 au, compiled in the NASA/NSSDC OMNI 2 data set. We calculate their mutual polarity match and the power of the radial decay, p , of the radial field using different source surface distances and different number of harmonic multipoles. We find the average polarity match of 82% for the declining phase, 78%–79% for maxima, 76%–78% for the ascending phase, and 74%–76% for minima. On an average, the source surface of 3.25 R{sub S} gives the best polarity match. We also find strong evidence for solar cycle variation of the optimal source surface distance, with highest values (3.3 R{sub S}) during solar minima and lowest values (2.6 R{sub S}–2.7 R{sub S}) during the other three solar cycle phases. Raising the number of harmonic terms beyond 2 rarely improves the polarity match, showing that the structure of the HMF at 1 au is most of the time rather simple. All four data sets yield fairly similar polarity matches. Thus, polarity comparison is not affected by photospheric field scaling, unlike comparisons of the field intensity.

  4. Measuring ammonia emissions from manured fields

    NARCIS (Netherlands)

    Berkhout, A.J.C.; Hoff, G.R.; Bergwerff, J.B.; Swart, D.P.J.; Hensen, A.; Kraai, A.; Bleeker, A.; Huijsmans, J.F.M.; Mosquera Losada, J.; Pul, van W.A.J.

    2008-01-01

    In this report, 2 novel instruments are described that are able to measure the ammonia emissions of manured fields. The 1st instrument, developed and operated by ECN, is a tuneable diode laser spectrometer (TDL), mounted in a van. It is used to measure the ammonia concentration patterns downwind

  5. Measuring sound absorption using local field assumptions

    NARCIS (Netherlands)

    Kuipers, E.R.

    2013-01-01

    To more effectively apply acoustically absorbing materials, it is desirable to measure angle-dependent sound absorption coefficients, preferably in situ. Existing measurement methods are based on an overall model of the acoustic field in front of the absorber, and are therefore sensitive to

  6. Magnetic field measuring system for remapping the ORIC magnetic field

    International Nuclear Information System (INIS)

    Mosko, S.W.; Hudson, E.D.; Lord, R.S.; Hensley, D.C.; Biggerstaff, J.A.

    1977-01-01

    The Holifield Heavy Ion Research Facility will integrate a new 25 MV tandem electrostatic acccelerator into the existing cyclotron laboratory which includes the Oak Ridge Isochronous Cyclotron (ORIC). Computations of ion paths for beam injection from the new tandem into ORIC require field mapping in the regions traversed by the beam. Additional field data is also desired for the higher levels (approx.19 kG) now used for most heavy ion beams. The magnetic field measurement system uses 39 flip coil/current integrator sets with computer controlled data scanning. The coils are spaced radially at 1 inch intervals in an arm which can be rotated azimuthally in 2 degree increments. The entire flip coil assembly can be shifted to larger radii to measure fields beyond the pole boundary. Temperature stabilization of electronic circuitry permits a measurement resolution of +-1 gauss over a dynamic range of +-25,000 gauss. The system will process a scan of 8000 points in about one hour

  7. On the measurement of comparative advantage

    NARCIS (Netherlands)

    Hoen, A.R.; Oosterhaven, J.

    This paper shows-that the standard measure of revealed comparative advantage (RCA), ranging from 0 to infinity, has problematic properties. Due to its multiplicative specification, it has a moving mean larger than its expected value of 1, while its distribution strongly depends on the number of

  8. Sampling Criterion for EMC Near Field Measurements

    DEFF Research Database (Denmark)

    Franek, Ondrej; Sørensen, Morten; Ebert, Hans

    2012-01-01

    An alternative, quasi-empirical sampling criterion for EMC near field measurements intended for close coupling investigations is proposed. The criterion is based on maximum error caused by sub-optimal sampling of near fields in the vicinity of an elementary dipole, which is suggested as a worst......-case representative of a signal trace on a typical printed circuit board. It has been found that the sampling density derived in this way is in fact very similar to that given by the antenna near field sampling theorem, if an error less than 1 dB is required. The principal advantage of the proposed formulation is its...

  9. Magnetic field measurements on the sun and implications for stellar magnetic field observations

    Energy Technology Data Exchange (ETDEWEB)

    Sun, W.H.; Giampapa, M.S.; Worden, S.P.

    1987-01-01

    Results of solar magnetic field measurements in plages, sunspot umbrae, and sunspot penumbrae using high spectral resolution, unpolarized infrared H band spectral data are presented. A Fourier deconvolution analysis scheme similar to that utilized for stellar magnetic field measurements is adopted. As an example, a field strength of 3240 + or - 450 G is determined in a sunspot umbra combined with a value of 2000 + or - 180 G in the associated penumbra. These values are compared with a direct measurement of the spot umbra and penumbra field strengths based on the observed separation of the Zeeman components of the magnetically sensitive lines. Possible origins for the discrepancy between the results inferred by these two different techniques are discussed. The Fourier analysis results confirm the widespread occurrence of kilogauss level fields in the solar photosphere. The implications of the solar results for stellar magnetic field measurements are considered. 45 references.

  10. Magnetic Field Response Measurement Acquisition System

    Science.gov (United States)

    Woodward, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2007-01-01

    Magnetic field response sensors designed as passive inductor- capacit or circuits produce magnetic field responses whose harmonic frequenci es correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induc tion. A radio frequency antenna produces the time varying magnetic fi eld used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for disce rning changes in sensor's response frequency, resistance and amplitud e is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminat ing the need to have a data acquisition channel dedicated to each se nsor. The method does not require the sensors to be in proximity to a ny form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  11. Non-ionizing radiation exposure: electric field strength measurement ...

    African Journals Online (AJOL)

    ... up to 3GHz, connected to spectrum analyzer. In this research, the measured values are compared with the international standard recommended by ICNIRP then were also compared with previous study from several locations around Malaysia. The result shows an increase in the values of electromagnetic field radiation.

  12. Measurement of the CMS Magnetic Field

    CERN Document Server

    INSPIRE-00096921; Bergsma, F.; Campi, D.; Cure, B.; Gaddi, A.; Gerwig, H.; Herve, A.; Korienek, J.; Linde, F.; Lindenmeyer, C.; Loveless, R.; Mulders, M.; Nebel, T.; Smith, R.P.; Stickland, D.; Teafoe, G.; Veillet, L.; Zimmerman, J.K.

    2011-01-01

    The measurement of the magnetic field in the tracking volume inside the superconducting coil of the Compact Muon Solenoid (CMS) detector under construction at CERN is done with a fieldmapper designed and produced at Fermilab. The fieldmapper uses 10 3-D B-sensors (Hall probes) developed at NIKHEF and calibrated at CERN to precision 0.05% for a nominal 4 T field. The precise fieldmapper measurements are done in 33840 points inside a cylinder of 1.724 m radius and 7 m long at central fields of 2, 3, 3.5, 3.8, and 4 T. Three components of the magnetic flux density at the CMS coil maximum excitation and the remanent fields on the steel-air interface after discharge of the coil are measured in check-points with 95 3-D B-sensors located near the magnetic flux return yoke elements. Voltages induced in 22 flux-loops made of 405-turn installed on selected segments of the yoke are sampled online during the entire fast discharge (190 s time-constant) of the CMS coil and integrated offline to provide a measurement of the...

  13. [Comparative quality measurements part 3: funnel plots].

    Science.gov (United States)

    Kottner, Jan; Lahmann, Nils

    2014-02-01

    Comparative quality measurements between organisations or institutions are common. Quality measures need to be standardised and risk adjusted. Random error must also be taken adequately into account. Rankings without consideration of the precision lead to flawed interpretations and enhances "gaming". Application of confidence intervals is one possibility to take chance variation into account. Funnel plots are modified control charts based on Statistical Process Control (SPC) theory. The quality measures are plotted against their sample size. Warning and control limits that are 2 or 3 standard deviations from the center line are added. With increasing group size the precision increases and so the control limits are forming a funnel. Data points within the control limits are considered to show common cause variation; data points outside special cause variation without the focus of spurious rankings. Funnel plots offer data based information about how to evaluate institutional performance within quality management contexts.

  14. Electric Field Effects in RUS Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Timothy W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Allured, Bradley [UNIV NEVADA, RENO; Carpenter, Michael A [CAMBRIDGE UNIV. UK

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  15. Measurements of near-field blast effects using kinetic plates

    Science.gov (United States)

    Manner, V. W.; Pemberton, S. J.; Brown, G. W.; Tappan, B. C.; Hill, L. G.; Preston, D. N.; Neuscamman, S. J.; Glascoe, L. G.

    2014-05-01

    Few tests have been designed to measure the near-field blast impulse of ideal and non-ideal explosives, mostly because of the inherent experimental difficulties due to non-transparent fireballs and thermal effects on gauges. In order to measure blast impulse in the near-field, a new test has been developed by firing spherical charges at 152 mm (6 in) from steel plates and probing acceleration using laser velocimetry. Tests measure the velocity imparted to the steel plate in the 50 - 300 μs timeframe, and are compared with free-field overpressure measurements at 1.52 m (5 ft) and ms timescales using piezoelectric pencil gauges. Specifically, tests have been performed with C4 to probe the contributions of ideal explosives and charge size effects. Non-ideal aluminized explosive formulations have been studied to explore the role of aluminum in near-field blast effects and far-field pressure, and are compared with formulations using LiF as an inert surrogate replacement for Al. The results are compared with other near-field blast tests and cylinder tests, and the validity of this test is explored with modeling and basic theory.

  16. Comparison of Simulated and Measured Non-linear Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are rst compared with the linear...... simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound eld is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both...... fundamental and second harmonic elds. The focused piston transducer with a center frequency of 5 MHz is excited by a waveform generator emitting a 6-cycle sine wave. The hydrophone is mounted in the focal plane 118 mm from the transducer. The point spread functions at the focal depth from Field II...

  17. Different injury pattern in goalkeepers compared to field players

    DEFF Research Database (Denmark)

    Eirale, Cristiano; Tol, Johannes L; Whiteley, Rod

    2014-01-01

    Goalkeepers have a specific physiological and biomechanical profile including hip loading with increased frontal plane kinetics and explosive side jumps. The aim of this study is to analyze the injury incidence in professional goalkeepers and to compare this with field players.......Goalkeepers have a specific physiological and biomechanical profile including hip loading with increased frontal plane kinetics and explosive side jumps. The aim of this study is to analyze the injury incidence in professional goalkeepers and to compare this with field players....

  18. New Methods of Magnetic Field Measurements

    Science.gov (United States)

    Kholtygin, A. F.

    2015-04-01

    The standard methods of magnetic field measurements, based on the relation between the Stokes V parameter and the first derivative of the line profile intensity were modified by applying a linear integral transform to both sides of this relation. We used the wavelet integral transform with the DOG wavelets. The key advantage of the proposed method is the effective suppression of the noise contribution both to the line profile and the Stokes V parameter. To test the proposed method, spectropolarimetric observations of the young O star θ1 Ori C were used. We also demonstrate that the smoothed Time Variation Spectra (smTVS) can be used as a tool for detecting the local stellar magnetic fields.

  19. Modified methods of stellar magnetic field measurements

    Science.gov (United States)

    Kholtygin, A. F.

    2014-12-01

    The standard methods of the magnetic field measurement, based on an analysis of the relation between the Stokes V-parameter and the first derivative of the total line profile intensity, were modified by applying a linear integral operator \\hat{L} to both sides of this relation. As the operator \\hat{L}, the operator of the wavelet transform with DOG-wavelets is used. The key advantage of the proposed method is an effective suppression of the noise contribution to the line profile and the Stokes parameter V. The efficiency of the method has been studied using model line profiles with various noise contributions. To test the proposed method, the spectropolarimetric observations of the A0 star α2 CVn, the Of?p star HD 148937, and the A0 supergiant HD 92207 were used. The longitudinal magnetic field strengths calculated by our method appeared to be in good agreement with those determined by other methods.

  20. RNA force field with accuracy comparable to state-of-the-art protein force fields.

    Science.gov (United States)

    Tan, Dazhi; Piana, Stefano; Dirks, Robert M; Shaw, David E

    2018-02-13

    Molecular dynamics (MD) simulation has become a powerful tool for characterizing at an atomic level of detail the conformational changes undergone by proteins. The application of such simulations to RNA structures, however, has proven more challenging, due in large part to the fact that the physical models ("force fields") available for MD simulations of RNA molecules are substantially less accurate in many respects than those currently available for proteins. Here, we introduce an extensive revision of a widely used RNA force field in which the parameters have been modified, based on quantum mechanical calculations and existing experimental information, to more accurately reflect the fundamental forces that stabilize RNA structures. We evaluate these revised parameters through long-timescale MD simulations of a set of RNA molecules that covers a wide range of structural complexity, including single-stranded RNAs, RNA duplexes, RNA hairpins, and riboswitches. The structural and thermodynamic properties measured in these simulations exhibited dramatically improved agreement with experimentally determined values. Based on the comparisons we performed, this RNA force field appears to achieve a level of accuracy comparable to that of state-of-the-art protein force fields, thus significantly advancing the utility of MD simulation as a tool for elucidating the structural dynamics and function of RNA molecules and RNA-containing biological assemblies. Copyright © 2018 the Author(s). Published by PNAS.

  1. Auditory evoked field measurement using magneto-impedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K., E-mail: o-kabou@echo.nuee.nagoya-u.ac.jp; Tajima, S.; Song, D.; Uchiyama, T. [Graduate School of Engineering, Nagoya University, Nagoya (Japan); Hamada, N.; Cai, C. [Aichi Steel Corporation, Tokai (Japan)

    2015-05-07

    The magnetic field of the human brain is extremely weak, and it is mostly measured and monitored in the magnetoencephalography method using superconducting quantum interference devices. In this study, in order to measure the weak magnetic field of the brain, we constructed a Magneto-Impedance sensor (MI sensor) system that can cancel out the background noise without any magnetic shield. Based on our previous studies of brain wave measurements, we used two MI sensors in this system for monitoring both cerebral hemispheres. In this study, we recorded and compared the auditory evoked field signals of the subject, including the N100 (or N1) and the P300 (or P3) brain waves. The results suggest that the MI sensor can be applied to brain activity measurement.

  2. Current-Induced Effective Fields Detected by Magnetotrasport Measurements

    Science.gov (United States)

    Kawaguchi, Masashi; Shimamura, Kazutoshi; Fukami, Shunsuke; Matsukura, Fumihiro; Ohno, Hideo; Moriyama, Takahiro; Chiba, Daichi; Ono, Teruo

    2013-11-01

    We show that the angle-dependent Hall measurement is an effective method to determine the current-induced effective fields by investigating MgO/Fe/Ta and MgO/Fe/Pt/Ta multilayer structures. The experimentally obtained Hall resistance under a relatively large dc electrical current is well described by considering two components of current-induced effective fields, which may be related to the spin Hall effect and the Rashba effect. The directions of the effective fields are consistent with and their magnitudes are comparable to those reported previously for similar multilayer structures.

  3. Out-of-field dose measurements in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kaderka, Robert

    2011-07-13

    This thesis describes the results from measurements of the out-of-field dose in radiotherapy. The dose outside the treatment volume has been determined in a water phantom and an anthropomorphic phantom. Measurements were performed with linac photons, passively delivered protons, scanned protons, passively delivered carbon ions as well as scanned carbon ions. It was found that the use of charged particles for radiotherapy reduces the out-of-field dose by up to three orders of magnitude compared to conventional radiotherapy with photons.

  4. Beta measurements in a photon field

    International Nuclear Information System (INIS)

    Alvarez, J.L.

    1983-01-01

    The ability to make a correct dose measurement in a mixed beta-gamma field requires an ideally responding detector or detailed knowledge of the detector's response characteristics and a complete definition of the field. Departures from the ideal are inevitable and the problem becomes that of defining acceptable inaccuracies. The degree of departure can be estimated with knowledge of detector response to beta and gamma. A beta detector is basically material independent because the stopping of emergetic electrons in a material is dependent upon the material density and the velocity of the electron, except for bremsstralung differences. The main requirements for beta dose measurement are that the detector be thin enough to represent the dose to an infinitesimal volume and that the window thickness reflects the depth of the dose estimate. A gamma detector is not material independent because the mass attenuation coefficient becomes important with energy. Window effects may also be large since charge carrier equilibrium is required. A detector having differing response characteristics for beta and gamma makes dose assessment exceedingly difficult, requiring knowledge of both the beta and gamma spectra. Knowledge of over and under response in regions of the spectra may indicate the degree of inaccuracy. If the inaccuracies are not large or represent a small amount of the total dose (spectrum dependent) then detectors may be used with confidence within a range of acceptable inaccuracy

  5. Using optical soliton stability for magnetic field measurement

    Science.gov (United States)

    Şchiopu, IonuÅ£ Romeo; ǎgulinescu, Andrei, Dr; Marinescu, Andrei

    2015-02-01

    In this paper we propose a novel optical method for measuring the circular magnetic field. In practice, many situations may appear in which there are difficulties in measuring the magnetic field, as inside coils, motors etc., where the magnetic field lines are circular or elliptical. The proposed method, applied for measuring the current on high voltage lines, strongly benefits from the advantages that it offers as compared to classical solutions based on the inductive principle. Some of the advantages of optoelectronic and optic measurement methods have a real importance. These advantages consist in: avoiding the use of energy intensive materials (Cu, Fe etc.), reducing the weight of the measuring system, reducing at the minimum the fire danger due to the use of paper-oil insulation in high voltage devices etc. The novelty of our proposed method consists in using the electromagnetic radiation in ultrashort pulses, having a relatively large frequency band and a much improved resistance to external perturbations, for measuring the circular magnetic field generated from the current of high voltage lines, inside power transformers or high power motors.

  6. Solar Polarimetry and Magnetic Field Measurements

    Science.gov (United States)

    del Toro Iniesta, J. C.

    2001-05-01

    The magnetic nature of most solar (spatially resolved or unresolved) structures is amply recognized. Magnetic fields of the Sun play a paramount rôle in the overall thermodynamic and dynamic state of our star. The main observable manifestation of solar magnetic fields is the polarization of light either through the Zeeman effect on spectral lines or through the Hanle effect (depolarization by very weak magnetic fields of light previously polarized by scattering). Hence, one can easily understand the increasing importance that polarimetry is experimenting continuously in solar physics. Under the title of this contribution a six-hour course was given during the summer school. Clearly, the limited extension allocated for the notes in these proceedings avoids an extensive account of the several topics discussed: 1) a description of light as an electromagnetic wave and the polarization properties of monochromatic, time-harmonic, plane waves; 2) the polarization properties of polychromatic light and, in particular, of quasi-monochromatic light; 3) the transformations of (partially) polarized light by linear optical systems and a description of the ways we measure the Stokes parameters by spatially and/or temporally modulating the polarimetric signal; 4) a discussion on specific problems relevant to solar polarimetry like seeing-induced and instrumental polarization, or modulation and demodulation, along with a brief description of current solar polarimeters; 5) the vector radiative transfer equation for polarized light and its links to the scalar one for unpolarized light, together with a summary of the Zeeman effect and its consequences on line formation in a magnetized stellar atmosphere; 7) an introduction of the paramount astrophysical problem, i.e., that of finding diagnostics that enable the solar physicist to interpret the observables in terms of the solar atmospheric quantities, including a discussion on contribution and response functions; and 8) a brief

  7. Towards Comprehensive Food Security Measures: Comparing Key ...

    African Journals Online (AJOL)

    Food security is a multi-dimensional issue that has been difficult to measure comprehensively, given the one-dimensional focus of existing indicators. Three indicators dominate the food security measurement debate: Household Food Insecurity Access Scale (HFIAS), Dietary Diversity Score (DDS) and Coping Strategies ...

  8. Defining, Measuring, and Comparing Organisational Cultures

    NARCIS (Netherlands)

    van den Berg, Peter T.; Wilderom, Celeste P.M.

    2004-01-01

    La littérature portant sur la culture des organisations souffre d’un manque manifeste d’enquêtes extensives débouchant sur des études comparatives. Afin de rendre plus comparables les cultures organisationnelles, nous proposons une définition et une série de dimensions. La culture organisationnelle

  9. Comparing two measures of mental toughness

    OpenAIRE

    Crust, Lee; Swann, Christian

    2011-01-01

    This paper tested relations between two measures of mental toughness. A sample of 110 male athletes (M age = 20.81 years; SD = 2.76), derived from University sports teams and local sports clubs, gave informed consent before completing two questionnaires to assess mental toughness. It was hypothesized that scales and subscales from the two different instruments, which purported to measure the same or substantially overlapping scales, would be strongly correlated. Predictions concerning the ...

  10. Electric Field Measurements At The Magnetopause

    Science.gov (United States)

    Lindqvist, P.-A.; Dunlop, M.

    The quasi-thermal noise (QTN) is due to the thermal motions of the particles, which produce electrostatic fluctuations. This noise is detected by any sensitive receiver at the ports of an electric antenna immersed in a plasma and can be used to measure in-situ the plasma density, temperature and bulk velocity. The basic reason is that this noise can be formally calculated as a function of both the particle velocity distribu- tions and the antenna geometry. So, conversely, the "spectroscopy" of this noise re- veals the local plasma properties. This method is routinely used on various spacecraft (Ulysses, Wind) in the solar wind or in planetary magnetospheres/ionospheres (Image at Earth, Cassini at Venus, Earth and soon at Saturn). This method has the advantage of being relatively immune to spacecraft potential and photoelectrons pertubations, since it senses a large plasma volume. It provides an accurate measurement of the electron density (a few %) because it is based on the detection of the strong signal peak near the local plasma frequency (which is close to a resonance for electrostatic waves). We will show that QTN may be as well adapted to measure 1) magnetized (anisotropic) plasmas (and deduce the magnetic field strength), 2) suprathermal or non-thermal component (as for example a kappa distribution), and 3) a wide range of core temperature, i.e from ~10 eV, as in the solar wind, to rather low temperatures (tron density and temperature for comparison with our models of Mercury/solar wind interaction.

  11. RF field measurements in the vicinity of an ICRF antenna

    International Nuclear Information System (INIS)

    Majeski, R.; Intrator, T.; Roberts, D.; Hershkowitz, N.; Tataronis, J.; Grossmann, W.

    1988-01-01

    Measurements of the rf fields near an ICRF antenna installed in the central cell of the Phaedrus-B tandem mirror have been made, both in vacuum and in the presence of plasma. The antenna is a Faraday shielded partial turn loop. The front surface of the Faraday shield is composed of cylindrical elements in an arrangement similar to the Faraday shield design employed on TFTR. The antenna is run at relatively low power levels, in the 3.5-10 MHz frequency range. Two other ICRF systems in the phaedrus-B central cell sustain and heat the plasma at the 400 KW level. The vacuum field measurements are compared with the predictions of the ARGUS code, which models details of the Faraday shield structure. Fields in the plasma are modelled by the ANTENA code. Particle currents collected by the Faraday shield during plasma operation are also observed

  12. Electric field measurements in high pressure discharges

    International Nuclear Information System (INIS)

    Mitko, S.V.; Ochkin, V.N.; Serdyuchenko, A.Yu.; Tskhai, S.N.

    2001-01-01

    Electric fields define a wide range of interactions and phenomena at different phases of matter both on micro- and macro-level. Investigation of electric fields behavior provides a key for understanding of these phenomena and their application

  13. Influence of relative humidity on analyzing electric field exposure using ELF electric field measurements.

    Science.gov (United States)

    Korpinen, Leena H; Kuisti, Harri A; Tarao, Hiroo; Elovaara, Jarmo A

    2013-07-01

    The objective of the study was to investigate the influence of humidity on analyzing electric field exposure using extremely low frequency (ELF) electric field measurements. The study included 322 measurements in a climate room. We used two commercial three-axis meters, EFA-3 and EFA-300, and employed two measurement techniques in the climate room where we varied the temperature from 15 to 25 °C, the relative humidity from 55% to 95%, and the electric field from 1 to 25 kV/m. We calculated Pearson correlations between humidity and percentage errors for all data and for data at different levels of humidity. When the relative humidity was below 70%, the results obtained by the different measurement methods in terms of percentage errors were of the same order of magnitude for the considered temperatures and field strength, but the results were less reliable when the relative humidity was higher than 80%. In the future, it is important to take humidity into account when electric field measurement results will be compared to the values given in different exposure guidelines. Copyright © 2013 Wiley Periodicals, Inc.

  14. Statistical measurements of fast changing electromagnetic fields

    NARCIS (Netherlands)

    Serra, Ramiro; Serra, Ramiro; Leferink, Frank Bernardus Johannes

    2010-01-01

    The present works aims at describing important statistical indexes such as the field uniformity, the field inhomogeneity and the statistics near the cavity walls for a special case of fast changing random electromagnetic fields. We generate this kind of electromagnetic environment by means of a

  15. Glyph-Based Comparative Visualization for Diffusion Tensor Fields.

    Science.gov (United States)

    Zhang, Changgong; Schultz, Thomas; Lawonn, Kai; Eisemann, Elmar; Vilanova, Anna

    2016-01-01

    Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject.

  16. The magnetic field measurements of the booster synchrotron magnet

    International Nuclear Information System (INIS)

    Kumada, Masayuki; Sasaki, Hiroshi; Takikawa, Koji; Someya, Hirohiko; Kurosawa, Toshitake.

    1978-03-01

    The magnetic field properties of the booster synchrotron magnet are investigated. Method of the field measurement, magnetic field measuring system, its data acquisition system and procedure of data processing are described in detail, with a special emphasis on the accuracy in the measurement. The excitation dependences and distributions of the field strength, field gradient, multipole fields and their effective lengths are given and analyzed. The betatron tune and chromaticity are discussed by taking account of the effect of the fringing field as well as the multipole fields of focussing and defocussing sectors. (auth.)

  17. Calibration and uncertainty in electromagnetic fields measuring methods

    International Nuclear Information System (INIS)

    Anglesio, L.; Crotti, G.; Borsero, M.; Vizio, G.

    1999-01-01

    Calibration and reliability in electromagnetic field measuring methods are assured by calibration of measuring instruments. In this work are illustrated systems for generation of electromagnetic fields at low and high frequency, calibration standard and accuracy [it

  18. Field Emission Measurements from Niobium Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    M. BastaniNejad, P.A. Adderley, J. Clark, S. Covert, J. Hansknecht, C. Hernandez-Garcia, R. Mammei, M. Poelker

    2011-03-01

    Increasing the operating voltage of a DC high voltage photogun serves to minimize space charge induced emittance growth and thereby preserve electron beam brightness, however, field emission from the photogun cathode electrode can pose significant problems: constant low level field emission degrades vacuum via electron stimulated desorption which in turn reduces photocathode yield through chemical poisoning and/or ion bombardment and high levels of field emission can damage the ceramic insulator. Niobium electrodes (single crystal, large grain and fine grain) were characterized using a DC high voltage field emission test stand at maximum voltage -225kV and electric field gradient > 10MV/m. Niobium electrodes appear to be superior to diamond-paste polished stainless steel electrodes.

  19. comparative measurement o river for small hydro tive measurement ...

    African Journals Online (AJOL)

    eobe

    nd a stop clock. Ten different m. Ten different m. Ten different measurements were carried out easurements were carried out that the average volumetric flow rate .... or revolving cups connected to the end. The propeller is free to rotate and the speed of the rotation is related to the river velocity. Simple mechanical counters.

  20. ICE PLASMA WAVE ELECTRIC FIELD MEASUREMENT DATA

    Data.gov (United States)

    National Aeronautics and Space Administration — The Plasma Wave Data were submitted to National Space Science Data Center after the Principal Investigator's death (Scarf) by S. Chang of TRW. For the electric field...

  1. Communication linguistique: Etude comparative faite sur le terrain (Linguistic Communication: A Comparative Field Study).

    Science.gov (United States)

    Piron, Claude

    2002-01-01

    Compares the four international systems of linguistic communication used in the field (systems used in the United Nations, multinationals, the European Union, and Esperanto organizations) on select criteria (e.g., previous government investment). Discusses research that shows unilingual systems (English used alone, Esperanto) are those that…

  2. Measurement of the electrostatic field in aurora by antarctic rocket

    International Nuclear Information System (INIS)

    Takeya, Yoshio; Minami, Shigeyuki

    1974-01-01

    The direct measurement of the electrostatic field produced by the flow of charged particles and geomagnetic field in aurora has been carried out by means of rockets or satellites. The construction of an electric field meter and its characteristics are described, which measures the vectors of electric field with antarctic rockets. New scheme is presented: three components of an electric field are directly obtained through the probes set in three directions. (Mori, K.)

  3. FITTING HELICAL SNAKE AND ROTATOR FIELD STRENGTH MEASUREMENTS IN RHIC

    International Nuclear Information System (INIS)

    RANJBAR, V.; LUCCIO, A.U.; MACKAY, W.W.; TSOUPAS, N.

    2001-01-01

    We examined recent multi-pole measurements for the helical snakes and rotators in RHIC to generate a full field map. Since multi-pole measurements yield real field values for B, field components we developed a unique technique to evaluate the full fields using a traditional finite element analysis software [1]. From these measurements we employed SNIG [2] to generate orbit and Spin plots. From orbit values we generated a transfer matrix for the first snake

  4. Measurement of Radio Frequency Magnetic Field

    Czech Academy of Sciences Publication Activity Database

    Bartušek, Karel; Gescheidtová, E.

    2006-01-01

    Roč. 2, č. 6 (2006), s. 555-558 ISSN 1931-7360 R&D Projects: GA MZd NR8110 Institutional research plan: CEZ:AV0Z20650511 Keywords : MR tomographic scanner * magnetic susceptibility * body implants * mapping the radiofrequency magnetic field * ANSYS Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  5. Techniques to measure complex-plane fields

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2014-09-25

    Full Text Available , 165 (1974). [9] Dirac, P.A.M., “Quantised singularities in the electromagnetic field,” Proc. R. Soc. London Ser. A 133, 60 (1931). [10] He, H., Friese, M. E. J., Heckenberg, N. R., and Rubinsztein-Dunlop, H., “Direct observation of transfer...

  6. Field of Temperature Measurement by Virtual Instrumentation

    Directory of Open Access Journals (Sweden)

    Libor HARGAŠ

    2009-01-01

    Full Text Available This paper introduces about temperature determination for given dot of picture through image analysis. Heat transfer is the transition of thermal energy from a heated item to a cooler item. Main method of measurement of temperature in image is Pattern Matching, color scale detection and model detection. We can measure temperature dependency at time for selected point of thermo vision images. This measurement gives idea about the heat transfer at time dependences.

  7. PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-01-01

    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.

  8. Accurate method of the magnetic field measurement of quadrupole magnets

    International Nuclear Information System (INIS)

    Kumada, M.; Sakai, I.; Someya, H.; Sasaki, H.

    1983-01-01

    We present an accurate method of the magnetic field measurement of the quadrupole magnet. The method of obtaining the information of the field gradient and the effective focussing length is given. A new scheme to obtain the information of the skew field components is also proposed. The relative accuracy of the measurement was 1 x 10 -4 or less. (author)

  9. The magnetic field for the ZEUS central detector - analysis and correction of the field measurement

    International Nuclear Information System (INIS)

    Mengel, S.

    1992-06-01

    The magnetic field in the central tracking region of the ZEUS-detector - a facility to investigate highly energetic electron-proton-collisions at the HERA-collider at DESY Hamburg - is generated by a superconducting coil and reaches 18 kG (1.8 T). Some of the tracking devices particularly the drift chambers in the proton forward and rear direction (FTD1-3 and RTD) are not fully contained within the coil and therefore situated in a highly inhomogeneous magnetic field: The radial component B r is up to 6.6 kG, maximum gradients are found to be 300 G/cm for δB r /δr. Evaluating the space drifttime relation necessitates a detailed knowledge of the magnetic field. To reach this goal we analysed the field measurements and corrected them for systematic errors. The corrected data were compared with the field calculations (TOSCA-maps). Measurements and calculations are confirmed by studying consistency with Maxwell's equations. The accuracy reached is better than 100 G throughout the forward and central drift chambers (FTD1-3, CTD) and better than 150 G in the RTD. (orig.) [de

  10. International Accounting Convergence in the Field of Fair Value Measurement

    Directory of Open Access Journals (Sweden)

    Diana Cozma Ighian

    2015-09-01

    Full Text Available The investors’ desire for high-quality, internationally comparable financial information that is useful for decision-making in increasingly global capital markets imposed an international convergence, the ultimate goal of which is a single set of international accounting standards that companies worldwide would use for both domestic and cross-border financial reporting. The guidance, set out in IFRS 13 Fair Value Measurement and the update to Topic 820 (formerly referred to as SFAS 157, completes a major project of the boards’ joint work to improve IFRSs and US GAAP and to bring about their convergence. This article describes the controversial history of fair value measurement and the main novelties in the field of fair value measurement, arising from the international convergence process.

  11. Automatic Device for Ion Fields Measurement

    Czech Academy of Sciences Publication Activity Database

    Bartušek, Karel; Dokoupil, Zdeněk

    2003-01-01

    Roč. 3, č. 3 (2003), s. 75 - 78 ISSN 1335-8871 Institutional research plan: CEZ:AV0Z2065902 Keywords : air ion * measurement * aspiration condenser Subject RIV: JA - Electronic s ; Optoelectronics, Electrical Engineering

  12. Assessing Precision in Conventional Field Measurements of Individual Tree Attributes

    Directory of Open Access Journals (Sweden)

    Ville Luoma

    2017-02-01

    Full Text Available Forest resource information has a hierarchical structure: individual tree attributes are summed at the plot level and then in turn, plot-level estimates are used to derive stand or large-area estimates of forest resources. Due to this hierarchy, it is imperative that individual tree attributes are measured with accuracy and precision. With the widespread use of different measurement tools, it is also important to understand the expected degree of precision associated with these measurements. The most prevalent tree attributes measured in the field are tree species, stem diameter-at-breast-height (dbh, and tree height. For dbh and height, the most commonly used measuring devices are calipers and clinometers, respectively. The aim of our study was to characterize the precision of individual tree dbh and height measurements in boreal forest conditions when using calipers and clinometers. The data consisted of 319 sample trees at a study area in Evo, southern Finland. The sample trees were measured independently by four trained mensurationists. The standard deviation in tree dbh and height measurements was 0.3 cm (1.5% and 0.5 m (2.9%, respectively. Precision was also assessed by tree species and tree size classes; however, there were no statistically significant differences between the mensurationists for dbh or height measurements. Our study offers insights into the expected precision of tree dbh and height as measured with the most commonly used devices. These results are important when using sample plot data in forest inventory applications, especially now, at a time when new tree attribute measurement techniques based on remote sensing are being developed and compared to the conventional caliper and clinometer measurements.

  13. Comparative transcriptional and genomic analysis of Plasmodium falciparum field isolates.

    Directory of Open Access Journals (Sweden)

    Margaret J Mackinnon

    2009-10-01

    Full Text Available Mechanisms for differential regulation of gene expression may underlie much of the phenotypic variation and adaptability of malaria parasites. Here we describe transcriptional variation among culture-adapted field isolates of Plasmodium falciparum, the species responsible for most malarial disease. It was found that genes coding for parasite protein export into the red cell cytosol and onto its surface, and genes coding for sexual stage proteins involved in parasite transmission are up-regulated in field isolates compared with long-term laboratory isolates. Much of this variability was associated with the loss of small or large chromosomal segments, or other forms of gene copy number variation that are prevalent in the P. falciparum genome (copy number variants, CNVs. Expression levels of genes inside these segments were correlated to that of genes outside and adjacent to the segment boundaries, and this association declined with distance from the CNV boundary. This observation could not be explained by copy number variation in these adjacent genes. This suggests a local-acting regulatory role for CNVs in transcription of neighboring genes and helps explain the chromosomal clustering that we observed here. Transcriptional co-regulation of physical clusters of adaptive genes may provide a way for the parasite to readily adapt to its highly heterogeneous and strongly selective environment.

  14. Table 1. Summary of Field Testing and Measurement Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Key performance parameters measured during the field demonstration such as lining thickness, compressive strength, Flexural Strength, Modulus of Elasticity, bond...

  15. Comparative analysis between Payen and Daedalia Planum lava fields

    Science.gov (United States)

    Giacomini, Lorenza; Massironi, Matteo; Pasquarè, Giorgio; Carli, Cristian; Martellato, Elena; Frigeri, Alessandro; Cremonese, Gabriele; Bistacchi, Andrea; Federico, Costanzo

    The Payen volcanic complex is a large Quaternary fissural structure belonging to the back-arc extensional area of the Andes in the Mendoza Province (Argentina). From the eastern portion of this volcanic structure huge pahoehoe lava flows were emitted, extending more than 180 km from the feeding vents. These huge flows propagated over the nearly flat surface of the Pampean foreland (ca 0.3° slope). The very low viscosity of the olivine basalt lavas, coupled with the inflation process are the most probable explanation for their considerable length. In an inflation process a thin viscoelastic crust, produced at an early stage, is later inflated by the underlying fluid core, which remains hot and fluid thanks to the thermal-shield effect of the crust. The inflation shows some typical morphological fingerprints like tumuli, lava lobes, lava rises and lava ridges. In order to compare the morphology of the Argentinean Payen flows with lava flows on Mars, MOLA, THEMIS, MOC, MRO/HIRISE, and MEX/OMEGA data have been analysed, providing a multi-scale characterisation of Martian flows. Mars Global Surveyor/MOLA data were used to investigate the topographic environment over which flows propagated on Mars in order to detect very low angle slopes where possibly inflation processes could have developed. Then Mars Odyssey/THEMIS and Mars Global Surveyor's MOC data were used to detect Martian lava flows with inflation "fingerprints", whereas OMEGA data were used to obtain some inferences about their composition. Finally the MRO/HIRISE images recently acquired, can provide further details and constraints on surface morphologies and lava fronts. All these data were used to analyze Daedalia Planum lava field, at about 300 km southwest of Arsia Mons, and clear morphological similarities with the longest flows of the Payen lava fields were found. These striking morphological analogies suggest that inflation process is quite common also for the Daedalia field. This is also supported by

  16. Estimation of complete temperature fields from measured temperatures

    International Nuclear Information System (INIS)

    Clegg, S.T.; Roemer, R.B.

    1984-01-01

    In hyperthermia treatments, it is desirable to be able to predict complete tissue temperature fields from sampled temperatures taken at a few locations. This is a difficult problem in hyperthermia treatments since the tissue blood perfusion is unknown. An initial attempt to do this automatically using unconstrained optimization techniques to minimize the differences between steady state temperatures measured during a treatment and temperatures (at the same locations) predicted from treatment simulations has been previously reported. A second technique using transient temperatures following a step decrease in power has been developed. This technique, which appears to be able to better predict complete temperature fields is presented and both it and the steady state technique are applied to data from both simulated and experimental hyperthermia treatments. The results of applying the two techniques are compared for one-dimensional situations. One particularly important problem which the transient technique can solve (and the steady state technique does not seem to be able to do as well) is that of predicting the complete temperature field in situations where the true maximum and/or minimum temperatures present are not measured by the available instrumentation

  17. Field methods for measurement of fluvial sediment

    Science.gov (United States)

    Edwards, Thomas K.; Glysson, G. Douglas

    1999-01-01

    This chapter describes equipment and procedures for collection and measurement of fluvial sediment. The complexity of the hydrologic and physical environments and man's ever-increasing data needs make it essential for those responsible for the collection of sediment data to be aware of basic concepts involved in processes of erosion, transport, deposition of sediment, and equipment and procedures necessary to representatively collect sediment data. In addition to an introduction, the chapter has two major sections. The 'Sediment-Sampling Equipment' section encompasses discussions of characteristics and limitations of various models of depth- and point-integrating samplers, single-stage samplers, bed-material samplers, bedload samplers, automatic pumping samplers, and support equipment. The 'Sediment-Sampling Techniques'` section includes discussions of representative sampling criteria, characteristics of sampling sites, equipment selection relative to the sampling conditions and needs, depth and point-integration techniques, surface and dip sampling, determination of transit rates, sampling programs and related data, cold-weather sampling, bed-material and bedload sampling, measuring total sediment discharge, and measuring reservoir sedimentation rates.

  18. Effects of persistent insecticides on beneficial soil arthropod in conventional fields compared to organic fields, puducherry.

    Science.gov (United States)

    Anbarashan, Padmavathy; Gopalswamy, Poyyamoli

    2013-07-15

    The usage of synthetic fertilizers/insecticides in conventional farming has dramatically increased over the past decades. The aim of the study was to compare the effects of bio-pesticides and insecticides/pesticides on selected beneficial non targeted arthropods. Orders Collembola, Arachinida/Opiliones, Oribatida and Coleoptera were the main groups of arthropods found in the organic fields and Coleoptera, Oribatida, Gamasida and Collembola in conventional fields. Pesticides/insecticides had a significant effect on non-targeted arthropods order- Collembola, Arachinida/Opiliones, Hymenoptera and Thysonoptera were suppressed after pesticides/insecticides spraying. Bio-insecticides in organic fields had a non-significant effect on non targeted species and they started to increase in abundance after 7 days of spraying, whereas insecticide treatment in conventional fields had a significant long-term effect on non targeted arthropods and short term effect on pests/insects, it started to increase after 21 days of the spraying. These results indicate that insecticide treatment kept non targeted arthropods at low abundance. In conclusion, organic farming does not significantly affected the beneficial-non targeted arthropods biodiversity, whereas preventive insecticide application in conventional fields had significant negative effects on beneficial non targeted arthropods. Therefore, conventional farmers should restrict insecticide applications, unless pest densities reach the thresholds and more desirably can switch to organic farming practices.

  19. Magnetometer for measuring planetary magnetic fields

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter

    . The mass, power and volume are important factors when designing planetary magnetometers. However, the performance must not be compromised. The DTU magnetometer consisting of a triaxial fluxgate sensor and controlling electronics is a miniaturized version of the instruments flown on the Oersted, Astrid-2......, CHAMP and SAC-C missions. It can produce vector measurements at a rate of 50 Hz and with a precision of more than 21 bits. The thermal and long term stability of the instrument is less than 0.5 nT. The power consumption of the instrument is less than 0.5W for continuous operation. For an orbiting...

  20. Principles of planar near-field antenna measurements

    CERN Document Server

    Gregson, Stuart; Parini, Clive

    2007-01-01

    This single volume provides a comprehensive introduction and explanation of both the theory and practice of 'Planar Near-Field Antenna Measurement' from its basic postulates and assumptions, to the intricacies of its deployment in complex and demanding measurement scenarios.

  1. Field instrumentation for hydrofracturing stress measurements

    International Nuclear Information System (INIS)

    Bjarnason, Bjarni; Torikka, Arne.

    1989-08-01

    A recently developed system for rock stress measurements by the hydraulic fracturing method is documented in detail. The new equipment is intended for measurement in vertical or nearvertical boreholes, down to a maximum depth of 1000 m. The minimum borehole, diameter required is 56 mm. Downhole instrumentation comprises a straddle packer assembly for borehole fracturing, equipment for determination of fracture orientations and a pressure transducer. The downhole tools are operated by means of a multihose system, containing high pressure hydraulic tubings, signal cable and carrying wire into one hose unit. The surface components of the equipment include a system for generation and control of water pressures up to approximately 75 MPa, an hydraulically operated drum for the multihose and a data acquisition system. All surface instrumentation is permanently mounted on a truck, which also serves as power source for the instrumentation. In addition to the description of instrumentation, the theoretical fundament and the testing procedures associated with the hydraulic fracturing method are briefly outlined

  2. De novo likelihood-based measures for comparing genome assemblies.

    Science.gov (United States)

    Ghodsi, Mohammadreza; Hill, Christopher M; Astrovskaya, Irina; Lin, Henry; Sommer, Dan D; Koren, Sergey; Pop, Mihai

    2013-08-22

    The current revolution in genomics has been made possible by software tools called genome assemblers, which stitch together DNA fragments "read" by sequencing machines into complete or nearly complete genome sequences. Despite decades of research in this field and the development of dozens of genome assemblers, assessing and comparing the quality of assembled genome sequences still relies on the availability of independently determined standards, such as manually curated genome sequences, or independently produced mapping data. These "gold standards" can be expensive to produce and may only cover a small fraction of the genome, which limits their applicability to newly generated genome sequences. Here we introduce a de novo  probabilistic measure of assembly quality which allows for an objective comparison of multiple assemblies generated from the same set of reads. We define the quality of a sequence produced by an assembler as the conditional probability of observing the sequenced reads from the assembled sequence. A key property of our metric is that the true genome sequence maximizes the score, unlike other commonly used metrics. We demonstrate that our de novo  score can be computed quickly and accurately in a practical setting even for large datasets, by estimating the score from a relatively small sample of the reads. To demonstrate the benefits of our score, we measure the quality of the assemblies generated in the GAGE and Assemblathon 1 assembly "bake-offs" with our metric. Even without knowledge of the true reference sequence, our de novo  metric closely matches the reference-based evaluation metrics used in the studies and outperforms other de novo  metrics traditionally used to measure assembly quality (such as N50). Finally, we highlight the application of our score to optimize assembly parameters used in genome assemblers, which enables better assemblies to be produced, even without prior knowledge of the genome being assembled. Likelihood

  3. Quantification and Measurement of Internal Electromagnetic Fields Induced in Finite Biological Bodies by Nonuniform Electromagnetic Fields.

    Science.gov (United States)

    1978-10-15

    implantable EM field probes which can be used to measure the internal EM fields induced in simulated biological bod ies. Major topics of this program include...be used to measure the internal EM fields induced in simulated biological bodies with a high degree of accuracy. Most of the originally planned topics...following papers: (1) "Focal hyperthermia as induced by RF radiation of simulacra with embedded tumors and as induced by EM fields in a model of a human

  4. A summary of SSC dipole magnet field quality measurements

    International Nuclear Information System (INIS)

    Wanderer, P.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Jain, A.; Kahn, S.; Kelly, E.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.P.; Sampson, W.; Shutt, R.; Thomas, R.; Thompson, P.; Willen, E.; Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Nah, W.; Ogitsu, T.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Tompkins, J.; Turner, J.; Yu, Y.; Zhao, Y.; Zheng, H.; Bleadon, M.; Bossert, R.; Carson, J.; Delchamps, S.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Wake, M.; Royet, J.; Scanlan, R.; Taylor, C.

    1992-01-01

    This paper reports results of field quality measurements of the initial 15 m-long, 50 mm- aperture SSC Collider dipoles tested at Brookhaven National Laboratory and Fermi National Laboratory. These data include multipole coefficients and the dipole angle at room temperature and 4.35 K, 4.35 K integral field measurements, and time-dependent effects. Systematic uncertainties are also discussed

  5. Cryogenic current comparators for precise ion beam current measurements

    International Nuclear Information System (INIS)

    Kurian, Febin

    2015-01-01

    The planned Facility for Antiproton and Ion Research (FAIR) at GSI has to cope with a wide range of beam intensities in its high-energy beam transport systems and in the storage rings. To meet the requirements of a non-intercepting intensity measurement down to nA range, it is planned to install a number of Cryogenic Current Comparator (CCC) units at different locations in the FAIR beamlines. In this work, the first CCC system for intensity measurement of heavy ion beams, which was developed at GSI, was re-commissioned and upgraded to be used as a 'GSI - CCC prototype' for extensive optimization and development of an improved CCC for FAIR. After installation of a new SQUID sensor and related electronics, as well as implementation of improved data acquisition components, successful beam current measurements were performed at a SIS18 extraction line. The measured intensity values were compared with those of a Secondary Electron Monitor (SEM). Furthermore, the spill-structure of a slowly extracted beam was measured and analyzed, investigating its improvement due to bunching during the slow-extraction process. Due to the extreme sensitivity of the superconducting sensor, the determined intensity values as well as the adjustment of the system for optimal performance are strongly influenced by the numerous noise sources of the accelerators environment. For this reason, detailed studies of different effects caused by noise have been carried out, which are presented together with proposals to reduce them. Similarly, studies were performed to increase the dynamic range and overcome slew rate limitations, the results of which are illustrated and discussed as well. By combining the various optimizations and characterizations of the GSI CCC prototype with the experiences made during beam operation, criteria for a more efficient CCC System could be worked out, which are presented in this work. The details of this new design are worked out with respect to the

  6. Hotplate precipitation gauge calibrations and field measurements

    Science.gov (United States)

    Zelasko, Nicholas; Wettlaufer, Adam; Borkhuu, Bujidmaa; Burkhart, Matthew; Campbell, Leah S.; Steenburgh, W. James; Snider, Jefferson R.

    2018-01-01

    First introduced in 2003, approximately 70 Yankee Environmental Systems (YES) hotplate precipitation gauges have been purchased by researchers and operational meteorologists. A version of the YES hotplate is described in Rasmussen et al. (2011; R11). Presented here is testing of a newer version of the hotplate; this device is equipped with longwave and shortwave radiation sensors. Hotplate surface temperature, coefficients describing natural and forced convective sensible energy transfer, and radiative properties (longwave emissivity and shortwave reflectance) are reported for two of the new-version YES hotplates. These parameters are applied in a new algorithm and are used to derive liquid-equivalent accumulations (snowfall and rainfall), and these accumulations are compared to values derived by the internal algorithm used in the YES hotplates (hotplate-derived accumulations). In contrast with R11, the new algorithm accounts for radiative terms in a hotplate's energy budget, applies an energy conversion factor which does not differ from a theoretical energy conversion factor, and applies a surface area that is correct for the YES hotplate. Radiative effects are shown to be relatively unimportant for the precipitation events analyzed. In addition, this work documents a 10 % difference between the hotplate-derived and new-algorithm-derived accumulations. This difference seems consistent with R11's application of a hotplate surface area that deviates from the actual surface area of the YES hotplate and with R11's recommendation for an energy conversion factor that differs from that calculated using thermodynamic theory.

  7. Hotplate precipitation gauge calibrations and field measurements

    Directory of Open Access Journals (Sweden)

    N. Zelasko

    2018-01-01

    Full Text Available First introduced in 2003, approximately 70 Yankee Environmental Systems (YES hotplate precipitation gauges have been purchased by researchers and operational meteorologists. A version of the YES hotplate is described in Rasmussen et al. (2011; R11. Presented here is testing of a newer version of the hotplate; this device is equipped with longwave and shortwave radiation sensors. Hotplate surface temperature, coefficients describing natural and forced convective sensible energy transfer, and radiative properties (longwave emissivity and shortwave reflectance are reported for two of the new-version YES hotplates. These parameters are applied in a new algorithm and are used to derive liquid-equivalent accumulations (snowfall and rainfall, and these accumulations are compared to values derived by the internal algorithm used in the YES hotplates (hotplate-derived accumulations. In contrast with R11, the new algorithm accounts for radiative terms in a hotplate's energy budget, applies an energy conversion factor which does not differ from a theoretical energy conversion factor, and applies a surface area that is correct for the YES hotplate. Radiative effects are shown to be relatively unimportant for the precipitation events analyzed. In addition, this work documents a 10 % difference between the hotplate-derived and new-algorithm-derived accumulations. This difference seems consistent with R11's application of a hotplate surface area that deviates from the actual surface area of the YES hotplate and with R11's recommendation for an energy conversion factor that differs from that calculated using thermodynamic theory.

  8. Measurement of electric fields in the H-1NF heliac

    International Nuclear Information System (INIS)

    James, B.W.; Howard, J.

    1999-01-01

    There are a number of laser induced fluorescence techniques which can be used to measure internal plasma electric fields. It is planned to use a technique based on Stark mixing of energy levels in a supersonic beam containing metastable helium atoms to measure radial electric fields in H-1NF. Enhanced values of radial electric field are associated with improved confinement modes in H-1NF and other magnetically confined plasmas

  9. Comparison of field-measured radon diffusion coefficients with laboratory-measured coefficients

    International Nuclear Information System (INIS)

    Lepel, E.A.; Silker, W.B.; Thomas, V.W.; Kalkwarf, D.R.

    1983-04-01

    Experiments were conducted to compare radon diffusion coefficients determined for 0.1-m depths of soils by a steady-state method in the laboratory and diffusion coefficients evaluated from radon fluxes through several-fold greater depths of the same soils covering uranium-mill tailings. The coefficients referred to diffusion in the total pore volume of the soils and are equivalent to values for the quantity, D/P, in the Generic Environmental Impact Statement on Uranium Milling prepared by the US Nuclear Regulatory Commission. Two soils were tested: a well-graded sand and an inorganic clay of low plasticity. For the flux evaluations, radon was collected by adsorption on charcoal following passive diffusion from the soil surface and also from air recirculating through an aluminum tent over the soil surface. An analysis of variance in the flux evaluations showed no significant difference between these two collection methods. Radon diffusion coefficients evaluated from field data were statistically indistinguishable, at the 95% confidence level, from those measured in the laboratory; however, the low precision of the field data prevented a sensitive validation of the laboratory measurements. From the field data, the coefficients were calculated to be 0.03 +- 0.03 cm 2 /s for the sand cover and 0.0036 +- 0.0004 cm 2 /s for the clay cover. The low precision in the coefficients evaluated from field data was attributed to high variation in radon flux with time and surface location at the field site

  10. Full-Field Indentation Damage Measurement Using Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Elías López-Alba

    2017-07-01

    Full Text Available A novel approach based on full-field indentation measurements to characterize and quantify the effect of contact in thin plates is presented. The proposed method has been employed to evaluate the indentation damage generated in the presence of bending deformation, resulting from the contact between a thin plate and a rigid sphere. For this purpose, the 3D Digital Image Correlation (3D-DIC technique has been adopted to quantify the out of plane displacements at the back face of the plate. Tests were conducted using aluminum thin plates and a rigid bearing sphere to evaluate the influence of the thickness and the material behavior during contact. Information provided by the 3D-DIC technique has been employed to perform an indirect measurement of the contact area during the loading and unloading path of the test. A symmetrical distribution in the contact damage region due to the symmetry of the indenter was always observed. In the case of aluminum plates, the presence of a high level of plasticity caused shearing deformation as the load increased. Results show the full-field contact damage area for different plates’ thicknesses at different loads. The contact damage region was bigger when the thickness of the specimen increased, and therefore, bending deformation was reduced. With the proposed approach, the elastic recovery at the contact location was quantified during the unloading, as well as the remaining permanent indentation damage after releasing the load. Results show the information obtained by full-field measurements at the contact location during the test, which implies a substantial improvement compared with pointwise techniques.

