WorldWideScience

Sample records for field grown grapevines

  1. Physiological Response of Field Grown Grapevine (Vitis vinifera L. cv. Marzemino to Grapevine Leafroll-Associated Virus (GLRaV-1

    Directory of Open Access Journals (Sweden)

    M. Bertamini

    2005-12-01

    Full Text Available The physiological response of field grown grapevine (Vitis vinifera L. cv. Marzemino plants to grapevine leafroll-associated virus (GLRaV-1 was studied. Changes in photosynthetic pigments and in photosynthetic activity were investigated. GLRaV-1 considerably decreased the leaf net photosynthetic rate (Pn, stomatal conductance (gs and the transpiration rate (E in grapevine leaves, and also strongly reduced pigments, soluble proteins, ribulose-1,5- bisphosphate carboxylase (RuBPC and nitrate reductase activity. In isolated thylakoids, the virus strongly inhibited whole-chain and photosystem (PS II activity, while PSI activity was only marginally inhibited. The artificial exogenous electron donors diphenyl carbazide, manganese chloride (MnCl2 and hydroxylamine (NH2OH did not restore lost PSII activity to virus-infected leaves. Chlorophyll fluorescence suggested that the inhibition of primary light reactions was a major effect of virus infection. Immunological studies showed that D1 protein levels of the PSII reaction centre were significantly lower in virus-infected leaves. It is concluded that the decreases in photosynthetic pigments and photosynthetic activities caused by the virus strongly impair photosynthesis in Marzemino grapevine plants.

  2. 'Bois noir' phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine

    Directory of Open Access Journals (Sweden)

    Dermastia Marina

    2009-10-01

    Full Text Available Abstract Background Phytoplasmas are bacteria without cell walls from the class Mollicutes. They are obligate intracellular plant pathogens which cause diseases in hundreds of economically important plants including the grapevine (Vitis vinifera. Knowledge of their biology and the mechanisms of their interactions with hosts is largely unknown because they are uncultivable and experimentally inaccessible in their hosts. We detail here the global transcriptional profiling in grapevine responses to phytoplasmas. The gene expression patterns were followed in leaf midribs of grapevine cv. 'Chardonnay' naturally infected with a phytoplasma from the stolbur group 16SrXII-A, which is associated with the grapevine yellows disease 'Bois noir'. Results We established an on field experimental system in a productive vineyard that allowed application of molecular tools in a plant natural environment. Global transcription profiles of infected samples were compared with the healthy ones using microarray datasets and metabolic pathway analysis software (MapMan. The two-year-long experiment revealed that plant genes involved in primary and secondary metabolic pathways were changed in response to infection and that these changes might support phytoplasma nutrition. A hypothesis that phytoplasmas interact with the plant carbohydrate metabolism was proven and some possibilities how the products of this pathway might be utilized by phytoplasmas are discussed. In addition, several photosynthetic genes were largely down-regulated in infected plants, whereas defense genes from the metabolic pathway leading to formation of flavonoids and some PR proteins were significantly induced. Few other genes involved in defense-signaling were differentially expressed in healthy and infected plants. A set of 17 selected genes from several differentially expressed pathways was additionally analyzed with quantitative real-time PCR and confirmed to be suitable for a reliable

  3. Response of grapevines to fluoride under field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Murray, F.

    1983-07-01

    Grapevines (Vitis vinifera L. cv. Shiraz) were fumigated in open-top chambers with hydrogen fluoride for 64 days at mean atmospheric fluoride concentrations of 0.17 or 0.28 ..mu..gHFm/sup -3/. Other grapevines grown under ambient conditions in the vineyard or maintained in control chambers were exposed to 0.13 or 0.05 ..mu..gHFm/sup -3/, respectively. Leaves of grapevines exposed to 0.28, 0.17, 0.13, or 0.05 ..mu..gHFm/sup -3/ accumulated up to 85, 55, 20, or 11 ..mu..gFg/sup -1/, respectively. Foliar necrosis was observed on plants exposed to 0.28 ..mu..gHFm/sup -3/, but no injury symptoms were observed at 0.17 ..mu..gHFm/sup -3/ or in control plants. Grapevines growing under ambient conditions had significantly greater mean bunch weight, peduncle weight, number of grapes per bunch, and leaf protein levels than the fumigated treatments. However, these differences may be associated with a chamber effect rather than with an effect of fluoride on grapevines. No significant differences were found between treatments for grape potential alcohol content, fruit acids, number of bunches or grapes per vine, fresh weight of grapes, or leaf chlorophyll content, despite foliar fluoride concentrations in the highest fluoride fumigation level reaching 85 ..mu..gFg/sup -1/. No evidence was found of significant fluoride accumulation in berries or canes. 26 references, 4 tables.

  4. Hot water treatment to reduce incidence of black foot pathogens in young grapevines grown in cool climates

    Directory of Open Access Journals (Sweden)

    Carolyn BLEACH

    2013-09-01

    Full Text Available Black foot disease causes death of infected grapevines but management of this soil-borne disease by preventative measures such as pre-planting fungicide dips has not been totally effective. Hot water treatment (HWT; 50°C for 30 min of young dormant grapevine plants has been shown to significantly reduce infection. However, it has been reported to cause unacceptable damage to young vines in cooler climate countries like New Zealand, so this study examined the effects of different HWT protocols on the New Zealand black foot isolates. In vitro testing of different HWT protocols was conducted on conidia, mycelium and detached, inoculated grapevine canes using three isolates each of the species I. liriodendri (“C”. liriodendri and the complexes, I. radicicola (“C”. destructans and I. macrodidyma (“C”. macrodidymum. Heat treatments greater than 40°C for 5 min killed all conidia (P<0.001, and treatments greater than 47°C for 30 min inhibited (P≤0.003 further growth of treated mycelium plugs for all but one isolate. Within cane pieces, infection by Ilyonectria (“Cylindrocarpon” isolates was significantly reduced (P<0.001 by 30 min at 48.5 and 50°C. Additionally, these studies showed different responses to the different treatments for the three isolates of each species complex and differences between species. In field trials, HWT of 48.5 and 50°C for 30 min significantly reduced disease incidence in dormant plants to 0% (P≤0.001. This study confirmed that HWT of 48.5°C for 30 min could be used to eliminate black foot disease in dormant nursery grapevines grown in New Zealand prior to their use for establishing new vineyards.

  5. Investigating the spread and effect of Grapevine red blotch virus in California-grown Zinfandel

    Science.gov (United States)

    Grapevine red blotch virus (GRBV) is a major concern for California winegrape growers since its discovery in 2012. Negative impacts on juice have been reported, though inconsistent. A treehopper, Spissistilus festinus, transmitted GRBaV in strict laboratory studies, but field evidence of transmissio...

  6. An Automated Field Phenotyping Pipeline for Application in Grapevine Research

    Directory of Open Access Journals (Sweden)

    Anna Kicherer

    2015-02-01

    Full Text Available Due to its perennial nature and size, the acquisition of phenotypic data in grapevine research is almost exclusively restricted to the field and done by visual estimation. This kind of evaluation procedure is limited by time, cost and the subjectivity of records. As a consequence, objectivity, automation and more precision of phenotypic data evaluation are needed to increase the number of samples, manage grapevine repositories, enable genetic research of new phenotypic traits and, therefore, increase the efficiency in plant research. In the present study, an automated field phenotyping pipeline was setup and applied in a plot of genetic resources. The application of the PHENObot allows image acquisition from at least 250 individual grapevines per hour directly in the field without user interaction. Data management is handled by a database (IMAGEdata. The automatic image analysis tool BIVcolor (Berries in Vineyards-color permitted the collection of precise phenotypic data of two important fruit traits, berry size and color, within a large set of plants. The application of the PHENObot represents an automated tool for high-throughput sampling of image data in the field. The automated analysis of these images facilitates the generation of objective and precise phenotypic data on a larger scale.

  7. Phenoliner: A New Field Phenotyping Platform for Grapevine Research.

    Science.gov (United States)

    Kicherer, Anna; Herzog, Katja; Bendel, Nele; Klück, Hans-Christian; Backhaus, Andreas; Wieland, Markus; Rose, Johann Christian; Klingbeil, Lasse; Läbe, Thomas; Hohl, Christian; Petry, Willi; Kuhlmann, Heiner; Seiffert, Udo; Töpfer, Reinhard

    2017-07-14

    In grapevine research the acquisition of phenotypic data is largely restricted to the field due to its perennial nature and size. The methodologies used to assess morphological traits and phenology are mainly limited to visual scoring. Some measurements for biotic and abiotic stress, as well as for quality assessments, are done by invasive measures. The new evolving sensor technologies provide the opportunity to perform non-destructive evaluations of phenotypic traits using different field phenotyping platforms. One of the biggest technical challenges for field phenotyping of grapevines are the varying light conditions and the background. In the present study the Phenoliner is presented, which represents a novel type of a robust field phenotyping platform. The vehicle is based on a grape harvester following the concept of a moveable tunnel. The tunnel it is equipped with different sensor systems (RGB and NIR camera system, hyperspectral camera, RTK-GPS, orientation sensor) and an artificial broadband light source. It is independent from external light conditions and in combination with artificial background, the Phenoliner enables standardised acquisition of high-quality, geo-referenced sensor data.

  8. Physiological characterization of grapevine rootstocks grown in soil with increasing zinc doses

    Directory of Open Access Journals (Sweden)

    Jovani Zalamena

    2015-10-01

    Full Text Available ABSTRACTThis study aimed to evaluate the performance of grapevine rootstocks under increasing levels of Zn in the soil and to identify physiological variables that can be used as indicators of excess of Zn in the soil. The rootstocks SO4, Paulsen1103, IAC572, IAC313 and 420A were grown in pots containing soil, which received Zn doses of 0, 20, 40, 80 or 160 mg kg-1 of soil. Dry matter (DM, Zn content in shoots and roots, chlorophyll index, initial fluorescence (Fo, maximum fluorescence (Fm, maximum quantum yield of photosystem II (Fv/Fm, effective quantum yield of photosystem II (Y-II and non-photochemical quenching (NPQ were evaluated. The increase of Zn levels in the soil decreased DM in all rootstocks, and IAC572 was superior to the others. The variation in the indices of chlorophyll a and b had little expression in relation the soil Zn levels, but allowed identifying that the rootstocks Paulsen 1103, 420A and SO4 are sensitive to Zn toxicity and that IAC572 and IAC313 were not sensitive to the tested levels. Fluorescence analysis showed a negative effect of Zn contents on the variables Fo, Fm, Y-II and NPQ in all rootstocks, which proved to be good indicators of Zn phytotoxicity.

  9. Root-associated bacteria promote grapevine growth: from the laboratory to the field

    KAUST Repository

    Rolli, Eleonora

    2016-08-18

    Background and Aims: Laboratory and greenhouse experiments have shown that root-associated bacteria have beneficial effects on grapevine growth; however, these effects have not been tested in the field. Here, we aimed to demonstrate whether bacteria of different geographical origins derived from different crop plants can colonize grapevine to gain a beneficial outcome for the plant leading to promote growth at the field scale. Methods: To link the ecological functions of bacteria to the promotion of plant growth, we sorted fifteen bacterial strains from a larger isolate collection to study in vitro Plant Growth Promoting (PGP) traits. We analysed the ability of these strains to colonise the root tissues of grapevine and Arabidopsis using green-fluorescent-protein-labelled strain derivatives and a cultivation independent approach. We assessed the ability of two subsets randomly chosen from the 15 selected strains to promote grapevine growth in two field-scale experiments in north and central Italy over two years. Parameters of plant vigour were measured during the vegetative season in de novo grafted vine cuttings and adult productive plants inoculated with the bacterial strains. Results: Beneficial bacteria rapidly and intimately colonized the rhizoplane and the root system of grapevine. In the field, plants inoculated with bacteria isolated from grapevine roots out-performed untreated plants. In both the tested vineyards, bacteria-promotion effects largely rely in the formation of an extended epigeal system endowed of longer shoots with larger diameters and more nodes than non-inoculated plants. Conclusions: PGP bacteria isolated in the laboratory can be successfully used to promote growth of grapevines in the field. The resulting larger canopy potentially increased the photosynthetic surface of the grapevine, promoting growth.

  10. Effect of a cation exchange resin on the uptake of heavy metals by grapevines and other cultivated plants grown in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, H.D.

    1982-12-01

    The effect of a cation exchange resin on the growth and heavy metal content of grapevine, sun flower, cress, wheat and Italian rye-grass was investigated in potted vineyard soil, contaminated by Cu-containing (total Cu content of the soil: 628 ppm), or a soil contaminated artificially with 20 ppm Cd. Roots of cress seedlings grown in a vineyard soil mixed with a cation exchange resin were 2.2 times longer than in the untreated soil. Rye-grass was not injured, whereas grapevine, sun flower and wheat showed varying degrees of growth reduction, chlorosis and necrosis when grown in untreated vineyard soil. However, wheat and sunflower grown in vineyard soil containing a cation exchange resin showed no injury and grapevines exhibited markedly reduced symptoms. The Zn, Cu and Cd content of the plants decreased considerably, whereas their Fe and Mn content was not influenced. Grapevine, grown in a calcareous soil contaminated with 20 ppm Cd, contained 447 ppm Cd in the roots and 0,20 ppm Cd in the leaves. The Cd content of the roots declined to 113 ppm, that of the leaves to 0,15 ppm when grown in the contaminated soil containing a cation exchanger.

  11. Water relations of field-grown grapevines in the São Francisco Valley, Brazil, under different rootstocks and irrigation strategies Relações hídricas de videiras cultivadas no Vale do São Francisco sob diferente porta-enxertos e estratégias de irrigação

    Directory of Open Access Journals (Sweden)

    Claudia Rita de Souza

    2009-08-01

    Full Text Available There is an increased demand for high quality winegrapes in the São Francisco Valley, a new wine producing area in Brazil. As the grape quality is closely linked to the soil water status, understanding the effects of rootstock and irrigation management on grapevine water relations is essential to optimize yield and quality. This study was carried out to investigate the effects of irrigation strategies and rootstocks on water relations and scion vigour of field-grown grapevines in Petrolina, Pernambuco state, Brazil. The cultivars used as scions are Moscato Canelli and Syrah, both grafted onto IAC 572 and 1103 Paulsen rootstocks. The following water treatments were used: deficit irrigation, with holding water after veraison; and partial root-zone drying, supplying (100% of crop evapotranspiration of the water loss to only one side of the root system after fruit set, alternating the sides periodically (about 24 days. In general, all treatments had values of pre-dawn leaf water potential higher than -0.2 MPa, suggesting absence of water stress. The vine water status was more affected by rootstock type than irrigation strategies. Both cultivars grafted on IAC 572 had the highest values of midday leaf water potential and stem water potential, measured on non-transpiring leaves, which were bagged with both plastic sheet and aluminum foil at least 1 h before measurements. For both cultivars, the stomatal conductance (g s, transpiration (E and leaf area index (LAI were also more affected by roostsotck type than by irrigation strategies. The IAC 572 rootstock presented higher g s, E and LAI than the 1103 Paulsen. Differences in vegetative vigor of the scion grafted onto IAC 572 rootstocks were related to its higher leaf specific hydraulic conductance and deeper root system as compared to the 1103 Paulsen, which increased the water-extraction capability, resulting in a better vine water status.Existe aumento na demanda por vinhos de alta qualidade no

  12. UV-B impairs growth and gas exchange in grapevines grown in high altitude.

    Science.gov (United States)

    Berli, Federico J; Alonso, Rodrigo; Bressan-Smith, Ricardo; Bottini, Rubén

    2013-09-01

    We previously demonstrated that solar ultraviolet-B (UV-B) radiation levels in high altitude vineyards improve berry quality in Vitis vinifera cv. Malbec, but also reduce berry size and yield, possibly as a consequence of increased oxidative damage and growth reductions (lower photosynthesis). The defense mechanisms toward UV-B signal and/or evoked damage promote production of antioxidant secondary metabolites instead of primary metabolites. Purportedly, the UV-B effects will depend on tissues developmental stage and interplay with other environmental conditions, especially stressful situations. In this work, grapevines were exposed to high solar UV-B (+UV-B) and reduced (by filtering) UV-B (-UV-B) treatments during three consecutive seasons, and the effects of UV-B, developmental stages and seasons on the physiology were studied, i.e. growth, tissues morphology, photosynthesis, photoprotective pigments, proline content and antioxidant capacity of leaves. The +UV-B reduced photosynthesis and stomatal conductance, mainly through limitation in gas exchange, reducing plant's leaf area, net carbon fixation and growth. The +UV-B augmented leaf thickness, and also the amounts of photoprotective pigments and proline, thereby increasing the antioxidant capacity of leaves. The defense mechanisms triggered by + UV-B reduced lipid peroxidation, but they were insufficient to protect the photosynthetic pigments per leaf dry weight basis. The +UV-B effects depend on tissues developmental stage and interplay with other environmental conditions such as total radiation and air temperatures.

  13. Overexpression of antimicrobial lytic peptides protects grapevine from Pierce's disease under greenhouse but not field conditions.

    Science.gov (United States)

    Li, Zhijian T; Hopkins, Donald L; Gray, Dennis J

    2015-10-01

    Pierce's disease (PD) caused by Xylella fastidiosa prevents cultivation of grapevine (Vitis vinifera) and susceptible hybrids in the southeastern United States and poses a major threat to the grape industry of California and Texas. Genetic resistance is the only proven control of X. fastidiosa. Genetic engineering offers an alternative to heretofore ineffective conventional breeding in order to transfer only PD resistance traits into elite cultivars. A synthetic gene encoding lytic peptide LIMA-A was introduced into V. vinifera and a Vitis hybrid to assess in planta inhibition of X. fastidiosa. Over 1050 independent transgenic plant lines were evaluated in the greenhouse, among which nine lines were selected and tested under naturally-inoculated field conditions. These selected plant lines in the greenhouse remain disease-free for 10 years, to date, even with multiple manual pathogen inoculations. However, all these lines in the field, including a grafted transgenic rootstock, succumbed to PD within 7 years. We conclude that in planta production of antimicrobial lytic peptides does not provide durable PD resistance to grapevine under field conditions.

  14. Evaluation of Yield and Healthiness of Twenty Table Grapevine Cultivars Grown in Central Poland

    Directory of Open Access Journals (Sweden)

    Lisek Jerzy

    2014-09-01

    Full Text Available During the years 2008-2013, 20 table grape cultivars grown in Skierniewice (Central Poland were assessed. Among the assessed cultivars, two - ‘Chasselas Blanc’ (standard and ‘Favorit’ belonged to V. vinifera. Eighteen interspecific hybrids - ‘Aron’, ‘Esther’ (‘Eszter’, ‘Fanny’, ‘Flora’, ‘Galanth’, ‘Ganita’, ‘Garant’, ‘Katharina’, ‘Lidi’, ‘Lilla’, ‘Muscat Bleu’, ‘Nelly’, ‘Osella’, ‘Philipp’, ‘Rosetta’, ‘Rosina’, ‘Timur’ and ‘Verdelet’ were bred in various European countries. Vines, grafted on ‘Kober 5 BB’ rootstock, were planted in 2007 and annually covered for winter. Taking into account productivity, quality of fruits, susceptibility to frost damage and fungal diseases, the Swiss ‘Muscat Bleu’ and German ‘Garant’ proved most suitable for cultivation in the conditions of Central Poland. Plants of all cultivars belonging to the group of interspecific hybrids were less susceptible to infections caused by fungal pathogens than plants of V. vinifera genotypes. The assessment of frost resistance based on the observation of those parts of bushes, which were not covered, showed high diversification among the interspecific hybrids.

  15. Responses of in vitro-grown plantlets (Vitis vinifera to Grapevine leafroll-associated virus-3 and PEG-induced drought stress

    Directory of Open Access Journals (Sweden)

    Zhenhua eCui

    2016-06-01

    Full Text Available AbstractStresses caused by viral diseases and drought have long threatened sustainable production of grapevine. These two stresses frequently occur simultaneously in many of grapevine growing regions of the world. We studied responses of in vitro-grown plantlets (Vitis vinifera to Grapevine leafroll associated virus-3 (GLRaV-3 and PEG-induced drought stress. Results showed that stress induced by either virus infection or drought had negative effects on vegetative growth, caused significant decreases and increases in total soluble protein and free proline, respectively, induced obvious cell membrane damage and cell death, and markedly increased accumulations of O2- and H2O2. Co-stress by virus and drought had much severer effects than single stress on the said parameters. Virus infection alone did not cause significant alternations in activities of POD, ROS and SOD, and contents of MDA, which, however, markedly increased in the plantlets when grown under single drought stress and co-stress by the virus and drought. Levels of ABA increased, while those of IAA decreased in the plantlets stressed by virus infection or drought. Simultaneous stresses by the virus and drought had co-effects on the levels of ABA and IAA. Up-regulation of expressions of ABA biosynthesis genes and down-regulation of expressions of IAA biosynthesis genes were responsible for the alternations of ABA and IAA levels induced by either the virus infection or drought stress and co-stress by them. Experimental strategies established in the present study using in vitro system facilitate investigations on ‘pure’ biotic and abiotic stress on plants. The results obtained here provide new insights into adverse effects of stress induced by virus and drought, in single and particularly their combination, on plants, and allow us to re-orientate agricultural managements towards sustainable development of the agriculture.

  16. General properties of grapevine viruses occurring in Hungary

    Directory of Open Access Journals (Sweden)

    Eszter Cseh

    2012-03-01

    Full Text Available The past fifty years important advances have been made in the field of grapevine virus research, including characterization of pathogens and control measurements. Still the occurrence of Grapevine fanleaf virus (GFLV, Arabis mosaic virus (ArMV, Tomato black ring virus (TBRV, Grapevine chrome mosaic virus (GCMV, Alfalfa mosaic virus (AMV, Grapevine Bulgarian latent virus (GBLV, Grapevine fleck virus (GFkV, Grapevine leafroll- associated viruses (GLRaV1-4, Grapevine virus A (GVA, Grapevine virus B (GVB and Grapevine rupestris stem pitting- associated virus (GRSPaV have been reported in Hungary and characterized by conventional methods as woody indexing, herbaceous indexing and serological methods. Among grapevine viruses the Grapevine line pattern virus (GLPV seems to be uncial; because it was reported only in Hungary. Causal agents of several grapevine diseases, like enation, vein necrosis and vein mosaic remained undiscovered. These virus-like diseases occurred only sporadically, without economic importance.

  17. A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions.

    Science.gov (United States)

    Nesler, Andrea; Perazzolli, Michele; Puopolo, Gerardo; Giovannini, Oscar; Elad, Yigal; Pertot, Ilaria

    2015-01-01

    Powdery mildew caused by Erysiphe necator is one of the most important grapevine diseases in several viticulture areas, and high fungicide input is required to control it. However, numerous synthetic chemical pesticides are under scrutiny due to concerns about their impact on human health and the environment. Biopesticides, such as biogenic elicitors, are a promising alternative to chemical fungicides. Although several studies have reported on effective elicitors against grapevine diseases, their efficacy under field conditions has not been investigated extensively or has occurred at rather limited levels. Our goal was to examine the efficacy of a protein-based composition, namely nutrient broth (NB), against powdery mildew under field conditions and to characterize its mechanism of action. Weekly treatments with NB was highly effective in controlling powdery mildew on grapevine across seasons with different disease pressures. The level of disease control achieved with NB was comparable to standard fungicide treatments both on leaves and bunches across three different years. NB has no direct toxic effect on the germination of E. necator conidia, and it activates plant resistance with both systemic and translaminar effect in experiments with artificial inoculation under controlled conditions. NB induced the expression of defense-related genes in grapevine, demonstrating stimulation of plant defense mechanisms, prior to and in the early stages of pathogen infection. NB is a natural derivative from meat and yeast, substances that tend not to raise concerns about toxicological and ecotoxicological properties. NB represents a valid control tool for integrated plant protection programs against powdery mildew, to reduce the use of synthetic pesticides on grapevine.

  18. A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions

    Directory of Open Access Journals (Sweden)

    Andrea eNesler

    2015-09-01

    Full Text Available Powdery mildew caused by Erysiphe necator is one of the most important grapevine diseases in several viticulture areas, and high fungicide input is required to control it. However, numerous synthetic chemical pesticides are under scrutiny due to concerns about their impact on human health and the environment. Biopesticides, such as biogenic elicitors, are a promising alternative to chemical fungicides. Although several studies have reported on effective elicitors against grapevine diseases, their efficacy under field conditions has not been investigated extensively or has occurred at rather limited levels. Our goal was to examine the efficacy of a protein-based composition, namely nutrient broth (NB, against powdery mildew under field conditions and to characterize its mechanism of action. Weekly treatments with NB was highly effective in controlling powdery mildew on grapevine across seasons with different disease pressures. The level of disease control achieved with NB was comparable to standard fungicide treatments both on leaves and bunches across three different years. NB has no direct toxic effect on the germination of E. necator conidia, and it activates plant resistance with both systemic and translaminar effect in experiments with artificial inoculation under controlled conditions. NB induced the expression of defense-related genes in grapevine, demonstrating stimulation of plant defense mechanisms, prior to and in the early stages of pathogen infection. NB is a natural derivative from meat and yeast, substances that tend not to raise concerns about toxicological and ecotoxicological properties. NB represents a valid control tool for integrated plant protection programs against powdery mildew, to reduce the use of synthetic pesticides on grapevine.

  19. Characterization of epiphytic bacterial communities from grapes, leaves, bark and soil of grapevine plants grown, and their relations.

    Directory of Open Access Journals (Sweden)

    Guilherme Martins

    Full Text Available Despite its importance in plant health and crop quality, the diversity of epiphytic bacteria on grape berries and other plant parts, like leaves and bark, remains poorly described, as does the role of telluric bacteria in plant colonization. In this study, we compare the bacterial community size and structure in vineyard soils, as well as on grapevine bark, leaves and berries. Analyses of culturable bacteria revealed differences in the size and structure of the populations in each ecosystem. The highest bacteria population counts and the greatest diversity of genera were found in soil samples, followed by bark, grapes and leaves. The identification of isolates revealed that some genera - Pseudomonas, Curtobacterium, and Bacillus - were present in all ecosystems, but in different amounts, while others were ecosystem-specific. About 50% of the genera were common to soil and bark, but absent from leaves and grapes. The opposite was also observed: grape and leaf samples presented 50% of genera in common that were absent from trunk and soil. The bacterial community structure analyzed by T-RFLP indicated similarities between the profiles of leaves and grapes, on the one hand, and bark and soil, on the other, reflecting the number of shared T-RFs. The results suggest an interaction between telluric bacterial communities and the epiphytic bacteria present on the different grapevine parts.

  20. Characterization of epiphytic bacterial communities from grapes, leaves, bark and soil of grapevine plants grown, and their relations.

    Science.gov (United States)

    Martins, Guilherme; Lauga, Béatrice; Miot-Sertier, Cécile; Mercier, Anne; Lonvaud, Aline; Soulas, Marie-Louise; Soulas, Guy; Masneuf-Pomarède, Isabelle

    2013-01-01

    Despite its importance in plant health and crop quality, the diversity of epiphytic bacteria on grape berries and other plant parts, like leaves and bark, remains poorly described, as does the role of telluric bacteria in plant colonization. In this study, we compare the bacterial community size and structure in vineyard soils, as well as on grapevine bark, leaves and berries. Analyses of culturable bacteria revealed differences in the size and structure of the populations in each ecosystem. The highest bacteria population counts and the greatest diversity of genera were found in soil samples, followed by bark, grapes and leaves. The identification of isolates revealed that some genera - Pseudomonas, Curtobacterium, and Bacillus - were present in all ecosystems, but in different amounts, while others were ecosystem-specific. About 50% of the genera were common to soil and bark, but absent from leaves and grapes. The opposite was also observed: grape and leaf samples presented 50% of genera in common that were absent from trunk and soil. The bacterial community structure analyzed by T-RFLP indicated similarities between the profiles of leaves and grapes, on the one hand, and bark and soil, on the other, reflecting the number of shared T-RFs. The results suggest an interaction between telluric bacterial communities and the epiphytic bacteria present on the different grapevine parts.

  1. Rare earth elements distribution in grapevine varieties grown on volcanic soils: an example from Mount Etna (Sicily, Italy).

    Science.gov (United States)

    D'Antone, Carmelisa; Punturo, Rosalda; Vaccaro, Carmela

    2017-04-01

    A geochemical and statistical approach has allowed identifying in rare earth elements (REEs) absorption a good fingerprinting mark for determining the territoriality and the provenance of Vitis vinifera L. in the district of Mount Etna (southern Italy). Our aim is to define the REEs distribution in different parts of the plants which grow in the same volcanic soil and under the same climate conditions, and therefore to assess whether REEs distribution may reflect the composition of the provenance soil or if plants can selectively absorb REEs in order to recognize the fingerprint in the Etna Volcano soils as well as the REEs pattern characteristic of each cultivar of V. vinifera L. The characteristic pattern of REEs has been determined by ICP-MS analyses in the soils and in the selected grapevine varieties for all the following parts: leaves, seeds, juice, skin, and berries. These geochemical criteria, together with the multivariate statistical analysis of the principal component analysis (PCA) and of the linear discriminant analysis (LDA) that can be summarized with the box plot, suggest that leaves mostly absorb REEs than the other parts of the plant. This work investigates the various parts of the plant in order to verify if each grape variety presents a characteristic geochemical pattern in the absorption of REEs in relationship with the geochemical features of the soil so to highlight the individual compositional fingerprint. Based on REE patterns, our study is a useful tool that allows characterizing the differences among the grape varieties and lays the foundation for the use of REEs in the geographic origin of the Mount Etna wine district.

  2. Possible role of catalase in post-dormancy bud break in grapevines.

    Science.gov (United States)

    Pérez, Francisco J; Lira, Waldo

    2005-03-01

    Changes in the activity of catalase (Cat) and in the levels of H2O2 were followed throughout dormancy in buds of grapevines (Vitis vinifera L.). In grapevines grown in the Elqui valley in Chile, a region with warm-winters, the activity of Cat increased during the recess period of buds, reaching a maximum and thereafter decreased to less than one third of its maximal activity. Three isoforms of Cat were detected in extracts of buds by native PAGE analysis, and the extracted activity was inhibited competitively by hydrogen cyanamide (HC), a potent bud-break agent. Furthermore, HC applications to field-grown grapevines in addition to the expected effect on advancing bud break, reduced the Cat activity during bud dormancy. Similar reductions were observed during dormancy in buds of grapevines grown in the Central valley in Chile, a region with temperate winters, suggesting that HC and winter chilling inhibits the activity of the main H2O2 degrading enzyme in grape buds. A transient rise in H2O2 levels preceded the release of buds from endodormancy, moreover, the peak of H2O2 and the onset of bud break occurred earlier in HC treated than in control grapevines, suggesting the participation of H2O2 as a signal molecule in the release of endodormancy in grape buds. The relationship between Cat inhibition, rise in H2O2 levels and initiation of bud break are discussed.

  3. Systemic regulation of photosynthetic function in field-grown sorghum.

    Science.gov (United States)

    Li, Tao; Liu, Yujun; Shi, Lei; Jiang, Chuangdao

    2015-09-01

    The photosynthetic characteristics of developing leaves of plants grown under artificial conditions are, to some extent, regulated systemically by mature leaves; however, whether systemic regulation of photosynthesis occurs in field-grown crops is unclear. To explore this question, we investigated the effects of planting density on growth characteristics, gas exchange, leaf nitrogen concentration and chlorophyll a fluorescence in field-grown sorghum (Sorghum bicolor L.). Our results showed that close planting resulted in a marked decline in light intensity in lower canopy. Sorghum plants grown at a high planting density had lower net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (E) than plants grown at a low planting density. Moreover, in the absence of mineral deficiency, close planting induced a slight increase in leaf nitrogen concentration. The decreased photosynthesis in leaves of the lower canopy at high planting density was caused mainly by the low light. However, newly developed leaves exposed to high light in the upper canopy of plants grown at high planting density also exhibited a distinct decline in photosynthesis relative to plants grown at low planting density. Based on these results, the photosynthetic function of the newly developed leaves in the upper canopy was not determined fully by their own high light environment. Accordingly, we suggest that the photosynthetic function of newly developed leaves in the upper canopy of field-grown sorghum plants is regulated systemically by the lower canopy leaves. The differences in systemic regulation of photosynthesis were also discussed between field conditions and artificial conditions.