  11. Redox potential - field measurements - meassured vs. expected values

    Science.gov (United States)

    Stavělová, Monika; Kovář, Martin

    2016-04-01

    Oxidation and reduction (redox) potential is an important and theoretically very well defined parameter and can be calculated accurately. Its value is determinative for management of many electrochemical processes, chemical redox technologies as well as biotechnologies. To measure the redox value that would correspond with the accuracy level of theoretical calculations in field or operational conditions is however nearly impossible. Redox is in practice measured using combined argentochloride electrode with subsequent value conversion to standard hydrogen electrode (EH). Argentochloride electrode does not allow for precise calibration. Prior to the measurement the accuracy of measurement of particular electrode can only be verified in comparative/control solution with value corresponding with oxic conditions (25°C: +220 mV argentochloride electrode, i.e.. +427 mV after conversion to EH). A commercial product of stabile comparative solution for anoxic conditions is not available and therefore not used in every day practice - accuracy of negative redox is not verified. In this presentation results of two tests will be presented: a) monitoring during dynamic groundwater sampling from eight monitoring wells at a site contaminated by chlorinated ethenes (i.e. post-oxic to anoxic conditions) and b) laboratory test of groundwater contaminated by arsenic from two sites during reaction with highly oxidized compounds of iron (ferrates) - i.e. strongly oxic conditions. In both tests a simultaneous measurement by four argentochloride electrodes was implemented - all four electrodes were prior to the test maintained expertly. The redox values of testing electrodes in a comparative solution varied by max. 6 mV. The redox values measured by four electrodes in both anoxic and oxic variant varied by tens to a hundred mV, while with growing time of test the variance of measured redox values increased in both oxic and anoxic variant. Therefore the interpretation of measured redox

  12. Verification of Electromagnetic Field Measurements via Inter-laboratory Comparison Measurements

    Directory of Open Access Journals (Sweden)

    M. Mann

    2005-01-01

    Full Text Available An inter-laboratory comparison of field strength measurements was conducted in order to verify the comparability of high-frequency electromagnetic field measurements. For this purpose, 17 participating teams hosted by the working group "procedures of exposure determination" of the LAI (Länderausschuss für Immissionsschutz, state committee on immission control determined the field strength at given stations around a hospital situation. At those stations very different signals were generated, such as sine wave signals at 27MHz and 433MHz, signals from a diathermy device in Continuous-Wave (CW and Pulse-Width-Modulation (PWM mode, from a GSM base station at 900MHz and 1800MHz, from a UMTS base station, from a babyphone device and from a DECT cordless phone. This contribution describes the evaluation of the measured values and the approach to the computation of a reference value. Considering various sources of electromagnetic fields in the areas of personal safety at work and of immission control, the most important results are presented and the conclusions drawn are discussed.

  13. Flow field measurements in the cell culture unit

    Science.gov (United States)

    Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy

    2002-01-01

    The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the

  14. ATLAS TileCal submodule B-field measurement

    International Nuclear Information System (INIS)

    Budagov, Yu.A.; Fedorenko, S.B.; Kalinichenko, V.V.; Lomakin, Yu.F.; Vorozhtsov, S.B.; Nessi, M.

    1997-01-01

    The work was done to cross check of the previous measurement done at CERN and to simulate the magnetic structure in the vicinity of the symmetry plane of the TileCal. To perform magnetic measurements for submodule the magnet E2 was chosen. The magnetometer used in the magnetic test of the submodule consists of Hall current supply and Hall voltage measuring device. The indium antimonide Hall probe used in this measurement is a model PKhE 606. Experimental set-up provides a true measurement accuracy of order ± 1%. External magnetic field measurements were conducted at the outer surface of the submodule. Two levels of the external field were applied: 108 Gs and 400 Gs. The result of this measurement in general confirms the data, obtained at CERN, but the shielding capability of the submodule under consideration was ∼ 20% higher than there. The field at the tile location is < 150 Gs up to the external field level 500 Gs and the tile field grows much less than the external field level in this range. The data obtained in this measurement could be used as a benchmark when producing a computer model of the TileCal magnetic field distribution

  15. New Limits on Extragalactic Magnetic Fields from Rotation Measures

    Science.gov (United States)

    Pshirkov, M. S.; Tinyakov, P. G.; Urban, F. R.

    2016-05-01

    We take advantage of the wealth of rotation measures data contained in the NRAO VLA Sky Survey catalog to derive new, statistically robust, upper limits on the strength of extragalactic magnetic fields. We simulate the extragalactic magnetic field contribution to the rotation measures for a given field strength and correlation length, by assuming that the electron density follows the distribution of Lyman-α clouds. Based on the observation that rotation measures from distant radio sources do not exhibit any trend with redshift, while the extragalactic contribution instead grows with distance, we constrain fields with Jeans' length coherence length to be below 1.7 nG at the 2 σ level, and fields coherent across the entire observable Universe below 0.65 nG. These limits do not depend on the particular origin of these cosmological fields.

  16. Why should we apply more metrological knowledge to field measurements?

    Science.gov (United States)

    Buchholz, B.; Kraemer, M.; Rolf, C.; Wagner, S.; Zondlo, M. A.; Ebert, V.

    2016-12-01

    Metrology, the science of measurement, defines the SI, the international system of measurement units, their realization and aims to provide a traceable linkage of measurements to the SI. Primary standards at the national metrology institutes (NMIs) provide the highest achievable accuracy levels linked to the SI and thus are ideal scale reference points to establish long-term comparability between instruments in large networks e.g. in global atmospheric monitoring. However, NMIs offer much more than traceable standards. Metrological communities share internally a large valuable knowledge about "how to measure", e.g. how to calculate, assess and estimate impacts which deteriorate measurements or how to minimize negative impacts and address them in a systematic way with a scientific approach. Over the last years WMO, the world meteorological organization, as well as sub communities in the environmental sciences (e.g. the TCCON or GRUAN network), have greatly increased their efforts to integrate metrological principles and improved the comparability across the network. Prominent examples are airborne water vapor measurements, which, despite the well validated global metrological water scale for industry applications, are only very rarely linked to it, mainly due to the lack of established transfer standards. During the last years our group at PTB developed a new class of optical hygrometers and related validation strategies, in order to reduce deviations of up to 20% found in AquaVIT, a large scale, lab based comparison of leading airborne field hygrometers (Fahey et al, AMT, 7, 3159-3251, 2014) down to a long-term stability over 18 month of 0.35%, making this instrument (SEALDH-II) the first dTDLAS-based airborne transfer standards for atmospheric humidity. These and other examples lead to the conclusion that scientific communities starting to enroll metrological principles significantly improve their measurements and eventually the validity as well as interpretation

  17. A relativistic theory for continuous measurement of quantum fields

    International Nuclear Information System (INIS)

    Diosi, L.

    1990-04-01

    A formal theory for the continuous measurement of relativistic quantum fields is proposed. The corresponding scattering equations were derived. The proposed formalism reduces to known equations in the Markovian case. Two recent models for spontaneous quantum state reduction have been recovered in the framework of this theory. A possible example of the relativistic continuous measurement has been outlined in standard Quantum Electrodynamics. The continuous measurement theory possesses an alternative formulation in terms of interacting quantum and stochastic fields. (author) 23 refs

  18. [A focused sound field measurement system by LabVIEW].

    Science.gov (United States)

    Jiang, Zhan; Bai, Jingfeng; Yu, Ying

    2014-05-01

    In this paper, according to the requirement of the focused sound field measurement, a focused sound field measurement system was established based on the LabVIEW virtual instrument platform. The system can automatically search the focus position of the sound field, and adjust the scanning path according to the size of the focal region. Three-dimensional sound field scanning time reduced from 888 hours in uniform step to 9.25 hours in variable step. The efficiency of the focused sound field measurement was improved. There is a certain deviation between measurement results and theoretical calculation results. Focal plane--6 dB width difference rate was 3.691%, the beam axis--6 dB length differences rate was 12.937%.

  19. A comparative study of foot measurements using Receiver ...

    African Journals Online (AJOL)

    The objective of this research was to assess the reliability of the foot measurements by comparing the male and female foot measurements, to know if there is correlation between the male and female foot measurements using the standard set by Landis and Koch (1977), and also to identity the true positive rate and false ...

  20. Magnetic field measurements of the superEBIS superconducting magnet

    International Nuclear Information System (INIS)

    Herschcovitch, A.; Kponou, A.; Clipperton, R.; Hensel, W.; Usack, F.

    1994-01-01

    SuperEBIS was designed to have a solenoidal magnetic field of a 5 Tesla strength with a 120 cm long bore. The field was specified to be straight within 1 part in 10000 within the bore, and uniform to within 1 part in 1000 within the central 90 cm. Magnetic field measurements were performed with a computerized magnetic field measuring setup that was borrowed from W. Sampson's group. A preliminary test was made of a scheme to determine if the magnetic and mechanical axes of the solenoid coincided, and, if not, by how much

  1. Comparative Administrative Law: Outlining a Field of Study

    Directory of Open Access Journals (Sweden)

    Susan Rose-Ackerman

    2010-10-01

    Full Text Available Comparative administrative law is emerging as a distinct field of inquiry after a period of neglect. To demonstrate this claim, the authors summarize their edited volume on the topic – a collection that aims to stimulate research across legal systems and scholarly disciplines. After a set of historical reflections, the authors consider key topics at the intersection of administrative and constitutional law, including the contested issue of administrative independence. Two further sections highlight tensions between expertise and accountability, drawing insights from economics and political science. The essay then considers the changing boundaries of the administrative state – both the public–private distinction and the links between domestic and transnational regulatory bodies, such as the European Union. The essay concludes with reflections on a core concern of administrative law: the way individuals and organizations across different systems test and challenge the legitimacy of public authority. Le droit administratif comparé est en train de se manifester comme domaine d’étude distinct suite à une période pendant laquelle il a été négligé. Pour démontrer cette affirmation, les auteurs présentent un sommaire du volume à ce sujet dont ils dirigent la publication – une collection qui vise à stimuler la recherche au sein de divers systèmes juridiques et diverses disciplines d’érudition. Après une série de réflexions historiques, les auteurs traitent de questions–clés qui relèvent en même temps du droit administratif et du droit constitutionnel, y compris la question controversée de l’indépendance administrative. Deux autres sections mettent en lumière des tensions entre l’expertise et l’obligation de rendre compte, puisant dans les sciences économique et politique. L’article traite ensuite des limites changeantes de l’état administratif – d’une part, quant à la distinction public–privé et d

  2. The Value in Comparing Organizational Fields and Forms

    DEFF Research Database (Denmark)

    Pinheiro, Rómulo; Ramirez, Francisco O.; Geschwind, Lars

    2016-01-01

    public policy and administration literatures – of relevance to scholars and the communities of practice working within either field. In this introductory paper to the volume, we provide a brief overview of developments across the two organizational fields and illuminate on the most important scholarly...

  3. Direct analysis of dispersive wave fields from near-field pressure measurements

    NARCIS (Netherlands)

    Horchens, L.

    2011-01-01

    Flexural waves play a significant role for the radiation of sound from plates. The analysis of flexural wave fields enables the detection of sources and transmission paths in plate-like structures. The measurement of these wave fields can be carried out indirectly by means of near-field acoustic

  4. A comparative study of performance measurement standards of railway operator

    Directory of Open Access Journals (Sweden)

    Pongjirawut Siripong

    2017-01-01

    Full Text Available The European standard (EN 13816, is one of the widely accepted standards for measuring the quality of public passenger transport (PPT service. EN 13816 indicates 8 measurement criteria, 29 sub-criteria and 193 Key Performance Indicators (KPIs to be used to measure the performance of railway operators. Nowadays, there are other addition criteria beyond EN13816, developed by various organisations. This research firstly aims to explore the service performance measurement of railway operators used by actual railway operators at international level and in Thailand. After an intensive review of performance measurement standards, 9 standards are compiled and compared in terms of criteria, sub-criteria and KPIs using a cluster analysis methodology. The result found additional performance measurement aspects at 2 sub-criteria and 91 KPIs in addition to EN 13816. This research summarized and compared different performance measurement standards to measure service quality of metro rail line.

  5. Magnetic field measurements of model SSC [Superconducting Super Collider] dipoles

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.; Gilbert, W.S.; Green, M.I.; Barale, P.J.

    1986-10-01

    To qualify for use in the Superconducting Super Collider, the 8000 or so 16 m long dipole magnets must pass a series of tests. One of these will be a set of warm measurements of field quality, which must be precise to about 0.001% of the 100 G field produced by 10 A, the maximum current the coils are allowed to carry for an extended period at room temperature. Field measurements of better than this accuracy have already been carried out on 1 m long model dipoles. These measurements have included determinations of the dipole fields and the higher harmonics in the central or two dimensional region and in the total magnet. In addition, axial scans of the dipole and higher harmonic magnetic fields have been made to determine the local variations, which might reflect fabrication and assembly tolerances. This paper describes the equipment developed for these measurements, the results of a representative set of measurements of the central and integral fields and axial scans, and a comparison between warm and cold measurements. Reproducibility, accuracy and precision will be described for some of the measurements. The significance of the warm measurements as a part of the certification process for the SSC dipoles will be discussed

  6. Measuring Motion-Induced B0-Fluctuations in the Brain Using Field Probes

    DEFF Research Database (Denmark)

    Andersen, Mads; Hanson, Lars G.; Madsen, Kristoffer Hougaard

    2016-01-01

    were compared with scanner acquired B0-maps from experiments with breathing and shoulder movements. A realistic simulation of B0-fluctuations caused by breathing was performed, and used for testing different sets of field probe positions. Results: The B0-fluctuations were well reflected in the field......Purpose: Fluctuations of the background magnetic field (B0) due to body and breathing motion can lead to significant artifacts in brain imaging at ultrahigh field. Corrections based on real-time sensing using external field probes show great potential. This study evaluates different aspects...... of field interpolation from these probes into the brain which is implicit in such methods. Measurements and simulations were performed to quantify how well B0-fluctuations in the brain due to body and breathing motion are reflected in external field probe measurements. Methods: Field probe measurements...

  7. Comparative Study of the Volumetric Methods Calculation Using GNSS Measurements

    Science.gov (United States)

    Şmuleac, Adrian; Nemeş, Iacob; Alina Creţan, Ioana; Sorina Nemeş, Nicoleta; Şmuleac, Laura

    2017-10-01

    This paper aims to achieve volumetric calculations for different mineral aggregates using different methods of analysis and also comparison of results. To achieve these comparative studies and presentation were chosen two software licensed, namely TopoLT 11.2 and Surfer 13. TopoLT program is a program dedicated to the development of topographic and cadastral plans. 3D terrain model, level courves and calculation of cut and fill volumes, including georeferencing of images. The program Surfer 13 is produced by Golden Software, in 1983 and is active mainly used in various fields such as agriculture, construction, geophysical, geotechnical engineering, GIS, water resources and others. It is also able to achieve GRID terrain model, to achieve the density maps using the method of isolines, volumetric calculations, 3D maps. Also, it can read different file types, including SHP, DXF and XLSX. In these paper it is presented a comparison in terms of achieving volumetric calculations using TopoLT program by two methods: a method where we choose a 3D model both for surface as well as below the top surface and a 3D model in which we choose a 3D terrain model for the bottom surface and another 3D model for the top surface. The comparison of the two variants will be made with data obtained from the realization of volumetric calculations with the program Surfer 13 generating GRID terrain model. The topographical measurements were performed with equipment from Leica GPS 1200 Series. Measurements were made using Romanian position determination system - ROMPOS which ensures accurate positioning of reference and coordinates ETRS through the National Network of GNSS Permanent Stations. GPS data processing was performed with the program Leica Geo Combined Office. For the volumetric calculating the GPS used point are in 1970 stereographic projection system and for the altitude the reference is 1975 the Black Sea projection system.

  8. Comparing Measurement Error between Two Different Methods of Measurement of Various Magnitudes

    Science.gov (United States)

    Zavorsky, Gerald S.

    2010-01-01

    Measurement error is a common problem in several fields of research such as medicine, physiology, and exercise science. The standard deviation of repeated measurements on the same person is the measurement error. One way of presenting measurement error is called the repeatability, which is 2.77 multiplied by the within subject standard deviation.…

  9. Longitudinal and transverse electric field measurements in resonant cavities

    International Nuclear Information System (INIS)

    Tong Dechun; Chen Linfeng; Zheng Xiaoyue

    1994-01-01

    The paper presents a measuring technique for the electric field distribution of high order modes in resonant cavities. A perturbing bead-like cage made with metallic wires are developed for S-band field measurements, which can be used to detect a small electric field component in the presence of other strong electric or magnetic field components (That means high sensitivity and high directivity). In order to avoid orientation error for the cage with very high directivity, two parallel threads were used for supporting the perturbing cage. A simple mechanical set-up is described. The cage can be driven into the cavity on-axis or off-axis in any azimuth for the longitudinal and transverse electric field measurements

  10. Measurement of magnetic fields in the direct proximity of power line conductors

    Energy Technology Data Exchange (ETDEWEB)

    Mamishev, A.V.; Russell, B.D. [Texas A and M Univ., College Station, TX (United States). Dept. of Electrical Engineering

    1995-07-01

    Modeling and managing of power frequency magnetic fields requires verification of theory with actual measurements. Measurements only at ground level are not always sufficient for comprehensive studies. The technique and the results of three-dimensional mapping of the power frequency magnetic fields high above ground level are presented in this paper. Comparative calculations illustrate relevance and approximations of the existing theoretical approach to field modeling. The influence of harmonics on the elliptical rotation of the magnetic field vector is illustrated. The possibility of use of the magnetic fields for the power line proximity detection is discussed.

  11. Measurement of magnetic fields in the direct proximity of power line conductors

    International Nuclear Information System (INIS)

    Mamishev, A.V.; Russell, B.D.

    1995-01-01

    Modeling and managing of power frequency magnetic fields requires verification of theory with actual measurements. Measurements only at ground level are not always sufficient for comprehensive studies. The technique and the results of three-dimensional mapping of the power frequency magnetic fields high above ground level are presented in this paper. Comparative calculations illustrate relevance and approximations of the existing theoretical approach to field modeling. The influence of harmonics on the elliptical rotation of the magnetic field vector is illustrated. The possibility of use of the magnetic fields for the power line proximity detection is discussed

  12. Consistent measurements comparing the drift features of noble gas mixtures

    CERN Document Server

    Becker, U; Fortunato, E M; Kirchner, J; Rosera, K; Uchida, Y

    1999-01-01

    We present a consistent set of measurements of electron drift velocities and Lorentz deflection angles for all noble gases with methane and ethane as quenchers in magnetic fields up to 0.8 T. Empirical descriptions are also presented. Details on the World Wide Web allow for guided design and optimization of future detectors.

  13. Consistent measurements comparing the drift features of noble gas mixtures

    International Nuclear Information System (INIS)

    Becker, U.; Dinner, R.; Fortunato, E.; Kirchner, J.; Rosera, K.; Uchida, Y.

    1999-01-01

    We present a consistent set of measurements of electron drift velocities and Lorentz deflection angles for all noble gases with methane and ethane as quenchers in magnetic fields up to 0.8 T. Empirical descriptions are also presented. Details on the World Wide Web allow for guided design and optimization of future detectors

  14. Internal magnetic field measurement in tokamak plasmas using a ...

    Indian Academy of Sciences (India)

    Abstract. In a tokamak plasma, the poloidal magnetic field profile closely depends on the current density profile. We can deduce the internal magnetic field from the analysis of circular polarization of the spectral lines emitted by the plasma. The theory of the measurement and a detailed design of the Zeeman polarimeter ...

  15. Apparatus for measuring the strength of an electromagnetic field

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes; Buesink, Frederik Johannes Karel; Serra, Ramiro

    2011-01-01

    There is disclosed an apparatus for measuring the strength of an electromagnetic field. The apparatus comprises a plurality of antennas arranged such that the field is received from all directions, each antenna supplying an RF signal as output.The apparatus also compromises a plurality of

  16. Measuring methods, registration and signal processing for magnetic field research

    International Nuclear Information System (INIS)

    Nagiello, Z.

    1981-01-01

    Some measuring methods and signal processing systems based on analogue and digital technics, which have been applied in magnetic field research using magnetometers with ferromagnetic transducers, are presented. (author)

  17. Instructions for 104-SX liquid level measurement field tests

    International Nuclear Information System (INIS)

    Webb, R.H.

    1994-01-01

    This document provides detailed instructions for field testing a suggested solution of inserting a liner inside the 104-SX failed Liquid Observation Well to gain access for making temporary Liquid Level Measurement until a permanent solution has been provided

  18. The measurement of the modal strain fields using digital shearography

    Directory of Open Access Journals (Sweden)

    Gomes J.M.

    2010-06-01

    Full Text Available This work presents a Michelson shearography interferometer configuration associated with stroboscopic double illumination technique for the measurement of modal rotation fields and their strain fields on a clamped circular aluminium plate. The speckle pattern is frozen by the synchronization between the LASER illumination and the modal vibration of the object. The quantitative evaluation is performed for each digital shearogram using a time modulation technique. The setup of double illumination LASER with out-of-plane opposite sensitivity allows the two phase maps measurement of the modal spatial gradient. The modal rotation and strain fields are extracted by the combination of this two digital phase maps. Image processing techniques are applied on the phase maps to obtain full-field measurements using a dedicated post-processing algorithm. Finally, is presented a comparison between the experimental measurement and the numerical solution.

  19. Mesodynamics in the SARS nucleocapsid measured by NMR field cycling

    Energy Technology Data Exchange (ETDEWEB)

    Clarkson, Michael W.; Lei Ming; Eisenmesser, Elan Z.; Labeikovsky, Wladimir [MS009 Brandeis University, Department of Biochemistry and Howard Hughes Medical Institute (United States); Redfield, Alfred [MS009 Brandeis University, Department of Biochemistry (United States)], E-mail: redfield@brandeis.edu; Kern, Dorothee [MS009 Brandeis University, Department of Biochemistry and Howard Hughes Medical Institute (United States)], E-mail: dkern@brandeis.edu

    2009-09-15

    Protein motions on all timescales faster than molecular tumbling are encoded in the spectral density. The dissection of complex protein dynamics is typically performed using relaxation rates determined at high and ultra-high field. Here we expand this range of the spectral density to low fields through field cycling using the nucleocapsid protein of the SARS coronavirus as a model system. The field-cycling approach enables site-specific measurements of R{sub 1} at low fields with the sensitivity and resolution of a high-field magnet. These data, together with high-field relaxation and heteronuclear NOE, provide evidence for correlated rigid-body motions of the entire {beta}-hairpin, and corresponding motions of adjacent loops with a time constant of 0.8 ns (mesodynamics). MD simulations substantiate these findings and provide direct verification of the time scale and collective nature of these motions.

  20. Toward a direct comparison of field and laboratory goniometer measurements

    NARCIS (Netherlands)

    Dangel, S.; Verstraete, M.; Schopfer, J.; Kneubuehler, M.; Schaepman, M.E.; Itten, K.I.

    2005-01-01

    Field and laboratory goniometers are widely used in the remote sensing community to assess spectrodirectional reflection properties of selected targets. Even when the same target and goniometer system are used, field and laboratory results cannot directly be compared due to inherent differences,

  1. A summary of SSC dipole magnet field quality measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wanderer, P.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Jain, A.; Kahn, S.; Kelly, E.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.P.; Sampson, W.; Shutt, R.; Thomas, R.; Thompson, P.; Willen, E. [Brookhaven National Lab., Upton, NY (United States); Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Nah, W.; Ogitsu, T.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Tompkins, J.; Turner, J.; Yu, Y.; Zhao, Y.; Zheng, H. [Superconducting Super Collider Lab., Dallas, TX (United States); Bleadon, M.; Bossert, R.; Carson, J.; Delchamps, S.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Wake, M. [Fermi National Accelerator Lab., Batavia, IL (United States); Royet, J.; Scanlan, R.; Taylor, C. [Lawrence Berkeley Lab., CA (United States)

    1992-03-01

    This paper reports results of field quality measurements of the initial 15 m-long, 50 mm-aperture SSC Collider dipoles tested at Brookhaven National Laboratory and Fermi National Laboratory. These data include multipole coefficients and the dipole angle at room temperature and 4.35 K, 4.35 K integral field measurements, and time-dependent effects. Systematic uncertainties are also discussed.

  2. The Virtual Fields Method Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements

    CERN Document Server

    Pierron, Fabrice

    2012-01-01

    The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements is the first book on the Virtual Fields Method (VFM), a technique to identify materials mechanical properties from full-field measurements. Firmly rooted with extensive theoretical description of the method, the book presents numerous examples of application to a wide range of materials (composites, metals, welds, biomaterials) and situations (static, vibration, high strain rate). The authors give a detailed training section with examples of progressive difficulty to lead the reader to program the VFM and include a set of commented Matlab programs as well as GUI Matlab-based software for more general situations. The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements is an ideal book for researchers, engineers, and students interested in applying the VFM to new situations motivated by their research.  

  3. Comparing 3D foot scanning with conventional measurement methods.

    Science.gov (United States)

    Lee, Yu-Chi; Lin, Gloria; Wang, Mao-Jiun J

    2014-01-01

    Foot dimension information on different user groups is important for footwear design and clinical applications. Foot dimension data collected using different measurement methods presents accuracy problems. This study compared the precision and accuracy of the 3D foot scanning method with conventional foot dimension measurement methods including the digital caliper, ink footprint and digital footprint. Six commonly used foot dimensions, i.e. foot length, ball of foot length, outside ball of foot length, foot breadth diagonal, foot breadth horizontal and heel breadth were measured from 130 males and females using four foot measurement methods. Two-way ANOVA was performed to evaluate the sex and method effect on the measured foot dimensions. In addition, the mean absolute difference values and intra-class correlation coefficients (ICCs) were used for precision and accuracy evaluation. The results were also compared with the ISO 20685 criteria. The participant's sex and the measurement method were found (p < 0.05) to exert significant effects on the measured six foot dimensions. The precision of the 3D scanning measurement method with mean absolute difference values between 0.73 to 1.50 mm showed the best performance among the four measurement methods. The 3D scanning measurements showed better measurement accuracy performance than the other methods (mean absolute difference was 0.6 to 4.3 mm), except for measuring outside ball of foot length and foot breadth horizontal. The ICCs for all six foot dimension measurements among the four measurement methods were within the 0.61 to 0.98 range. Overall, the 3D foot scanner is recommended for collecting foot anthropometric data because it has relatively higher precision, accuracy and robustness. This finding suggests that when comparing foot anthropometric data among different references, it is important to consider the differences caused by the different measurement methods.

  4. Substorm Electric And Magnetic Fields In The Earth's Magnetotail: Observations Compared To The WINDMI Model

    Science.gov (United States)

    Srinivas, P. G.; Spencer, E. A.; Vadepu, S. K.; Horton, W., Jr.

    2017-12-01

    We compare satellite observations of substorm electric fields and magnetic fields to the output of a low dimensional nonlinear physics model of the nightside magnetosphere called WINDMI. The electric and magnetic field satellite data are used to calculate the E X B drift, which is one of the intermediate variables of the WINDMI model. The model uses solar wind and IMF measurements from the ACE spacecraft as input into a system of 8 nonlinear ordinary differential equations. The state variables of the differential equations represent the energy stored in the geomagnetic tail, central plasma sheet, ring current and field aligned currents. The output from the model is the ground based geomagnetic westward auroral electrojet (AL) index, and the Dst index.Using ACE solar wind data, IMF data and SuperMAG identification of substorm onset times up to December 2015, we constrain the WINDMI model to trigger substorm events, and compare the model intermediate variables to THEMIS and GEOTAIL satellite data in the magnetotail. By forcing the model to be consistent with satellite electric and magnetic field observations, we are able to track the magnetotail energy dynamics, the field aligned current contributions, energy injections into the ring current, and ensure that they are within allowable limts. In addition we are able to constrain the physical parameters of the model, in particular the lobe inductance, the plasma sheet capacitance, and the resistive and conductive parameters in the plasma sheet and ionosphere.

  5. Why Choice Matters: Revisiting and Comparing Measures of Democracy

    Directory of Open Access Journals (Sweden)

    Heiko Giebler

    2018-03-01

    Full Text Available Measures of democracy are in high demand. Scientific and public audiences use them to describe political realities and to substantiate causal claims about those realities. This introduction to the thematic issue reviews the history of democracy measurement since the 1950s. It identifies four development phases of the field, which are characterized by three recurrent topics of debate: (1 what is democracy, (2 what is a good measure of democracy, and (3 do our measurements of democracy register real-world developments? As the answers to those questions have been changing over time, the field of democracy measurement has adapted and reached higher levels of theoretical and methodological sophistication. In effect, the challenges facing contemporary social scientists are not only limited to the challenge of constructing a sound index of democracy. Today, they also need a profound understanding of the differences between various measures of democracy and their implications for empirical applications. The introduction outlines how the contributions to this thematic issue help scholars cope with the recurrent issues of conceptualization, measurement, and application, and concludes by identifying avenues for future research.

  6. Measuring populism: comparing two methods of content analysis

    NARCIS (Netherlands)

    Rooduijn, M.; Pauwels, T.

    2011-01-01

    The measurement of populism - particularly over time and space - has received only scarce attention. In this research note two different ways to measure populism are compared: a classical content analysis and a computer-based content analysis. An analysis of political parties in the United Kingdom,

  7. Ultrasound measurements of testicular volume: Comparing the three ...

    African Journals Online (AJOL)

    Objective: To determine the accuracy of various ultrasound formulas for measuring the testicular volume in humans by comparing the resultant measurements with the actual testicular volume. Subjects and methods: The testicular volume of 121 testes from 62 patients with prostate cancer (mean age 72.7 ± 9.4) was ...

  8. Performance of field measuring probes for SSC magnets

    International Nuclear Information System (INIS)

    Thomas, R.; Ganetis, G.; Herrera, J.; Hogue, R.; Jain, A.; Louie, W.; Marone, A.; Wanderer, P.

    1994-01-01

    Several years of experience have been acquired on the operation of probes (open-quotes molesclose quotes) constructed for the measurement of the multipole components of the magnetic fields of SSC magnets. The field is measured by rotating coils contained in a 2.4-m long tube that is pulled through the aperture of the magnet by an external device - the transporter. In addition to the measuring coils, the tube contains motors for rotating the coil and a system for sensing local vertical using gravity sensors to provide an absolute reference for the field measurements. The authors describe the steps that must be taken in order to ensure accurate, repeatable measurements; the design changes that have been motivated by difficulties encountered (noise, vibration, variations in temperature); and other performance issues. The mechanical interface between the probe and the beam tube of the magnet is also described

  9. A Framework for Comparative Assessments of Energy Efficiency Policy Measures

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Helcio; Atkinson, Barbara; Lekov, Alex

    2011-05-24

    When policy makers propose new policies, there is a need to assess the costs and benefits of the proposed policy measures, to compare them to existing and alternative policies, and to rank them according to their effectiveness. In the case of equipment energy efficiency regulations, comparing the effects of a range of alternative policy measures requires evaluating their effects on consumers’ budgets, on national energy consumption and economics, and on the environment. Such an approach should be able to represent in a single framework the particularities of each policy measure and provide comparable results. This report presents an integrated methodological framework to assess prospectively the energy, economic, and environmental impacts of energy efficiency policy measures. The framework builds on the premise that the comparative assessment of energy efficiency policy measures should (a) rely on a common set of primary data and parameters, (b) follow a single functional approach to estimate the energy, economic, and emissions savings resulting from each assessed measure, and (c) present results through a set of comparable indicators. This framework elaborates on models that the U.S. Department of Energy (DOE) has used in support of its rulemakings on mandatory energy efficiency standards. In addition to a rigorous analysis of the impacts of mandatory standards, DOE compares the projected results of alternative policy measures to those projected to be achieved by the standards. The framework extends such an approach to provide a broad, generic methodology, with no geographic or sectoral limitations, that is useful for evaluating any type of equipment energy efficiency market intervention. The report concludes with a demonstration of how to use the framework to compare the impacts estimated for twelve policy measures focusing on increasing the energy efficiency of gas furnaces in the United States.

  10. Comparative investigation of physiological responses of field-grown ...

    African Journals Online (AJOL)

    The objective of this study was to determine the physiological response of Medicago sativa and Festuca arundinacea to cutting under different water regimes in a semi-arid Mediterranean region. In a field experiment, two cutting intensities were applied under irrigation and under rainfed (water deficit) conditions.

  11. Comparative Analysis Of Empowerment Under Farmer Field School ...

    African Journals Online (AJOL)

    Based on the findings of the study the following recommendations were made: That agricultural extension should change from information –driven approach of introducing technology, to a participatory approach of learning-by-doing. That in the course of regular field trainings and experimentations the farmer will easily learn ...

  12. Air-borne shape measurement of parabolic trough collector fields

    Science.gov (United States)

    Prahl, Christoph; Röger, Marc; Hilgert, Christoph

    2017-06-01

    The optical and thermal efficiency of parabolic trough collector solar fields is dependent on the performance and assembly accuracy of its components such as the concentrator and absorber. For the purpose of optical inspection/approval, yield analysis, localization of low performing areas, and optimization of the solar field, it is essential to create a complete view of the optical properties of the field. Existing optical measurement tools are based on ground based cameras, facing restriction concerning speed, volume and automation. QFly is an airborne qualification system which provides holistic and accurate information on geometrical, optical, and thermal properties of the entire solar field. It consists of an unmanned aerial vehicle, cameras and related software for flight path planning, data acquisition and evaluation. This article presents recent advances of the QFly measurement system and proposes a methodology on holistic qualification of the complete solar field with minimum impact on plant operation.

  13. Continuous measurements of N2O emissions from arable fields

    Science.gov (United States)

    Wallman, Magdalena; Lammirato, Carlo; Rütting, Tobias; Delin, Sofia; Weslien, Per; Klemedtsson, Leif

    2017-04-01

    Agriculture represents 59 % of the anthropogenic nitrous oxide (N2O) emissions, according to the IPCC (Ciais et al. 2013). N2O emissions are typically irregular and vary widely in time and space, which makes it difficult to get a good representation of the emissions (Henault et al. 2012), particularly if measurements have low frequency and/or cover only a short time period. Manual measurements are, for practical reasons, often short-term and low-frequent, or restricted to periods where emissions are expected to be high, e.g. after fertilizing. However, the nature of N2O emissions, being largely unpredictable, calls for continuous or near-continuous measurements over long time periods. So far, rather few long-term, high resolution measurements of N2O emissions from arable fields are reported; among them are Flessa et al. (2002) and Senapati et al. (2016). In this study, we have a two-year data set (2015-2017) with hourly measurements from ten automatic chambers, covering unfertilized controls as well as different nitrogen fertilizer treatments. Grain was produced on the field, and effects of tillage, harvest and other cropping measures were covered. What we can see from the experiment is that (a) the unfertilized control plots seem to follow the same emission pattern as the fertilized plots, at a level similar to the standard mineral fertilized plots (120 kg N ha-1 yr-1) and (b) freeze/thaw emissions are comparable in size to emissions after fertilizing. These two findings imply that the importance of fertilizing to the overall N2O emissions from arable soils may be smaller than previously expected. References: Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell et al. 2013: Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung et

  14. Electric and magnetic field measurements in a high voltage center.

    Science.gov (United States)

    Safigianni, Anastasia S; Spyridopoulos, Anastasios I; Kanas, Vasilis L

    2012-01-01

    This paper investigates the electric and magnetic fields inside a large high voltage center constituted both of 400/150 and 150/20 kV substation areas. Results of previous field measurements and calculations in substations, made by the authors of this paper or other researchers, are presented first. The basic data distinguishing the examined center from previously examined substations follow. The main results of the field measurements in the areas of the above-mentioned center are presented in relevant diagrams. General conclusions arising from the comparison of the measured field values with relevant reference levels in force for safe public and occupational exposure as well as with the results of previous research are finally given.

  15. Compare Energy Use in Variable Refrigerant Flow Heat Pumps Field Demonstration and Computer Model

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Chandan; Raustad, Richard

    2013-07-01

    Variable Refrigerant Flow (VRF) heat pumps are often regarded as energy efficient air-conditioning systems which offer electricity savings as well as reduction in peak electric demand while providing improved individual zone setpoint control. One of the key advantages of VRF systems is minimal duct losses which provide significant reduction in energy use and duct space. However, there is limited data available to show their actual performance in the field. Since VRF systems are increasingly gaining market share in the US, it is highly desirable to have more actual field performance data of these systems. An effort was made in this direction to monitor VRF system performance over an extended period of time in a US national lab test facility. Due to increasing demand by the energy modeling community, an empirical model to simulate VRF systems was implemented in the building simulation program EnergyPlus. This paper presents the comparison of energy consumption as measured in the national lab and as predicted by the program. For increased accuracy in the comparison, a customized weather file was created by using measured outdoor temperature and relative humidity at the test facility. Other inputs to the model included building construction, VRF system model based on lab measured performance, occupancy of the building, lighting/plug loads, and thermostat set-points etc. Infiltration model inputs were adjusted in the beginning to tune the computer model and then subsequent field measurements were compared to the simulation results. Differences between the computer model results and actual field measurements are discussed. The computer generated VRF performance closely resembled the field measurements.

  16. Path-integral measure for topological field theories

    International Nuclear Information System (INIS)

    Cugliandolo, L.F.; Lozano, G.; Schaposnik, F.A.

    1990-01-01

    We discuss how the dependence of the path-integral measure on the metric affects the properties of topological quantum field theories. We show that the choice of an invariant measure (under general coordinate transformations) preserves the topological character of these theories. We also discuss how topological invariants should be computed within this approach. (orig.)

  17. Free-field calibration of measurement microphones at high frequencies

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Torras Rosell, Antoni

    2011-01-01

    Measurement microphones are typically calibrated in a free field at frequencies up to 50 kHz. This is a sufficiently high frequency for the most of sound measurement applications related with noise assessment. However, other applications such as assessment of the noise emitted by ultrasound clean...

  18. 47 CFR 73.686 - Field strength measurements.

    Science.gov (United States)

    2010-10-01

    ... in each direction in which measurements were made, drawn on curved earth paper for equivalent 4/3 earth radius, of the largest available scale. (c) Collection of field strength data to determine television service in specific communities—(1) Preparation for measurement. (i) The population (P) of the...

  19. Measurement of electrical steels with direct field determination

    Czech Academy of Sciences Publication Activity Database

    Stupakov, Oleksandr; Wood, R.; Melikhov, O.; Jiles, D.

    2010-01-01

    Roč. 46, č. 2 (2010), 298-301 ISSN 0018-9464 R&D Projects: GA ČR GP102/09/P108 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic field measurement * magnetic hysteresis * magnetic variables measurement * silicon steel Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.052, year: 2010

  20. Measurement of incident sound power using near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2009-01-01

    ; and it has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using ‘statistically optimised near field acoustic holography’ (SONAH...

  1. Measurement of critical temperature as a function of field

    Science.gov (United States)

    McInturff, A. D.; Ishibashi, K.; Heard, G. D.

    The critical temperature has been measured for various magnet conductors as a function of the perpendicular applied magnetic field. The isothermal environment was provided by a variable temperature cryostat which fits into the bore of a 10 telsa solenoid. The temperature gradient across the sample volume was measured to be less than 25 millikelvins. The superconducting to normal state transition was measured resistively, using sample current densities from 0.01 to 2 A cm -2. The maximum applied magnetic field was 10 T and varied less than 0.5% in the sample volume. The critical transport current range of the samples measured from tens to thousands of amperes in the presence of a 10 T perpendicular magnetic field at 4.2 K.

  2. Science outside the laboratory measurement in field science and economics

    CERN Document Server

    Boumans, Marcel

    2015-01-01

    The conduct of most of social science occurs outside the laboratory. Such studies in field science explore phenomena that cannot for practical, technical, or ethical reasons be explored under controlled conditions. These phenomena cannot be fully isolated from their environment or investigated by manipulation or intervention. Yet measurement, including rigorous or clinical measurement, does provide analysts with a sound basis for discerning what occurs under field conditions, and why. In Science Outside the Laboratory, Marcel Boumans explores the state of measurement theory, its reliability, and the role expert judgment plays in field investigations from the perspective of the philosophy of science. Its discussion of the problems of passive observation, the calculus of observation, the two-model problem, and model-based consensus uses illustrations drawn primarily from economics. Rich in research and discussion, the volume clarifies the extent to which measurement provides valid information about objects an...

  3. Electric field measurements at subcritical, oblique bow shock crossings

    International Nuclear Information System (INIS)

    Wygant, J.R.; Bensadoun, M.; Mozer, F.S.

    1987-01-01

    Electric field measurements at oblique, subcritical bow shock crossings are presented from the ISEE 1 University of California, Berkeley, double-probe electric field experiment. The measurements averaged over the 3-s spin period of the spacecraft provide the first observations of the large-scale (100 km) laminar oscillations in the longitudinal component of the electric field associated with the whistler precursor which is characteristic of these dispersive shocks. The amplitude of the oscillations increases from ∼0.5 mV/m to a maximum of 6 mV/m across the magnetic ramp of the shock (directed along the shock normal). The calculated electric potential drops across the shocks varied from 340 to 550 volts, which is 40-60% of the observed loss of kinetic energy associated with the bulk flow of the ions. These measurements suggest that at these shocks the additional deceleration of incident ions is due to the Lorentz force. The contributions to the normal component of the large-scale electric field at the shock due to the parallel and perpendicular components (relative to the magnetic field) of the electric field are evaluated. It is shown that the perpendicular component of the electric field dominates, accounting for most of the cross-shock potential, but that there is a nonnegligible parallel component. This large-scale parallel component has a magnitude of 1-2 mV/m which sometimes results in a potential well for electrons with a depth of ∼150 eV. It is experimentally demonstrated that the dominance of the perpendicular over the parallel component of the electric field resulted in a correlation between the longitudinal component of the large-scale electric field and the fluctuations in the magnetic field component perpendicular to the coplanarity plane

  4. Comparative study of bedside and laboratory measurements of hemoglobin.

    Science.gov (United States)

    Krenzischek, D A; Tanseco, F V

    1996-11-01

    The purpose of this study was to examine the effects of variations in technique on measurements of hemoglobin level done at the bedside and to compare these results with laboratory measurements of hemoglobin. In accordance with hospital policy, procedure, and protocol, various techniques were used to obtain samples of capillary and venous blood and of blood from arterial and central venous catheters. Levels of hemoglobin were measured at the bedside and in the laboratory, and the results were compared. The Johns Hopkins Hospital adult postanesthesia care unit. A total of 187 blood samples were obtained from 62 adults who had undergone general surgery. Group I comprised 20 subjects with capillary and venous blood samples. Group II comprised 21 subjects with arterial blood samples. Group III comprised 21 subjects with central venous blood samples. The results showed that the amount of blood to be discarded before obtaining samples of arterial and central venous blood need not be any larger than double the dead space of the catheter, and that shaking the blood sample for 10 seconds was sufficient to mix the sample before measurement of hemoglobin levels. Results of bedside and laboratory measurements of hemoglobin level were comparable. Bedside measurement of hemoglobin increases efficiency in patient care, decreases risk of blood-transmitted infection for staff, and decreases cost to the patient. However, the persons who perform the assay must be responsible in adhering to the standard of practice to minimize errors in the measurements.

  5. Measuring and comparing normal ear protrusion using computerized tomography

    International Nuclear Information System (INIS)

    Otsuka, Yasushi; Hosaka, Yoshiaki; Kiuchi, Tatsuya

    1998-01-01

    The normal external ears of 128 Japanese individuals (64 men and 64 women) were measured using the angle-measuring function of analytic software for computerized tomography (CT). The initial baseline for measurement was the orbitomeatal line (OM line); second measurements were taken 1 cm above the baseline (OM+1 cm), and third measurements 2 cm above the baseline (OM+2 cm). The sample was divided into two groups by sex (64 men and 64 women) and into three groups by age (20-39, 40-59, and 60+), and protrusion measurements for the three sections were compared by both sex and age. The results showed that males have larger auricular values (auricular concha cranial angle, auricular concha scaphoid angle, auricular cranial angle) than do females. In terms of age, the results showed that the auricular concha cranial angle becomes larger with increasing age, while the auricular concha scaphoid angle and auricular cranial angle become smaller with age. (author)

  6. Design of Electric Field Sensors for Measurement of Electromagnetic Pulse

    Directory of Open Access Journals (Sweden)

    Hui ZHANG

    2014-01-01

    Full Text Available In this paper, a D-dot electric field sensor and a fiber-optic transmission electric field sensor are developed for measurement of electromagnetic pulse. The D-dot sensor is a differential model sensor without source and has a simple structure. The fiber-optic transmission sensor is in the type of small dipole antenna, which uses its outside shielding layer as a pair of antennas. Design of the sensor circuit and the test system are introduced in this paper. A calibration system for these pulsed field sensors is established and the test results verified the ability of the developed sensors for measurement of the standard electromagnetic pulse field (the half peak width is 25 ns and the rising time is 2.5 ns.

  7. A comparative study of physical performance measures in Parkinson's disease.

    Science.gov (United States)

    Tanji, Haruko; Gruber-Baldini, Ann L; Anderson, Karen E; Pretzer-Aboff, Ingrid; Reich, Stephen G; Fishman, Paul S; Weiner, William J; Shulman, Lisa M

    2008-10-15

    The objective of this study is to compare physical performance measures for their ability to discriminate between levels of disability and disease severity in Parkinson's disease (PD). Disability in PD is commonly assessed by patient self-report, which may be limited by patient insight. Seventy-nine patients with PD were tested with seven performance measures: Physical Performance Test (PPT), modified Physical Performance Test (mPPT), Short Physical Performance Battery (SPPB), Performance Test of Activities of Daily Living (PADL), Berg Balance Scale (BBS), Timed Up and Go (TUG), and Functional Reach (FR). These measures were compared with patient-reported disability on the Older Americans Resource and Services Disability subscale (OARS) and disease severity on the Unified Parkinson's Disease Rating Scale (UPDRS). The performance measures were more sensitive to levels of disease severity than disability. Four measures discriminated across quartiles of disability (PPT, mPPT, BBS, TUG: P mPPT, BBS, TUG, FR: P < 0.01; SPPB, PADL: P < 0.05). However, no measure consistently discriminated between subgroups with a range of early and advanced disease severity. The seven physical performance measures showed different profiles of strengths and weaknesses in assessing disability and disease severity. The results of this study will facilitate choosing performance measures for clinical care and clinical trials in PD. (c) 2008 Movement Disorder Society.

  8. Electric field measurement in an atmospheric or higher pressure gas by coherent Raman scattering of nitrogen

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi; Mueller, Sarah; Luggenhoelscher, Dirk; Czarnetzki, Uwe

    2009-01-01

    The feasibility of electric field measurement based on field-induced coherent Raman scattering is demonstrated for the first time in a nitrogen containing gas at atmospheric or higher pressure, including open air. The technique is especially useful for the determination of temporal and spatial profiles of the electric field in air-based microdischarges, where nitrogen is abundant. In our current experimental setup, the minimum detectable field strength in open air is about 100 V mm -1 , which is sufficiently small compared with the average field present in typical microdischarges. No further knowledge of other gas/plasma parameters such as the nitrogen density is required. (fast track communication)

  9. Magnetic Field Measurements In Magnetized Plasmas Using Zeeman Broadening Diagnostics

    Science.gov (United States)

    Haque, Showera; Wallace, Matthew; Presura, Radu; Neill, Paul

    2017-10-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. This method is limited when plasma conditions are such that the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. We have measured magnetic fields in magnetized laser plasmas under conditions where the Zeeman splitting was not spectrally resolved. The magnetic field strength was determined from the difference in widths of two doublet components, using an idea proposed by Tessarin et al. (2011). Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. We explore the response of the Al III 4s 2S1/2 - 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. Radial magnetic field and electron density profiles were measured within the plasma plume. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  10. Measuring the quantum state of the electromagnetic field

    International Nuclear Information System (INIS)

    Davidovich, L.

    1999-01-01

    Recent experiments in cavity QED have allowed the monitoring of the decoherence process, which is at heart of the quantum theory of measurement and plays an essential role in the classical limit of quantum mechanics. An important ingredient of these experiments is the ability to probe the quantum state of the electromagnetic field in a cavity, and to distinguish a coherent superposition of two distinct coherent states of the field from a statistical mixture of the same states. After reviewing some of the methods recently developed to measure the quantum state of the electromagnetic field, it is shown here that the technique of Ramsey interferometry central to those experiments, may be used to determine completely the quantum state of an electromagnetic field in a cavity. This new method, which allows the direct measurement of the Wigner function of the field, is a useful tool for probing the quantum-classical transition and, in particular, the decoherence of superpositions of distinguishable coherent states of the electromagnetic field in the cavity. (author)

  11. Full-field measurements and identification in solid mechanics

    CERN Document Server

    Grediac, Michel

    2008-01-01

    This timely book presents cutting-edge developments by experts in the field on the rapidly developing and scientifically challenging area of full-field measurement techniques used in solid mechanics - including photoelasticity, grid methods, deflectometry, holography, speckle interferometry and digital image correlation. The evaluation of strains and the use of the measurements in subsequent parameter identification techniques to determine material properties are also presented. Since parametric identification techniques require a close coupling of theoretical models and experimental measurements, the book focuses on specific modeling approaches that include finite element model updating, the equilibrium gap method, constitutive equation gap method, virtual field method and reciprocity gap method. In the latter part of the book, the authors discuss two particular applications of selected methods that are of special interest to many investigators: the analysis of localized phenomenon and connections between mi...

  12. Pulsed electric field sensor based on original waveform measurement

    International Nuclear Information System (INIS)

    Ma Liang; Wu Wei; Cheng Yinhui; Zhou Hui; Li Baozhong; Li Jinxi; Zhu Meng

    2010-01-01

    The paper introduces the differential and original waveform measurement principles for pulsed E-field, and develops an pulsed E-field sensor based on original waveform measurement along with its theoretical correction model. The sensor consists of antenna, integrator, amplifier and driver, optic-electric/electric-optic conversion module and transmission module. The time-domain calibration in TEM cell indicates that, its risetime response is shorter than 1.0 ns, and the output pulse width at 90% of the maximum amplitude is wider than 10.0 μs. The output amplitude of the sensor is linear to the electric field intensity in a dynamic range of 20 dB. The measurement capability can be extended to 10 V/m or 50 kV/m by changing the system's antenna and other relative modules. (authors)

  13. Estimating of pulsed electric fields using optical measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Timothy McGuire; Chantler, Gary.

    2013-09-01

    We performed optical electric field measurements ion nanosecond time scales using the electrooptic crystal beta barium borate (BBO). Tests were based on a preliminary bench top design intended to be a proofofprinciple stepping stone towards a modulardesign optical Efield diagnostic that has no metal in the interrogated environment. The long term goal is to field a modular version of the diagnostic in experiments on large scale xray source facilities, or similarly harsh environments.

  14. Adiabatic measurements of magneto-caloric effects in pulsed high magnetic fields up to 55 T

    Science.gov (United States)

    Kihara, T.; Kohama, Y.; Hashimoto, Y.; Katsumoto, S.; Tokunaga, M.

    2013-07-01

    Magneto-caloric effects (MCEs) measurement system in adiabatic condition is proposed to investigate the thermodynamic properties in pulsed magnetic fields up to 55 T. With taking the advantage of the fast field-sweep rate in pulsed field, adiabatic measurements of MCEs were carried out at various temperatures. To obtain the prompt response of the thermometer in the pulsed field, a thin film thermometer is grown directly on the sample surfaces. The validity of the present setup was demonstrated in the wide temperature range through the measurements on Gd at about room temperature and on Gd3Ga5O12 at low temperatures. The both results show reasonable agreement with the data reported earlier. By comparing the MCE data with the specific heat data, we could estimate the entropy as functions of magnetic field and temperature. The results demonstrate the possibility that our approach can trace the change in transition temperature caused by the external field.

  15. Planetary science. Low-altitude magnetic field measurements by MESSENGER reveal Mercury's ancient crustal field.

    Science.gov (United States)

    Johnson, Catherine L; Phillips, Roger J; Purucker, Michael E; Anderson, Brian J; Byrne, Paul K; Denevi, Brett W; Feinberg, Joshua M; Hauck, Steven A; Head, James W; Korth, Haje; James, Peter B; Mazarico, Erwan; Neumann, Gregory A; Philpott, Lydia C; Siegler, Matthew A; Tsyganenko, Nikolai A; Solomon, Sean C

    2015-05-22

    Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data. Copyright © 2015, American Association for the Advancement of Science.

  16. Comparing predicted estrogen concentrations with measurements in US waters

    International Nuclear Information System (INIS)

    Kostich, Mitch; Flick, Robert; Martinson, John

    2013-01-01

    The range of exposure rates to the steroidal estrogens estrone (E1), beta-estradiol (E2), estriol (E3), and ethinyl estradiol (EE2) in the aquatic environment was investigated by modeling estrogen introduction via municipal wastewater from sewage plants across the US. Model predictions were compared to published measured concentrations. Predictions were congruent with most of the measurements, but a few measurements of E2 and EE2 exceed those that would be expected from the model, despite very conservative model assumptions of no degradation or in-stream dilution. Although some extreme measurements for EE2 may reflect analytical artifacts, remaining data suggest concentrations of E2 and EE2 may reach twice the 99th percentile predicted from the model. The model and bulk of the measurement data both suggest that cumulative exposure rates to humans are consistently low relative to effect levels, but also suggest that fish exposures to E1, E2, and EE2 sometimes substantially exceed chronic no-effect levels. -- Highlights: •Conservatively modeled steroidal estrogen concentrations in ambient water. •Found reasonable agreement between model and published measurements. •Model and measurements agree that risks to humans are remote. •Model and measurements agree significant questions remain about risk to fish. •Need better understanding of temporal variations and their impact on fish. -- Our model and published measurements for estrogens suggest aquatic exposure rates for humans are below potential effect levels, but fish exposure sometimes exceeds published no-effect levels

  17. Three scales of aerial photography compared for making stand measurements

    Science.gov (United States)

    Earl J. Rogers; Gene Avery; Roy A. Chapman

    1959-01-01

    Three scales of aerial photography were tested in an attempt to determine the best scale to use in forest surveying. This was done by comparing photo measurements of average tree height, average crown diameter, and crown-closure percent. These stand variables were selected for testing because of their applicability in making aerial estimates of timber volume.

  18. Comparative study of growth and linear body measurements in Anak ...

    African Journals Online (AJOL)

    The study was designed to compare the performance of two different breeds of broilers (Anak and Hubbard) using body weight and body linear measurements. Data on a total of 200 (100 each) Anak and Hubbard broiler breeds were collected weekly and the experiment lasted for 8 weeks. The parameters investigated ...

  19. An electromagnetic field measurement protocol for monitoring power lines

    International Nuclear Information System (INIS)

    Lubritto, C.; Iavazzo, A.; D'Onofrio, A.; Palmieri, A.; Sabbarese, C.; Terrasi, F.

    2002-01-01

    In the actions aiming to prevent risks related to the exposure to Low Frequencies Non Ionising electromagnetic Radiations (ELF-NIR), always arises the need to perform measurements in order to assess the field level existing in the considered sites. As a matter of fact very often it turns out difficult to predict, on the base of calculations, with sufficient approximation the field levels, due to extended variability of environmental conditions (e.g. coexistence of several sources, ground and building conformation, etc..). The measurement procedures must follow a methodology that could allow to minimise the interferences with the measurement set-up and the systematic and accidental errors. Risks for the operator and damages to the instrument should also be taken into account. One of the goal set for this research program was then the definition of the measurement protocol for electromagnetic field generated by low frequency non ionising radiation sources. In particular sources like power lines will be considered in order to validate the protocol by means of in-field measurements

  20. Micro analysis of fringe field formed inside LDA measuring volume

    International Nuclear Information System (INIS)

    Ghosh, Abhijit; Nirala, A K

    2016-01-01

    In the present study we propose a technique for micro analysis of fringe field formed inside laser Doppler anemometry (LDA) measuring volume. Detailed knowledge of the fringe field obtained by this technique allows beam quality, alignment and fringe uniformity to be evaluated with greater precision and may be helpful for selection of an appropriate optical element for LDA system operation. A complete characterization of fringes formed at the measurement volume using conventional, as well as holographic optical elements, is presented. Results indicate the qualitative, as well as quantitative, improvement of fringes formed at the measurement volume by holographic optical elements. Hence, use of holographic optical elements in LDA systems may be advantageous for improving accuracy in the measurement. (paper)

  1. Procedures for field measurements in the case of nuclear accident

    International Nuclear Information System (INIS)

    Barisic, D.; Lulic, S.

    2000-01-01

    Very simplified, reduced and shorted procedures for main objectives of emergency field monitoring in case of nuclear accident are given only. They could be implemented in Croatia using resources nowadays available. Procedures for gamma/beta dose rates in plume and ground deposition survey and unknown situation evaluation, procedures for alpha and gamma/beta surface contamination measurement, field personnel/equipment contamination and decontamination measurement as well as for in-situ gamma spectrometry measurements are presented. Purpose, short discussion, general precautions and limitations as well as basic equipment and supplies needed are given for all of procedures discussed also. Only measuring steps are given with more details in form of short and clear instructions. (author)

  2. Measurement of full-field deformation induced by a dc electrical field in organic insulator films

    Directory of Open Access Journals (Sweden)

    Boudou L.

    2010-06-01

    Full Text Available Digital image correlation method (DIC using the correlation coefficient curve-fitting for full-field surface deformation measurements of organic insulator films is investigated in this work. First the validation of the technique was undertaken. The computer-generated speckle images and the measurement of coefficient of thermal expansion (CTE of aluminium are used to evaluate the measurement accuracy of the technique. In a second part the technique is applied to measure the mechanical deformation induced by electrical field application to organic insulators. For that Poly(ethylene naphthalene 2,6-dicarboxylate (PEN thin films were subjected to DC voltage stress and DIC provides the full-field induced deformations of the test films. The obtained results show that the DIC is a practical and robust tool for better comprehension of mechanical behaviour of the organic insulator films under electrical stress.

  3. MEASUREMENTS OF STELLAR MAGNETIC FIELDS USING AUTOCORRELATION OF SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Borra, E. F.; Deschatelets, D. [Département de physique, de génie physique et d’optique. Université Laval (Canada)

    2015-11-15

    We present a novel technique that uses the autocorrelation of the spectrum of a star to measure the line broadening caused by the modulus of its average surface magnetic field. The advantage of the autocorrelation comes from the fact that it can detect very small spectral line broadening effects because it averages over many spectral lines and therefore gives an average with a very high signal-to-noise ratio. We validate the technique with the spectra of known magnetic stars and obtain autocorrelation curves that are in full agreement with published magnetic curves obtained with Zeeman splitting. The autocorrelation also gives less noisy curves so that it can be used to obtain very accurate curves. We degrade the resolution of the spectra of these magnetic stars to lower spectral resolutions where the Zeeman splitting is undetectable. At these resolutions, the autocorrelation still gives good quality curves, thereby showing that it can be used to measure magnetic fields in spectra where the Zeeman splitting is significantly smaller than the width of the spectral line. This would therefore allow observing magnetic fields in very faint Ap stars with low-resolution spectrographs, thereby greatly increasing the number of known magnetic stars. It also demonstrates that the autocorrelation can measure magnetic fields in rapidly rotating stars as well as weak magnetic fields that give a Zeeman splitting smaller than the intrinsic width of the spectral lines. Finally, it shows that the autocorrelation can be used to find unknown magnetic stars in low-resolution spectroscopic surveys.

  4. Teaching environmental physics with a field measurement campaign

    International Nuclear Information System (INIS)

    Boman, Johan; Dynefors, Bertil; Kuehlmann-Berenzon, Sharon

    2003-01-01

    With 15 years of experience of teaching environmental physics, we still need to develop our curriculum. In this paper we present our findings from teaching environmental physics in close association with mathematical statistics in an applied field measurement campaign. Here not only environmental physics is taught, but also the concept of experimental planning, design, implementation, and evaluation of a field measurement campaign. The field measurement gives the students the opportunity to follow the whole process starting from experimental planning, including formulating the questions to answer, through design of the experiment, sample collection, analysis, and evaluation, together with the writing of a final report. All possible aspects of the problem that the students are working on can be carefully investigated, but the emphasis has been on understanding the whole process of carrying out a field campaign. This holistic view gives the students more interest in and better motivation for exploring the subject. This course gave the students insight into the field of interdisciplinary environmental research, promoted their creativity, and also gave the teachers a feeling of satisfaction

  5. MESA: a new configuration for measuring electromagnetic field fluctuations.

    Science.gov (United States)

    Harte, T M; Black, D L; Hollinshead, M T

    1999-11-01

    This paper describes how the multi-energy sensor array has been refitted to meet the needs of measuring geomagnetic and other types of electromagnetic phenomena in an environment. This portable laptop computer system was designed to measure the interaction of multiple frequencies with the psychological and physiological processes that underlie human exposure to electromagnetic fields across the spectra. New sensors and analytical software have been implemented in the new configuration.

  6. Investigating Call Drops with Field Measurements on Commercial Mobile Phones

    DEFF Research Database (Denmark)

    Messina, Alessandro; Caragea, Gabriel; Compta, Pol Torres

    2013-01-01

    can be done per day. In this paper we present a new methodology to investigate call drops by using mobile phones to do the measurements following the concept of citizen sensing. Therefore, a mobile application for Android is made that collects all necessary data and dumps the measurement results...... mobile phone and network. This low cost variant of field testing is developed for call drops but could be used for any other parameter of interest....

  7. COMPARATIVE FIELD EXPERIMENTAL INVESTIGATIONS OF DIFFERENT FLAT PLATE SOLAR COLLECTORS

    Directory of Open Access Journals (Sweden)

    Guangming Chen

    2015-12-01

    Full Text Available Full-scale traditional metal solar collectors and solar collector specimens fabricated from polymeric materials were investigated in the present study. A polymeric collector is 67.8% lighter than a traditional metal solar collector, and a metal solar collector with transparent plastic covering is 40.3% lighter than a traditional metal solar collector. Honeycomb multichannel plates made from polycarbonate were chosen to create a polymeric solar collector. A test rig for the natural circulation of the working fluid in a solar collector was built for a comparative experimental investigation of various solar collectors operating at ambient conditions. It was shown experimentally that the efficiency of a polymeric collector is 8–15% lower than the efficiency of a traditional collector.

  8. Electric field vector measurements in a surface ionization wave discharge

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Adamovich, Igor V; Lempert, Walter R; Böhm, Patrick S; Czarnetzki, Uwe

    2015-01-01

    This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ∼100, 600, and 1100 μm (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1 mm ns −1 . The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (∼100 μm). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ∼1 mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ≈3 kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85–95 Td, consistent with dc breakdown field estimated from the Paschen

  9. Where is the human waist? Definitions, manual compared toscanner measurements.

    Science.gov (United States)

    Veitch, Daisy

    2012-01-01

    Where exactly is the human waist? How do definitions work for women who deviate from the conventional body shape? Does the measuring instrument matter? Waist is conventionally understood to be a measurable zone within the abdominal region of the torso, a zone of considerable importance. There needs to be a good consistent waist definition, one accurate and valid for everyone. Incorrect definition and measurement will result in technical errors, commercial wastage and customer dissatisfaction. This paper investigates the waist's location and size from the point of view of garment construction for 90 adult women scanned and manually measured in a breast reduction study at Flinders Medical Center, South Australia. There are differing definitions of the location of the human waist as well as different measuring instruments. This study compares:• Two definitions:• ISO 8559, 2.1.11 and • CAESAR, Waist Circumference Preferred.• Two different instruments:• the traditional tape measure, and • software-extracted computer-aided anthropometry (CAA). Substantial discrepancies between the results from these two locations-definitions were found. The choice of instrument used seriously affects the measurement obtained. This study demonstrates three things:• waist is not horizontal for a significant sub group of the population,• CAA extracted waist measurements are not accurate (same as real values) or valid (measures the characteristic) for a sub group, and • manually measured CAESAR Preferred Waist accurately and validly measured all individuals studied. There is a clear need to modify ISO waist definition for garment construction to include the full range of anatomical variation encountered amongst women.

  10. A System for Acoustic Field Measurement Employing Cartesian Robot

    Directory of Open Access Journals (Sweden)

    Szczodrak Maciej

    2016-09-01

    Full Text Available A system setup for measurements of acoustic field, together with the results of 3D visualisations of acoustic energy flow are presented in the paper. Spatial sampling of the field is performed by a Cartesian robot. Automatization of the measurement process is achieved with the use of a specialized control system. The method is based on measuring the sound pressure (scalar and particle velocity(vector quantities. The aim of the system is to collect data with a high precision and repeatability. The system is employed for measurements of acoustic energy flow in the proximity of an artificial head in an anechoic chamber. In the measurement setup an algorithm for generation of the probe movement path is included. The algorithm finds the optimum path of the robot movement, taking into account a given 3D object shape present in the measurement space. The results are presented for two cases, first without any obstacle and the other - with an artificial head in the sound field.

  11. Sound field separation with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance......In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field...

  12. Acoustic field measurements in austenitic welds and dissimilar welds

    International Nuclear Information System (INIS)

    Kemnitz, P.; Richter, U.

    1997-01-01

    Acoustic field measurements were performed in identical specimen geometries of NPP components, in order to contribute the results to the interpretation of US testing results and evaluation of the testing reliability. With an electrodynamic probe of type T, the sonic fields were scanned by scanning heads at 45 T, 45 L, 60 L, and 70 L. The following selected groups of measured data are discussed in the paper: (a) acoustic fields in a narrow-gap weld and a dissimilar weld; (b) longitudinal sound impact testing of welds for detection of transverse defects; (c) variation of transmissibility of acoustic waves along a welded seam; (d) strength and range of the secondary creep wave; (e) multiply reflected sonic modes. (orig./CB) [de

  13. Comparative Analysis of Methods of Measuring Company's Intellectual Capital

    Directory of Open Access Journals (Sweden)

    Przemysław Dominiak

    2013-01-01

    Full Text Available Intellectual capital is, in general, considered to be a component of a company's market value, which is not always reflected in its financial statements. The authors analyzed 21 of the most common methods of measuring company's intellectual capital. Detailed analysis of these methods made it possible to identify a set of 7 basic criteria that clearly distinguish them. The paper presents a comparative matrix of methods of measuring intellectual capital in terms of all the considered criteria. It is shown that, among the best known methods of measuring intellectual capital, there is no so-called "standard measure", i.e. one which fulfils all the criteria at the same time. (original abstract

  14. Comparing Measures of Late HIV Diagnosis in Washington State

    Directory of Open Access Journals (Sweden)

    Laura Saganic

    2012-01-01

    Full Text Available As more US HIV surveillance programs routinely use late HIV diagnosis to monitor and characterize HIV testing patterns, there is an increasing need to standardize how late HIV diagnosis is measured. In this study, we compared two measures of late HIV diagnosis, one based on time between HIV and AIDS, the other based on initial CD4+ results. Using data from Washington's HIV/AIDS Reporting System, we used multivariate logistic regression to identify predictors of late HIV diagnosis. We also conducted tests for trend to determine whether the proportion of cases diagnosed late has changed over time. Both measures lead us to similar conclusions about late HIV diagnosis, suggesting that being male, older, foreign-born, or heterosexual increase the likelihood of late HIV diagnosis. Our findings reaffirm the validity of a time-based definition of late HIV diagnosis, while at the same time demonstrating the potential value of a lab-based measure.

  15. Alfven waves in the auroral ionosphere: A numerical model compared with measurements

    International Nuclear Information System (INIS)

    Knudsen, D.J.; Kelley, M.C.; Vickrey, J.F.

    1992-01-01

    The authors solve a linear numerical model of Alfven waves reflecting from the high-latitude ionosphere, both to better understanding the role of the ionosphere in the magnetosphere/ionosphere coupling process and to compare model results with in situ measurements. They use the model to compute the frequency-dependent amplitude and phase relations between the meridional electric and the zonal magnetic fields due to Alfven waves. These relations are compared with measurements taken by an auroral sounding rocket flow in the morningside oval and by the HILAT satellite traversing the oval at local noon. The sounding rocket's trajectory was mostly parallel to the auroral oval, and is measured enhanced fluctuating field energy in regions of electron precipitation. The rocket-measured phase data are in excellent agreement with the Alfven wave model, and the relation between the modeled and the measured by HILAT are related by the height-integrated Pedersen conductivity Σ p , indicating that the measured field fluctuations were due mainly to structured field-aligned current systems. A reason for the relative lack of Alfven wave energy in the HILAT measurements could be the fact that the satellite traveled mostly perpendicular to the oval and therefore quickly traversed narrow regions of electron precipitation and associated wave activity

  16. Three-dimensional instantaneous velocity field measurement using ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... set equal to 20 μl/min. The instantaneous 3D velocity field is obtained by correlating the particles obtained from the 3D numerical reconstruction of holograms using particle tracking velocimetry. (PTV). Keywords. Holography; velocity measurements; laminar flow in microchannel. PACS Nos 42.40.–i; 06.30.

  17. Functional Measurement in the Field of Empirical Bioethics

    Science.gov (United States)

    Mullet, Etienne; Sorum, Paul C.; Teysseire, Nathalie; Nann, Stephanie; Martinez, Guadalupe Elizabeth Morales; Ahmed, Ramadan; Kamble, Shanmukh; Olivari, Cecilia; Sastre, Maria Teresa Munoz

    2012-01-01

    We present, in a synthetic way, some of the main findings from five studies that were conducted in the field of empirical bioethics, using the Functional Measurement framework. These studies were about (a) the rationing of rare treatments, (b) adolescents' abortions, (c) end-of-life decision-making regarding damaged neonates, (d) end-of-life…

  18. Three-dimensional instantaneous velocity field measurement using ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... In the present study, a digital holography microscope has been developed to study instantaneous 3D ... Rv. 1. Introduction. Digital holography is a nonintrusive optical technique having immense potential for 3D .... microscope (DHM) for 3D instantaneous velocity field measurements in microchannels.

  19. Field-crop-sprayer potential drift measured using test bench

    NARCIS (Netherlands)

    Balsari, Paolo; Gil, Emilio; Marucco, Paolo; Zande, van de Jan C.; Nuyttens, David; Herbst, Andreas; Gallart, Montserrat

    2017-01-01

    Because of variations in environmental conditions, spray-drift field measurements following ISO 22866:2005 involve complicated and time-consuming experiments often with low repeatability. Therefore, simple, repeatable, and precise alternative drift assessment methods that are complementary to the

  20. In-situ measurements in Vesivehmaa air field - STUK team

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, M.; Honkamaa, T.; Niskala, P. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1997-12-31

    Nineteen in-situ gamma-ray spectrometric measurements were performed in Vesivehmaa air field on 17th August 1995. The results for {sup 137}Cs and natural radionuclides are in good agreement with the results from soil sampling and laboratory analyses. (au).

  1. Measurements of weak localization of graphene in inhomogeneous magnetic fields

    DEFF Research Database (Denmark)

    Lindvall, N.; Shivayogimath, Abhay; Yurgens, A.

    2015-01-01

    attribute this to the inhomogeneous field caused by vortices in the superconductor. The deviation, which depends on the carrier concentration in graphene, can be tuned by the gate voltage. In addition, collective vortex motion, known as vortex avalanches, is observed through magnetoresistance measurements...

  2. Simple System to Measure the Earth's Magnetic Field

    Science.gov (United States)

    Akoglu, R.; Halilsoy, M.; Mazharimousavi, S. Habib

    2010-01-01

    Our aim in this proposal is to use Faraday's law of induction as a simple lecture demonstration to measure the Earths magnetic field (B). This will also enable the students to learn about how electric power is generated from rotational motion. Obviously the idea is not original, yet it may be attractive in the sense that no sophisticated devices…

  3. A.c. magnetic-field measurements using the fluxgate

    DEFF Research Database (Denmark)

    Ripka, Pavel; Primdahl, Fritz; Nielsen, Otto V

    1995-01-01

    Fluxgate sensors are mostly used in closed-loop d.c. magnetometer systems; they can also measure alternating fields up to severalkilohertz, either in open-loop mode or from an error signal in the slow-feedback loop as in the Thunderstorm rocket magnetometer, which has 0.1 nT resolution up to 3 k...

  4. COMPARATIVE STUDY ON MAIN SOLVENCY ASSESSMENT MODELS FOR INSURANCE FIELD

    Directory of Open Access Journals (Sweden)

    Daniela Nicoleta SAHLIAN

    2015-07-01

    Full Text Available During the recent financial crisis of insurance domain, there were imposed new aspects that have to be taken into account concerning the risks management and surveillance activity. The insurance societies could develop internal models in order to determine the minimum capital requirement imposed by the new regulations that are to be adopted on 1 January 2016. In this respect, the purpose of this research paper is to offer a real presentation and comparing with the main solvency regulation systems used worldwide, the accent being on their common characteristics and current tendencies. Thereby, we would like to offer a better understanding of the similarities and differences between the existent solvency regimes in order to develop the best regime of solvency for Romania within the Solvency II project. The study will show that there are clear differences between the existent Solvency I regime and the new approaches based on risk and will also point out the fact that even the key principles supporting the new solvency regimes are convergent, there are a lot of approaches for the application of these principles. In this context, the question we would try to find the answer is "how could the global solvency models be useful for the financial surveillance authority of Romania for the implementation of general model and for the development of internal solvency models according to the requirements of Solvency II" and "which would be the requirements for the implementation of this type of approach?". This thing makes the analysis of solvency models an interesting exercise.

  5. Hazard surveillance for workplace magnetic fields. 1: Walkaround sampling method for measuring ambient field magnitude; 2: Field characteristics from waveform measurements

    Energy Technology Data Exchange (ETDEWEB)

    Methner, M.M.; Bowman, J.D.

    1998-03-01

    Recent epidemiologic research has suggested that exposure to extremely low frequency (ELF) magnetic fields (MF) may be associated with leukemia, brain cancer, spontaneous abortions, and Alzheimer`s disease. A walkaround sampling method for measuring ambient ELF-MF levels was developed for use in conducting occupational hazard surveillance. This survey was designed to determine the range of MF levels at different industrial facilities so they could be categorized by MF levels and identified for possible subsequent personal exposure assessments. Industries were selected based on their annual electric power consumption in accordance with the hypothesis that large power consumers would have higher ambient MFs when compared with lower power consumers. Sixty-two facilities within thirteen 2-digit Standard Industrial Classifications (SIC) were selected based on their willingness to participate. A traditional industrial hygiene walkaround survey was conducted to identify MF sources, with a special emphasis on work stations.

  6. Comparing UV/EUV line parameters and magnetic field in a quiescent prominence with tornadoes

    Science.gov (United States)

    Levens, P. J.; Labrosse, N.; Schmieder, B.; López Ariste, A.; Fletcher, L.

    2017-10-01

    Context. Understanding the relationship between plasma and the magnetic field is important for describing and explaining the observed dynamics of solar prominences. Aims: We determine if a close relationship can be found between plasma and magnetic field parameters, measured at high resolution in a well-observed prominence. Methods: A prominence observed on 15 July 2014 by the Interface Region Imaging Spectrograph (IRIS), Hinode, the Solar Dynamics Observatory (SDO), and the Télescope Héliographique pour l'Étude du Magnétisme et des Instabilités Solaires (THEMIS) is selected. We perform a robust co-alignment of data sets using a 2D cross-correlation technique. Magnetic field parameters are derived from spectropolarimetric measurements of the He I D3 line from THEMIS. Line ratios and line-of-sight velocities from the Mg II h and k lines observed by IRIS are compared with magnetic field strength, inclination, and azimuth. Electron densities are calculated using Fe xii line ratios from the Hinode Extreme-ultraviolet Imaging Spectrometer, which are compared to THEMIS and IRIS data. Results: We find Mg II k/h ratios of around 1.4 everywhere, similar to values found previously in prominences. Also, the magnetic field is strongest ( 30 G) and predominantly horizontal in the tornado-like legs of the prominence. The k3 Doppler shift is found to be between ±10 km s-1 everywhere. Electron densities at a temperature of 1.5 × 106 K are found to be around 109 cm-3. No significant correlations are found between the magnetic field parameters and any of the other plasma parameters inferred from spectroscopy, which may be explained by the large differences in the temperatures of the lines used in this study. Conclusions: This is the first time that a detailed statistical study of plasma and magnetic field parameters has been performed at high spatial resolution in a prominence. Our results provide important constraints on future models of the plasma and magnetic field in

  7. LIDAR Wind Speed Measurements of Evolving Wind Fields

    Energy Technology Data Exchange (ETDEWEB)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  8. Smile line assessment comparing quantitative measurement and visual estimation.

    Science.gov (United States)

    Van der Geld, Pieter; Oosterveld, Paul; Schols, Jan; Kuijpers-Jagtman, Anne Marie

    2011-02-01

    Esthetic analysis of dynamic functions such as spontaneous smiling is feasible by using digital videography and computer measurement for lip line height and tooth display. Because quantitative measurements are time-consuming, digital videography and semiquantitative (visual) estimation according to a standard categorization are more practical for regular diagnostics. Our objective in this study was to compare 2 semiquantitative methods with quantitative measurements for reliability and agreement. The faces of 122 male participants were individually registered by using digital videography. Spontaneous and posed smiles were captured. On the records, maxillary lip line heights and tooth display were digitally measured on each tooth and also visually estimated according to 3-grade and 4-grade scales. Two raters were involved. An error analysis was performed. Reliability was established with kappa statistics. Interexaminer and intraexaminer reliability values were high, with median kappa values from 0.79 to 0.88. Agreement of the 3-grade scale estimation with quantitative measurement showed higher median kappa values (0.76) than the 4-grade scale estimation (0.66). Differentiating high and gummy smile lines (4-grade scale) resulted in greater inaccuracies. The estimation of a high, average, or low smile line for each tooth showed high reliability close to quantitative measurements. Smile line analysis can be performed reliably with a 3-grade scale (visual) semiquantitative estimation. For a more comprehensive diagnosis, additional measuring is proposed, especially in patients with disproportional gingival display. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  9. Comparing measurement errors for formants in synthetic and natural vowels.

    Science.gov (United States)

    Shadle, Christine H; Nam, Hosung; Whalen, D H

    2016-02-01

    The measurement of formant frequencies of vowels is among the most common measurements in speech studies, but measurements are known to be biased by the particular fundamental frequency (F0) exciting the formants. Approaches to reducing the errors were assessed in two experiments. In the first, synthetic vowels were constructed with five different first formant (F1) values and nine different F0 values; formant bandwidths, and higher formant frequencies, were constant. Input formant values were compared to manual measurements and automatic measures using the linear prediction coding-Burg algorithm, linear prediction closed-phase covariance, the weighted linear prediction-attenuated main excitation (WLP-AME) algorithm [Alku, Pohjalainen, Vainio, Laukkanen, and Story (2013). J. Acoust. Soc. Am. 134(2), 1295-1313], spectra smoothed cepstrally and by averaging repeated discrete Fourier transforms. Formants were also measured manually from pruned reassigned spectrograms (RSs) [Fulop (2011). Speech Spectrum Analysis (Springer, Berlin)]. All but WLP-AME and RS had large errors in the direction of the strongest harmonic; the smallest errors occur with WLP-AME and RS. In the second experiment, these methods were used on vowels in isolated words spoken by four speakers. Results for the natural speech show that F0 bias affects all automatic methods, including WLP-AME; only the formants measured manually from RS appeared to be accurate. In addition, RS coped better with weaker formants and glottal fry.

  10. Comparative evaluation of ultrasound scanner accuracy in distance measurement

    Science.gov (United States)

    Branca, F. P.; Sciuto, S. A.; Scorza, A.

    2012-10-01

    The aim of the present study is to develop and compare two different automatic methods for accuracy evaluation in ultrasound phantom measurements on B-mode images: both of them give as a result the relative error e between measured distances, performed by 14 brand new ultrasound medical scanners, and nominal distances, among nylon wires embedded in a reference test object. The first method is based on a least squares estimation, while the second one applies the mean value of the same distance evaluated at different locations in ultrasound image (same distance method). Results for both of them are proposed and explained.

  11. Measurements of blade aerodynamics on a rotor in the field

    Energy Technology Data Exchange (ETDEWEB)

    Graham, J.M.R. [Imperical College, Dept. of Aeronautics, London (United Kingdom)

    1997-12-31

    This contribution describes the field test measurements undertaken on an instrumented rotor at the Rutherford Appleton Laboratory, Oxfordshire, UK, during the period 1994 - 97. The programme was directed at improving the prediction of the steady and unsteady rotor blade loading, particularly the loads arising from the stalling of the blade. The measured data consisted of blade surface pressure distributions sampled at 50Hz at 6 sections along the span of one blade of the 17m diameter, 3 bladed, fixed pitch, upwind H.A.W.T., together with measurements of the incident velocity. (au)

  12. Comparing measured with simulated vertical soil stress under vehicle load

    DEFF Research Database (Denmark)

    Keller, Thomas; Lamandé, Mathieu; Arvidsson, Johan

    The load transfer within agricultural soil is typically modelled on the basis of the theory of stress transmission in elastic media, usually in the semi-empirical form that includes the “concentration factor” (v). Measurements of stress in soil are needed to evaluate model calculations, but may...... be biased because transducers do not read true stresses. The aim of this paper was to measure and simulate soil stress under defined loads. First, we investigated the accuracy of the transducers in situ by measuring stress at high spatial and temporal resolution at 0.1 m depth under a known load. Stress...... in the soil profile at 0.3, 0.5 and 0.7 m depth was measured during wheeling at field capacity on five soils (13-66% clay). Stress propagation was then simulated with the semi-analytical model, using vertical stress at 0.1 m depth estimated from tyre characteristics as upper boundary condition, and v...

  13. Near field modeling of the Moiré interferometer for nanoscale strain measurement

    Science.gov (United States)

    Chen, Bicheng; Basaran, Cemal

    2012-07-01

    In this study, we propose a new method to validate the basic assumptions used in Moiré Interferometry (MI) measurement using exact electromagnetic (EM) theory; and simulate the EM fields in a few microns region above the surface of the diffraction grating. Proving that spatial frequency of EM field matches the spatial frequency of strain field is critical to ensure accuracy of MI measurement at nanoscale resolution. The EM simulations for a deformed diffraction grating structure were performed by introducing a single defect that acts as a variation on the periodic diffraction grating. The spatial frequency of simulated EM field was quantified using Continuous Wavelet Transform (CWT) algorithm. The results were compared with the strain field to show the correlations between the two. The study shows that there is a strong correlation (correlation factor R=0.869) of spatial frequency response between EM field and strain field at the nanoscale. The study shows that using the traditional MI assumptions for nanoscale strain measurement introduces an error in the order of 2.7%. We demonstrate that MI measurement can be used for nanoscale strain measurement within acceptable measurement errors using the proposed method. The proposed method can help to evaluate the MI instrument design to enhance the measurement performance.

  14. Faraday Rotation Measure Study of Cluster Magnetic Fields

    Science.gov (United States)

    Frankel, M. M.; Clarke, T. E.

    2001-12-01

    Magnetic fields are thought to play an important role in galaxy cluster evolution. To this end in this study, we looked at polarized radio sources viewed at small impact parameters to the cores of non-cooling flow clusters. By looking at non-cooling flow clusters we hoped to establish what magnetic fields of clusters look like in the absence of the compressed central magnetic fields of the cooling-flow cores. Clarke, Kronberg and Boehringer (2001) examined Faraday rotation measures of radio probes at relatively large impact parameters to the cores of galaxy clusters. The current study is an extension of the Clarke et al. analysis to probe the magnetic fields in the cores of galaxy clusters. We looked at the Faraday rotation of electromagnetic waves from background or imbedded radio galaxies, which were observed with the VLA in A&B arrays. Our results are consistent with previous findings and exhibit a trend towards higher rotation measures and in turn higher magnetic fields at small impact parameters to cluster cores. This research was made possible through funding from the National Science Foundation.

  15. Air encapsulation. I. Measurement in a field soil

    International Nuclear Information System (INIS)

    Fayer, M.J.; Hillel, D.

    1986-01-01

    Encapsulated air is an important component of shallow water table fluctuations. Their objective was to measure the quantity and persistence of encapsulated air in a field setting. Using sprinkling rates of either 3.5 x 10 -6 or 3.8 x 10 -5 m s -1 , they brought the water table in a field soil from a depth of 1.5 m to the surface on several occasions. Moisture contents during and after sprinkling were monitored with a neutron probe. Twice following sprinkling, the water table was maintained at the surface for more than 20 d, during which time they continued to monitor moisture contents. With the water table at the surface, differences between the porosity and the measured moisture content were attributed to encapsulated air. Encapsulated air contents ranged from 1.1 to 6.3% of the bulk soil volume, depending on the rate of sprinkling, soil depth, and initial soil moisture content. During ponding, encapsulated air persisted at the 0.3-m depth for up to 28 d. The results indicate that encapsulated air is measurable in a field situation and that its quantity and persistence should be considered in analyzing the results of similar field experiments. 16 references

  16. Spectral reflectance measurement methodologies for TUZ Golu field campaign

    CSIR Research Space (South Africa)

    Boucher, Y

    2011-07-01

    Full Text Available are Spectralon or Spectralon-like panels, thus their behavior is close to the behavior of a Lambertian surface. Except for very large solar or viewing angles, it is not mandatory to introduce a BRDF correction for the reflectance factor of the reference... CIMEL 313 field multispectral radiometer: 5 bands in the blue, green, red, near IR (800-900nm) and SWIR (1550-1700), with a 10? field of view. 3. PRESENTATION OF REFLECTANCE MEASUREMENT METHODOLOGIES The pixel size of most satellite sensors...

  17. Comparative Visualization of Vector Field Ensembles Based on Longest Common Subsequence

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Richen; Guo, Hanqi; Zhang, Jiang; Yuan, Xiaoru

    2016-04-19

    We propose a longest common subsequence (LCS) based approach to compute the distance among vector field ensembles. By measuring how many common blocks the ensemble pathlines passing through, the LCS distance defines the similarity among vector field ensembles by counting the number of sharing domain data blocks. Compared to the traditional methods (e.g. point-wise Euclidean distance or dynamic time warping distance), the proposed approach is robust to outlier, data missing, and sampling rate of pathline timestep. Taking the advantages of smaller and reusable intermediate output, visualization based on the proposed LCS approach revealing temporal trends in the data at low storage cost, and avoiding tracing pathlines repeatedly. Finally, we evaluate our method on both synthetic data and simulation data, which demonstrate the robustness of the proposed approach.

  18. Comparing GPS, Log, Survey, and Accelerometry to Measure Physical Activity.

    Science.gov (United States)

    James, Peter; Weissman, Jennifer; Wolf, Jean; Mumford, Karen; Contant, Cheryl K; Hwang, Wei-Ting; Taylor, Lynne; Glanz, Karen

    2016-01-01

    We explored how objectively measured global positioning system (GPS) and accelerometer data match with travel logs and questionnaires in predicting trip duration and physical activity (PA). 99 participants wore GPS devices and accelerometers, and recorded all trips in a log for 5 consecutive days. Participants also completed a self-administered questionnaire on PA and travel behaviors. There was good agreement between GPS and log for assessment of trip duration, although log measures overestimated trip duration (concordance correlation coefficient 0.53 [0.47, 0.59]; Bland-Altman estimate 0.76 [0.16, 3.71] comparing GPS to log). Log measures underestimated light PA and overestimated moderate PA compared to accelerometry when greater than zero moderate PA was reported. It is often not feasible to deploy accelerometry or GPS devices in population research because these devices are expensive and require technical expertise and data processing. Questionnaires and logs provide inexpensive tools to assess PA and travel with reasonable concordance with objective measures. However, they have shortcomings in evaluating the presence and amount of light and moderate PA. Future questionnaires and logs should be developed to evaluate sensitivity to light and moderate PA.

  19. Femoral anteversion measured by ultrasound and CT: a comparative study

    International Nuclear Information System (INIS)

    Aamodt, A.; Terjesen, T.; Eine, J.; Kvistad, K.A.

    1995-01-01

    Both computed tomography (CT) and ultrasonography have been used successfully to estimate the femoral anteversion (AV) angle. In this study, AV angles in 20 human adult femurs were determined by ultrasonography and CT and the measurements compared. On CT the real AV angle was measured as the angle between the head-neck centreline and the posterior condylar plane. In addition, the angle between the anterior head-trochanter (HT) tangent and the posterior condylar plane was determined. The latter angle was also measured by ultrasonography using the tilted transducer technique. The mean interobserver variation in the ultrasound measurements was 1.9 . We found ultrasonography to correlate very well with CT, both when comparing with the HT angle (r=0.95) and with the AV angle (r=0.93). The HT angle was on average 4 greater than the AV angle. In this study the accuracy of ultrasonography was ±5 and the method is recommended for screening in patients with rotational disorders of the femur. (orig.)

  20. Group velocity measurement using spectral interference in near-field scanning optical microscopy

    International Nuclear Information System (INIS)

    Mills, John D.; Chaipiboonwong, Tipsuda; Brocklesby, William S.; Charlton, Martin D. B.; Netti, Caterina; Zoorob, Majd E.; Baumberg, Jeremy J.

    2006-01-01

    Near-field scanning optical microscopy provides a tool for studying the behavior of optical fields inside waveguides. In this experiment the authors measure directly the variation of group velocity between different modes of a planar slab waveguide as the modes propagate along the guide. The measurement is made using the spectral interference between pulses propagating inside the waveguide with different group velocities, collected using a near-field scanning optical microscope at different points down the guide and spectrally resolved. The results are compared to models of group velocities in simple guides

  1. Spherical near-field antenna measurements — The most accurate antenna measurement technique

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2016-01-01

    The spherical near-field antenna measurement technique combines several advantages and generally constitutes the most accurate technique for experimental characterization of radiation from antennas. This paper/presentation discusses these advantages, briefly reviews the early history and present...

  2. Quantum optical measurements with undetected photons through vacuum field indistinguishability.

    Science.gov (United States)

    Lee, Sun Kyung; Yoon, Tai Hyun; Cho, Minhaeng

    2017-07-26

    Quantum spectroscopy and imaging with undetected idler photons have been demonstrated by measuring one-photon interference between the corresponding entangled signal fields from two spontaneous parametric down conversion (SPDC) crystals. In this Report, we present a new quantum optical measurement scheme utilizing three SPDC crystals in a cascading arrangement; here, neither the detection of the idler photons which interact with materials of interest nor their conjugate signal photons which do not interact with the sample is required. The coherence of signal beams in a single photon W-type path-entangled state is induced and modulated by indistinguishabilities of the idler beams and crucially the quantum vacuum fields. As a result, the optical properties of materials or objects interacting with the idler beam from the first SPDC crystal can be measured by detecting second-order interference between the signal beams generated by the other two SPDC crystals further down the set-up. This gedankenexperiment illustrates the fundamental importance of vacuum fields in generating an optical tripartite entangled state and thus its crucial role in quantum optical measurements.

  3. Measurement of magnetic fields in the Area Metropolitana

    International Nuclear Information System (INIS)

    Masis Mesen, Juan Pablo

    2007-01-01

    The operation and proper handling of equipment for measuring EMR-300 electromagnetic waves are studied and apply that knowledge to determine which areas of the metropolitan area are mostly affected by exposure to the emission of radiation. This team is able to measure magnetic field strength, electric field strength and power density, also can measure the most important parameters in a simple manner. International standards provide maximum values for these parameters that limit human exposure to such radiation. These standards are based on epidemiological several and laboratory that have been carried out in order to determine in which circumstances a biological entity is exposed to a level of radiation that can cause harm to their health. It focuses on measuring the level of radiation in certain areas of interest, which were chosen because are areas with high population density and also in proximity to antennas that emit electromagnetic waves. Before carrying out the data collection was performed a detailed study of which are the recommendations to measure and avoid as far as possible sources of error, once that those recommendations are implemented the making data was started. Data obtained show that these areas do not present any health risk and that levels of magnetic field strength and power density are well below the limits set by both the International Commission on Non-Ionizing Radiation Protection and the Institute of Electrical and Electronics Engineers. On the other hand, based on the obtained results and the study already done before by the Instituto Costarricense de Electricidad, it was concluded that the power density conditions for plane wave is the parameter most effective to quantize the associated risk with different levels of radiation of radio frequency electromagnetic fields. (author) [es

  4. Measurement of gravity and gauge fields using quantum mechanical probes

    International Nuclear Information System (INIS)

    Anandan, J.

    1986-01-01

    The author considers the question of which quantities are observed when the gravitational and gauge fields are measured by a quantum mechanical probe. The motion of a quantum mechanical particle can be constructed, via Huyghens' principle, by the interference of secondary wavelets. Three types of interference phenomena are considered: interference of two coherent beams separated in space-time during part of their motion; interference of two coherent beams which are in the same region in spacetime but differ in energy or mass; and the Josphson effect and its generalization. The author shows how to determine the gravitational field by means of quantum interference. The corresponding problem for gauge fields is treated and a simple proof of the previously proved theorem for the reconstruction of the connection from the holonomy transformations is presented. A heuristic principle for the gravitational interaction of two quantum mechanical particles is formulated which implies the equivalence of inertial and active gravitational masses

  5. Measuring the Earth’s Magnetic Field from Space

    DEFF Research Database (Denmark)

    Olsen, Nils; Hulot, G.; Sabaka, T. J.

    2010-01-01

    Observations of the Earth’s magnetic field from low-Earth orbiting (LEO) satellites started very early on, more than 50 years ago. Continuous such observations, relying on more advanced technology and mission concepts, have however only been available since 1999. The unprecedented time-space cove......Observations of the Earth’s magnetic field from low-Earth orbiting (LEO) satellites started very early on, more than 50 years ago. Continuous such observations, relying on more advanced technology and mission concepts, have however only been available since 1999. The unprecedented time......-space coverage of this recent data set opened revolutionary new possibilities for monitoring, understanding and exploring the Earth’s magnetic field. In the near future, the three-satellite Swarm constellation concept to be launched by ESA, will not only ensure continuity of such measurements, but also provide...

  6. Generation and measurement of pulsed high magnetic field

    CERN Document Server

    Jana, S

    2000-01-01

    Pulsed magnetic field has been generated by discharging a capacitor bank through a 5-layer air-core solenoid. The strength of the magnetic field at its peak has been measured using the voltage induced in various pick-up coils, and also from the Zeeman splitting of an ion having a known g value. Synchronizing a xenon flash at the peak of the magnetic field, this lab-made instrument has been made well suited to study the Zeeman effect, etc. at a temperature of 25 K. As an application of this setup, we have investigated the Zeeman splitting of the sup 4 I sub 9 sub / sub 2-> sup 4 G sub 5 sub / sub 2 transition of the Nd sup 3 sup + -doped CsCdCl sub 3 crystal at 7.8 T, and determined the splitting factors.

  7. Compared performance of penetrometers and effect of soil water content on penetration resistance measurements

    Directory of Open Access Journals (Sweden)

    Edison Aparecido Mome Filho

    2014-06-01

    Full Text Available Modern agriculture techniques have a great impact on crops and soil quality, especially by the increased machinery traffic and weight. Several devices have been developed for determining soil properties in the field, aimed at managing compacted areas. Penetrometry is a widely used technique; however, there are several types of penetrometers, which have different action modes that can affect the soil resistance measurement. The objective of this study was to compare the functionality of two penetrometry methods (manual and automated mode in the field identification of compacted, highly mechanized sugarcane areas, considering the influence of soil water volumetric content (θ on soil penetration resistance (PR. Three sugarcane fields on a Rhodic Eutrudrox were chosen, under a sequence of harvest systems: one manual harvest (1ManH, one mechanized harvest (1MH and three mechanized harvests (3MH. The different degrees of mechanization were associated to cumulative compaction processes. An electronic penetrometer was used on PR measurements, so that the rod was introduced into the soil by hand (Manual and by an electromechanical motor (Auto. The θ was measured in the field with a soil moisture sensor. Results showed an effect of θ on PR measurements and that regression models must be used to correct data before comparing harvesting systems. The rod introduction modes resulted in different mean PR values, where the "Manual" overestimated PR compared to the "Auto" mode at low θ.

  8. Comparative Studies on the Bioretention of Radionuclides under Laboratory and Field Conditions

    International Nuclear Information System (INIS)

    Heyraud, M.; Fowler, S.W.

    1976-01-01

    The influence of different sea water treatments on radio-isotope flux rates was tested in three species. For any one species no significant differences in 65 Zn loss rate were noted between organisms held in sea water collected in situ and in those maintained in sea water from the laboratory system. Increased sea water zinc concentration accelerated 65 Zn flux rates; however, the more rapid 65 Zn loss compared to that measured in control sea water was only significant when the concentration was increased by 100μg zinc/liter. Simultaneous laboratory and field experiments indicated that loss rates in clams and mussels were similar whether animals were held in the field or in the laboratory. Experiments in which crabs were monitored for 65 Zn loss gave conflicting results. One experiment performed during the summer indicated that crabs lost 65 Zn significantly faster in the laboratory than in the field. Another experiment performed during the winter when water temperatures were lower indicated no differences in loss rates between the two systems. Differences in radioisotope flux rate may have been related to the intermolt cycle; nevertheless, it was concluded that for certain organisms care should be exercised when applying results of laboratory experiments to the field situation. (author)

  9. Investigating the electronic portal imaging device for small radiation field measurements

    Directory of Open Access Journals (Sweden)

    Arpita Agarwal

    2017-01-01

    Full Text Available Purpose: With the advent of state-of-the-art treatment technologies, the use of small fields has increased, and dosimetry in small fields is highly challenging. In this study, the potential use of Varian electronic portal imaging device (EPID for small field measurements was explored for 6 and 15 MV photon beams. Materials and Methods: The output factors and profiles were measured for a range of jaw-collimated square field sizes starting from 0.8 cm×0.8 cm to 10 cm×10 cm using EPID. For evaluation purpose, reference data were acquired using Exradin A16 microionization chamber (0.007 cc for output factors and stereotactic field diode for profile measurements in a radiation field analyzer. Results: The output factors of EPID were in agreement with the reference data for field sizes down to 2 cm×2 cm and for 2 cm×2 cm; the difference in output factors was +2.06% for 6 MV and +1.56% for 15 MV. For the lowest field size studied (0.8 cm×0.8 cm, the differences were maximum; +16% for 6 MV and +23% for 15 MV photon beam. EPID profiles of both energies were closely matching with reference profiles for field sizes down to 2 cm×2 cm; however, penumbra and measured field size of EPID profiles were slightly lower compared to its counterpart. Conclusions: EPID is a viable option for profile and output factor measurements for field sizes down to 2 cm×2 cm in the absence of appropriate small field dosimeters.

  10. Atmospheric stability and complex terrain: comparing measurements and CFD

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Berg, Jacob

    2014-01-01

    -neutral atmospheric flow over complex terrain including physical processes like stability and Coriolis force. We examine the influence of these effects on the whole atmospheric boundary layer using the DTU Wind Energy flow solver EllipSys3D. To validate the flow solver, measurements from Benakanahalli hill, a field...... experiment that took place in India in early 2010, are used. The experiment was specifically designed to address the combined effects of stability and Coriolis force over complex terrain, and provides a dataset to validate flow solvers. Including those effects into EllipSys3D significantly improves......For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface layer. So far, physical processes that are specific to the atmospheric boundary layer, for example the Coriolis force...

  11. Complex Permittivity of Planar Building Materials Measured With an Ultra-Wideband Free-Field Antenna Measurement System.

    Science.gov (United States)

    Davis, Ben; Grosvenor, Chriss; Johnk, Robert; Novotny, David; Baker-Jarvis, James; Janezic, Michael

    2007-01-01

    Building materials are often incorporated into complex, multilayer macrostructures that are simply not amenable to measurements using coax or waveguide sample holders. In response to this, we developed an ultra-wideband (UWB) free-field measurement system. This measurement system uses a ground-plane-based system and two TEM half-horn antennas to transmit and receive the RF signal. The material samples are placed between the antennas, and reflection and transmission measurements made. Digital signal processing techniques are then applied to minimize environmental and systematic effects. The processed data are compared to a plane-wave model to extract the material properties with optimization software based on genetic algorithms.

  12. Electric Field Measurement of the Living Human Body for Biomedical Applications: Phase Measurement of the Electric Field Intensity

    Directory of Open Access Journals (Sweden)

    Ichiro Hieda

    2013-01-01

    Full Text Available The authors are developing a technique for conducting measurements inside the human body by applying a weak electric field at a radio frequency (RF. Low RF power is fed to a small antenna, and a similar antenna located 15–50 cm away measures the electric field intensity. Although the resolution of the method is low, it is simple, safe, cost-effective, and able to be used for biomedical applications. One of the technical issues suggested by the authors' previous studies was that the signal pattern acquired from measurement of a human body was essentially different from that acquired from a phantom. To trace the causes of this difference, the accuracy of the phase measurements was improved. This paper describes the new experimental system that can measure the signal phase and amplitude and reports the results of experiments measuring a human body and a phantom. The results were analyzed and then discussed in terms of their contribution to the phase measurement.

  13. Using Quartz Crystal Microbalance for Field Measurement of Liquid Viscosities

    Directory of Open Access Journals (Sweden)

    Qingsong Bai

    2016-01-01

    Full Text Available The field measurement of liquid viscosities, especially the high viscous liquids, is challenging and often requires expensive equipment, long processing time, and lots of reagent. We use quartz crystal microbalances (QCMs operating in solution which are also sensitive to the viscosity and density of the contacting solution. QCMs are typically investigated for sensor applications in which one surface of QCM completely immersed in Newtonian liquid, but the viscous damping in liquids would cause not only large frequency shifts but also large losses in the quality factor Q leading to instability and even cessation of oscillation. A novel mass-sensitivity-based method for field measurement of liquid viscosities using a QCM is demonstrated in this paper and a model describing the influence of the liquid properties on the oscillation frequency is established as well. Two groups of verified experiments were performed and the experimental results show that the presented method is effective and possesses potential applications.

  14. Open area E.M. field measurements for radiation hazard purposes

    International Nuclear Information System (INIS)

    Bevacqua, F.; Cipollone, E.; Morviducci, A.; Venditti, L.

    1989-01-01

    This article reports on an extensive set of measurements of the E.M. pollution that has been done for radiation hazard purposes. The measurement results are compared with international standards, regulations and laws. Special attention is devoted to the measurement of the E.M. field near hospitals and some important remarks are made on risks related to induced errors on pacemarker and medial instrumentation

  15. Comparability of measured acceleration from accelerometry-based activity monitors.

    Science.gov (United States)

    Rowlands, Alex V; Fraysse, FranÇois; Catt, Mike; Stiles, Victoria H; Stanley, Rebecca M; Eston, Roger G; Olds, Tim S

    2015-01-01

    Accelerometers that provide triaxial measured acceleration data are now available. However, equivalence of output between brands cannot be assumed and testing is necessary to determine whether features of the acceleration signal are interchangeable. This study aimed to establish the equivalence of output between two brands of monitor in a laboratory and in a free-living environment. For part 1, 38 adults performed nine laboratory-based activities while wearing an ActiGraph GT3X+ and GENEActiv (Gravity Estimator of Normal Everyday Activity) at the hip. For part 2, 58 children age 10-12 yr wore a GT3X+ and GENEActiv at the hip for 7 d in a free-living setting. For part 1, the magnitude of time domain features from the GENEActiv was greater than that from the GT3X+. However, frequency domain features compared well, with perfect agreement of the dominant frequency for 97%-100% of participants for most activities. For part 2, mean daily acceleration measured by the two brands was correlated (r = 0.93, P acceleration values. The strong relation between accelerations measured by the two brands suggests that habitual activity level and activity patterns assessed by the GENE and GT3X+ may compare well if analyzed appropriately.

  16. Test of Horizontal Magnetic Field Measurements in the Presence of a Strong Vertical Field

    CERN Document Server

    Vasserman, Isaac

    2004-01-01

    Trajectory straightness is an important parameter defining the performance of free-electron laser (FEL) devices. The first test of horizontal field measurements using Hall probes was done in 1998 as a preparation to the tuning of undulators for the FEL project at the Advanced Photon Source. This work continues the 1998 work, now associated with Linac Coherent Light Source (LCLS) project. Tolerances for the LCLS FEL undulator specify 2 um trajectory excursion in both (horizontal and vertical) planes for a particle energy of 14.1 GeV, which means that measurements of a small horizontal field in presence of strong (up to 1.5 T) vertical field are required. Hall probe measurements under such conditions are complicated due to a planar Hall probe effect. Previous tests done in 1998 showed that a 2- axis Sentron probe is a possible choice. The high sensitivity of horizontal field integrals to the vertical position of the sensor was observed. It was shown that this probe could be used for fast measurements and tuning...

  17. Instrumentation for electromagnetic field generation in biological measurements

    International Nuclear Information System (INIS)

    Malaric, K.; Malaric, R.; Tkalec, M.; Lenicek, I.; Sala, A.

    2005-01-01

    Electromagnetic fields (EMFs) are part of everyday life in modern world. Extremely low-frequency EMFs (50 Hz) are produced by most electric home appliance, electric power transmission and distribution lines. For the last ten years mobile phones have been widely used all around the world. They operate on the EMF frequencies from 400 MHz to 1900 MHz. The effects of EMFs on living organisms have been the subject of debate and research for the last thirty years. The instrumentation for generation of EMFs have been designed at the Faculty of Electrical Engineering and Computing, Zagreb, and can be used for controlled exposure to different EMFs. To study the effect of extremely low-frequency EMF, duckweed (Lemna minor) - the model plant in biological measurement, test setup was made for magnetic field in Helmholtz coil and for electric field between two parallel circle electrodes. For the effect of mobile phones frequencies, test setup with exposition to the electromagnetic field was done with Gigahertz Transversal Electromagnetic Mode (GTEM) cell. The research confirmed that instrumentation used in these experiments is suitable for evaluation of biological effects of EMFs. The effect of different field strengths, exposure times and modulation can be tested with these instrumentation.(author)

  18. Phase-shifting interference microscope with extendable field of measurement

    Science.gov (United States)

    Lin, Shyh-Tsong; Hsu, Wei-Feng; Wang, Ming-Shiang

    2018-04-01

    An innovative phase-shifting interference microscope aimed at extending the field of measurement is proposed in this paper. The microscope comprises a light source module, a phase modulation module, and an interferometric module, which reconstructs the micro-structure contours of samples using the five-step phase-shifting algorithm. This paper discusses the measurement theory and outlines the configuration, experimental setup, and experimental results obtained using the proposed interference microscope. The results confirm the efficacy of the microscope, achieving a standard deviation of 2.4 nm from a step height of 86.2 nm in multiple examinations.

  19. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....