  4. Re-grown aligned carbon nanotubes with improved field emission.

    Science.gov (United States)

    Lim, Xiaodai; Zhu, Yanwu; Varghese, Binni; Gao, Xingyu; Wee, Andrew Thye Shen; Sow, Chorng-Haur

    2012-01-01

    In this work, a simple technique to improve the field emission property of multi-walled carbon nanotubes is presented. Re-grown multi-walled carbon nanotubes are grown on the same substrates after the as-grown multi-walled carbon nanotubes are transferred to other substrates using polydimethylsiloxane as intermediation. For the duration of the synthesis of the re-grown multi-walled carbon nanotubes, similar synthesis parameters used in growing the as-grown multi-walled carbon nanotubes are utilized. As a form of possible application, field emission studies show -2.6 times improvement in field enhancement factor and more uniform emission for the re-grown multi-walled carbon nanotubes. In addition, the turn-on field is reduced from 2.85 V/microm to 1.40 V/microm. Such significant improvements are attributed to new emission sites comprising of sharp carbonaceous impurities encompassing both tip and upper portion of the multi-walled carbon nanotubes. As such, this technique presents a viable route for the production of multi-walled carbon nanotubes with better field emission quality.

  5. Comparison of hydrocarbon yields in cotton from field grown vs. greenhouse grown plants

    Science.gov (United States)

    Four accession of cotton (SA-1181, 1403, 1419, and 2269) were grown both in field conditions and a greenhouse to compare the environmental effects on leaf biomass, % yield of hydrocarbons (HC), and total HC (g HC /g leaves) under natural and controlled (protected) conditions. Leaf biomass was simi...

  6. Surface disinfection procedure and in vitro regeneration of grapevine (Vitis vinifera L.) axillary buds.

    Science.gov (United States)

    Lazo-Javalera, M F; Troncoso-Rojas, R; Tiznado-Hernández, M E; Martínez-Tellez, M A; Vargas-Arispuro, I; Islas-Osuna, M A; Rivera-Domínguez, M

    2016-01-01

    Establishment of an efficient explants surface disinfection protocol is essential for in vitro cell and tissue culture as well as germplasm conservation, such as the case of Grapevine (Vitis spp.) culture. In this research, different procedures for disinfection and regeneration of field-grown grapevine cv. 'Flame seedless' axillary buds were evaluated. The buds were disinfected using either NaOCl or allyl, benzyl, phenyl and 2-phenylethyl isothiocyanates. Two different media for shooting and four media for rooting were tested. Shoot and root development per buds were registered. The best disinfection procedure with 90 % of tissue survival involved shaking for 60 min in a solution containing 20 % Clorox with 50 drops/L Triton(®) X-100. These tissues showed the potential to regenerate a complete plant. Plant regeneration was conducted using full strength Murashigue and Skoog (MS) medium supplemented with 8 µM benzyl aminopurine for shoot induction and multiplication, whereas rooting was obtained on half strength MS supplemented with 2 mg L(-1) of indole-3-butyric acid and 200 mg L(-1) of activated charcoal. In this work, it was designed the protocols for obtaining sterile field-grown grapevine buds and in vitro plant development. This methodology showed potential to produce vigorous and healthy plants in 5 weeks for clonal grapevine propagation. Regenerated plants were successfully established in soil.

  7. Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses.

    Science.gov (United States)

    Salazar-Parra, Carolina; Aranjuelo, Iker; Pascual, Inmaculada; Erice, Gorka; Sanz-Sáez, Álvaro; Aguirreolea, Jone; Sánchez-Díaz, Manuel; Irigoyen, Juan José; Araus, José Luis; Morales, Fermín

    2015-02-01

    Although plant performance under elevated CO2 has been extensively studied in the past little is known about photosynthetic performance changing simultaneously CO2, water availability and temperature conditions. Moreover, despite of its relevancy in crop responsiveness to elevated CO2 conditions, plant level C balance is a topic that, comparatively, has received little attention. In order to test responsiveness of grapevine photosynthetic apparatus to predicted climate change conditions, grapevine (Vitis vinifera L. cv. Tempranillo) fruit-bearing cuttings were exposed to different CO2 (elevated, 700ppm vs. ambient, ca. 400ppm), temperature (ambient vs. elevated, ambient +4°C) and irrigation levels (partial vs. full irrigation). Carbon balance was followed monitoring net photosynthesis (AN, C gain), respiration (RD) and photorespiration (RL) (C losses). Modification of environment (13)C isotopic composition (δ(13)C) under elevated CO2 (from -10.30 to -24.93‰) enabled the further characterization of C partitioning into roots, cuttings, shoots, petioles, leaves, rachides and berries. Irrespective of irrigation level and temperature, exposure to elevated CO2 induced photosynthetic acclimation of plants. C/N imbalance reflected the inability of plants grown at 700ppm CO2 to develop strong C sinks. Partitioning of labeled C to storage organs (main stem and roots) did not avoid accumulation of labeled photoassimilates in leaves, affecting negatively Rubisco carboxylation activity. The study also revealed that, after 20 days of treatment, no oxidative damage to chlorophylls or carotenoids was observed, suggesting a protective role of CO2 either at current or elevated temperatures against the adverse effect of water stress.

  8. Integrating Field Spectra and Worldview-2 Data for Grapevine Productivity in Different Irrigation Treatments

    Science.gov (United States)

    Maimaitiyiming, M.; Bozzolo, A.; Wulamu, A.; Wilkins, J. L.

    2015-12-01

    Precision farming requires high spectral, spatial and temporal resolution remote sensing data to detect plant physiological changes. The higher spatial resolution is particularly as important as the spectral resolution for crop monitoring. It is important to develop data integration techniques between field or airborne hyperspectral data with spaceborne broad band multispectral images for plant productivity monitoring. To investigate varying rootstock and irrigation interactions, different irrigation treatments are implemented in a vineyard experimental site either i) unirrigated ii) full replacement of evapotranspiration (ET) iii) irrigated at 50 % of the potential ET. In summer 2014, we collected leaf and canopy spectra of the vineyard using field spectroscopy along with other plant physiological and nutritional variables. In this contribution, we integrate the field spectra and the spectral wavelengths of WorldView-2 to develop a predictive model for plant productivity,i.e., fruit quality and yield. First, we upscale field and canopy spectra to WorldView-2 spectral bands using radiative transfer simulations (e.g., MODTRAN). Then we develop remote sensing techniques to quantify plant productivity in different scenarios water stress by identifying the most effective and sensitive wavelengths, and indices that are capable of early detection of plant health and estimation of crop nutrient status. Finally we present predictive models developed from partial least square regression (PLSR) for plant productivity using spectral wavelengths and indices derived from integrated field and satellite remote sensing data.

  9. GFLV replication in electroporated grapevine protoplasts.

    Science.gov (United States)

    Valat; Toutain; Courtois; Gaire; Decout; Pinck; Mauro; Burrus

    2000-06-29

    Grapevine fanleaf virus (GFLV), responsible for the economically important court-noué disease, is exclusively transmitted to its natural host in the vineyards through Xiphinema nematodes. We have developed direct inoculation of GFLV into grapevine through protoplast electroporation. Protoplasts were isolated from mesophyll of in vitro-grown plants and from embryogenic cell suspensions. Permeation conditions were determined by monitoring calcein uptake. Low salt poration medium was selected. Electrical conditions leading to strong transient gene expression were also tested for GFLV inoculation (isolate F13). GFLV replication was detected with either virus particles (2 µg) or viral RNA (10 ng) in both protoplast populations, as shown by anti-P38 Western blotting. Direct inoculation and replication were also observed with Arabis mosaic virus (ArMV), a closely related nepovirus, as well as with another GFLV isolate. These results will be valuable in grapevine biotechnology, for GFLV replication studies, transgenic plant screening for GFLV resistance, and biorisk evaluation.

  10. Effects of irrigation strategies and soils on field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    Root distribution of field grown potatoes (cv. Folva) was studied in 4.32m2 lysimeters and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. Drip irrigation was applied for all irrigations. Irrigations were run in three different soils: coarse sand......, loamy sand, and sandy loam. Irrigation treatments started after tuber bulking and lasted until final harvest with PRD and DI receiving 65% of FI. Potatoes irrigated with water-saving irrigation techniques (PRD and DI) did not show statistically different dry root mass and root length density (RLD, cm...... root per cm3 soil) compared with root development in fully irrigated (FI) potatoes. Highest RLD existed in the top 30–40cm of the ridge below which it decreased sharply. The RLD was distributed homogenously along the ridge and furrow but heterogeneously across the ridge and furrow with highest root...

  11. Arthropods vector grapevine trunk disease pathogens.

    Science.gov (United States)

    Moyo, P; Allsopp, E; Roets, F; Mostert, L; Halleen, F

    2014-10-01

    Arthropod-mediated dispersal of pathogens is known in many cropping systems but has never been demonstrated for grapevine trunk disease pathogens. Arthropods from vineyards were screened for the presence of pathogens associated with Petri disease and esca using cultural and molecular techniques. The ability of the most abundant pathogen-carrying species to inoculate healthy grapevine vascular tissues was also determined. Millipedes and ants were allowed to associate with a DsRed- Express-transformed Phaeomoniella chlamydospora, after which they were exposed to freshly pruned healthy grapevines under controlled conditions and wounds were monitored for subsequent infection. In addition, the possibility of millipede excreta, commonly found on pruning wounds in the field, to act as inoculum source was determined. A diverse arthropod fauna was associated with declining grapevines and many of these carried trunk disease pathogens. However, spiders, the ant Crematogaster peringueyi, and the millipede Ommattoiulus moreleti were the most abundant pathogen carriers. The ant and millipede species fed on pruning wound sap and effectively transmitted trunk disease pathogens. Millipede excreta contained viable spores of Phaeomoniella chlamydospora and may serve as an inoculum source. Numerous arthropods, including beneficial predators, are potential vectors of grapevine trunk disease pathogens. Our results highlight the need for an integrated approach, including targeted management of ants and millipedes at the time of pruning, to limit the spread of grapevine trunk diseases.

  12. Modeling uptake kinetics of cadmium by field-grown lettuce

    Energy Technology Data Exchange (ETDEWEB)

    Chen Weiping [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States)], E-mail: chenweip@yahoo.com.cn; Li Lianqing [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095 (China); Chang, Andrew C.; Wu Laosheng [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States); Kwon, Soon-Ik [Agricultural Environmental and Ecology Division, National Institute of Agricultural Science and Technology, Suwon 441-707 (Korea, Republic of); Bottoms, Rick [Desert Research and Extension Center, 1004 East Holton Road, El Centro, CA 92243 (United States)

    2008-03-15

    Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C{sub Plant} = C{sub Solution} . PUF{sub max} . exp[-b . t], where C{sub Plant} and C{sub Solution} refer to the Cd content in plant tissue and soil solution, respectively, PUF{sub max} and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions.

  13. Grapevine Yield and Leaf Area Estimation Using Supervised Classification Methodology on RGB Images Taken under Field Conditions

    Science.gov (United States)

    Diago, Maria-Paz; Correa, Christian; Millán, Borja; Barreiro, Pilar; Valero, Constantino; Tardaguila, Javier

    2012-01-01

    The aim of this research was to implement a methodology through the generation of a supervised classifier based on the Mahalanobis distance to characterize the grapevine canopy and assess leaf area and yield using RGB images. The method automatically processes sets of images, and calculates the areas (number of pixels) corresponding to seven different classes (Grapes, Wood, Background, and four classes of Leaf, of increasing leaf age). Each one is initialized by the user, who selects a set of representative pixels for every class in order to induce the clustering around them. The proposed methodology was evaluated with 70 grapevine (V. vinifera L. cv. Tempranillo) images, acquired in a commercial vineyard located in La Rioja (Spain), after several defoliation and de-fruiting events on 10 vines, with a conventional RGB camera and no artificial illumination. The segmentation results showed a performance of 92% for leaves and 98% for clusters, and allowed to assess the grapevine’s leaf area and yield with R2 values of 0.81 (p < 0.001) and 0.73 (p = 0.002), respectively. This methodology, which operates with a simple image acquisition setup and guarantees the right number and kind of pixel classes, has shown to be suitable and robust enough to provide valuable information for vineyard management. PMID:23235443

  14. Effects of ambient and acute partial pressures of ozone on leaf net CO sub 2 assimilation of field-grown Vitis vinifera L

    Energy Technology Data Exchange (ETDEWEB)

    Roper, T.R.; Williams, L.E. (Univ. of California, Davis (USA) Kearney Agricultural Center, Parlier, CA (USA))

    1989-12-01

    Mature, field-grown Vitis vinifera L. grapevines grown in open-top chambers were exposed to either charcoal-filtered air or ambient ozone partial pressures throughout the growing season. Individual leaves also were exposed to ozone partial pressures of 0.2, 0.4, or 0.6 micropascals per pascal for 5 hours. No visual ozone damage was found on leaves exposed to any of the treatments. Chronic exposure to ambient O{sub 3} partial pressures reduced net CO{sub 2} assimilation rate (A) between 5 and 13% at various times throughout the season when compared to the filtered treatment. Exposure of leaves to 0.2 micropascals per pascal O{sub 3} for 5 hours had no significant effect on A; however, A was reduced 84% for leaves exposed to 0.6 micropascals per pascal O{sub 3} when compared to the controls after 5 hours. Intercellular CO{sub 2} partial pressure (c{sub i}) was lower for leaves exposed to 0.2 micropascals per pascal O{sub 3} when compared to the controls, while c{sub i} of the leaves treated with 0.6 micropascals per pascal of O{sub 3} increased during the fumigation. The long-term effects of ambient O{sub 3} and short-term exposure to acute levels of O{sub 3} reduced grape leaf photosynthesis due to a reduction in both stomatal and mesophyll conductances.

  15. Grapevine canopy reflectance and yield

    Science.gov (United States)

    Minden, K. A.; Philipson, W. R.

    1982-01-01

    Field spectroradiometric and airborne multispectral scanner data were applied in a study of Concord grapevines. Spectroradiometric measurements of 18 experimental vines were collected on three dates during one growing season. Spectral reflectance, determined at 30 intervals from 0.4 to 1.1 microns, was correlated with vine yield, pruning weight, clusters/vine, and nitrogen input. One date of airborne multispectral scanner data (11 channels) was collected over commercial vineyards, and the average radiance values for eight vineyard sections were correlated with the corresponding average yields. Although some correlations were significant, they were inadequate for developing a reliable yield prediction model.

  16. Grapevine (Vitis vinifera L.).

    Science.gov (United States)

    Torregrosa, Laurent; Vialet, Sandrine; Adivèze, Angélique; Iocco-Corena, Pat; Thomas, Mark R

    2015-01-01

    Grapevine (Vitis) is considered to be one of the major fruit crops in the world based on hectares cultivated and economic value. Grapes are used not only for wine but also for fresh fruit, dried fruit, and juice production. Wine is by far the major product of grapes, and the focus of this chapter is on wine grape cultivars. Grapevine cultivars of Vitis vinifera L. have a reputation for producing premium quality wines. These premium quality wines are produced from a small number of cultivars that enjoy a high level of consumer acceptance and are firmly entrenched in the market place because of varietal name branding and the association of certain wine styles and regions with specific cultivars. In light of this situation, grapevine improvement by a transgenic approach is attractive when compared to a classical breeding approach. The transfer of individual traits as single genes with a minimum disruption to the original genome would leave the traditional characteristics of the cultivar intact. However, a reliable transformation system is required for a successful transgenic approach to grapevine improvement. There are three criteria for achieving an efficient Agrobacterium-mediated transformation system: (1) the production of highly regenerative transformable tissue, (2) optimal cocultivation conditions for both grapevine tissue and Agrobacterium, and (3) an efficient selection regime for transgenic plant regeneration. In this chapter, we describe a grapevine transformation system that meets these criteria. We also describe a protocol for the production of transformed roots suitable for functional gene studies and for the production of semi-transgenic grafted plants.

  17. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops

    DEFF Research Database (Denmark)

    Jakobsen, Iver

    1983-01-01

    The effect of inoculation with vesicular–arbuscular mycorrhizal fungi on the growth of barley in the field was studied at two levels of soil P on plots fumigated with methyl bromide. During the vegetative phase, growth and P uptake was influenced only by soil P; P uptake in the period from earing...

  18. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops

    DEFF Research Database (Denmark)

    Jakobsen, Iver

    1986-01-01

    The importance of vesicular-arbuscular mycorrhiza (VAM) and P fertilizer for P nutrition and dry matter production in field peas (Pisum sativum L.) was studied in moderately P-deficient soil. Half of the experimental plots were fumigated to reduce the level of VAM infection. Shoots and 0 to 30 cm...

  19. Field Emission of Thermally Grown Carbon Nanostructures on Silicon Carbide

    Science.gov (United States)

    2012-03-22

    thermal decomposition of silicon carbide does not utilize a catalyst, therefore relatively defect free. One drawback to this method, however is that the CNT...In this thesis, silicon carbide samples are patterned to create elevated emission sites in an attempt to minimize the field emission screening effect...Patterning is accomplished by using standard photolithography methods to implement a masking nickel layer on the silicon carbide . Pillars are created

  20. Forest management guidelines for controlling wild grapevines

    Science.gov (United States)

    H. Clay Smith

    1984-01-01

    Grapevines (Vitis spp.) are becoming a major problem to forest managers in the Appalachians, especially when clearcutting is done on highly productive hardwood sites. Where present, grapevines can reduce tree quality and growth, and eventually kill the tree. Silvical characteristics of grapevines are discussed as background for grapevine control....

  1. Characterization of nitrogen-fixing bacteria isolated from field-grown barley, oat, and wheat.

    Science.gov (United States)

    Venieraki, Anastasia; Dimou, Maria; Vezyri, Eleni; Kefalogianni, Io; Argyris, Nikolaos; Liara, Georgia; Pergalis, Panagiotis; Chatzipavlidis, Iordanis; Katinakis, Panagiotis

    2011-08-01

    Diazotrophic bacteria were isolated from the rhizosphere of field-grown Triticum aestivum, Hordeum vulgare, and Avena sativa grown in various regions of Greece. One isolate, with the highest nitrogen-fixation ability from each of the eleven rhizospheres, was selected for further characterisation. Diazotrophic strains were assessed for plant-growth-promoting traits such as indoleacetic acid production and phosphate solubilisation. The phylogenies of 16S rRNA gene of the selected isolates were compared with those based on dnaK and nifH genes. The constructed trees indicated that the isolates were members of the species Azospirillum brasilense, Azospirillum zeae, and Pseudomonas stutzeri. Furthermore, the ipdC gene was detected in all A. brasilence and one A. zeae isolates. The work presented here provides the first molecular genetic evidence for the presence of culturable nitrogen-fixing P. stutzeri and A. zeae associated with field-grown A. sativa and H. vulgare in Greece.

  2. Responses of two field-grown coffee species to drought and re-hydration

    NARCIS (Netherlands)

    Cai, Z.Q.; Chen, Y.J.; Cao, K.F.

    2005-01-01

    The gas exchange, parameters of chlorophyll fluorescence, contents of pigments, and activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), as well as lipid peroxidation were investigated in two field-grown coffee species, Coffea arabica and C. liberica, exposed to drought and

  3. Early field performance of Acacia koa seedlings grown under subirrigation and overhead irrigation

    Science.gov (United States)

    Anthony S. Davis; Jeremiah R. Pinto; Douglass F. Jacobs

    2011-01-01

    Koa (Acacia koa A. Gray [Fabaceae]) seedlings were grown with subirrigation and overhead irrigation systems in an effort to characterize post-nursery field performance. One year following outplanting, we found no differences in seedling height or survival, but root-collar diameter was significantly larger for subirrigated seedlings. This indicates that koa seedlings,...

  4. Field emission response from multi-walled carbon nanotubes grown on electrochemically engineered copper foil

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Amit Kumar; Jain, Vaibhav [Nanomaterials and Applications Lab., Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand (India); Saini, Krishna [Nanomaterials and Applications Lab., Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand (India); Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand (India); Lahiri, Indranil, E-mail: indrafmt@iitr.ac.in [Nanomaterials and Applications Lab., Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand (India); Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand (India)

    2017-02-01

    Exciting properties of carbon nanotube has proven it to be a promising candidate for field emission applications, if its processing cost can be reduced effectively. In this research, a new electrochemical technique is proposed for growing carbon nanotubes in selective areas by thermal chemical vapour deposition. In this process, electrochemical processing is used to create localized pits and deposition of catalysts, which act as roots to support growth and alignment of the CNTs on copper substrate. CNTs grown thus were characterized and studied using scanning electron microscope, transmission electron microscope and Raman spectroscopy, elucidating presence of multiwall carbon nanotubes (MWCNT). These CNT emitters have comparatively lower turn-on field and higher field enhancement factor. - Highlights: • Electrochemical pitting for localized carbon nanotube growth is proposed. • Electrochemical pitting method shows patterning effect on the substrate. • Size and density of pits depend on voltage, pH and temperature. • CNTs thus grown shows good field emission response.

  5. Effects of mutual shading on the regulation of photosynthesis in field-grown sorghum.

    Science.gov (United States)

    Li, Tao; Liu, Li-Na; Jiang, Chuang-Dao; Liu, Yu-Jun; Shi, Lei

    2014-08-01

    In the field, close planting inevitably causes mutual shading and depression of leaf photosynthesis. To clarify the regulative mechanisms of photosynthesis under these conditions, the effects of planting density on leaf structure, gas exchange and proteomics were carefully studied in field-grown sorghum. In the absence of mineral deficiency, (1) close planting induced a significant decrease in light intensity within populations, which further resulted in much lower stomatal density and other anatomical characteristics associated with shaded leaves; (2) sorghum grown at high planting density had a lower net photosynthetic rate and stomatal conductance than those grown at low planting density; (3) approximately 62 protein spots changed their expression levels under the high planting density conditions, and 22 proteins associated with photosynthesis were identified by mass spectrometry. Further analysis revealed the depression of photosynthesis caused by mutual shading involves the regulation of leaf structure, absorption and transportation of CO2, photosynthetic electron transport, production of assimilatory power, and levels of enzymes related to the Calvin cycle. Additionally, heat shock protein and oxygen-evolving enhancer protein play important roles in photoprotection in field-grown sorghum. A model for the regulation of photosynthesis under mutual shading was suggested based on our results.

  6. Structure and Morphology of Phthalocyanine Films Grown in Electrical Fields by Vapor Deposition

    Science.gov (United States)

    Zhu, Shen; Banks, C. E.; Frazier, D. O.; Penn, B.; Abdeldayem, H.; Hicks, R.; Burns, H. D.; Thompson, G. W.

    1999-01-01

    Phthalocyanine (Pc) films have been synthesized by vapor deposition on quartz substrates, some of which were coated with a very thin gold film before depositing Pc films. Electrical fields up to 6200 V/cm between a mech electrode and the substrate are introduced during film growth. These films have been characterized by x-ray diffraction and scanning electron microscopy. The molecular orientations and surface morphology of Pc films were changed under the electrical fields. The surface of these films grown without electrical field shows whisk-like morphology. When films are deposited under an electrical field, a dense film with flat surface is obtained.

  7. Low temperature synthesis and field emission characteristics of single to few layered graphene grown using PECVD

    Science.gov (United States)

    Kumar, Avshish; Khan, Sunny; Zulfequar, M.; Harsh; Husain, Mushahid

    2017-04-01

    In this work, high-quality graphene has successfully been synthesized on copper (Cu) coated Silicon (Si) substrate at very large-area by plasma enhanced chemical vapor deposition system. This method is low cost and highly effective for synthesizing graphene relatively at low temperature of 600 °C. Electron microscopy images have shown that surface morphology of the grown samples is quite uniform consisting of single layered graphene (SLG) to few layered graphene (FLG). Raman spectra reveal that graphene has been grown with high-quality having negligible defects and the observation of G and G' peaks is also an indicative of stokes phonon energy shift caused due to laser excitation. Scanning probe microscopy image also depicts the synthesis of single to few layered graphene. The field emission characteristics of as-grown graphene samples were studied in a planar diode configuration at room temperature. The graphene samples were observed to be a good field emitter having low turn-on field, higher field amplification factor and long term emission current stability.

  8. Field solar photocatalytic purification of pesticides-containing rinse waters from tractor cisterns used for grapevine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pichat, P. [Ecole Centrale de Lyon (France). Lab. Photocatalyse, Catalyse et Environnement; Vannier, S. [Chambre d' Agriculture de Vaucluse, Avignon (France); Dussaud, J. [Ahlstrom Research, Pont Eveque (France); Rubis, J.P. [Lycee Viticole, Orange (France)

    2004-11-01

    The objective was to assess in a vineyard the effect of purifying by solar photocatalysis the title rinse waters (presently rejected or, extremely rarely, cleaned in specific installations) in terms of efficacy and on-site ease-of-use for the wine grower. The on-site, self-functioning, solar purifying unit included a corrugated-steel inclined plate of area S=1 m{sup 2} onto which a TiO{sub 2}-coated thin material had been stuck, a 100-l tank, and an aquarium-type pump powered by a photovoltaic panel. For a vineyard of area A=0.15 km{sup 2}, the rinse water (about 80 l) corresponding to each of four typical vine treatments was analysed (major pesticides for each treatment, TOC, Microtox test and, in one case, BOD{sub 5}) by independent laboratories, before and after purification for 8 days. These analyses showed that the S/A ratio tested was insufficient. From the relatively low final organic content reached in one case, it is calculated that a three-time higher S/A ratio might suffice, but new trials are necessary to determine whether it is valid for the other typical cases. Inferred contribution of inorganic ions to the post-photocatalytic treatment toxicity points out to the need for an additional detoxification. However, even with a too small S, the photocatalytic treatment markedly improved the quality of the rinse waters. These field experiments have also demonstrated that the purifying prototype is robust, and easy to install and use on site by the wine grower. (Author)

  9. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    Science.gov (United States)

    Li, Detian; Cheng, Yongjun; Wang, Yongjun; Zhang, Huzhong; Dong, Changkun; Li, Da

    2016-03-01

    Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10-8 Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  10. Integrated management tactics for Frankliniella thrips (Thysanoptera: Thripidae) in field-grown pepper.

    Science.gov (United States)

    Reitz, Stuart R; Yearby, Erika L; Funderburk, Joseph E; Stavisky, Julianne; Momol, M Timur; Olson, Steve M

    2003-08-01

    In a 2-yr study, the impacts of different plastic soil mulches, insecticides, and predator releases on Frankliniella thrips and their natural enemies were investigated in field-grown peppers. Ultraviolet light (UV)-reflective mulch significantly reduced early season abundance of adult thrips compared with standard black plastic mulch. This difference diminished as the growing seasons progressed. Late season abundance of thrips larvae was higher in UV reflective mulch compared with black mulch plots. The abundance of the predator Orius insidiosus (Say) was significantly lower in UV-reflective mulch compared with black mulch treatments. Infection of plants with tomato spotted wilt virus, a pathogen vectored by Frankliniella occidentalis (Pergande), was Geocoris punctipes (Say) reduced populations of thrips immediately after releases; naturally occurring predators probably provided late season control of thrips. Our results suggest that UV-reflective mulch, combined with early season applications of spinosad, can effectively reduce abundance of thrips in field-grown pepper.

  11. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    Energy Technology Data Exchange (ETDEWEB)

    Li, Detian; Cheng, Yongjun [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Wang, Yongjun, E-mail: wyjlxlz@163.com [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Zhang, Huzhong [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Dong, Changkun [Institute of Micro-Nano Structures and Optoelectronics, Wenzhou University, Wenzhou 325035 (China); Li, Da [Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2016-03-01

    Graphical abstract: - Highlights: • The high quality CNT arrays were successfully grown on conductive stainless steel substrates. • The CNT array grown on stainless steel substrate exhibited superior field emission properties. • A high vacuum level about 10–8 Pa was measured by resultant CNT-based ionization gauge. • The ionization gauge with CNT cathode demonstrated a high stability. - Abstract: Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10{sup −8} Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  12. Foreword: Special issue on fungal grapevine diseases

    Science.gov (United States)

    An impressively large proportion of fungicides applied in European, North American and Australian agriculture has been used to manage grapevine powdery mildew (Erysiphe necator), grapevine downy mildew (Plasmopara viticola), and botrytis bunch rot (Botrytis cinerea). These fungal and oomycetous plan...

  13. Reproductive characteristics of citrus rootstocks grown under greenhouse and field environments

    Directory of Open Access Journals (Sweden)

    Divanilde Guerra

    2013-01-01

    Full Text Available The aim of the present study was to evaluate the possible effect of environmental factors on meiosis, meiotic index, pollenviability and in vitro germination of pollen from stock plants of the rootstocks Trifoliate, ‘Swingle’, ‘Troyer’, ‘Fepagro C13’, ‘FepagroC37’ and ‘Fepagro C41’ grown in a protected environment in comparison with stock plants grown in the field. The results showed thatvalues for the characteristics analyzed in 2008, 2009 and 2010 were always higher in the field than in the greenhouse conditions. Inthe field, the average of normal meiotic cells was 60.05%, 44.44% and 60.12%, respectively, and in the greenhouse, 52.75%, 30.95%and 52.82%, respectively. Mean pollen viability in the field was 90.28%, 56.23% and 74.74%, and, in the greenhouse, 64.25%, 41.41%and 66.71%, respectively. As temperature oscillations were higher in the greenhouse than in the field, we suggest that this negativelyaffects the reproductive characteristics analyzed.

  14. Highly enhanced and temporally stable field emission from MWCNTs grown on aluminum coated silicon substrate

    Directory of Open Access Journals (Sweden)

    M. Sreekanth

    2015-06-01

    Full Text Available In this work, a detailed field emission study of multi-walled carbon nanotubes (MWCNTs grown on Si and Al coated Si substrates is reported. Morphological and microstructural studies of the films show higher entanglement of CNTs in the case of CNT/Si film as compared to CNT/Al/Si film. Raman studies show that the defect mediated peak (D is substantially suppressed as compared to graphitic peak (G resulting in significant reduction in ID/IG value in CNT/Al/Si film. Field emission (FE current density of CNT/Al/Si film (∼25 mA/cm2 is significantly higher as compared to that of CNT/Si film (∼1.6 mA/cm2. A substantial improvement in temporal stability is also observed in CNT/Al/Si film. This enhancement in field emission current is attributed to strong adhesion between substrate and CNTs, low work function, high local field enhancement factor at the CNT tips and less entanglement of CNTs grown on Al/Si. The temporally stable CNT/Al/Si cold cathode can be a potential candidate to replace conventional electron sources in prototype devices.

  15. Wide-range Vacuum Measurements from MWNT Field Emitters Grown Directly on Stainless Steel Substrates

    Science.gov (United States)

    Zhang, Jian; Li, Detian; Zhao, Yangyang; Cheng, Yongjun; Dong, Changkun

    2016-01-01

    The field emission properties and the vacuum measurement application are investigated from the multi-walled carbon nanotubes (MWNTs) grown directly on catalytic stainless steel substrates. The MWNT emitters present excellent emission properties after the acid treatment of the substrate. The MWNT gauge is able to work down to the extreme-high vacuum (XHV) range with linear measurement performance in wide range from 10-11 to 10-6 Torr. A modulating grid is attempted with improved gauge sensitivity. The extension of the lower pressure limit is attributed largely to low outgassing effect due to direct growth of MWNTs and justified design of the electron source.

  16. Detection of intestinal parasites on field-grown strawberries in the Federal District of Brazil

    Directory of Open Access Journals (Sweden)

    Sandra Regina Morais da Silva

    2014-12-01

    Full Text Available Introduction This study evaluated the presence of pathogenic human parasites on field-grown strawberries in the Federal District of Brazil. Methods A total of 48 samples of strawberries and 48 soil samples from 16 properties were analyzed. Results Contaminated strawberries were detected in 56% of the properties. Schistosoma mansoni, Ascaris lumbricoides or Ascaris suum, Balantidium coli, Endolimax nana, and Entamoeba spp. were detected. Soil was contaminated with Entamoeba spp., Entamoeba coli, Strongyloides spp., Ancylostomatidae, and Hymenolepis nana. Conclusions Producers should be instructed on the safe handling of strawberries in order to reduce the incidence of strawberries that are contaminated with enteroparasites.