  20. Real-time temperature field measurement based on acoustic tomography

    International Nuclear Information System (INIS)

    Bao, Yong; Jia, Jiabin; Polydorides, Nick

    2017-01-01

    Acoustic tomography can be used to measure the temperature field from the time-of-flight (TOF). In order to capture real-time temperature field changes and accurately yield quantitative temperature images, two improvements to the conventional acoustic tomography system are studied: simultaneous acoustic transmission and TOF collection along multiple ray paths, and an offline iteration reconstruction algorithm. During system operation, all the acoustic transceivers send modulated and filtered wideband Kasami sequences simultaneously to facilitate fast and accurate TOF measurements using cross-correlation detection. For image reconstruction, the iteration process is separated and executed offline beforehand to shorten computation time for online temperature field reconstruction. The feasibility and effectiveness of the developed methods are validated in the simulation study. The simulation results demonstrate that the proposed method can reduce the processing time per frame from 160 ms to 20 ms, while the reconstruction error remains less than 5%. Hence, the proposed method has great potential in the measurement of rapid temperature change with good temporal and spatial resolution. (paper)

  1. Field measurements in the Fermilab electron cooling solenoid prototype

    CERN Document Server

    Crawford, A C

    2003-01-01

    To increase the Tevatron luminosity, Fermilab is developing a high-energy electron cooling system [1] to cool 8.9-GeV/c antiprotons in the Recycler ring. The schematic layout of the Recycler Electron Cooling (REC) system is shown in Figure 1. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through a cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 10 sup - sup 4 rad, the cooling section will be immersed into a solenoidal field of 50-150G. As part of the R and D effort, a cooling section prototype consisting of 9 modules (90% of the total length of a future section) was assembled and measured. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of solenoid prototype field measurements. The design of the cooling section solenoid is discussed in Chapter 2. Chapter 3 describes details of a dedicated ...

  2. Implicit measures of environmental attitudes: a comparative study

    Directory of Open Access Journals (Sweden)

    Martha Patricia Sánchez

    2016-01-01

    Full Text Available The present investigation aims to inquire about the capacity of three implicit instruments to measure the attitude toward natural and urban environments. One hundred and three students from a Mexican public university participated in the investigation. The implicit instruments used were the affective priming technique, the implicit association test, and the affect misattribution procedure. Further, an explicit scale was used for comparison. The results showed that all instruments converge in the same way; the nature images were viewed as more pleasant compared to the city images. Also, most results indicated good effect size values, observed power, and reliability, with the exception of the affective priming technique, which established low values. In addition, all instruments indicated weak correlations between each other. The results were discussed in terms of the capacity of the instruments to measure environmental attitudes, and also possible theoretical and methodological implications.

  3. A comparative study of calculated and measured particle velocities

    International Nuclear Information System (INIS)

    Tariq, S.M.

    2005-01-01

    After an explosive is detonated in a blast hole, seismic waves are generated in the ground surrounding the blast hole. These waves cause the particles of rock to oscillate about its position. As the wave attenuate, the particles come back to their original position. The rapidity with which the particles move is called the particle velocity. The peak or maximum velocity is the value which is of prime concern. This value of peak particle velocity can be estimated by the equations determined by the United States Bureau of Mines and by the DUPONT. A research program was conducted by the author at the 'Beck Materials Quarry' situated near Rolla, Missouri, USA. The purpose was to draw a comparison between the predicted and measured particle velocities. It was generally found that the predicted peak particle velocities were quite high as compared to the velocities measured by the Seismographs. (author)

  4. Measurement of weak magnetic field of corrosion current of isolated corrosion center

    Directory of Open Access Journals (Sweden)

    I. V. Bardin

    2015-01-01

    Full Text Available A very small magnetic field of corrosion current, of the order of 10−4 Oe, generated by isolated zinc inclusion in a copper platelet placed in electrolyte has been measured for the first time with a highly sensitive giant magneto-impedance magnetometer. The total corrosion current of the inclusion is estimated comparing the measured magnetic field distribution with corresponding theoretical calculation. The estimated value of the total corrosion current turns out to be in reasonable agreement with that one obtained in the standard gravimetric measurement.

  5. A Portable, Field-Deployable Analyzer for Isotopic Water Measurements

    Science.gov (United States)

    Berman, E. S.; Gupta, M.; Huang, Y. W.; Lacelle, D.; McKay, C. P.; Fortson, S.

    2015-12-01

    Water stable isotopes have for many years been used to study the hydrological cycle, catchment hydrology, and polar climate among other applications. Typically, discrete water samples are collected and transported to a laboratory for isotope analysis. Due to the expense and labor associated with such sampling, isotope studies have generally been limited in scope and time-resolution. Field sampling of water isotopes has been shown in recent years to provide dense data sets with the increased time resolution illuminating substantially greater short term variability than is generally observed during discrete sampling. A truly portable instrument also opens the possibility to utilize the instrument as a tool for identifying which water samples would be particularly interesting for further laboratory investigation. To make possible such field measurements of liquid water isotopes, Los Gatos Research has developed a miniaturized, field-deployable liquid water isotope analyzer. The prototype miniature liquid water isotope analyzer (mini-LWIA) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology in a rugged, Pelican case housing for easy transport and field operations. The analyzer simultaneously measures both δ2H and δ18O from liquid water, with both manual and automatic water introduction options. The laboratory precision for δ2H is 0.6 ‰, and for δ18O is 0.3 ‰. The mini-LWIA was deployed in the high Arctic during the summer of 2015 at Inuvik in the Canadian Northwest Territories. Samples were collected from Sachs Harbor, on the southwest coast of Banks Island, including buried basal ice from the Lurentide Ice Sheet, some ice wedges, and other types of ground ice. Methodology and water analysis results from this extreme field deployment will be presented.

  6. High frequency electric field levels: An example of determination of measurement uncertainty for broadband measurements

    Directory of Open Access Journals (Sweden)

    Vulević Branislav

    2016-01-01

    Full Text Available Determining high frequency electromagnetic field levels in urban areas represents a very complex task, having in mind the exponential growth of the number of sources embodied in public cellular telephony systems in the past twenty years. The main goal of this paper is a representation of a practical solution in the evaluation of measurement uncertainty for in-situ measurements in the case of spatial averaging. An example of the estimation of the uncertainty for electric field strength broadband measurements in the frequency range from 3 MHz to 18 GHz is presented.

  7. Electric field measurements in a nanosecond pulse discharge by picosecond CARS/4-wave mixing

    Science.gov (United States)

    Goldberg, Ben; Shkurenkov, Ivan; Adamovich, Igor; Lempert, Walter

    2014-10-01

    Time-resolved electric field measurements in hydrogen by picosecond CARS/4-wave mixing are presented. Measurements are carried out in a high voltage nanosecond pulse discharge in hydrogen in plane-to-plane geometry, at pressures of up to several hundred Torr, and with a time resolution of 0.2 ns. Absolute calibration of the diagnostics is done using a sub-breakdown high voltage pulse of 12 kV/cm. A diffuse discharge is obtained by applying a peak high voltage pulse of 40 kV/cm between the electrodes. It is found that breakdown occurs at a lower field, 15--20 kV/cm, after which the field in the plasma is reduced rapidly due to plasma self shielding The experimental results are compared with kinetic modeling calculations, showing good agreement between the measured and the predicted electric field.

  8. Executive function in fibromyalgia: Comparing subjective and objective measures.

    Science.gov (United States)

    Gelonch, Olga; Garolera, Maite; Valls, Joan; Rosselló, Lluís; Pifarré, Josep

    2016-04-01

    There is evidence to suggest the existence of an executive dysfunction in people diagnosed with fibromyalgia, although there are certain inconsistencies between studies. Here, we aim to compare executive performance between patients with fibromyalgia and a control group by using subjective and objective cognitive tests, analyzing the influence of patient mood on the results obtained, and studying associations between the two measures. 82 patients diagnosed with fibromyalgia and 42 healthy controls, matched by age and years of education, were assessed using the Behavioral Rating Inventory of Executive Function - Adult Version (BRIEF-A) as a subjective measure of executive functioning. A selection of objective cognitive tests were also used to measure a series of executive functions and to identify symptoms of depression and anxiety. Patients with fibromyalgia perceived greater difficulties than the control group on all of the BRIEF-A scales. However, after adjustments were made for depression and anxiety the only differences that remained were those associated with the working memory scale and the Metacognition and Global Executive Composite index. In the case of the objective cognitive tests, a significantly worse overall performance was evidenced for the fibromyalgia patients. However, this also disappeared when adjustments were made for depression and anxiety. After this adjustment, fibromyalgia patients only performed significantly worse for the interference effect in the Stroop Test. Although there were no significant associations between most of the objective cognitive tests and the BRIEF-A scales, depression and anxiety exhibited strong associations with almost all of the BRIEF-A scales and with several of the objective cognitive tests. Patients with fibromyalgia showed executive dysfunction in subjective and objective measures, although most of this impairment was associated with mood disturbances. Exceptions to this general rule were observed in the

  9. Evaluation of Protocols for Measuring Leaf Photosynthetic Properties of Field-Grown Rice

    Directory of Open Access Journals (Sweden)

    Chang Tian-gen

    2017-01-01

    Full Text Available Largely due to the heterogeneity of environmental parameters and the logistical difficulty of moving photosynthetic equipment in the paddy fields, effective measurement of lowland rice photosynthesis is still a challenge. In this study, we showed that measuring detached rice leaves in the laboratory can not effectively represent the parameters measured in situ. We further described a new indoor facility, high-efficiency all-weather photosynthetic measurement system (HAPS, and the associated measurement protocol to enable whole-weather measurement of photosynthetic parameters of rice grown in the paddy fields. Using HAPS, we can conduct photosynthetic measurements with a time span much longer than that appropriate for the outdoor measurements. Comparative study shows that photosynthetic parameters obtained with the new protocol can effectively represent the parameters in the fields. There was much less standard deviation for measurements using HAPS compared to the outdoor measurements, no matter for technical replications of each recording or for biological replications of each leaf position. This new facility and protocol enables rice photosynthetic physiology studies to be less tough but more efficient, and provides a potential option for large scale studies of rice leaf photosynthesis.

  10. A geometric formulation of Higgs Effective Field Theory: Measuring the curvature of scalar field space

    Science.gov (United States)

    Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.

    2016-03-01

    A geometric formulation of Higgs Effective Field Theory (HEFT) is presented. Experimental observables are given in terms of geometric invariants of the scalar sigma model sector such as the curvature of the scalar field manifold M. We show how the curvature can be measured experimentally via Higgs cross-sections, WL scattering, and the S parameter. The one-loop action of HEFT is given in terms of geometric invariants of M. The distinction between the Standard Model (SM) and HEFT is whether M is flat or curved, and the curvature is a signal of the scale of new physics.

  11. A geometric formulation of Higgs Effective Field Theory: Measuring the curvature of scalar field space

    Directory of Open Access Journals (Sweden)

    Rodrigo Alonso

    2016-03-01

    Full Text Available A geometric formulation of Higgs Effective Field Theory (HEFT is presented. Experimental observables are given in terms of geometric invariants of the scalar sigma model sector such as the curvature of the scalar field manifold M. We show how the curvature can be measured experimentally via Higgs cross-sections, WL scattering, and the S parameter. The one-loop action of HEFT is given in terms of geometric invariants of M. The distinction between the Standard Model (SM and HEFT is whether M is flat or curved, and the curvature is a signal of the scale of new physics.

  12. A Geometric Formulation of Higgs Effective Field Theory: Measuring the Curvature of Scalar Field Space

    CERN Document Server

    Alonso, Rodrigo; Manohar, Aneesh V

    2016-01-01

    A geometric formulation of Higgs Effective Field Theory (HEFT) is presented. Experimental observables are given in terms of geometric invariants of the scalar sigma model sector such as the curvature of the scalar field manifold $\\mathcal M$. We show how the curvature can be measured experimentally via Higgs cross-sections, $W_L$ scattering, and the $S$ parameter. The one-loop action of HEFT is given in terms of geometric invariants of $\\mathcal M$. The distinction between the Standard Model (SM) and HEFT is whether $\\mathcal M$ is flat or curved, not whether the scalars transform linearly or non-linearly under the electroweak group.

  13. Concentration inequalities for functions of Gibbs fields with application to diffraction and random Gibbs measures

    CERN Document Server

    Külske, C

    2003-01-01

    We derive useful general concentration inequalities for functions of Gibbs fields in the uniqueness regime. We also consider expectations of random Gibbs measures that depend on an additional disorder field, and prove concentration w.r.t the disorder field. Both fields are assumed to be in the uniqueness regime, allowing in particular for non-independent disorder field. The modification of the bounds compared to the case of an independent field can be expressed in terms of constants that resemble the Dobrushin contraction coefficient, and are explicitly computable. On the basis of these inequalities, we obtain bounds on the deviation of a diffraction pattern created by random scatterers located on a general discrete point set in the Euclidean space, restricted to a finite volume. Here we also allow for thermal dislocations of the scatterers around their equilibrium positions. Extending recent results for independent scatterers, we give a universal upper bound on the probability of a deviation of the random sc...

  14. Measurement of the radial electric field in the ASDEX tokamak

    International Nuclear Information System (INIS)

    Field, A.R.; Fussmann, G.; Hofmann, J.V.

    1990-12-01

    The radial electric field (E Τ ) at the plasma periphery is determined by measuring the drift velocities of low-Z impurities ions (BIV, CIII and HeII). The measurements are performed with a scannable mirror system which allows the determination of the poloidal, perpendicular (to B vector) and toroidal components of the drift velocities from the differential Doppler shift of visible line emission observed along opposing viewing directions. The principle of the measurement is investigated in detail. In particular, it is shown that for radially localised emission shells there exits a line of sight oriented perpendicular to B vector along which E Τ may be inferred directly from the observed Doppler shift of the line emission. Along such a line of sight the net contribution to the shift from the diamagnetic drift and the radial gradient of the excitation probability is negligible. During the Ohmic- and L-phases the perpendicular drift velocity of the BIV ions measured approximately 2 cm inside the separatrix is small (≤ 2 kms -1 ) and in the ion diamagnetic drift direction. However, at the L → H-Mode transition it changes sign and begins to increase on the time-scale of the edge pressure gradients reaching the highest values at the end of the H * -phase. From these high perpendicular drift velocities it is infered that, in the H-mode, there exists a strong negative radial electric field (vertical strokeE τ vertical stroke ≤ kVm -1 ) just inside the separatrix. The dependence of the drift velocity of the BIV ions and E Τ on the NBI-heating power and the magnitude and direction of the plasma current and the magnetic field is investigated. (orig.)

  15. The Philanthropic Mission of Comparative and International Education Bequeathed by Jullien: Continuing Capstone of the Field

    Science.gov (United States)

    Wolhuter, C. C.

    2017-01-01

    The aim of this lead article of this special issue of "Compare" is to assess the value of Jullien's vision for the field of comparative and international education today. The life, writings and ideas of Jullien are sketched, followed by a survey of the path of development of the field since the time of Jullien. In view of the exigencies…

  16. Field evaluation of a novel haemoglobin measuring device ...

    African Journals Online (AJOL)

    with the colour scale were compared with the 'true Hb' values determined by the H*3 Bayer-Technicon automated blood analyser. Results. Although individuals varied in their abilities to use the colour scale, its perfonnance was generally very good when measured against automated haemoglobinometry, as dete""ined by ...

  17. Field evaluation of a novel haemoglobin measuring device ...

    African Journals Online (AJOL)

    Objective. To evaluate the use of a robust, cheap method for haemoglobin estimation by non-laboratory-trained personnel in a rural setting. Design. Comparative study. Setting. Tintswalo Hospital. Acomhoek. Participants. 7 nursing sisters, 4 medical students, 2 lay persons. Outcome measures. Haemoglobin estimates ...

  18. Measurement of velocity field in pipe with classic twisted tape using matching refractive index technique

    International Nuclear Information System (INIS)

    Song, Min Seop; Park, So Hyun; Kim, Eung Soo

    2014-01-01

    Many researchers conducted experiments and numerical simulations to measure or predict a Nusselt number or a friction factor in a pipe with a twisted tape while some other studies focused on the heat transfer performance enhancement using various twisted tape configurations. However, since the optical access to the inner space of a pipe with a twisted tape was limited, the detailed flow field data were not obtainable so far. Thus, researchers mainly relied on the numerical simulations to obtain the data of the flow field. In this study, a 3D printing technique was used to manufacture a transparent test section for optical access. And also, a noble refractive index matching technique was used to eliminate optical distortion. This two combined techniques enabled to measure the velocity profile with Particle Image Velocimetry (PIV). The measured velocity field data can be used either to understand the fundamental flow characteristics around a twisted tape or to validate turbulence models in Computational Fluid Dynamics (CFD). In this study, the flow field in the test-section was measured for various flow conditions and it was finally compared with numerically calculated data. Velocity fields in a pipe with a classic twisted tape was measured using a particle image velocimetry (PIV) system. To obtain undistorted particle images, a noble optical technique, refractive index matching, was used and it was proved that high-quality image can be obtained from this experimental equipment. The velocity data from the PIV was compared with the CFD simulations

  19. Continuous measurement of leaf area index (LAI) over broadleaf crop fields in northeast China

    Science.gov (United States)

    Fang, H.; Ye, Y.; Liu, W.; Wei, S.; Ma, L.

    2017-12-01

    Leaf area index (LAI) is one of the essential climate variables used in many ecological and land surface process models. Global LAI products have been provided routinely by many remote sensing projects. Reliable and consistent LAI estimates are a priority for LAI validation study and the application communities. In situ LAI measurements are a critical component of our ongoing global LAI validation efforts. Automatic methods, e.g., PASTIS-57, and smartphone applications (APPs) have become increasingly available for efficient field LAI measurements. The objective of this study is to investigate the feasibility of automatic and portable smartphone LAI measurements together with traditional indirect optical LAI measurements. A seasonal field campaign was carried out to take continuous LAI measurements over corn, soybean, and sorghum fields in northeast China in 2016. Field LAI measurement was made with the automatic PASTIS-57, two smartphone applications, PocketLAI and LAISmart, and two handheld optical instruments, LAI-2200 and digital hemispherical photography (DHP). The results show that PASTIS-57 provides a convenient and accurate LAI estimation method as compared to LAI-2200 and DHP. LAI estimates from smartphone applications are generally smaller than the LAI-2200 and DHP values. In addition to the LAI measurements, continuous clumping index (CI) measurements were also obtained. The seasonal continuous LAI and CI measurements obtained from this study are valuable for the validation of remote sensing products.

  20. Decreased functional diversity and biological pest control in conventional compared to organic crop fields.

    Directory of Open Access Journals (Sweden)

    Jochen Krauss

    Full Text Available Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short

  1. Decreased functional diversity and biological pest control in conventional compared to organic crop fields.

    Science.gov (United States)

    Krauss, Jochen; Gallenberger, Iris; Steffan-Dewenter, Ingolf

    2011-01-01

    Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid

  2. Novel Techniques for Pulsed Field Gradient NMR Measurements

    Science.gov (United States)

    Brey, William Wallace

    Pulsed field gradient (PFG) techniques now find application in multiple quantum filtering and diffusion experiments as well as in magnetic resonance imaging and spatially selective spectroscopy. Conventionally, the gradient fields are produced by azimuthal and longitudinal currents on the surfaces of one or two cylinders. Using a series of planar units consisting of azimuthal and radial current elements spaced along the longitudinal axis, we have designed gradient coils having linear regions that extend axially nearly to the ends of the coil and to more than 80% of the inner radius. These designs locate the current return paths on a concentric cylinder, so the coils are called Concentric Return Path (CRP) coils. Coils having extended linear regions can be made smaller for a given sample size. Among the advantages that can accrue from using smaller coils are improved gradient strength and switching time, reduced eddy currents in the absence of shielding, and improved use of bore space. We used an approximation technique to predict the remaining eddy currents and a time-domain model of coil performance to simulate the electrical performance of the CRP coil and several reduced volume coils of more conventional design. One of the conventional coils was designed based on the time-domain performance model. A single-point acquisition technique was developed to measure the remaining eddy currents of the reduced volume coils. Adaptive sampling increases the dynamic range of the measurement. Measuring only the center of the stimulated echo removes chemical shift and B_0 inhomogeneity effects. The technique was also used to design an inverse filter to remove the eddy current effects in a larger coil set. We added pulsed field gradient and imaging capability to a 7 T commercial spectrometer to perform neuroscience and embryology research and used it in preliminary studies of binary liquid mixtures separating near a critical point. These techniques and coil designs will find

  3. Measuring microbial fitness in a field reciprocal transplant experiment.

    Science.gov (United States)

    Boynton, Primrose J; Stelkens, Rike; Kowallik, Vienna; Greig, Duncan

    2017-05-01

    Microbial fitness is easy to measure in the laboratory, but difficult to measure in the field. Laboratory fitness assays make use of controlled conditions and genetically modified organisms, neither of which are available in the field. Among other applications, fitness assays can help researchers detect adaptation to different habitats or locations. We designed a competitive fitness assay to detect adaptation of Saccharomyces paradoxus isolates to the habitat they were isolated from (oak or larch leaf litter). The assay accurately measures relative fitness by tracking genotype frequency changes in the field using digital droplet PCR (DDPCR). We expected locally adapted S. paradoxus strains to increase in frequency over time when growing on the leaf litter type from which they were isolated. The DDPCR assay successfully detected fitness differences among S. paradoxus strains, but did not find a tendency for strains to be adapted to the habitat they were isolated from. Instead, we found that the natural alleles of the hexose transport gene we used to distinguish S. paradoxus strains had significant effects on fitness. The origin of a strain also affected its fitness: strains isolated from oak litter were generally fitter than strains from larch litter. Our results suggest that dispersal limitation and genetic drift shape S. paradoxus populations in the forest more than local selection does, although further research is needed to confirm this. Tracking genotype frequency changes using DDPCR is a practical and accurate microbial fitness assay for natural environments. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  4. Evaluation of measurement reproducibility using the standard-sites data, 1994 Fernald field characterization demonstration project

    International Nuclear Information System (INIS)

    Rautman, C.A.

    1996-02-01

    The US Department of Energy conducted the 1994 Fernald (Ohio) field characterization demonstration project to evaluate the performance of a group of both industry-standard and proposed alternative technologies in describing the nature and extent of uranium contamination in surficial soils. Detector stability and measurement reproducibility under actual operating conditions encountered in the field is critical to establishing the credibility of the proposed alternative characterization methods. Comparability of measured uranium activities to those reported by conventional, US Environmental Protection Agency (EPA)-certified laboratory methods is also required. The eleven (11) technologies demonstrated included (1) EPA-standard soil sampling and laboratory mass-spectroscopy analyses, and currently-accepted field-screening techniques using (2) sodium-iodide scintillometers, (3) FIDLER low-energy scintillometers, and (4) a field-portable x-ray fluorescence spectrometer. Proposed advanced characterization techniques included (5) alpha-track detectors, (6) a high-energy beta scintillometer, (7) electret ionization chambers, (8) and (9) a high-resolution gamma-ray spectrometer in two different configurations, (10) a field-adapted laser ablation-inductively coupled plasma-atomic emission spectroscopy (ICP-AES) technique, and (11) a long-range alpha detector. Measurement reproducibility and the accuracy of each method were tested by acquiring numerous replicate measurements of total uranium activity at each of two ''standard sites'' located within the main field demonstration area. Meteorological variables including temperature, relative humidity. and 24-hour rainfall quantities were also recorded in conjunction with the standard-sites measurements

  5. Comparing different stimulus configurations for population receptive field mapping in human fMRI

    Directory of Open Access Journals (Sweden)

    Ivan eAlvarez

    2015-02-01

    Full Text Available Population receptive field (pRF mapping is a widely used approach to measuring aggregate human visual receptive field properties by recording non-invasive signals using functional MRI. Despite growing interest, no study to date has systematically investigated the effects of different stimulus configurations on pRF estimates from human visual cortex. Here we compared the effects of three different stimulus configurations on a model-based approach to pRF estimation: size-invariant bars and eccentricity-scaled bars defined in Cartesian coordinates and traveling along the cardinal axes, and a novel simultaneous ‘wedge and ring’ stimulus defined in polar coordinates, systematically covering polar and eccentricity axes. We found that the presence or absence of eccentricity scaling had a significant effect on goodness of fit and pRF size estimates. Further, variability in pRF size estimates was directly influenced by stimulus configuration, particularly for higher visual areas including V5/MT+. Finally, we compared eccentricity estimation between phase-encoded and model-based pRF approaches. We observed a tendency for more peripheral eccentricity estimates using phase-encoded methods, independent of stimulus size. We conclude that both eccentricity scaling and polar rather than Cartesian stimulus configuration are important considerations for optimal experimental design in pRF mapping. While all stimulus configurations produce adequate estimates, simultaneous wedge and ring stimulation produced higher fit reliability, with a significant advantage in reduced acquisition time.

  6. Satellite (Timed, Aura, Aqua) and In Situ (Meteorological Rockets, Balloons) Measurement Comparability

    Science.gov (United States)

    Schmidlin, F. J.; Goldberg, Richard A.; Feofilov, A.; Rose, R.

    2010-01-01

    Measurements using the inflatable falling sphere often are requested to provide density data in support of special sounding rocket launchings into the mesosphere and thermosphere. To insure density measurements within narrow time frames and close in space, the inflatable falling sphere is launched within minutes of the major test. Sphere measurements are reliable for the most part, however, availability of these rocket systems has become more difficult and, in fact, these instruments no longer are manufactured resulting in a reduction of the meager stockpile of instruments. Sphere measurements also are used to validate remotely measured temperatures and have the advantage of measuring small-scale atmospheric features. Even so, with the dearth of remaining falling spheres perhaps it is time to consider whether the remote measurements are mature enough to stand alone. Presented are two field studies, one in 2003 from Northern Sweden and one in 2010 from the vicinity of Kwajalein Atoll that compare temperature retrievals between satellite and in situ failing spheres. The major satellite instruments employed are SABER, MLS, and AIRS. The comparisons indicate that remotely measured temperatures mimic the sphere temperature measurements quite well. The data also confirm that satellite retrievals, while not always at the exact location required for individual studies, are adaptable enough and highly useful. Although the falling sphere will provide a measurement at a specific location and time, satellites only pass a given location daily or less often. This report reveals that averaged satellite measurements can provide temperatures and densities comparable to the falling sphere.

  7. Analysis of Reverberation Time Field Measurement Results in Building Acoustics

    Directory of Open Access Journals (Sweden)

    D. Mašović

    2013-11-01

    Full Text Available Sound level difference between two rooms depends on both sound reduction between the rooms and their acoustical properties, such as the absorption in the receiving room. In order to abstract the influence of the rooms and assess only the sound reduction between them, relevant building acoustics standards offer two ways of normalizing a measured sound level difference – according to the reverberation time and the equivalent sound absorption area in the receiving room. In both cases measurement procedure requires reverberation time measurements in the receiving room, from which the equivalent sound absorption area can be assessed using Sabine’s formula. This paper analyses more than 300 results of reverberation time field measurements and provides an insight into its typical values in buildings. The measurements are done by five teams of building acoustics engineers, mostly involved in the international EU COST Action TU0901. The results are gathered in a unique database as a part of the STSM (Short Term Scientific Mission.

  8. Measurements of Magnetic Fields in the Solar Nebula

    Science.gov (United States)

    Fu, R. R.; Andrade Lima, E.; Weiss, B. P.

    2013-12-01

    Efficient radial transfer of angular momentum in the protoplanetary disk is a fundamental requirement for the formation of stars and planets. Theoretical work indicates that magnetic fields may have played a critical role in this process. For example, the magnetorotational instability (MRI) may have generated turbulence in the gas medium to facilitate angular momentum transport. Direct measurements of the magnetic field in the protoplanetary disk are necessary for evaluating the relative importance of this and other proposed mechanisms of angular momentum transport. Such fields could have been recorded by chondrules, millimeter-sized meteoritic inclusions that formed during flash-melting of nebular dust. We performed the first detailed paleomagnetic experiments on isolated chondrules from a primitive meteorite, the LL3.0 chondrite Semarkona. This meteorite has escaped extensive post-accretional aqueous alteration and metamorphism to above ~200 C, implying the preservation of primary ferromagnetic phases and pre-accretional magnetic remanence. We applied alternating field (AF) demagnetization up to 290 mT to bulk (mixed matrix and chondrule) samples and to isolated chondrules that contain dusty olivine grains, which are relict silicates that contain abundant low-Ni α-Fe (kamacite) grains in the single domain and pseudo-single domain size ranges. All samples were mutually oriented within 5 deg. Chondrule samples were measured using the SQUID Microscope in the MIT Paleomagnetism Laboratory. Bulk samples within ~4.5 mm of the fusion crust carry a unidirectional, medium-coercivity (MC) component of magnetization that decays in intensity with increasing distance from the fusion crust. We therefore attribute the MC component to atmospheric heating. This fusion crust baked contact test establishes that our sample has not been significantly remagnetized since arrival on Earth. One dusty olivine-bearing chondrule carries a stable high-coercivity (HC) component of

  9. Variability of Measured Runoff and Soil Loss from Field Plots

    Directory of Open Access Journals (Sweden)

    F. Asadzadeh

    2016-02-01

    Full Text Available Introduction: Field plots are widely used in studies related to the measurements of soil loss and modeling of erosion processes. Research efforts are needed to investigate factors affecting the data quality of plots. Spatial scale or size of plots is one of these factors which directly affects measuring runoff and soil loss by means of field plots. The effect of plot size on measured runoff or soil loss from natural plots is known as plot scale effect. On the other hand, variability of runoff and sediment yield from replicated filed plots is a main source of uncertainty in measurement of erosion from plots which should be considered in plot data interpretation processes. Therefore, there is a demand for knowledge of soil erosion processes occurring in plots of different sizes and of factors that determine natural variability, as a basis for obtaining soil loss data of good quality. This study was carried out to investigate the combined effects of these two factors by measurement of runoff and soil loss from replicated plots with different sizes. Materials and Methods: In order to evaluate the variability of runoff and soil loss data seven plots, differing in width and length, were constructed in a uniform slope of 9% at three replicates at Koohin Research Station in Qazvin province. The plots were ploughed up to down slope in September 2011. Each plot was isolated using soil beds with a height of 30 cm, to direct generated surface runoff to the lower part of the plots. Runoff collecting systems composed of gutters, pipes and tankswere installed at the end of each plot. During the two-year study period of 2011-2012, plots were maintained in bare conditions and runoff and soil loss were measured for each single event. Precipitation amounts and characteristics were directly measured by an automatic recording tipping-bucket rain gauge located about 200 m from the experimental plots. The entire runoff volume including eroded sediment was measured on

  10. Comparing Measures of Estuarine Ecosystem Production in a ...

    Science.gov (United States)

    Anthropogenic nutrient enrichments and concerted efforts at nutrient reductions, compounded with the influences of climate change, are likely changing the net ecosystem production (NEP) of our coastal systems. To quantify these changes, scientists monitor a range of physical, chemical, and biological parameters sampled at various frequencies. Water column chlorophyll concentrations are arguably the most commonly used indicator of net phytoplankton production, as well as a coarse indicator of NEP. We compared parameters that estimate production, including chlorophyll, across an experimental nutrient gradient and in situ in both well-mixed and stratified estuarine environments. Data from an experiment conducted in the early 1980s in mesocosms designed to replicate a well-mixed mid-Narragansett Bay (Rhode Island) water column were used to correlate changes in chlorophyll concentrations, pH, dissolved oxygen (O2), dissolved inorganic nitrogen, phosphate, and silicate concentrations, cell counts, and 14C carbon uptake measurements across a range of nutrient enrichments. The pH, O2, nutrient, and cell count measurements reflected seasonal cycles of spring blooms followed by late summer/early fall respiration periods across nutrient enrichments. Chlorophyll concentrations were more variable and rates of 14C productivity were inconsistent with observed trends in nutrient concentrations, pH, and O2 concentrations. Similar comparisons were made using data from a well-mixe

  11. UARS MILS O3 soundings compared with lidar measurements using the conservative coordinates reconstruction technique

    Science.gov (United States)

    Redaelli, G.; Lait, L. R.; Schoeberl, M.; Newman, P. A.; Visconti, G.; D'Altorio, A.; Masci, F.; Rizi, V.; Froidevaux, L.; Waters, J. W.

    1994-01-01

    A technique based on conservative properties of certain meteorological fields is used to compare ozone measurements from the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) with soundings from a lidar system operated at midlatitudes by the University of L'Aquila, Italy. A few typical cases are analyzed in connection with the position of the vortex relative to the observing station, and it is shown that in general lidar observations taken within the vortex compare well with the UARS data, regardless of whether they are coincident with a satellite overpass. It is shown that such analysis may be useful for comparing measurements of the same quantity taken at different sites using different measurement techniques.

  12. Sliding bearing diagnosis with magnetic field measuring; Gleitlagerdiagnose mittels Magnetfeldmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, H. [HWTS Zittau (Germany). Fachgebiet Instandhaltung/Technische Diagnostik; Kluth, T. [HWTS Zittau (Germany). Fachgebiet Instandhaltung/Technische Diagnostik

    1995-09-01

    Account of their properties sliding bearings are in high demanded and important aggregats. The destruction of a bearing will be almost followed by the destruction of the aggregate. Various methods are existing for sliding bearing diagnosis. This methods often not permit the condition recognition. A new electromagnetical method will be developed. This method permits the condition recognition during working time of the aggregate. It also permits the recognition of wear. The method bases on a measuring of leak current over measuring the generated magnetic fields with Rogowski-coils. (orig.) [Deutsch] Gleitlager befinden sich wegen ihrer Eigenschaften in hoch beanspruchten und exponierten Aggregaten. Die Zerstoerung eines Gleitlagers fuehrt meist auch zur Zerstoerung des gefuehrten Aggregats. Zur Gleitlagerdiagnose existiert eine Reihe Verfahren. Ihnen wird ein elektromagnetisches Verfahren gegenuebergestellt. Damit koennen Gleitlagerzustaende waehrend des Aggregatebetriebs identifiziert werden. Das Verfahren erlaubt gleichermassen die Bestimmung des Lagerverschleisses. Es basiert auf der Ableitstrommessung, bei der sich ausbildende Magnetfelder durch Rogowskispulen ausgemessen werden. (orig.)

  13. Field soil-water properties measured through radiation techniques

    International Nuclear Information System (INIS)

    1984-07-01

    This report shows a major effort to make soil physics applicable to the behaviour of the field soils and presents a rich and diverse set of data which are essential for the development of effective soil-water management practices that improve and conserve the quality and quantity of agricultural lands. This piece of research has shown that the neutron moisture meter together with some complementary instruments like tensiometers, can be used not only to measure soil water contents but also be extremely handy to measure soil hydraulic characteristics and soil water flow. It is, however, recognized that hydraulic conductivity is highly sensitive to small changes in soil water content and texture, being extremely variable spatially and temporally

  14. Experimental Measurement of the Flow Field of Heavy Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Fred Browand; Charles Radovich

    2005-05-31

    Flat flaps that enclose the trailer base on the sides and top are known to reduce truck drag and reduce fuel consumption. Such flapped-truck geometries have been studied in laboratory wind tunnels and in field tests. A recent review of wind tunnel data for a variety of truck geometries and flow Reynolds numbers show roughly similar values of peak drag reduction, but differ in the determination of the optimum flap angle. Optimum angles lie in the range 12 degrees-20 degrees, and may be sensitive to Reynolds number and truck geometry. The present field test is undertaken to provide additional estimates of the magnitude of the savings to be expected on a typical truck for five flap angles 10, 13, 16, 19, and 22 degrees. The flaps are constructed from a fiberglass-epoxy-matrix material and are one-quarter of the base width in length (about 61 cm, or 2 feet). They are attached along the rear door hinge lines on either side of the trailer, so that no gap appears at the joint between the flap and the side of the trailer The flap angle is adjusted by means of two aluminum supports. The present test is performed on the NASA Crows Landing Flight Facility at the northern end of the San Joaquin valley in California. The main runway is approximately 2400 meters in length, and is aligned approximately in a north-south direction The test procedure is to make a series of runs starting at either end of the runway. All runs are initiated under computer control to accelerate the truck to a target speed of 60 mph (96 6 km/hr), to proceed at the target speed for a fixed distance, and to decelerate at the far end of the runway. During a run, the broadcast fuel rate, the engine rpm, forward speed, elapsed time--as well as several other parameters (10 in all)--are digitized at a rate of 100 digitizations per second. Various flapped-conditions are interspersed with the ''no flaps'' control, and are sequenced in a different order on different days. Approximately 310 runs

  15. Measurability of quantum fields and the energy-time uncertainty relation

    International Nuclear Information System (INIS)

    Mensky, Mikhail B

    2011-01-01

    Quantum restrictions on the measurability of an electromagnetic field strength and their relevance to the energy-time uncertainty relation are considered. The minimum errors in measuring electromagnetic field strengths, as they were estimated by the author (1988) in the framework of the phenomenological method of restricted path integral (RPI), are compared with the analogous estimates found by Landau and Peierls (1931) and by Bohr and Rosenfeld (1933) with the help of certain measurement setups. RPI-based restrictions, including those of Landau and Peierls as a special case, hold for any measuring schemes meeting the strict definition of measurement. Their fundamental nature is confirmed by the fact that their associated field detectability condition has the form of the energy-time uncertainty relation. The weaker restrictions suggested by Bohr and Rosenfeld rely on an extended definition of measurement. The energy-time uncertainty relation, which is the condition for the electromagnetic field to be detectable, is applied to the analysis of how the near-field scanning microscope works. (methodological notes)

  16. Comparing pulmonary resistance measured with an esophageal balloon to resistance measurements with an airflow perturbation device

    International Nuclear Information System (INIS)

    Coursey, D C; Johnson, A T; Scharf, S M

    2010-01-01

    The airflow perturbation device (APD) perturbs flow and mouth pressure during regular breathing. Ratios of mouth pressure perturbation magnitudes to flow perturbation magnitudes were used to calculate inspiratory, expiratory and average respiratory resistances. Resistance measurements with the APD were compared to pulmonary resistances directly measured with an esophageal balloon. Six healthy subjects were tested during tidal breathing when known external resistances were added during inspiration, during expiration and during both inspiration and expiration. When the baseline averaged balloon measured pulmonary resistance was subtracted from the baseline averaged APD measured resistance, the difference between them was 0.92 ± 1.25 (mean ± SD) cmH 2 O L –1 s –1 . Compared to the magnitude of the known increase in the added resistance, the APD measured resistance increased by 79%, whereas directly measured pulmonary resistance increased only by 56%. During addition of external resistances to both inspiration and expiration, the changes in inspiratory and expiratory pulmonary resistance were only 36% and 62% of the added resistance, respectively. On the other hand, the APD inhalation and exhalation resistance measured between 82% and 76% of the added resistance. We conclude that the APD detects changes in external resistance at least as well as, and probably better than, classical measurements of pulmonary resistance

  17. Electric field measurements in nanosecond pulse discharges in air over liquid water surface

    Science.gov (United States)

    Simeni Simeni, Marien; Baratte, Edmond; Zhang, Cheng; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field in nanosecond pulse discharges in ambient air is measured by picosecond four-wave mixing, with absolute calibration by a known electrostatic field. The measurements are done in two geometries, (a) the discharge between two parallel cylinder electrodes placed inside quartz tubes, and (b) the discharge between a razor edge electrode and distilled water surface. In the first case, breakdown field exceeds DC breakdown threshold by approximately a factor of four, 140 ± 10 kV cm-1. In the second case, electric field is measured for both positive and negative pulse polarities, with pulse durations of ˜10 ns and ˜100 ns, respectively. In the short duration, positive polarity pulse, breakdown occurs at 85 kV cm-1, after which the electric field decreases over several ns due to charge separation in the plasma, with no field reversal detected when the applied voltage is reduced. In a long duration, negative polarity pulse, breakdown occurs at a lower electric field, 30 kV cm-1, after which the field decays over several tens of ns and reverses direction when the applied voltage is reduced at the end of the pulse. For both pulse polarities, electric field after the pulse decays on a microsecond time scale, due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Measurements 1 mm away from the discharge center plane, ˜100 μm from the water surface, show that during the voltage rise, horizontal field component (Ex ) lags in time behind the vertical component (Ey ). After breakdown, Ey is reduced to near zero and reverses direction. Further away from the water surface (≈0.9 mm), Ex is much higher compared to Ey during the entire voltage pulse. The results provide insight into air plasma kinetics and charge transport processes near plasma-liquid interface, over a wide range of time scales.

  18. Measuring human remains in the field: Grid technique, total station, or MicroScribe?

    Science.gov (United States)

    Sládek, Vladimír; Galeta, Patrik; Sosna, Daniel

    2012-09-10

    Although three-dimensional (3D) coordinates for human intra-skeletal landmarks are among the most important data that anthropologists have to record in the field, little is known about the reliability of various measuring techniques. We compared the reliability of three techniques used for 3D measurement of human remain in the field: grid technique (GT), total station (TS), and MicroScribe (MS). We measured 365 field osteometric points on 12 skeletal sequences excavated at the Late Medieval/Early Modern churchyard in Všeruby, Czech Republic. We compared intra-observer, inter-observer, and inter-technique variation using mean difference (MD), mean absolute difference (MAD), standard deviation of difference (SDD), and limits of agreement (LA). All three measuring techniques can be used when accepted error ranges can be measured in centimeters. When a range of accepted error measurable in millimeters is needed, MS offers the best solution. TS can achieve the same reliability as does MS, but only when the laser beam is accurately pointed into the center of the prism. When the prism is not accurately oriented, TS produces unreliable data. TS is more sensitive to initialization than is MS. GT measures human skeleton with acceptable reliability for general purposes but insufficiently when highly accurate skeletal data are needed. We observed high inter-technique variation, indicating that just one technique should be used when spatial data from one individual are recorded. Subadults are measured with slightly lower error than are adults. The effect of maximum excavated skeletal length has little practical significance in field recording. When MS is not available, we offer practical suggestions that can help to increase reliability when measuring human skeleton in the field. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Evaluation of Occupational Cold Environments: Field Measurements and Subjective Analysis

    Science.gov (United States)

    OLIVEIRA, A. Virgílio M.; GASPAR, Adélio R.; RAIMUNDO, António M.; QUINTELA, Divo A.

    2014-01-01

    The present work is dedicated to the study of occupational cold environments in food distribution industrial units. Field measurements and a subjective assessment based on an individual questionnaire were considered. The survey was carried out in 5 Portuguese companies. The field measurements include 26 workplaces, while a sample of 160 responses was considered for the subjective assessment. In order to characterize the level of cold exposure, the Required Clothing Insulation Index (IREQ) was adopted. The IREQ index highlights that in the majority of the workplaces the clothing ensembles worn are inadequate, namely in the freezing chambers where the protection provided by clothing is always insufficient. The questionnaires results show that the food distribution sector is characterized by a female population (70.6%), by a young work force (60.7% are less than 35 yr old) and by a population with a medium-length professional career (80.1% in this occupation for less than 10 yr). The incidence of health effects which is higher among women, the distribution of protective clothing (50.0% of the workers indicate one garment) and the significant percentage of workers (>75%) that has more difficulties in performing the activity during the winter represent other important results of the present study. PMID:24583510

  20. Measurement of Jupiter’s asymmetric gravity field

    Science.gov (United States)

    Iess, L.; Folkner, W. M.; Durante, D.; Parisi, M.; Kaspi, Y.; Galanti, E.; Guillot, T.; Hubbard, W. B.; Stevenson, D. J.; Anderson, J. D.; Buccino, D. R.; Casajus, L. Gomez; Milani, A.; Park, R.; Racioppa, P.; Serra, D.; Tortora, P.; Zannoni, M.; Cao, H.; Helled, R.; Lunine, J. I.; Miguel, Y.; Militzer, B.; Wahl, S.; Connerney, J. E. P.; Levin, S. M.; Bolton, S. J.

    2018-03-01

    The gravity harmonics of a fluid, rotating planet can be decomposed into static components arising from solid-body rotation and dynamic components arising from flows. In the absence of internal dynamics, the gravity field is axially and hemispherically symmetric and is dominated by even zonal gravity harmonics J2n that are approximately proportional to qn, where q is the ratio between centrifugal acceleration and gravity at the planet’s equator. Any asymmetry in the gravity field is attributed to differential rotation and deep atmospheric flows. The odd harmonics, J3, J5, J7, J9 and higher, are a measure of the depth of the winds in the different zones of the atmosphere. Here we report measurements of Jupiter’s gravity harmonics (both even and odd) through precise Doppler tracking of the Juno spacecraft in its polar orbit around Jupiter. We find a north–south asymmetry, which is a signature of atmospheric and interior flows. Analysis of the harmonics, described in two accompanying papers, provides the vertical profile of the winds and precise constraints for the depth of Jupiter’s dynamical atmosphere.

  1. Velocity field measurement in micro-bubble emission boiling

    International Nuclear Information System (INIS)

    Ito, Daisuke; Saito, Yasushi; Natazuka, Jun

    2017-01-01

    Liquid inlet behavior to a heat surface in micro-bubble emission boiling (MEB) was investigated by flow measurement using particle image velocimetry (PIV). Subcooled pool boiling experiments under atmospheric pressure were carried out using a heat surface with a diameter of 10 mm. An upper end of a heater block made of copper was used as the heat surface. Working fluid was the deionized water and the subcooling was varied from 40 K to 70 K. Three K-type thermocouples were installed in the copper block to measure the temperature gradient, and the heat flux and wall superheat were estimated from these temperature data to make a boiling curve. The flow visualization around the heat surface was carried out using a high-speed video camera and a light sheet. The microbubbles generated in the MEB were used as tracer particles and the velocity field was obtained by PIV analysis of the acquired image sequence. As a result, the higher heat fluxes than the critical heat flux could be obtained in the MEB region. In addition, the distribution characteristics of the velocity in MEB region were studied using the PIV results and the location of the stagnation point in the velocity fields was discussed. (author)

  2. Measurement of far field combustion noise from a turbofan engine using coherence functions

    Science.gov (United States)

    Karchmer, A. M.; Reshotko, M.; Montegani, F. J.

    1977-01-01

    Coherence measurements between fluctuating pressure in the combustor of a YF-102 turbofan engine and far-field acoustic pressure were made. The results indicated that a coherent relationship between the combustor pressure and far-field existed only at frequencies below 250 Hz, with the peak occurring near 125 Hz. The coherence functions and the far-field spectra were used to compute the combustor-associated far-field noise in terms of spectra, directivity, and acoustic power, over a range of engine operating conditions. The acoustic results so measured were compared with results obtained by conventional methods, as well as with various semiempirical predictions schemes. Examination of the directivity patterns indicated a peak in the combustion noise near 120 deg (relative to the inlet axis).

  3. Comparing Derived and Actual Upwelling Longwave Measurements at the CERES Ocean Validation Experiment (COVE)

    Science.gov (United States)

    Fabbri, B. E.; Schuster, G. L.; Denn, F. M.; Arduini, R. F.; Madigan, J. J.

    2017-12-01

    One of the parameters measured from the Clouds and the Earth's Radiant Energy System (CERES) satellite is Earth emitted or longwave (LW) radiation. One validation site to compare this quantity is the CERES Ocean Validation Experiment (COVE), located at Chesapeake Light Station, approximately 25 kilometers east of Virginia Beach, Virginia (coordinates: 36.90N, 75.71W). However, the upwelling measurement is complicated due to the Light Station tower being in the LW instruments field of view. A negative outcome of the tower being in the field of view is a tower radiating effect, especially noticeable on clear, sunny days. During these days, the tower tends to heat up and radiate extra heat energy that is measured by the LW instrument. To understand the extent of the problem, we derive upwelling longwave measurements at the surface using sea surface temperature, air temperature, and dewpoint to compare with the actual longwave measurement made with an Eppley Laboratory pyrgeometer. The data used in this study is over a four-year period (2009-2012). One result using only nighttime data (range: 15.0 =solar insolation creating the tower radiating effect. Other results comparing the diurnal scope are analyzed and presented.

  4. Development and Application of Integrated Optical Sensors for Intense E-Field Measurement

    Directory of Open Access Journals (Sweden)

    Zhanqing Yu

    2012-08-01

    Full Text Available The measurement of intense E-fields is a fundamental need in various research areas. Integrated optical E-field sensors (IOESs have important advantages and are potentially suitable for intense E-field detection. This paper comprehensively reviews the development and applications of several types of IOESs over the last 30 years, including the Mach-Zehnder interferometer (MZI, coupler interferometer (CI and common path interferometer (CPI. The features of the different types of IOESs are compared, showing that the MZI has higher sensitivity, the CI has a controllable optical bias, and the CPI has better temperature stability. More specifically, the improvement work of applying IOESs to intense E-field measurement is illustrated. Finally, typical uses of IOESs in the measurement of intense E-fields are demonstrated, including application areas such as E-fields with different frequency ranges in high-voltage engineering, simulated nuclear electromagnetic pulse in high-power electromagnetic pulses, and ion-accelerating field in high-energy physics.

  5. The use of single-crystal iron frames in transient field measurements, ch. 3

    International Nuclear Information System (INIS)

    Zalm, P.C.

    1977-01-01

    An experimental technique for measuring g-factors of short-lived states (tausub(m)=0.1-10 ps) is discussed. In this method, one uses the strong hyperfine interaction caused by the transient magnetic field. The transient field method dates from 1967. A gain in measuring time of at least a factor of four is shown to be obtained by the use of a single crystal iron frame as a ferromagnetic target backing in which the excited nuclei, formed in a nuclear reaction, recoil. Such frames can be fully magnetized with low external fields as shown by magneto-optical Kerr-effect measurements. The important improvement is that the associated magnetic fringing field near the target is negligible. This is in contrast to the conventional set-up in which strong external fields, with corresponding large disturbing fringing fields, were necessary. The single-crystal set-up is compared to the conventional set-up in several transient field experiments and proves to be successful

  6. Electric field measurements in a dielectric barrier nanosecond pulse discharge with sub-nanosecond time resolution

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Shkurenkov, Ivan; Adamovich, Igor V; Lempert, Walter R; O’Byrne, Sean

    2015-01-01

    The paper presents the results of time-resolved electric field measurements in a nanosecond discharge between two plane electrodes covered by dielectric plates, using picosecond four-wave mixing diagnostics. For absolute calibration, the IR signal was measured in hydrogen at a pressure of 440 Torr, for electrostatic electric field ranging from 0 to 8 kV cm −1 . The calibration curve (i.e. the square root of IR signal intensity versus electric field) was shown to be linear. By measuring the intensities of the pump, Stokes, and IR signal beam for each laser shot during the time sweep across the high-voltage pulse, temporal evolution of the electric field in the nanosecond pulse discharge was determined with sub-nanosecond time resolution. The results are compared to kinetic modeling predictions, showing good agreement, including non-zero electric field offset before the main high voltage pulse, breakdown moment, and reduction of electric field in the plasma after breakdown. The difference between the experimental results and model predictions is likely due to non-1D structure of the discharge. Comparison with the kinetic modeling predictions shows that electric field in the nanosecond pulse discharge is controlled primarily by electron impact excitation and charge accumulation on the dielectric surfaces. (paper)

  7. Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation

    Science.gov (United States)

    Elsaka, Basem; Raimondo, Jean-Claude; Brieden, Phillip; Reubelt, Tilo; Kusche, Jürgen; Flechtner, Frank; Iran Pour, Siavash; Sneeuw, Nico; Müller, Jürgen

    2014-01-01

    The goal of this contribution is to focus on improving the quality of gravity field models in the form of spherical harmonic representation via alternative configuration scenarios applied in future gravimetric satellite missions. We performed full-scale simulations of various mission scenarios within the frame work of the German joint research project "Concepts for future gravity field satellite missions" as part of the Geotechnologies Program, funded by the German Federal Ministry of Education and Research and the German Research Foundation. In contrast to most previous simulation studies including our own previous work, we extended the simulated time span from one to three consecutive months to improve the robustness of the assessed performance. New is that we performed simulations for seven dedicated satellite configurations in addition to the GRACE scenario, serving as a reference baseline. These scenarios include a "GRACE Follow-on" mission (with some modifications to the currently implemented GRACE-FO mission), and an in-line "Bender" mission, in addition to five mission scenarios that include additional cross-track and radial information. Our results clearly confirm the benefit of radial and cross-track measurement information compared to the GRACE along-track observable: the gravity fields recovered from the related alternative mission scenarios are superior in terms of error level and error isotropy. In fact, one of our main findings is that although the noise levels achievable with the particular configurations do vary between the simulated months, their order of performance remains the same. Our findings show also that the advanced pendulums provide the best performance of the investigated single formations, however an accuracy reduced by about 2-4 times in the important long-wavelength part of the spectrum (for spherical harmonic degrees ), compared to the Bender mission, can be observed. Concerning state-of-the-art mission constraints, in particular

  8. Measurements by activation foils and comparative computations by MCNP code

    International Nuclear Information System (INIS)

    Kyncl, J.

    2008-01-01

    Systematic study of the radioactive waste minimisation problem is subject of the SPHINX project. Its idea is that burning or transmutation of the waste inventory problematic part will be realized in a nuclear reactor the fuel of which is in the form of liquid fluorides. In frame of the project, several experiments have been performed with so-called inserted experimental channel. The channel was filled up by the fluorides mixture, surrounded by six fuel assemblies with moderator and placed into LR-0 reactor vessel. This formation was brought to critical state and measurement with activation foil detectors were carried out at selected positions of the inserted channel. Main aim of the measurements was to determine reaction rates for the detectors mentioned. For experiment evaluation, comparative computations were accomplished by code MCNP4a. The results obtained show that very often, computed values of reaction rates differ substantially from the values that were obtained from the experiment. This contribution deals with analysis of the reasons of these differences from the point of view of computations by Monte Carlo method. The analysis of concrete cases shows that the inaccuracy of reaction rate computed is caused mostly by three circumstances:-space region that is occupied by detector is relatively very small;- microscopic effective cross-section R(E) of the reaction changes strongly with energy just in the energy interval that gives the greatest contribution to the reaction; - in the energy interval that gives the greatest contribution to reaction rate, the error of the computed neutron flux is great. These circumstances evoke that the computation of reaction rate with casual accuracy submits extreme demands on computing time. (Author)

  9. Measurement and tricubic interpolation of the magnetic field for the OLYMPUS experiment

    International Nuclear Information System (INIS)

    Bernauer, J.C.; Diefenbach, J.; Elbakian, G.; Gavrilov, G.; Goerrissen, N.; Hasell, D.K.; Henderson, B.S.; Holler, Y.; Karyan, G.; Ludwig, J.; Marukyan, H.; Naryshkin, Y.; O'Connor, C.; Russell, R.L.; Schmidt, A.; Schneekloth, U.; Suvorov, K.; Veretennikov, D.

    2016-01-01

    The OLYMPUS experiment used a 0.3 T toroidal magnetic spectrometer to measure the momenta of outgoing charged particles. In order to accurately determine particle trajectories, knowledge of the magnetic field was needed throughout the spectrometer volume. For that purpose, the magnetic field was measured at over 36,000 positions using a three-dimensional Hall probe actuated by a system of translation tables. We used these field data to fit a numerical magnetic field model, which could be employed to calculate the magnetic field at any point in the spectrometer volume. Calculations with this model were computationally intensive; for analysis applications where speed was crucial, we pre-computed the magnetic field and its derivatives on an evenly spaced grid so that the field could be interpolated between grid points. We developed a spline-based interpolation scheme suitable for SIMD implementations, with a memory layout chosen to minimize space and optimize the cache behavior to quickly calculate field values. This scheme requires only one-eighth of the memory needed to store necessary coefficients compared with a previous scheme (Lekien and Marsden, 2005 [1]). This method was accurate for the vast majority of the spectrometer volume, though special fits and representations were needed to improve the accuracy close to the magnet coils and along the toroidal axis.

  10. Measurement and tricubic interpolation of the magnetic field for the OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, J.C. [Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA (United States); Diefenbach, J. [Hampton University, Hampton, VA (United States); Elbakian, G. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Gavrilov, G. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Goerrissen, N. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Hasell, D.K.; Henderson, B.S. [Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA (United States); Holler, Y. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Karyan, G. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Ludwig, J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Marukyan, H. [Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan (Armenia); Naryshkin, Y. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); O' Connor, C.; Russell, R.L.; Schmidt, A. [Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA (United States); Schneekloth, U. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Suvorov, K.; Veretennikov, D. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation)

    2016-07-01

    The OLYMPUS experiment used a 0.3 T toroidal magnetic spectrometer to measure the momenta of outgoing charged particles. In order to accurately determine particle trajectories, knowledge of the magnetic field was needed throughout the spectrometer volume. For that purpose, the magnetic field was measured at over 36,000 positions using a three-dimensional Hall probe actuated by a system of translation tables. We used these field data to fit a numerical magnetic field model, which could be employed to calculate the magnetic field at any point in the spectrometer volume. Calculations with this model were computationally intensive; for analysis applications where speed was crucial, we pre-computed the magnetic field and its derivatives on an evenly spaced grid so that the field could be interpolated between grid points. We developed a spline-based interpolation scheme suitable for SIMD implementations, with a memory layout chosen to minimize space and optimize the cache behavior to quickly calculate field values. This scheme requires only one-eighth of the memory needed to store necessary coefficients compared with a previous scheme (Lekien and Marsden, 2005 [1]). This method was accurate for the vast majority of the spectrometer volume, though special fits and representations were needed to improve the accuracy close to the magnet coils and along the toroidal axis.

  11. Comparing Aerosol Retrievals from Ground-Based Instruments at the Impact-Pm Field Campaign

    Science.gov (United States)

    Kupinski, M.; Bradley, C. L.; Kalashnikova, O. V.; Xu, F.; Diner, D. J.; Clements, C. B.; Camacho, C.

    2016-12-01

    Detection of aerosol types, components having different size and chemical composition, over urban areas is important for understanding their impact on health and climate. In particular, sustained contact with size-differentiated airborne particulate matter: PM10 and PM2.5 can lead to adverse health effects such as asthma attacks, heart and lung diseases, and premature mortality. Multi-angular polarimetric measurements have been advocated in recent years as an additional tool to better understand and retrieve the aerosol properties needed for improved predictions of aerosol impart on air quality and climate. We deployed the ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) for accurate spectropolarimetric and radiance measurements co-located with the AERONET CIMEL sun photometer and a Halo Doppler 18 m resolution lidar from San José State University at the Garland-Fresno Air Quality supersite in Fresno, CA on July 7 during the Imaging Polarimetric Assessment and Characterization of Tropospheric Particulate Matter (ImPACT-PM) field experiment. GroundMSPI sampled the atmospheric scattering phase function in and 90 degrees out of the principal plane every 15 minutes in an automated manner, utilizing the 2-axis gimbal mount in elevation and azimuth. The goal of this work is verify atmospheric measurement of GroundMSPI with the coincident CIMEL sun photometer and ground-based lidar. Diffuse-sky radiance measurements of GroundMSPI are compared with the CIMEL sun photometer throughout the day. AERONET aerosol parameters such as size, shape, and index of refraction as well as lidar aerosol extinction profiles will be used in a forward radiative transfer model to compare with GroundMSPI observations and optimize these parameters to best match GroundMSPI data.

  12. Magnetic Field Measurements of the GOLIATH Magnet in EHN1

    CERN Document Server

    Rosenthal, Marcel; Chatzidaki, Panagiota; Margraf, Rachel; Wilkens, Henric; Bergsma, Felix; Giudici, Pierre-Ange; CERN. Geneva. ATS Department

    2018-01-01

    This note describes the measurement campaign of the magnetic field of the GOLIATH magnet conducted in 2017. It documents the applied measurement procedure and the consecutive analysis of the recorded data. The shape of the magnetic field along the beam axis is discussed and compared with a previous measurement taken in the 1980s. Overall a very good agreement of both data sets is observed. The integrated vertical magnetic field is obtained by analytical descriptions fitted to the data. Additionally, the influence of different configurations of the power converters, as for example in the case of a differ- ent powering scheme of the upper and lower coil of the GOLIATH magnet, on the magnetic field are discussed.

  13. Technical Note: Out-of-field dose measurement at near surface with plastic scintillator detector.

    Science.gov (United States)

    Bourgouin, Alexandra; Varfalvy, Nicolas; Archambault, Louis

    2016-09-08

    Out-of-field dose depends on multiple factors, making peripheral dosimetry com-plex. Only a few dosimeters have the required features for measuring peripheral dose. Plastic scintillator dosimeters (PSDs) offer numerous dosimetric advantages as required for out-of-field dosimetry. The purpose of this study is to determine the potential of using PSD as a surface peripheral dosimeter. Measurements were performed with a parallel-plate ion chamber, a small volume ion chamber, and with a PSD. Lateral-dose measurements (LDM) at 0.5 cm depth and depth-dose curve (PDD) were made and compared to the dose calculation provided by a treatment planning system (TPS). This study shows that a PSD can measure a dose as low as 0.51 ± 0.17 cGy for photon beam and 0.58 ± 0.20 cGy for electron beam with a difference of 0.2 and 0.1 cGy compared to a parallel-plate ion chamber. This study demonstrates the potential of using PSD as an out-of-field dosimeter since measure-ments with PSD avoid averaging over a too-large depth, at 1 mm diameter, and can make precise measurement at very low dose. Also, electronic equilibrium is easier to reach with PSD due to its small sensitive volume and its water equivalence. © 2016 The Authors.

  14. Comparing Evapotranspiration Rates Estimated from Atmospheric Flux and TDR Soil Moisture Measurements

    DEFF Research Database (Denmark)

    Schelde, Kirsten; Ringgaard, Rasmus; Herbst, Mathias

    2011-01-01

    Measurements of water vapor fluxes using eddy covariance (EC) and measurements of root zone soil moisture depletion using time domain reflectometry (TDR) represent two independent approaches to estimating evapotranspiration. This study investigated the possibility of using TDR to provide a lower...... limit estimate (disregarding dew evaporation) of evapotranspiration on dry days. During a period of 7 wk, the two independent measuring techniques were applied in a barley (Hordeum vulgare L.) field, and six dry periods were identified. Measurements of daily root zone soil moisture depletion were...... compared with daily estimates of water vapor loss. During the first dry periods, agreement between the two approaches was good, with average daily deviation between estimates below 1.0 mm d-1 Toward the end of the measurement period, the estimates of the two techniques tended to deviate due to different...

  15. Field spectrometer measurement errors in presence of partially polarized light; evaluation of ground truth measurement accuracy.

    Science.gov (United States)

    Lévesque, Martin P; Dissanska, Maria

    2016-11-28

    Considering that natural light is always partially polarized (reflection, Rayleigh scattering, etc.) and the alteration of the spectral response of spectrometers due to the polarization, some concerns were raised about the accuracy and variability of spectrometer outdoor measurements in field campaigns. We demonstrated by simple experiments that, in some circumstances, spectral measurements can be affected by the polarization. The signal variability due to polarization sensitivity of the spectrometer for the measured sample was about 5-10%. We noted that, measuring surfaces at right angle (a frequently used measurement protocol) minimized the problems due to polarization, producing valid results. On the other hand, measurements acquired with a slant angle are more or less accurate; an important proportion of the signal variability is due to the polarization. Direct sun reflection and reflection from close objects must be avoided.

  16. Field comparison of disjunct and conventional eddy covariance techniques for trace gas flux measurements

    International Nuclear Information System (INIS)

    Rinne, J.; Douffet, T.; Prigent, Y.; Durand, P.

    2008-01-01

    A field intercomparison experiment of the disjunct eddy covariance (DEC) and the conventional eddy covariance (EC) techniques was conducted over a grass field. The half-hourly water vapor fluxes measured by the DEC were within the estimated uncertainty from the fluxes measured by the EC. On the average there was a slight overestimation (<10%) of the fluxes measured by the DEC during the day and underestimation during the night as compared to the fluxes measured by the EC. As this bias does not appear in the simulated DEC measurements it is likely to be due to instrumental problems. The insensitivity of the quality of the fluxes measured by the DEC method to the deficiencies in the gas analysis shows the robustness of this new approach for measuring the surface-atmosphere exchange of trace gases. - Results from the first field intercomparison between a new state-of-the-art trace gas flux measurement technique and the direct eddy covariance measurements are reported in this paper

  17. Mode Content Determination of Terahertz Corrugated Waveguides Using Experimentally Measured Radiated Field Patterns.

    Science.gov (United States)

    Jawla, Sudheer K; Nanni, Emilio A; Shapiro, Michael A; Woskov, Paul P; Temkin, Richard J

    2012-06-01

    This work focuses on the accuracy of the mode content measurements in an overmoded corrugated waveguide using measured radiated field patterns. Experimental results were obtained at 250 GHz using a vector network analyzer with over 70 dB of dynamic range. The intensity and phase profiles of the fields radiated from the end of the 19 mm diameter helically tapped brass waveguide were measured on planes at 7, 10, and 13 cm from the waveguide end. The measured fields were back propagated to the waveguide aperture to provide three independent estimates of the field at the waveguide exit aperture. Projecting that field onto the modes of the guide determined the waveguide mode content. The three independent mode content estimates were found to agree with one another to an accuracy of better than ±0.3%. These direct determinations of the mode content were compared with indirect measurements using the experimentally measured amplitude in three planes, with the phase determined by a phase retrieval algorithm. The phase retrieval technique using the planes at 7, 10, and 13 cm yielded a mode content estimate in excellent agreement, within 0.3%, of the direct measurements. Phase retrieval results using planes at 10, 20, and 30 cm were less accurate due to truncation of the measurement in the transverse plane. The reported measurements benefited greatly from a precise mechanical alignment of the scanner with respect to the waveguide axis. These results will help to understand the accuracy of mode content measurements made directly in cold test and indirectly in hot test using the phase retrieval technique.

  18. Field measurements of sonic boom penetration into the ocean

    Science.gov (United States)

    Sohn; Vernon; Hildebrand; Webb

    2000-06-01

    Six sonic booms, generated by F-4 aircraft under steady flight at a range of altitudes (610-6100 m) and Mach numbers (1.07-1.26), were measured just above the air/sea interface, and at five depths in the water column. The measurements were made with a vertical hydrophone array suspended from a small spar buoy at the sea surface, and telemetered to a nearby research vessel. The sonic boom pressure amplitude decays exponentially with depth, and the signal fades into the ambient noise field by 30-50 m, depending on the strength of the boom at the sea surface. Low-frequency components of the boom waveform penetrate significantly deeper than high frequencies. Frequencies greater than 20 Hz are difficult to observe at depths greater than about 10 m. Underwater sonic boom pressure measurements exhibit excellent agreement with predictions from analytical theory, despite the assumption of a flat air/sea interface. Significant scattering of the sonic boom signal by the rough ocean surface is not detected. Real ocean conditions appear to exert a negligible effect on the penetration of sonic booms into the ocean unless steady vehicle speeds exceed Mach 3, when the boom incidence angle is sufficient to cause scattering on realistic open ocean surfaces.

  19. Spinal posture in different DanceSport dance styles compared with track and field athletes

    Directory of Open Access Journals (Sweden)

    Helena Kruusamäe

    2015-11-01

    Conclusions: The results of the present study suggest that smaller S-shaped vertebral curvatures of DanceSport athletes compared with track and field athletes are permanent changes rather than habitual.

  20. Potassium ion influx measurements on cultured Chinese hamster cells exposed to 60-hertz electromagnetic fields

    International Nuclear Information System (INIS)

    Stevenson, A.P.; Tobey, R.A.

    1985-01-01

    Potassium ion influx was measured by monitoring 42 KCl uptake by Chinese hamster ovary (CHO) cells grown in suspension culture and exposed in the culture medium to 60-Hz electromagnetic fields up to 2.85 V/m. In the presence of the field CHO cells exhibited two components of uptake, the same as previously observed for those grown under normal conditions; both these components of influx were decreased when compared to sham-exposed cells. Although decreases were consistently observed in exposed cells when plotted as loge of uptake, the differences between the means of the calculated fluxes of exposed and sham-exposed cells were quite small (on the order of 4-7%). When standard deviations were calculated, there was no significant difference between these means; however, when time-paired uptake data were analyzed, the differences were found to be statistically significant. Cells exposed only to the magnetic field exhibited similar small decreases in influx rates when compared to sham-exposed cells, suggesting that the reduction in K+ uptake could be attributed to the magnetic field. Additionally, intracellular K+ levels were measured over a prolonged exposure period (96 h), and no apparent differences in intracellular K+ levels were observed between field-exposed and sham-exposed cultures. These results indicate that high-strength electric fields have a small effect on the rate of transport of potassium ions but no effect on long-term maintenance of intracellular K+

  1. Chemical, Biological, and Explosive Sensors for Field Measurements

    International Nuclear Information System (INIS)

    Kyle, Kevin; Manard, Manuel; Weeks, Stephan

    2009-01-01

    Special Technologies Laboratory (STL) is developing handheld chemical, biological, and explosive (CBE) detection systems and sensor motes for wireless networked field operations. The CBE sensors are capable of detecting and identifying multiple targeted toxic industrial chemicals (TICs) and high-explosive vapor components. The CBE devices are based on differential mobility spectrometry (DMS) coupled with fast gas chromatography (GC) or mass spectrometry. The systems all include the concepts of: (1) Direct air/particulate 'smart' sampling; (2) Selective, continuous real-time (∼1 sec) alert monitoring using DMS; and (3) Highly selective, rapid dual technology separation/verification analysis The biosensor technology is based on Raman aerosol particle flow cytometry for target detection and identification. Monitoring and identifying trace level chemical vapors directly from ambient air will allow First Responders to quickly adapt situational response strategies and personal protective equipment needs to the specific response scenario being encountered. First Responders require great confidence in the measurements and ability of a given system to detect CBE below threshold levels without interferences. The concept of determining the background matrix in near real-time to allow subsequent automated field-programmable method selection and cueing of high-value assets in a wide range of environs will be presented. This provides CBE information for decisions prior to First Responders entering the response site or sending a portable mobile unit for a remote site survey of the hazards. The focus is on real-time information needed by those responsible for emergency response and national security

  2. Chemical, Biological, and Explosive Sensors for Field Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kyle, Manuel Manard, Stephan Weeks

    2009-01-31

    Special Technologies Laboratory (STL) is developing handheld chemical, biological, and explosive (CBE) detection systems and sensor motes for wireless networked field operations. The CBE sensors are capable of detecting and identifying multiple targeted toxic industrial chemicals (TICs) and high-explosive vapor components. The CBE devices are based on differential mobility spectrometry (DMS) coupled with fast gas chromatography (GC) or mass spectrometry. The systems all include the concepts of: 1. Direct air/particulate “smart” sampling 2. Selective, continuous real-time (~1 sec) alert monitoring using DMS 3. Highly selective, rapid dual technology separation/verification analysis The biosensor technology is based on Raman aerosol particle flow cytometry for target detection and identification. Monitoring and identifying trace level chemical vapors directly from ambient air will allow First Responders to quickly adapt situational response strategies and personal protective equipment needs to the specific response scenario being encountered. First Responders require great confidence in the measurements and ability of a given system to detect CBE below threshold levels without interferences. The concept of determining the background matrix in near real-time to allow subsequent automated field-programmable method selection and cueing of high-value assets in a wide range of environs will be presented. This provides CBE information for decisions prior to First Responders entering the response site or sending a portable mobile unit for a remote site survey of the hazards. The focus is on real-time information needed by those responsible for emergency response and national security.

  3. Comparison of magnetic field meters used for Elf exposure measurement

    Energy Technology Data Exchange (ETDEWEB)

    Magne, I. [Electricite de France (EDF/RD), 77 - Moret sur Loing (France); Azoulay, A. [Supelec, 91 - Gif sur Yvette (France); Lambrozo, J.; Souques, M. [Gaz de France (EDF/GDF), SEM, 75 - Paris (France)

    2006-07-01

    Objective The question of the biological effects of E.L.F. electromagnetic fields (50/60 Hz) has lead to many experimental and epidemiological works, in occupational exposure and in residential exposure. One of the main difficulties is to integrate the maximum of information about the environmental exposures during the everyday life without limitation to the exposure of the home. The objective of this study is to analyse experimentally the metrology associated with human exposure to 50 Hz magnetic field, in the optic of a study of the French population exposure. Method 4 meters were tested: the E.M.D.E.X. II, currently used in epidemiological studies, the E.M.D.E.X. L.I.T.E., which is more recent, the H.T.300, an Italian meter, and the F.D.3, which is made by Combinova A calibration was performed with an Helmoltz coil. The immunity of these meters to GSM signal was also tested. The influence of the sample rate was evaluated. Results and conclusion The meter chosen for performing the measurements of the exposure study will be selected in function of the following criteria: - easiness of use - precision - low sample rate - memory size and reliability of data stocking - immunity to GSM perturbations. (authors)

  4. An instrument for measuring thermal inertia in the field

    Science.gov (United States)

    Marsh, S. E.; Schieldge, J. P.; Kahle, A. B.

    1982-01-01

    Features and test results of a thermal inertial meter (TIM) for cataloging the thermal inertial of surface material in situ as a basis for satellite remote sensing of geologic materials are described. The instrument is employed to determine the temperature rise of the materials in the field, with the assumptions that the sample and a standard are homogeneous in composition, the heat flux density is constant at the surface of each material, and the specimens are thick enough to be treated as semi-infinite bodies. A formula for calculating thermal inertia is presented, and the components of the TIM are detailed. A box with three compartments, two holding standards, is placed on the sample surface with the third compartment open to the specimen. Dolomite and quartz are used as references when all samples are measured after heating. Tests with rocks and sand in Nevada and California revealed that chert has a higher thermal inertia than barite.

  5. MVAC Submarine cable, magnetic fields measurements and analysis

    DEFF Research Database (Denmark)

    Arentsen, Martin Trolle; Expethit, Adrian; Pedersen, Morten Virklund

    2017-01-01

    to supply the theoretical research with data from magnetic field measurements on a wire armoured 3-phase submarine cable, together with an investigation of the induced currents in the different cable components. The influence of the physical arrangement of the armour wires on the electric behaviour is also...... Standard 60287. Researchers believe that the wire armour of three phased submarine cables is the reason for the inaccurate calculations by the standard. Studies show that the magnetic behaviour of these cables are changed due to the wire armour. In order to investigate this hypothesis, this paper intends...... investigated, since several researchers believe that the twisting of the armour wires result in zero net induced voltage over one helix length. This is shown to be valid for the tested cable. Finally a replica of the armour has been built with just a single conductor in the centre. This setup was used...

  6. SQUID based cryogenic current comparator for measurements of the dark current of superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Vodel, W.; Nietzsche, S.; Neubert, R.; Nawrodt, R. [Friedrich Schiller Univ. Jena (Germany); Peters, A. [GSI Darmstadt (Germany); Knaack, K.; Wendt, M.; Wittenburg, K. [DESY Hamburg (Germany)

    2005-07-01

    The linear accelerator technology, based on super-conducting L-band (1.3 GHz) is currently under study at DESY (Hamburg, Germany). The two 10 km long main Linacs will be equipped with a total of nearly 20.000 cavities. The dark current due to the emission of electrons in these high gradient field super-conducting cavities is an unwanted particle source. A newly high performance SQUID based measurement system for detecting dark currents is proposed. It makes use of the Cryogenic Current Comparator principle and senses dark currents in the pA range with a measurement bandwidth of up to 70 kHz. The use of a cryogenic current comparator as dark current sensor has some important advantages: -) the measurement of the absolute value of the dark current, -) the non-dependence on the electron trajectories, -) the accurate absolute calibration with an additional wire loop, and -) extremely high resolution.

  7. Technical report on levels of electromagnetic fields created by Linky meters. Part 1: laboratory measurements; Part 2: laboratory additional measurements; Part 3: field measurements

    International Nuclear Information System (INIS)

    2016-05-01

    The first part of this study reports measurements of electromagnetic radiations induced by remote-metering reading devices present in new power meters and using the Power-Line Communication (PLC or, in French, CPL) technology, such as the Linky meter. After a recall of legislation regarding exposure to electromagnetic waves, this first part present the two tested meters (Linky of first and third generation, G1 and G3), the performed tests, measurements devices and method. It more precisely reports investigations performed on these both meters, and a comparison with other home appliances. The second part reports additional measurements performed with both meters according to the same methodology, but with the use of a new electric field probe which allows more precise measurements. Maximum electric and magnetic fields have been measured. The third part reports field measurements performed with the same methodology but in dwellings equipped with Linky meters of first generation (G1). Exposure levels have been measured at the vicinity of meters and in other parts of the dwelling

  8. Smile line assessment comparing quantitative measurement and visual estimation

    NARCIS (Netherlands)

    Geld, P. Van der; Oosterveld, P.; Schols, J.; Kuijpers-Jagtman, A.M.

    2011-01-01

    INTRODUCTION: Esthetic analysis of dynamic functions such as spontaneous smiling is feasible by using digital videography and computer measurement for lip line height and tooth display. Because quantitative measurements are time-consuming, digital videography and semiquantitative (visual) estimation

  9. Automatic rice crop height measurement using a field server and digital image processing.

    Science.gov (United States)

    Sritarapipat, Tanakorn; Rakwatin, Preesan; Kasetkasem, Teerasit

    2014-01-07

    Rice crop height is an important agronomic trait linked to plant type and yield potential. This research developed an automatic image processing technique to detect rice crop height based on images taken by a digital camera attached to a field server. The camera acquires rice paddy images daily at a consistent time of day. The images include the rice plants and a marker bar used to provide a height reference. The rice crop height can be indirectly measured from the images by measuring the height of the marker bar compared to the height of the initial marker bar. Four digital image processing steps are employed to automatically measure the rice crop height: band selection, filtering, thresholding, and height measurement. Band selection is used to remove redundant features. Filtering extracts significant features of the marker bar. The thresholding method is applied to separate objects and boundaries of the marker bar versus other areas. The marker bar is detected and compared with the initial marker bar to measure the rice crop height. Our experiment used a field server with a digital camera to continuously monitor a rice field located in Suphanburi Province, Thailand. The experimental results show that the proposed method measures rice crop height effectively, with no human intervention required.

  10. Verification of relative output factor measurement using Gafchromic films for small-field radiosurgery photon beams.

    Science.gov (United States)

    Abdullah, R.; Sapeei, M. S.; Shukor, N. S. A.; Yusof, M. F. M.; Mohamed, M.; Idris, N. R. N.; Yusoff, A. L.; Zakaria, A.; Aziz, M. Z. A.

    2018-01-01

    Accurate dosimetry of small-field photon beams has always been difficult to achieve, due to the steep dose gradient and absence of lateral electronic equilibrium. The purpose of this study was to verify the measurement of relative output factor (ROF), which is one of the dosimetric parameter required for stereotactic radiosurgery (SRS) treatment planning. The ROFs for Radionics circular cone collimators with diameter in the range of 10.0 to 45.0 mm were measured using Gafchromic EBT2 and EBT3 films. The measurements were then compared with the ROFs obtained using a PinPoint ionisation chamber and Monte Carlo (MC) simulation. From the results, the ROFs measured by the ionisation chamber, EBT2, and EBT3 films were good agreement with the MC simulation, with deviations of less than 1.5, 2.6, and 5.0 % respectively. Based on the film dosimetry, the EBT2 film showed in a more reliable measurement for field size ranging from 15.0 to 45.0 mm, compared with EBT3. As a conclusion, based on the special characteristic of the small-field photon beams, ROF measurement using PinPoint ionisation chamber are being favoured, due to its accuracy. However, the EBT2 film can be used as an alternative, when high spatial resolution is required.

  11. Automatic Rice Crop Height Measurement Using a Field Server and Digital Image Processing

    Science.gov (United States)

    Sritarapipat, Tanakorn; Rakwatin, Preesan; Kasetkasem, Teerasit

    2014-01-01

    Rice crop height is an important agronomic trait linked to plant type and yield potential. This research developed an automatic image processing technique to detect rice crop height based on images taken by a digital camera attached to a field server. The camera acquires rice paddy images daily at a consistent time of day. The images include the rice plants and a marker bar used to provide a height reference. The rice crop height can be indirectly measured from the images by measuring the height of the marker bar compared to the height of the initial marker bar. Four digital image processing steps are employed to automatically measure the rice crop height: band selection, filtering, thresholding, and height measurement. Band selection is used to remove redundant features. Filtering extracts significant features of the marker bar. The thresholding method is applied to separate objects and boundaries of the marker bar versus other areas. The marker bar is detected and compared with the initial marker bar to measure the rice crop height. Our experiment used a field server with a digital camera to continuously monitor a rice field located in Suphanburi Province, Thailand. The experimental results show that the proposed method measures rice crop height effectively, with no human intervention required. PMID:24451465

  12. Electromagnetic fields and health impact: measurements, monitoring and environmental indicators

    International Nuclear Information System (INIS)

    Lubritto, C.; Vetromile, C.; Petraglia, A.; Racioppoli, M.; D'Onofrio, A.

    2008-01-01

    Full text: During the last 10 years there has been a remarkable growth of the attention for problems related to the electromagnetic pollution, motivated by the alert connected to potential risk for the health of persons and due to the increasing diffusion of Bats for mobile telecommunication as EMF sources. Many projects are being realized about the environmental and health impact of electromagnetic field and an important social role is played by specific actions to minimize the risk perception of the population. This study aims to find an innovative approach to these problems through the use of a system of continuous time monitoring of the electromagnetic fields and the individuation of appropriate environmental indicators. The proposed system monitors the electromagnetic fields continuously over time, and is already operating in many southern Italian cities. It works in a very efficient way as a mean for: a) Info to the citizens, thanks to diffusion of daily collected data on Internet Web; b) Control for local administrations and Authorities, due to capability of the system itself to alert when measured values exceed the limits reported by the Italian laws; c) Planning, for the implementation of : 1) New procedures agreed among local environmental control agency, local administrations and mobile Companies for network planning and management of alarm situations; 2) New local guidelines documents concerning the installation and operation of telecommunications apparatus. Moreover, starting from the general principles of the Strategic Environmental Evaluation (VAS), the environmental impacts of EMS field is studied. Based on the model DPSIR (Drivers, Pressure, State, Impacts, Responses), 12 environmental indicators have been chosen providing an immediate and understandable tool to obtain very important information on electromagnetic pollution generated by radio-telecommunication systems. The selected environmental indicators have been applied to 11 cities of the

  13. Comparative investigation of three dose rate meters for their viability in pulsed radiation fields

    International Nuclear Information System (INIS)

    Gotz, M; Karsch, L; Pawelke, J

    2015-01-01

    Pulsed radiation fields, characterized by microsecond pulse duration and correspondingly high pulse dose rates, are increasingly used in therapeutic, diagnostic and research applications. Yet, dose rate meters which are used to monitor radiation protection areas or to inspect radiation shielding are mostly designed, characterized and tested for continuous fields and show severe deficiencies in highly pulsed fields. Despite general awareness of the problem, knowledge of the specific limitations of individual instruments is very limited, complicating reliable measurements. We present here the results of testing three commercial dose rate meters, the RamION ionization chamber, the LB 1236-H proportional counter and the 6150AD-b scintillation counter, for their response in pulsed radiation fields of varied pulse dose and duration. Of these three the RamION proved reliable, operating in a pulsed radiation field within its specifications, while the other two instruments were only able to measure very limited pulse doses and pulse dose rates reliably. (paper)

  14. Comparison of Echo 7 field line length measurements to magnetospheric model predictions

    International Nuclear Information System (INIS)

    Nemzek, R.J.; Winckler, J.R.; Malcolm, P.R.

    1992-01-01

    The Echo 7 sounding rocket experiment injected electron beams on central tail field lines near L = 6.5. Numerous injections returned to the payload as conjugate echoes after mirroring in the southern hemisphere. The authors compare field line lengths calculated from measured conjugate echo bounce times and energies to predictions made by integrating electron trajectories through various magnetospheric models: the Olson-Pfitzer Quiet and Dynamic models and the Tsyganenko-Usmanov model. Although Kp at launch was 3-, quiet time magnetic models est fit the echo measurements. Geosynchronous satellite magnetometer measurements near the Echo 7 field lies during the flight were best modeled by the Olson-Pfitzer Dynamic Model and the Tsyganenko-Usmanov model for Kp = 3. The discrepancy between the models that best fit the Echo 7 data and those that fit the satellite data was most likely due to uncertainties in the small-scale configuration of the magnetospheric models. The field line length measured by the conjugate echoes showed some temporal variation in the magnetic field, also indicated by the satellite magnetometers. This demonstrates the utility an Echo-style experiment could have in substorm studies

  15. Comparison of measured and calculated doses for narrow MLC defined fields

    International Nuclear Information System (INIS)

    Lydon, J.; Rozenfeld, A.; Lerch, M.

    2002-01-01

    Full text: The introduction of Intensity Modulated Radiotherapy (IMRT) has led to the use of narrow fields in the delivery of radiation doses to patients. Such fields are not well characterized by calculation methods commonly used in radiotherapy treatment planning systems. The accuracy of the dose calculation algorithm must therefore be investigated prior to clinical use. This study looked at symmetrical and asymmetrical 0.1 to 3cm wide fields delivered with a Varian CL2100C 6MV photon beam. Measured doses were compared to doses calculated using Pinnacle, the ADAC radiotherapy treatment planning system. Two high resolution methods of measuring dose were used. A MOSFET detector in a water phantom and radiographic film in a solid water phantom with spatial resolutions of 10 and 89μm respectively. Dose calculations were performed using the collapsed cone convolution algorithm in Pinnacle with a 0.1cm dose calculation grid in the MLC direction. The effect of Pinnacle not taking into account the rounded leaf ends was simulated by offsetting the leaves by 0.1cm in the dose calculation. Agreement between measurement and calculation is good for fields of 1cm and wider. However, fields of less than 1cm width can show a significant difference between measurement and calculation

  16. Evolutionary Spectra Estimation of Field Measurement Typhoon Processes Using Wavelets

    Directory of Open Access Journals (Sweden)

    Guang-Dong Zhou

    2015-01-01

    Full Text Available This paper presents a wavelet-based method for estimating evolutionary power spectral density (EPSD of nonstationary stochastic oscillatory processes and its application to field measured typhoon processes. The EPSD, which is deduced in a closed form based on the definition of the EPSD and the algorithm of the continuous wavelet transform, can be formulated as a sum of squared moduli of the wavelet functions in time domain modulated by frequency-dependent coefficients that relate to the squared values of wavelet coefficients and two wavelet functions with different time shifts. A parametric study is conducted to examine the efficacy of the wavelet-based estimation method and the accuracy of different wavelets. The results indicate that all of the estimated EPSDs have acceptable accuracy in engineering application and the Morlet transform can provide desirable estimations in both time and frequency domains. Finally, the proposed method is adopted to investigate the time-frequency characteristics of the Typhoon Matsa measured in bridge site. The nonstationary energy distribution and stationary frequency component during the whole process are found. The work in this paper may promote an improved understanding of the nonstationary features of typhoon winds.

  17. Measures of maximum magnetic field in 3 GHz radio frequency superconducting cavities

    International Nuclear Information System (INIS)

    Thomas, Catherine

    2000-01-01

    Theoretical models have shown that the maximum magnetic field in radio frequency superconducting cavities is the superheating field H sh . For niobium, H sh is 25 - 30% higher than the thermodynamical H c field: H sh within (240 - 274) mT. However, the maximum magnetic field observed so far is in the range H c,max = 152 mT for the best 1.3 GHz Nb cavities. This field is lower than the critical field H c1 above which the superconductor breaks up into divided normal and superconducting zones (H c1 ≤H c ). Thermal instabilities are responsible for this low value. In order to reach H sh before thermal breakdown, high power short pulses are used. The cavity needs then to be strongly over-coupled. The dedicated test bed has been built from the collaboration between Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Genoa, and the Service d'Etudes et Realisation d'Accelerateurs (SERA) of Laboratoire de l'Accelerateur Lineaire (LAL). The maximum magnetic field, H rf,max , measurements on INFN cavities give lower results than the theoretical speculations and are in agreement with previous results. The superheating magnetic fields is linked to the magnetic penetration depth. This superconducting characteristic length can be used to determine the quality of niobium through the ratio between the resistivity measured at 300 K and 4.2 K in the normal conducting state (RRR). Results have been compared to previous ones and agree pretty well. They show that the RRR measured on cavities is superficial and lower than the RRR measured on samples which concerns the volume. (author)

  18. Mapping of radio frequency electromagnetic field exposure levels in outdoor environment and comparing with reference levels for general public health.

    Science.gov (United States)

    Cansiz, Mustafa; Abbasov, Teymuraz; Kurt, M Bahattin; Celik, A Recai

    2018-03-01

    In this study, radio frequency electromagnetic field exposure levels were measured on the main streets in the city center of Diyarbakır, Turkey. Measured electric field levels were plotted on satellite imagery of Diyarbakır and were compared with exposure guidelines published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Exposure measurements were performed in dense urban, urban and suburban areas each day for 7 consecutive days. The measurement system consisted of high precision and portable spectrum analyzer, three-axis electric field antenna, connection cable and a laptop which was used to record the measurement samples as a data logger. The highest exposure levels were detected for two places, which are called Diclekent and Batıkent. It was observed that the highest instantaneous electric field strength value for Batıkent was 7.18 V/m and for Diclekent was 5.81 V/m. It was statistically determined that the main contributor band to the total exposure levels was Universal Mobile Telecommunications System band. Finally, it was concluded that all measured exposure levels were lower than the reference levels recommended by ICNIRP for general public health.

  19. Laboratory compaction test methods and results compared with attainable field densities on subbase materials

    International Nuclear Information System (INIS)

    Hoffman, G.L.; Cumberledge, G.; Koehler, W.C.

    1976-01-01

    With the extensive use of aggregate material in highway construction (primarily subbase) in Pennsylvania, the Pennsylvania Department of Transportation (PennDOT) initiated an indepth analysis of results of laboratory and field compaction tests on aggregates. This study determined what field and laboratory tests are best correlated to produce the optimum compaction control technique for subbase materials. Results of approximately 500 sand cone and nuclear field densities in crushed limestone, gravel, and slag material at 17 construction sites throughout the state are summarized and compared. Laboratory density tests on material from each of these field test sites include vibratory, standard moisture-density, modified moisture density, the Marshall test, and the vibratory hammer test. Regression correlation analyses are performed between maximum attainable field and laboratory densities. Estimating linear equations for predicting relationships between field and laboratory maximum densities are developed and their significance is discussed

  20. Happiness economics: a new road to measuring and comparing happiness

    NARCIS (Netherlands)

    van Praag, B.M.S.; Ferrer-i-Carbonell, A.

    2011-01-01

    This paper deals with the concept of happiness in economics. Of late there has come into life a branch of happiness economics and it is this field that will be our concern. Actually, not only economists are interested in quantifications of happiness but also researchers in other disciplines. Notably

  1. Measurements of flux pumping activation of trapped field magnets

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Roy; Parks, Drew; Sawh, Ravi-Persad [Texas Center for Superconductivity, 202 Houston Science Center, University of Houston, Houston, TX 77204-5002 (United States); Davey, Kent [Physics Department, 617 Science and Research Building I, University of Houston, Houston, TX 77204-5005 (United States)

    2010-11-15

    Large grains of high temperature superconducting (HTS) material can be utilized as trapped field magnets (TFMs). Persistent currents are set up in the HTS when it is cooled in a magnetic field, or exposed to a magnetic field after cooling. TFMs have been improved over the past two decades by the efforts of a large number of worldwide research groups. However, applications using TFMs have lagged, in part due to the problem of high fields needed for activation. We describe herein experiments designed to observe the behaviour of TFM activation using repeated applications of low fields (called 'pumping'). Significant partial activation is obtained using a non-uniform pumping field (e.g., a small permanent magnet) which is higher in the centre of the HTS than at the periphery. Cooling in zero field followed by pumping with such a field results in trapping the full applied field, in comparison to half of the applied field being trapped by cooling in zero field followed by application of a uniform field. We find that for partial activation by cooling in a field and subsequent activation by pumping, the resulting fields are additive. We also conclude that for activation by fluxoid pumping, creep assists the process.

  2. A Comparative Study on the Positive Lightning Return Stroke Electric Fields in Different Meteorological Conditions

    Directory of Open Access Journals (Sweden)

    Chin-Leong Wooi

    2015-01-01

    Full Text Available Positive cloud-ground lightning is considerably more complex and less studied compared to the negative lightning. This paper aims to measure and characterize the significant parameters of positive return strokes electric field, namely, the zero-to-peak rise time, 10–90% rise time, slow front duration, fast transition rise time (10–90%, zero-crossing time, and opposite polarity overshoot relative to peak. To the best of the authors’ knowledge, this is the first time such detailed characteristics of positive lightning in Malaysia are thoroughly analyzed. A total of 41 positive lightning flashes containing 48 return strokes were analyzed. The average multiplicity is 1.2 strokes per flash. The majority of positive lightning was initiated from the primary positive charge rather than as a byproduct of in-cloud discharges. The cumulative probability distribution of rise time parameters, opposite polarity overshoot relative to peak, and slow front amplitude relative to peak are presented. A comparison between studies in four countries representing tropic, subtropic, and temperate regions was also carried out. Measured parameters in Florida, Sweden, and Japan are generally lower than those in Malaysia. Positive lightning occurrences in tropical regions should be further studied and analyzed to improve our current understanding on positive return strokes.

  3. Comparing the Measured and Latent Dark Triad: Are Three Measures Better than One?

    Directory of Open Access Journals (Sweden)

    Peter K. Jonason

    2011-10-01

    Full Text Available Could measurement level be a factor worth considering when studying the Dark Triad (i.e., narcissism, psychopathy, and Machiavellianism? In two studies (N  = 465, we compared the relative fit of two Dark Triad models: one that treats the three measures as separate-yet-related personality traits and another that treats the measures as tapping a single, latent construct. Mid-level personality traits, such as mate-retention strategies (Study 1 were best explained by a three-measure model, whereas the higher-order trait of sociosexuality (Study 2, were best explained by a single, latent-factor model. When considering mid-level measurement in personality, the three traits may provide independent effects for interpersonal relationships, whereas at the higher-order level, the three traits may function as a single entity relating to other higher-order traits. We suggest one should consider level of measurement between the predictor and criterion variables to better predict correlations among variables such as the Dark Triad. DOI: 10.2458/azu_jmmss.v2i1.12363

  4. Field measurement of basal forces generated by erosive debris flows

    Science.gov (United States)

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  5. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.

    Science.gov (United States)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-16

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  6. Measurements of Electric Field in a Nanosecond Pulse Discharge by 4-WAVE Mixing

    Science.gov (United States)

    Baratte, Edmond; Adamovich, Igor V.; Simeni Simeni, Marien; Frederickson, Kraig

    2017-06-01

    -pressure Raman cell, providing access only to a few N2 rotational levels. Because of this, the four-wave mixing signal in the flame is lower by more than an order of magnitude compared to the signal generated in room temperature air plasma. Preliminary experiments demonstrated four-wave mixing signal generated by the electric field in the flame, following ns pulse discharge breakdown. The electric field in the flame is estimated using four-wave mixing signal calibration vs. temperature in electrostatic electric field generated in heated air. Further measurements in the flame are underway.

  7. Comparative analyses of measured evapotranspiration for various land surfaces

    Science.gov (United States)

    Suat Irmak

    2016-01-01

    There is a significant lack of continuously measured ET data for multiple land surfaces in the same area to be able to make comparisons of water use rates of different agroecosystems. This research presentation will provide continuous evapotranspiration and other surface energy balance variables measured above multiple land use and management practices.

  8. Comparative analysis of colour change measurement devices in textile industry

    Directory of Open Access Journals (Sweden)

    Paulina Gilewicz

    2014-08-01

    Full Text Available In the paper there is presented a trial of application of new measurement principle of colour change with the use of DigiEye device. Comparison of DigiEye with commonly use in the textile industry spectrophotometer Macbeth 2020 was an aim of determination of relationship between parameters of both measurement systems. Samples for the colour change assessment on both measurement systems were first aged in the Xenotest 150. Ageing process was done according to the method of blues scale. Results were obtained by the colour measurement devices before and after the ageing test each releasing the diaphragms during exposing the examined samples on the light. Result of colour change were obtained in the colour system CIE L*a*b*. The measurements were done for PES fabrics destined on the outer layers of clothing. [b]Keywords[/b]: textiles, spectrophotometer, colorimeter [b][/b

  9. Calculation of acoustic field based on laser-measured vibration velocities on ultrasonic transducer surface

    Science.gov (United States)

    Hu, Liang; Zhao, Nannan; Gao, Zhijian; Mao, Kai; Chen, Wenyu; Fu, Xin

    2018-05-01

    Determination of the distribution of a generated acoustic field is valuable for studying ultrasonic transducers, including providing the guidance for transducer design and the basis for analyzing their performance, etc. A method calculating the acoustic field based on laser-measured vibration velocities on the ultrasonic transducer surface is proposed in this paper. Without knowing the inner structure of the transducer, the acoustic field outside it can be calculated by solving the governing partial differential equation (PDE) of the field based on the specified boundary conditions (BCs). In our study, the BC on the transducer surface, i.e. the distribution of the vibration velocity on the surface, is accurately determined by laser scanning measurement of discrete points and follows a data fitting computation. In addition, to ensure the calculation accuracy for the whole field even in an inhomogeneous medium, a finite element method is used to solve the governing PDE based on the mixed BCs, including the discretely measured velocity data and other specified BCs. The method is firstly validated on numerical piezoelectric transducer models. The acoustic pressure distributions generated by a transducer operating in an homogeneous and inhomogeneous medium, respectively, are both calculated by the proposed method and compared with the results from other existing methods. Then, the method is further experimentally validated with two actual ultrasonic transducers used for flow measurement in our lab. The amplitude change of the output voltage signal from the receiver transducer due to changing the relative position of the two transducers is calculated by the proposed method and compared with the experimental data. This method can also provide the basis for complex multi-physical coupling computations where the effect of the acoustic field should be taken into account.

  10. Magnetic field measurements and data acquisition of a model magnet for the B-factory

    International Nuclear Information System (INIS)

    Zhou Wenming; Endo, Kuninori

    1994-01-01

    In this paper we describe magnetic field measurements and the field data-acquisition system used to measure the model magnet for the B-factory booster. The results of the measurements indicate that the method adopted here is good for acquiring field data. This type of measurement is highly accurate and involves almost no temperature coefficient. The instrument is used not only for ac, but also dc field measurements. It is especially good for field measurements in the case of simultaneous ac and dc field excitation. (author)

  11. Results from laboratory and field testing of nitrate measuring spectrophotometers

    Science.gov (United States)

    Snazelle, Teri T.

    2015-01-01

    Five ultraviolet (UV) spectrophotometer nitrate analyzers were evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) during a two-phase evaluation. In Phase I, the TriOS ProPs (10-millimeter (mm) path length), Hach NITRATAX plus sc (5-mm path length), Satlantic Submersible UV Nitrate Analyzer (SUNA, 10-mm path length), and S::CAN Spectro::lyser (5-mm path length) were evaluated in the HIF Water-Quality Servicing Laboratory to determine the validity of the manufacturer's technical specifications for accuracy, limit of linearity (LOL), drift, and range of operating temperature. Accuracy specifications were met in the TriOS, Hach, and SUNA. The stock calibration of the S::CAN required two offset adjustments before the analyzer met the manufacturer's accuracy specification. Instrument drift was observed only in the S::CAN and was the result of leaching from the optical path insert seals. All tested models, except for the Hach, met their specified LOL in the laboratory testing. The Hach's range was found to be approximately 18 milligrams nitrogen per liter (mg-N/L) and not the manufacturer-specified 25 mg-N/L. Measurements by all of the tested analyzers showed signs of hysteresis in the operating temperature tests. Only the SUNA measurements demonstrated excessive noise and instability in temperatures above 20 degrees Celsius (°C). The SUNA analyzer was returned to the manufacturer at the completion of the Phase II field deployment evaluation for repair and recalibration, and the performance of the sensor improved significantly.

  12. Noncontact measurement of electrostatic fields: Verification of modeled potentials within ion mobility spectrometer drift tube designs

    International Nuclear Information System (INIS)

    Scott, Jill R.; Tremblay, Paul L.

    2007-01-01

    The heart of an ion mobility spectrometer is the drift region where ion separation occurs. While the electrostatic potentials within a drift tube design can be modeled, no method for independently validating the electrostatic field has previously been reported. Two basic drift tube designs were modeled using SIMION 7.0 to reveal the expected electrostatic fields: (1) A traditional alternating set of electrodes and insulators and (2) a truly linear drift tube. One version of the alternating electrode/insulator drift tube and two versions of linear drift tubes were then fabricated. The stacked alternating electrodes/insulators were connected through a resistor network to generate the electrostatic gradient in the drift tube. The two linear drift tube designs consisted of two types of resistive drift tubes with one tube consisting of a resistive coating within an insulating tube and the other tube composed of resistive ferrites. The electrostatic fields within each type of drift tube were then evaluated by a noncontact method using a Kelvin-Zisman type electrostatic voltmeter and probe (results for alternative measurement methods provided in supplementary material). The experimental results were then compared with the electrostatic fields predicted by SIMION. Both the modeling and experimental measurements reveal that the electrostatic fields within a stacked ion mobility spectrometer drift tube are only pseudo-linear, while the electrostatic fields within a resistive drift tube approach perfect linearity

  13. Conformal fields in prostate radiotherapy: A comparison between measurement, calculation and simulation

    Directory of Open Access Journals (Sweden)

    Seied R Mahdavi

    2012-01-01

    Full Text Available Aims: The objective of this study is to evaluate the accuracy of a treatment planning system (TPS for calculating the dose distribution parameters in conformal fields (CF. Dosimetric parameters of CF′s were compared between measurement, Monte Carlo simulation (MCNP4C and TPS calculation. Materials and Methods: Field analyzer water phantom was used for obtaining percentage depth dose (PDD curves and beam profiles (BP of different conformal fields. MCNP4C was used to model conformal fields dose specification factors and head of linear accelerator varian model 2100C/D. Results: Results showed that the distance to agreement (DTA and dose difference (DD of our findings were well within the acceptance criteria of 3 mm and 3%, respectively. Conclusions: According to this study it can be revealed that TPS using equivalent tissue air ratio calculation method is still convenient for dose prediction in non small conformal fields normally used in prostate radiotherapy. It was also showed that, since there is a close correlation with Monte Carlo simulation, measurements and TPS, Monte Carlo can be further confirmed for implementation and calculation dose distribution in non standard and complex conformal irradiation field for treatment planning systems.

  14. Measurements of the Lunar Gravity Field using a Relay Subsatellite

    Science.gov (United States)

    Namiki, Noriyuki; Hanada, H.; Kawano, N.; Heki, K.; Iwata, T.; Ogawa, M.; Takano, T.

    1998-01-01

    Estimating spherical harmonic coefficients of the lunar gravity field has been a focus in selenodesy since the late 1960s when Doppler tracking data from lunar orbiters were first analyzed. Early analyses were limited by the low degree and order of the spherical harmonic solutions, mostly due to the slow speed and low memory of the then-available computers. However, rapid development of the computational ability has increased the resolution of the lunar gravity models significantly. Doppler tracking data from lunar orbiters 1-5 and Apollo subsatellites up to degree and order 60 (Lun60d) have been analyzed. Further, the tracking data from the Clementine spacecraft launched in 1994 has been incorporated, and a model complete to degree and order 70 (GLGM-2) has been developed. These high-resolution gravity models have been used for studies of internal structure and tectonics of the Moon. Interestingly, Lun60d and GLGM-2 show significant differences in the spherical harmonic coefficients for degree greater than 20. Because the semimajor axis of Clementine's orbit is nearly twice as large as the radius of the Moon, the contribution of the new tracking data is prevailed in the low-degree field. Methodologically, the differences in the high-degree field arise from the different weighting of the tracking data and gravity model, but, in principle, these are caused by a lack of tracking data over the farside. While the current Lunar Prospector mission is expected to improve the spatial resolution over the mid- to high-latitude regions of the nearside significantly, the absence of Doppler tracking data over the farside remains unresolved. To complete the coverage of tracking over the farside, we are developing a satellite-to-satellite (four-way) Doppler tracking experiment in SELENE (the SELenological and ENgineering Explorer) project of Japan. Outline of the Mission: The SELENE is a joint project by the National Space Development Agency of Japan (NASDA) and the Institute of

  15. Comparative High Field Magneto-transport Of Rare Earth Oxypnictides With Maximum Transition Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Balakirev, Fedor F [Los Alamos National Laboratory; Migliori, A [MPA-NHMFL; Riggs, S [NHMFL-FSU; Hunte, F [NHMFL-FSU; Gurevich, A [NHMFL-FSU; Larbalestier, D [NHMFL-FSU; Boebinger, G [NHMFL-FSU; Jaroszynski, J [NHMFL-FSU; Ren, Z [CHINA; Lu, W [CHINA; Yang, J [CHINA; Shen, X [CHINA; Dong, X [CHINA; Zhao, Z [CHINA; Jin, R [ORNL; Sefat, A [ORNL; Mcguire, M [ORNL; Sales, B [ORNL; Christen, D [ORNL; Mandrus, D [ORNL

    2008-01-01

    We compare magnetotransport of the three iron-arsenide-based compounds ReFeAsO (Re=La, Sm, Nd) in very high DC and pulsed magnetic fields up to 45 and 54 T, respectively. Each sample studied exhibits a superconducting transition temperature near the maximum reported to date for that particular compound. While high magnetic fields do not suppress the superconducting state appreciably, the resistivity, Hall coefficient, and critical magnetic fields, taken together, suggest that the phenomenology and superconducting parameters of the oxypnictide superconductors bridges the gap between MgB{sub 2} and YBCO.

  16. Field experiment provides ground truth for surface nuclear magnetic resonance measurement

    Science.gov (United States)

    Knight, R.; Grunewald, E.; Irons, T.; Dlubac, K.; Song, Y.; Bachman, H.N.; Grau, B.; Walsh, D.; Abraham, J.D.; Cannia, J.

    2012-01-01

    The need for sustainable management of fresh water resources is one of the great challenges of the 21st century. Since most of the planet's liquid fresh water exists as groundwater, it is essential to develop non-invasive geophysical techniques to characterize groundwater aquifers. A field experiment was conducted in the High Plains Aquifer, central United States, to explore the mechanisms governing the non-invasive Surface NMR (SNMR) technology. We acquired both SNMR data and logging NMR data at a field site, along with lithology information from drill cuttings. This allowed us to directly compare the NMR relaxation parameter measured during logging,T2, to the relaxation parameter T2* measured using the SNMR method. The latter can be affected by inhomogeneity in the magnetic field, thus obscuring the link between the NMR relaxation parameter and the hydraulic conductivity of the geologic material. When the logging T2data were transformed to pseudo-T2* data, by accounting for inhomogeneity in the magnetic field and instrument dead time, we found good agreement with T2* obtained from the SNMR measurement. These results, combined with the additional information about lithology at the site, allowed us to delineate the physical mechanisms governing the SNMR measurement. Such understanding is a critical step in developing SNMR as a reliable geophysical method for the assessment of groundwater resources.

  17. The Evolving Role of Field and Laboratory Seismic Measurements in Geotechnical Engineering

    Science.gov (United States)

    Stokoe, K. H.

    2017-12-01

    stiffness of rock near the ground surface is generally overestimated. Finally, intact specimens of the geological materials recovered from many sites were tested dynamically in the laboratory. Values of VS measured in the field and laboratory are compared, and biases in VS at soil versus rock sites are shown to exhibit opposite trends.