  17. Neutron detection in a high-gamma field using solution-grown stilbene

    Energy Technology Data Exchange (ETDEWEB)

    Bourne, M.M., E-mail: mmbourne@umich.edu [University of Michigan, Ann Arbor, MI 48109 (United States); Clarke, S.D., E-mail: clarkesd@umich.edu [University of Michigan, Ann Arbor, MI 48109 (United States); Adamowicz, N., E-mail: nicka@umich.edu [University of Michigan, Ann Arbor, MI 48109 (United States); Pozzi, S.A., E-mail: pozzisa@umich.edu [University of Michigan, Ann Arbor, MI 48109 (United States); Zaitseva, N., E-mail: zaitseva1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Carman, L., E-mail: carman1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2016-01-11

    A solution-based technique for growing large-volume stilbene scintillators was developed in 2013; crystals up to diameters of 10 cm, or larger, have been grown while preserving excellent pulse shape discrimination (PSD) properties. The goal of this study is to evaluate the PSD capabilities of 5.08 by 5.08-cm stilbene crystals grown by Lawrence Livermore National Laboratory and Inrad Optics when exposed to a 1000 to 1 gamma ray-neutron ratio and operating at a 100-kHz count rate. Results were compared to an equivalent EJ-309 liquid scintillation detector. {sup 252}Cf neutron pulses were recorded in two experiments where {sup 60}Co and {sup 137}Cs sources created the high-gamma field. The high count rate created numerous double pulses that were cleaned using fractional and template approaches designed to remove double pulses while preserving neutron counts. PSD was performed at a threshold of 42 keVee (440-keV proton) for stilbene and 60 keVee (610-keV proton) for EJ-309 liquid. The lower threshold in stilbene resulted in a neutron intrinsic efficiency of approximately 14.5%, 10% higher than EJ-309 liquid, for bare {sup 252}Cf and 13% for {sup 252}Cf in the high-gamma field. Despite the lower threshold, the gamma misclassification rate in stilbene was approximately 3×10{sup −6}, nearly a factor-of-five lower than what we found with the EJ-309 liquid.

  18. Foliar Micromorphology of In Vitro-cultured Shoots and Field-grown Plants of Passiflora foetida

    Directory of Open Access Journals (Sweden)

    Manokari Mani

    2017-01-01

    Full Text Available The present report describes the development of quantitative and qualitative foliar micromorphological and architectural features in the field environment which elucidated the adaptation of micropropagated plants of Passiflora foetida L. in the natural soil conditions. The field environment (high light intensity in comparison to in vitro culture conditions promotes the autotrophy through decrease in stomatal index (from 23.2 ± 0.15 to 21.0 ± 0.19, increased vein-islets (from 10.0 ± 0.14 to 15.6 ± 0.24 per square millimeters and veinlet terminations (from 1.6 ± 0.14 to 5.0 ± 0.20 per square millimeters, and trichome density in P. foetida plantlets. The in vitro and field grown leaves mostly possessed anomocytic and anisocytic types of stomata. Two types of trichomes were observed on the surface of leaves of in vitro as well as field transferred plants of P. foetida: the unicellular hairy trichomes (non-glandular, and the multicellular (glandular trichomes. The trichomes density was less under in vitro conditions as compared to the in vivo environments. The new leaves formed during the ex vitro rooting stage (in greenhouse and after transplantation of plantlets to the field exhibited the development of adaptive micromorphological features in micropropagated plants, which enabled them to survive under field conditions.

  19. Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mi; Pu, Yunqiao; Yoo, Chang Geun; Gjersing, Erica; Decker, Stephen R.; Doeppke, Crissa; Shollenberger, Todd; Tschaplinski, Timothy J.; Engle, Nancy L.; Sykes, Robert W.; Davis, Mark F.; Baxter, Holly L.; Mazarei, Mitra; Fu, Chunxiang; Dixon, Richard A.; Wang, Zeng-Yu; Neal Stewart, C.; Ragauskas, Arthur J.

    2017-01-03

    The native recalcitrance of plants hinders the biomass conversion process using current biorefinery techniques. Down-regulation of the caffeic acid O-methyltransferase (COMT) gene in the lignin biosynthesis pathway of switchgrass reduced the thermochemical and biochemical conversion recalcitrance of biomass. Due to potential environmental influences on lignin biosynthesis and deposition, studying the consequences of physicochemical changes in field-grown plants without pretreatment is essential to evaluate the performance of lignin-altered plants. We determined the chemical composition, cellulose crystallinity and the degree of its polymerization, molecular weight of hemicellulose, and cellulose accessibility of cell walls in order to better understand the fundamental features of why biomass is recalcitrant to conversion without pretreatment. The most important is to investigate whether traits and features are stable in the dynamics of field environmental effects over multiple years.

  20. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce

    Directory of Open Access Journals (Sweden)

    Susanne eSchreiter

    2014-04-01

    Full Text Available The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for ten years under the same agricultural management to reveal differences directly linked to the soil type and not influenced by other factors such as climate or cropping history. Bulk soil and rhizosphere samples were collected three and seven weeks after planting. The analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and pyrosequencing revealed soil type-dependent differences in the bacterial community structure of the bulk soils and the corresponding rhizospheres. The rhizosphere effect differed depending on the soil type and the plant growth developmental stage. Despite the soil type-dependent differences in the bacterial community composition several genera such as Sphingomonas, Rhizobium, Pseudomonas and Variovorax were significantly increased in the rhizosphere of lettuce grown in all three different soils. The number of rhizosphere responders was highest three weeks after planting. Interestingly, in the soil with the highest numbers of responders the highest shoot dry weights were observed. Heatmap analysis revealed that many dominant operational taxonomic units were shared among rhizosphere samples of lettuce grown in diluvial sand, alluvial loam, and loess loam and that only a subset was increased in relative abundance in the rhizosphere compared to the corresponding bulk soil. The findings of the study provide insights into the effect of soil types on the rhizosphere microbiome of lettuce.

  1. Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components

    Directory of Open Access Journals (Sweden)

    Mishra Yogesh

    2012-01-01

    Full Text Available Abstract Background Plants exhibit phenotypic plasticity and respond to differences in environmental conditions by acclimation. We have systematically compared leaves of Arabidopsis thaliana plants grown in the field and under controlled low, normal and high light conditions in the laboratory to determine their most prominent phenotypic differences. Results Compared to plants grown under field conditions, the "indoor plants" had larger leaves, modified leaf shapes and longer petioles. Their pigment composition also significantly differed; indoor plants had reduced levels of xanthophyll pigments. In addition, Lhcb1 and Lhcb2 levels were up to three times higher in the indoor plants, but differences in the PSI antenna were much smaller, with only the low-abundance Lhca5 protein showing altered levels. Both isoforms of early-light-induced protein (ELIP were absent in the indoor plants, and they had less non-photochemical quenching (NPQ. The field-grown plants had a high capacity to perform state transitions. Plants lacking ELIPs did not have reduced growth or seed set rates, but their mortality rates were sometimes higher. NPQ levels between natural accessions grown under different conditions were not correlated. Conclusion Our results indicate that comparative analysis of field-grown plants with those grown under artificial conditions is important for a full understanding of plant plasticity and adaptation.

  2. Preliminary attempts to biolistic inoculation of grapevine fanleaf virus.

    Science.gov (United States)

    Valat, L; Mode, F; Mauro, M C; Burrus, M

    2003-03-01

    Biolistics has been studied to inoculate grapevine fanleaf virus (GFLV), a Nepovirus, to its natural woody host, Vitis sp., and its herbaceous host, Chenopodium quinoa. At first, bombardment conditions for in vitro and greenhouse grown plants were set using the uidA reporter gene. The infectious feature of the cartridges was then evaluated by studying infection of C. quinoa plants. Systemic infection was obtained with either GFLV particles or RNA extracts in experimental conditions which gave also the highest transient uidA gene expression. Concerning grapevine, our results indicate that extrapolation to this plant is difficult. In only 1 out of 8 independent bombardment experiments done with GFLV and 41B, we were able to detect the virus in freshly bombarded leaves. Similarly, later after bombardment, Pol mRNAs were detected once, at days 7 and 14 only. Incubating the plants in darkness, as suggested in the literature, or using Rupestris Saint Georges, an indicator for GFLV presence, did not yield any improvement. Finely, our observations suggest that detection of GFLV in bombarded grapevine tissues by immunological or molecular techniques remains a limiting factor, probably due to an excess of inhibitory compounds released during the biolistic process.

  3. Interaction of different irrigation strategies and soil textures on the nitrogen uptake of field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, S.H.; Andersen, Mathias Neumann; Lærke, Poul Erik

    2011-01-01

    received 65% of FI after tuber bulking and lasted for six weeks until final harvest. Results showed that the irrigation treatments were not significantly different in terms of N uptake in the tubers, shoot, and whole crop. However, there was a statistical difference between the soil textures where plants......Nitrogen (N) uptake (kg ha-1) of field-grown potatoes was measured in 4.32 m2 lysimeters that were filled with coarse sand, loamy sand, and sandy loam and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments...... in the loamy sand had the highest amount of N uptake. The interaction between irrigation treatments and soil textures was significant, and implied that under non-limiting water conditions, loamy sand is the suitable soil for potato production because plants can take up sufficient amounts of N and it could...

  4. A quantitative approach to developing more mechanistic gas exchange models for field grown potato

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Andersen, Mathias Neumann; Poulsen, Rolf Thostrup

    2009-01-01

    of chemical and hydraulic signalling on stomatal conductance as exp(-β[ABA])exp(-δ|ψ|) in which [ABA] and |ψ| are xylem ABA concentration and absolute value of leaf or stem water potential. In this study we found that stem water potential could be a very reliable indicator of how plant water status affects......In this study we introduce new gas exchange models that are developed under natural conditions of field grown potato. The new models could explain about 85% of the stomatal conductance variations, which was much higher than the well-known gas exchange models such as the Ball-Berry model [Ball......, Woodrow, Berry, 1987. In: Nijhoff, M. (Eds.), Progress in Photosynthesis Research, vol. 4. Dordrecht, The Netherlands, pp. 5.221-5.224]. To overcome the limitations of previous models in simulating stomatal conductance when plants are exposed to drought stress, we proposed a down-regulating factor...

  5. Interaction of different irrigation strategies and soil textures on the nitrogen uptake of field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, S.H.; Andersen, Mathias Neumann; Lærke, Poul Erik;

    2011-01-01

    in the loamy sand had the highest amount of N uptake. The interaction between irrigation treatments and soil textures was significant, and implied that under non-limiting water conditions, loamy sand is the suitable soil for potato production because plants can take up sufficient amounts of N and it could......Nitrogen (N) uptake (kg ha-1) of field-grown potatoes was measured in 4.32 m2 lysimeters that were filled with coarse sand, loamy sand, and sandy loam and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments...... received 65% of FI after tuber bulking and lasted for six weeks until final harvest. Results showed that the irrigation treatments were not significantly different in terms of N uptake in the tubers, shoot, and whole crop. However, there was a statistical difference between the soil textures where plants...

  6. Interaction of different irrigation strategies and soil textures on the nitrogen uptake of field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, S.H.; Andersen, M.N.; Lærke, P.E.

    2011-01-01

    Nitrogen (N) uptake (kg ha-1) of field-grown potatoes was measured in 4.32 m2 lysimeters that were filled with coarse sand, loamy sand, and sandy loam and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments...... in the loamy sand had the highest amount of N uptake. The interaction between irrigation treatments and soil textures was significant, and implied that under non-limiting water conditions, loamy sand is the suitable soil for potato production because plants can take up sufficient amounts of N and it could...... potentially lead to higher yield. However, under limited water conditions and applying water-saving irrigation strategies, sandy loam and coarse sand are better growth media because N is more available for the potatoes. The simple yield prediction model was developed that could explains ca. 96...

  7. Metabolite changes in nine different soybean varieties grown under field and greenhouse conditions.

    Science.gov (United States)

    Maria John, K M; Natarajan, Savithiry; Luthria, Devanand L

    2016-11-15

    Global food security remains a worldwide concern due to changing climate, increasing population, and reduced agriculture acreages. Greenhouse cultivation increases productivity by extending growing seasons, reducing pest infestations and providing protection against short term drastic weather fluctuations like frost, heat, rain, and wind. In the present study, we examined and compared the metabolic responses of nine soybean varieties grown under field and greenhouse conditions. Extracts were assayed by GC-FID, GC-MS, and LC-MS for the identification of 10 primary (amino acids, organic acids, and sugars) and 10 secondary (isoflavones, fatty acid methyl esters) metabolites. Sugar molecules (glucose, sucrose, and pinitol) and isoflavone aglycons were increased but the isoflavones glucoside content decreased in the greenhouse cultivated soybeans. The amino acids and organic acids varied between the varieties. The results show that clustering (PCA and PLS-DA) patterns of soybean metabolites were significantly influenced by the genetic variation and growing conditions.

  8. Free radical scavenging activity and comparative metabolic profiling of in vitro cultured and field grown Withania somnifera roots.

    Directory of Open Access Journals (Sweden)

    Kalaiselvi Senthil

    Full Text Available Free radical scavenging activity (FRSA, total phenolic content (TPC, and total flavonoid content (TFC of in vitro cultured and field grown Withania somnifera (Ashwagandha roots were investigated. Withanolides analysis and comprehensive metabolic profiling between 100% methanol extracts of in vitro and field grown root tissues was performed using high performance thin layer chromatography (HPTLC and gas chromatography-mass spectrometry (GC-MS, respectively. Significantly higher levels of FRSA, TPC, and TFC were observed in in-vitro cultured roots compared with field grown samples. In addition, 30 day-cultured in vitro root samples (1 MIR exhibited a significantly higher FRSA (IC50 81.01 μg/mL, TPC (118.91 mg GAE/g, and TFC (32.68 mg CE/g compared with those in 45 day-cultured samples (1.5 MIR. Total of 29 metabolites were identified in in vitro cultured and field grown roots by GC-MS analysis. The metabolites included alcohols, organic acids, purine, pyrimidine, sugars, and putrescine. Vanillic acid was only observed in the in vitro cultured root samples, and higher level of the vanillic acid was observed in 1 MIR when compared to 1.5 MIR. Therefore, it is suggested that 1 MIR might serve as an alternative to field grown roots for the development of medicinal and functional food products.

  9. Free radical scavenging activity and comparative metabolic profiling of in vitro cultured and field grown Withania somnifera roots.

    Science.gov (United States)

    Senthil, Kalaiselvi; Thirugnanasambantham, Pankajavalli; Oh, Taek Joo; Kim, So Hyun; Choi, Hyung Kyoon

    2015-01-01

    Free radical scavenging activity (FRSA), total phenolic content (TPC), and total flavonoid content (TFC) of in vitro cultured and field grown Withania somnifera (Ashwagandha) roots were investigated. Withanolides analysis and comprehensive metabolic profiling between 100% methanol extracts of in vitro and field grown root tissues was performed using high performance thin layer chromatography (HPTLC) and gas chromatography-mass spectrometry (GC-MS), respectively. Significantly higher levels of FRSA, TPC, and TFC were observed in in-vitro cultured roots compared with field grown samples. In addition, 30 day-cultured in vitro root samples (1 MIR) exhibited a significantly higher FRSA (IC50 81.01 μg/mL), TPC (118.91 mg GAE/g), and TFC (32.68 mg CE/g) compared with those in 45 day-cultured samples (1.5 MIR). Total of 29 metabolites were identified in in vitro cultured and field grown roots by GC-MS analysis. The metabolites included alcohols, organic acids, purine, pyrimidine, sugars, and putrescine. Vanillic acid was only observed in the in vitro cultured root samples, and higher level of the vanillic acid was observed in 1 MIR when compared to 1.5 MIR. Therefore, it is suggested that 1 MIR might serve as an alternative to field grown roots for the development of medicinal and functional food products.

  10. Diurnal and seasonal variation in light and dark respiration in field-grown Eucalyptus pauciflora.

    Science.gov (United States)

    Way, Danielle A; Holly, Chris; Bruhn, Dan; Ball, Marilyn C; Atkin, Owen K

    2015-08-01

    Respiration from vegetation is a substantial part of the global carbon cycle and the responses of plant respiration to daily and seasonal fluctuations in temperature and light must be incorporated in models of terrestrial respiration to accurately predict these CO2 fluxes. We investigated how leaf respiration (R) responded to changes in leaf temperature (T(leaf)) and irradiance in field-grown saplings of an evergreen tree (Eucalyptus pauciflora Sieb. ex Spreng). Seasonal shifts in the thermal sensitivity of leaf R in the dark (R(dark)) and in the light (R(light)) were assessed by allowing T(leaf) to vary over the day in field-grown leaves over a year. The Q10 of R (i.e., the relative increase in R for a 10 °C increase in T(leaf)) was similar for R(light) and R(dark) and had a value of ∼ 2.5; there was little seasonal change in the Q10 of either R(light) or R(dark), indicating that we may be able to use similar functions to model short-term temperature responses of R in the dark and in the light. Overall, rates of R(light) were lower than those of R(dark), and the ratio of R(light)/R(dark) tended to increase with rising T(leaf), such that light suppression of R was reduced at high T(leaf) values, in contrast to earlier work with this species. Our results suggest we cannot assume that R(light)/R(dark) decreases with increasing T(leaf) on daily timescales, and highlights the need for a better mechanistic understanding of what regulates light suppression of R in leaves. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Protein and metabolite composition of xylem sap from field-grown soybeans (Glycine max).

    Science.gov (United States)

    Krishnan, Hari B; Natarajan, Savithiry S; Bennett, John O; Sicher, Richard C

    2011-05-01

    The xylem, in addition to transporting water, nutrients and metabolites, is also involved in long-distance signaling in response to pathogens, symbionts and environmental stresses. Xylem sap has been shown to contain a number of proteins including metabolic enzymes, stress-related proteins, signal transduction proteins and putative transcription factors. Previous studies on xylem sap have mostly utilized plants grown in controlled environmental chambers. However, plants in the field are subjected to high light and to environmental stress that is not normally found in growth chambers. In this study, we have examined the protein and metabolite composition of xylem sap from field-grown cultivated soybean plants. One-dimensional gel electrophoresis of xylem sap from determinate, indeterminate, nodulating and non-nodulating soybean cultivars revealed similar protein profiles consisting of about 8-10 prominent polypeptides. Two-dimensional gel electrophoresis of soybean xylem sap resulted in the visualization of about 60 distinct protein spots. A total of 38 protein spots were identified using MALDI-TOF MS and LC-MS/MS. The most abundant proteins present in the xylem sap were identified as 31 and 28 kDa vegetative storage proteins. In addition, several proteins that are conserved among different plant species were also identified. Diurnal changes in the metabolite profile of xylem sap collected during a 24-h cycle revealed that asparagine and aspartate were the two predominant amino acids irrespective of the time collected. Pinitol (D-3-O-methyl-chiro-inositol) was the most abundant carbohydrate present. The possible roles of xylem sap proteins and metabolites as nutrient reserves for sink tissue and as an indicator of biotic stress are also discussed.

  12. No indication of strict host associations in a widespread mycoparasite: grapevine powdery mildew (Erysiphe necator) is attacked by phylogenetically distant Ampelomyces strains in the field.

    Science.gov (United States)

    Pintye, Alexandra; Bereczky, Zsolt; Kovács, Gábor M; Nagy, László G; Xu, Xiangming; Legler, Sara Elisabetta; Váczy, Zsuzsanna; Váczy, Kálmán Zoltán; Caffi, Tito; Rossi, Vittorio; Kiss, Levente

    2012-07-01

    Pycnidial fungi belonging to the genus Ampelomyces are common intracellular mycoparasites of powdery mildews worldwide. Some strains have already been developed as commercial biocontrol agents (BCAs) of Erysiphe necator and other powdery mildew species infecting important crops. One of the basic, and still debated, questions concerning the tritrophic relationships between host plants, powdery mildew fungi, and Ampelomyces mycoparasites is whether Ampelomyces strains isolated from certain species of the Erysiphales are narrowly specialized to their original mycohosts or are generalist mycoparasites of many powdery mildew fungi. This is also important for the use of Ampelomyces strains as BCAs. To understand this relationship, the nuclear ribosomal DNA internal transcribed spacer (ITS) and partial actin gene (act1) sequences of 55 Ampelomyces strains from E. necator were analyzed together with those of 47 strains isolated from other powdery mildew species. These phylogenetic analyses distinguished five major clades and strains from E. necator that were present in all but one clade. This work was supplemented with the selection of nine inter-simple sequence repeat (ISSR) markers for strain-specific identification of Ampelomyces mycoparasites to monitor the environmental fate of strains applied as BCAs. The genetic distances among strains calculated based on ISSR patterns have also highlighted the genetic diversity of Ampelomyces mycoparasites naturally occurring in grapevine powdery mildew. Overall, this work showed that Ampelomyces strains isolated from E. necator are genetically diverse and there is no indication of strict mycohost associations in these strains. However, these results cannot rule out a certain degree of quantitative association between at least some of the Ampelomyces lineages identified in this work and their original mycohosts.

  13. Striations in CZ silicon crystals grown under various axial magnetic field strengths

    Science.gov (United States)

    Kim, K. M.; Smetana, P.

    1985-10-01

    Inhibition of fluid flow instabilities in the melt by the axial magnetic field in Czochralski silicon crystal growth (AMCZ) is investigated precisely by a high-sensitivity striation etch in conjunction with temperature measurements. The magnetic field strength (B) was varied up to 4.0 kG, incremented mostly in 0.5-kG/2.5-cm crystal length. The convection flow was substantially suppressed at B greater than or equal to 1.0 kG. A low oxygen level of 2-3 ppm and a high resistivity of 400 ohm-cm is achieved in the AMCZ silicon crystals at B greater than or equal to 1.0 kG. Random striations at B = O, characteristic of turbulent convection, assumed progressively a periodicity, indicative of oscillatory convection at B from 0.35-4.0 kG. The striation contrast or 'intensity' decreased steadily with the increase in B. At B = 4 kG, most of the crystal was free of striations, although some weak, localized periodic striations persisted near the crystal periphery. Spreading-resistance measurement shows, however, a uniform dopant distribution in all crystal sections grown at B from 0.35-4.0 kG within a few percent.

  14. Characterization of Rhizobacteria from field grown Genetically Modified (GM and non-GM maizes

    Directory of Open Access Journals (Sweden)

    Emmanuel Wihkochombom Bumunang

    2014-02-01

    Full Text Available This study was done to examine the rhizobacteria from field grown Genetically Modified (GM maize and its non-GM counterpart. Rhizospheric soil samples were collected at 30 days after sowing (DAS and at post-harvest from two experimental fields in Gauteng, South Africa. Total rhizobacteria (cfu/g in GM and non-GM soil samples was not significantly different across the different media 30 DAS and at post-harvest. Rhizobacterial isolates obtained were biochemically characterized using the analytical profile index. Species of Pseudomonas, Aeromonas, Sphingomonas, Burkholderia, Stenotrophomonas, Achromobacter, Ewingella and Bacillus were screened in vitro for plant growth promoting traits such as, ammonia production, catalase activity, indole acetic acid production, phosphate solubilisation, hydrogen cyanide production and antifungal activity. All the 32 rhizobacterial strains tested in this study were positive for catalase activity, ammonia production and IAA production; 90.6% were positive for phosphate solubilisation, 34.3% for indicate antifungal activity but none for hydrogen cyanide production. These findings contributed to the quest for potential biofertilizers and biocontrol agents for sustainable agriculture.

  15. Understanding grapevine-microbiome interactions: implications for viticulture industry

    OpenAIRE

    Iratxe Zarraonaindia; Gilbert, Jack A

    2015-01-01

    Until recently, the analysis of complex communities such as that of the grapevine-microbe holobiont has been limited by the fact that most microbes are notculturable under laboratory conditions (less than 1%). However, metagenomics, the study of the genetic material recovered directly from environmental samples without the need for enrichment or of culturing, has led to open an unprecedented era in the field of microbiology. Importantly, this technological advance has now become ...

  16. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce.

    Science.gov (United States)

    Rastogi, Gurdeep; Sbodio, Adrian; Tech, Jan J; Suslow, Trevor V; Coaker, Gitta L; Leveau, Johan H J

    2012-10-01

    The presence, size and importance of bacterial communities on plant leaf surfaces are widely appreciated. However, information is scarce regarding their composition and how it changes along geographical and seasonal scales. We collected 106 samples of field-grown Romaine lettuce from commercial production regions in California and Arizona during the 2009-2010 crop cycle. Total bacterial populations averaged between 10(5) and 10(6) per gram of tissue, whereas counts of culturable bacteria were on average one (summer season) or two (winter season) orders of magnitude lower. Pyrosequencing of 16S rRNA gene amplicons from 88 samples revealed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were the most abundantly represented phyla. At the genus level, Pseudomonas, Bacillus, Massilia, Arthrobacter and Pantoea were the most consistently found across samples, suggesting that they form the bacterial 'core' phyllosphere microbiota on lettuce. The foliar presence of Xanthomonas campestris pv. vitians, which is the causal agent of bacterial leaf spot of lettuce, correlated positively with the relative representation of bacteria from the genus Alkanindiges, but negatively with Bacillus, Erwinia and Pantoea. Summer samples showed an overrepresentation of Enterobacteriaceae sequences and culturable coliforms compared with winter samples. The distance between fields or the timing of a dust storm, but not Romaine cultivar, explained differences in bacterial community composition between several of the fields sampled. As one of the largest surveys of leaf surface microbiology, this study offers new insights into the extent and underlying causes of variability in bacterial community composition on plant leaves as a function of time, space and environment.

  17. Genetic Variation in Response to Salt Stress of Quinoa Grown under Controlled and Field Conditions

    Directory of Open Access Journals (Sweden)

    Nguyen Long

    2016-04-01

    Full Text Available The objective of this study was to understand the change in response of quinoa genotypes to divers salinity stress conditions e.g in controlled (net-house and in the different saline fields. The pot experiment was conducted in a net-house at Vietnam National University of Agriculture, Hanoi, Vietnam in spring cropping season to characterize the growth and yield of six quinoa genotypes under four NaCl concentrations (0, 10, 20 and 30 dS m-1. At the same time, in Nam Dinh and Hai Phong provinces, two coastal provinces that are most affected by seawater intrusion in the North of Vietnam, same genotypes were studied under two plant densities (20 x 5cm and 50 x 5cm. The results showed that salinity stresses reduced growth and yield characteristics of quinoa plant and varying due to different saline conditions. Plant density of quinoa grown under saline fields was not associated with difference in morphological traits but might relate to the change in yield characteristics. Salinity stresses reduced plant height, the number of leaves on main stem, the number of branches on plant, head panicle length, the number of branches per panicle, dry matter accumulation, 1000-seed weight, individual and grain yield of all quinoa genotypes. However, most of quinoa genotypes produced acceptable yield even under high salt conditions in the field. Among quinoa genotypes, Moradas and Verde adapted well to salt stress conditions with high potential for the number of leaves on main stem, the number of branches on plant, dry matter accumulation and yield than others. These should be recommended varieties for cultivation in saline areas in Vietnam as well as be useful to improve genetic resources in breeding program for salt tolerant quinoa varieties.

  18. Grapevine phytoplasma disease in Georgia

    Directory of Open Access Journals (Sweden)

    N.M. Chkhaidze

    2016-09-01

    Full Text Available Results of grapevine yellows disease (GY studies in 2005–2015 are reported. Based on symptoms and Dienes' staining method the disease was detected in Kartli, Kakheti and Guria regions on Vitis vinifera (L. Rkatsiteli, Saperavi, Shavkapito, Tavkveri, Aladasturi, Kachichi, Ganjuri, Chardonnay, Vitis labrusca (L. cultivar Isabella, species hybrid cultivar Noah. The phytoplasmas were also visualized by using electron microscopy. The disease seriously modifies the structure of leaf the grapevine phloem, the chlorophyll content and the functioning of sink–source system. According to anatomical characters the studied cultivars showed a decreasing resistance from Noah, to Aladasturi, Rkatsiteli, Kachichi and Saperavi. In the areas of disease epidemic 12 leafhopper species were identified: Agalmatium grylloides (Fabricius, 1794, Cicadella viridis (Linnaeus, 1758, Dictyophara europaea (Linnaeus, 1767, Empoasca vitis (Gothe, 1875, Erythroneura imeretina Dekanoidze, 1962, Hyalesthes mlokosieviczi Signoret, 1879, Hyalesthes obsoletus Signoret, 1865, Lepironia coleoptrata (Linnaeus, 1758, Pentastiridius leporinus (Linnaeus, 1761, Philaenus spumarius (Linnaeus, 1758, Metcalfa pruinosa (Say, 1830, Ricania japonica (Melichar, 1898, which may be possible vectors of grapevine phytoplasmas in Georgia.

  19. PLEADING FOR THE GRAPEVINE CULTURE

    Directory of Open Access Journals (Sweden)

    Ionela Cătălina Guţă

    2012-04-01

    Full Text Available The grapevine is cultivated with good results on hilly terrain, on sand and sandy soils, thus ensuring high recovery of these categories of agricultural land considered unsuitable for other crops. Vineyards, so related to people existence everywhere, became something more than just places of economic interest. What makes the viticulture to be so important is that it refers to the food value, therapeutic, recreational of grapes, must and wine, wine derived products and residues from wine, the great extent of the area occupied by vineyards, to good natural conditions (pedo-climatic existing in our country and also to the aesthetic value of the land planted with vines worldwide. The fitting of the gardens of the house, both in the countryside and in urban areas, includes in most cases the presence of grapevine plants cut in different art forms, their care being an exciting job. In general, by the presence of vines are valued the spaces next to existing buildings (house, yard, various outbuildings, along fences and roads. Grapevines location, cutting types chosen, besides beautifying the yard, must make a harmonious aspect of the whole surrounding. Chosen forms of management (arches, halfarches can protect the strong sunlight places. By the kiosks or other artistic realized forms are created spaces for rest, shade.

  20. Drench Treatments for Management of Larval Japanese Beetle (Coleoptera: Scarabaeidae) in Field-Grown Balled and Burlapped Nursery Plants

    Science.gov (United States)

    The study evaluated insecticide drenches applied to post-harvest field-grown nursery plants harvested as 60-cm diameter balled and burlapped (B&B) root balls for controlling third instar Japanese beetle, Popillia japonica Newman. Bifenthrin, chlorpyrifos, lambda-cyhalothrin, and thiamethoxam were d...

  1. Understanding Functional Relationships Affecting Growth and Quality of Field Grown Leaf Lettuce in the Greenbelt of Buenos Aires, Argentina

    NARCIS (Netherlands)

    Tittonell, P.A.; Grazia, De J.; Chiesa, A.

    2005-01-01

    Earlier studies in the horticultural production area around Buenos Aires (Argentina) indicated that field grown leaf lettuce fertilised with 150 kg N ha-1 accumulated NO3-N in the leaves up to concentrations well above the reference limits adopted by European countries. Previous studies also showed

  2. First record of Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae severely damaging field grown potato crops in South Sulawesi, Indonesia

    Directory of Open Access Journals (Sweden)

    Nasruddin Andi

    2016-04-01

    Full Text Available Greenhouse whitefly, Trialeurodes vaporariorum Westwood was reported for the first time in the South Sulawesi Province of Indonesia, and is causing significant damage to field grown potato crops. In an insecticide trial, the tuber yield in infested, untreated plants was reduced by 39%, and the plants had an average number of 68 adult whiteflies per leaflet.

  3. Procedure for collecting and packaging grapevine samples

    Science.gov (United States)

    Grapevine yellows (GY) is a term that is used to refer to any of several diseases of grapevine (Vitis vinifera) that are caused by phytoplasmas. Around the globe, diverse ‘Candidatus Phytoplasma’ species cause indistinguishable disease symptoms in V. vinifera and are spread by different species of ...

  4. Reassessment of Phomopsis species on grapevines

    NARCIS (Netherlands)

    Niekerk, van J.M.; Groenewald, J.Z.; Farr, D.F.; Fourie, P.H.; Halleen, F.; Crous, P.W.

    2005-01-01

    Ten species of Phomopsis have previously been identified from grapevines. Of these, P. viticola, the causal agent of Phomopsis cane and leaf spot, and P. vitimegaspora, the causal agent of swelling arm of grapevines, have been confirmed as severe pathogens of this host. Earlier taxonomic treatments

  5. More Than Rumors. Understanding the Organizational Grapevine.

    Science.gov (United States)

    Zaremba, Alan

    Because the grapevine can precipitate managerial nightmares (employee resentment, distorted messages, instant diffusion of incendiary rumors), managers are well-advised to study this informal communications network and diffuse its organizational impact. This paper discusses the development, accuracy, resilience, and management of the grapevine.…

  6. Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields.

    Science.gov (United States)

    Nadeem, Sajid Mahmood; Zahir, Zahir Ahmad; Naveed, Muhammad; Arshad, Muhammad

    2009-11-01

    Salt stress is one of the major constraints hampering agricultural production owing to its impact on ethylene production and nutritional imbalance. A check on the accelerated ethylene production in plants could be helpful in minimizing the negative effect of salt stress on plant growth and development. Four Pseudomonas, 1 Flavobacterium, and 1 Enterobacter strain of plant growth promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate (ACC)-deaminase were selected and their effects on growth and yield of maize were investigated to improve the salt tolerance of maize grown on salt-affected fields. The selected rhizobacterial isolates reduced or eliminated the classical "triple" response, indicating their ability to reduce stress-induced ethylene levels. Results showed that rhizobacterial strains, particularly Pseudomonas and Enterobacter spp., significantly promoted the growth and yield of maize compared with the non-inoculated control. Pseudomonas fluorescens increased plant height, biomass, cob yield, grain yield, 1000 grain mass, and straw yield of maize up to 29%, 127%, 67%, 60%, 17%, and 166%, respectively, over the control. Under stress conditions, more N, P, and K uptake and high K+-Na+ ratios were recorded in inoculated plants compared with the control. The results imply that inoculation with plant growth promoting rhizobacteria containing ACC-deaminase could be a useful approach for improving growth and yield of maize under salt-stressed conditions.

  7. Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome.

    Science.gov (United States)

    Beckers, Bram; Op De Beeck, Michiel; Weyens, Nele; Van Acker, Rebecca; Van Montagu, Marc; Boerjan, Wout; Vangronsveld, Jaco

    2016-02-23

    Cinnamoyl-CoA reductase (CCR), an enzyme central to the lignin biosynthetic pathway, represents a promising biotechnological target to reduce lignin levels and to improve the commercial viability of lignocellulosic biomass. However, silencing of the CCR gene results in considerable flux changes of the general and monolignol-specific lignin pathways, ultimately leading to the accumulation of various extractable phenolic compounds in the xylem. Here, we evaluated host genotype-dependent effects of field-grown, CCR-down-regulated poplar trees (Populus tremula × Populus alba) on the bacterial rhizosphere microbiome and the endosphere microbiome, namely the microbiota present in roots, stems, and leaves. Plant-associated bacteria were isolated from all plant compartments by selective isolation and enrichment techniques with specific phenolic carbon sources (such as ferulic acid) that are up-regulated in CCR-deficient poplar trees. The bacterial microbiomes present in the endosphere were highly responsive to the CCR-deficient poplar genotype with remarkably different metabolic capacities and associated community structures compared with the WT trees. In contrast, the rhizosphere microbiome of CCR-deficient and WT poplar trees featured highly overlapping bacterial community structures and metabolic capacities. We demonstrate the host genotype modulation of the plant microbiome by minute genetic variations in the plant genome. Hence, these interactions need to be taken into consideration to understand the full consequences of plant metabolic pathway engineering and its relation with the environment and the intended genetic improvement.

  8. Quercitol and osmotic adaptation of field-grown Eucalyptus under seasonal drought stress.

    Science.gov (United States)

    Arndt, Stefan K; Livesley, Stephen J; Merchant, Andrew; Bleby, Timothy M; Grierson, Pauline F

    2008-07-01

    This study investigated the role of quercitol in osmotic adjustment in field-grown Eucalyptus astringens Maiden subject to seasonal drought stress over the course of 1 year. The trees grew in a native woodland and a farm plantation in the semi-arid wheatbelt region of south Western Australia. Plantation trees allocated relatively more biomass to leaves than woodland trees, but they suffered greater drought stress over summer, as indicated by lower water potentials, CO(2)assimilation rates and stomatal conductances. In contrast, woodland trees had relatively fewer leaves and suffered less drought stress. Plantation trees under drought stress engaged in osmotic adjustment, but woodland trees did not. Quercitol made a significant contribution to osmotic adjustment in drought-stressed trees (25% of total solutes), and substantially more quercitol was measured in the leaves of plantation trees (5% dry matter) than in the leaves of woodland trees (2% dry matter). We found no evidence that quercitol was used as a carbon storage compound while starch reserves were depleted under drought stress. Differences in stomatal conductance, biomass allocation and quercitol production clearly indicate that E. astringens is both morphologically and physiologically 'plastic' in response to growth environment, and that osmotic adjustment is only one part of a complex strategy employed by this species to tolerate drought.

  9. Effects of acid precipitation alone and in combination with sulfur dioxide on field-grown soybeans

    Energy Technology Data Exchange (ETDEWEB)

    Irving, P. M.; Miller, J. E.

    1979-01-15

    In view of the increasing prevalence of acid precipitation in the Midwest, a study was undertaken in 1977 to determine its effects, and possible interactions with SO/sub 2/, on soybeans, an economically important crop in the Midwest. The findings to date are summarized. Field-grown soybeans were exposed to acid (approx. pH 3.1) or control (approx. pH 5.3) precipitation simulants in sulfur dioxide fumigated and unfumigated field plots as described previously. No statistically significant effects of the acid or control simulants, nor interactions with SO/sub 2/, were found on seed yield in either year, although the plots receiving both precipitation simulant and SO/sub 2/ had significantly lower yields (12 to 46%) than plots receiving only precipitation simulant. In 1977 the seed yields were slightly lower in both the fumigated and unfumigated acid-treated plots, when compared to the appropriate controls, while in 1978, yields in the unfumigated, acid-treated plots were somewhat higher. It is interesting to note that the weights of individual seeds were consistent with the yield differences; in 1978 the seed weight in the acid precipitation plot was significantly different from that in plots both with control precipitation and no precipitation. This suggests that the acid treatment in 1978 did, in fact, have an effect on productivity as reflected seed growth. Although visible damage was not apparent in any of the plots, a histological study revealed significant increases in the number of dead leaf cells in all plots, compared to untreated controls, except the one exposed to control precipitation alone.

  10. Zinc deficiency in field-grown pecan trees: changes in leaf nutrient concentrations and structure.

    Science.gov (United States)

    Ojeda-Barrios, Dámaris; Abadía, Javier; Lombardini, Leonardo; Abadía, Anunciación; Vázquez, Saúl

    2012-06-01

    Zinc (Zn) deficiency is a typical nutritional disorder in pecan trees [Carya illinoinensis (Wangenh.) C. Koch] grown under field conditions in calcareous soils in North America, including northern Mexico and south-western United States. The aim of this study was to assess the morphological and nutritional changes in pecan leaves affected by Zn deficiency as well as the Zn distribution within leaves. Zinc deficiency led to decreases in leaf chlorophyll concentrations, leaf area and trunk cross-sectional area. Zinc deficiency increased significantly the leaf concentrations of K and Ca, and decreased the leaf concentrations of Zn, Fe, Mn and Cu. All nutrient values found in Zn-deficient leaves were within the sufficiency ranges, with the only exception of Zn, which was approximately 44, 11 and 9 µg g(-1) dry weight in Zn-sufficient, moderately and markedly Zn-deficient leaves, respectively. Zinc deficiency led to decreases in leaf thickness, mainly due to a reduction in the thickness of the palisade parenchyma, as well as to increases in stomatal density and size. The localisation of Zn was determined using the fluorophore Zinpyr-1 and ratio-imaging technique. Zinc was mainly localised in the palisade mesophyll area in Zn-sufficient leaves, whereas no signal could be obtained in Zn-deficient leaves. The effects of Zn deficiency on the leaf characteristics of pecan trees include not only decreases in leaf chlorophyll and Zn concentrations, but also a reduction in the thickness of the palisade parenchyma, an increase in stomatal density and pore size and the practical disappearance of Zn leaf pools. These characteristics must be taken into account to design strategies to correct Zn deficiency in pecan tree in the field. Copyright © 2012 Society of Chemical Industry.

  11. Biological control of crown gall on grapevine and root colonization by nonpathogenic Rhizobium vitis strain ARK-1.

    Science.gov (United States)

    Kawaguchi, Akira

    2013-01-01

    A nonpathogenic strain of Rhizobium vitis ARK-1 was tested as a biological control agent for grapevine crown gall. When grapevine roots were soaked in a cell suspension of strain ARK-1 before planting in the field, the number of plants with tumors was reduced. The results from seven field trials from 2009 to 2012 were combined in a meta-analysis. The integrated relative risk after treatment with ARK-1 was 0.15 (95% confidence interval: 0.07-0.29, P0.001), indicating that the disease incidence was significantly reduced by ARK-1. In addition, the results from four field trials from 2007 to 2009 using R. vitis VAR03-1, a previously reported biological control agent for grapevine crown gall, were combined in a meta-analysis. The integrated relative risk after treatment with VAR03-1 was 0.24 (95% confidence interval: 0.11-0.53, P0.001), indicating the superiority of ARK-1 in inhibiting grapevine crown gall over VAR03-1 under field conditions. ARK-1 did not cause necrosis on grapevine shoot explants. ARK-1 established populations on roots of grapevine tree rootstock and persisted inside roots for two years.

  12. Translocation of nitrogen in the xylem of field-grown cherry and poplar trees during remobilization.

    Science.gov (United States)

    Millard, Peter; Wendler, Renate; Grassi, Giacomo; Grelet, Gwen-Aelle; Tagliavini, Massimo

    2006-04-01

    Studies of small trees growing in pots have established that individual amino acids or amides are translocated in the xylem sap of a range of tree species following bud burst, as a consequence of nitrogen (N) remobilization from storage. This paper reports the first study of N translocation in the xylem of large, deciduous, field-grown trees during N remobilization in the spring. We applied 15N fertilizer to the soil around 10-year-old Prunus avium L. and Populus trichocharpa Torr. & Gray ex Hook var. Hastata (Dode) A. Henry x Populus balsamifera L. var. Michauxii (Dode) Farwell trees before bud burst to label N taken up by the roots. Recovery of unlabeled N in xylem sap and leaves was used to demonstrate that P. avium remobilizes N in both glutamine (Gln) and asparagine (Asn). Sap concentrations of both amides rose sharply after bud burst, peaking 14 days after bud burst for Gln, and remaining high some 45 days for Asn. There was no 15N enrichment of either amide until 21 days after bud burst. In the Populus trees, nearly all the N was translocated in the sap as Gln, the concentration of which peaked and then declined before the amide was enriched with 15N, 40 days after bud burst. Xylem sap of clonal P. avium trees was sampled at different positions in the crown to assess if the amino acid and amide composition of the sap varied within the crown. Sap was sampled during remobilization (when the concentration of Gln was maximal), at the end of remobilization and at the end of the experiment (68 days after bud burst). Although the date of sampling had a highly significant effect on sap composition, the effect of position of sampling was marginal. The results are discussed in relation to N translocation in adult trees and the possibility of measuring N remobilization by calculating the flux of N translocation in the xylem.

  13. High magnetic field studies of AlGaN/GaN heterostructures grown on bulk GaN

    Energy Technology Data Exchange (ETDEWEB)

    Siekacz, M.; Nowak, G.; Porowski, S. [High Pressure Research Center, Polish Academy of Sciences, 01-142 Warsaw (Poland); Dybko, K. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Skierbiszewski, C. [High Pressure Research Center, Polish Academy of Sciences, 01-142 Warsaw (Poland); TopGaN Ltd., Warsaw (Poland); Knap, W. [High Pressure Research Center, Polish Academy of Sciences, 01-142 Warsaw (Poland); GES -UMR, CNRS - Universite Montpellier 2, Place E. Bataillon, 34950 Montpellier (France); Wasilewski, Z. [Institute for Microstructural Sciences, National Research Council, Ottawa (Canada); Maude, D. [Grenoble High Magnetic Field Laboratory, MPI-CNRS, 38042 Grenoble (France); Lusakowski, J. [Institute of Experimental Physics, University of Warsaw, Hoza 69, 00-681 Warsaw (Poland); Krupczynski, W.; Bockowski, M. [TopGaN Ltd., Warsaw (Poland)

    2005-03-01

    We present transport properties of AlGaN/GaN heterostructures grown over high-pressure bulk GaN substrates. The experimental results include the conductivity tensor measurements in a magnetic field up to 23 T in a wide temperature range 2 K-300 K for Hall bar samples. The room temperature high field data allow us to clearly separate contributions of a parasitic parallel conduction from 2DEG conduction in all investigated heterostructures. The room temperature mobility limit for 2D electrons in GaN/AlGaN heterojunctions grown on defect free GaN bulk substrates is around 2400 cm{sup 2}/Vs. The Quantum Hall Effect studies are performed in the magnetic fields up to 23 T and temperatures between 1.6 K and 15 K This high magnetic field in combination with very high mobility (over 60000 cm{sup 2}/Vs) in the sample grown on the bulk GaN substrate allow us to determine the activation energy in cyclotron gap from longitudinal magnetoresistance. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Expressed nifH Genes of Endophytic Bacteria Detected in Field-Grown Sweet Potatoes (Ipomoea batatas L.).

    Science.gov (United States)

    Terakado-Tonooka, Junko; Ohwaki, Yoshinari; Yamakawa, Hiromoto; Tanaka, Fukuyo; Yoneyama, Tadakatsu; Fujihara, Shinsuke

    2008-01-01

    We examined the nitrogenase reductase (nifH) genes of endophytic diazotrophic bacteria expressed in field-grown sweet potatoes (Ipomoea batatas L.) by reverse transcription (RT)-PCR. Gene fragments corresponding to nifH were amplified from mRNA obtained from the stems and storage roots of field-grown sweet potatoes several months after planting. Sequence analysis revealed that these clones were homologous to the nifH sequences of Bradyrhizobium, Pelomonas, and Bacillus sp. in the DNA database. Investigation of the nifH genes amplified from the genomic DNA extracted from these sweet potatoes also showed high similarity to various α-proteobacteria including Bradyrhizobium, β-proteobacteria, and cyanobacteria. These results suggest that bradyrhizobia colonize and express nifH genes not only in the root nodules of leguminous plants but also in sweet potatoes as diazotrophic endophytes.

  15. Calcium localization in lettuce leaves with and without tipburn: comparison of controlled-environment and field-grown plants

    Science.gov (United States)

    Barta, D. J.; Tibbitts, T. W.

    1991-01-01

    An electron microprobe was used to determine tissue concentrations of Ca across 20-mm-long leaves of 'Green Lakes' crisphead lettuce (Lactuca sativa L.) with and without tipburn injury. Concentrations within the fifth and 14th leaves, counted from the cotyledons, from plants grown under controlled-environment conditions were compared to concentrations within similar leaves obtained from plants grown under field conditions. Only the 14th leaf from plants grown under controlled-environment conditions developed tipburn. Injured areas on these leaves had Ca concentrations as low as 0.2 to 0.3 mg g-1 dry weight. Uninjured areas of tipburned leaves contained from 0.4 to 0.5 mg g-1 dry weight. Concentrations across the uninjured 14th leaf from field-grown plants averaged 1.0 mg g-1 dry weight. Amounts across the uninjured fifth leaves from both environments averaged 1.6 mg g-1 dry weight. In contrast, Mg concentrations were higher in injured leaves than in uninjured leaves and thus were negatively correlated with Ca concentrations. Magnesium concentrations averaged 4.7 mg g-1 dry weight in injured leaves compared with 3.4 mg g-1 dry weight in uninjured leaves from both environments. Magnesium concentrations were uniform across the leaf. Potassium concentrations were highest at the leaf apex and decreased toward the base and also decreased from the midrib to the margin. Potassium averaged 51 mg g-1 dry weight in injured and uninjured leaves from both environments. No significant differences in K concentration were present between injured and uninjured leaves. This study documented that deficient concentrations of Ca were present in areas of leaf tissue developing tipburn symptoms and that concentrations were significantly higher in similar areas of other leaves that had no symptoms. This study also documented that Ca concentrations were significantly lower in enclosed leaves that exhibited tipburn symptoms than in exposed leaves that did not exhibit tipburn. Also, the

  16. Optimising the use of plastic protective covers in field grown melon on a farm scale

    Directory of Open Access Journals (Sweden)

    Paolo Benincasa

    2014-01-01

    Full Text Available This in-farm research study was aimed at evaluating new strategies in the use of plastic protective covers in field grown melon in order to expand the production period and reduce costs. Four experiments were set up in 2010 and repeated in 2011 in Central Italy, in an inland region with a temperate climate. We evaluated: i the use of high tunnels for two growing cycles per year, i.e. for very early and very late production (target transplanting in late winter and mid-summer, respectively, for either one year or two consecutive years, and the use of grafted plants in the second year as an alternative to normal plants to prevent soil born diseases; ii the use of ethylene-vinyl-acetate film low tunnels alone or combined with non-woven floating row covers for transplanting in early spring; iii the use of non-woven low tunnels for transplanting in mid-spring; iv the use of biodegradable and conventional polyethylene ground mulch films, both in the presence of nonwoven low tunnels. As far as the non-woven cover is concerned, we adopted the strategy of removing later with respect to usual practices, i.e. ten days after the onset of first pistillate flowers. This was based on the evidence that covers hamper honeybee circulation, which may be exploited on a farm-scale to delay pollination until an adequate number of pistillate flowers set, in order to shorten scaled fruit ripening and harvest. Our results demonstrate that high tunnels may be used for at least four consecutive melon growing cycles (early and late productions for two years with good off-season yields and no appreciable drawbacks in terms of disease scale-up, irrespective of the use of normal or grafted plants. The non-woven low tunnel was effective in hampering honeybee circulation and its delayed removal allowed the harvest period to be halved, a more uniform fruit size to be obtained, and labour productivity of harvest to be increased. This had positive implications on the management of

  17. Field-Emission Study of Multi-Walled Carbon Nanotubes Grown On Si Substrate by Low Pressure Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    J. Ali

    2011-01-01

    Full Text Available CNTs are synthesized by Low Pressure Chemical Vapor Deposition (LPCVD method at 600 °C. The Si substrate is coated with Fe, used as a catalyst, by RF- sputtering. The thickness of the catalyst film is measured to be approximately 15 nm. Three precursor gases Acetylene (C2H2, Ammonia (NH3 and Hydrogen (H2 with flow rates 15 sccm, 100 sccm and 100 sccm respectively are allowed to flow through the tube reactor for 20 minutes. The as grown CNTs sample was characterized by Scanning Electron Microscope (SEM. SEM images show that the diameter of as grown CNTs is in the range of 20-50 nm. Field emission properties of as grown sample have also been studied. The CNTs film shows good field emission with turn on field Eα = 2.10 V/μm at the current density of 4.59 mA/cm2 with enhancement factor β = 1.37 × 102.

  18. Zinc Oxide Nanorods Grown on Printed Circuit Board for Extended-Gate Field-Effect Transistor pH Sensor

    Science.gov (United States)

    Van Thanh, Pham; Nhu, Le Thi Quynh; Mai, Hong Hanh; Tuyen, Nguyen Viet; Doanh, Sai Cong; Viet, Nguyen Canh; Kien, Do Trung

    2017-02-01

    Zinc oxide (ZnO) nanorods (NRs) were grown directly on printed circuit boards with a 35-μm-thick copper layer using a seedless galvanic-cell hydrothermal process. The hexagonal structure of the synthesized ZnO NRs was observed by scanning electron microscopy. The microstructural characteristics of the as-grown ZnO NRs were investigated by x-ray diffraction analysis, revealing preferred (002) growth direction. Raman and photoluminescence spectra confirmed the high crystalline quality of the ZnO NRs. As-grown ZnO NRs were then grown for 7 h using the galvanic effect for use as the pH membrane of an extended-gate field-effect transistor pH sensor (pH-EGFET). The current-voltage characteristics showed sensitivity of 15.4 mV/pH and 0.26 (μA)1/2/pH in the linear and saturated region, respectively. Due to their cost effectiveness, low-temperature processing, and ease of fabrication, such devices are potential candidates for use as flexible, low-cost, disposable biosensors.

  19. Zinc Oxide Nanorods Grown on Printed Circuit Board for Extended-Gate Field-Effect Transistor pH Sensor

    Science.gov (United States)

    Van Thanh, Pham; Nhu, Le Thi Quynh; Mai, Hong Hanh; Tuyen, Nguyen Viet; Doanh, Sai Cong; Viet, Nguyen Canh; Kien, Do Trung

    2017-06-01

    Zinc oxide (ZnO) nanorods (NRs) were grown directly on printed circuit boards with a 35- μm-thick copper layer using a seedless galvanic-cell hydrothermal process. The hexagonal structure of the synthesized ZnO NRs was observed by scanning electron microscopy. The microstructural characteristics of the as-grown ZnO NRs were investigated by x-ray diffraction analysis, revealing preferred (002) growth direction. Raman and photoluminescence spectra confirmed the high crystalline quality of the ZnO NRs. As-grown ZnO NRs were then grown for 7 h using the galvanic effect for use as the pH membrane of an extended-gate field-effect transistor pH sensor (pH-EGFET). The current-voltage characteristics showed sensitivity of 15.4 mV/pH and 0.26 ( μA)1/2/pH in the linear and saturated region, respectively. Due to their cost effectiveness, low-temperature processing, and ease of fabrication, such devices are potential candidates for use as flexible, low-cost, disposable biosensors.

  20. Towner State Nursery weed control program for field-grown conifer nursery stock

    Science.gov (United States)

    Roy LaFramboise

    2002-01-01

    The Towner State Nursery is owned and operated by the North Dakota Forest Service. The nursery is 160 acres in size and is located in north-central North Dakota. The Towner Nursery specializes in the production of conifer seedlings, transplants, and greenhouse-grown container stock for conservation tree plantings. Transplants constitute 80% of the stock produced. The...

  1. Effects of simulated acidic rainfalls on yields of field-grown radishes and garden beets

    Energy Technology Data Exchange (ETDEWEB)

    Evans, L S; Cunningham, E A; Lewin, K F

    1981-01-01

    The effects of small additions of simulated acidic rain on radishes and garden beets grown under standard agronomic practices was determined. Only the foliage of plants was sprayed with simulated rain. The composition of the simulated rainfall approximated that of rain falling in the Long Island, NY area. (ACR)

  2. Upper critical field of as-grown MgB{sub 2} thin films by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Y. [Department of Material Science and Engineering, Iwate University, Iwate Industrial Promotion Center, Iioka shinden 3-35-2, Morioka 020-0852 (Japan)]. E-mail: yharada@luck.ocn.ne.jp; Udsuka, M. [Graduate School of Engineering, Iwate University, Ueda 4-3-5, Morioka 020-8551 (Japan); Takahashi, T. [Graduate School of Engineering, Iwate University, Ueda 4-3-5, Morioka 020-8551 (Japan); Nakanishi, Y. [Graduate School of Engineering, Iwate University, Ueda 4-3-5, Morioka 020-8551 (Japan); Yoshizawa, M. [Graduate School of Engineering, Iwate University, Ueda 4-3-5, Morioka 020-8551 (Japan)

    2005-04-30

    Superconducting thin films of magnesium diboride (MgB{sub 2}) were prepared on MgO(001) substrate by molecular beam epitaxy in the co-evaporation conditions of low deposition rate and ultra-high vacuum. A superconducting transition with the onset temperature of 31.2K was confirmed by both transport and magnetization measurements. The upper critical fields are obtained from measurement of the field dependence of the resistivity. It was estimated that the upper critical field at 0K was more than 15T. The upper critical field anisotropy ratio, H{sub C2,ab}(0)/H{sub C2,c}(0), was estimated to be 1.78 from the magnetic field-temperature phase diagram for as-grown MgB{sub 2} thin films.

  3. The Grapevine Uncharacterized Intrinsic Protein 1 (VvXIP1) Is Regulated by Drought Stress and Transports Glycerol, Hydrogen Peroxide, Heavy Metals but Not Water.

    Science.gov (United States)

    Noronha, Henrique; Araújo, Diogo; Conde, Carlos; Martins, Ana P; Soveral, Graça; Chaumont, François; Delrot, Serge; Gerós, Hernâni

    2016-01-01

    A MIP (Major Intrinsic Protein) subfamily called Uncharacterized Intrinsic Proteins (XIP) was recently described in several fungi and eudicot plants. In this work, we cloned a XIP from grapevine, VvXIP1, and agrobacterium-mediated transformation studies in Nicotiana benthamiana revealed that the encoded aquaporin shows a preferential localization at the endoplasmic reticulum membrane. Stopped-flow spectrometry in vesicles from the aqy-null yeast strain YSH1172 overexpressing VvXIP1 showed that VvXIP1 is unable to transport water but is permeable to glycerol. Functional studies with the ROS sensitive probe CM-H2DCFDA in intact transformed yeasts showed that VvXIP1 is also able to permeate hydrogen peroxide (H2O2). Drop test growth assays showed that besides glycerol and H2O2, VvXIP1 also transports boric acid, copper, arsenic and nickel. Furthermore, we found that VvXIP1 transcripts were abundant in grapevine leaves from field grown plants and strongly repressed after the imposition of severe water-deficit conditions in potted vines. The observed downregulation of VvXIP1 expression in cultured grape cells in response to ABA and salt, together with the increased sensitivity to osmotic stress displayed by the aqy-null yeast overexpressing VvXIP1, corroborates the role of VvXIP1 in osmotic regulation besides its involvement in H2O2 transport and metal homeostasis.

  4. The Grapevine Uncharacterized Intrinsic Protein 1 (VvXIP1) Is Regulated by Drought Stress and Transports Glycerol, Hydrogen Peroxide, Heavy Metals but Not Water

    Science.gov (United States)

    Conde, Carlos; Martins, Ana P.; Soveral, Graça; Chaumont, François; Delrot, Serge

    2016-01-01

    A MIP (Major Intrinsic Protein) subfamily called Uncharacterized Intrinsic Proteins (XIP) was recently described in several fungi and eudicot plants. In this work, we cloned a XIP from grapevine, VvXIP1, and agrobacterium-mediated transformation studies in Nicotiana benthamiana revealed that the encoded aquaporin shows a preferential localization at the endoplasmic reticulum membrane. Stopped-flow spectrometry in vesicles from the aqy-null yeast strain YSH1172 overexpressing VvXIP1 showed that VvXIP1 is unable to transport water but is permeable to glycerol. Functional studies with the ROS sensitive probe CM-H2DCFDA in intact transformed yeasts showed that VvXIP1 is also able to permeate hydrogen peroxide (H2O2). Drop test growth assays showed that besides glycerol and H2O2, VvXIP1 also transports boric acid, copper, arsenic and nickel. Furthermore, we found that VvXIP1 transcripts were abundant in grapevine leaves from field grown plants and strongly repressed after the imposition of severe water-deficit conditions in potted vines. The observed downregulation of VvXIP1 expression in cultured grape cells in response to ABA and salt, together with the increased sensitivity to osmotic stress displayed by the aqy-null yeast overexpressing VvXIP1, corroborates the role of VvXIP1 in osmotic regulation besides its involvement in H2O2 transport and metal homeostasis. PMID:27504956

  5. Avaliação de híbridos de videira destinados à elaboração de vinhos brancos em Caldas, Minas Gerais Agronomic characterisation of grapevine hybrids destined to white wine vinification grown in Caldas, Minas Gerais

    Directory of Open Access Journals (Sweden)

    Murilo de Albuquerque Regina

    2006-08-01

    Full Text Available A avaliação do comportamento de novas cultivares de videiras destinadas à elaboração de vinhos é importante no sentido de se melhorar a qualidade dos vinhos produzidos no sul de Minas Gerais. Neste sentido, avaliaram-se alguns híbridos de videiras tradicionais e de novas obtenções, nas condições de cultivo de Caldas, Minas Gerais. Foram avaliadas oito cultivares, enxertadas sobre o porta-enxerto RR 101-14, conduzidas em espaldeira. As avaliações foram efetuadas no período de 1999 a 2002 e constituíram-se de anotações dos estádios fenológicos de brotação, floração e maturação, da produção e qualidade dos frutos, além da incidência de antracnose e míldio. O ciclo entre brotação e colheita oscilou entre 147 e 169 dias, destacando 'Seyve Villard 5276' como o ciclo de menor duração e 'Seibel 10173' como o ciclo mais longo. As colheitas mais precoces foram 'G 159 OC 32258', 'G 159 OC 32458' e 'Seyve Villard 5276', enquanto as mais tardias foram as variedades 'Moscato Embrapa' e 'Baco blanc'. As maiores produções foram registradas para 'Couderc 13' (10,31 kg.pl-1, 'Baco blanc' (9,02 kg.pl-1, 'Moscato Embrapa' (7,66 kg.pl-1 e 'Villenave' (5,66 kg.pl-1 e as menores para 'G 159 OC 32258' (2,97 kg.pl-1 e 'Seibel 10173' (3,20 kg.pl-1. Os índices médios de sólidos solúveis totais oscilaram entre 14,63 e 19,23 ºBrix, respectivamente, para as cultivares 'Couderc 13' e 'G 159 OC 32258', e os valores de acidez total variaram de 91,7 meq.L-1 a 153,2 meq.L-1, respectivamente, para as cultivares 'Baco blanc' e 'Seibel 10173'.Environmental conditions and growing practices determine the vine's quality. The knowledge of new grapevine's cultivars responses to these factors within the growing season contributes to improve the quality of the wines produced in a specific region. Thus, traditional grapevines hybrids and new attainments were evaluated in Caldas, Minas Gerais conditions. The study was carried out from 1999 to 2002

  6. Abscisic acid form, concentration, and application timing influence phenology and bud cold hardiness in Merlot grapevines

    Science.gov (United States)

    The effects of abscisic acid (ABA) form, concentration and application timing on bud cold hardiness, phenology and fruiting performance on ‘Merlot’ grapevines (Vitis vinifera) were evaluated in a three year field trial with site locations in British Columbia Canada, Ontario Canada, Washington U.S. ...

  7. Physical mapping in highly heterozygous genomes: a physical contig map of the Pinot Noir grapevine cultivar

    Directory of Open Access Journals (Sweden)

    Jurman Irena

    2010-03-01

    Full Text Available Abstract Background Most of the grapevine (Vitis vinifera L. cultivars grown today are those selected centuries ago, even though grapevine is one of the most important fruit crops in the world. Grapevine has therefore not benefited from the advances in modern plant breeding nor more recently from those in molecular genetics and genomics: genes controlling important agronomic traits are practically unknown. A physical map is essential to positionally clone such genes and instrumental in a genome sequencing project. Results We report on the first whole genome physical map of grapevine built using high information content fingerprinting of 49,104 BAC clones from the cultivar Pinot Noir. Pinot Noir, as most grape varieties, is highly heterozygous at the sequence level. This resulted in the two allelic haplotypes sometimes assembling into separate contigs that had to be accommodated in the map framework or in local expansions of contig maps. We performed computer simulations to assess the effects of increasing levels of sequence heterozygosity on BAC fingerprint assembly and showed that the experimental assembly results are in full agreement with the theoretical expectations, given the heterozygosity levels reported for grape. The map is anchored to a dense linkage map consisting of 994 markers. 436 contigs are anchored to the genetic map, covering 342 of the 475 Mb that make up the grape haploid genome. Conclusions We have developed a resource that makes it possible to access the grapevine genome, opening the way to a new era both in grape genetics and breeding and in wine making. The effects of heterozygosity on the assembly have been analyzed and characterized by using several complementary approaches which could be easily transferred to the study of other genomes which present the same features.