  18. Comparing Alternative Instruments to Measure Service Quality in Higher Education

    Science.gov (United States)

    Brochado, Ana

    2009-01-01

    Purpose: The purpose of this paper is to examine the performance of five alternative measures of service quality in the high education sector--service quality (SERVQUAL), importance-weighted SERVQUAL, service performance (SERVPERF), importance-weighted SERVPERF, and higher education performance (HEdPERF). Design/methodology/approach: Data were…

  19. SQUID Based Cryogenic Current Comparator for Measurements of the Dark Current of Superconducting Cavities

    CERN Document Server

    Vodel, W; Neubert, R; Nietzsche, S

    2005-01-01

    This contribution presents a LTS-SQUID based Cryogenic Current Comparator (CCC) for detecting dark currents, generated e.g. by superconducting cavities for the upcoming X-FEL project at DESY. To achieve the maximum possible energy the gradients of the superconducting RF cavities should be pushed close to the physical limit of 50 MV/m. The measurement of the undesired field emission of electrons (the so-called dark current) in correlation with the gradient will give a proper value to compare and classify the cavities. The main component of the CCC is a high performance LTS-DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the extracted dark current. For this reason the input coil of the SQUID is connected across a special designed toroidal niobium pick-up coil (inner diameter: about 100 mm) for the passing electron beam. A noise limited current resolution of nearly 2 pA/√(Hz) with a measurement bandwidth of up to 70 kHz was achieved without the pick-up coil. Now, ...

  20. Measuring Transnationalism: Comparing TV Formats using Digital Tools

    NARCIS (Netherlands)

    Larkey, Edward; Digeon, Landry; Er, Ibrahim

    2016-01-01

    abstractThis article elucidates a typology for cross-culturally comparing different versions of television formats. Digital tools are used to derive quantitative data based on temporal parameters of episode or genre of the narrative structure, content, and sequencing. Type one, which we also call

  1. Mechanoreceptor afferent activity compared with receptor field dimensions and pressure changes in feline urinary bladder.

    Science.gov (United States)

    Downie, J W; Armour, J A

    1992-11-01

    The relationship between vesical mechanoreceptor field dimensions and afferent nerve activity recorded in pelvic plexus nerve filaments was examined in chloralose-anesthetized cats. Orthogonal receptor field dimensions were monitored with piezoelectric ultrasonic crystals. Reflexly generated bladder contractile activity made measurements difficult, therefore data were collected from cats subjected to actual sacral rhizotomy. Afferent activity was episodic and was initiated at different pressure and receptor field dimension thresholds. Maximum afferent activity did not correlate with maximum volume or pressure. Furthermore, activity was not linearly related to intravesical pressure, receptor field dimensions, or calculated wall tension. Pressure-length hysteresis of the receptor fields occurred. The responses of identified afferent units and their associated receptor field dimensions to brief contractions elicited by the ganglion stimulant 1,1-dimethyl-4-phenylpiperazinium iodide (2.5-20 micrograms i.a.), studied under constant volume or constant pressure conditions, are compatible with bladder mechanoreceptors behaving as tension receptors. Because activity generated by bladder mechanoreceptors did not correlate in a simple fashion with intravesical pressure or receptor field dimensions, it is concluded that such receptors are influenced by the viscoelastic properties of the bladder wall. Furthermore, as a result of the heterogeneity of the bladder wall, receptor field tension appears to offer a more precise relationship with the activity of bladder wall mechanoreceptors than does intravesical pressure.

  2. Velocity flow field and water level measurements in shoaling and breaking water waves

    CSIR Research Space (South Africa)

    Mukaro, R

    2010-01-01

    Full Text Available levels were measured using capacitive waves gauges, while the instantaneous velocity flow fields were measured using video techniques together with digital correlation techniques. The instantaneous velocity flow fields were further analyzed to yield...

  3. Subdiffraction-limited radius measurements of microcylinders using conventional bright-field optical microscopy.

    Science.gov (United States)

    Little, Douglas J; Kane, Deborah M

    2014-09-01

    A technique for measuring the radius of dielectric microcylinders with subdiffraction-limited precision is presented. Diffraction fringes arising from the dielectric cylinder are measured using conventional bright-field optical microscopy and compared with theory to deduce the radii. The technique has been demonstrated measuring the radii of the major-ampullate silks from Plebs eburnus spiders. Precision better than 50 nm is demonstrated, using a standard optical microscope with a numerical aperture of 0.6 for the objective. Accuracy was verified using scanning electron microscopy. This technique will facilitate rapid, precise measurement of dielectric microcylinder radii, enabling a new optical-microscopy-based measurement approach for these challenging micro-optics.

  4. Comparing the lived experience to objective measures of Accessibility

    OpenAIRE

    Angela Curl; John Nelson; Jillian Anable

    2011-01-01

    This paper presents work undertaken to date as part of PhD research into the process of Accessibility Planning in the UK and how existing objective measures of accessibility relate to individual perceptions or the "lived experience" of accessibility. Since 1997, Accessibility has been framed in the social exclusion context within UK transport planning and policy, focusing on the ability of people to participate fully in society, which is seen as being limited by poor accessibility. This appro...

  5. Geomechanical Model Calibration Using Field Measurements for a Petroleum Reserve

    Science.gov (United States)

    Park, Byoung Yoon; Sobolik, Steven R.; Herrick, Courtney G.

    2018-03-01

    A finite element numerical analysis model has been constructed that consists of a mesh that effectively captures the geometries of Bayou Choctaw (BC) Strategic Petroleum Reserve (SPR) site and multimechanism deformation (M-D) salt constitutive model using the daily data of actual wellhead pressure and oil-brine interface location. The salt creep rate is not uniform in the salt dome, and the creep test data for BC salt are limited. Therefore, the model calibration is necessary to simulate the geomechanical behavior of the salt dome. The cavern volumetric closures of SPR caverns calculated from CAVEMAN are used as the field baseline measurement. The structure factor, A 2, and transient strain limit factor, K 0, in the M-D constitutive model are used for the calibration. The value of A 2, obtained experimentally from BC salt, and the value of K 0, obtained from Waste Isolation Pilot Plant salt, are used for the baseline values. To adjust the magnitude of A 2 and K 0, multiplication factors A 2 F and K 0 F are defined, respectively. The A 2 F and K 0 F values of the salt dome and salt drawdown skins surrounding each SPR cavern have been determined through a number of back analyses. The cavern volumetric closures calculated from this model correspond to the predictions from CAVEMAN for six SPR caverns. Therefore, this model is able to predict behaviors of the salt dome, caverns, caprock, and interbed layers. The geotechnical concerns associated with the BC site from this analysis will be explained in a follow-up paper.

  6. Internal magnetic field measurement in tokamak plasmas using a ...

    Indian Academy of Sciences (India)

    Abstract. In a tokamak plasma, the poloidal magnetic field profile closely depends on the current density profile. ... Transitions between the energy levels that are split by the magnetic field give rise to several components of a spectral ... train of charged pulses having an amplitude proportional to the light intensity sensed by.

  7. Three-dimensional instantaneous velocity field measurement using ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... ... Singh P K Panigrahi. Contributed Papers Volume 82 Issue 2 February 2014 pp 439-444 ... Abstract. In the present study, a digital holography microscope has been developed to study instantaneous 3D velocity field in a square channel of 1000 × 1000 2 cross-section. The flow field is seeded with ...

  8. Measuring the effect of field viability on wheat yield

    DEFF Research Database (Denmark)

    Olsen, Jakob Vesterlund; Schou, Jesper Sølver

    showing a significant effect on yields. Further research may involve estimating the effect of field characteristics on the aggregated economic farm performance. The field viability index has multiple applications in e.g. benchmarking, leasing or buying arrangements, and for identifying potential land...

  9. Exposure to electromagnetic fields from smart utility meters in GB; part I) laboratory measurements.

    Science.gov (United States)

    Peyman, Azadeh; Addison, Darren; Mee, Terry; Goiceanu, Cristian; Maslanyj, Myron; Mann, Simon

    2017-05-01

    Laboratory measurements of electric fields have been carried out around examples of smart meter devices used in Great Britain. The aim was to quantify exposure of people to radiofrequency signals emitted from smart meter devices operating at 2.4 GHz, and then to compare this with international (ICNIRP) health-related guidelines and with exposures from other telecommunication sources such as mobile phones and Wi-Fi devices. The angular distribution of the electric fields from a sample of 39 smart meter devices was measured in a controlled laboratory environment. The angular direction where the power density was greatest was identified and the equivalent isotropically radiated power was determined in the same direction. Finally, measurements were carried out as a function of distance at the angles where maximum field strengths were recorded around each device. The maximum equivalent power density measured during transmission around smart meter devices at 0.5 m and beyond was 15 mWm -2 , with an estimation of maximum duty factor of only 1%. One outlier device had a maximum power density of 91 mWm -2 . All power density measurements reported in this study were well below the 10 W m -2 ICNIRP reference level for the general public. Bioelectromagnetics. 2017;38:280-294. © 2017 Crown copyright. BIOELECTROMAGNETICS © 2017 Wiley Periodicals, Inc. © 2017 Crown copyright. BIOELECTROMAGNETICS © 2017 Wiley Periodicals, Inc.

  10. Magnetic field measurements based on Terfenol coated photonic crystal fibers.

    Science.gov (United States)

    Quintero, Sully M M; Martelli, Cicero; Braga, Arthur M B; Valente, Luiz C G; Kato, Carla C

    2011-01-01

    A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT) over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field.

  11. A rigorous assessment of tree height measurements obtained using airborne LIDAR and conventional field methods.

    Science.gov (United States)

    Hans-Erik Andersen; Stephen E. Reutebuch; Robert J. McGaughey

    2006-01-01

    Tree height is an important variable in forest inventory programs but is typically time-consuming and costly to measure in the field using conventional techniques. Airborne light detection and ranging (LIDAR) provides individual tree height measurements that are highly correlated with field-derived measurements, but the imprecision of conventional field techniques does...

  12. Human osteoarthritic chondrocytes exposed to extremely low-frequency electromagnetic fields (ELF) and therapeutic application of musically modulated electromagnetic fields (TAMMEF) systems: a comparative study.

    Science.gov (United States)

    Corallo, Claudio; Volpi, Nila; Franci, Daniela; Vannoni, Daniela; Leoncini, Roberto; Landi, Giacomo; Guarna, Massimo; Montella, Antonio; Albanese, Antonietta; Battisti, Emilio; Fioravanti, Antonella; Nuti, Ranuccio; Giordano, Nicola

    2013-06-01

    Osteoarthritis (OA) is the most common joint disease, characterized by matrix degradation and changes in chondrocyte morphology and metabolism. Literature reported that electromagnetic fields (EMFs) can produce benefits in OA patients, even if EMFs mechanism of action is debated. Human osteoarthritic chondrocytes isolated from femoral heads were cultured in vitro in bidimensional (2-D) flasks and in three-dimensional (3-D) alginate beads to mimic closely cartilage environment in vivo. Cells were exposed 30 min/day for 2 weeks to extremely low-frequency electromagnetic field (ELF) with fixed frequency (100 Hz) and to therapeutic application of musically modulated electromagnetic field (TAMMEF) with variable frequencies, intensities, and waveforms. Cell viability was measured at days 7 and 14, while healthy-cell density, heavily vacuolized (hv) cell density, and cluster density were measured by light microscopy only for 3-D cultures after treatments. Cell morphology was observed for 2-D and 3-D cultures by transmission electron microscopy (TEM). Chondrocyte exposure to TAMMEF enhances cell viability at days 7 and 14 compared to ELF. Light microscopy analysis showed that TAMMEF enhances healthy-cell density, reduces hv-cell density and clustering, compared to ELF. Furthermore, TEM analysis showed different morphology for 2-D (fibroblast-like) and 3-D (rounded shape) cultures, confirming light microscopy results. In conclusion, EMFs are effective and safe for OA chondrocytes. TAMMEF can positively interfere with OA chondrocytes representing an innovative non-pharmacological approach to treat OA.

  13. Effects of reconstructed magnetic field from sparse noisy boundary measurements on localization of active neural source.

    Science.gov (United States)

    Shen, Hui-min; Lee, Kok-Meng; Hu, Liang; Foong, Shaohui; Fu, Xin

    2016-01-01

    Localization of active neural source (ANS) from measurements on head surface is vital in magnetoencephalography. As neuron-generated magnetic fields are extremely weak, significant uncertainties caused by stochastic measurement interference complicate its localization. This paper presents a novel computational method based on reconstructed magnetic field from sparse noisy measurements for enhanced ANS localization by suppressing effects of unrelated noise. In this approach, the magnetic flux density (MFD) in the nearby current-free space outside the head is reconstructed from measurements through formulating the infinite series solution of the Laplace's equation, where boundary condition (BC) integrals over the entire measurements provide "smooth" reconstructed MFD with the decrease in unrelated noise. Using a gradient-based method, reconstructed MFDs with good fidelity are selected for enhanced ANS localization. The reconstruction model, spatial interpolation of BC, parametric equivalent current dipole-based inverse estimation algorithm using reconstruction, and gradient-based selection are detailed and validated. The influences of various source depths and measurement signal-to-noise ratio levels on the estimated ANS location are analyzed numerically and compared with a traditional method (where measurements are directly used), and it was demonstrated that gradient-selected high-fidelity reconstructed data can effectively improve the accuracy of ANS localization.

  14. Seismic assessment of guyed towers: A case study combining field measurements and pushover analysis

    Directory of Open Access Journals (Sweden)

    A. Ismail

    2016-04-01

    Full Text Available Telecommunication structures are essential components of communication and post-disaster networks that must remain operational after a designlevel of earthquake. This study provides dynamic field measurements of 138 m guyed tower located at Qussia city, Upper Egypt. In situ measurements of ambient tower vibrations are used to determine the dominant natural frequencies of the tower. The measurements were made using a LMS SCADAS system and four wireless vibration sensors for recording the ambient vibrations of the mast. The tension in the guy wires was measured by mechanical equipment. The dynamic properties of the guyed mast (natural frequencies and mode shapes were extracted from these measurements. Results of the eigenvalue analysis of numerical models of the tower were compared with the natural frequencies and mode shapes extracted from the in situ measurements. The field measurements were used to update the finite element model. The nonlinear static analysis based on the updated finite element model was carried out. Seismic assessment and comparison between the original and updated models taking into account the deterioration in elements are presented.

  15. Molecular modeling studies of structural properties of polyvinyl alcohol: a comparative study using INTERFACE force field.

    Science.gov (United States)

    Radosinski, Lukasz; Labus, Karolina

    2017-10-05

    Polyvinyl alcohol (PVA) is a material with a variety of applications in separation, biotechnology, and biomedicine. Using combined Monte Carlo and molecular dynamics techniques, we present an extensive comparative study of second- and third-generation force fields Universal, COMPASS, COMPASS II, PCFF, and the newly developed INTERFACE, as applied to this system. In particular, we show that an INTERFACE force field provides a possibility of composing a reliable atomistic model to reproduce density change of PVA matrix in a narrow temperature range (298-348 K) and calculate a thermal expansion coefficient with reasonable accuracy. Thus, the INTERFACE force field may be used to predict mechanical properties of the PVA system, being a scaffold for hydrogels, with much greater accuracy than latter approaches. Graphical abstract Molecular Dynamics and Monte Carlo studies indicate that it is possible to predict properties of the PVA in narrow temperature range by using the INTERFACE force field.

  16. [Comparative study on the historical evolution of field surgery between China and Russia].

    Science.gov (United States)

    Li, Yong; Luo, Chang-kun; Xiao, Nan

    2010-03-01

    Russian field surgery with its long history and distinctive characteristics has accumulated great experience in the long-time practice of warfare. Chinese field surgery was established and developed on the basis of studying from the Russian model, which opened up new areas of traffic medicine, molecular traumatology and assessment of biological effects on weapon destruction and carried out in-depth research on wound ballistics, blast injury, burns and combined injury etc. through decades of construction with continuous development and innovation, and a series of major achievements have been made in these fields. By making comparative study on the historical evolution, structure system, characteristics of campaigns and development of society between Chinese and Russian field surgery, it can be found that there are great gaps between them and we should strengthen the research for more rapid development.

  17. Field measurements of temperature profile for floatovoltaic dryer in the tropics

    Science.gov (United States)

    Osman, F. A.; Ya'acob, M. E.; Iskandar, A. Noor

    2017-09-01

    Most of the equator region in a tropical climate zone experiences hot and humid weather but sometimes heavy rain and thunderstorms which occur stochastically in monsoon season. Sunlight which is the energy source can be harvested approximately 8 hours (on average basis) daily throughout the year which leads to the promotion of Solar PV technologies. This works projects the field performance for a new Floatovoltaic Dryer prototype with flexible PV roofing structures covering the top of the dryer system. The field measurements are collected on the lake of Engineering Faculty, UPM supported with 4-parameter weather station. Temperature profile with RH measurements inside the Floatovoltaic Dryer compartments as compared to direct-sun drying mechanism are the main contributions of this work and it projects more than 12 W of convection heat energy could be harvested by using the clean system. The field measurements imply various points of thermocouple and humidity sensor throughout the experiment. Temperature and humidity will be the main elements recorded to analyze the differences under monocrystalline PV panel as compared to natural drying.

  18. School Context, the Field Researcher Role, and Achieving Data Comparability in Multisite Research.

    Science.gov (United States)

    Corbett, H. Dickson

    1984-01-01

    School context constrains and supports field researchers' data collection activities, just as it can influence the educational change processes being studied. For outsiders, the accessibility of a school is affected by a number of factors. These influence findings and have implications for achieving data comparability across several sites.…

  19. The Kinematics of Core and Cusp Galaxies: Comparing HST Imaging and Integral-Field Observations

    NARCIS (Netherlands)

    Falcón-Barroso, J.; Bacon, R.; Cappellari, M.; Davies, R. L.; de Zeeuw, P. T.; Emsellem, E.; Krajnović, D.; Kuntschner, H.; McDermid, R. M.; Peletier, R. F.; Sarzi, M.; van de Ven, G.

    2010-01-01

    In this proceeding we look at the relationship between the photometric nuclear properties of early-type galaxies from Hubble Space Telescope imaging and their overall kinematics as observed with the SAURON integral-field spectrograph. We compare the inner slope of their photometric profiles and the

  20. Accessibility of shared space for visually impaired persons : A comparative field study

    NARCIS (Netherlands)

    Havik, Else; Steyvers, Franciscus J.J.M.; Kooijman, Aart; Melis, Bart

    Shared Space is a concept that comprises the design and planning process of a public space. There are concerns about the accessibility of Shared Spaces for people who are visually impaired. In a comparative field study, the wayfinding performance of 25 visually impaired persons (VIPs) was observed

  1. PIV Measurements of Gas Flow Fields from Burning End

    Science.gov (United States)

    Huang, Yifei; Wu, Junzhang; Zeng, Jingsong; Tang, Darong; Du, Liang

    2017-12-01

    To study the influence of cigarette gas on the environment, it is necessary to know the cigarette gas flow fields from burning end. By using PIV technique, in order to reveal velocity characteristics of gas flow fields, the velocities of cigarette gas flow fields was analyzed with different stepping motor frequencies corresponding to suction pressures, and the trend of velocity has been given with image fitting. The results shows that the velocities of the burning end increased with suction pressures; Between velocities of the burning end and suction pressures, the relations present polynomial rule; The cigarette gas diffusion in combustion process is faster than in the smoldering process.

  2. Comparative Measurements of Indoor Radon in Homes and Floating Houses

    International Nuclear Information System (INIS)

    Changmuang, Wirote; Tantawiroon, Malulee; Polphong, Pornsri

    2003-06-01

    A survey of the radon ( 222 Rn) concentrations in 318 homes and 152 floating houses (1410 samples) in Phitsanulok province, using a passive 222 Rn charcoal canister and measurement by gamma spectrometry. Floating houses showed significant lower mean levels (8.22 Bqm -3 ) than homes (21.56 Bqm -3 ) (p 222 Rn concentrations indicated that concrete homes had a higher level than wooden homes and homes lying on ground had a higher level than those built at 1 meter or more above ground. The estimated annual mean effective dose equivalent 0.35 mSvy -1 and the annual lung dose equivalent of 5.94 mSvy -1 were only one-third of the world mean estimates

  3. International Workshop on Comparing Ice Nucleation Measuring Systems 2014

    Energy Technology Data Exchange (ETDEWEB)

    Cziczo, Daniel [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-04-30

    The relationship of ambient aerosol particles to the formation of ice-containing clouds is one of the largest uncertainties in understanding the Earth’s climate. The uncertainty is due to several poorly understood processes and measurements including, but not limited to: (1) the microphysics of how particles nucleate ice, (2) the number of ice forming particles as a function of atmospheric properties such as temperature and relative humidity, (3) the atmospheric distribution of ice forming particles and (4) the role of anthropogenic activities in producing or changing the behavior of ice forming particles. The ways in which ice forming particles can impact climate is also multi-faceted. More ice forming particles can lead to clouds with more ice crystals and different optical properties than clouds with less ice forming particles. More effective ice forming particles can lead to ice at higher temperature and/or lower saturation, resulting in clouds at lower altitude or latitude which also changes the Earth’s radiative balance. Ice nucleation also initiates most of the Earth’s precipitation, even in the mid- and low-latitudes, since cloud-top temperatures are often below freezing. The limited measurements and lack of understanding directly translates to restrictions in our ability to model atmospheric ice formation and project changes into the future. The importance of ice nucleation research is further exemplified by Figure 1 which shows the publications per decade and citations per year on the topic of ice nucleation [DeMott et al., 2011]. After a lull at the end of the last century, there has been a dramatic increase in both publications and citations related to ice nucleation; this directly corresponds to the importance of ice nucleation on the Earth’s climate and the uncertainty in this area noted by the Solomon [2007].

  4. Measuring Transnationalism: Comparing TV Formats using Digital Tools

    Directory of Open Access Journals (Sweden)

    Edward Larkey

    2016-08-01

    Full Text Available This article elucidates a typology for cross-culturally comparing different versions of television formats. Digital tools are used to derive quantitative data based on temporal parameters of episode or genre of the narrative structure, content, and sequencing. Type one, which we also call “transposed narratives,” retains the narrative structure and sequencing while extending and expanding the narrative structure to readjust to longer broadcast times. Type two, which we call ‘transmutated narratives,’ re-distributes and re-organizes the narrative structure and sequencing to adjust to both extended broadcast time and other culturally relevant proximity issues. Type three adaptations display genre structure similarities while narrative structure, sequencing and content diverge. These we call ‘derived narratives.’

  5. Measurement of the fluctuating temperature field in a heated swirling jet with BOS tomography

    Science.gov (United States)

    Lang, Henning M.; Oberleithner, Kilian; Paschereit, C. Oliver; Sieber, Moritz

    2017-07-01

    This work investigates the potential of background-oriented schlieren tomography (3D-BOS) for the temperature field reconstruction in a non-isothermal swirling jet undergoing vortex breakdown. The evaluation includes a quantitative comparison of the mean and phase-averaged temperature field with thermocouple and fast-response resistance thermometer as well as a qualitative comparison between the temperature field and the flow field obtained from particle image velocimetry (PIV). Compared to other temperature-measuring techniques, 3D-BOS enables non-invasive capturing of the entire three-dimensional temperature field. In contrast to previous 3D-BOS applications, the present investigation makes use of the special character of the flow, which provides a global instability that leads to a rotational symmetry of the jet. Additionally, the rotational motion of the jet is used to obtain a tomographic reconstruction from a single camera. The quality of 3D-BOS results with respect to the physical setup as well as the numerical procedure is analyzed and discussed. Furthermore, a new approach for the treatment of thin occluding objects in the field of view is presented.

  6. DOM. A dewar for optical measurements in magnetic field

    International Nuclear Information System (INIS)

    Baldacchini, G.

    1975-01-01

    A cryostat for low helium temperature has been designed and realized with the aim to perform optical investigations at high magnetic fields. The superconductor magnet is also described and the performance of the whole system presented

  7. Electric field measurements in a near atmospheric pressure nanosecond pulse discharge with picosecond electric field induced second harmonic generation

    Science.gov (United States)

    Goldberg, Benjamin M.; Chng, Tat Loon; Dogariu, Arthur; Miles, Richard B.

    2018-02-01

    We present an optical electric field measurement method for use in high pressure plasma discharges. The method is based upon the field induced second harmonic generation technique and can be used for localized electric field measurements with sub-nanosecond resolution in any gaseous species. When an external electric field is present, a dipole is induced in the typically centrosymmetric medium, allowing for second harmonic generation with signal intensities which scale by the square of the electric field. Calibrations have been carried out in 100 Torr room air, and a minimum sensitivity of 450 V/cm is demonstrated. Measurements were performed with nanosecond or faster temporal resolution in a 100 Torr room air environment both with and without a plasma present. It was shown that with no plasma present, the field follows the applied voltage to gap ratio, as measured using the back current shunt method. When the electric field is strong enough to exceed the breakdown threshold, the measured field was shown to exceed the anticipated voltage to gap ratio which is taken as an indication of the ionization wave front as it sweeps through the plasma volume.

  8. Field testing of UF6 cylinder gamma-ray measuring equipment for international safeguards

    International Nuclear Information System (INIS)

    Fields, L.W.; Ricci, E.

    1982-01-01

    Two portable intrinsiIAEA (high-purity) Germanium (HP Ge) detectors, a Davidson portable multichannel analyzer (MCA), and accessory equipment were field-tested on product and feed UF 6 cylinders at the Oak Ridge Gaseous Diffusion Plant. These latter two instruments were not available to UCC-ND at the time of the field tests were designed to assess the usefulness of the above equipment for safeguards; specifically, each cylinder's average 235 U assay was determined by gamma spectrometry and the results were compared statistically with assays obtained previously by mass spectrometry for the same cylinders. This comparison was pivotal to show that the HP Ge detectors can produce results acceptable statistically, and that they can be used with confidence in field measurements. The portable HP Ge detectors are rugged for field use and are most useful in determining 235 U enrichment in UF 6 cylinders during international safeguards inspections at enrichment plants. Aside from their high resolution and light weight, they can be stored and transported at ambient temperatures. The latter results in a reduction of storage and handling costs for the IAEA inspector, in comparison with the use of high resolution lithium-drifted Ge detectors. The MCA and the accessory equipment also performed reliably. It is concluded that, although the Davidson portable MCA performed reliably, a higher degree of portability and electronic versatility would be desirable to assist the IAEA inspector in the field. Equipment such as the compact MCA recently developed by Los Alamos National Laboratory and/or the B-SAM developed by Brookhaven National Laboratory do have these features and, as such, would be more useful to the IAEC during field measurements. These field tests, but prototypes are being tried and evaluated by the IAEA inspectorate. At this writing the first commercialunits are being marketed in the US

  9. Spatial measurement errors in the field of spatial epidemiology.

    Science.gov (United States)

    Zhang, Zhijie; Manjourides, Justin; Cohen, Ted; Hu, Yi; Jiang, Qingwu

    2016-07-01

    Spatial epidemiology has been aided by advances in geographic information systems, remote sensing, global positioning systems and the development of new statistical methodologies specifically designed for such data. Given the growing popularity of these studies, we sought to review and analyze the types of spatial measurement errors commonly encountered during spatial epidemiological analysis of spatial data. Google Scholar, Medline, and Scopus databases were searched using a broad set of terms for papers indexed by a term indicating location (space or geography or location or position) and measurement error (measurement error or measurement inaccuracy or misclassification or uncertainty): we reviewed all papers appearing before December 20, 2014. These papers and their citations were reviewed to identify the relevance to our review. We were able to define and classify spatial measurement errors into four groups: (1) pure spatial location measurement errors, including both non-instrumental errors (multiple addresses, geocoding errors, outcome aggregations, and covariate aggregation) and instrumental errors; (2) location-based outcome measurement error (purely outcome measurement errors and missing outcome measurements); (3) location-based covariate measurement errors (address proxies); and (4) Covariate-Outcome spatial misaligned measurement errors. We propose how these four classes of errors can be unified within an integrated theoretical model and possible solutions were discussed. Spatial measurement errors are ubiquitous threat to the validity of spatial epidemiological studies. We propose a systematic framework for understanding the various mechanisms which generate spatial measurement errors and present practical examples of such errors.

  10. Inversion of double-difference measurements from optical levelling for the Groningen gas field

    Directory of Open Access Journals (Sweden)

    P. A. Fokker

    2015-11-01

    Full Text Available Hydrocarbon extraction lead to compaction of the gas reservoir which is visible as subsidence on the surface. Subsidence measurements can therefore be used to better estimate reservoir parameters. Total subsidence is derived from the result of the measurement of height differences between optical benchmarks. The procedure from optical height difference measurements to absolute subsidence is an inversion, and the result is often used as an input for consequent inversions on the reservoir. We have used the difference measurements directly to invert for compaction of the Groningen gas reservoir in the Netherlands. We have used a linear inversion exercise to update an already existing reservoir compaction model of the field. This procedure yielded areas of increased and decreased levels of compaction compared to the existing compaction model in agreement with observed discrepancies in porosity and aquifer activity.

  11. Field measurement of local ice pressures on the ARAON in the Beaufort Sea

    Directory of Open Access Journals (Sweden)

    Lee Tak-Kee

    2014-12-01

    Full Text Available This study conducted four field measurements of local ice pressure during the icebreaking voyage of the icebreaking research vessel “ARAON” in the Chukchi and Beaufort seas from July to August of 2010. For measurements, 14 strain gauges, including 8 strain gauge rosettes, were set on the bow of the port side. Influence coefficients were determined using a finite element model of the instrumented area and they were used to convert the measured strains on the hull structure to local ice pressures. The converted maximum pressure was calculated as 2.12 MPa on an area of 0.28 m2. Pressure-area curves were developed from the surveyed pressure data and the results were compared with previously measured data. The study results are expected to provide an understanding of local ice pressures and thus be useful in the structural design of ice class ships.

  12. Field measurement of local ice pressures on the ARAON in the Beaufort Sea

    Science.gov (United States)

    Lee, Tak-Kee; Lee, Jong-Hyun; Kim, Heungsub; Rim, Chae Whan

    2014-12-01

    This study conducted four field measurements of local ice pressure during the icebreaking voyage of the icebreaking research vessel "ARAON" in the Chukchi and Beaufort seas from July to August of 2010. For measurements, 14 strain gauges, including 8 strain gauge rosettes, were set on the bow of the port side. Influence coefficients were determined using a finite element model of the instrumented area and they were used to convert the measured strains on the hull structure to local ice pressures. The converted maximum pressure was calculated as 2.12 MPa on an area of 0.28 m2. Pressure-area curves were developed from the surveyed pressure data and the results were compared with previously measured data. The study results are expected to provide an understanding of local ice pressures and thus be useful in the structural design of ice class ships.

  13. Estimating the measuring sensitivity of unipolar and bipolar ECG with lead field method and FDM models.

    Science.gov (United States)

    Puurtinen, Merja; Viik, Jari; Takano, Noriyuki; Malmivuo, Jaakko; Hyttinen, Jari

    2009-05-01

    New portable electrocardiogram (ECG) measurement systems are emerging into market. Some use nonstandard bipolar electrode montage and sometimes very small interelectrode distances to improve the usability of the system. Modeling could provide a straightforward method to test new electrode systems. The aim of this study was to assess whether modeling the electrodes' measuring sensitivity with lead field method can provide a simple tool for testing a number of new electrode locations. We evaluated whether the actual ECG signal strength can be estimated by lead fields with two realistic 3D finite difference method (FDM) thorax models. We compared the modeling results to clinical body surface potential map (BSPM) data from 236 normal patients and studied 117 unipolar and 42 bipolar leads. In the case of unipolar electrodes the modeled measuring sensitivities correlated well with the clinical data (r=0.86, N=117, p<0.05). In the case of bipolar electrodes the correlation was moderate (r=0.62 between Model 1 and clinical data, r=0.71 between Model 2 and clinical data, N=42 and p<0.05 for both). Based on this we can conclude that lead field analysis based on realistic thorax models provides a good initial prediction for designing new electrode montages and measurement systems.

  14. Indirect measurement of the magnetocaloric effect using a novel differential scanning calorimeter with magnetic field.

    Science.gov (United States)

    Jeppesen, S; Linderoth, S; Pryds, N; Kuhn, L Theil; Jensen, J Buch

    2008-08-01

    A simple and high-sensitivity differential scanning calorimeter (DSC) unit operating under magnetic field has been built for indirect determination of the magnetocaloric effect. The principle of the measuring unit in the calorimeter is based on Peltier elements as heat flow sensors. The high sensitivity of the apparatus combined with a suitable calibration procedure allows very fast and accurate heat capacity measurements under magnetic field to be made. The device was validated from heat capacity measurements for the typical DSC reference material gallium (Ga) and a La(0.67)Ca(0.33)MnO(3) manganite system and the results were highly consistent with previous reported data for these materials. The DSC has a working range from 200 to 340 K and has been tested in magnetic fields reaching 1.8 T. The signal-to-noise ratio is in the range of 10(2)-10(3) for the described experiments. Finally the results have been compared to results from a Quantum Design(R) physical properties measuring system. The configuration of the system also has the advantage of being able to operate with other types of magnets, e.g., permanent magnets or superconducting coils, as well as the ability to be expanded to a wider temperature range.

  15. Sensor Interaction as a Source of the Electromagnetic Field Measurement Error

    Directory of Open Access Journals (Sweden)

    Hartansky R.

    2014-12-01

    Full Text Available The article deals with analytical calculation and numerical simulation of interactive influence of electromagnetic sensors. Sensors are components of field probe, whereby their interactive influence causes the measuring error. Electromagnetic field probe contains three mutually perpendicular spaced sensors in order to measure the vector of electrical field. Error of sensors is enumerated with dependence on interactive position of sensors. Based on that, proposed were recommendations for electromagnetic field probe construction to minimize the sensor interaction and measuring error.

  16. Composite micro-sphere optical resonators for electric field measurement

    Science.gov (United States)

    Stubblefield, J.; Womack, D.; Ioppolo, T.; Ayaz, U.; Otugen, M. V.

    2012-02-01

    Polymer-based, multi-layered dielectric microspheres are investigated for high-resolution electric field sensing. The external electric field induces changes in the morphology of the spheres, leading to shifts in the whispering gallery modes (WGMs). Light from a distributed feedback (DFB) laser is sidecoupled into the microspheres using a tapered section of a single mode optical fiber to interrogate the optical modes. The base material of these multi-layered spheres is polydimethylsiloxane (PDMS). Three microsphere geometries are investigated: (1) cores comprised of a 60:1 volumetric ratio of PDMS-to-curing agent mixture that are mixed with varying amounts of barium titanate (BaTiO3) nano particles, (2) cores comprised of 60:1 PDMS that are coated with a thin layer of 60:1 PDMS that is mixed with varying amounts of barium titanate and (3) a composite Carbon Black-BaTiO3 prototype. The outermost layer for all sphere geometries is a thin coat of 60:1 PDMS which serves as the shell waveguide. Light from the tapered laser is coupled into this outermost shell that provides high optical quality factor WGM (Q ~ 106). The microspheres are poled for several hours at electric fields of ~ 1 MV/m to increase their sensitivity to electric field. Preliminary results show that electric fields of the order of 100 V/m can be detected using these composite micro-resonators.

  17. Hybrid micro-/nano-particle image velocimetry for 3D3C multi-scale velocity field measurement in microfluidics

    International Nuclear Information System (INIS)

    Min, Young Uk; Kim, Kyung Chun

    2011-01-01

    The conventional two-dimensional (2D) micro-particle image velocimetry (micro-PIV) technique has inherent bias error due to the depth of focus along the optical axis to measure the velocity field near the wall of a microfluidics device. However, the far-field measurement of velocity vectors yields good accuracy for micro-scale flows. Nano-PIV using the evanescent wave of total internal reflection fluorescence microscopy can measure near-field velocity vectors within a distance of around 200 nm from the solid surface. A micro-/nano-hybrid PIV system is proposed to measure both near- and far-field velocity vectors simultaneously in microfluidics. A near-field particle image can be obtained by total internal reflection fluorescence microscopy using nanoparticles, and the far-field velocity vectors are measured by three-hole defocusing micro-particle tracking velocimetry (micro-PTV) using micro-particles. In order to identify near- and far-field particle images, lasers of different wavelengths are adopted and tested in a straight microchannel for acquiring the three-dimensional three-component velocity field. We found that the new technique gives superior accuracy for the velocity profile near the wall compared to that of conventional nano-PIV. This method has been successfully applied to precisely measure wall shear stress in 2D microscale Poiseulle flows

  18. Comparative study of ring current development using empirical, dipolar, and self-consistent magnetic field simulations

    Science.gov (United States)

    Jordanova, V. K.; Zaharia, S.; Welling, D. T.

    2010-12-01

    The effects of nondipolar magnetic field configuration and the feedback of a self-consistently computed magnetic field on ring current dynamics are investigated during a double-dip storm with minima SYM-H = -90 nT at ˜2000 UT, 20 November, and SYM-H = -127 nT at ˜1000 UT, 21 November 2002. We use our kinetic ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB) to study the redistribution of plasma in the inner magnetosphere after its fresh injection from the plasma sheet. The kinetic model is fully extended to nondipolar magnetic (B) field geometry and two-way coupled with an Euler-potential-based equilibrium model that calculates self-consistently the three-dimensional magnetic field in force balance with the anisotropic ring current distributions. The ring current source population is inferred from LANL geosynchronous satellite data; a superdense plasma sheet observed during the second storm main phase contributes significantly to ring current buildup. We find that the bounce-averaged velocities increase while the bounce-averaged geocoronal hydrogen densities decrease on the nightside when a nondipolar B field is used. A depression of the ring current fluxes and a confinement of the ring current close to Earth are thus observed on the nightside as geomagnetic activity increases. In contrast to the dipolar case, the proton anisotropy increases considerably in the postnoon sector, and the nondipolar simulations predict the excitation of intense EMIC waves at large L shells. The total ring current energy and ∣Dst∣ index calculated with the self-consistent B field are in best agreement with observations, being smaller compared to the dipolar calculations but larger than the empirical B field predictions.

  19. A Comparative Field Based Study of Katz and Barthel Indices in North Indian City of Dehradun

    Directory of Open Access Journals (Sweden)

    Megha Luthra

    2016-03-01

    Full Text Available Background: Elderly persons are one of the most vulnerable groups of society and have more chances of disease and disabilities (restriction or lack of ability to perform an activity in the manner or within the range considered normal for a human being. It reflects how well an individual is able to function in general areas of life. Magnitude of disability has become an important indicator in measuring disease burden along with morbidity and mortality rates. Katz and Barthel Indices have been largely used to assess disability in activities of daily living among elderly people.Aim & objectives: This community-based cross-sectional study was conducted among persons aged 60 years and above in urban field practice area of SGRRIM&HS, Dehradun, Uttarakhand with the aim of comparing these two indices in community setting. The specific objectives were to find ADL dependence by both the indices, find the factors which significantly affect ADL dependence and to find the degree of agreement which is not by chance between Katz and Barthel Indices.Material methods: An interview schedule was developed and administered to participants in Hindi, by trained investigators. Information on age, marital status, living status education, occupation and economic dependence was recorded. House-to-house visits were conducted in the selected area to collect the data. All elderly persons residing in the selected area were included in the study.Results: Prevalence of ADL dependence was 8.23% as per Katz Index and 28.45% as per Barthel Index, taking a score of less than 20 for BI and less than 6 for KI as criterion for ADL dependence. That there is a moderate degree of agreement between Katz and Barthel Scores which is not by chance was estimated by Kappa Statistic.Conclusion: Katz Index is better suited for ADL estimation in a community setting.

  20. Visual field measurement with motion sensitivity screening test

    African Journals Online (AJOL)

    Eye disease is a frequent complication of onchocerciasis in countries where the diseasc is highly endemic. It has been shown that early ocular lesions which manifest as visual field defects or reduction in visual acuity can be reversed following treatment with ivermectin. At the community level, it is important to detect.

  1. Measuring Undrained Shear Strength using CPT and Field Vane

    DEFF Research Database (Denmark)

    Luke, Kirsten

    1992-01-01

    This paper presents the results of CPT's and Field Vane tests from two small test areas with different soils, Glacial Till and Yoldia Clay. An average of Nk = qt/cv for the Yoldia Clay is 7.7 with a standard deviation of 0.7. The average of Nk for the Glacial Till is 9.7 with a standard deviation...

  2. Visual Field Measurement with Motion Sensitivity Screening Test in ...

    African Journals Online (AJOL)

    Eye disease is a frequent complication of onchocerciasis in countrise where the disease is highly endemic. It has been shown that early ocular lesions which manifest as visual field defects or reduction in visual acuity can be reversed following treatment with ivermectin. At the community level, it is important to detect ...

  3. Analysis of pulsed wire method for field integral measurements in ...

    Indian Academy of Sciences (India)

    of the acoustic wave in the wire could be significant and our analysis provides a method for the evaluation of the magnetic field profile even in such cases taking the effect due to dispersion into account in an exact way. Keywords. Undulator; free-electron laser; synchrotron radiation source; magnetic char- acterization.

  4. Magnetic field amplitude and pitch angle measurements using Spectral MSE on EAST

    Science.gov (United States)

    Liao, Ken; Rowan, William; Fu, Jia; Li, Ying-Ying; Lyu, Bo; Marchuk, Oleksandr; Ralchenko, Yuri

    2017-10-01

    We have developed the Spectral Motional Stark Effect technique for measuring magnetic field amplitude and pitch angle on EAST. The experiments were conducted using the tangential co-injection heating beam at A port and Beam Emission Spectroscopy array at D port. A spatial calibration of the observation channels was conducted before the campaign. As a first check, the measured magnetic field amplitude was compared to prediction. Since the toroidal field is dominant, we recovered the expected 1/R shape over the spatial range 1.75account the effect of the Lorentz field was used to predict the beam populations. The initial comparison is to an EFIT reconstruction. We are investigating sources of errors using a combination of simulations and calibrations arising from hardware non-idealities and approximations in the analysis. We are also investigating improvements in the EAST spectral MSE diagnostic. Supported by the U.S. DOE, Office of Fusion Energy Sciences under Award DE-SC0010500, National Magnetic Confinement Fusion Science Program of China under Grant No. 2015GB103003 and National Natural Science Foundation of China (No. 11605242).

  5. Electromagnetic Near Field Measurements of Two Critical Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Goettee, Jeffrey David

    2015-11-03

    The reactors employed, Godiva IV and WSMR Fast Burst Reactor, are described first. Then the point reactor kinetics model, electromagnetic potential, and the measurement of kinetics quantities are successively discussed. In summary, reactor power produces measurable electric energy. The electric signal mimics power curve for prompt burst operations - features in logarithmic derivatives match. The electric signature should be dependent on the power and not the derivative; therefore, steady-state modes should be measurable.

  6. Measurement and calculation of the near field of a terahertz apertureless scanning optical microscope

    NARCIS (Netherlands)

    Adam, A.J.L.; Van der Valk, N.C.J.; Planken, P.C.M.

    2007-01-01

    We present measurements and calculations of the terahertz (THz) electric field measured in the near field of a metal tip used in THz apertureless near-field optical microscopy (THz-ANSOM). An analytical model in which we treat the metal tip as a linear wire antenna allows us to predict almost all of

  7. Analysis of the Uncertainty in Wind Measurements from the Atmospheric Radiation Measurement Doppler Lidar during XPIA: Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, Rob [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    In March and April of 2015, the ARM Doppler lidar that was formerly operated at the Tropical Western Pacific site in Darwin, Australia (S/N 0710-08) was deployed to the Boulder Atmospheric Observatory (BAO) for the eXperimental Planetary boundary-layer Instrument Assessment (XPIA) field campaign. The goal of the XPIA field campaign was to investigate methods of using multiple Doppler lidars to obtain high-resolution three-dimensional measurements of winds and turbulence in the atmospheric boundary layer, and to characterize the uncertainties in these measurements. The ARM Doppler lidar was one of many Doppler lidar systems that participated in this study. During XPIA the 300-m tower at the BAO site was instrumented with well-calibrated sonic anemometers at six levels. These sonic anemometers provided highly accurate reference measurements against which the lidars could be compared. Thus, the deployment of the ARM Doppler lidar during XPIA offered a rare opportunity for the ARM program to characterize the uncertainties in their lidar wind measurements. Results of the lidar-tower comparison indicate that the lidar wind speed measurements are essentially unbiased (~1cm s-1), with a random error of approximately 50 cm s-1. Two methods of uncertainty estimation were tested. The first method was found to produce uncertainties that were too low. The second method produced estimates that were more accurate and better indicators of data quality. As of December 2015, the first method is being used by the ARM Doppler lidar wind value-added product (VAP). One outcome of this work will be to update this VAP to use the second method for uncertainty estimation.

  8. Measuring Average Angular Velocity with a Smartphone Magnetic Field Sensor

    Science.gov (United States)

    Pili, Unofre; Violanda, Renante

    2018-01-01

    The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper,…

  9. 47 CFR 73.314 - Field strength measurements.

    Science.gov (United States)

    2010-10-01

    ... measurements were made, drawn on curved earth paper for equivalent 4/3 earth radius, of the largest available.... (1) Preparation for measurement. (i) The population (P) of the community, and its suburbs, if any, is determined by reference to an appropriate source, e.g., the 1970 U.S. Census tables of population of cities...

  10. Advanced spherical near-field antenna measurement techniques

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Majlund; Pivnenko, Sergey; Breinbjerg, Olav

    2011-01-01

    in the period 2005–2006 following a series of investigatory measurements and facility updates during 2003–2005. Antenna diagnostics by a SWE-to-PWE transformation presents a case where highly accurate antenna measurements and a plane wave back-projection enable antenna diagnostics by examination...

  11. Geologic guide to the island of Hawaii: A field guide for comparative planetary geology

    Science.gov (United States)

    Greeley, R. (Editor)

    1974-01-01

    With geological data available for all inner planets except Venus, we are entering an era of true comparative planetary geology, when knowledge of the differences and similarities for classes of structures (e.g., shield volcanoes) will lead to a better understanding of general geological processes, regardless of planet. Thus, it is imperative that planetologists, particularly those involved in geological mapping and surface feature analysis for terrestrial planets, be familiar with volcanic terrain in terms of its origin, structure, and morphology. One means of gaining this experience is through field trips in volcanic terrains - hence, the Planetology Conference in Hawaii. In addition, discussions with volcanologists at the conference provide an important basis for establishing communications between the two fields that will facilitate comparative studies as more data become available.

  12. Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch

    International Nuclear Information System (INIS)

    Chapman, J.T.

    1998-09-01

    The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8--20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation

  13. Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, James Tharp [Univ. of Wisconsin, Madison, WI (United States)

    1998-09-01

    The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8-20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation.

  14. Comparing modeled isoprene with aircraft-based measurements in the atmospheric boundary layer.

    Energy Technology Data Exchange (ETDEWEB)

    Doskey, P.; Gao, W.

    1997-12-12

    Nonmethane hydrocarbons (NMHCs) are involved in a complex series of reactions that regulate the levels of oxidants in the troposphere. Isoprene (C{sub 5}H{sub 8}), the primary NMHC emitted from deciduous trees, is one of the most important reactive hydrocarbons in the troposphere. The amount of isoprene entering the free troposphere is regulated by the compound's rate of emission from leaves and by chemical and physical processes in the forest canopy and the atmospheric boundary layer (ABL). This study uses a coupled canopy-ABL model to simulate these complex processes and compares calculated isoprene concentration profiles with those measured during aircraft flights above a forested region in the northeastern US. Land use information is coupled with satellite remote sensing data to describe spatial changes in canopy density during the field measurements. The high-resolution transport-chemistry model of Gao et al. (1993) for the ABL and the forest canopy layer is used to simulate vertical changes in isoprene concentration due to turbulent mixing and chemical reactions. The one-dimensional (1-D) ABL model includes detailed radiation transfer, turbulent diffusion, biogenic emissions, dry deposition, and chemical processes within the forest canopy and the ABL. The measured profiles are compared with the model simulations to investigate the biological, physical, and chemical processes that regulate the levels of isoprene within the ABL.

  15. Technical note: comparing von Luschan skin color tiles and modern spectrophotometry for measuring human skin pigmentation.

    Science.gov (United States)

    Swiatoniowski, Anna K; Quillen, Ellen E; Shriver, Mark D; Jablonski, Nina G

    2013-06-01

    Prior to the introduction of reflectance spectrophotometry into anthropological field research during the 1950s, human skin color was most commonly classified by visual skin color matching using the von Luschan tiles, a set of 36 standardized, opaque glass tiles arranged in a chromatic scale. Our goal was to establish a conversion formula between the tile-based color matching method and modern reflectance spectrophotometry to make historical and contemporary data comparable. Skin pigmentation measurements were taken on the forehead, inner upper arms, and backs of the hands using both the tiles and a spectrophotometer on 246 participants showing a broad range of skin pigmentation. From these data, a second-order polynomial conversion formula was derived by jackknife analysis to estimate melanin index (M-index) based on tile values. This conversion formula provides a means for comparing modern data to von Luschan tile measurements recorded in historical reports. This is particularly important for populations now extinct, extirpated, or admixed for which tile-based measures of skin pigmentation are the only data available. Copyright © 2013 Wiley Periodicals, Inc.

  16. Measurement of dynamic magnetization induced by a pulsed field: Proposal for a new rock magnetism method

    Directory of Open Access Journals (Sweden)

    Kazuto eKodama

    2015-02-01

    Full Text Available This study proposes a new method for measuring transient magnetization of natural samples induced by a pulsed field with duration of 11 ms using a pulse magnetizer. An experimental system was constructed, consisting of a pair of differential sensing coils connected with a high-speed digital oscilloscope for data acquisition. The data were transferred to a computer to obtain an initial magnetization curve and a descending branch of a hysteresis loop in a rapidly changing positive field. This system was tested with synthetic samples (permalloy ribbon, aluminum plate, and nickel powder as well as two volcanic rock samples. Results from the synthetic samples showed considerable differences from those measured by a quasi-static method using a vibrating sample magnetometer (VSM. These differences were principally due to the time-dependent magnetic properties or to electromagnetic effects, such as magnetic viscosity, eddy current loss, or magnetic relaxation. Results from the natural samples showed that the transient magnetization–field curves were largely comparable to the corresponding portions of the hysteresis loops. However, the relative magnetization (scaled to the saturation magnetization at the end of a pulse was greater than that measured by a VSM. This discrepancy, together with the occurrence of rapid exponential decay after a pulse, indicates magnetic relaxations that could be interpreted in terms of domain wall displacement. These results suggest that with further developments, the proposed technique can become a useful tool for characterizing magnetic particles contained in a variety of natural materials.

  17. Urban and marine corrosion: Comparative behaviour between field and laboratory conditions

    Energy Technology Data Exchange (ETDEWEB)

    Iribarren Laco, J.I.; Liesa Mestres, F.; Bilurbina Alter, L. [Departament d' Enginyeria Quimica E.T.S.E.I.B. Universitat Politecnica de Catalunya, Barcelona (Spain); Cadena Villota, F. [Departamento de Materiales, Escuela Politecnica Nacional, Quito (Ecuador)

    2004-09-01

    A detailed study of the corrosion phenomena of carbon steel has been investigated in this work by means of the comparison of field and laboratory tests. Two areas of the metropolitan area of Barcelona (Spain) were selected to carry out the field tests, whereas two different solutions of sodium chloride and sodium hydrogen sulfite were used to simulate the field conditions by means of cyclic laboratory tests. The corrosion rate has been evaluated from the weight loss of the specimens and the morphology surface has been visualized by optical and scanning electron microscopy. Corrosion products and contaminants have been analyzed by X-ray diffraction and energy-dispersive X-ray spectroscopy, respectively. The penetration results can be adjusted to the Passano equation and the corrosivity degree can be assigned in accordance with ISO standards. A correlation between field and laboratory tests has been found, by comparing the specimens with the same degree of corrosion, showing the validity of the accelerated laboratory tests in order to simulate the field conditions. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  18. Comparing Dislodgeable 2,4-D Residues across Athletic Field Turfgrass Species and Time.

    Directory of Open Access Journals (Sweden)

    Matthew D Jeffries

    Full Text Available 2,4-dimethylamine salt (2,4-D is an herbicide commonly applied on athletic fields for broadleaf weed control that can dislodge from treated turfgrass. Dislodge potential is affected by numerous factors, including turfgrass canopy conditions. Building on previous research confirming herbicide-turfgrass dynamics can vary widely between species, field research was initiated in 2014 and 2015 in Raleigh, NC, USA to quantify dislodgeable 2,4-D residues from dormant hybrid bermudagrass (Cynodon dactylon L. x C. transvaalensis and hybrid bermudagrass overseeded with perennial ryegrass (Lolium perenne L., which are common athletic field playing surfaces in subtropical climates. Additionally, dislodgeable 2,4-D was compared at AM (7:00 eastern standard time and PM (14:00 sample timings within a day. Samples collected from perennial ryegrass consistently resulted in greater 2,4-D dislodgment immediately after application (9.4 to 9.9% of applied compared to dormant hybrid bermudagrass (2.3 to 2.9%, as well as at all AM compared to PM timings from 1 to 3 d after treatment (DAT; 0.4 to 6.3% compared to 0.1 to 0.8%. Dislodgeable 2,4-D did not differ across turfgrass species at PM sample collections, with ≤ 0.1% of the 2,4-D applied dislodged from 1 to 6 DAT, and 2,4-D detection did not occur at 12 and 24 DAT. In conclusion, dislodgeable 2,4-D from treated turfgrass can vary between species and over short time-scales within a day. This information should be taken into account in human exposure risk assessments, as well as by turfgrass managers and athletic field event coordinators to minimize 2,4-D exposure.