  8. Avaliação de variáveis fisiológicas em porta-enxertos de videira cultivados em solução nutritiva com a adição de alumínio Physiologic variables evaluation in grapevine roostocks grown in nutritive solution with aluminum addition

    Directory of Open Access Journals (Sweden)

    Marco Antonio Tecchio

    2005-04-01

    Full Text Available Realizou-se este experimento com o objetivo de avaliar a resposta dos porta-enxertos de videira IAC 313 "Tropical" e IAC 572 "Jales" a diferentes níveis de alumínio em solução nutritiva. A condução do experimento foi realizada em condições de casa-de-vegetação do Departamento de Produção Vegetal/Área de Horticultura, da Faculdade de Ciências Agronômicas - UNESP/Botucatu. Utilizaram-se cinco níveis de alumínio, a saber: 0, 10, 20, 30 e 40 mg L-1. Após a aplicação dos tratamentos, realizaram-se coletas a cada 15 dias para obtenção das variáveis fisiológicas. O delineamento experimental adotado foi o de parcelas subdivididas, inteiramente casualizado e com 3 repetições. Avaliaram-se as variáveis: taxa de crescimento absoluto e relativo, razão de massa foliar e relação parte aérea/raízes. Concluiu-se que o porta-enxerto IAC 572 "Jales", quando submetido ao nível de 10mg Al L-1 na solução, apresentou maior taxa de crescimento absoluto e relativo, e maior redistribuição de massa seca das folhas para o restante da planta, ao passo que o porta-enxerto IAC 313 "Tropical", quando submetido a esse nível de alumínio, apresentou um decréscimo acentuado nessas variáveis.The experiment aimed to evaluate the behavior of the grapevine rootstocks IAC 313 "Tropical" and IAC 572 "Jales" in nutrient solution with different aluminium concentrations. The experiment was conducted in green house conditions of the Vegetal Production Department/Horticulture Sector, of the Faculty of Agricultural Sciences - UNESP/Botucatu. Five aluminium levels were used, as known: 0, 10, 20, 30 and 40mg L-1in the form of AlCl3.6H2O. The samples were colleted every 15 days to obtain the physiologic variables. The experimental design adopted was the subdivided split-plots, fully randomized and with 3 replications. The variables evaluated were: absolute and relative growth rates, leaf weight and aerial parts/root ratio. The IAC 572 "Jales" rootstock

  9. Leaf Treatments with a Protein-Based Resistance Inducer Partially Modify Phyllosphere Microbial Communities of Grapevine

    Science.gov (United States)

    Cappelletti, Martina; Perazzolli, Michele; Antonielli, Livio; Nesler, Andrea; Torboli, Esmeralda; Bianchedi, Pier L.; Pindo, Massimo; Puopolo, Gerardo; Pertot, Ilaria

    2016-01-01

    Protein derivatives and carbohydrates can stimulate plant growth, increase stress tolerance, and activate plant defense mechanisms. However, these molecules can also act as a nutritional substrate for microbial communities living on the plant phyllosphere and possibly affect their biocontrol activity against pathogens. We investigated the mechanisms of action of a protein derivative (nutrient broth, NB) against grapevine downy mildew, specifically focusing on the effects of foliar treatments on plant defense stimulation and on the composition and biocontrol features of the phyllosphere microbial populations. NB reduced downy mildew symptoms and induced the expression of defense-related genes in greenhouse- and in vitro-grown plants, indicating the activation of grapevine resistance mechanisms. Furthermore, NB increased the number of culturable phyllosphere bacteria and altered the composition of bacterial and fungal populations on leaves of greenhouse-grown plants. Although, NB-induced changes on microbial populations were affected by the structure of indigenous communities originally residing on grapevine leaves, degrees of disease reduction and defense gene modulation were consistent among the experiments. Thus, modifications in the structure of phyllosphere populations caused by NB application could partially contribute to downy mildew control by competition for space or other biocontrol strategies. Particularly, changes in the abundance of phyllosphere microorganisms may provide a contribution to resistance induction, partially affecting the hormone-mediated signaling pathways involved. Modifying phyllosphere populations by increasing natural biocontrol agents with the application of selected nutritional factors can open new opportunities in terms of sustainable plant protection strategies. PMID:27486468

  10. Leaf Treatments with a Protein-Based Resistance Inducer Partially Modify Phyllosphere Microbial Communities of Grapevine.

    Science.gov (United States)

    Cappelletti, Martina; Perazzolli, Michele; Antonielli, Livio; Nesler, Andrea; Torboli, Esmeralda; Bianchedi, Pier L; Pindo, Massimo; Puopolo, Gerardo; Pertot, Ilaria

    2016-01-01

    Protein derivatives and carbohydrates can stimulate plant growth, increase stress tolerance, and activate plant defense mechanisms. However, these molecules can also act as a nutritional substrate for microbial communities living on the plant phyllosphere and possibly affect their biocontrol activity against pathogens. We investigated the mechanisms of action of a protein derivative (nutrient broth, NB) against grapevine downy mildew, specifically focusing on the effects of foliar treatments on plant defense stimulation and on the composition and biocontrol features of the phyllosphere microbial populations. NB reduced downy mildew symptoms and induced the expression of defense-related genes in greenhouse- and in vitro-grown plants, indicating the activation of grapevine resistance mechanisms. Furthermore, NB increased the number of culturable phyllosphere bacteria and altered the composition of bacterial and fungal populations on leaves of greenhouse-grown plants. Although, NB-induced changes on microbial populations were affected by the structure of indigenous communities originally residing on grapevine leaves, degrees of disease reduction and defense gene modulation were consistent among the experiments. Thus, modifications in the structure of phyllosphere populations caused by NB application could partially contribute to downy mildew control by competition for space or other biocontrol strategies. Particularly, changes in the abundance of phyllosphere microorganisms may provide a contribution to resistance induction, partially affecting the hormone-mediated signaling pathways involved. Modifying phyllosphere populations by increasing natural biocontrol agents with the application of selected nutritional factors can open new opportunities in terms of sustainable plant protection strategies.

  11. Leaf treatments with a protein-based resistance inducer partially modify phyllosphere microbial communities of grapevine

    Directory of Open Access Journals (Sweden)

    Martina Cappelletti

    2016-07-01

    Full Text Available Protein derivatives and carbohydrates can stimulate plant growth, increase stress tolerance and activate plant defense mechanisms. However, these molecules can also act as a nutritional substrate for microbial communities living on the plant phyllosphere and possibly affect their biocontrol activity against pathogens. We investigated the mechanisms of action of a protein derivative (nutrient broth, NB against grapevine downy mildew, specifically focusing on the effects of foliar treatments on plant defense stimulation and on the composition and biocontrol features of the phyllosphere microbial populations. NB reduced downy mildew symptoms and induced the expression of defense-related genes in greenhouse- and in vitro-grown plants, indicating the activation of grapevine resistance mechanisms. Furthermore, NB increased the number of culturable phyllosphere bacteria and altered the composition of bacterial and fungal populations on leaves of greenhouse-grown plants. Although NB-induced changes on microbial populations were affected by the structure of indigenous communities originally residing on grapevine leaves, degrees of disease reduction and defense gene modulation were consistent among the experiments. Thus, modifications in the structure of phyllosphere populations caused by NB application could partially contribute to downy mildew control by competition for space or other biocontrol strategies. Particularly, changes in the abundance of phyllosphere microorganisms may provide a contribution to resistance induction, partially affecting the hormone-mediated signaling pathways involved. Modifying phyllosphere populations by increasing natural biocontrol agents with the application of selected nutritional factors can open new opportunities in terms of sustainable plant protection strategies.

  12. Interactive effects of elevated CO2 and ozone on leaf thermotolerance in field-grown Glycine max.

    Science.gov (United States)

    Mishra, Sasmita; Heckathorn, Scott A; Barua, Deepak; Wang, Dan; Joshi, Puneet; Hamilton Iii, E William; Frantz, Jonathan

    2008-11-01

    Humans are increasing atmospheric CO2, ground-level ozone (O3), and mean and acute high temperatures. Laboratory studies show that elevated CO2 can increase thermotolerance of photosynthesis in C3 plants. O3-related oxidative stress may offset benefits of elevated CO2 during heat-waves. We determined effects of elevated CO2 and O3 on leaf thermotolerance of field-grown Glycine max (soybean, C3). Photosynthetic electron transport (et) was measured in attached leaves heated in situ and detached leaves heated under ambient CO2 and O3. Heating decreased et, which O3 exacerbated. Elevated CO2 prevented O3-related decreases during heating, but only increased et under ambient O3 in the field. Heating decreased chlorophyll and carotenoids, especially under elevated CO2. Neither CO2 nor O3 affected heat-shock proteins. Heating increased catalase (except in high O3) and Cu/Zn-superoxide dismutase (SOD), but not Mn-SOD; CO2 and O3 decreased catalase but neither SOD. Soluble carbohydrates were unaffected by heating, but increased in elevated CO2. Thus, protection of photosynthesis during heat stress by elevated CO2 occurs in field-grown soybean under ambient O3, as in the lab, and high CO2 limits heat damage under elevated O3, but this protection is likely from decreased photorespiration and stomatal conductance rather than production of heat-stress adaptations.

  13. Interactive Effects of Elevated CO2 and Ozone on Leaf Thermotolerance in Field-grown Glycine max

    Institute of Scientific and Technical Information of China (English)

    Sasmita Mishra; Scott A. Heckathorn; Deepak Barua; Dan Wang; Puneet Joshi; E. William Hamilton Ⅲ; Jonathan Frantz

    2008-01-01

    Humans are increasing atmospheric CO2, ground-level ozone (O3), and mean and acute high temperatures. Laboratory studies show that elevated CO2 can increase thermotolerance of photosynthesis in C3 plants. O3-related oxidative stress may offset benefits of elevated CO2 during heat-waves. We determined effects of elevated CO2 and O3 on leaf thermotolerance of field-grown Glycine max (soybean, C3). Photosynthetic electron transport (φet) was measured in attached leaves heated in situ and detached leaves heated under ambient CO2 and O3. Heating decreased φet, which O3 exacerbated. Elevated CO2 prevented O3-related decreases during heating, but only increased φet under ambient O3 in the field. Heating decreased chlorophyll and carotenoids, especially under elevated CO2. Neither CO2 nor O3 affected heat-shock proteins. Heating increased catalase (except in high O3) and CulZn-superoxide dismutase (SOD), but not MnSOD; CO2 and O3 decreased catalase but neither SOD. Soluble carbohydrates were unaffected by heating, but increased in elevated CO2. Thus, protection of photosynthesis during heat stress by elevated CO2 occurs in field-grown soybean under ambient O3, as in the lab, and high CO2 limits heat damage under elevated O3, but this protection is likely from decreased photorespiration and stomatal conductance rather than production of heat-stress adaptations.

  14. Band versus Nursery Pot Application of Polyolefin-coated Fertilizer for Bell Peppers Grown in the Field

    OpenAIRE

    OMBODI, Attila; SAIGUSA, Masahiko

    2005-01-01

    Using a single basal application of controlled-release fertilizers for bell peppers is a perspective method, because by the elimination of top-dressings, labour and energy costs can be reduced. In this study, effects of band and nursery pot applications of polyolefin-coated fertilizers (POCF) on bell peppers grown in the field were compared at two different application rates, in 1997 and 1998. As a consequence of continuous nutrient supply, a good yield could be achieved in case of both appli...

  15. Band versus Nursery Pot Application of Polyolefin-coated Fertilizer for Bell Peppers Grown in the Field

    OpenAIRE

    OMBODI, Attila; SAIGUSA, Masahiko

    2005-01-01

    Using a single basal application of controlled-release fertilizers for bell peppers is a perspective method, because by the elimination of top-dressings, labour and energy costs can be reduced. In this study, effects of band and nursery pot applications of polyolefin-coated fertilizers (POCF) on bell peppers grown in the field were compared at two different application rates, in 1997 and 1998. As a consequence of continuous nutrient supply, a good yield could be achieved in case of both appli...

  16. Transcriptome study of storage protein genes of field-grown barley in response to inorganic nitrogen fertilizers

    DEFF Research Database (Denmark)

    Hansen, Michael; Bowra, Steve; Lange, Mette;

    2010-01-01

    The storage proteins of barley, in terms of both amino acid profile and quantity, are traits strongly influenced by the amount of nitrogen applied. Given this, we performed a developmental expression analysis of the genes from barley grains grown under field conditions to further our understanding...... of the molecular and biochemical mechanisms underpinning nitrogen utilization. A barley grain specific micro-array, where a comprehensive set of genes involved in nitrogen mobilization, storage protein synthesis and amino acid metabolism were assembled, was used to obtain a global but focused gene expression...

  17. Chicken manure enhanced yield and quality of field-grown kale and collard greens.

    Science.gov (United States)

    Antonious, George F; Turley, Eric T; Hill, Regina R; Snyder, John C

    2014-01-01

    Organic matter and nutrients in municipal sewage sludge (SS) and chicken manure (CM) could be recycled and used for land farming to enhance fertility and physical properties of soils. Three soil management practices were used at Kentucky State University Research Farm, Franklin County, to study the impact of soil amendments on kale (Brassica oleracea cv. Winterbar) and collard (Brassica oleracea cv. Top Bunch) yields and quality. The three soil management practices were: (i) SS mixed with native soil at 15 t acre(-1), (ii) CM mixed with native soil at 15 t acre(-1), and (iii) no-mulch (NM) native soil for comparison purposes. At harvest, collard and kale green plants were graded according to USDA standards. Plants grown in CM and SS amended soil produced the greatest number of U.S. No. 1 grade of collard and kale greens compared to NM native soil. Across all treatments, concentrations of ascorbic acid and phenols were generally greater in kale than in collards. Overall, CM and SS enhanced total phenols and ascorbic acid contents of kale and collard compared to NM native soil. We investigated the chemical and physical properties of each of the three soil treatments that might explain variability among treatments and the impact of soil amendments on yield, phenols, and ascorbic acid contents of kale and collard green grown under this practice.

  18. Effect of axial magnetic field on the shape of copper ribbon crystal grown by Czochralski method

    OpenAIRE

    Shen, Zhe; Zhong, Yunbo; Dong, Licheng; FAN, Lijun; Wang, Huai; Li, Chuanjun; Ren, Weili; Lei, Zuosheng; Ren, Zhongming

    2015-01-01

    International audience; During the process of growing ribbon crystal by Czochralski method, Turbulent convection in copper melt was effectively suppressed by applying an axial magnetic field (magnetic induction B≤57mT). The changes of thermal fluctuation and flow field were measured and modeled. With the magnetic field increased gradually (from 0 to 57mT), the shape of ribbon crystal became regularly wider. We concluded that the axial magnetic field could promote to form a suitable temperatur...

  19. Azimuthal angular dependent hysteresis loops of Fe50Mn50/Ni81Fe19 bilayers grown under a magnetic field

    Science.gov (United States)

    Choi, Hyeok-Cheol; You, Chun-Yeol; Kim, Ki-Yeon

    2016-11-01

    The azimuthal angular dependence of the vectorial hysteresis loops in the Fe50Mn50(AF)/Ni81Fe19(F) bilayer grown under a magnetic field was investigated using a combination of vectorial magneto-optic Kerr effect and model calculation. From a comparison of the experimental and calculation results, it is found that the AF easy axis is not parallel with but rotated by about 20° away from the applied magnetic field during the sample growth. Moreover, the transverse loop at the AF easy axis does not vanish but displays an open full circle (i.e., magnetization changes sign between decreasing and increasing field branches for the full hysteresis measurement). Our model calculation reveals that they are reminiscent of the non-collinear uniaxial and unidirectional anisotropies. Specifically, the angular dependence of the transverse hysteresis is well reproduced with our model calculation taking non-collinear magnetic anisotropies into account. Coercivity determined from the longitudinal loops, on the other hand, is found to be nonzero and comparatively large at all azimuthal angles. This is in stark contrast with previous results regarding FeMn/NiFe bilayers field-cooled after sample growth. Neither domain wall nor incoherent magnetic rotation in the F layer is likely to be responsible for this coercivity discrepancy between theory and experiments. Apart from the uniaxial F and unidirectional AF-F anisotropies, we suggest that the F rotatable anisotropy equivalent of 40% to 60% of the interfacial coupling energy should be taken into account to properly address the coercivity enhancement in the FeMn/NiFe bilayer grown under a magnetic field.

  20. Assessment of solar photocatalysis to purify on-site rinse waters from tractor cisterns used in grapevine pest control: field experimentation.

    Science.gov (United States)

    Pichat, P; Vannier, S; Dussaud, J; Rubis, J P

    2005-01-01

    The aim of this study was to assess in a vineyard the effect of purifying by solar photocatalysis the title rinse waters (currently most often rejected) in terms of efficacy and on-site practicality for the wine grower. The on-site, self-functioning, solar purifying unit included a corrugated-steel inclined plate of area S = 1 m2 onto which a TiO2-coated thin material had been slightly pressed, a tank, and an aquarium-type pump powered by a photovoltaic panel (appropriate for isolated locations). For a vineyard of area A = 0.15 km2, the rinse water (about 90 L) corresponding to each of four typical vine treatments in summer was analysed (major pesticides for each treatment, TOC, Microtox test and, in one case, BOD5) by independent laboratories, before and after purification for 8 days. The S/A ratio tested was found insufficient even if the photocatalytic treatment markedly improved the quality of the rinse waters. From the relatively low final organic content reached in one case, it is calculated that a three-time higher S/A ratio might suffice, but new trials are necessary to determine whether it is valid for other typical cases. Inferred contribution of inorganic ions to the post-photocatalytic treatment toxicity points to the need for an additional detoxification. These field experiments have also demonstrated that the purifying prototype is robust, and easy to install and use on site by the wine grower.

  1. Evaluating wild grapevine tolerance to copper toxicity.

    Science.gov (United States)

    Cambrollé, J; García, J L; Figueroa, M E; Cantos, M

    2015-02-01

    We evaluate copper tolerance and accumulation in Vitis vinifera ssp. sylvestris in populations from a copper contaminated site and an uncontaminated site, and in the grapevine rootstock "41B", investigating the effects of copper (0-23 mM) on growth, photosynthetic performance and mineral nutrient content. The highest Cu treatment induced nutrient imbalances and inhibited photosynthetic function, causing a drastic reduction in growth in the three study plants. Effective concentration was higher than 23 mM Cu in the wild grapevines and around 9 mM in the "41B" plants. The wild grapevine accessions studied controlled root Cu concentration more efficiently than is the case with the "41B" rootstock and must be considered Cu-tolerant. Wild grapevines from the Cu-contaminated site present certain physiological characteristics that make them relatively more suitable for exploitation in the genetic improvement of vines against conditions of excess Cu, compared to wild grapevine populations from uncontaminated sites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Plant protection products in organic grapevine growing

    Directory of Open Access Journals (Sweden)

    Sivčev Branislava V.

    2010-01-01

    Full Text Available Pests and grapevine diseases in organic production are suppressed by preventive measures with a view to reducing the impact of the attack. Allowed substances acting on patogenous fungi, insects, mites and other harmful organisms are used, if appropriate. Insecticides of plant origin are used in the organic production of grapevine, as well as vegetable oils, powders and insecticidal soaps that are selective, with a narrow range of effects and of lower toxicity, as well as biological products. As a rule, such plant protection products require a more frequent application. Copper-based and sulphur-based fungicides are still leading products in suppressing grapevine diseases. Researches are directed to decrease the quantity of application and to find their replacement by also efficient fungicides. A special emphasis is put on researching the efficient fungicides for suppressing Botrytis bunch rot and factors causing grapevine wood diseases (Esca and Eutypa in organic production. Along with copper and sulphur, different substances such as bicarbonates, plant extracts and oils, biological products being parasites, patogenous or diseases agent antagonists, and natural products such as milk and whey are applied in the organic production of grapevine.

  3. Transmission of Grapevine virus A and Grapevine leafroll-associated virus 1 and 3 by Heliococcus bohemicus (Hemiptera: Pseudococcidae) Nymphs From Plants With Mixed Infections.

    Science.gov (United States)

    Bertin, S; Cavalieri, V; Gribaudo, I; Sacco, D; Marzachì, C; Bosco, D

    2016-08-01

    Mealybugs (Hemiptera: Pseudococcidae) represent a serious threat for viticulture as vectors of phloem-restricted viruses associated with the grapevine rugose wood and leafroll diseases. Heliococcus bohemicus (Šulc) is known to be involved in the spread of these two viral diseases, being a vector of the Grapevine virus A (GVA) and the Grapevine leafroll-associated virus 1 and 3 (GLRaV-1 and GLRaV-3). This study investigated the acquisition and transmission efficiency of H. bohemicus fed on mixed-infected plants. Nymphs were field-collected onto GVA, GLRaV-1, and GLRaV-3 multiple-infected grapevines in two vineyards in North-Western Italy, and were used in transmission experiments under controlled conditions. Even if most of the collected nymphs were positive to at least one virus, transmission occurred only to a low number of test grapevines. The transmission frequency of GLRaV-3 was the highest, whereas GVA was transmitted to few test plants. The transmission of multiple viruses occurred at low rates, and nymphs that acquired all the three viruses then failed to transmit them together. Statistical analyses showed that the three viruses were independently acquired and transmitted by H. bohemicus and neither synergistic nor antagonistic interactions occurred among them. GVA and GLRaVs transmission efficiencies by H. bohemicus were lower than those reported for other mealybug vectors. This finding is consistent with the slow spread of leafroll and rugose wood diseases observed in Northern Italy, where H. bohemicus is the predominant vector species.

  4. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid.

    Science.gov (United States)

    Rogiers, Suzy Y; Greer, Dennis H; Hatfield, Jo M; Hutton, Ron J; Clarke, Simon J; Hutchinson, Paul A; Somers, Anthony

    2012-03-01

    Stomatal responsiveness to evaporative demand (air vapour pressure deficit (VPD)) ranges widely between species and cultivars, and mechanisms for stomatal control in response to VPD remain obscure. The interaction of irrigation and soil moisture with VPD on stomatal conductance is particularly difficult to predict, but nevertheless is critical to instantaneous transpiration and vulnerability to desiccation. Stomatal sensitivity to VPD and soil moisture was investigated in Semillon, an anisohydric Vitis vinifera L. variety whose leaf water potential (Ψ(l)) is frequently lower than that of other grapevine varieties grown under similar conditions in the warm grape-growing regions of Australia. A survey of Semillon vines across seven vineyards revealed that, regardless of irrigation treatment, midday Ψ(l) was dependent on not only soil moisture but VPD at the time of measurement. Predawn Ψ(l) was more closely correlated to not only soil moisture in dry vineyards but to night-time VPD in drip-irrigated vineyards, with incomplete rehydration during high night-time VPD. Daytime stomatal conductance was low only under severe plant water deficits, induced by extremes in dry soil. Stomatal response to VPD was inconsistent across irrigation regime; however, in an unirrigated vineyard, stomatal sensitivity to VPD-the magnitude of stomatal response to VPD-was heightened under dry soils. It was also found that stomatal sensitivity was proportional to the magnitude of stomatal conductance at a reference VPD of 1kPa. Exogenous abscisic acid (ABA) applied to roots of Semillon vines growing in a hydroponic system induced stomatal closure and, in field vines, petiole xylem sap ABA concentrations rose throughout the morning and were higher in vines with low Ψ(l). These data indicate that despite high stomatal conductance of this anisohydric variety when grown in medium to high soil moisture, increased concentrations of ABA as a result of very limited soil moisture may augment

  5. Isolation of RNA from field-grown jute (Corchorus capsularis) plant in different developmental stages for effective downstream molecular analysis.

    Science.gov (United States)

    Samanta, Pradipta; Sadhukhan, Sanjoy; Das, Subrata; Joshi, Alpana; Sen, Soumitra K; Basu, Asitava

    2011-10-01

    Jute (Corchorus capsularis), as a natural fibre producing plant species, ranks next to cotton only. Today, biotechnological approach has been considered as most accepted means for any genetic improvement of plant species. However, genetic control of the fibre development in jute has not yet been explored sufficiently for desired genetic improvement. One of the major impediments in exploring the genetic architecture in this crop at molecular level is the availability of good quality RNA from field-grown plant tissues mostly due to the presence of high amount of mucilage and phenolics. Development of a suitable RNA isolation method is becoming essential for deciphering developmental stage-specific gene expression pattern related to fibre formation in this crop species. A combination of modified hot borate buffer followed by isopycnic centrifugation (termed as HBIC) was adopted and found to be the best isolation method yielding sufficient quantity (~350-500 μg/gm fresh tissue) and good quality (A(260/280) ratio 1.88 to 1.91) RNA depending on the developmental stage of stem tissue from field-grown jute plant. The poly A(+) RNA purified from total RNA isolated by the present method was found amenable to efficient RT-PCR and cDNA library construction. The present development of RNA isolation was found to be appropriate for gene expression analysis related to fibre formation in this economically important jute plant in near future.

  6. Effects of elevated atmospheric CO{sub 2} concentrations and water stress on field-grown maize

    Energy Technology Data Exchange (ETDEWEB)

    Surano, K.A.; Kercher, J.R. [eds.

    1993-10-01

    Global atmospheric carbon dioxide (CO{sub 2}) concentrations are continuing to increase and will probably double during the next century. The effects of such an increase are of global concern. Carbon dioxide-induced climate changes may result in reduced precipitation in major agricultural areas. The potential therefore exists for severe CO{sub 2}-induced water-stress effects on agriculture. This set of studies determined the effects of long-term elevated atmospheric CO{sub 2} concentrations and severe water stress on biomass production, evapotranspiration, water-use efficiency (WUE), water potential, photosynthesis, stomatal conductance, morphology and phenology of maize grown under field conditions. Plants were grown at one of four daytime mean CO{sub 2} concentrations (348, 431, 506 or 656 {mu}LL{sup {minus}1}) in open-top field exposure chambers and at one of two levels of available water (well-watered or 50% of well-watered). This report is organized into 4 chapters followed by appendices. Separate abstracts were prepared for each of the four chapters: (1) biomass production and water-use efficiency, (2) gas exchange and water potential, (3) morphology and phenology, and (4) and elemental analyses. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  7. Study of the growth kinetics of biomimetically grown hydroxyapatite coatings in large gradient magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ya-Jing; Liu, Yang-Yang [School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an, 710072 (China); Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi’an, 710072 (China); Yin, Da-Chuan, E-mail: yindc@nwpu.edu.cn [School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an, 710072 (China); Institute of Special Environmental Biophysics, Northwestern Polytechnical University, Xi’an, 710072 (China)

    2015-10-01

    Highlights: • Inducing ability of self-assembly monolayers in large gradient magnetic fields. • Bonding information of functional groups obtained by first principles calculations. • The gravity fields affected the compositions of the apatite layers. - Abstract: Large gradient magnetic fields simultaneously provide both strong magnetic and simulated gravitational fields. Processes in such environments are subject to the influences of these two fields. Previous studies have shown that the deposition of hydroxyapatite (HAp) coatings induced by self-assembled monolayers (SAMs) is affected by large gradient magnetic fields. To further clarify the mechanism, we examined the effects of gravitational and magnetic fields on the deposition kinetics of the SAMs and the HAp coatings via surface analysis and molecular simulation. The chemical compositions of the SAMs and the HAp coatings in the fields were detected by X-ray photoelectron spectroscopy (XPS). The ability of the SAMs to induce the deposition of apatite was investigated via first principles calculations, which were performed to obtain information about the bonding interactions between the self-assembled functional groups and the –PO{sub 4}{sup 3−} ions in simulated body fluid (SBF). The experimental results showed that the fields affected the compositions of the apatite layers. The first principles calculation results showed that the –PO{sub 4}H{sup 2−} functional group exhibited a stronger ability to induce apatite deposition than the –COOH functional group. This result suggested that hydrogen phosphate root groups are better nucleation sites than carboxyl root groups.

  8. Upper critical fields in as-grown MgB{sub 2} films prepared by ultra-high-vacuum MBE

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, S. [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Institute for Nanofabrication Research, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); CREST, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012 (Japan)], E-mail: noguchi@pe.osakafu-u.ac.jp; Kuribayashi, A. [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); CREST, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Oba, T.; Iriuda, H. [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Harada, Y. [JST Satellite Iwate, 3-35-2 Iioka-shinden, Morioka, Iwate 020-0852 (Japan); Yoshizawa, M. [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); JST Satellite Iwate, 3-35-2 Iioka-shinden, Morioka, Iwate 020-0852 (Japan); Ishida, T. [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Institute for Nanofabrication Research, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); CREST, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2007-10-01

    We report on the upper critical fields (H{sub c2}'s) of as-grown MgB{sub 2} thin films deposited on the epitaxial Ti buffer layer on c-plane ZnO substrates by using a molecular beam epitaxy (MBE) apparatus. The H{sub c2} was estimated from the magnetoresistance measurements under the pulsed magnetic field up to 37 T. H{sub c2}(T) for both H -parallel ab-plane and H -parallel c-axis were measured to obtain the anisotropic superconducting properties. The results are successfully analyzed with the Gurevich theory of dirty two-gap superconductivity with a cleaner {pi} band case.

  9. Modeling Root Length Density of Field Grown Potatoes under Different Irrigation Strategies and Soil Textures Using Artificial Neural Networks

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Sepaskhah, A R; Andersen, Mathias Neumann

    2014-01-01

    Root length density (RLD) is a highly wanted parameter for use in crop growth modeling but difficult to measure under field conditions. Therefore, artificial neural networks (ANNs) were implemented to predict the RLD of field grown potatoes that were subject to three irrigation strategies and three......) of the eight input variables: soil layer intervals (D), percentages of sand (Sa), silt (Si), and clay (Cl), bulk density of soil layers (Bd), weighted soil moisture deficit during the irrigation strategies period (SMD), geometric mean particle size diameter (dg), and geometric standard deviation (σg...... under a range of soil physical conditions with a high degree of accuracy and may be used in crop growth modeling....

  10. High Stability Electron Field Emitters Synthesized via the Combination of Carbon Nanotubes and N₂-Plasma Grown Ultrananocrystalline Diamond Films.

    Science.gov (United States)

    Chang, Ting-Hsun; Hsieh, Ping-Yen; Kunuku, Srinivasu; Lou, Shiu-Cheng; Manoharan, Divinah; Leou, Keh-Chyang; Lin, I-Nan; Tai, Nyan-Hwa

    2015-12-16

    An electron field emitter with superior electron field emission (EFE) properties and improved lifetime stability is being demonstrated via the combination of carbon nanotubes and the CH4/N2 plasma grown ultrananocrystalline diamond (N-UNCD) films. The resistance of the carbon nanotubes to plasma ion bombardment is improved by the formation of carbon nanocones on the side walls of the carbon nanotubes, thus forming strengthened carbon nanotubes (s-CNTs). The N-UNCD films can thus be grown on s-CNTs, forming N-UNCD/s-CNTs carbon nanocomposite materials. The N-UNCD/s-CNTs films possess good conductivity of σ = 237 S/cm and marvelous EFE properties, such as low turn-on field of (E0) = 3.58 V/μm with large EFE current density of (J(e)) = 1.86 mA/cm(2) at an applied field of 6.0 V/μm. Moreover, the EFE emitters can be operated under 0.19 mA/cm(2) for more than 350 min without showing any sign of degradation. Such a superior EFE property along with high robustness characteristic of these combination of materials are not attainable with neither N-UNCD films nor s-CNTs films alone. Transmission electron microscopic investigations indicated that the N-UNCD films contain needle-like diamond grains encased in a few layers of nanographitic phase, which enhanced markedly the transport of electrons in the N-UNCD films. Moreover, the needle-like diamond grains were nucleated from the s-CNTs without the necessity of forming the interlayer that facilitate the transport of electrons crossing the diamond-to-Si interface. Both these factors contributed to the enhanced EFE behavior of the N-UNCD/s-CNTs films.

  11. New vineyard fields: Grape Juice. Selection of grapevine species, juice making, stabilization / Nouvelle filière : jus de raisin. Sélection des cépages, élaboration, stabilisation

    Directory of Open Access Journals (Sweden)

    Escudier Jean-Louis

    2016-01-01

    Full Text Available Proposed by FOULON-SOPAGLY society and INRA, a six years applied research program was developed in France to enable creation of create specific lines to elaborate high quality juice with new adapted grapevine varieties and specialized vineyards, with adapted technology. 448 vine varieties from INRA Vassal first international collection of grapevine species were evaluated to finally select 14: 2 V.vinifera,9 hybrids, and 3 from INRA creation (ref A. Bouquet by hybridization. These last references, obtained from 4 or 5 back crossing between Muscadinia. rotondifolia.X.V.vinifera, have in particular a high level of resistance against mildew and oidium.These varieties have RUN 1 and RPV1. resistance genes, with several other secondary genes on one chromosome locus. This makes access to organic market easier. Agronomic criteria are studied for this selection. Among the 14 selected grapevine species, some have high level of polyphenols (6 times more than alicante. Others (white and red have a high aromatic potential. Others have a low sugar content 135 g/l to 150 g/l and adapted sugar/ acidity ratio. -In the cellar: The absence of fermentation and alcohol requires optimization of the process for juice making. For example by increasing polyphenols extraction and colour stability by using thermo-treatment. Flash release process coupled with enzymatic soaking on grapes at 45°C for example, increases 2 or 3 fold polysaccharide juice content, and increases anthocyanins extraction and hence colour intensity. With this process the draining of grape marc and juice production increase. Pressure technology by on line horizontal decanter is possible. -In juice storehouse. Electro membrane process, (oenodia membrane process with specific membranes gives possibilities to achieve two objectives on juice: - Decrease pH and increase acidity of juice and colour stabilization, without any additive.

  12. Reduction, methylation, and translocation of arsenic in Panax notoginseng grown under field conditions in arsenic-contaminated soils.