  19. Aeromonas Isolates from Human Diarrheic Stool and Groundwater Compared by Pulsed-Field Gel Electrophoresis

    OpenAIRE

    Borchardt, Mark A.; Stemper, Mary E.; Standridge, Jon H.

    2003-01-01

    Gastrointestinal infections of Aeromonas species are generally considered waterborne; for this reason, Aeromonas hydrophila has been placed on the United States Environmental Protection Agency Contaminant Candidate List of emerging pathogens in drinking water. In this study, we compared pulsed-field gel electrophoresis patterns of Aeromonas isolates from stool specimens of patients with diarrhea with Aeromonas isolates from patients? drinking water. Among 2,565 diarrheic stool specimens submi...

  20. Comparing Dislodgeable 2,4-D Residues across Athletic Field Turfgrass Species and Time

    Science.gov (United States)

    Brosnan, James T.; Breeden, Gregory K.

    2016-01-01

    2,4-dimethylamine salt (2,4-D) is an herbicide commonly applied on athletic fields for broadleaf weed control that can dislodge from treated turfgrass. Dislodge potential is affected by numerous factors, including turfgrass canopy conditions. Building on previous research confirming herbicide-turfgrass dynamics can vary widely between species, field research was initiated in 2014 and 2015 in Raleigh, NC, USA to quantify dislodgeable 2,4-D residues from dormant hybrid bermudagrass (Cynodon dactylon L. x C. transvaalensis) and hybrid bermudagrass overseeded with perennial ryegrass (Lolium perenne L.), which are common athletic field playing surfaces in subtropical climates. Additionally, dislodgeable 2,4-D was compared at AM (7:00 eastern standard time) and PM (14:00) sample timings within a day. Samples collected from perennial ryegrass consistently resulted in greater 2,4-D dislodgment immediately after application (9.4 to 9.9% of applied) compared to dormant hybrid bermudagrass (2.3 to 2.9%), as well as at all AM compared to PM timings from 1 to 3 d after treatment (DAT; 0.4 to 6.3% compared to 0.1 to 0.8%). Dislodgeable 2,4-D did not differ across turfgrass species at PM sample collections, with ≤ 0.1% of the 2,4-D applied dislodged from 1 to 6 DAT, and 2,4-D detection did not occur at 12 and 24 DAT. In conclusion, dislodgeable 2,4-D from treated turfgrass can vary between species and over short time-scales within a day. This information should be taken into account in human exposure risk assessments, as well as by turfgrass managers and athletic field event coordinators to minimize 2,4-D exposure. PMID:27936174

  1. Measurement of the terrestrial magnetic field and its anomalies

    International Nuclear Information System (INIS)

    Duret, D.

    1994-01-01

    After a presentation of the terrestrial magnetic field and its various anomalies, the different types of magnetometers commonly used are reviewed with their characteristics and performances: scalar magnetometers (free precession and continuous polarization proton magnetometers, dynamic polarization proton magnetometers, optical pumping magnetometers, electronic resonance scalar magnetometers (without pumping)); vectorial magnetometers (flux gate magnetometers, induction magnetometers, suspended magnet magnetometers, superconducting magnetometers, integrated magnetometers, resonance directional magnetometers). The magnetometry market and applications are discussed. 20 figs., 9 tabs., 72 refs

  2. Strain field measurement in orthogonal machining of a titanium alloy

    OpenAIRE

    CALAMAZ , Madalina; COUPARD , Dominique; GIROT , Franck

    2012-01-01

    Improving the cutting processes by optimizing operating parameters necessarily involves understanding the thermo-mechanical mechanisms generated during chip formation. For this, numerical simulations are used to obtain the strain, stress and thermal fields near the tool tip. Nowadays, the validation of numerical simulation models of cutting is based on macroscopic results such as chip geometry and cutting forces generated by the machining process. However, it is not appropriate...

  3. Power and loads for wind turbines in yawed conditions. Analysis of field measurements and aerodynamic predictions

    Energy Technology Data Exchange (ETDEWEB)

    Boorsma, K. [ECN Wind Energy, Petten (Netherlands)

    2012-11-15

    A description is given of the work carried out within the framework of the FLOW (Far and Large Offshore Wind) project on single turbine performance in yawed flow conditions. Hereto both field measurements as well as calculations with an aerodynamic code are analyzed. The rotors of horizontal axis wind turbines follow the changes in the wind direction for optimal performance. The reason is that the power is expected to decrease for badly oriented rotors. So, insight in the effects of the yaw angle on performance is important for optimization of the yaw control of each individual turbine. The effect of misalignment on performance and loads of a single 2.5 MW wind turbine during normal operation is investigated. Hereto measurements at the ECN Wind Turbine Test Site Wieringermeer (EWTW) are analyzed from December 2004 until April 2009. Also, the influence of yaw is studied using a design code and results from this design code are compared with wind tunnel measurements.

  4. COMPAR

    International Nuclear Information System (INIS)

    Kuefner, K.

    1976-01-01

    COMPAR works on FORTRAN arrays with four indices: A = A(i,j,k,l) where, for each fixed k 0 ,l 0 , only the 'plane' [A(i,j,k 0 ,l 0 ), i = 1, isub(max), j = 1, jsub(max)] is held in fast memory. Given two arrays A, B of this type COMPAR has the capability to 1) re-norm A and B ind different ways; 2) calculate the deviations epsilon defined as epsilon(i,j,k,l): =[A(i,j,k,l) - B(i,j,k,l)] / GEW(i,j,k,l) where GEW (i,j,k,l) may be chosen in three different ways; 3) calculate mean, standard deviation and maximum in the array epsilon (by several intermediate stages); 4) determine traverses in the array epsilon; 5) plot these traverses by a printer; 6) simplify plots of these traverses by the PLOTEASY-system by creating input data blocks for this system. The main application of COMPAR is given (so far) by the comparison of two- and three-dimensional multigroup neutron flux-fields. (orig.) [de

  5. Combining virtual observatory and equivalent source dipole approaches to describe the geomagnetic field with Swarm measurements

    Science.gov (United States)

    Saturnino, Diana; Langlais, Benoit; Amit, Hagay; Civet, François; Mandea, Mioara; Beucler, Éric

    2018-03-01

    A detailed description of the main geomagnetic field and of its temporal variations (i.e., the secular variation or SV) is crucial to understanding the geodynamo. Although the SV is known with high accuracy at ground magnetic observatory locations, the globally uneven distribution of the observatories hampers the determination of a detailed global pattern of the SV. Over the past two decades, satellites have provided global surveys of the geomagnetic field which have been used to derive global spherical harmonic (SH) models through some strict data selection schemes to minimise external field contributions. However, discrepancies remain between ground measurements and field predictions by these models; indeed the global models do not reproduce small spatial scales of the field temporal variations. To overcome this problem we propose to directly extract time series of the field and its temporal variation from satellite measurements as it is done at observatory locations. We follow a Virtual Observatory (VO) approach and define a global mesh of VOs at satellite altitude. For each VO and each given time interval we apply an Equivalent Source Dipole (ESD) technique to reduce all measurements to a unique location. Synthetic data are first used to validate the new VO-ESD approach. Then, we apply our scheme to data from the first two years of the Swarm mission. For the first time, a 2.5° resolution global mesh of VO time series is built. The VO-ESD derived time series are locally compared to ground observations as well as to satellite-based model predictions. Our approach is able to describe detailed temporal variations of the field at local scales. The VO-ESD time series are then used to derive global spherical harmonic models. For a simple SH parametrization the model describes well the secular trend of the magnetic field both at satellite altitude and at the surface. As more data will be made available, longer VO-ESD time series can be derived and consequently used to

  6. Spinal posture in different DanceSport dance styles compared with track and field athletes.

    Science.gov (United States)

    Kruusamäe, Helena; Maasalu, Katre; Wyon, Matthew; Jürimäe, Toivo; Mäestu, Jarek; Mooses, Martin; Jürimäe, Jaak

    2015-11-01

    In DanceSport, athletes train for many years to develop a very specific posture. Presently there are few data as to whether these adaptations are habitual or cause permanent anatomical changes to the spine. The aim of the current study was to evaluate lumbar lordosis and thoracic kyphosis of the international level DanceSport dancers using track and field athletes as controls. Thirty competitive DanceSport couples (15 men aged 23.4±6.6 years; 15 women aged 22.5±6.4 years) and 29 track and field athletes (16 mean aged 27±4.4 years and 13 women aged 22±4.1 years) volunteered. Twelve couples were Standard, 7 Latin American and 11 were Ten Dance couples. Thoracic kyphosis and lumbar lordosis angle were assessed in lateral view using a Vertebral Fracture Assessment scan. DanceSport athletes had smaller S-shaped vertebral curvatures compared to track and field athletes. Male (5.7±4.7°) and female dancers (8.7±5.9°) had significantly smaller lumbar lordosis angle compared to their track and field counterparts (22.3±9.9° for men; 20.3±5.9° for women). Female dancers (25.3±8.0°) also demonstrated significantly smaller thoracic kyphosis angle than female track and field (32.1±8.9°) participants. It was further revealed that female Latin American dancers had significantly smaller lumbar lordosis values (3.7±3.1°) compared with female Standard (10.7±6.1°) and Ten Dance dancers (9.7±5.5°). The results of the present study suggest that smaller S-shaped vertebral curvatures of DanceSport athletes compared with track and field athletes are permanent changes rather than habitual. Copyright © 2015 Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  7. Comparison of mobility extraction methods based on field-effect measurements for graphene

    Directory of Open Access Journals (Sweden)

    Hua Zhong

    2015-05-01

    Full Text Available Carrier mobility extraction methods for graphene based on field-effect measurements are explored and compared according to theoretical analysis and experimental results. A group of graphene devices with different channel lengths were fabricated and measured, and carrier mobility is extracted from those electrical transfer curves using three different methods. Accuracy and applicability of those methods were compared. Transfer length method (TLM can obtain accurate density dependent mobility and contact resistance at relative high carrier density based on data from a group of devices, and then can act as a standard method to verify other methods. As two of the most popular methods, direct transconductance method (DTM and fitting method (FTM can extract mobility easily based on transfer curve of a sole graphene device. DTM offers an underestimated mobility at any carrier density owing to the neglect of contact resistances, and the accuracy can be improved through fabricating field-effect transistors with long channel and good contacts. FTM assumes a constant mobility independent on carrier density, and then can obtain mobility, contact resistance and residual density stimulations through fitting a transfer curve. However, FTM tends to obtain a mobility value near Dirac point and then overestimates carrier mobility of graphene. Comparing with the DTM and FTM, TLM could offer a much more accurate and carrier density dependent mobility, that reflects the complete properties of graphene carrier mobility.

  8. Rapid subsidence over oil fields measured by SAR

    Science.gov (United States)

    Fielding, E. J.; Blom, R. G.; Goldstein, R. M.

    1998-01-01

    The Lost Hills and Belridge oil felds are in the San Joaquin Valley, California. The major oil reservoir is high porosity and low permeability diatomite. Extraction of large volumes from shallow depths causes reduction in pore pressure and subsequent compaction, forming a surface subsidence bowl. We measure this subsidence from space using interferometric analysis of SAR (Synthetic Aperture Radar) data collected by the European Space Agency Remote Sensing Satellites (ERS-1 and ERS-2). Maximum subsidence rates are as high as 40 mm in 35 days or > 400 mm/yr, measured from interferograms with time separations ranging from one day to 26 months. The 8- and 26-month interferograms contain areas where the subsidence gradient exceeds the measurement possible with ERS SAR, but shows increased detail in areas of less rapid subsidence. Synoptic mapping of subsidence distribution from satellite data powerfully complements ground-based techniques, permits measurements where access is difficult, and aids identification of underlying causes.

  9. Remote sensing of chlorophyll a fluorescence of vegetation canopies. 1. Near and far field measurement techniques

    International Nuclear Information System (INIS)

    Cecchi, G.; Mazzinghi, P.; Pantani, L.; Valentini, R.; Tirelli, D.; De Angelis, P.

    1994-01-01

    This article presents instruments and techniques, used in several vegetation monitoring experiments. Simultaneous monitoring was performed with different approaches, including fluorescence lidar and passive remote sensing, leaf level reflectance, and laser fluorimetry, and compared with physiological measurements. Most of the instrumentation described was designed and built for this application. Experiments were carried out in the laboratory and in the field, to investigate the relationship between chlorophyll fluorescence spectra and plant ecophysiology. Remote sensing, spectroscopy, and ecophysiology data were then collected by an intensive research team, joining different experiences and working in national and international projects

  10. Field Measurements of Inadvertent Ingestion Exposure to Metals.

    Science.gov (United States)

    Gorman Ng, Melanie; MacCalman, Laura; Semple, Sean; van Tongeren, Martie

    2017-11-10

    The determinants of inadvertent occupational ingestion exposure are poorly understood, largely due to a lack of available exposure measurement data. In this study, perioral exposure wipes were used as a surrogate for inadvertent ingestion exposure to measure exposure to eight metals (chromium, nickel, aluminium, cobalt, lead, arsenic, manganese, and tin) among 38 workers at 5 work sites in the UK. This work was done alongside a previously reported observational study of hand/object-to-mouth contact frequency. Systematic wipes of the perioral area, and of both hands were taken with proprietary cellulose wipes pre-moistened with deionized water. Measurements were taken at the beginning, middle and end of the shift. Mixed-effect models of exposure measurements were built with area of skin sampled, time during shift, and job group entered as fixed effects and worker identification as a random effect. Linear regression modelling was used to study the effect of hand/object-to-mouth contact frequency on perioral exposure, adjusting for the measured exposure on the hand and observed respirator use. Hand and perioral exposure measurements were correlated with one another (r = 0.79) but mass per unit area exposure was significantly higher on the perioral area than on the hands for seven of the metals (at P exposure, but hand exposure was significantly positively related to perioral exposure and workers who used respirators had significantly higher perioral exposure than those who did not. The results suggest the levels of exposure on the hand and respirator use are important determinants of potential inadvertent ingestion exposure. The results did not demonstrate a relationship between perioral exposure and hand-to-mouth contact frequency. Perioral wipe sampling may be a useful surrogate measure for exposure by the inadvertent ingestion route, but further research is required to confirm the link between perioral levels and actual exposure, measured using biological

  11. A Comparative Study of Simulated and Measured Gear-Flap Flow Interaction

    Science.gov (United States)

    Khorrami, Mehdi R.; Mineck, Raymond E.; Yao, Chungsheng; Jenkins, Luther N.; Fares, Ehab

    2015-01-01

    The ability of two CFD solvers to accurately characterize the transient, complex, interacting flowfield asso-ciated with a realistic gear-flap configuration is assessed via comparison of simulated flow with experimental measurements. The simulated results, obtained with NASA's FUN3D and Exa's PowerFLOW® for a high-fidelity, 18% scale semi-span model of a Gulfstream aircraft in landing configuration (39 deg flap deflection, main landing gear on and off) are compared to two-dimensional and stereo particle image velocimetry measurements taken within the gear-flap flow interaction region during wind tunnel tests of the model. As part of the bench-marking process, direct comparisons of the mean and fluctuating velocity fields are presented in the form of planar contour plots and extracted line profiles at measurement planes in various orientations stationed in the main gear wake. The measurement planes in the vicinity of the flap side edge and downstream of the flap trailing edge are used to highlight the effects of gear presence on tip vortex development and the ability of the computational tools to accurately capture such effects. The present study indicates that both computed datasets contain enough detail to construct a relatively accurate depiction of gear-flap flow interaction. Such a finding increases confidence in using the simulated volumetric flow solutions to examine the behavior of pertinent aer-odynamic mechanisms within the gear-flap interaction zone.

  12. A comparative analysis of physiological responses at submaximal workloads during different laboratory simulations of field cycling.

    Science.gov (United States)

    Kenny, G P; Reardon, F D; Marion, A; Thoden, J S

    1995-01-01

    The purpose of this study was to evaluate the relationships between heart rate (fc), oxygen consumption (VO2), peak force and average force developed at the crank in response to submaximal exercise employing a racing bicycle which was attached to an ergometer (RE), ridden on a treadmill (TC) and ridden on a 400-m track (FC). Eight male trained competitive cyclists rode at three pre-determined work intensities set at a proportion of their maximal oxygen consumption (VO2max): (1) below lactate threshold [work load that produces a VO2 which is 10% less than the lactate threshold VO2 (sub-LT)], (2) lactate threshold VO2 (LT), and (3) above lactate threshold [workload that produces a VO2 which is 10% greater than lactate threshold VO2 (supra-LT)], and equated across exercise modes on the basis of fc. Voltage signals from the crank arm were recorded as FM signals for subsequent representation of peak and average force. Open circuit VO2 measurements were done in the field by Douglas bag gas collection and in the laboratory by automated gas collection and analysis. fc was recorded with a telemeter (Polar Electro Sport Tester, PE3000). Significant differences (P < 0.05) were observed: (1) in VO2 between FC and both laboratory conditions at sub-LT intensity and LT intensities, (2) in peak force between FC and TC at sub-LT intensity, (3) in average force between FC and RE at sub-LT. No significant differences were demonstrated at supra-LT intensity for VO2. Similarly no significant differences were observed in peak and average force for either LT or supra-LT intensities. These data indicate that equating work intensities on the basis of fc measured in laboratory conditions would overestimate the VO2 which would be generated in the field and conversely, that using fc measured in the laboratory to establish field work intensity would underestimate mechanical workload experienced in the field.

  13. Measured ground-surface movements, Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Massey, B.L.

    1981-01-01

    The Cerro Prieto geothermal area in the Mexicali Valley, 30 kilometers southeast of Mexicali, Baja California, incurred slight deformation because of the extraction of hot water and steam, and probably, active tectonism. During 1977 to 1978, the US Geological Survey established and measured two networks of horizontal control in an effort to define both types of movement. These networks consisted of: (1) a regional trilateration net brought into the mountain ranges west of the geothermal area from stations on an existing US Geological Survey crustal-strain network north of the international border; and (2) a local net tied to stations in the regional net and encompassing the present and planned geothermal production area. Electronic distance measuring instruments were used to measure the distances between stations in both networks in 1978, 1979 and 1981. Lines in the regional net averaged 25 km. in length and the standard deviation of an individual measurement is estimated to be approx. 0.3 part per million of line length. The local network was measured using different instrumentation and techniques. The average line length was about 5 km. and the standard deviation of an individual measurement approached 3 parts per million per line length. Ground-surface movements in the regional net, as measured by both the 1979 and 1981 resurveys, were small and did not exceed the noise level. The 1979 resurvey of the local net showed an apparent movement of 2 to 3 centimeters inward toward the center of the production area. This apparent movement was restricted to the general limits of the production area. The 1981 resurvey of the local net did not show increased movement attributable to fluid extraction.

  14. SU-F-T-577: Comparison of Small Field Dosimetry Measurements in Fields Shaped with Conical Applicators On Two Different Accelerating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Muir, B; McEwen, M [National Research Council, Ottawa, ON (Canada); Belec, J; Vandervoort, E [Ottawa Hospital General Campus, Ottawa, ON (Canada); Christiansen, E [Carleton University, Ottawa, ON (Canada)

    2016-06-15

    Purpose: To investigate small field dosimetry measurements and associated uncertainties when conical applicators are used to shape treatment fields from two different accelerating systems. Methods: Output factor measurements are made in water in beams from the CyberKnife radiosurgery system, which uses conical applicators to shape fields from a (flattening filter-free) 6 MV beam, and in a 6 MV beam from the Elekta Precise linear accelerator (with flattening filter) with BrainLab external conical applicators fitted to shape the field. The measurements use various detectors: (i) an Exradin A16 ion chamber, (ii) two Exradin W1 plastic scintillation detectors, (iii) a Sun Nuclear Edge diode, and (iv) two PTW microDiamond synthetic diamond detectors. Profiles are used for accurate detector positioning and to specify field size (FWHM). Output factor measurements are corrected with detector specific correction factors taken from the literature where available and/or from Monte Carlo simulations using the EGSnrc code system. Results: Differences in measurements of up to 1.7% are observed with a given detector type in the same beam (i.e., intra-detector variability). Corrected results from different detectors in the same beam (inter-detector differences) show deviations up to 3 %. Combining data for all detectors and comparing results from the two accelerators results in a 5.9% maximum difference for the smallest field sizes (FWHM=5.2–5.6 mm), well outside the combined uncertainties (∼1% for the smallest beams) and/or differences among detectors. This suggests that the FWHM of a measured profile is not a good specifier to compare results from different small fields with the same nominal energy. Conclusion: Large differences in results for both intra-detector variability and inter-detector differences suggest potentially high uncertainties in detector-specific correction factors. Differences between the results measured in circular fields from different accelerating

  15. The Evolution of the Solar Magnetic Field: A Comparative Analysis of Two Models

    Science.gov (United States)

    McMichael, K. D.; Karak, B. B.; Upton, L.; Miesch, M. S.; Vierkens, O.

    2017-12-01

    Understanding the complexity of the solar magnetic cycle is a task that has plagued scientists for decades. However, with the help of computer simulations, we have begun to gain more insight into possible solutions to the plethora of questions inside the Sun. STABLE (Surface Transport and Babcock Leighton) is a newly developed 3D dynamo model that can reproduce features of the solar cycle. In this model, the tilted bipolar sunspots are formed on the surface (based on the toroidal field at the bottom of the convection zone) and then decay and disperse, producing the poloidal field. Since STABLE is a 3D model, it is able to solve the full induction equation in the entirety of the solar convection zone as well as incorporate many free parameters (such as spot depth and turbulent diffusion) which are difficult to observe. In an attempt to constrain some of these free parameters, we compare STABLE to a surface flux transport model called AFT (Advective Flux Transport) which solves the radial component of the magnetic field on the solar surface. AFT is a state-of-the-art surface flux transport model that has a proven record of being able to reproduce solar observations with great accuracy. In this project, we implement synthetic bipolar sunspots into both models, using identical surface parameters, and run the models for comparison. We demonstrate that the 3D structure of the sunspots in the interior and the vertical diffusion of the sunspot magnetic field play an important role in establishing the surface magnetic field in STABLE. We found that when a sufficient amount of downward magnetic pumping is included in STABLE, the surface magnetic field from this model becomes insensitive to the internal structure of the sunspot and more consistent with that of AFT.

  16. Field measurements of groundwater pollution from agricultural land use

    International Nuclear Information System (INIS)

    Cepuder, P.

    2000-01-01

    This study was carried out in a problem area located to the northeast of Vienna. Several devices were installed for collecting water samples from the soil profile to measure nitrate concentration: suction cups, soil-water samplers, tensiometers and small lysimeters. Measurements of N leaching from four levels of fertilizer application were made at Gross Enzersdorf under irrigated wheat using suction cups and lysimeters. In order to determine fertilizer-N uptake by plants and the amounts retained in the soil and leached, 15 N-enriched fertilizer was applied to micro-plots. The nitrate concentrations below the root zone were measured for winter wheat followed by a cover crop, using suction cups. Soil-water contents were measured in the soil profile with a neutron probe and gypsum blocks, and suctions were measured with tensiometers at four depths. The yields of crops together with total N in grain and straw from fertilizer and soil were calculated. Also presented are data on the mineralization, immobilization and actual fertilizer used by the crops. Winter wheat took up between 27% and 44% of the applied fertilizer. The storage of fertilizer N in soil ranged between 22% and 36%, and only a small fraction was leached. (author)

  17. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    International Nuclear Information System (INIS)

    Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru

    2010-01-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  18. Measuring scientific research in emerging nano-energy field

    Science.gov (United States)

    Guan, Jiancheng; Liu, Na

    2014-04-01

    The purpose of this paper is to comprehensively explore scientific research profiles in the field of emerging nano-energy during 1991-2012 based on bibliometrics and social network analysis. We investigate the growth pattern of research output, and then carry out across countries/regions comparisons on research performances. Furthermore, we examine scientific collaboration across countries/regions by analyzing collaborative intensity and networks in 3- to 4-year intervals. Results indicate with an impressively exponential growth pattern of nano-energy articles, the world share of scientific "giants," such as the USA, Germany, England, France and Japan, display decreasing research trends, especially in the USA. Emerging economies, including China, South Korea and India, exhibit a rise in terms of the world share, illustrating strong development momentum of these countries in nano-energy research. Strikingly, China displays a remarkable rise in scientific influence rivaling Germany, Japan, France, and England in the last few years. Finally, the scientific collaborative network in nano-energy research has expanded steadily. Although the USA and several major European countries play significantly roles on scientific collaboration, China and South Korea exert great influence on scientific collaboration in recent years. The findings imply that emerging economies can earn competitive advantages in some emerging fields by properly engaging a catch-up strategy.

  19. Understanding water uptake in bioaerosols using laboratory measurements, field tests, and modeling

    Science.gov (United States)

    Chaudhry, Zahra; Ratnesar-Shumate, Shanna A.; Buckley, Thomas J.; Kalter, Jeffrey M.; Gilberry, Jerome U.; Eshbaugh, Jonathan P.; Corson, Elizabeth C.; Santarpia, Joshua L.; Carter, Christopher C.

    2013-05-01

    Uptake of water by biological aerosols can impact their physical and chemical characteristics. The water content in a bioaerosol can affect the backscatter cross-section as measured by LIDAR systems. Better understanding of the water content in controlled-release clouds of bioaerosols can aid in the development of improved standoff detection systems. This study includes three methods to improve understanding of how bioaerosols take up water. The laboratory method measures hygroscopic growth of biological material after it is aerosolized and dried. Hygroscopicity curves are created as the humidity is increased in small increments to observe the deliquescence point, then the humidity is decreased to observe the efflorescence point. The field component of the study measures particle size distributions of biological material disseminated into a large humidified chamber. Measurements are made with a Twin-Aerodynamic Particle Sizer (APS, TSI, Inc), -Relative Humidity apparatus where two APS units measure the same aerosol cloud side-by-side. The first operated under dry conditions by sampling downstream of desiccant dryers, the second operated under ambient conditions. Relative humidity was measured within the sampling systems to determine the difference in the aerosol water content between the two sampling trains. The water content of the bioaerosols was calculated from the twin APS units following Khlystov et al. 2005 [1]. Biological material is measured dried and wet and compared to laboratory curves of the same material. Lastly, theoretical curves are constructed from literature values for components of the bioaerosol material.

  20. Properties of the vacuum in models for QCD. Holography vs. resummed field theory. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Zayakin, Andrey V.

    2011-01-17

    This Thesis is dedicated to a comparison of the two means of studying the electromagnetic properties of the QCD vacuum - holography and resummed field theory. I compare two classes of distinct models for the dynamics of the condensates. The first class consists of the so-called holographic models of QCD. Based upon the Maldacena conjecture, it tries to establish the properties of QCD correlation functions from the behavior of classical solutions of field equations in a higher-dimensional theory. Yet in many aspects the holographic approach has been found to be in an excellent agreement with data. These successes are the prediction of the very small viscosity-to-entropy ratio and the predictions of meson spectra up to 5% accuracy in several models. On the other hand, the resummation methods in field theory have not been discarded so far. Both classes of methods have access to condensates. Thus a comprehensive study of condensates becomes possible, in which I compare my calculations in holography and resummed field theory with each other, as well as with lattice results, field theory and experiment. I prove that the low-energy theorems of QCD keep their validity in holographic models with a gluon condensate in a non-trivial way. I also show that the so-called decoupling relation holds in holography models with chiral and gluon condensates, whereas this relation fails in the Dyson-Schwinger approach. On the contrary, my results on the chiral magnetic effect in holography disagree with the weak-field prediction; the chiral magnetic effect (that is, the electric current generation in a magnetic field) is three times less than the current in the weakly-coupled QCD. The chiral condensate behavior is found to be quadratic in external field both in the Dyson-Schwinger approach and in holography, yet we know that in the exact limit the condensate must be linear, thus both classes of models are concluded to be deficient for establishing the correct condensate behaviour in the

  1. Properties of the vacuum in models for QCD. Holography vs. resummed field theory. A comparative study

    International Nuclear Information System (INIS)

    Zayakin, Andrey V.

    2011-01-01

    This Thesis is dedicated to a comparison of the two means of studying the electromagnetic properties of the QCD vacuum - holography and resummed field theory. I compare two classes of distinct models for the dynamics of the condensates. The first class consists of the so-called holographic models of QCD. Based upon the Maldacena conjecture, it tries to establish the properties of QCD correlation functions from the behavior of classical solutions of field equations in a higher-dimensional theory. Yet in many aspects the holographic approach has been found to be in an excellent agreement with data. These successes are the prediction of the very small viscosity-to-entropy ratio and the predictions of meson spectra up to 5% accuracy in several models. On the other hand, the resummation methods in field theory have not been discarded so far. Both classes of methods have access to condensates. Thus a comprehensive study of condensates becomes possible, in which I compare my calculations in holography and resummed field theory with each other, as well as with lattice results, field theory and experiment. I prove that the low-energy theorems of QCD keep their validity in holographic models with a gluon condensate in a non-trivial way. I also show that the so-called decoupling relation holds in holography models with chiral and gluon condensates, whereas this relation fails in the Dyson-Schwinger approach. On the contrary, my results on the chiral magnetic effect in holography disagree with the weak-field prediction; the chiral magnetic effect (that is, the electric current generation in a magnetic field) is three times less than the current in the weakly-coupled QCD. The chiral condensate behavior is found to be quadratic in external field both in the Dyson-Schwinger approach and in holography, yet we know that in the exact limit the condensate must be linear, thus both classes of models are concluded to be deficient for establishing the correct condensate behaviour in the

  2. Shock tunnel measurements of surface pressures in shock induced separated flow field using MEMS sensor array

    International Nuclear Information System (INIS)

    Sriram, R; Jagadeesh, G; Ram, S N; Hegde, G M; Nayak, M M

    2015-01-01

    Characterized not just by high Mach numbers, but also high flow total enthalpies—often accompanied by dissociation and ionization of flowing gas itself—the experimental simulation of hypersonic flows requires impulse facilities like shock tunnels. However, shock tunnel simulation imposes challenges and restrictions on the flow diagnostics, not just because of the possible extreme flow conditions, but also the short run times—typically around 1 ms. The development, calibration and application of fast response MEMS sensors for surface pressure measurements in IISc hypersonic shock tunnel HST-2, with a typical test time of 600 μs, for the complex flow field of strong (impinging) shock boundary layer interaction with separation close to the leading edge, is delineated in this paper. For Mach numbers 5.96 (total enthalpy 1.3 MJ kg −1 ) and 8.67 (total enthalpy 1.6 MJ kg −1 ), surface pressures ranging from around 200 Pa to 50 000 Pa, in various regions of the flow field, are measured using the MEMS sensors. The measurements are found to compare well with the measurements using commercial sensors. It was possible to resolve important regions of the flow field involving significant spatial gradients of pressure, with a resolution of 5 data points within 12 mm in each MEMS array, which cannot be achieved with the other commercial sensors. In particular, MEMS sensors enabled the measurement of separation pressure (at Mach 8.67) near the leading edge and the sharply varying pressure in the reattachment zone. (paper)

  3. Electric field measurements in a nanosecond pulse discharge in atmospheric air

    International Nuclear Information System (INIS)

    Simeni Simeni, Marien; Frederickson, Kraig; Lempert, Walter R; Adamovich, Igor V; Goldberg, Benjamin M; Zhang, Cheng

    2017-01-01

    The paper presents the results of temporally and spatially resolved electric field measurements in a nanosecond pulse discharge in atmospheric air, sustained between a razor edge high-voltage electrode and a plane grounded electrode covered by a thin dielectric plate. The electric field is measured by picosecond four-wave mixing in a collinear phase-matching geometry, with time resolution of approximately 2 ns, using an absolute calibration provided by measurements of a known electrostatic electric field. The results demonstrate electric field offset on the discharge center plane before the discharge pulse due to surface charge accumulation on the dielectric from the weaker, opposite polarity pre-pulse. During the discharge pulse, the electric field follows the applied voltage until ‘forward’ breakdown occurs, after which the field in the plasma is significantly reduced due to charge separation. When the applied voltage is reduced, the field in the plasma reverses direction and increases again, until the weak ‘reverse’ breakdown occurs, producing a secondary transient reduction in the electric field. After the pulse, the field is gradually reduced on a microsecond time scale, likely due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Spatially resolved electric field measurements show that the discharge develops as a surface ionization wave. Significant surface charge accumulation on the dielectric surface is detected near the end of the discharge pulse. Spatially resolved measurements of electric field vector components demonstrate that the vertical electric field in the surface ionization wave peaks ahead of the horizontal electric field. Behind the wave, the vertical field remains low, near the detection limit, while the horizontal field is gradually reduced to near the detection limit at the discharge center plane. These results are consistent with time-resolved measurements of electric field

  4. Stakeholder engagement in comparative effectiveness research: how will we measure success?

    Science.gov (United States)

    Lavallee, Danielle C; Williams, Carla J; Tambor, Ellen S; Deverka, Patricia A

    2012-09-01

    Stakeholder engagement in comparative effectiveness research continues to gain national attention. While various methods are used to gather stakeholder expertise and form recommendations, evaluation of the stakeholder experience is often missing. The lack of evaluation prohibits assessing how effective and meaningful engagement practices are for enhancing research efforts and limits the ability to identify areas for future improvement. We propose that an evaluation plan of engagement processes be developed before stakeholder involvement begins and be required as part of a request for proposal or research grant where stakeholder input is being sought. Furthermore, we recommend the inclusion of six meta-criteria that represent normative goals of multiple studies: respect, trust, legitimacy, fairness, competence and accountability. To aid in the development of future evaluations, we have developed definitions for and matched specific examples of measuring each meta-criterion to serve a guide for others in the field.

  5. Joint Macro and Femto Field Performance and Interference Measurements

    DEFF Research Database (Denmark)

    Jørgensen, Niels T.K.; Isotalo, Tero; Pedersen, Klaus

    2012-01-01

    In this paper macro performance in a co-channel macro and femto setup is studied. Measurements are performed in a live Universal Mobile Telecommunication System (UMTS) network. It is concluded that femto interference does not affect macro downlink (DL) performance as long as the macro Received...

  6. In core measurement and monitoring of reactor (neutron) radiation field

    International Nuclear Information System (INIS)

    Erben, O.

    1985-01-01

    A survey is presented of in core radiation detectors. The principles are described of activation detectors, fission chambers, self-powered neutron detectors and thermal sensors. Systems of in core measurement for WWER nuclear power plants, nuclear reactors of power plants operated by KWU, Babcock and Wilcox, Combustion Engineering and FRAMATOME are described. (E.S.)

  7. Data Modeling for Measurements in the Metrology and Testing Fields

    CERN Document Server

    Pavese, Franco

    2009-01-01

    Offers a comprehensive set of modeling methods for data and uncertainty analysis. This work develops methods and computational tools to address general models that arise in practice, allowing for a more valid treatment of calibration and test data and providing an understanding of complex situations in measurement science

  8. Earth's gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements

    Science.gov (United States)

    Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.

    2017-09-01

    GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.

  9. Determination of polarization fields in group III-nitride heterostructures by capacitance-voltage-measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rychetsky, Monir, E-mail: monir.rychetsky@physik.tu-berlin.de; Avinc, Baran; Wernicke, Tim; Bellmann, Konrad; Sulmoni, Luca [Institute of Solid State Physics, Technische Universität Berlin, Berlin (Germany); Koslow, Ingrid; Rass, Jens; Kneissl, Michael [Institute of Solid State Physics, Technische Universität Berlin, Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Berlin (Germany); Hoffmann, Veit; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Berlin (Germany); Wild, Johannes; Zweck, Josef [Fakultät für Physik, University of Regensburg, Regensburg (Germany); Witzigmann, Bernd [Computational Electronics and Photonics Group and CINSaT, University of Kassel, Kassel (Germany)

    2016-03-07

    The polarization fields in wurtzite group III-nitrides strongly influence the optical properties of InAlGaN-based light emitters, e.g., the electron and hole wave function overlap in quantum wells. In this paper, we propose a new approach to determine these fields by capacitance-voltage measurements (CVM). Sheet charges generated by a change of the microscopic polarization at heterointerfaces influence the charge distribution in PIN junctions and therefore the depletion width and the capacitance. We show that it is possible to determine the strength and direction of the internal fields by comparing the depletion widths of two PIN junctions, one influenced by internal polarization fields and one without as a reference. For comparison, we conducted coupled Poisson/carrier transport simulations on the CVM of the polarization-influenced sample. We also demonstrate the feasibility and limits of the method by determining the fields in GaN/InGaN and GaN/AlGaN double heterostructures on (0001) c-plane grown by metal organic vapor phase epitaxy and compare both evaluation methods. The method yields (−0.50 ± 0.07) MV/cm for In{sub 0.08}Ga{sub 0.92}N/GaN, (0.90 ± 0.13) MV/cm for Al{sub 0.18}Ga{sub 0.82}N/GaN, and (2.0 ± 0.3) MV/cm for Al{sub 0.31}Ga{sub 0.69}N/GaN heterostructures.

  10. The salt tolerance of Quinoa measured under field conditions

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Ahmadi, Seyed Hamid; Jensen, Christian Richardt

    Plant growth and economic yield decreases when high salt concentrations build-up in the root zone. Quinoa is a facultative halophyte crop, which can withstand saline conditions. There is no documentation of the threshold soil electrical conductivity that cause yield reduction in quinoa under field...... conditions. In this study the threshold electrical conductivity of soil saturation extract (ECe) and maximum ECe corresponding to no economic yield of quinoa (cv. Titicaca) were determined. The experimental factors were five levels of saline solution (0, 10, 20, 30 and 40 dS m-1) imposed during flowering...... and the minimum relative yield was 47% observed at 40 dS m-1 saline solution (FI40). The results showed that quinoa can grow under highly saline conditions although the seed yield decreases with increased ECe. The threshold ECe of quinoa was estimated to be between 3-6 dS m-1. There was 50% reduction in seed...

  11. A Comparative Field Monitoring of Column Shortenings in Tall Buildings Using Wireless and Wired Sensor Network Systems

    Directory of Open Access Journals (Sweden)

    Sungho Lee

    2016-01-01

    Full Text Available A comparative field measurement for column shortening of tall buildings is presented in this study, with a focus on the reliability and stability of a wireless sensor network. A wireless sensor network was used for monitoring the column shortenings of a 58-story building under construction. The wireless sensor network, which was composed of sensor and master nodes, employed the ultra-high-frequency band and CDMA communication methods. To evaluate the reliability and stability of the wireless sensor network system, the column shortenings were also measured using a conventional wired monitoring system. Two vibration wire gauges were installed in each of the selected 7 columns and 3 walls. Measurements for selected columns and walls were collected for 270 days after casting of the concrete. The results measured by the wireless sensor network were compared with the results of the conventional method. The strains and column shortenings measured using both methods showed good agreement for all members. It was verified that the column shortenings of tall buildings could be monitored using the wireless sensor network system with its reliability and stability.

  12. Measurement and numerical simulation of high intensity focused ultrasound field in water

    Science.gov (United States)

    Lee, Kang Il

    2017-11-01

    In the present study, the acoustic field of a high intensity focused ultrasound (HIFU) transducer in water was measured by using a commercially available needle hydrophone intended for HIFU use. To validate the results of hydrophone measurements, numerical simulations of HIFU fields were performed by integrating the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation from the frequency-domain perspective with the help of a MATLAB-based software package developed for HIFU simulation. Quantitative values for the focal waveforms, the peak pressures, and the size of the focal spot were obtained in various regimes of linear, quasilinear, and nonlinear propagation up to the source pressure levels when the shock front was formed in the waveform. The numerical results with the HIFU simulator solving the KZK equation were compared with the experimental data and found to be in good agreement. This confirms that the numerical simulation based on the KZK equation is capable of capturing the nonlinear pressure field of therapeutic HIFU transducers well enough to make it suitable for HIFU treatment planning.

  13. μ-PIV measurements of the ensemble flow fields surrounding a migrating semi-infinite bubble.

    Science.gov (United States)

    Yamaguchi, Eiichiro; Smith, Bradford J; Gaver, Donald P

    2009-08-01

    Microscale particle image velocimetry (μ-PIV) measurements of ensemble flow fields surrounding a steadily-migrating semi-infinite bubble through the novel adaptation of a computer controlled linear motor flow control system. The system was programmed to generate a square wave velocity input in order to produce accurate constant bubble propagation repeatedly and effectively through a fused glass capillary tube. We present a novel technique for re-positioning of the coordinate axis to the bubble tip frame of reference in each instantaneous field through the analysis of the sudden change of standard deviation of centerline velocity profiles across the bubble interface. Ensemble averages were then computed in this bubble tip frame of reference. Combined fluid systems of water/air, glycerol/air, and glycerol/Si-oil were used to investigate flows comparable to computational simulations described in Smith and Gaver (2008) and to past experimental observations of interfacial shape. Fluorescent particle images were also analyzed to measure the residual film thickness trailing behind the bubble. The flow fields and film thickness agree very well with the computational simulations as well as existing experimental and analytical results. Particle accumulation and migration associated with the flow patterns near the bubble tip after long experimental durations are discussed as potential sources of error in the experimental method.

  14. μ-PIV measurements of the ensemble flow fields surrounding a migrating semi-infinite bubble

    Science.gov (United States)

    Yamaguchi, Eiichiro; Smith, Bradford J.; Gaver, Donald P.

    2012-01-01

    Microscale particle image velocimetry (μ-PIV) measurements of ensemble flow fields surrounding a steadily-migrating semi-infinite bubble through the novel adaptation of a computer controlled linear motor flow control system. The system was programmed to generate a square wave velocity input in order to produce accurate constant bubble propagation repeatedly and effectively through a fused glass capillary tube. We present a novel technique for re-positioning of the coordinate axis to the bubble tip frame of reference in each instantaneous field through the analysis of the sudden change of standard deviation of centerline velocity profiles across the bubble interface. Ensemble averages were then computed in this bubble tip frame of reference. Combined fluid systems of water/air, glycerol/air, and glycerol/Si-oil were used to investigate flows comparable to computational simulations described in Smith and Gaver (2008) and to past experimental observations of interfacial shape. Fluorescent particle images were also analyzed to measure the residual film thickness trailing behind the bubble. The flow fields and film thickness agree very well with the computational simulations as well as existing experimental and analytical results. Particle accumulation and migration associated with the flow patterns near the bubble tip after long experimental durations are discussed as potential sources of error in the experimental method. PMID:23049158

  15. Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data

    International Nuclear Information System (INIS)

    Veltman, Karin; Huijbregts, Mark A.J.; Vijver, Martina G.; Peijnenburg, Willie J.G.M.; Hobbelen, Peter H.F.; Koolhaas, Josee E.; Gestel, Cornelis A.M. van; Vliet, Petra C.J. van; Jan Hendriks, A.

    2007-01-01

    The mechanistic bioaccumulation model OMEGA (Optimal Modeling for Ecotoxicological Applications) is used to estimate accumulation of zinc (Zn), copper (Cu), cadmium (Cd) and lead (Pb) in the earthworm Lumbricus rubellus. Our validation to field accumulation data shows that the model accurately predicts internal cadmium concentrations. In addition, our results show that internal metal concentrations in the earthworm are less than linearly (slope < 1) related to the total concentration in soil, while risk assessment procedures often assume the biota-soil accumulation factor (BSAF) to be constant. Although predicted internal concentrations of all metals are generally within a factor 5 compared to field data, incorporation of regulation in the model is necessary to improve predictability of the essential metals such as zinc and copper. - Earthworm metal concentrations are less than linearly related to total soil concentrations and predicted pore water concentrations

  16. Quantum nondemolition measurement of optical field fluctuations by optomechanical interaction

    Science.gov (United States)

    Pontin, A.; Bonaldi, M.; Borrielli, A.; Marconi, L.; Marino, F.; Pandraud, G.; Prodi, G. A.; Sarro, P. M.; Serra, E.; Marin, F.

    2018-03-01

    According to quantum mechanics, if we keep observing a continuous variable we generally disturb its evolution. For a class of observables, however, it is possible to implement a so-called quantum nondemolition measurement: by confining the perturbation to the conjugate variable, the observable is estimated with arbitrary accuracy, or prepared in a well-known state. For instance, when the light bounces on a movable mirror, its intensity is not perturbed (the effect is just seen on the phase of the radiation), but the radiation pressure allows one to trace back its fluctuations by observing the mirror motion. In this work, we implement a cavity optomechanical experiment based on an oscillating micromirror, and we measure correlations between the output light intensity fluctuations and the mirror motion. We demonstrate that the uncertainty of the former is reduced below the shot-noise level determined by the corpuscular nature of light.

  17. A Fast Digital Integrator for Magnetic Field Measurements at CERN

    CERN Document Server

    Arpaia, P; Cimmino, P; Giloteaux, D; Masi, A; García-Pérez, J; Spiezia, G; Walckiers, L

    2007-01-01

    A self-calibrating digital instrument for flux measurements on magnets for accelerators used in basic research on subnuclear particles is proposed. The instrument acquires voltage arising from rotating coils transducers with a theoretical resolution of 10 ppt and a maximum sampling frequency of 800 kS/s. Then, samples are integrated on-line and suitably processed in order to improve time resolution and flux accuracy. This allows the limits of state-of-the-art digital fluximeters, related mainly to newgeneration rotating coils, with trigger rate of 20 kHz and coils speed of 10 rps, to be overcome. The instrument has been prototyped at Magnetic Measurement and Testing (MTM) Group of European Laboratory for Nuclear Research (CERN), under a framework of cooperation with the University of Sannio. Details on hardware and firmware conception, as well as on experimental results of the instrument principle validation, and of the preliminary metrological characterization of the prototype, are provided.

  18. [Measurement of chemical agents in metallurgy field: electric steel plant].

    Science.gov (United States)

    Cottica, D; Grignani, E; Ghitti, R; Festa, D; Apostoli, P

    2012-01-01

    The steel industry maintains its important position in the context of the Italian production involving thousands of workers. The iron and steel processes are divided into primary steel industry, production of intermediate minerals, and secondary steel, scrap from the production of semi-finished industrial and consumer sector (metal inserted into components and metal used for dissipative uses, primarily coatings) and industrial waste. The paper presents the results of environmental monitoring carried out in some electric steel plant for the measurement of airborne chemicals that characterize the occupational exposure of workers employed in particular area like electric oven, to treatment outside the furnace, continuous casting area. For the sampling of the pollutants were used both personal and in fixed positions samplers. The pollutants measured are those typical of steel processes inhalable dust, metals, respirable dust, crystalline silica, but also Polycyclic Aromatic Hydrocarbons (PAH), polychlorinated dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs).

  19. Transient full-field vibration measurement using spectroscopical stereo photogrammetry.

    Science.gov (United States)

    Yue, Kaiduan; Li, Zhongke; Zhang, Ming; Chen, Shan

    2010-12-20

    Contrasted with other vibration measurement methods, a novel spectroscopical photogrammetric approach is proposed. Two colored light filters and a CCD color camera are used to achieve the function of two traditional cameras. Then a new calibration method is presented. It focuses on the vibrating object rather than the camera and has the advantage of more accuracy than traditional camera calibration. The test results have shown an accuracy of 0.02 mm.

  20. Spatial measurement errors in the field of spatial epidemiology

    OpenAIRE

    Zhang, Zhijie; Manjourides, Justin; Cohen, Ted; Hu, Yi; Jiang, Qingwu

    2016-01-01

    Background: Spatial epidemiology has been aided by advances in geographic information systems, remote sensing, global positioning systems and the development of new statistical methodologies specifically designed for such data. Given the growing popularity of these studies, we sought to review and analyze the types of spatial measurement errors commonly encountered during spatial epidemiological analysis of spatial data. Methods: Google Scholar, Medline, and Scopus databases were searched usi...

  1. Comparative performance of three experimental hut designs for measuring malaria vector responses to insecticides in Tanzania.

    Science.gov (United States)

    Massue, Dennis J; Kisinza, William N; Malongo, Bernard B; Mgaya, Charles S; Bradley, John; Moore, Jason D; Tenu, Filemoni F; Moore, Sarah J

    2016-03-15

    Experimental huts are simplified, standardized representations of human habitations that provide model systems to evaluate insecticides used in indoor residual spray (IRS) and long-lasting insecticidal nets (LLINs) to kill disease vectors. Hut volume, construction materials and size of entry points impact mosquito entry and exposure to insecticides. The performance of three standard experimental hut designs was compared to evaluate insecticide used in LLINs. Field studies were conducted at the World Health Organization Pesticide Evaluation Scheme (WHOPES) testing site in Muheza, Tanzania. Three East African huts, three West African huts, and three Ifakara huts were compared using Olyset(®) and Permanet 2.0(®) versus untreated nets as a control. Outcomes measured were mortality, induced exophily (exit rate), blood feeding inhibition and deterrence (entry rate). Data were analysed using linear mixed effect regression and Bland-Altman comparison of paired differences. A total of 613 mosquitoes were collected in 36 nights, of which 13.5% were Anopheles gambiae sensu lato, 21% Anopheles funestus sensu stricto, 38% Mansonia species and 28% Culex species. Ifakara huts caught three times more mosquitoes than the East African and West African huts, while the West African huts caught significantly fewer mosquitoes than the other hut types. Mosquito densities were low, very little mosquito exit was measured in any of the huts with no measurable exophily caused by the use of either Olyset or Permanet. When the huts were directly compared, the West African huts measured greater exophily than other huts. As unholed nets were used in the experiments and few mosquitoes were captured, it was not possible to measure difference in feeding success either between treatments or hut types. In each of the hut types there was increased mortality when Permanet or Olyset were present inside the huts compared to the control, however this did not vary between the hut types. Both East African

  2. Measurements of Electromagnetic Fields Emitted from Cellular Base Stations in

    Directory of Open Access Journals (Sweden)

    K. J. Ali

    2013-05-01

    Full Text Available With increasing the usage of mobile communication devices and internet network information, the entry of private telecommunications companies in Iraq has been started since 2003. These companies began to build up cellular towers to accomplish the telecommunication works but they ignore the safety conditions imposed for the health and environment that are considered in random way. These negative health effects which may cause a health risk for life beings and environment pollution. The aim of this work is to determine the safe and unsafe ranges and discuss damage caused by radiation emitted from Asia cell base stations in Shirqat city and discuses the best ways in which can be minimize its exposure level to avoid its negative health effects. Practical measurements of power density around base stations has been accomplished by using a radiation survey meter type (Radio frequency EMF Strength Meter 480846 in two ways. The first way of measurements has been accomplished at a height of 2 meters above ground for different distances from (0-300 meters .The second way is at a distance of 150 meters for different levels from (2-15 meters above ground level. The maximum measured power density is about (3 mW/m2. Results indicate that the levels of power density are far below the RF radiation exposure of USSR safety standards levels. And that means these cellular base station don't cause negative the health effect for life being if the exposure is within the acceptable international standard levels.

  3. Durable Airtightness in Single-Family Dwellings: Field Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Wanyu R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-01

    Durability of building envelope is important to new homes that are increasingly built with improved levels of airtightness. It is also important to weatherized homes such that energy savings from retrofit measures, such as air sealing, are persistent. We presented a comparison of air leakage measurements collected in November 2013 through March 2014, with two sets of prior data collected between 2001-2003 from 17 new homes located near Atlanta, GA, and 17 homes near Boise, ID that were weatherized in 2007-2008. The purpose of the comparison is to determine if there are changes to the airtightness of building envelopes over time. The air leakage increased in all but one of the new homes, with a mean increase of about 25%. The weatherized homes also showed an increase in the mean air leakage (12%). We performed a regression analysis to describe the relationship between prior and current measurements in terms of normalized leakage (NL). The best estimate of the aging factor predicts a 15% increase in NL over ten years. Further analysis using ResDB data (LBNL’s Residential Diagnostic Database) showed the expected changes in air leakage if aging were modeled. These results imply that we should examine the causes of increased leakage and methods to avoid them. This increase in leakage with time should be accounted for in long-term population-wide energy savings estimates, such as those used in ratings or energy savings programs.

  4. A Prior Knowledge-Based Method to Derivate High-Resolution Leaf Area Index Maps with Limited Field Measurements

    Directory of Open Access Journals (Sweden)

    Yuechan Shi

    2016-12-01

    Full Text Available High-resolution leaf area index (LAI maps from remote sensing data largely depend on empirical models, which link field LAI measurements to the vegetation index. The existing empirical methods often require the field measurements to be sufficient for constructing a reliable model. However, in many regions of the world, there are limited field measurements available. This paper presents a prior knowledge-based (PKB method to derivate LAI with limited field measurements, in an effort to improve the accuracy of empirical model. Based on the assumption that the experimental sites with the same vegetation type can be represented by similar models, a priori knowledge for crops was extracted from the published models in various cropland sites. The knowledge, composed of an initial guess of each model parameter with the associated uncertainty, was then combined with the local field measurements to determine a semi-empirical model using the Bayesian inversion method. The proposed method was evaluated at a cropland site in the Huailai region of Hebei Province, China. Compared with the regression method, the proposed PKB method can effectively improve the accuracy of empirical model and LAI estimation, when the field measurements were limited. The results demonstrate that a priori knowledge extracted from the universal sites can provide important auxiliary information to improve the representativeness of the empirical model in a given study area.

  5. Poloidal magnetic field profile measurements on the microwave tokamak experiment using far-infrared polarimetry

    International Nuclear Information System (INIS)

    Rice, B.W.

    1992-09-01

    The measurement of plasma poloidal magnetic field (B) profiles in tokamaks with good temporal and spatial resolution has proven to be a difficult but important measurement. A large range of toroidal confinement phenomena is expected to depend sensitively on the radial variation of B including the tearing instability, sawtooth oscillations, disruptions, and transport. Experimental confirmation of theoretical models describing these phenomena has been hampered by the lack of detailed B measurements. A fifteen chord far-infrared (FIR) polarimeter has been developed to measure B in the Microwave Tokamak, Experiment (MTX). Polarimetry utilizes the well known Faraday rotation effect, which causes a rotation of the polarization of an FIR beam propagating in the poloidal plane. The rotation angle is proportional to the component of B parallel to the beam. A new technique for determining the Faraday rotation angle is introduced, based on phase measurements of a rotating polarization ellipse. This instrument has been used successfully to measure B profiles for a wide range of experiments on MTX. For ohmic discharges, measurements of the safety factor on axis give q 0 ∼ 0.75 during sawteeth and q 0 > 1 without sawteeth. Large perturbations to the polarimeter signals correlated with the sawtooth crash are observed during some discharges. Measurements in discharges with electron cyclotron heating (ECH) show a transition from a hollow to peaked J profile that is triggered by the ECH pulse. Current-ramp experiments were done to perturb the J profile from the nominal Spitzer conductivity profile. Profiles for initial current ramps and ramps starting from a stable equilibrium have been measured and are compared with a cylindrical diffusion model. Finally, the tearing mode stability equation is solved using measured J profiles. Stability predictions are in good agreement with the existence of oscillations observed on the magnetic loops

  6. Idaho field experiment 1981. Volume 2: measurement data

    Energy Technology Data Exchange (ETDEWEB)

    Start, G E; Sagendorf, J F; Ackermann, G R; Cate, J H; Hukari, N F; Dickson, C R

    1984-04-01

    The 1981 Idaho Field Experiment was conducted in southeastern Idaho over the upper Snake River Plain. Nine test-day case studies were conducted between July 15 and 30, 1981. Releases of SF/sub 6/ gaseous tracer were made for 8-hour periods from 46m above ground. Tracer was sampled hourly, for 12 sequential hours, at about 100 locations within an area 24km square. Also, a single total integrated sample of about 30 hours duration was collected at approximately 100 sites within an area 48 by 72km square (using 6km spacings). Extensive tower profiles of meteorology at the release point were collected. RAWINSONDES, RABALS and PIBALS were collected at 3 to 5 sites. Horizontal, low-altitude winds were monitored using the INEL MESONET. SF/sub 6/ tracer plume releases were marked with co-located oil fog releases and bi-hourly sequential launches of tetroon pairs. Aerial LIDAR observations of the oil fog plume and airborne samples of SF/sub 6/ were collected. High altitude aerial photographs of daytime plumes were collected. Volume II lists the data in tabular form or cites the special supplemental reports by other participating contractors. While the primary user file and the data archive are maintained on 9 track/1600 cpi magnetic tapes, listings of the individual values are provided for the user who either cannot utilize the tapes or wishes to preview the data. The accuracies and quality of these data are described.

  7. ACHIEVING CONSISTENT DOPPLER MEASUREMENTS FROM SDO /HMI VECTOR FIELD INVERSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Schuck, Peter W. [Space Weather Laboratory, Code 674, Heliophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771 (United States); Antiochos, S. K. [Heliophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771 (United States); Leka, K. D.; Barnes, Graham, E-mail: peter.schuck@nasa.gov, E-mail: spiro.antiochos@nasa.gov, E-mail: leka@nwra.com, E-mail: graham@nwra.com [NorthWest Research Associates, 3380 Mitchell Lane, Boulder, CO 80301 (United States)

    2016-06-01

    NASA’s Solar Dynamics Observatory is delivering vector magnetic field observations of the full solar disk with unprecedented temporal and spatial resolution; however, the satellite is in a highly inclined geosynchronous orbit. The relative spacecraft–Sun velocity varies by ±3 km s{sup −1} over a day, which introduces major orbital artifacts in the Helioseismic Magnetic Imager (HMI) data. We demonstrate that the orbital artifacts contaminate all spatial and temporal scales in the data. We describe a newly developed three-stage procedure for mitigating these artifacts in the Doppler data obtained from the Milne–Eddington inversions in the HMI pipeline. The procedure ultimately uses 32 velocity-dependent coefficients to adjust 10 million pixels—a remarkably sparse correction model given the complexity of the orbital artifacts. This procedure was applied to full-disk images of AR 11084 to produce consistent Dopplergrams. The data adjustments reduce the power in the orbital artifacts by 31 dB. Furthermore, we analyze in detail the corrected images and show that our procedure greatly improves the temporal and spectral properties of the data without adding any new artifacts. We conclude that this new procedure makes a dramatic improvement in the consistency of the HMI data and in its usefulness for precision scientific studies.

  8. Influence and Correction from the Human Body on the Measurement of a Power-Frequency Electric Field Sensor

    Directory of Open Access Journals (Sweden)

    Dongping Xiao

    2016-06-01

    Full Text Available According to the operating specifications of existing electric field measuring instruments, measuring technicians must be located far from the instruments to eliminate the influence of the human body occupancy on a spatial electric field. Nevertheless, in order to develop a portable safety protection instrument with an effective electric field warning function for working staff in a high-voltage environment, it is necessary to study the influence of an approaching human body on the measurement of an electric field and to correct the measurement results. A single-shaft electric field measuring instrument called the Type LP-2000, which was developed by our research team, is used as the research object in this study. First, we explain the principle of electric field measurement and describe the capacitance effect produced by the human body. Through a theoretical analysis, we show that the measured electric field value decreases as a human body approaches. Their relationship is linearly proportional. Then, the ratio is identified as a correction coefficient to correct for the influence of human body proximity. The conclusion drawn from the theoretical analysis is proved via simulation. The correction coefficient kb = 1.8010 is obtained on the basis of the linear fitting of simulated data. Finally, a physical experiment is performed. When no human is present, we compare the results from the Type LP-2000 measured with Narda EFA-300 and the simulated value to verify the accuracy of the Type LP-2000. For the case of an approaching human body, the correction coefficient kb* = 1.9094 is obtained by comparing the data measured with the Type LP-2000 to the simulated value. The correction coefficient obtained from the experiment (i.e., kb* is highly consistent with that obtained from the simulation (i.e., kb. Two experimental programs are set; under these programs, the excitation voltages and distance measuring points are regulated to produce different

  9. Influence and Correction from the Human Body on the Measurement of a Power-Frequency Electric Field Sensor.

    Science.gov (United States)

    Xiao, Dongping; Liu, Huaitong; Zhou, Qiang; Xie, Yutong; Ma, Qichao

    2016-06-10

    According to the operating specifications of existing electric field measuring instruments, measuring technicians must be located far from the instruments to eliminate the influence of the human body occupancy on a spatial electric field. Nevertheless, in order to develop a portable safety protection instrument with an effective electric field warning function for working staff in a high-voltage environment, it is necessary to study the influence of an approaching human body on the measurement of an electric field and to correct the measurement results. A single-shaft electric field measuring instrument called the Type LP-2000, which was developed by our research team, is used as the research object in this study. First, we explain the principle of electric field measurement and describe the capacitance effect produced by the human body. Through a theoretical analysis, we show that the measured electric field value decreases as a human body approaches. Their relationship is linearly proportional. Then, the ratio is identified as a correction coefficient to correct for the influence of human body proximity. The conclusion drawn from the theoretical analysis is proved via simulation. The correction coefficient kb = 1.8010 is obtained on the basis of the linear fitting of simulated data. Finally, a physical experiment is performed. When no human is present, we compare the results from the Type LP-2000 measured with Narda EFA-300 and the simulated value to verify the accuracy of the Type LP-2000. For the case of an approaching human body, the correction coefficient kb* = 1.9094 is obtained by comparing the data measured with the Type LP-2000 to the simulated value. The correction coefficient obtained from the experiment (i.e., kb*) is highly consistent with that obtained from the simulation (i.e., kb). Two experimental programs are set; under these programs, the excitation voltages and distance measuring points are regulated to produce different electric field

  10. Measurement of eye aberrations in a speckle field

    International Nuclear Information System (INIS)

    Larichev, A V; Ivanov, P V; Iroshnikov, N G; Shmalgauzen, V I

    2001-01-01

    The influence of speckles on the performance of a Shark-Hartmann wavefront sensor is investigated in the eye aberration studies. The dependence of the phase distortion measurement error on the characteristic speckle size is determined experimentally. Scanning of the reference source was used to suppress the speckle structure of the laser beam scattered by the retina. The technique developed by us made it possible to study the time dependence of the human eye aberrations with a resolution of 30 ms. (laser applications and other topics in quantum electronics)

  11. Biomass burning fuel consumption rates: a field measurement database

    CSIR Research Space (South Africa)

    Van Leeuwen, TT

    2014-01-01

    Full Text Available are generally not susceptible to fire except during extreme drought periods due to their dense canopy cover keeping humidity high and wind speed low,25 and also because the amount of fuel on the surface is low due to rapid decomposition. However, human... by high temperatures, low humidities, and high offshore Santa Ana winds (Moritz et al., 2010) may lead to large and costly wildfires (Keeley et al., 2009).20 We found 2 studies covering 4 different measurement locations in southwestern US (Table 1, Fig. 1g...

  12. Continuous measurements of soil radon under regular field conditions

    International Nuclear Information System (INIS)

    Font, LL

    1999-01-01

    Continuous soil radon measurements were performed in the frame of an European Community-radon network using the Clipperton II detector. It has been found that in some periods, soil radon levels obtained with one Clipperton II probe are very different from those obtained with another probe placed at the same depth but a short distance apart. It has been also found that the response of the probes to a sudden change of radon concentration is controlled by the diffusion process along the bottom tube of the probe. Therefore, this study shows that the experimental data can be attributed to the natural behaviour of soil radon

  13. Monthly gravity field recovery from GRACE orbits and K-band measurements using variational equations approach

    Directory of Open Access Journals (Sweden)

    Changqing Wang

    2015-07-01

    Full Text Available The Gravity Recovery and Climate Experiment (GRACE mission can significantly improve our knowledge of the temporal variability of the Earth's gravity field. We obtained monthly gravity field solutions based on variational equations approach from GPS-derived positions of GRACE satellites and K-band range-rate measurements. The impact of different fixed data weighting ratios in temporal gravity field recovery while combining the two types of data was investigated for the purpose of deriving the best combined solution. The monthly gravity field solution obtained through above procedures was named as the Institute of Geodesy and Geophysics (IGG temporal gravity field models. IGG temporal gravity field models were compared with GRACE Release05 (RL05 products in following aspects: (i the trend of the mass anomaly in China and its nearby regions within 2005–2010; (ii the root mean squares of the global mass anomaly during 2005–2010; (iii time-series changes in the mean water storage in the region of the Amazon Basin and the Sahara Desert between 2005 and 2010. The results showed that IGG solutions were almost consistent with GRACE RL05 products in above aspects (i–(iii. Changes in the annual amplitude of mean water storage in the Amazon Basin were 14.7 ± 1.2 cm for IGG, 17.1 ± 1.3 cm for the Centre for Space Research (CSR, 16.4 ± 0.9 cm for the GeoForschungsZentrum (GFZ and 16.9 ± 1.2 cm for the Jet Propulsion Laboratory (JPL in terms of equivalent water height (EWH, respectively. The root mean squares of the mean mass anomaly in Sahara were 1.2 cm, 0.9 cm, 0.9 cm and 1.2 cm for temporal gravity field models of IGG, CSR, GFZ and JPL, respectively. Comparison suggested that IGG temporal gravity field solutions were at the same accuracy level with the latest temporal gravity field solutions published by CSR, GFZ and JPL.

  14. Measurement of two-dimensional Doppler wind fields using a field widened Michelson interferometer.

    Science.gov (United States)

    Langille, Jeffery A; Ward, William E; Scott, Alan; Arsenault, Dennis L

    2013-03-10

    An implementation of the field widened Michelson concept has been applied to obtain high resolution two-dimensional (2D) images of low velocity (interferometer scanning mirror position is controlled to subangstrom precision with subnanometer repeatability using the multi-application low-voltage piezoelectric instrument control electronics developed by COM DEV Ltd.; it is the first implementation of this system as a phase stepping Michelson. In this paper the calibration and characterization of the Doppler imaging system is described and the planned implementation of this new technique for imaging 2D wind and irradiance fields using the earth's airglow is introduced. Observations of Doppler winds produced by a rotating wheel are reported and shown to be of sufficient precision for buoyancy wave observations in airglow in the mesopause region of the terrestrial atmosphere.

  15. Statistical validation of event predictors: A comparative study based on the field of seizure prediction

    International Nuclear Information System (INIS)

    Feldwisch-Drentrup, Hinnerk; Schulze-Bonhage, Andreas; Timmer, Jens; Schelter, Bjoern

    2011-01-01

    The prediction of events is of substantial interest in many research areas. To evaluate the performance of prediction methods, the statistical validation of these methods is of utmost importance. Here, we compare an analytical validation method to numerical approaches that are based on Monte Carlo simulations. The comparison is performed in the field of the prediction of epileptic seizures. In contrast to the analytical validation method, we found that for numerical validation methods insufficient but realistic sample sizes can lead to invalid high rates of false positive conclusions. Hence we outline necessary preconditions for sound statistical tests on above chance predictions.

  16. Comparative mapping of soil physical-chemical and structural parameters at field scale to identify zones of enhanced leaching risk.

    Science.gov (United States)

    Norgaard, Trine; Moldrup, Per; Olsen, Preben; Vendelboe, Anders L; Iversen, Bo V; Greve, Mogens H; Kjaer, Jeanne; de Jonge, Lis W

    2013-01-01

    Preferential flow and particle-facilitated transport through macropores contributes significantly to the transport of strongly sorbing substances such as pesticides and phosphorus. The aim of this study was to perform a field-scale characterization of basic soil physical properties like clay and organic carbon content and investigate whether it was possible to relate these to derived structural parameters such as bulk density and conservative tracer parameters and to actual particle and phosphorus leaching patterns obtained from laboratory leaching experiments. Sixty-five cylindrical soil columns of 20-cm height and 20-cm diameter and bulk soil were sampled from the topsoil in a 15-m × 15-m grid in an agricultural loamy field. Highest clay contents and highest bulk densities were found in the northern part of the field. Leaching experiments with a conservative tracer showed fast 5% tracer arrival times and high tracer recovery percentages from columns sampled from the northern part of the field, and the leached mass of particles and particulate phosphorus was also largest from this area. Strong correlations were obtained between 5% tracer arrival time, tracer recovery, and bulk density, indicating that a few well-aligned and better connected macropores might change the hydraulic conductivity between the macropores and the soil matrix, triggering an onset of preferential flow at lower rain intensities compared with less compacted soil. Overall, a comparison mapping of basic and structural characteristics including soil texture, bulk density, dissolved tracer, particle and phosphorus transport parameters identified the northern one-third of the field as a zone with higher leaching risk. This risk assessment based on parameter mapping from measurements on intact samples was in good agreement with 9 yr of pesticide detections in two horizontal wells and with particle and phosphorus leaching patterns from a distributed, shallow drainage pipe system across the field

  17. Savannah River Site Experiences in In Situ Field Measurements of Radioactive Materials

    International Nuclear Information System (INIS)

    Moore, F.S.

    1999-01-01

    This paper discusses some of the field gamma-ray measurements made at the Savannah River Site, the equipment used for the measurements, and lessons learned during in situ identification and characterization of radioactive materials

  18. REMANENCE MEASUREMENTS ON INDIVIDUAL MAGNETOTACTIC BACTERIA USING A PULSED MAGNETIC-FIELD

    NARCIS (Netherlands)

    PENNINGA, Ietje; Waard , de Hendrik; MOSKOWITZ, BM; BAZYLINSKI, DA; FRANKEL, RB

    We describe pulsed-magnetic-field remanence measurements of individual, killed, undisrupted cells of three different types of magnetotactic bacteria. The measurement technique involved the observation of aligned, individual magnetotactic bacteria with a light microscope as they were subjected to

  19. Application of transient magnetic field to the measurement of nuclear magnetic moments

    International Nuclear Information System (INIS)

    Ribas, R.V.

    1987-01-01

    A review on: the mechanism for producing transient magnetic field; techniques for measuring nuclear gyromagnetic factor; and some examples of recent measurements using this technique is presented. (M.C.K.) [pt

  20. Hyperspectral interferometry for single-shot absolute measurement of 3-D shape and displacement fields

    Directory of Open Access Journals (Sweden)

    Ruiz P. D.

    2010-06-01

    Full Text Available We propose a method that we call Hyperspectral Interferometry (HSI to resolve the 2π phase unwrapping problem in the analysis of interferograms recorded with a narrow-band light source. By using a broad-band light source and hyperspectral imaging system, a set of interferograms at different wavenumbers are recorded simultaneously on a high resolution image sensor. These are then assembled to form a three-dimensional intensity distribution. By Fourier transformation along the wavenumber axis, an absolute optical path difference is obtained for each pixel independently of the other pixels in the field of view. As a result, interferograms with spatially distinct regions are analysed as easily as continuous ones. The approach is illustrated with a HSI system to measure 3-D profiles of optically smooth or rough surfaces. Compared to existing profilometers able to measure absolute path differences, the single shot nature of the approach provides greater immunity from environmental disturbance.

  1. Measurement of an accelerator based mixed field with a Timepix detector

    CERN Document Server

    George, S P; Fröjdh, E; Murtas, F; Silari, M

    2015-01-01

    We present an analysis of a high energy mixed field taken with a Timepix chip at the CERF facility at CERN. The Timepix is an active array of 65K energy measuring pixels which allows visualization and energy measurement of the tracks created by individual particles. This allows characteristics of interest such as the LET and angular distributions of the incoming tracks to be calculated, as well as broad morphological track categories based on pattern recognition techniques. We compute and compare LET-like and angular information for different morphological track categories. Morphological track categories are found to possess overlapping LET and energy spectra, however the approaches are found to be complementary with morphological clustering yielding information which is indistinguishable on the basis of LET alone. The use of the Timepix as an indirect monitoring device outside of the primary beam at CERF is briefly discussed.

  2. Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge

    Science.gov (United States)

    Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.

    2005-01-01

    The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.

  3. Field measurements of AC- and DC-energized silicone elastomer coated outdoor insulators

    Energy Technology Data Exchange (ETDEWEB)

    Soerqvist, T.; Vlastos, A.E. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of High Voltage Engineering

    1995-12-01

    The paper presents a comparison between the leakage currents of bare porcelain insulators and porcelain insulators coated with two types of room temperature vulcanizing (RTV) silicone rubbers. The data presented is based on field measurements of both AC- and DC-energized insulators during salt-storm conditions. A study of the surfaces of the two coatings reveals that one is less hydrophobic than the other. However, there are no large differences in the leakage currents between the insulators coated with the two types of RTV. The leakage current of the RTV-coated insulators remains very low compared to that of the uncoated porcelain insulators under salt-storm conditions. Moreover, the leakage current of the RTV-coated porcelain insulators is comparable to that of the silicone rubber (SIR) insulators which are also studied under the same conditions. 3 refs, 14 figs, 1 tab

  4. Earth's lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements

    DEFF Research Database (Denmark)

    Maus, S.; Rother, M.; Hemant, K.

    2006-01-01

    The CHAMP magnetic field mission is providing highly reliable measurements from which the global lithospheric magnetic field can be determined in unprecedented resolution and accuracy. Using almost 5 yr of data, we derive our fourth generation lithospheric field model termed MF4, which is expanded...

  5. Field Measurement-Based System Identification and Dynamic Response Prediction of a Unique MIT Building.

    Science.gov (United States)

    Cha, Young-Jin; Trocha, Peter; Büyüköztürk, Oral

    2016-07-01

    Tall buildings are ubiquitous in major cities and house the homes and workplaces of many individuals. However, relatively few studies have been carried out to study the dynamic characteristics of tall buildings based on field measurements. In this paper, the dynamic behavior of the Green Building, a unique 21-story tall structure located on the campus of the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), was characterized and modeled as a simplified lumped-mass beam model (SLMM), using data from a network of accelerometers. The accelerometer network was used to record structural responses due to ambient vibrations, blast loading, and the October 16th 2012 earthquake near Hollis Center (ME, USA). Spectral and signal coherence analysis of the collected data was used to identify natural frequencies, modes, foundation rocking behavior, and structural asymmetries. A relation between foundation rocking and structural natural frequencies was also found. Natural frequencies and structural acceleration from the field measurements were compared with those predicted by the SLMM which was updated by inverse solving based on advanced multiobjective optimization methods using the measured structural responses and found to have good agreement.

  6. Field Measurement-Based System Identification and Dynamic Response Prediction of a Unique MIT Building

    Directory of Open Access Journals (Sweden)

    Young-Jin Cha

    2016-07-01

    Full Text Available Tall buildings are ubiquitous in major cities and house the homes and workplaces of many individuals. However, relatively few studies have been carried out to study the dynamic characteristics of tall buildings based on field measurements. In this paper, the dynamic behavior of the Green Building, a unique 21-story tall structure located on the campus of the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA, was characterized and modeled as a simplified lumped-mass beam model (SLMM, using data from a network of accelerometers. The accelerometer network was used to record structural responses due to ambient vibrations, blast loading, and the October 16th 2012 earthquake near Hollis Center (ME, USA. Spectral and signal coherence analysis of the collected data was used to identify natural frequencies, modes, foundation rocking behavior, and structural asymmetries. A relation between foundation rocking and structural natural frequencies was also found. Natural frequencies and structural acceleration from the field measurements were compared with those predicted by the SLMM which was updated by inverse solving based on advanced multiobjective optimization methods using the measured structural responses and found to have good agreement.

  7. Assessment of a dynamic reference material for calibration of full-field measurement systems

    Science.gov (United States)

    Hack, Erwin; Feligiotti, Mara; Davighi, Andrea; Whelan, Maurice; Wang, Weizhuo V.; Patterson, Eann A.

    2012-10-01

    For holography and speckle interferometry the calibration of the sensitivity is a must, because illumination and observation directions vary across the field of view. A numerical estimate or a static calibration using rigid body motions is standard, and reference materials exist for static strain calibration. Recently, reference materials for the dynamic calibration of optical instruments of displacement and strain measurement were designed and prototypes were manufactured in the European FP7 project ADVISE. We review the properties of the reference material and the concept of traceability for the field of displacement values by using a calibrated single point transducer. The mode shape is assessed using out-of-plane DSPI, Finite Element Analysis as well as analytic solutions of the plate vibration. We present measurements using stroboscopic DSPI on the reference material under acoustic excitation and compare the measured mode shapes to the ones predicted by FE analysis. We apply different comparison methodologies based on point-by-point deviations and on decomposition of the mode shapes into a set of orthogonal basis functions. The latter method is well suited to assess stability and reproducibility of a mode shape. Finally, the deviations are used to estimate the reference material uncertainty which is an essential parameter for determining the calibration uncertainty. Uncertainty contributions of the DSPI set-up are taken into account. To conclude, the application area and limitations of the reference material are discussed.

  8. Carbonate mineralisation in sabkha microbial mats; a comparative study of field and laboratory systems

    Science.gov (United States)

    Dutton, Kirsten E.; Paul, Andreas; Lessa Andrade, Luiza; Sherry, Angela; Lokier, Stephen; Head, Ian M.; van der Land, Cees

    2017-04-01

    biweekly basis. In addition to these parameter measurements already in place in current experiments, temperature and tidal cycle were monitored in the field. Over the course of the first three months, the microbial mat, which was submerged in an artificial seawater medium, grew vertically and developed a green surface at the top and sides. Thermogravimetric analysis has established that the top 1 mm surface mat biomass contains carbonate minerals, leading to an initial inferred carbonate mineralisation rate of approximately 0.5 g per 1 cm2 per year (approx. per 10 g surface mat material). This rate of mineralisation will become more accurate as more analysis is completed particularly comparing samples of mat, initially before they went in to the tank experiment and after incremental time periods, 3 months, 6 months etc. Further analysis of mat growth will establish the extent to which the precipitated carbonate minerals result from microbial activity and the types of minerals precipitated. The rate of mineralisation can be scaled-up to the km scale with the potential to isolate mineralisation rates promoted by different communities and in different types of microbial mat.

  9. Study on technology of high-frequency pulsed magnetic field strength measurement.

    Science.gov (United States)

    Chen, Yi-Mei; Liu, Zhi-Peng; Yin, Tao

    2012-01-01

    High-frequency transient weak magnetic field is always involved in researches about biomedical engineering field while common magnetic-field sensors cannot work properly at frequencies as high as MHz. To measure the value of MHz-level weak pulsed magnetic-field strength accurately, this paper designs a measurement and calibration method for pulsed magnetic-field. In this paper, a device made of Nonferromagnetic material was independently designed and applied to pulsed magnetic field measurement. It held an accurately relative position between the magnetic field generating coil and the detecting coil. By applying a sinusoidal pulse to the generator, collecting the induced electromotive force of the detector, the final magnetic field strength was worked out through algorithms written in Matlab according to Faraday's Law. Experiments were carried out for measurement and calibration. Experiments showed that, under good stability and consistency, accurate measurement of magnetic-field strength of a sinepulse magnetic-field can be achieved, with frequency at 0.5, 1, 1.5 MHz and strength level at micro-Tesla. Calibration results carried out a measuring relative error about 2.5%.

  10. Inference of subsurface thermohaline structure from fields measurable by satellite

    Science.gov (United States)

    Carnes, Michael R.; Teague, William J.; Mitchell, Jim L.

    1994-01-01

    Satellites now provide global measurements of the ocean's surface height and temperature. Ocean climatologies for the northwest Pacific and northwest Atlantic Oceans that relate sea surface height, sea surface temperature, day of the year, latitude, and longitude to temperature and salinity profiles were produced using least-squares regression. These analyses use over 33,000 profiles of historical temperature and salinity data and are considerably streamlined and compacted by expressing each profile in terms of empirical orthogonal functions. Evaluations and error analyses of the climatologies, including a comparison to the navy's Generalized Digital Environmental Model, were performed and differences between the regions are discussed. Two sample vertical sections are shown to be closely reproduced with the climatologies. Climatologies based on surface height and temperature are found to offer considerable improvement over climatologies based only on position.

  11. Optimization of DNA measurements in field conditions for safeguards purposes

    International Nuclear Information System (INIS)

    Beets, C.; Vanderheyden, P.; Menlove, H.; Krick, M.; Keddar, A.; Ohno, A.; Scharf, K.; Busca, G.; Boermans, P.

    1981-09-01

    The second part of the campaign has been carried out on LWR fuel assemblies at the FBFC facility (Franco-Belge de Fabrication de Combustibles). The main results are the following: 1. Active assay for 235 U. The statistical precision for a 1000-s run varies from 0.6-0.9% depending on the type of assembly. For longer counting periods, the ultimate precision is about 0.1% for repeat runs with a fixed geometry. 2. Passive results for 238 U. The counting rates for the passive measurements are much lower than in the active case. The standard deviation is 1.6 percent (1000s) but the results are influenced by neutron background variations. (author)

  12. Absorption measurement s in InSe single crystal under an applied electric field

    International Nuclear Information System (INIS)

    Ates, A.; Guerbulak, B.; Guer, E.; Yildirim, T.; Yildirim, M.

    2002-01-01

    InSe single crystal was grown by Bridgman-Stockberger method. Electric field effect on the absorption measurements have been investigated as a function of temperature in InSe single crystal. The absorption edge shifted towards longer wavelengths and decreased of intensity in absorption spectra under an electric field. Using absorption measurements, Urbach energy was calculated under an electric field. Applied electric field caused a increasing in the Urbach energy. At 10 K and 320 K, the first exciton energies were calculated as 1.350 and 1.311 eV for zero voltage and 1.334 and 1.301 eV for electric field respectively

  13. Preliminary Results of Performance Measurements on a Cylindrical Hall-Effect Thruster with Magnetic Field Generated by Permanent Magnets

    Science.gov (United States)

    Polzin, K. A.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2008-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic configurations. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying a higher thrust efficiency. Preliminary thruster performance measurements on this configuration were obtained over a power range of 100-250 W. The thrust levels over this power range were 3.5-6.5 mN, with anode efficiencies and specific impulses spanning 14-19% and 875- 1425 s, respectively. The magnetic field in the thruster was lower for the thrust measurements than the plasma probe measurements due to heating and weakening of the permanent magnets, reducing the maximum field strength from 2 kG to roughly 750-800 G. The discharge current levels observed during thrust stand testing were anomalously high compared to those levels measured in previous experiments with this thruster.

  14. Evaluation of the flow-accelerated corrosion downstream of an orifice. 1. Measurements and numerical analysis of flow field

    International Nuclear Information System (INIS)

    Utanohara, Yoichi; Nagaya, Yukinori; Nakamura, Akira; Murase, Michio

    2008-01-01

    In this study, in order to evaluate the effects of flow field on corrosion rate due to flow accelerated corrosion (FAC), an orifice flow was measured and calculated. The diameter of pipe is 50 mm and that of the orifice is 24.3 mm, and flow velocity in a water loop was set at 2.41 m/s. Flow field was measured by laser Doppler velocimetry (LDV) and particle image velocimetry (PIV), and compared with a calculation for the same flow conditions. Measurements of wall shear stress downstream of the orifice was also planed. The calculated velocity distribution of standard k-□ agreed qualitatively with PIV data and quantitatively with LDV data. Instantaneous flow field measured by PIV showed vortices around the jet from the orifice and some of them reached near the pipe wall. (author)

  15. Planar Pressure Field Determination in the Initial Merging Zone of an Annular Swirling Jet Based on Stereo-PIV Measurements.

    Science.gov (United States)

    Vanierschot, Maarten; Van den Bulck, Eric

    2008-11-28

    In this paper the static pressure field of an annular swirling jet is measured indirectly using stereo-PIV measurements. The pressure field is obtained from numerically solving the Poisson equation, taken into account the axisymmetry of the flow. At the boundaries no assumptions are made and the exact boundary conditions are applied. Since all source terms can be measured using stereo-PIV and the boundary conditions are exact, no assumptions other than axisymmetry had to be made in the calculation of the pressure field. The advantage of this method of indirect pressure measurement is its high spatial resolution compared to the traditional pitot probes. Moreover this method is non-intrusive while the insertion of a pitot tube disturbs the flow. It is shown that the annular swirling flow can be divided into three regimes: a low, an intermediate and a high swirling regime. The pressure field of the low swirling regime is the superposition of the pressure field of the non-swirling jet and a swirl induced pressure field due to the centrifugal forces of the rotating jet. As the swirl increases, the swirl induced pressure field becomes dominant and for the intermediate and high swirling regimes, the simple radial equilibrium equation holds.

  16. An investigation of methods for free-field comparison calibration of measurement microphones

    DEFF Research Database (Denmark)

    Barrera-Figueroa, Salvador; Moreno Pescador, Guillermo; Jacobsen, Finn

    2010-01-01

    Free-field comparison calibration of measurement microphones requires that a calibrated reference microphone and a test microphone are exposed to the same sound pressure in a free field. The output voltages of the microphones can be measured either sequentially or simultaneously. The sequential m...

  17. A Monopole Antenna at Optical Frequencies: Single-Molecule Near-Field Measurements

    NARCIS (Netherlands)

    Taminiau, Tim H.; Segerink, Franciscus B.; van Hulst, N.F.

    2007-01-01

    We present a monopole antenna for optical frequencies (~600 THz) and discuss near-field measurements with single fluorescent molecules as a technique to characterize such antennas. The similarities and differences between near-field antenna measurements at optical and radio frequencies are discussed

  18. Measurements of the vertical atmospheric electric field and of the electrical conductivity with stratospheric balloons

    Science.gov (United States)

    Iversen, I. B.; Madsen, M. M.; Dangelo, N.

    1985-01-01

    Measurements of the atmospheric (vertical) electric field with balloons in the stratosphere are reported. The atmospheric electrical conductivity is also measured and the current density inferred. The average vertical current shows the expected variation with universal time and is also seen to be influenced by external (magnetospheric) electric fields.

  19. Effect of imiquimod as compared with surgery on the cancerization field in basal cell carcinoma.

    Science.gov (United States)

    Graells, J; Ojeda, R M; García-Cruz, A

    2014-01-01

    Patients with basal cell carcinoma (BCC) have an increased risk of subsequent BCCs. It is possible that imiquimod might reduce this risk by acting on the cancerization field. To examine the ability of imiquimod to reduce subsequent BCCs. Retrospective cohort study of patients with BCC treated at our hospital between 2003 and 2011. The patients were divided into 2 groups depending on whether they had been treated with surgery or with imiquimod. Comparing the 2 groups, we analyzed the development of new BCCs, the time that elapsed between first and subsequent tumors, and the site of occurrence of the second BCC with respect to the first one (local, same lymphatic drainage basin or anatomic region, or other). Survival methods were used to analyze the data. We reviewed the charts of 623 patients. Of these, 550 had been treated with surgery (88.3%) and 71 with imiquimod (11.4%). Overall, a second BCC occurred in 36.4% of patients (n=227). The rate of occurrence was 38.2% in the surgery group and 23.9% in the imiquimod group (P=.02). The hazard ratio for the occurrence of a subsequent BCC was 2.13 (95% CI, 1.28-3.53) for patients treated with surgery compared with those treated with imiquimod. Imiquimod reduced the risk of a second BCC locally, regionally, and in the lymphatic drainage area. Our findings are limited by the retrospective nature of our study and the small number of patients treated with imiquimod. Imiquimod may reduce the risk of subsequent BCC in patients treated for BCC and its effect could last for up to 2 years in local, regional and lymphatic cancerization fields. We believe that the cancerization field concept should be expanded to include not only the local area, but also the pertinent anatomic region and the regional lymphatic drainage area. Copyright © 2013 Elsevier España, S.L. and AEDV. All rights reserved.

  20. Morphodynamics of Wadden Sea Areas – Field Measurements and Modeling

    Directory of Open Access Journals (Sweden)

    Thorsten Albers

    2010-09-01

    Full Text Available The Wadden Sea areas of the German North Sea coast are affected by intense morphodynamics. Especially in the mouths of the estuaries sedimentation and erosion occur on different temporal and spatial scales and therefore challenge the decision-makers. To satisfy the requirements, which modern maritime traffic demands, a sustainable concept for sediment management has to be developed to grant an economic and ecologic balanced system. To evaluate different actions and their effects, e.g. by means of numerical models, an improved knowledge of morphodynamic processes on tidal flats is required. The Institute of River and Coastal Engineering at the Hamburg University of Technology runs detailed measurements to collect hydrodynamic and morphodynamic data of tidal flats in the estuary Elbe, that is the approach to the port of Hamburg. Water levels, flow and wave parameters and concentrations of suspended sediments are recorded in high resolution. Furthermore, the bathymetry is determined in frequent intervals with a multi-beam echo sounder.

  1. Identification of the electroelastic coupling from full multi-physical fields measured at the micrometre scale

    DEFF Research Database (Denmark)

    Amiot, Fabien; Hild, F.; Kanoufi, F.

    2007-01-01

    coupling and to identify the spatial charge density distribution from full-field phase measurements. Minimizing the least-squares gap between the measured phase and a statically admissible phase field, the mechanical effect is found to be charge-driven. The charge density field is also found to be singular...... on the cantilever edge, and the shear stress versus charge density is found to be non-linear....

  2. Magnetic Field Measurements of the Spotted Yellow Dwarf DE Boo During 2001-2004

    Science.gov (United States)

    Plachinda, S.; Baklanova, D.; Butkovskaya, V.; Pankov, N.

    2017-06-01

    Spectropolarimetric observations of DE Boo have been performed at Crimean astrophysical observatory during 18 nights in 2001-2004. We present the result of the longitudinal magnetic field measurements on this star. The magnetic field varies from +44 G to -36 G with mean Standard Error (SE) of 8.2 G. For full array of the magnetic field measurements the difference between experimental errors and Monte Carlo errors is not statistically significant.

  3. Electric field measurements at near-atmospheric pressure by coherent Raman scattering of laser beams

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi; Mueller, Sarah; Czarnetzki, Uwe

    2010-01-01

    Electric field measurements at near-atmospheric pressure environments based on electric-field induced Raman scattering are applied to repetitively pulsed nanosecond discharges. The results have revealed that the peak electric field near the centre of the gap is almost independent of the applied voltage. Minimum sustainable voltage measurements suggests that, at each discharge pulse, charged particles that remain from the previous pulse serve as discharge seeds and play an important role for generation of uniform glow-like discharges.

  4. A drift chamber with uniform electric field and measurements of the electron drift velocity

    International Nuclear Information System (INIS)

    Ma Chimao; Mao Zepu; Zhou Jie; Yan Jie

    1985-01-01

    The measurements of the electron drift velocity as a function of the electric field have been made in a small drift chamber with uniform electric field for Ar/CH 4 , Ar/i-C 4 H 10 , Ar/CO 2 and SQS gas mixtures. The values of the electric field range from about 0.3 to 2.5 kV/cm. The results of the measurements are discussed

  5. Drift chamber with uniform electric field and measurements of the electron drift velocity

    International Nuclear Information System (INIS)

    MA Chi-mao; MAO Ze-pu; ZHOU Jie; YAN Jie

    1985-01-01

    Measurements of the electron drift velocity as a function of the electric field have been made in a small drift chamber with uniform electric field for Ar/CH 4 , Ar/i-C 4 H 10 , Ar/CO 2 , and SQS gas mixtures. The value of the electric field ranges from about 0.3 to 2.5 kV/cm. The results of the measurements are discussed

  6. 3C velocity field measurement in microscale using time resolved micro-PIV

    OpenAIRE

    N., Erkan; K., Okamoto; Dept. of Quantum Eng. and Sys. Science, The University of Tokyo; Inst. of Env. Studies, The University of Tokyo

    2007-01-01

    Measurement of the 3C velocity field in the microfluidic devices with the conventional techniques and conventional micro-PIV is still difficult due to the limited optical access to the microscale flow fields. Mainly micro PIV vector field realizations have been remained limited to 2C velocities. In this study, 3C velocity measurement in microscale using 2-dimentional time-resolved micro PIV images is proposed. The method is based on the PIV performs cross-correlation (CC) peak height tracking...

  7. Measurement and analysis of electromagnetic fields of pulsed magnetic field therapy systems for private use

    International Nuclear Information System (INIS)

    Jaermann, Thomas; Suter, Fabian; Osterwalder, Diego; Luechinger, Roger

    2011-01-01

    Recently, pulsed magnetic field therapy (PMFT) systems have become available for private use. Although they may be applied without medical supervision, only a little is known about their field quantities. In this study, the spatial distribution and the temporal characteristics of the magnetic flux densities of three PMFT systems, available in Europe, were analysed. In close proximity to the surface, the maxima of the peak magnetic flux densities were 461 μT, 170 μT and 133 μT, respectively. At a distance of 30 cm above the whole body mat, the peak magnetic flux density was 77 μT. The excitation patterns consisted of repeating bursts with carrier frequencies between 210 and 1667 Hz. In conclusion, magnetic flux densities were far above International Commission on Non-Ionizing Radiation Protection reference levels. Since these systems are supposed to be medical devices as well as wellness devices, risk analysis of PMFT systems and the effectiveness of these devices need to be investigated in future studies.

  8. Comparative performance of CO2 measuring methods: marine aquaculture recirculation system application

    Science.gov (United States)

    Pfeiffer, T.J.; Summerfelt, S.T.; Watten, B.J.

    2011-01-01

    Many methods are available for the measurement of dissolved carbon dioxide in an aqueous environment. Standard titration is the typical field method for measuring dissolved CO2 in aquaculture systems. However, titrimetric determination of dissolved CO2 in marine water aquaculture systems is unsuitable because of the high dissolved solids, silicates, and other dissolved minerals that interfere with the determination. Other methods used to measure dissolved carbon dioxide in an aquaculture water included use of a wetted CO2 probe analyzer, standard nomographic methods, and calculation by direct measurements of the water's pH, temperature, and alkalinity. The determination of dissolved CO2 in saltwater based on partial pressure measurements and non-dispersive infra-red (NDIR) techniques with a CO2 gas analyzer are widely employed for oceanic surveys of surface ocean CO2 flux and are similar to the techniques employed with the head space unit (HSU) in this study. Dissolved carbon dioxide (DC) determination with the HSU using a infra-red gas analyzer (IRGA) was compared with titrimetric, nomographic, calculated, and probe measurements of CO2 in freshwater and in saltwater with a salinity ranging from 5.0 to 30 ppt, and a CO2 range from 8 to 50 mg/L. Differences in CO2 measurements between duplicate HSUs (0.1–0.2 mg/L) were not statistically significant different. The coefficient of variation for the HSU readings averaged 1.85% which was better than the CO2 probe (4.09%) and that for the titrimetric method (5.84%). In all low, medium and high salinity level trials HSU precision was good, averaging 3.39%. Differences existed between comparison testing of the CO2 probe and HSU measurements with the CO2 probe readings, on average, providing DC estimates that were higher than HSU estimates. Differences between HSU and titration based estimates of DC increased with salinity and reached a maximum at 32.2 ppt. These differences were statistically significant (P < 0.05) at all

  9. Trapped field measurements on MgB{sub 2} bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Koblischka, Michael; Karwoth, Thomas; Zeng, XianLin; Hartmann, Uwe [Institute of Experimental Physics, Saarland University, P. O. Box 151150, D-66041 Saarbruecken (Germany); Berger, Kevin; Douine, Bruno [University of Lorraine, GREEN, 54506 Vandoeuvre-les-Nancy (France)

    2016-07-01

    Trapped field measurements were performed on bulk, polycrystalline MgB{sub 2} samples stemming from different sources with the emphasis to develop applications like superconducting permanent magnets ('supermagnets') and electric motors. We describe the setup for the trapped field measurements and the experimental procedure (field cooling, zero-field cooling, field sweep rates). The trapped field measurements were conducted using a cryocooling system to cool the bulk samples to the desired temperatures, and a low-loss cryostat equipped with a room-temperature bore and a maximum field of ±5 T was employed to provide the external magnetic field. The superconducting coil of this cryostat is operated using a bidirectional power supply. Various sweep rates of the external magnetic field ranging between 1 mT/s and 40 mT/s were used to generate the applied field. The measurements were performed with one sample and two samples stacked together. A maximum trapped field of 7 T was recorded. We discuss the results obtained and the problems arising due to flux jumping, which is often seen for the MgB{sub 2} samples cooled to temperatures below 10 K.

  10. A practical and theoretical definition of very small field size for radiotherapy output factor measurements.

    Science.gov (United States)

    Charles, P H; Cranmer-Sargison, G; Thwaites, D I; Crowe, S B; Kairn, T; Knight, R T; Kenny, J; Langton, C M; Trapp, J V

    2014-04-01

    This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated into additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom, and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 to 100 mm, using a nominal photon energy of 6 MV. According to the practical definition established in this project, field sizes ≤ 15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0% to 2.0%, or field size uncertainties are 0.5 mm, field sizes ≤ 12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes ≤ 12 mm. Source occlusion also caused a large change in OPF for field sizes ≤ 8 mm. Based on the results of this study, field sizes ≤ 12 mm were considered to be theoretically very small for 6 MV beams. Extremely

  11. Comparative studies of density-functional approximations for light atoms in strong magnetic fields

    Science.gov (United States)

    Zhu, Wuming; Zhang, Liang; Trickey, S. B.

    2014-08-01

    For a wide range of magnetic fields, 0≤B≤2000 a.u., we present a systematic comparative study of the performance of different types of density-functional approximations in light atoms (2≤Z≤6). Local, generalized-gradient approximation (GGA; semilocal), and meta-GGA ground-state exchange-correlation (xc) functionals are compared on an equal footing with exact-exchange, Hartree-Fock (HF), and current-density-functional-theory (CDFT) approximations. Comparison also is made with published quantum Monte Carlo data. Though all approximations give qualitatively reasonable results, the exchange energies from local and GGA functionals are too negative for large B. Results from the Perdew-Burke-Ernzerhof ground-state GGA and Tao-Perdew-Staroverov-Scuseria (TPSS) ground-state meta-GGA functionals are very close. Because of confinement, self-interaction error in such functionals is more severe at large B than at B =0, hence self-interaction correction is crucial. Exact exchange combined with the TPSS correlation functional results in a self-interaction-free (xc) functional, from which we obtain atomic energies of comparable accuracy to those from correlated wave-function methods. Specifically for the B and C atoms, we provide beyond-HF energies in a wide range of B fields. Fully self-consistent CDFT calculations were done with the Vignale-Rasolt-Geldart (VRG) functional in conjunction with the PW92 xc functional. Current effects turn out to be small, and the vorticity variable in the VRG functional diverges in some low-density regions. This part of the study suggests that nonlocal, self-interaction-free functionals may be better than local approximations as a starting point for CDFT functional construction and that some basic variable other than the vorticity could be helpful in making CDFT calculations practical.

  12. Review of MFTF yin-yang magnet displacement and magnetic field measurements and calculations

    International Nuclear Information System (INIS)

    Hanson, C.L.; Myall, J.O.; Wohlwend, J.W.

    1983-01-01

    During the recent testing of the MFTF yin-yang magnet, measurements of coil position, structural case strain, and magnetic field were made to verify calculated values. Measurements to detect magnet movement were taken throughout cooldown and during the operation of the magnet. The magnetic field at the mirror points was measured by Hall-effect probes. The magnet position, structural case strain, and magntic field measurements indicated a reasonably close correlation with calculated values. Information obtained from the yin-yang test has been very useful in setting realistic mechanical alignment values for the new MFTF-B magnet system

  13. Review of MFTF yin-yang magnet displacement and magnetic field measurements and calculations

    International Nuclear Information System (INIS)

    Hanson, C.L.; Myall, J.O.; Wohlwend, J.W.

    1983-01-01

    During the recent testing of the MFTF yin-yang magnet, measurements of coil position, structural case strain, and magnetic field were made to verify calculated values. Measurements to detect magnet movement were taken throughout cooldown and during the operation of the magnet. The magnetic field at the mirror points was measured by Hall-effect probes. The magnet position, structural case strain, and magnetic field measurements indicated a reasonably close correlation with calculated values. Information obtained from the yin-yang test has been very useful in setting realistic mechanical alignment values for the new MFTF-B magnet system

  14. Testing coordinate measuring arms with a geometric feature-based gauge: in situ field trials

    International Nuclear Information System (INIS)

    Cuesta, E; Alvarez, B J; Patiño, H; Telenti, A; Barreiro, J

    2016-01-01

    This work describes in detail the definition of a procedure for calibrating and evaluating coordinate measuring arms (AACMMs or CMAs). CMAs are portable coordinate measuring machines that have been widely accepted in industry despite their sensitivity to the skill and experience of the operator in charge of the inspection task. The procedure proposed here is based on the use of a dimensional gauge that incorporates multiple geometric features, specifically designed for evaluating the measuring technique when CMAs are used, at company facilities (workshops or laboratories) and by the usual operators who handle these devices in their daily work. After establishing the procedure and manufacturing the feature-based gauge, the research project was complemented with diverse in situ field tests performed with the collaboration of companies that use these devices in their inspection tasks. Some of the results are presented here, not only comparing different operators but also comparing different companies. The knowledge extracted from these experiments has allowed the procedure to be validated, the defects of the methodologies currently used for in situ inspections to be detected, and substantial improvements for increasing the reliability of these portable instruments to be proposed. (paper)

  15. Testing coordinate measuring arms with a geometric feature-based gauge: in situ field trials

    Science.gov (United States)

    Cuesta, E.; Alvarez, B. J.; Patiño, H.; Telenti, A.; Barreiro, J.

    2016-05-01

    This work describes in detail the definition of a procedure for calibrating and evaluating coordinate measuring arms (AACMMs or CMAs). CMAs are portable coordinate measuring machines that have been widely accepted in industry despite their sensitivity to the skill and experience of the operator in charge of the inspection task. The procedure proposed here is based on the use of a dimensional gauge that incorporates multiple geometric features, specifically designed for evaluating the measuring technique when CMAs are used, at company facilities (workshops or laboratories) and by the usual operators who handle these devices in their daily work. After establishing the procedure and manufacturing the feature-based gauge, the research project was complemented with diverse in situ field tests performed with the collaboration of companies that use these devices in their inspection tasks. Some of the results are presented here, not only comparing different operators but also comparing different companies. The knowledge extracted from these experiments has allowed the procedure to be validated, the defects of the methodologies currently used for in situ inspections to be detected, and substantial improvements for increasing the reliability of these portable instruments to be proposed.

  16. Effects of local vibration and pulsed electromagnetic field on bone fracture: A comparative study.

    Science.gov (United States)

    Bilgin, Hakkı Murat; Çelik, Ferhat; Gem, Mehmet; Akpolat, Veysi; Yıldız, İsmail; Ekinci, Aysun; Özerdem, Mehmet Siraç; Tunik, Selçuk

    2017-07-01

    The effectiveness of various therapeutic methods on bone fracture has been demonstrated in several studies. In the present study, we tried to evaluate the effect of local low-magnitude, high-frequency vibration (LMHFV) on rat tibia fracture in comparison with pulsed electromagnetic fields (PEMF) during the healing process. Mid-diaphysis tibiae fractures were induced in 30 Sprague-Dawley rats. The rats were assigned into groups such as control (CONT), LMHFV (15 min/day, 7 days/week), and PEMF (3.5 h/day, 7 days/week) for a three-week treatment. Nothing was applied to control group. Radiographs, serum osteocalcin levels, and stereological bone analyses of the three groups were compared. The X-rays of tibiae were taken 21 days after the end of the healing process. PEMF and LMHFV groups had more callus formation when compared to CONT group; however, the difference was not statistically significant (P = 0.375). Serum osteocalcin levels were elevated in the experimental groups compared to CONT (P ≤ 0.001). Stereological tests also showed higher osteogenic results in experimental groups, especially in LMHFV group. The results of the present study suggest that application of direct local LMHFV on fracture has promoted bone formation, showing great potential in improving fracture outcome. Bioelectromagnetics. 38:339-348, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. EFTfitter: a tool for interpreting measurements in the context of effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Nuno [Universidade do Minho, Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Departamento de Fisica, Braga (Portugal); Universidade do Porto, Departamento de Fisica e Astronomia, Faculdade de Ciencias, Porto (Portugal); Erdmann, Johannes; Grunwald, Cornelius; Kroeninger, Kevin [TU Dortmund, Lehrstuhl fuer Experimentelle Physik IV, Dortmund (Germany); Rosien, Nils-Arne [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany)

    2016-08-15

    Over the past years, the interpretation of measurements in the context of effective field theories has attracted much attention in the field of particle physics. We present a tool for interpreting sets of measurements in such models using a Bayesian ansatz by calculating the posterior probabilities of the corresponding free parameters numerically. An example is given, in which top-quark measurements are used to constrain anomalous couplings at the Wtb-vertex. (orig.)

  18. First measurement of poloidal-field-induced Faraday rotation in a tokamak plasma

    International Nuclear Information System (INIS)

    Kunz, W.; Association Euratom-CEA sur la Fusion, Centre d'Etudes Nucleaires de Fontenay-aux-Roses, 92

    1978-01-01

    Faraday rotation measurements using a ferrite modulation technique were performed on one channel of the 337 μm-interferometer on TFR. The experiment is intended as a preparatory step towards poloidal-field determination on the basis of the Faraday effect in a multi-channel configuration. The technical feasibility of precise Faraday rotation measurements under machine conditions is demonstrated. The measured rotation is unambiguously due to the poloidal magnetic field and agrees fairly with what can be estimated. (author)

  19. Optimization of field homogeneity of Helmholtz-like coils for measuring the balance of planar gradiometers

    International Nuclear Information System (INIS)

    Nordahn, M.A.; Holst, T.; Shen, Y.Q.

    1999-01-01

    Measuring the balance of planar SQUID gradiometers using a relatively small Helmholtz-like coil system requires a careful design of the coils in order to have a high degree of field uniformity along the radial direction. The level to which planar gradiometers can be balanced will be affected by any misalignment of the gradiometer relative to the ideal central position. Therefore, the maximum degree of balancing possible is calculated numerically for the Helmholtz geometry under various perturbations, including misalignment of the gradiometer along the cylindrical and the radial axis, and angular tilting relative to the normal plane. Furthermore, if the ratio between the coil separation and coil radius is chosen to be less than unity, calculations show that the expected radial uniformity of the field can be improved considerably compared to the traditional Helmholtz geometry. The optimized coil geometry is compared to the Helmholtz geometry and is found to yield up to an order of magnitude improvement of the worst case error signal within a volume spanned by the uncertainty in the alignment. (author)

  20. Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells.

    Directory of Open Access Journals (Sweden)

    Atsushi Kouzuma

    Full Text Available In sediment-type microbial fuel cells (sMFCs operating in rice paddy fields, rice-root exudates are converted to electricity by anode-associated rhizosphere microbes. Previous studies have shown that members of the family Geobacteraceae are enriched on the anodes of rhizosphere sMFCs. To deepen our understanding of rhizosphere microbes involved in electricity generation in sMFCs, here, we conducted comparative analyses of anode-associated microbiomes in three MFC systems: a rice paddy-field sMFC, and acetate- and glucose-fed MFCs in which pieces of graphite felt that had functioned as anodes in rice paddy-field sMFC were used as rhizosphere microbe-bearing anodes. After electric outputs became stable, microbiomes associated with the anodes of these MFC systems were analyzed by pyrotag sequencing of 16S rRNA gene amplicons and Illumina shotgun metagenomics. Pyrotag sequencing showed that Geobacteraceae bacteria were associated with the anodes of all three systems, but the dominant Geobacter species in each MFC were different. Specifically, species closely related to G. metallireducens comprised 90% of the anode Geobacteraceae in the acetate-fed MFC, but were only relatively minor components of the rhizosphere sMFC and glucose-fed MFC, whereas species closely related to G. psychrophilus were abundantly detected. This trend was confirmed by the phylogenetic assignments of predicted genes in shotgun metagenome sequences of the anode microbiomes. Our findings suggest that G. psychrophilus and its related species preferentially grow on the anodes of rhizosphere sMFCs and generate electricity through syntrophic interactions with organisms that excrete electron donors.