    Science.gov (United States)

    Ma, Jie; Mi, Yanhua; Li, Qiwan; Chen, Lu; Du, Lijuan; He, Lizhong; Lei, Mei

    2016-04-15

    Variations in arsenic (As) species in Panax notoginseng grown under field conditions remain understudied compared with those under greenhouse conditions. In the present study, soil and plant samples were collected from Wenshan Zhuang and Miao Autonomous Prefecture, Yunnan Province, which is the main production area of P. notoginseng in China, to identify As species in the soil and plant tissues and further assess effect of As toxic stress on As transformation and translocation in P. notoginseng. The results showed that arsenate (As(V)) was almost exclusively identified in the soil, while arsenite (As(III)) and monomethylarsonic acid (MMA) were detected in high proportions in plant tissues, suggesting that As(V) could be reduced and subsequently methylated in the plant body, mainly in the root. The reduction and methylation of As in the root of P. notoginseng were promoted by low As toxic stress, but were impeded by high As toxic stress. Arsenic(III) and MMA could rapidly translocate upwards in P. notoginseng. In addition, the translocation of total As, As(III), and MMA from the root to the rhizome was a response to As toxic stress, and the translocation rate increased with the increasing As concentration in the taproot. This study provides new insights into the detoxification mechanism of P. notoginseng grown in As-contaminated soils and the control of As during cultivation.

  13. Deep-sequencing transcriptome analysis of field-grown Medicago sativa L. crown buds acclimated to freezing stress.

    Science.gov (United States)

    Song, Lili; Jiang, Lin; Chen, Yue; Shu, Yongjun; Bai, Yan; Guo, Changhong

    2016-09-01

    Medicago sativa L. (alfalfa) 'Zhaodong' is an important forage legume that can safely survive in northern China where winter temperatures reach as low as -30 °C. Survival of alfalfa following freezing stress depends on the amount and revival ability of crown buds. In order to investigate the molecular mechanisms of frost tolerance in alfalfa, we used transcriptome sequencing technology and bioinformatics strategies to analyze crown buds of field-grown alfalfa during winter. We statistically identified a total of 5605 differentially expressed genes (DEGs) involved in freezing stress including 1900 upregulated and 3705 downregulated DEGs. We validated 36 candidate DEGs using qPCR to confirm the accuracy of the RNA-seq data. Unlike other recent studies, this study employed alfalfa plants grown in the natural environment. Our results indicate that not only the CBF orthologs but also membrane proteins, hormone signal transduction pathways, and ubiquitin-mediated proteolysis pathways indicate the presence of a special freezing adaptation mechanism in alfalfa. The antioxidant defense system may rapidly confer freezing tolerance to alfalfa. Importantly, biosynthesis of secondary metabolites and phenylalanine metabolism, which is of potential importance in coordinating freezing tolerance with growth and development, were downregulated in subzero temperatures. The adaptive mechanism for frost tolerance is a complex multigenic process that is not well understood. This systematic analysis provided an in-depth view of stress tolerance mechanisms in alfalfa.

  14. Observation of field emission from GeSn nanoparticles epitaxially grown on silicon nanopillar arrays

    Science.gov (United States)

    Di Bartolomeo, Antonio; Passacantando, Maurizio; Niu, Gang; Schlykow, Viktoria; Lupina, Grzegorz; Giubileo, Filippo; Schroeder, Thomas

    2016-12-01

    We apply molecular beam epitaxy to grow GeSn-nanoparticles on top of Si-nanopillars patterned onto p-type Si wafers. We use x-ray photoelectron spectroscopy to confirm a metallic behavior of the nanoparticle surface due to partial Sn segregation as well as the presence of a superficial Ge oxide. We report the observation of stable field emission (FE) current from the GeSn-nanoparticles, with turn on field of 65 {{V}} μ {{{m}}}-{{1}} and field enhancement factor β ˜ 100 at anode-cathode distance of ˜0.6 μm. We prove that FE can be enhanced by preventing GeSn nanoparticles oxidation or by breaking the oxide layer through electrical stress. Finally, we show that GeSn/p-Si junctions have a rectifying behavior.

  15. Effect of two nonfumigant nematicides on corn grown in two adjacent fields infested with different nematodes.

    Science.gov (United States)

    Dickson, D W; Hewlett, T E

    1987-10-01

    The organo-phosphate experimental nematicide, O-ethyl S,S-di-sec-butyl phosphorodithioate (FMC 67825), provided yield increases of corn comparable to carbofuran. Both the emulsifiable concentrate and granular formulations of FMC 67825 were equally effective. The evaluations, duplicated in two adjacent fields, clearly demonstrated the importance of the type of plant pathogenic nematodes infesting the sites. Where Belonolaimus longicaudatus occurred, yield increases ranged from 73% to 80%, whereas in the adjacent field (without B. longicaudatus) yields increases ranged from - 14% to 28%.

  16. Influence of an External Magnetic Field on the Growth of Nanocrystalline Silicon Films Grown by MF Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    Junhua Gao; Lin Zhang; Jinquan Xiao; Jun Gong; Chao Sun; Lishi Wen

    2012-01-01

    The effects of an external magnetic field originating from two solenoid coils on the magnetic field configuration, plasma state of a dual unbalanced magnetron sputter system and the structure of nanocrystalline Si films were examined. Numerical simulations of the magnetic field configuration showed that increasing the coil current significantly changed the magnetic field distribution between the substrate and targets. The saturated ion current density Ji in the substrate position measured by using a circular flat probe increased from 0.18 to 0.55 mA/cm2 with the coil current ranging from 0 to 6 A. X-ray diffraction and Raman results revealed that increasing the ion density near the substrate would benefit crystallization of films and the preferential growth along [lI1] orientation. From analysis of the surface morphology and the microstructure of Si films grown under different plasma conditions, it is found that with increasing the Ji, the surface of the film was smoothed and the alteration in the surface roughness was mainly correlated to the localized surface diffusion of the deposited species and the crystallization behavior of the films.

  17. Arquitetura do sistema radicular do porta-enxerto de videira 'IAC 766' na época de transplante do viveiro para o campo Root architecture of IAC 766 grapevine rootstock in the transplanting from the nursery to the field

    Directory of Open Access Journals (Sweden)

    Ricardo Sfeir de Aguiar

    2006-12-01

    Full Text Available Na propagação de porta-enxertos de videira por estaquia em recipientes para posterior transplante ao campo, é importante evitar danos ao sistema radicular. O objetivo do trabalho foi determinar, por meio da avaliação da arquitetura do sistema radicular, a melhor fase de desenvolvimento da muda para o transplante, ao campo, do porta-enxerto de videira 'IAC 766' Campinas, em Marialva - PR. As plantas foram avaliadas aos 60; 90; 120; 150 e 180 dias após a estaquia lenhosa em substratos contidos em sacos plásticos de 20cm de largura por 30cm de altura. As raízes foram expostas e fotografadas, avaliando-se comprimento e área do sistema radicular pelo programa SIARCS 3.0. Foi utilizado também um diagrama de arquitetura radicular, atribuindo-se notas à conformação do sistema radicular e foi contado o número de raízes enoveladas. O delineamento experimental utilizado foi o de blocos inteiramente ao acaso, com cinco tratamentos e cinco repetições, com 10 plantas por parcela. Os dados foram submetidos à análise de regressão polinomial. Todas as características, com exceção das notas da arquitetura do sistema radicular, ajustaram-se ao modelo de regressão linear crescente. A melhor fase para o transplante da muda do porta-enxerto 'IAC 766' para o campo é aos 90 dias após a estaquia.In grapevine propagation with cuttings in containers it is important to avoid damages to root system during transplanting to the field. The aim of this research was to determine, by means of root system evaluation, the best period to transplant 'IAC 766' (Campinas rootstock. The trial was set up in July 2004 in Marialva County (PR. The plants were evaluated 60, 90, 120, 150 and 180 days after the establishment of woody cutting in plastic bags of 20cm wide and 30cm high. The roots were exposed and pictures were taken in lateral and top positions and were evaluated by SIARCS 3.0 software, with determination of the area and the length of the root system

  18. Field Performance of Cowpea Genotypes Grown under Virus Pressure in Puerto Rico

    Science.gov (United States)

    Cowpea [Vigna unguiculata (L.) Walp.] is an important grain legume in many regions of the tropics. However, viral diseases, particularly Cucumber mosaic virus (CMV) and Blackeye cowpea mosaic virus (BlCMV), can be a limiting factor in cowpea production. We evaluated in replicated field plots and un...

  19. Highly diverse endophytic and soil Fusarium oxysporum populations associated with field-grown tomato plants.

    Science.gov (United States)

    Demers, Jill E; Gugino, Beth K; Jiménez-Gasco, María Del Mar

    2015-01-01

    The diversity and genetic differentiation of populations of Fusarium oxysporum associated with tomato fields, both endophytes obtained from tomato plants and isolates obtained from soil surrounding the sampled plants, were investigated. A total of 609 isolates of F. oxysporum were obtained, 295 isolates from a total of 32 asymptomatic tomato plants in two fields and 314 isolates from eight soil cores sampled from the area surrounding the plants. Included in this total were 112 isolates from the stems of all 32 plants, a niche that has not been previously included in F. oxysporum population genetics studies. Isolates were characterized using the DNA sequence of the translation elongation factor 1α gene. A diverse population of 26 sequence types was found, although two sequence types represented nearly two-thirds of the isolates studied. The sequence types were placed in different phylogenetic clades within F. oxysporum, and endophytic isolates were not monophyletic. Multiple sequence types were found in all plants, with an average of 4.2 per plant. The population compositions differed between the two fields but not between soil samples within each field. A certain degree of differentiation was observed between populations associated with different tomato cultivars, suggesting that the host genotype may affect the composition of plant-associated F. oxysporum populations. No clear patterns of genetic differentiation were observed between endophyte populations and soil populations, suggesting a lack of specialization of endophytic isolates. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Relationships between Fusarium population structure, soil nutrient status and disease incidence in field-grown asparagus

    NARCIS (Netherlands)

    Yergeau, E.; Sommerville, D.W.; Maheux, E.; Vujanovic, V.; Hamel, C.; Whalen, J.K.; St-Arnaud, M.

    2006-01-01

    Fusarium species cause important diseases in many crops. Lack of knowledge on how Fusarium species and strains interact with their environment hampers growth management strategies to control root diseases. A field experiment involving asparagus as host plant and three phosphorus fertilization levels

  1. Sink filling, inulin metabolizing enzymes and carbohydrate status in field grown chicory (Cichorium intybus L.).

    NARCIS (Netherlands)

    Arkel, van J.; Vergauwen, R.; Sévenier, R.; Hakkert, J.C.; Laere, van A.; Bouwmeester, H.J.; Meer, van der I.M.

    2012-01-01

    Inulin is a fructose-based polymer that is isolated from chicory (Cichorium intybus L.) taproots. The degree of polymerization (DP) determines its application and hence the value of the crop. The DP is highly dependent on the field conditions and harvest time. Therefore, the present study was

  2. Sink filling, inulin metabolizing enzymes and carbohydrate status in field grown chicory (Cichorium intybus L.).

    NARCIS (Netherlands)

    Arkel, van J.; Vergauwen, R.; Sévenier, R.; Hakkert, J.C.; Laere, van A.; Bouwmeester, H.J.; Meer, van der I.M.

    2012-01-01

    Inulin is a fructose-based polymer that is isolated from chicory (Cichorium intybus L.) taproots. The degree of polymerization (DP) determines its application and hence the value of the crop. The DP is highly dependent on the field conditions and harvest time. Therefore, the present study was carrie

  3. Relationships between Fusarium population structure, soil nutrient status and disease incidence in field-grown asparagus

    NARCIS (Netherlands)

    Yergeau, E.; Sommerville, D.W.; Maheux, E.; Vujanovic, V.; Hamel, C.; Whalen, J.K.; St-Arnaud, M.

    2006-01-01

    Fusarium species cause important diseases in many crops. Lack of knowledge on how Fusarium species and strains interact with their environment hampers growth management strategies to control root diseases. A field experiment involving asparagus as host plant and three phosphorus fertilization levels

  4. Comparison of Dehydrin Gene Expression and Freezing Tolerance in Bromus inermis and Secale cereale Grown in Controlled Environments, Hydroponics, and the Field.

    Science.gov (United States)

    Robertson, A. J.; Weninger, A.; Wilen, R. W.; Fu, P.; Gusta, L. V.

    1994-01-01

    There have been very few reports on the expression of stress-responsive genes in field-grown material. A barley dehydrin cDNA was used to investigate the expression of dehydrin-like transcripts after low-temperature and abscisic acid-induced acclimation of bromegrass (Bromus inermis Leyss) suspension cells and of bromegrass and rye (Secale cereale) plants grown in the field and under controlled environmental conditions. Field-acclimated plants accumulated high levels of dehydrin transcripts and were very freezing tolerant. Plants grown in pots and hydroponics under controlled environments also accumulated dehydrin transcripts and showed increased freezing tolerance. Simulation of a combined drought and freezing stress in pots resulted in expression of dehydrin-like transcripts comparable to those observed in field-acclimated material. PMID:12232403

  5. Near-field microwave microscopy of high-κ oxides grown on graphene with an organic seeding layer

    Science.gov (United States)

    Tselev, Alexander; Sangwan, Vinod K.; Jariwala, Deep; Marks, Tobin J.; Lauhon, Lincoln J.; Hersam, Mark C.; Kalinin, Sergei V.

    2013-12-01

    Near-field scanning microwave microscopy (SMM) is used for non-destructive nanoscale characterization of Al2O3 and HfO2 films grown on epitaxial graphene on SiC by atomic layer deposition using a self-assembled perylene-3,4,9,10-tetracarboxylic dianhydride seeding layer. SMM allows imaging of buried inhomogeneities in the dielectric layer with a spatial resolution close to 100 nm. The results indicate that, while topographic features on the substrate surface cannot be eliminated as possible sites of defect nucleation, the use of a vertically heterogeneous Al2O3/HfO2 stack suppresses formation of large outgrowth defects in the oxide film, ultimately improving lateral uniformity of the dielectric film.

  6. Micropropagation of an elite F1 watermelon (Citrullus lanatus hybrid from the shoot tip of field grown plants

    Directory of Open Access Journals (Sweden)

    Mohammad Khalekuzzaman

    2012-06-01

    Full Text Available The aim of this work was to develop a protocol for rapid micropropagation of an elite F1 hybrid watermelon cultivar using shoot tip of field-grown plants. Maximum frequency (73% of shoot tip showed growth response in MS medium supplemented with 5 mg l-1 benzyl adenine (BA and 0.1 mg l-1 indole-3 acetic acid (IAA. Upon transfer to cytokinin-enriched medium, the cultures produced multiple shoots and 2.0 mg l-1 BA was optimum in this respect. Addition of gibberellic acid (GA3 in the multiplication medium resulted in better growth of shoots. Rooting rate was 100% when shoots were obtained from second subculture were cultured in medium with 1.0 mg l-1 indole-3 butyric acid (IBA. The shoots produced more roots with increasing number of subcultures. About 72% of the regenerated plantlets acclimatized successfully and survived in the soil condition.

  7. Near-field microwave microscopy of high-κ oxides grown on graphene with an organic seeding layer

    Energy Technology Data Exchange (ETDEWEB)

    Tselev, Alexander, E-mail: tseleva@ornl.gov; Kalinin, Sergei V. [Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, Tennessee 37831 (United States); Sangwan, Vinod K.; Jariwala, Deep; Lauhon, Lincoln J. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Marks, Tobin J.; Hersam, Mark C. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States)

    2013-12-09

    Near-field scanning microwave microscopy (SMM) is used for non-destructive nanoscale characterization of Al{sub 2}O{sub 3} and HfO{sub 2} films grown on epitaxial graphene on SiC by atomic layer deposition using a self-assembled perylene-3,4,9,10-tetracarboxylic dianhydride seeding layer. SMM allows imaging of buried inhomogeneities in the dielectric layer with a spatial resolution close to 100 nm. The results indicate that, while topographic features on the substrate surface cannot be eliminated as possible sites of defect nucleation, the use of a vertically heterogeneous Al{sub 2}O{sub 3}/HfO{sub 2} stack suppresses formation of large outgrowth defects in the oxide film, ultimately improving lateral uniformity of the dielectric film.

  8. Effect of management practices on mycorrhizal infection, growth and dry matter partitioning in field-grown bean

    Directory of Open Access Journals (Sweden)

    Antonio Alberto Rocha Oliveira

    1999-07-01

    Full Text Available The experiment was carried out on unsterilized field soil with low phosphorus availability with the objective of examining the effect of cultural practices on mycorrhizal colonization and growth of common bean. The treatments were: three pre-crops (maize, wheat and fallow followed by three soil management practices ("ploughing", mulching and bare fallow without "ploughing" during the winter months. After the cultural practices, Phaseolus vulgaris cv. Canadian Wonder was grown in this soil. Fallowing and soil disturbance reduced natural soil infectivity. Mycorrhizal infection of the bean roots occurred more rapidly in the recently cropped soil than in the fallow soil. Prior cropping with a strongly mycorrhizal plant (maize increased infectivity even further.

  9. Biochemical basis of drought tolerance in hybrid Populus grown under field production conditions. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Tschaplinski, T.J.; Tuskan, G.A. [Oak Ridge National Lab., TN (United States); Wierman, C. [Boise Cascade Corp., Wallula, WA (United States)

    1997-04-01

    The purpose of this cooperative effort was to assess the use of osmotically active compounds as molecular selection criteria for drought tolerance in Populus in a large-scale field trial. It is known that some plant species, and individuals within a plant species, can tolerate increasing stress associated with reduced moisture availability by accumulating solutes. The biochemical matrix of such metabolites varies among species and among individuals. The ability of Populus clones to tolerate drought has equal value to other fiber producers, i.e., the wood products industry, where irrigation is used in combination with other cultural treatments to obtain high dry weight yields. The research initially involved an assessment of drought stress under field conditions and characterization of changes in osmotic constitution among the seven clones across the six moisture levels. The near-term goal was to provide a mechanistic basis for clonal differences in productivity under various irrigation treatments over time.

  10. Unravelling the diversity of grapevine microbiome.

    Science.gov (United States)

    Pinto, Cátia; Pinho, Diogo; Sousa, Susana; Pinheiro, Miguel; Egas, Conceição; Gomes, Ana C

    2014-01-01

    Vitis vinifera is one of the most widely cultivated fruit crops with a great economic impact on the global industry. As a plant, it is naturally colonised by a wide variety of both prokaryotic and eukaryotic microorganisms that interact with grapevine, having either beneficial or phytopathogenic effects, who play a major role in fruit yield, grape quality and, ultimately, in the evolution of grape fermentation and wine production. Therefore, the objective of this study was to extensively characterize the natural microbiome of grapevine. Considering that the majority of microorganisms are uncultivable, we have deeply studied the microflora of grapevine leaves using massive parallel rDNA sequencing, along its vegetative cycle. Among eukaryotic population the most abundant microorganisms belonged to the early diverging fungi lineages and Ascomycota phylum, whereas the Basidiomycota were the least abundant. Regarding prokaryotes, a high diversity of Proteobacteria, Firmicutes and Actinobacteria was unveiled. Indeed, the microbial communities present in the vineyard during its vegetative cycle were shown to be highly structured and dynamic. In all cases, the major abundant microorganisms were the yeast-like fungus Aureobasidium and the prokaryotic Enterobacteriaceae. Herein, we report the first complete microbiome landscape of the vineyard, through a metagenomic approach, and highlight the analysis of the microbial interactions within the vineyard and its importance for the equilibrium of the microecosystem of grapevines.

  11. Unravelling the diversity of grapevine microbiome.

    Directory of Open Access Journals (Sweden)

    Cátia Pinto

    Full Text Available Vitis vinifera is one of the most widely cultivated fruit crops with a great economic impact on the global industry. As a plant, it is naturally colonised by a wide variety of both prokaryotic and eukaryotic microorganisms that interact with grapevine, having either beneficial or phytopathogenic effects, who play a major role in fruit yield, grape quality and, ultimately, in the evolution of grape fermentation and wine production. Therefore, the objective of this study was to extensively characterize the natural microbiome of grapevine. Considering that the majority of microorganisms are uncultivable, we have deeply studied the microflora of grapevine leaves using massive parallel rDNA sequencing, along its vegetative cycle. Among eukaryotic population the most abundant microorganisms belonged to the early diverging fungi lineages and Ascomycota phylum, whereas the Basidiomycota were the least abundant. Regarding prokaryotes, a high diversity of Proteobacteria, Firmicutes and Actinobacteria was unveiled. Indeed, the microbial communities present in the vineyard during its vegetative cycle were shown to be highly structured and dynamic. In all cases, the major abundant microorganisms were the yeast-like fungus Aureobasidium and the prokaryotic Enterobacteriaceae. Herein, we report the first complete microbiome landscape of the vineyard, through a metagenomic approach, and highlight the analysis of the microbial interactions within the vineyard and its importance for the equilibrium of the microecosystem of grapevines.

  12. Comparative response of six grapevine rootstocks to inoculation with arbuscular mycorrhizal fungi based on root traits

    Science.gov (United States)

    Pogiatzis, Antreas; Bowen, Pat; Hart, Miranda; Holland, Taylor; Klironomos, John

    2017-04-01

    Arbuscular mycorrhizal (AM) symbiosis has been proven to be essential in grapevines, sustaining plant growth especially under abiotic and biotic stressors. The mycorrhizal growth response of young grapevines varies among rootstock cultivars and the underlying mechanisms involved in this variation are unknown. We predicted that this variation in mycorrhizal response may be explained by differences in root traits among rootstocks. We analyzed the entire root system of six greenhouse-grown rootstocks (Salt Creek, 3309 Couderc, Riparia Gloire, 101-14 Millardet et de Grasset, Swarzmann, Teleki 5C), with and without AM fungal inoculation (Rhizophagus irregularis) and characterized their morphological and architectural responses. Twenty weeks after the inoculation, aboveground growth was enhanced by AM colonization. The rootstock varieties were distinctly different in their response to AM fungi, with Salt Creek receiving the highest growth benefit, while Schwarzmann and 5C Teleki receiving the lowest. Plant responsiveness to AM fungi was negatively correlated with branching intensity (fine roots per root length). Furthermore, there was evidence that mycorrhizas can influence the expression of root traits, inducing a higher branching intensity and a lower root to shoot ratio. The results of this study will help to elucidate how interactions between grapevine rootstocks and AM fungi may benefit the establishment of new vineyards.

  13. Radicinin from Cochliobolus sp. inhibits Xylella fastidiosa, the causal agent of Pierce's Disease of grapevine.

    Science.gov (United States)

    Aldrich, Thomas J; Rolshausen, Philippe E; Roper, M Caroline; Reader, Jordan M; Steinhaus, Matthew J; Rapicavoli, Jeannette; Vosburg, David A; Maloney, Katherine N

    2015-08-01

    The fastidious phytopathogenic bacterium, Xylella fastidiosa, poses a substantial threat to many economically important crops, causing devastating diseases including Pierce's Disease of grapevine. Grapevines (Vitis vinifera L.) planted in an area under Pierce's Disease pressure often display differences in disease severity and symptom expression, with apparently healthy vines growing alongside the dying ones, despite the fact that all the vines are genetic clones of one another. Under the hypothesis that endophytic microbes might be responsible for this non-genetic resistance to X. fastidiosa, endophytic fungi were isolated from vineyard cvs. 'Chardonnay' and 'Cabernet Sauvignon' grown under high Pierce's Disease pressure. A Cochliobolus sp. isolated from a Cabernet Sauvignon grapevine inhibited the growth of X. fastidiosa in vitro. Bioassay-guided isolation of an organic extract of Cochliobolus sp. yielded the natural product radicinin as the major active compound. Radicinin also inhibited proteases isolated from the culture supernatant of X. fastidiosa. In order to assess structure-activity relationships, three semi-synthetic derivatives of radicinin were prepared and tested for activity against X. fastidiosa in vitro. Assay results of these derivatives are consistent with enzyme inactivation by conjugate addition to carbon-10 of radicinin, as proposed previously. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Association of RGA-SSCP markers with resistance to downy mildew and anthracnose in grapevines.

    Science.gov (United States)

    Tantasawat, P A; Poolsawat, O; Prajongjai, T; Chaowiset, W; Tharapreuksapong, A

    2012-07-02

    Downy mildew (Plasmopara viticola) and anthracnose (Sphaceloma ampelinum) are two major diseases that severely affect most grapevine (Vitis vinifera) cultivars grown commercially in Thailand. Progress of conventional breeding programs of grapevine for improved resistance to these diseases can be speeded up by selection of molecular markers associated with resistance traits. We evaluated the association between 13 resistance gene analog (RGA)-single-strand conformation polymorphism (SSCP) markers with resistance to downy mildew and anthracnose in 71 segregating progenies of seven cross combinations between susceptible cultivars and resistant lines. F(1) hybrids from each cross were assessed for resistance to downy mildew and anthracnose (isolates Nk4-1 and Rc2-1) under laboratory conditions. Association of resistance traits with RGA-SSCP markers was evaluated using simple linear regression analysis. Three RGA-SSCP markers were found to be significantly correlated with anthracnose resistance, whereas significant correlation with downy mildew resistance was observed for only one RGA-SSCP marker. These results demonstrate the usefulness of RGA-SSCP markers. Four candidate markers with significant associations to resistance to these two major diseases of grapevine were identified. However, these putative associations between markers and resistance need to be verified with larger segregating populations before they can be used for marker-assisted selection.

  15. Genetic Variation in Response to Salt Stress of Quinoa Grown under Controlled and Field Conditions

    OpenAIRE

    Nguyen Long

    2016-01-01

    The objective of this study was to understand the change in response of quinoa genotypes to divers salinity stress conditions e.g in controlled (net-house) and in the different saline fields. The pot experiment was conducted in a net-house at Vietnam National University of Agriculture, Hanoi, Vietnam in spring cropping season to characterize the growth and yield of six quinoa genotypes under four NaCl concentrations (0, 10, 20 and 30 dS m-1). At the same time, in Nam Dinh and Hai Phong provin...

  16. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables

    OpenAIRE

    Patrick Grant Lawson; Diemo eDaum; Roman eCzauderna; Helmut eMeuser; Härtling, Joachim W.

    2015-01-01

    Iodine (I) biofortification of vegetables by means of soil and foliar applications was investigated in field experiments on a sandy loam soil. Supply of iodine to the soil in trial plots fertilized with potassium iodide (KI) and potassium iodate directly before planting (0, 1.0, 2.5, 7.5, and 15 kg I ha-1) increased the iodine concentration in the edible plant parts. The highest iodine accumulation levels were observed in the first growing season: In butterhead lettuce and kohlrabi the desire...

  17. Impacts of rising tropospheric ozone on photosynthesis and metabolite levels on field grown soybean.

    Science.gov (United States)

    Sun, Jindong; Feng, Zhaozhong; Ort, Donald R

    2014-09-01

    The response of leaf photosynthesis and metabolite profiles to ozone (O3) exposure ranging from 37 to 116 ppb was investigated in two soybean cultivars Dwight and IA3010 in the field under fully open-air conditions. Leaf photosynthesis, total non-structural carbohydrates (TNC) and total free amino acids (TAA) decreased linearly with increasing O3 levels in both cultivars with average decrease of 7% for an increase in O3 levels by 10 ppb. Ozone interacted with developmental stages and leaf ages, and caused higher damage at later reproductive stages and in older leaves. Ozone affected yield mainly via reduction of maximum rate of Rubisco carboxylation (Vcmax) and maximum rates of electron transport (Jmax) as well as a shorter growing season due to earlier onset of canopy senescence. For all parameters investigated the critical O3 levels (∼50 ppb) for detectable damage fell within O3 levels that occur routinely in soybean fields across the US and elsewhere in the world. Strong correlations were observed in O3-induced changes among yield, photosynthesis, TNC, TAA and many metabolites. The broad range of metabolites that showed O3 dose dependent effect is consistent with multiple interaction loci and thus multiple targets for improving the tolerance of soybean to O3.

  18. Weeding volatiles reduce leaf and seed damage to field-grown soybeans and increase seed isoflavones.

    Science.gov (United States)

    Shiojiri, Kaori; Ozawa, Rika; Yamashita, Ken-Ichi; Uefune, Masayoshi; Matsui, Kenji; Tsukamoto, Chigen; Tokumaru, Susumu; Takabayashi, Junji

    2017-01-30

    Field experiments were conducted over 3 years (2012, 2013, and 2015), in which half of the young stage soybean plants were exposed to volatiles from cut goldenrods three times over 2-3 weeks, while the other half remained unexposed. There was a significant reduction in the level of the total leaf damage on exposed soybean plants compared with unexposed ones. In 2015, the proportion of damage to plants by Spodoptera litura larvae, a dominant herbivore, was significantly less in the exposed field plots than in the unexposed plots. Under laboratory conditions, cut goldenrod volatiles induced the direct defenses of soybean plants against S. litura larvae and at least three major compounds, α-pinene, β-myrcene, and limonene, of cut goldenrod volatiles were involved in the induction. The number of undamaged seeds from the exposed plants was significantly higher than that from unexposed ones. Concentrations of isoflavones in the seeds were significantly higher in seeds from the exposed plants than in those from the unexposed plants. Future research evaluating the utility of weeding volatiles, as a form of plant-plant communications, in pest management programs is necessary.

  19. Weeding volatiles reduce leaf and seed damage to field-grown soybeans and increase seed isoflavones

    Science.gov (United States)

    Shiojiri, Kaori; Ozawa, Rika; Yamashita, Ken-Ichi; Uefune, Masayoshi; Matsui, Kenji; Tsukamoto, Chigen; Tokumaru, Susumu; Takabayashi, Junji

    2017-01-01

    Field experiments were conducted over 3 years (2012, 2013, and 2015), in which half of the young stage soybean plants were exposed to volatiles from cut goldenrods three times over 2–3 weeks, while the other half remained unexposed. There was a significant reduction in the level of the total leaf damage on exposed soybean plants compared with unexposed ones. In 2015, the proportion of damage to plants by Spodoptera litura larvae, a dominant herbivore, was significantly less in the exposed field plots than in the unexposed plots. Under laboratory conditions, cut goldenrod volatiles induced the direct defenses of soybean plants against S. litura larvae and at least three major compounds, α-pinene, β-myrcene, and limonene, of cut goldenrod volatiles were involved in the induction. The number of undamaged seeds from the exposed plants was significantly higher than that from unexposed ones. Concentrations of isoflavones in the seeds were significantly higher in seeds from the exposed plants than in those from the unexposed plants. Future research evaluating the utility of weeding volatiles, as a form of plant–plant communications, in pest management programs is necessary. PMID:28134284

  20. Effect of artificial electric fields on plants grown under microgravity conditions

    Science.gov (United States)

    Nechitailo, G.; Gordeev, A.

    2001-01-01

    Ionic and structural hetorogeneity of cells, tissues, and organs of plants are associated with a spectrum of electric characteristics such as bioelectric potentials, electrical conductance, and bioelectric permeability. An important determinant for the plant function is electric properties of the cell membranes and organelles which maintain energy and substance exchange with the environment. Enzymes and other biologically active substances have a powerful charge at the molecular level. Finally, all molecules, including those of water, represent dipoles, and this determines their reactive capacity. A major determinant is the bioelectric polarity of a plant is genetically predetermined and cannot be modified. It is an intrinsic structural feature of the organism whose evolution advent was mediated by gravity. An illustrative presentation of polarity is the downward growth of the roots and upward growth of stems in the Earth's gravitation field. However, gravity is a critical, but not the sole determinant of the plant organism polarization. Potent polarizing effects are exerted by light, the electromagnetic field, moisture, and other factors. It is known that plant cultivation in an upturned position is associated with impairment of water and nutrient uptake, resulting in dyscoordination of physiological processes, growth and developmental retardation. These abnormalities were characteristic when early attempts were made to grow plants in weightlessness conditions.

  1. Effect of artificial electric fields on plants grown under microgravity conditions.

    Science.gov (United States)

    Nechitailo, G; Gordeev, A

    2001-01-01

    Ionic and structural hetorogeneity of cells, tissues, and organs of plants are associated with a spectrum of electric characteristics such as bioelectric potentials, electrical conductance, and bioelectric permeability. An important determinant for the plant function is electric properties of the cell membranes and organelles which maintain energy and substance exchange with the environment. Enzymes and other biologically active substances have a powerful charge at the molecular level. Finally, all molecules, including those of water, represent dipoles, and this determines their reactive capacity. A major determinant is the bioelectric polarity of a plant is genetically predetermined and cannot be modified. It is an intrinsic structural feature of the organism whose evolution advent was mediated by gravity. An illustrative presentation of polarity is the downward growth of the roots and upward growth of stems in the Earth's gravitation field. However, gravity is a critical, but not the sole determinant of the plant organism polarization. Potent polarizing effects are exerted by light, the electromagnetic field, moisture, and other factors. It is known that plant cultivation in an upturned position is associated with impairment of water and nutrient uptake, resulting in dyscoordination of physiological processes, growth and developmental retardation. These abnormalities were characteristic when early attempts were made to grow plants in weightlessness conditions. c2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  2. Fungicide application and phosphorus uptake by hyphae of arbuscular mycorrhizal fungi into field-grown peas

    DEFF Research Database (Denmark)

    Schweiger, P.F.; Spliid, N.H.; Jakobsen, I.

    2001-01-01

    P uptake were not affected by fungicide applications apart from application of the propiconazole/fenpropimorph mixture at 100 x the recommended rate. This rate completely inhibited plant growth. AM root colonisation was reduced by the high rate of carbendazim application only. This reduction had...... no effect on plant growth which may be due to the fertile soil conditions at the field site. It is concluded that the testing for side effects of pesticides on non-target organisms should include functional parameters such as P uptake by AM fungi. Such measures may be more sensitive to harmful effects than...... from overall P uptake, Fungicides were added to the soil inside the HCs at concentrations assumed to reflect their concentration in the surrounding soil. At two harvests, plant growth, total P and P-32 uptake as well as root length density and AM root colonisation were measured. Length of hyphae inside...

  3. Analysis of SAR and optical temporal signatures of grapevine over a heterogeneous vineyard landscape

    Science.gov (United States)

    Loussert, P.; Baup, F.; Corgne, S.; Quénol, H.; Ortega, A.

    2016-10-01

    The aim of this work is to analyse grapevine temporal signatures over a viticultural landscape with remote sensing data in order to evaluate the impact of the perennial practices on optical and SAR signals. For this, the effects of different combinations of vineyard organisations on multi-temporal high and very high spatial resolution SAR and optical data have been analysed. The study area is located in Mendoza (Argentina). All the ground data were acquired during an experimental campaign performed in 2014-2015 over 153 vineyards (around 400ha). The data of the perennial practices were recorded over each of the 153 vineyards. The schedule of the annual practices were also provided over the all site. The grapevine phenological cycle was finally monitored on 14 fields through GLAI (Green Leaf Area index) estimation using hemispherical images and grapevine canopy height measurements. The satellite images dataset is composed of 6 Dual-Pol TerraSAR-X images, 5 Pleiades images, and 6 Landsat-8 images. After calibrating the images, backscattering coefficients and polarimetric parameters were extracted from Terrasar-X images (entropy and alpha angle) and the NDVI from optical images. The analysis of the temporal signatures regarding perennial practices revealed a strong impact of the inter-row spacing management. Ranges of values of backscattering coefficients differ with the type of management but their temporal variation seems to be linked to soil moisture changes. Depending on the roughness of the inter-row spacing the alpha angle evolution is linked to grapevine growth in the case of a chemically weeded inter-row spacing. But it remains at high values when the inter-row spacing is ploughed or grassed. In those cases, the entropy increases along the growth cycle. The vegetation indexes series are increasing with the grapevine growth depending on canopy width and soil management. Thus this work highlighted the variability of the SAR and optical signals due to

  4. Sensitivity of cold acclimation to elevated autumn temperature in field-grown Pinus strobus seedlings

    Directory of Open Access Journals (Sweden)

    Christine Yao-Yun Chang

    2015-03-01

    Full Text Available Climate change will increase autumn air temperature, while photoperiod decrease will remain unaffected. We assessed the effect of increased autumn air temperature on timing and development of cold acclimation and freezing resistance in Eastern white pine (EWP, Pinus strobus under field conditions. For this purpose we simulated projected warmer temperatures for southern Ontario in a Temperature Free-Air-Controlled Enhancement (T-FACE experiment and exposed EWP seedlings to ambient (Control or elevated temperature (ET, +1.5°C/+3°C during day/night. Photosynthetic gas exchange, chlorophyll fluorescence, photoprotective pigments, leaf non-structural carbohydrates (NSC, and cold hardiness were assessed over two consecutive autumns. Nighttime temperature below 10°C and photoperiod below 12h initiated downregulation of assimilation in both treatments. When temperature further decreased to 0°C and photoperiod became shorter than 10h, downregulation of the light reactions and upregulation of photoprotective mechanisms occurred in both treatments. While ET seedlings did not delay the timing of the downregulation of assimilation, stomatal conductance in ET seedlings was decreased by 20-30% between August and early October. In both treatments leaf NSC composition changed considerably during autumn but differences between Control and ET seedlings were not significant. Similarly, development of freezing resistance was induced by exposure to low temperature during autumn, but the timing was not delayed in ET seedlings compared to Control seedlings. Our results indicate that EWP is most sensitive to temperature changes during October and November when downregulation of photosynthesis , enhancement of photoprotection, synthesis of cold-associated NSCs and development of freezing resistance occur. However, we also conclude that the timing of the development of freezing resistance in EWP seedlings is not affected by moderate temperature increases used in our

  5. ROOTSTOCK-SCION INTERACTION: 1. EFFECT ON THE YIELD COMPONENTS OF CABERNET SAUVIGNON GRAPEVINE

    Directory of Open Access Journals (Sweden)

    ALBERTO MIELE

    Full Text Available ABSTRACT The interaction between rootstock, scion and environment can induce different responses to the grapevine physiology. Thus, the aim of this study was to determine the rootstock effect on the yield components of Cabernet Sauvignon (CS grapevine grown in the Serra Gaúcha viticultural region. The experimental design was completely randomized blocks, with 15 treatments, three replicates and ten vines per plot. The results show that all variables evaluated were significantly affected by the year and the rootstock. The CS/Solferino was among other combinations influenced by the year and had higher significant yield/ vine. Indeed, it was higher than that CS/Rupestris du Lot, CS/101-14 Mgt., CS/3309 C, CS/5BB K, CS/161- 49 C, CS/1103 P. and CS/Isabel. The number of clusters/bud, per burst bud and per vine and the weight of clusters were affected by the rootstock as well. Pruning weight/vine, yield/pruning weight, leaf area/vine, leaf area index and leaf area/fresh fruit weight are variables related to the physiology of grapevine which were also affected by the rootstock. In general, rootstocks had adapted well to the environment where the experiment was carried out, giving vigor and high yield to Cabernet Sauvignon grapevine, which means that they may be used by grape growers in this region. However, the choice of the right rootstock depends on various aspects, such as those related to the soil characteristics, climate conditions, grape varieties, and even clones, and production purposes.

  6. Macro- and microclimate conditions may alter grapevine deacclimation: variation in thermal amplitude in two contrasting wine regions from North and South America

    Science.gov (United States)

    Antivilo, Francisco Gonzalez; Paz, Rosalía Cristina; Keller, Markus; Borgo, Roberto; Tognetti, Jorge; Juñent, Fidel Roig

    2017-07-01

    Low temperature is a limiting factor that affects vineyard distribution globally. The level of cold hardiness acquired during the dormant season by Vitis sp. is crucial for winter survival. Most research published on this topic has been generated beyond 40° N latitude, where daily mean temperatures may attain injurious levels during the dormant season resulting in significant damage to vines and buds. Symptoms of cold injury have been identified in Mendoza (32-35° S latitude), a Southern Hemisphere wine region characterized by a high thermal amplitude, and warm winds during the dormant season. These symptoms have usually been attributed to drought and/or pathogens, but not to rapid deacclimation followed by injurious low temperatures. Because local information on meteorological events as probable causes is scarce, this research was designed to test and study this assumption by comparing macro-, meso-, and microclimatic data from Mendoza, Argentina, and eastern Washington, USA. The goal was to unveil why freezing damage has occurred in both regions, despite the existence of large climatic differences. Because environmental parameters under field conditions may not correspond to data recorded by conventional weather stations, sensors were installed in vineyards for comparison. Microclimatic conditions on grapevines were also evaluated to assess the most vulnerable portions of field-grown grapevines. In order to better understand if it may be possible to modify cold hardiness status in a short period with high thermal amplitude conditions, deacclimation was induced using a thermal treatment. Hence, despite the fact that Mendoza is warmer, and temperatures are not as extreme as in Washington, high daily thermal amplitude might be partially involved in plant deacclimation, leading to a differential cold hardiness response.

  7. Detection of Nepovirus Vector and Nonvector Xiphinema Species in Grapevine.

    Science.gov (United States)

    Van Ghelder, C; Reid, A; Kenyon, D; Esmenjaud, D

    2015-01-01

    Fanleaf degeneration is considered the most damaging viral disease of grapevine. The two major nepoviruses involved are Grapevine fanleaf virus (GFLV) and Arabis mosaic virus (ArMV) which are respectively and specifically transmitted by the dagger nematodes Xiphinema index and X. diversicaudatum. The methods described below are aimed at detecting four prevalent grapevine Xiphinema species: the vector species previously mentioned and two nonvector species X. vuittenezi and X. italiae.

  8. Phosphorus and Nitrogen Interactions in Field-Grown Soybean as Related to Genetic Attributes of Root Morphological and Nodular Traits

    Institute of Scientific and Technical Information of China (English)

    Rui-Bin KUANG; Hong LIAO; Xiao-Long YAN; Ying-Shan DONG

    2005-01-01

    Two field experiments with different soybean (Glycine max L.) materials were conducted to investigate the interactions between phosphorus (P) and nitrogen (N) as related to the genetic attributes of root morphological and nodular traits. In experiment one, 13 cultivated soybean varieties were grown in a field with relatively low soil P and N availability. P application with 160 kg P/hm2 as triple superphosphate produced a significant simultaneous increase in the content of both P and N in shoot, demonstrating positive P and N interactions. The addition of P also increased root dry weight, root nodule number, nodule mass, nodule size, and nodulation index, but decreased root length and root surface area, indicating that P may affect N nutrition in soybean through a number of root morphological and nodular traits. Interestingly,like P content, N content appeared to be more correlated with root morphological traits (root weight, root length, and root surface area) than with root nodular traits (nodule number, nodule size, nodule mass, and nodulation index) at both P levels, implying that N taken up by the roots may contribute more to the plant N status than biological N2 fixation under the present experimental conditions. In experiment two, 57 soybean lines of a recombinant inbred line (RIL) population derived from a cross between a cultivated variety and a wild genotype were grown on another field site with moderately sufficient P and N levels to further characterize the genetic attributes of root morphological and nodular traits and their relationships with P and N interactions. The results indicated that all morphological and nodular traits measured continually segregated in the RIL population with a normal distribution of the phenotypic values, indicating that these traits are possibly controlled by quantitative trait loci (QTLs). Genetic analysis revealed that all these root traits had relatively low heritabilities (h2b=74.12, 70.65, 73.76, 56.34, 52.59, and 52

  9. Leaves of Field-Grown Mastic Trees Suffer Oxidative Stress at the Two Extremes of their Lifespan

    Institute of Scientific and Technical Information of China (English)

    Marta Juvany; Maren Müller; Sergi Munné-Bosch

    2012-01-01

    Leaf senescence is a complex phenomenon occurring in all plant species,but it is still poorly understood in plants grown in Mediterranean field conditions and well-adapted to harsh climatic conditions.To better understand the physiological processes underlying leaf senescence in mastic trees (Pistacia lentiscus L.),we evaluated leaf growth,water and N content,photosystem Ⅱ (PSⅡ) photochemistry,lipid peroxidation and levels of photosynthetic pigments,antioxidants,abscisic acid,and salicylic acid and jasmonic acid during the complete leaf lifespan,from early expansion to late senescence in relation to natural climatic conditions in the field.While mature leaves suffered from water and N deficit during late spring and summer,both young (emerging) and old (senescing) leaves were most sensitive to photooxidative stress,as indicated by reductions in the Fv/Fm ratio and enhanced lipid peroxidation during late autumn and winter.Reductions in the Fv/Fm ratio were associated with low α-tocopherol (vitamin E) levels,while very old,senescing leaves additionally showed severe anthocyanin losses.We have concluded that both young (emerging) and old (senescing) leaves suffer oxidative stress in mastic trees,which may be linked in part to suboptimal temperatures during late autumn and winter as well as to low vitamin E levels.

  10. The effects of PLA biodegradable and polypropylene nonwoven crop mulches on selected components of tomato grown in the field

    Directory of Open Access Journals (Sweden)

    Zawiska Izabela

    2014-12-01

    Full Text Available The results of two years (2010-2011 of field studies using two types of nonwoven mulches (one biodegradable, polylactic acid PLA 54 g m-2, and traditional polypropylene PP 50 g m-2 on the yield and quality of tomato are presented. Seeds of tomato (‘Mundi’ F1 were sown in a greenhouse, in containers filled with perlite and sand, and then the plants at the cotyledon stage were replanted in multipot trays filled with substrate for vegetable plants. In the last week of May, seedlings were planted on mulches in the field at a spacing of 50 × 100 cm. The mulch was maintained throughout the growing season. A plot that remained unmulched served as the control. Tomatoes were harvested once a week. The fruits were evaluated for L-ascorbic acid, dry matter, soluble sugars and nitrate content. In 2011, the analysis of the plant material showed that the concentration of L-ascorbic acid was about 23% higher in the tomato fruits harvested from plants grown on biodegradable PLA 61 g m-2 mulch in comparison to the control. A similar effect was demonstrated for the soluble sugar concentration in 2011 for both types of nonwovens.

  11. Leaves of field-grown mastic trees suffer oxidative stress at the two extremes of their lifespan.

    Science.gov (United States)

    Juvany, Marta; Müller, Maren; Munné-Bosch, Sergi

    2012-08-01

    Leaf senescence is a complex phenomenon occurring in all plant species, but it is still poorly understood in plants grown in Mediterranean field conditions and well-adapted to harsh climatic conditions. To better understand the physiological processes underlying leaf senescence in mastic trees (Pistacia lentiscus L.), we evaluated leaf growth, water and N content, photosystem II (PSII) photochemistry, lipid peroxidation and levels of photosynthetic pigments, antioxidants, abscisic acid, and salicylic acid and jasmonic acid during the complete leaf lifespan, from early expansion to late senescence in relation to natural climatic conditions in the field. While mature leaves suffered from water and N deficit during late spring and summer, both young (emerging) and old (senescing) leaves were most sensitive to photo-oxidative stress, as indicated by reductions in the F(v)/F(m) ratio and enhanced lipid peroxidation during late autumn and winter. Reductions in the F(v)/F(m) ratio were associated with low α-tocopherol (vitamin E) levels, while very old, senescing leaves additionally showed severe anthocyanin losses. We have concluded that both young (emerging) and old (senescing) leaves suffer oxidative stress in mastic trees, which may be linked in part to suboptimal temperatures during late autumn and winter as well as to low vitamin E levels.

  12. Photosynthetic responses of field-grown Pinus radiata trees to artificial and aphid-induced defoliation.

    Science.gov (United States)

    Eyles, Alieta; Smith, David; Pinkard, Elizabeth A; Smith, Ian; Corkrey, Ross; Elms, Stephen; Beadle, Chris; Mohammed, Caroline

    2011-06-01

    The phloem-feeding aphid Essigella californica represents a potential threat to the productivity of Pinus radiata plantations in south-eastern Australia. Five- and nine-year-old field trials were used to characterize the effects of artificial and natural aphid-induced (E. californica) defoliation, respectively, on shoot photosynthesis and growth. Photosynthetic capacity (A(max)) was significantly greater following a 25% (D25) (13.8 µmol m(-2) s(-1)) and a 50% (D50) (15.9 µmol m(-2) s(-1)) single-event upper-crown artificial defoliation, 3 weeks after defoliation than in undefoliated control trees (12.9 µmol m(-2) s(-1)). This response was consistently observed for up to 11 weeks after the defoliation event; by Week 16, there was no difference in A(max) between control and defoliated trees. In the D50 treatment, this increased A(max) was not sufficient to fully compensate for the foliage loss as evidenced by the reduced diameter increment (by 15%) in defoliated trees 36 weeks after defoliation. In contrast, diameter increment of trees in the D25 treatment was unaffected by defoliation. The A(max) of trees experiencing upper-crown defoliation by natural and repeated E. californica infestations varied, depending on host genotype. Despite clear differences in defoliation levels between resistant and susceptible genotypes (17 vs. 35% of tree crown defoliated, respectively), growth of susceptible genotypes was not significantly different from that of resistant genotypes. The observed increases in A(max) in the lower crown of the canopy following attack suggested that susceptible genotypes were able to partly compensate for the loss of foliage by compensatory photosynthesis. The capacity of P. radiata to regulate photosynthesis in response to natural aphid-induced defoliation provides evidence that the impact of E. californica attack on stem growth will be less than expected, at least for up to 35% defoliation.

  13. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables.

    Science.gov (United States)

    Lawson, Patrick G; Daum, Diemo; Czauderna, Roman; Meuser, Helmut; Härtling, Joachim W

    2015-01-01

    Iodine (I) biofortification of vegetables by means of soil and foliar applications was investigated in field experiments on a sandy loam soil. Supply of iodine to the soil in trial plots fertilized with potassium iodide (KI) and potassium iodate directly before planting (0, 1.0, 2.5, 7.5, and 15 kg I ha(-1)) increased the iodine concentration in the edible plant parts. The highest iodine accumulation levels were observed in the first growing season: In butterhead lettuce and kohlrabi the desired iodine content [50-100 μg I (100 g FM)(-1)] was obtained or exceeded at a fertilizer rate of 7.5 kg IO3 (-)-I ha(-1) without a significant yield reduction or impairment of the marketable quality. In contrast, supplying KI at the same rate resulted in a much lower iodine enrichment and clearly visible growth impairment. Soil applied iodine was phytoavailable only for a short period of time as indicated by a rapid decline of CaCl2-extractable iodine in the top soil. Consequently, long-term effects of a one-time iodine soil fertilization could not be observed. A comparison between the soil and the foliar fertilization revealed a better performance of iodine applied aerially to butterhead lettuce, which reached the desired iodine accumulation in edible plant parts at a fertilizer rate of 0.5 kg I(-)-I ha(-1). In contrast, the iodine content in the tuber of sprayed kohlrabi remained far below the targeted range. The results indicate that a sufficient spreading of iodine applied on the edible plant parts is crucial for the efficiency of the foliar approach and leafy vegetables are the more suitable target crops. The low iodine doses needed as well as the easy and inexpensive application may favor the implementation of foliar sprays as the preferred iodine biofortification strategy in practice.

  14. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables

    Directory of Open Access Journals (Sweden)

    Patrick Grant Lawson

    2015-06-01

    Full Text Available Iodine (I biofortification of vegetables by means of soil and foliar applications was investigated in field experiments on a sandy loam soil. Supply of iodine to the soil in trial plots fertilized with potassium iodide (KI and potassium iodate (KIO3 directly before planting (0, 1.0, 2.5, 7.5 and 15 kg I ha-1 increased the iodine concentration in the edible plant parts. The highest iodine accumulation levels were observed in the first growing season: In butterhead lettuce and kohlrabi the desired iodine content [50 - 100 µg I (100 g FM-1] was obtained or exceeded at a fertilizer rate of 7.5 kg IO3--I ha-1 without a significant yield reduction or impairment of the marketable quality. In contrast, supplying KI at the same rate resulted in a much lower iodine enrichment and clearly visible yield reduction. Soil applied iodine was phytoavailable for a short period of time as indicated by a rapid decline of CaCl2-extractable iodine in the top soil. Consequently, long-term effects of a one-time iodine soil fertilization could not be observed. A comparison between the soil and the foliar fertilization revealed a better performance of iodine applied aerially to butterhead lettuce, which reached the desired iodine accumulation in edible plant parts at a fertilizer rate of 0.5 kg I--I ha-1. In contrast, the iodine content in the tuber of sprayed kohlrabi remained far below the targeted range. The results indicate that a sufficient spreading of iodine applied on the edible plant parts is crucial for the efficiency of the foliar approach and leafy vegetables are the more suitable target crops. The low iodine doses needed as well as the easy and inexpensive application may favor the implementation of foliar sprays as the preferred iodine biofortification strategy in practice.

  15. Assessment of Field-Grown Cucurbit Crops and Weeds within Farms in South-West Nigeria for Viral Diseases

    Directory of Open Access Journals (Sweden)

    Emily Ibitaiyewa AYO-JOHN

    2014-09-01

    Full Text Available Cucurbits are economic crops in Nigeria which serve as additional nutritional supplements and also good sources of income for farmers. Viral diseases are a worldwide problem of cucurbits and a major limiting factor for cucurbit production. A survey of farmer’s fields where cucurbit crops were grown was carried out to assess the incidence and severity of virus symptoms and viruses associated with the crops and weeds in selected locations in Ogun and Osun, in southwest Nigeria, in June, 2012. In all, 38 leaf samples were collected in Ogun state and 52 in Osun state from cucurbit crops and weeds. Leaf samples were tested against  Cucumber mosaic virus (CMV, Melon necrotic spot virus (MNSV, Papaya ringspot virus (PRSV, Watermelon mosaic virus (WMV,Zucchini yellow mosaic virus (ZYMV and Cucumber green mottle mosaic virus (CGMMV using Double Antibody Sandwich (DAS enzyme-linked immunosorbent assay (ELISA. All the fields surveyed had virus symptom incidences of 100% except for melon fields in Osun state with incidences of between 10 and 30%. In Ogun state, the occurrence of CMV was 5/31 (16.1% while MNSV was detected in Lagenaria siceraria and T. occidentalis and it occurred in 6.5% of the leaf samples. In Osun state, CMV was detected in watermelon, melon and weeds found in all locations surveyed. The occurrence of CMV was 9/38 (23.7% in the cucurbit crops and in 78.6% (11/14 of the weeds. PRSV and WMV also occurred in mixed infection with CMV in 7.1% respectively. CMV was the most widespread and prevalent virus infecting cucurbit crops and weeds.Cucurbits are economic crops in Nigeria which serve as additional nutritional supplements and also good sources of income for farmers. Viral diseases are a worldwide problem of cucurbits and a major limiting factor for cucurbit production. A survey of farmer’s fields where cucurbit crops were grown was carried out to assess the incidence and severity of virus symptoms and viruses associated with the crops

  16. Influence of transplant size on the above- and below-ground performance of four contrasting field-grown lettuce cultivars

    Directory of Open Access Journals (Sweden)

    Pauline Julie Kerbiriou

    2013-09-01

    Full Text Available Background and aims: Modern lettuce cultivars underperform under conditions of variable temporal and spatial resource availability, common in organic or low-input production systems. Information is scarce on the impact of below-ground traits on such resource acquisition and performance of field-grown lettuce; exploring genetic variation in such traits might contribute to strategies to select for cultivars robust enough to perform well in the field, even under stress.Methods: To investigate the impact of below-ground (root development and resource capture on above-ground (shoot weight, leaf area traits, different combinations of shoot and root growth were created using transplants of different sizes in three field experiments. Genetic variation in morphological and physiological below- and above-ground responses to different types of transplant shocks was assessed using four cultivars. Results: Transplanting over-developed seedling did not affect final yield of any of the four cultivars. Small transplant size persistently impacted growth and delayed maturity. The cultivars with overall larger root weights and rooting depth, ‘Matilda’ and ‘Pronto’, displayed a slightly higher growth rate in the linear phase leading to better yields than ‘Mariska’ which had a smaller root system and a slower linear growth despite a higher maximal exponential growth rate. ‘Nadine’, which had the highest physiological nitrogen-use efficiency (NUE, g dry matter produced per g N accumulated in the head among the tested cultivars, gave most stable yields over seasons and locations. Conclusions: Robustness was conferred by a large root system exploring deep soil layers. More roots generally correlated with improved nitrate capture in a soil layer and cultivars with a larger root system may therefore perform better in harsh environmental conditions; increased NUE can also confer robustness at low cost for the plant, and secure stable yields under a wide

  17. Comparing effects of low levels of herbicides on greenhouse- and field-grown potatoes (Solanum tuberosum L.), soybeans (Glycine max L.), and peas (Pisum sativum L.).

    Science.gov (United States)

    Pfleeger, Thomas; Olszyk, David; Lee, E Henry; Plocher, Milton

    2011-02-01

    Although laboratory toxicology tests are generally easy to perform, cost effective, and readily interpreted, they have been questioned for their environmental relevance. In contrast, field tests are considered realistic while producing results that are difficult to interpret and expensive to obtain. Toxicology tests were conducted on potatoes, peas, and soybeans grown in a native soil in pots in the greenhouse and were compared to plants grown outside under natural environmental conditions to determine toxicological differences between environments, whether different plant developmental stages were more sensitive to herbicides, and whether these species were good candidates for plant reproductive tests. The reproductive and vegetative endpoints of the greenhouse plants and field-grown plants were also compared. The herbicides bromoxynil, glyphosate, MCPA ([4-chloro-2-methylphenoxy] acetic acid), and sulfometuron-methyl were applied at below field application rates to potato plants at two developmental stages. Peas and soybeans were exposed to sulfometuron-methyl at similar rates at three developmental stages. The effective herbicide concentrations producing a 25% reduction in a given measure differed between experimental conditions but were generally within a single order of magnitude within a species, even though there were differences in plant morphology. This study demonstrated that potatoes, peas, and soybeans grown in pots in a greenhouse produce phytotoxicity results similar to those grown outside in pots; that reproductive endpoints in many cases were more sensitive than vegetative ones; and that potato and pea plants are reasonable candidates for asexual and sexual reproductive phytotoxicity tests, respectively. Plants grown in pots in a greenhouse and outside varied little in toxicity. However, extrapolating those toxicity results to native plant communities in the field is basically unknown and in need of research. © 2010 SETAC.

  18. Antennal and behavioral responses of grapevine moth Lobesia botrana females to volatiles from grapevine.

    Science.gov (United States)

    Tasin, Marco; Anfora, Gianfranco; Ioriatti, Claudio; Carlin, Silvia; De Cristofaro, Antonio; Schmidt, Silvia; Bengtsson, Marie; Versini, Giuseppe; Witzgall, Peter

    2005-01-01

    Grapevine moth Lobesia botrana is the economically most important insect of grapevine Vitis vinifera in Europe. Flower buds, flowers, and green berries of Chardonnay grapevine are known to attract L. botrana for oviposition. The volatile compounds collected from these phenological stages were studied by gas chromatography-mass spectrometry, and the antennal response of L. botrana females to these headspace collections was recorded by gas chromatography-electroantennography. The compounds found in all phenological stages, which consistently elicited a strong antennal response, were pentadecane, nonanal, and alpha-farnesene. In a wind tunnel, gravid L. botrana females flew upwind to green grapes, as well as to headspace collections from these berries released by a piezoelectric sprayer release device. However, no females landed at the source of headspace volatiles, possibly due to inappropriate concentrations or biased ratios of compounds in the headspace extracts.

  19. Diurnal depression in leaf hydraulic conductance at ambient and elevated [CO2] reveals anisohydric water management in field-grown soybean

    Science.gov (United States)

    Diurnal cycles of photosynthesis and water use in field-grown soybean (Glycine max) are tied to light intensity and vapor pressure deficit (VPD). At high mid-day VPD, transpiration rates can lead to a decline in leaf water potential if leaf hydraulic conductance is insufficient to supply water to in...

  20. A pathway-specific microarray analysis highlights the complex and co-ordinated transcriptional networks of the developing grain of field-grown barley

    DEFF Research Database (Denmark)

    Hansen, Michael; Friis, Carsten; Bowra, Steve

    2009-01-01

    The aim of the study was to describe the molecular and biochemical interactions associated with amino acid biosynthesis and storage protein accumulation in the developing grains of field-grown barley. Our strategy was to analyse the transcription of genes associated with the biosynthesis of stora...

  1. Diurnal depression in leaf hydraulic conductance at ambient and elevated [CO2] and reveals anisohydric water management in field-grown soybean

    Science.gov (United States)

    Diurnal cycles of photosynthesis and water use in field-grown soybean (Glycine max) are tied to light intensity and vapor pressure deficit (VPD). At high mid-day VPD, transpiration rates can lead to a decline in leaf water potential ('leaf) if leaf hydraulic conductance (Kleaf) is insufficient to su...

  2. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops. I. Mycorrhizal Infection in Cereals and Peas at Various Times and Soil Depths

    DEFF Research Database (Denmark)

    Jakobsen, Iver; Nielsen, N.E.

    1983-01-01

    Development of infection by vesicular-arbuscular mycorrhiza (VAM) was studied in some field-grown crops. An infection plateau was reached within the first month after seedling emergence of spring barley, oats and peas. During the rest of the growth period the proportion of root length infected...

  3. Effect of Nitrogen Fertilization on Leaf Chlorophyll Fluorescence in Field-Grown Winter Wheat Under Rainfed Conditions

    Institute of Scientific and Technical Information of China (English)

    SHANGGUAN Zhou-ping; ZHENG Shu-xia; ZHANG Lei-ming; XUE Qing-wu

    2005-01-01

    The effect of nitrogen fertilization on leaf chlorophyll fluorescence was studied in field-grown winter wheat during grain filling under rainfed conditions in Loess Plateau. Results showed that the actual photochemical efficiency of PS Ⅱ reaction center (Ф PS Ⅱ) decreased significantly as leaf water stress progressed, however, the Ф PS was increased by nitrogen fertilization. The Ф PS Ⅱ of 0, 90 and 180 kg ha-1 nitrogen treatments at noon were 0.197, 0.279 and 0.283, respectively, which decreased by 57.7, 56.4 and 40.2% as compared was even higher than that in the moming. Application of nitrogen fertilizer significantly increased maximum photochemical efficiency (Fv/Fm), photochemical quenching coefficient (qP) and non-photochemical quenching coefficient (qNP). These results indicated that application of nitrogen fertilizer could increase the light energy conversion efficiency, the potential activity of photosynthetic reaction center, and the non-photochemical dissipation of excess light energy, which can prevent leaf photosynthetic apparatus from damage of treatments, indicating that the excess nitrogen was unfavorable to photosynthesis.

  4. Effects of elevated ozone on growth and yield of field-grown rice in Yangtze River Delta,China

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhan; WANG Xiaoke; FENG Zhaozhong; ZHENG Feixiang; DUAN Xiaonan; YANG Wenrui

    2008-01-01

    With rapid industrialization and urbanization in the Yangtze Delta,China,the tropospheric ozone concentration has increased to levels that induce orop yield loss.Rice,a widely grown crop in China,was investigated in field-established,open-top chambers.Four treatments were used:charcoal-filtered air (CF),non-charcoal-filtered air (NF),and charcoal-filtered air with two levels of additional ozone (O3-1 and O3-2).The AOT40s (accumulated hourly mean ozone concentration above 40 ppbv) were 0,0.91,23.24,and 39.28 ppmv.h for treatraent of CF,NF,O3-1,and O3-2,respectively.The rice height and biomass were reduced in the elevated ozone concentration.Less organic matter partitioning to roots under the elevated ozone significantly decreased rice root activity.The yield loss was 14.3% and 20.2% under O3-1 and O3-2 exposure,respectively.This was largely caused by a reduction in grain weight per panicle.

  5. High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals.

    Science.gov (United States)

    Li, Hanying; Tee, Benjamin C-K; Cha, Judy J; Cui, Yi; Chung, Jong Won; Lee, Sang Yoon; Bao, Zhenan

    2012-02-08

    Field-effect transistors based on single crystals of organic semiconductors have the highest reported charge carrier mobility among organic materials, demonstrating great potential of organic semiconductors for electronic applications. However, single-crystal devices are difficult to fabricate. One of the biggest challenges is to prepare dense arrays of single crystals over large-area substrates with controlled alignment. Here, we describe a solution processing method to grow large arrays of aligned C(60) single crystals. Our well-aligned C(60) single-crystal needles and ribbons show electron mobility as high as 11 cm(2)V(-1)s(-1) (average mobility: 5.2 ± 2.1 cm(2)V(-1)s(-1) from needles; 3.0 ± 0.87 cm(2)V(-1)s(-1) from ribbons). This observed mobility is ~8-fold higher than the maximum reported mobility for solution-grown n-channel organic materials (1.5 cm(2)V(-1)s(-1)) and is ~2-fold higher than the highest mobility of any n-channel organic material (~6 cm(2)V(-1)s(-1)). Furthermore, our deposition method is scalable to a 100 mm wafer substrate, with around 50% of the wafer surface covered by aligned crystals. Hence, our method facilitates the fabrication of large amounts of high-quality semiconductor crystals for fundamental studies, and with substantial improvement on the surface coverage of crystals, this method might be suitable for large-area applications based on single crystals of organic semiconductors.

  6. Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase.

    Science.gov (United States)

    Van Acker, Rebecca; Leplé, Jean-Charles; Aerts, Dirk; Storme, Véronique; Goeminne, Geert; Ivens, Bart; Légée, Frédéric; Lapierre, Catherine; Piens, Kathleen; Van Montagu, Marc C E; Santoro, Nicholas; Foster, Clifton E; Ralph, John; Soetaert, Wim; Pilate, Gilles; Boerjan, Wout

    2014-01-14

    Lignin is one of the main factors determining recalcitrance to enzymatic processing of lignocellulosic biomass. Poplars (Populus tremula x Populus alba) down-regulated for cinnamoyl-CoA reductase (CCR), the enzyme catalyzing the first step in the monolignol-specific branch of the lignin biosynthetic pathway, were grown in field trials in Belgium and France under short-rotation coppice culture. Wood samples were classified according to the intensity of the red xylem coloration typically associated with CCR down-regulation. Saccharification assays under different pretreatment conditions (none, two alkaline, and one acid pretreatment) and simultaneous saccharification and fermentation assays showed that wood from the most affected transgenic trees had up to 161% increased ethanol yield. Fermentations of combined material from the complete set of 20-mo-old CCR-down-regulated trees, including bark and less efficiently down-regulated trees, still yielded ∼ 20% more ethanol on a weight basis. However, strong down-regulation of CCR also affected biomass yield. We conclude that CCR down-regulation may become a successful strategy to improve biomass processing if the variability in down-regulation and the yield penalty can be overcome.

  7. Characterization of wild north american grapevine cold hardiness using differential thermal analysis

    Science.gov (United States)

    The cold hardiness of 33 different grapevine genotypes, representing six wild North American grapevine species, one wild Asian grapevine species, and six hybrid grapevines, was evaluated by measuring lethal temperatures for dormant buds using low temperature exotherms. Studies were conducted in thre...

  8. Identification of Eutypa lata, a Grapevine Parasite

    Directory of Open Access Journals (Sweden)

    Goran Delibašić

    2006-01-01

    Full Text Available The phytopathogenic fungus Eutypa lata (Pers.: Fr. Tul. and C. Tul., the causing agent of eutypa dieback, has been increasingly often identified in recent times as a cause of grapevine disease. It was first discovered and identified in Australian vineyards (Carter,1973, where it represented one of the most dangerous fungus pathogens of this plant. A few years later it was discovered in European vineyards as well. This polyfagous fungus,known originally as E. armeniaca (Honsf. & Carter, was first discovered on apricot, on which it caused the “gummosis disease”.In Serbia, Eutypa lata has not been determined officially. However, bearing in mind the form of its spreading (anemochory, as well as the fact that our country is a major producer of grape and fruit, we need to pay special attention to this dangerous pathogen since thereare indications that it is already present in our vineyards.During the period between 2003 and 2005, an inspection of a great number of vineyards in the areas of Vršac, Fruška Gora and Kruševac, was conducted. Many of them had grapevines with typical eutypa dieback symptoms. The aim of the inspection was to find grapevines with this disease, to mark them and take samples for laboratory analysis. Marking suspicious grapevines enabled us to monitor the volume of symptoms, as well as other changes on grapevines. Different colours were used for markings, according to the principle “same colour – same year” The procedure revealed that the average periodbetween early and mild disease symptoms and extreme changes, including withering of entire vines, was 2 to 3 years.The signs of eutypa dieback on diseased grapevines are manifested: on leaves in the form of chlorosis, twisting, necrosis of the edges, drying out and falling off; on shoots,where the shortening of internodia is noticable, as well as colour change and “zig-zag” distribution of internodes; on blossoms and clusters, where absence of flowering, partial

  9. Unravelling the Diversity of Grapevine Microbiome

    OpenAIRE

    Cátia Pinto; Diogo Pinho; Susana Sousa; Miguel Pinheiro; Conceição Egas; Ana C Gomes

    2014-01-01

    Vitis vinifera is one of the most widely cultivated fruit crops with a great economic impact on the global industry. As a plant, it is naturally colonised by a wide variety of both prokaryotic and eukaryotic microorganisms that interact with grapevine, having either beneficial or phytopathogenic effects, who play a major role in fruit yield, grape quality and, ultimately, in the evolution of grape fermentation and wine production. Therefore, the objective of this study was to extensively char...

  10. Sorosphaera viticola, a plasmodiophorid parasite of grapevine

    OpenAIRE

    Neuhauser, Sigrid; Huber, Lars; Kirchmair, Martin

    2009-01-01

    Sorosphaera viticola is a soil-borne, endophytic parasite of grapevine. It is classified within the plasmodiophorids, an enigmatic group of obligate biotrophic parasites of higher plants. Sorosphaera viticola has been found abundantly in the roots of Vitis spp. in Germany and Canada. This may indicate a global distribution of this root parasite. But its biphasic life-cycle, its soil-borne nature and its co-occurrence with other soil-borne pathogens make an assessment of the disease pattern or...

  11. Phosphorus application and elevated CO2 enhance drought tolerance in field pea grown in a phosphorus-deficient vertisol

    Science.gov (United States)

    Jin, Jian; Lauricella, Dominic; Armstrong, Roger; Sale, Peter; Tang, Caixian

    2015-01-01

    Background and Aims Benefits to crop productivity arising from increasing CO2 fertilization may be offset by detrimental effects of global climate change, such as an increasing frequency of drought. Phosphorus (P) nutrition plays an important role in crop responses to water stress, but how elevated CO2 (eCO2) and P nutrition interact, especially in legumes, is unclear. This study aimed to elucidate whether P supply improves plant drought tolerance under eCO2. Methods A soil-column experiment was conducted in a free air CO2 enrichment (SoilFACE) system. Field pea (Pisum sativum) was grown in a P-deficient vertisol, supplied with 15 mg P kg−1 (deficient) or 60 mg P kg−1 (adequate for crop growth) and exposed to ambient CO2 (aCO2; 380–400 ppm) or eCO2 (550–580 ppm). Drought treatments commenced at flowering. Measurements were taken of soil and leaf water content, photosynthesis, stomatal conductance, total soluble sugars and inorganic P content (Pi). Key Results Water-use efficiency was greatest under eCO2 when the plants were supplied with adequate P compared with other treatments irrespective of drought treatment. Elevated CO2 decreased stomatal conductance and transpiration rate, and increased the concentration of soluble sugars and relative water contents in leaves. Adequate P supply increased concentrations of soluble sugars and Pi in drought-stressed plants. Adequate P supply but not eCO2 increased root length distribution in deeper soil layers. Conclusions Phosphorus application and eCO2 interactively enhanced periodic drought tolerance in field pea as a result of decreased stomatal conductance, deeper rooting and high Pi availability for carbon assimilation in leaves. PMID:25429008

  12. Spatial variability and influencing factors of soil catalase activity in grapevine fields in Huailai-Zhuolu Basin%怀涿葡萄产区土壤过氧化氢酶活性空间分布规律及影响因素分析

    Institute of Scientific and Technical Information of China (English)

    马堃; 李橙; 肖凡; 冯圣东; 杨志新

    2013-01-01

    This study assessed the physicochemical factors influencing the spatial variability of soil catalase activity in grapevine fields.83 samples of 0~20 cm soil layer was collected from grapevine fields in the Huailai-Zhuolu basin (HZB) of Hebei,China.Geostatistics and GIS environments were used to analyze the spatial variability of soil catalase activity for different combinations of grape variety and soil property.Also the contributing factors to enzyme activity were analyzed.The results showed strongly spatial correlation of catalase activity in 0~20 cm soil layer of grapevine field in HZB.The variations of catalase activity in the study area tracked a zonal distribution,gradually decreasing from west to east along river courses.Based on semi-variance analysis,the best-fitted model for soil catalase activity distribution in the study area was an exponential model.With the exception of potassium,all macro-elements,micro-elements,quantitative elements,heavy metals and other beneficial elements had a significant positive activation effect on soil catalase activity in grapevine fields.In traditional soil-grape cropping systems,catalase activity was closely correlated with the distribution characteristics of most elements at different locations in grapevine fields.Also a significant positive correlation was noted between catalase activity and fine sand content.A highly significant positive correlation was noted between catalase activity and clay.The physical properties,especially clay and fine sand content,were other critical factors that influenced the spatial variability of soil catalase activity.Ggrape varieties and soil pH were not correlated with spatial variability of soil catalase activity.%为了探明影响土壤过氧化氢酶活性空间变异规律的葡萄品种、土壤物理、化学因素及其内在关系,本文利用GIS和地统计学分析方法研究了怀涿葡萄产区(河北省怀来、涿鹿两县)的83个表层土壤样品.结果表明:怀

  13. Unveiling inoculum sources of black foot pathogens in a commercial grapevine nursery

    Directory of Open Access Journals (Sweden)

    Margarida CARDOSO

    2013-09-01

    Full Text Available Black foot of grapevine is an important disease caused primarily by Ilyonectria spp. and “Cylindrocarpon” pauciseptatum. These pathogens affect grapevine nurseries and young vineyards, causing the decline and death of plants. In the nursery, the primary infections of the grafted cuttings are mainly attributed to soil-borne inoculum, which could infect the roots and the basal end of rootstocks during the rooting stage. The aim of this research was to detect other possible sources of inoculum throughout the different nursery stages by classical and molecular techniques (nested-PCR and multiplex nested-PCR. Results revealed the presence of the I. liriodendri and/or I. macrodidyma complex in grapevine rootstock and scion cuttings, cutting tools, water from hydration tanks, well water, callusing medium, one indoor air sample and soils collected from mother fields and nurseries. “Cylindrocarpon” pauciseptatum was only detected in the callusing medium, nursery soils, rooted-graftlings and on the root pruning machine. Forty four isolates obtained from soils (mother fields and nurseries and rooted graftlings (six grapevine cultivar/rootstock combinations were sequenced for part of histone H3 gene to resolve the species. While I. liriodendri, I. macrodidyma and I. torresensis were identified from soil samples, from rooted graftlings it was also possible to detect I. liriodendri, I. macrodidyma, I. novozelandica, I. torresensis, Ilyonectria sp. 2, “C.“ pauciseptatum and four Ilyonectria isolates which are close to I. cyclaminicola. The results demonstrated that, in addition to nursery soils, mother field soils, rootstock and scion cuttings, water from wells and hydration tanks, callusing media, cutting tools and indoor air should be considered as potential sources of inoculum for black foot pathogens.

  14. Modeling deployment of Pierce’s disease resistant grapevines

    Science.gov (United States)

    Deployment of Pierce’s disease resistant grapevines is a key solution to mitigating economic losses caused by Xylella fastidiosa. While Pierce’s disease resistant grapevines under development display mild symptoms and have lower bacterial populations than susceptible varieties, all appear to remain ...

  15. Serial Transmission of Information: A Study of the Grapevine.

    Science.gov (United States)

    Davis, William L.; O'Connor, J. Regis

    In order to test the conclusions of previous studies of the informal communication system commonly known as the "grapevine," a study was conducted of the flow of one unit of information over the organizational grapevine. One of the experimenters planted a unit of information with two secretaries in the departmental office of Speech and…

  16. Origin of graphitic filaments on improving the electron field emission properties of negative bias-enhanced grown ultrananocrystalline diamond films in CH4/Ar plasma

    Science.gov (United States)

    Sankaran, K. J.; Huang, B. R.; Saravanan, A.; Tai, N. H.; Lin, I. N.

    2014-10-01

    Microstructural evolution of bias-enhanced grown (BEG) ultrananocrystalline diamond (UNCD) films has been investigated using microwave plasma enhanced chemical vapor deposition in gas mixtures of CH4 and Ar under different negative bias voltages ranging from -50 to -200 V. Scanning electron microscopy and Raman spectroscopy were used to characterize the morphology, growth rate, and chemical bonding of the synthesized films. Transmission electron microscopic investigation reveals that the application of bias voltage induced the formation of the nanographitic filaments in the grain boundaries of the films, in addition to the reduction of the size of diamond grains to ultra-nanosized granular structured grains. For BEG-UNCD films under -200 V, the electron field emission (EFE) process can be turned on at a field as small as 4.08 V/μm, attaining a EFE current density as large as 3.19 mA/cm2 at an applied field of 8.64 V/μm. But the films grown without bias (0 V) have mostly amorphous carbon phases in the grain boundaries, possessing poorer EFE than those of the films grown using bias. Consequently, the induction of nanographitic filaments in grain boundaries of UNCD films grown in CH4/Ar plasma due to large applied bias voltage of -200 V is the prime factor, which possibly forms interconnected paths for facilitating the transport of electrons that markedly enhance the EFE properties.

  17. A molecular approach to study the arbuscular mycorrhizal fungi community in a typical Piedmont grapevine cultivar

    Science.gov (United States)

    Magurno, F.; Bughi Peruglia, G.; Lumini, E.; Bianciotto, V.; Balestrini, R.

    2009-04-01

    Viticulture and wine production represent one of the most relevant agro-food sectors for the Piedmont Region (Italy) in terms of value, with more than 400 millions € a year (12 % of total agricultural production of the Region and the 10 % of the national grape and wine production). The soil where grapevines (Vitis spp.) grow is one of the first parameters influencing the complex grapevine-wine chain. Arbuscular mycorrhizal fungi (AMFs), a main component of soil microbiota in most agrosystems, are considered crucial biomarkers of soil quality because of their biofertilisers role. As mutualistic symbionts, they colonize the roots of the majority of plants. Benefits in symbiosis are well showed as an improvement in shoot/root growth, mineral transport, water-stress tolerance and resistance to certain diseases. Grapevines roots are often heavily colonized by AMFs under field conditions and in some cases AMFs appear to be necessary for their normal growth and survival. Even so, little information are until now available about composition of AMFs communities living in the vineyards soil and in associations with grapevine roots, mainly related to morphological characterization. Vineyard of Nebbiolo, one of the most important Piedmont cultivar, was selected in order to study the AMFs community using a molecular approach. Soil samples and roots from an experimental vineyard located in Lessona (Biella, Piedmont, Italy) were analyzed using AM fungal-specific primers to partially amplify the small subunit (SSU) of the ribosomal DNA genes. Much more than 650 clones were sequenced. Phylogenetic analyses identified 32 OTUs from soil, clustered into Glomus groups Aa, Ab, Ad and B, Diversisporaceae and Gigasporaceae families. Thirteen OTUs from roots were determined, clustered into Glomus groups Ab, Ad and B, and Gigasporaceae family. In particular, Glomus group Ad was the best represented in both compartments, suggesting a correlation between intra and extra radical communities

  18. Biotin-Avidin ELISA Detection of Grapevine Fanleaf Virus in the Vector Nematode Xiphinema index.

    Science.gov (United States)

    Esmenjaud, D; Walter, B; Minot, J C; Voisin, R; Cornuet, P

    1993-09-01

    The value of biotin-avidin (B-A) ELISA for the detection of grapevine fanleaf virus (GFLV) in Xiphinema was estimated with field populations and greenhouse subpopulations. Samples consisted of increasing numbers of adults ranging from 1 to 64 in multiples of two. Tests with virus-free X. index populations reared on grapevine and fig plants as negative controls did not reveal a noticeable effect of the host plant. ELISA absorbances of virus-free X. index samples were greater than corresponding absorbances of X. pachtaicum samples. Differences occurred between two X. index field populations from GFLV-infected grapevines in Champagne and Languedoc. In most tests, 1-, 2-, 4-, and 8-nematode samples of virus-free and virus-infected populations, respectively, could not be separated. Consequently, B-A ELISA was not a reliable method for GFLV detection in samples of less than 10 X. index adults, but comparison of the absorbances obtained with increasing numbers may allow differentiation of the viral infectious potential of several populations.

  19. Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH).

    Science.gov (United States)

    Watt, Michelle; Hugenholtz, Philip; White, Rosemary; Vinall, Kerry

    2006-05-01

    Native bacteria, Pseudomonas and filamentous bacteria were quantified and localized on wheat roots grown in the field using fluorescence in situ hybridization (FISH). Seminal roots were sampled through the season from unploughed soil in a conservation farming system. Such soils are spatially heterogeneous, and many roots grow slowly through hard soil with cracks and pores containing dead roots remnant from previous crops. Root and rhizosphere morphology, and contact with soil particles were preserved, and autofluorescence was avoided by observing sections in the far-red with Cy5 and Cy5.5 fluorochromes. Spatial analyses showed that bacteria were embedded in a stable matrix (biofilm) within 11 microm of the root surface (range 2-30 microm) and were clustered on 40% of roots. Half the clusters co-located with axial grooves between epidermal cells, soil particles, cap cells or root hairs; the other half were not associated with visible features. Across all wheat roots, although variable, bacteria averaged 15.4 x 10(5) cells per mm(3) rhizosphere, and of these, Pseudomonas and filaments comprised 10% and 4%, respectively, with minor effects of sample time, and no effect of plant age. Root caps were most heavily colonized by bacteria along roots, and elongation zones least heavily colonized. Pseudomonas varied little with root development and were 17% of bacteria on the elongation zone. Filamentous bacteria were not found on the elongation zone. The most significant factor to rhizosphere populations along a wheat root, however, was contact with dead root remnants, where Pseudomonas were reduced but filaments increased to 57% of bacteria (P < 0.001). This corresponded with analyses of root remnants showing they were heavily colonized by bacteria, with 48% filaments (P < 0.001) and 1.4%Pseudomonas (P = 0.014). Efforts to manage rhizosphere bacteria for sustainable agricultural systems should continue to focus on root cap and mucilage chemistry, and remnant roots as

  20. Trait associations in common bean genotypes grown under drought stress and field infestation by BSM bean fly

    Institute of Scientific and Technical Information of China (English)

    Daniel Ambachew; Firew Mekbib; Asrat Asfaw; Stephen E. Beebe; Matthew W. Blaird

    2015-01-01

    Understanding functional relations among plant traits and their modulation by growing conditions is imperative in designing selection strategies for breeding programs. This study assessed trait relationships among 196 common bean genotypes exposed to stresses for drought and field infestation of bean fly or bean stem maggot (BSM). The study was carried out at two locations and data was analyzed with linear correlation, path coefficient and genotype × trait biplot analyses. Multiple trait data related to mechanisms of drought and bean fly tolerance were collected on 196 genotypes grown under i) water deficit at mid-pod fill, or ii) unprotected against bean fly;iii) irrigated, well watered conditions, or iv) bean fly protection with chemicals. Seed yield exhibited positive and significant correlations with leaf chlorophyll content, vertical root pulling resistance, pod harvest index, pods per plant and seeds per pod at both phenotypic and genotypic levels under stress and non-stress conditions. Genotypic correlations of traits with seed yield were greater than their respective phenotypic correlations across environments indicating the greater contribution of genotypic factors to the trait correlation. Pods per plant and seeds per pod had high positive direct effects on seed yield both under stress and non-stress whereas pods per plant had the highest indirect effect on seed yield through pod harvest index under stress. In general, our results suggest that vertical root pulling resistance and pod harvest index are important selection objectives for improving seed yield in common beans under non-stress and stress conditions, and particularly useful for drought and BSM tolerance evaluation.

  1. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.

    Science.gov (United States)

    Zheng, Chao; Huang, Le; Zhang, Hong; Sun, Zhongyue; Zhang, Zhiyong; Zhang, Guo-Jun

    2015-08-12

    Most graphene field-effect transistor (G-FET) biosensors are fabricated through a routine process, in which graphene is transferred onto a Si/SiO2 substrate and then devices are subsequently produced by micromanufacture processes. However, such a fabrication approach can introduce contamination onto the graphene surface during the lithographic process, resulting in interference for the subsequent biosensing. In this work, we have developed a novel directional transfer technique to fabricate G-FET biosensors based on chemical-vapor-deposition- (CVD-) grown single-layer graphene (SLG) and applied this biosensor for the sensitive detection of DNA. A FET device with six individual array sensors was first fabricated, and SLG obtained by the CVD-growth method was transferred onto the sensor surface in a directional manner. Afterward, peptide nucleic acid (PNA) was covalently immobilized on the graphene surface, and DNA detection was realized by applying specific target DNA to the PNA-functionalized G-FET biosensor. The developed G-FET biosensor was able to detect target DNA at concentrations as low as 10 fM, which is 1 order of magnitude lower than those reported in a previous work. In addition, the biosensor was capable of distinguishing the complementary DNA from one-base-mismatched DNA and noncomplementary DNA. The directional transfer technique for the fabrication of G-FET biosensors is simple, and the as-constructed G-FET DNA biosensor shows ultrasensitivity and high specificity, indicating its potential application in disease diagnostics as a point-of-care tool.

  2. Trait associations in common bean genotypes grown under drought stress and field infestation by BSM bean fly

    Institute of Scientific and Technical Information of China (English)

    Daniel; Ambachew; Firew; Mekbib; Asrat; Asfaw; Stephen; E.Beebe; Matthew; W.Blair

    2015-01-01

    Understanding functional relations among plant traits and their modulation by growing conditions is imperative in designing selection strategies for breeding programs. This study assessed trait relationships among 196 common bean genotypes exposed to stresses for drought and field infestation of bean fly or bean stem maggot(BSM). The study was carried out at two locations and data was analyzed with linear correlation, path coefficient and genotype × trait biplot analyses. Multiple trait data related to mechanisms of drought and bean fly tolerance were collected on 196 genotypes grown under i) water deficit at mid-pod fill, or ii) unprotected against bean fly; iii) irrigated, well watered conditions, or iv) bean fly protection with chemicals. Seed yield exhibited positive and significant correlations with leaf chlorophyll content, vertical root pulling resistance, pod harvest index, pods per plant and seeds per pod at both phenotypic and genotypic levels under stress and non-stress conditions. Genotypic correlations of traits with seed yield were greater than their respective phenotypic correlations across environments indicating the greater contribution of genotypic factors to the trait correlation. Pods per plant and seeds per pod had high positive direct effects on seed yield both under stress and non-stress whereas pods per plant had the highest indirect effect on seed yield through pod harvest index under stress.In general, our results suggest that vertical root pulling resistance and pod harvest index are important selection objectives for improving seed yield in common beans under non-stress and stress conditions, and particularly useful for drought and BSM tolerance evaluation.

  3. Trait associations in common bean genotypes grown under drought stress and field infestation by BSM bean fly

    Directory of Open Access Journals (Sweden)

    Daniel Ambachew

    2015-08-01

    Full Text Available Understanding functional relations among plant traits and their modulation by growing conditions is imperative in designing selection strategies for breeding programs. This study assessed trait relationships among 196 common bean genotypes exposed to stresses for drought and field infestation of bean fly or bean stem maggot (BSM. The study was carried out at two locations and data was analyzed with linear correlation, path coefficient and genotype × trait biplot analyses. Multiple trait data related to mechanisms of drought and bean fly tolerance were collected on 196 genotypes grown under i water deficit at mid-pod fill, or ii unprotected against bean fly; iii irrigated, well watered conditions, or iv bean fly protection with chemicals. Seed yield exhibited positive and significant correlations with leaf chlorophyll content, vertical root pulling resistance, pod harvest index, pods per plant and seeds per pod at both phenotypic and genotypic levels under stress and non-stress conditions. Genotypic correlations of traits with seed yield were greater than their respective phenotypic correlations across environments indicating the greater contribution of genotypic factors to the trait correlation. Pods per plant and seeds per pod had high positive direct effects on seed yield both under stress and non-stress whereas pods per plant had the highest indirect effect on seed yield through pod harvest index under stress. In general, our results suggest that vertical root pulling resistance and pod harvest index are important selection objectives for improving seed yield in common beans under non-stress and stress conditions, and particularly useful for drought and BSM tolerance evaluation.

  4. Maintenance and growth respiration of the aboveground parts of young field-grown hinoki cypress (Chamaecyparis obtusa).

    Science.gov (United States)

    Yokota, T; Hagihara, A

    1995-06-01

    Aboveground respiration of five 8-year-old trees of field-grown hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) was nondestructively measured at monthly intervals over 1 year with an enclosed standing tree method. The relationship between monthly specific respiration rate and monthly mean relative growth rate at the individual tree level was described by a linear equation. During the dormant season, respiration was used mainly for maintenance purposes, whereas during the growing season, more than 40% of the respiration was used for growth purposes, i.e., 60 to 70% in May. We conclude that annual maintenance and growth respiration of a tree are directly proportional to the aboveground phytomass and its annual increment, respectively. The maintenance coefficient was estimated to be 0.504 +/- 0.039 (SE) kg kg(-1) year(-1), indicating that the amount respired for maintaining already existing phytomass was equivalent to about half of the existing phytomass. The growth coefficient was estimated to be 0.772 +/- 0.043 (SE) kg kg(-1), indicating that the amount respired for constructing new phytomass was equivalent to about three-fourths of the annual phytomass increment. The annual stand maintenance and growth respiration were, respectively, 8.8 Mg ha(-1) year(-1) for an aboveground biomass of 17.4 Mg ha(-1) and 5.0 Mg ha(-1) year(-1) for an annual stand aboveground biomass increment of 6.5 Mg ha(-1) year(-1). About two-thirds of the total respiration was used to maintain already existing biomass, and about one-third was used to construct new biomass.

  5. Photo- and antioxidative protection during summer leaf senescence in Pistacia lentiscus L. grown under Mediterranean field conditions.

    Science.gov (United States)

    Munné-Bosch, S; Peñuelas, J

    2003-09-01

    Summer leaf senescence in Pistacia lentiscus L. plants serves to remobilize nutrients from the oldest leaves to the youngest ones, and therefore contributes to plant survival during the adverse climatic conditions typical of Mediterranean summers, i.e. water deficit superimposed on high solar radiation and high temperatures. To evaluate the extent of photo- and antioxidative protection during leaf senescence of this species, changes in carotenoids, including xanthophyll cycle pigments, and in the levels of ascorbate and alpha-tocopherol were measured prior to and during summer leaf senescence in 3-year-old plants grown under Mediterranean field conditions. Although a chlorophyll loss of approx. 20% was observed during the first stages of leaf senescence, no damage to the photosynthetic apparatus occurred as indicated by constant maximum efficiencies of photosystem II photochemistry. During this period the de-epoxidation state of the xanthophyll cycle, and lutein, neoxanthin and ascorbate levels were kept constant. At the same time beta-carotene and alpha-tocopherol levels increased by approx. 9 and 70%, respectively, presumably conferring photo- and antioxidative protection to the photosynthetic apparatus. By contrast, during the later stages of leaf senescence, characterized by severe chlorophyll loss, carotenoids were moderately degraded (neoxanthin by approx. 20%, and both lutein and beta-carotene by approx. 35%), ascorbate decreased by approx. 80% and alpha-tocopherol was not detected in senescing leaves. This study demonstrates that mechanisms of photo- and antioxidative protection may play a major role in maintaining chloroplast function during the first stages of leaf senescence, while antioxidant defences are lost during the latest stages of senescence.

  6. Transcriptional analysis of late ripening stages of grapevine berry

    Directory of Open Access Journals (Sweden)

    Guillaumie Sabine

    2011-11-01

    Full Text Available Abstract Background The composition of grapevine berry at harvest is a major determinant of wine quality. Optimal oenological maturity of berries is characterized by a high sugar/acidity ratio, high anthocyanin content in the skin, and low astringency. However, harvest time is still mostly determined empirically, based on crude biochemical composition and berry tasting. In this context, it is interesting to identify genes that are expressed/repressed specifically at the late stages of ripening and which may be used as indicators of maturity. Results Whole bunches and berries sorted by density were collected in vineyard on Chardonnay (white cultivar grapevines for two consecutive years at three stages of ripening (7-days before harvest (TH-7, harvest (TH, and 10-days after harvest (TH+10. Microvinification and sensory analysis indicate that the quality of the wines made from the whole bunches collected at TH-7, TH and TH+10 differed, TH providing the highest quality wines. In parallel, gene expression was studied with Qiagen/Operon microarrays using two types of samples, i.e. whole bunches and berries sorted by density. Only 12 genes were consistently up- or down-regulated in whole bunches and density sorted berries for the two years studied in Chardonnay. 52 genes were differentially expressed between the TH-7 and TH samples. In order to determine whether these genes followed a similar pattern of expression during the late stages of berry ripening in a red cultivar, nine genes were selected for RT-PCR analysis with Cabernet Sauvignon grown under two different temperature regimes affecting the precocity of ripening. The expression profiles and their relationship to ripening were confirmed in Cabernet Sauvignon for seven genes, encoding a carotenoid cleavage dioxygenase, a galactinol synthase, a late embryogenesis abundant protein, a dirigent-like protein, a histidine kinase receptor, a valencene synthase and a putative S

  7. Effect of growth temperature on the electron flow for photorespiration in leaves of tobacco grown in the field.

    Science.gov (United States)

    Zhang, Wei; Huang, Wei; Yang, Qiu-Yun; Zhang, Shi-Bao; Hu, Hong

    2013-09-01

    Photorespiration has been indicated as an important mechanism for maintaining CO2 assimilation and alleviating photodamage under conditions of high light and low CO2 . We tested the hypothesis that plants grown under a high temperature had greater electron flow for photorespiration compared with those grown under a relative low temperature. Responses of photosynthetic electron flow and CO2 assimilation to incident light intensity and intercellular CO2 concentration were examined in leaves of tobacco cultivar 'k326'. Plants were cultivated at three sites with different ambient temperatures (Zhengzhou, Zunyi and Jiangchuan). Under high light, plants grown in Zhengzhou (with the highest growth temperature in the three sites) showed higher effective quantum yield of photosystem II and total electron flow through photosystem II than that in Zunyi and Jiangchuan. However, regardless of light intensity and intercellular CO2 status, there were no significant differences among sites in the photosynthetic CO2 assimilation rate or electron flow devoted to the carboxylation of ribulose-1,5-bisphosphate (RuBP). As a result, plants grown at high temperature showed higher electron flow devoted to oxygenation of RuBP than plants grown at low temperature. These results suggested that enhancement of electron flow for photorespiration is an important strategy in tobacco for acclimating to high growth temperature.

  8. Identification and utilization of a new Erysiphe necator isolate NAFU1 to quickly evaluate powdery mildew resistance in wild Chinese grapevine species using detached leaves.

    Science.gov (United States)

    Gao, Yu-Rong; Han, Yong-Tao; Zhao, Feng-Li; Li, Ya-Juan; Cheng, Yuan; Ding, Qin; Wang, Yue-Jin; Wen, Ying-Qiang

    2016-01-01

    The most economically important disease of cultivated grapevines worldwide is powdery mildew caused by the biotrophic fungal pathogen Erysiphe necator. To integrate effective genetic resistance into cultivated grapevines, numerous disease resistance screens of diverse Vitis germplasm, including wild species, have been conducted to identify powdery mildew resistance, but the results have been inconsistent. Here, a new powdery mildew isolate that is infectious on grapevines, designated Erysiphe necator NAFU1 (En. NAFU1), was identified and characterized by phylogeny inferred from the internal transcribed spacer (ITS) of pathogen ribosomal DNA sequences. Three classical methods were compared for the maintenance of En. NAFU1, and the most convenient method was maintenance on detached leaves and propagation by contact with infected leaves. Furthermore, controlled inoculations of En. NAFU1 were performed using detached leaves from 57 wild Chinese grapevine accessions to quickly evaluate powdery mildew resistance based on trypan blue staining of leaf sections. The results were compared with previous natural epidemics in the field. Among the screened accessions inoculated with En. NAFU1, 22.8% were resistant, 33.3% were moderately resistant, and 43.9% were susceptible. None of the accessions assessed herein were immune from infection. These results support previous findings documenting the presence of race-specific resistance to E. necator in wild Chinese grapevine. The resistance of wild Chinese grapevine to En. NAFU1 could be due to programmed cell death. The present results suggest that En. NAFU1 isolate could be used for future large-scale screens of resistance to powdery mildew in diverse Vitis germplasms and investigations of the interaction between grapevines and pathogens.

  9. Cutting wild grapevines as a cultural control strategy for grape berry moth (Lepidoptera: Tortricidae).

    Science.gov (United States)

    Jenkins, Paul E; Isaacs, Rufus

    2007-02-01

    A 3-yr field study was conducted at commercial grape farms to evaluate cutting wild grapevines as a cultural control strategy for grape berry moth, Paralobesia viteana (Clemens). At each farm, wild grapevines were cut in the woods adjacent to one vineyard for control of P. viteana, whereas the comparison vineyard received no such cutting. Both vineyards received a standard broad-spectrum insecticide program for control of P. viteana and other vineyard insect pests. Monitoring with pheromone traps showed no differences between treatments in the total number of male moths trapped in both woods and vineyards. Egglaying by P. viteana was similar between the two wild grape cutting treatments in all 3 yr. During weekly samples of crop infestation by P. viteana, no differences were observed between programs in the percent of clusters infested by P. viteana larvae. Berries infested by P. viteana were collected from vineyard borders during the second and third P. viteana generations and held under controlled conditions. In all but one sample, survival of P. viteana larvae was similar between the two wild grape cutting treatments, parasitism of P. viteana larvae within vineyards was similar between the two wild grape cutting treatments on all sample dates, and similar captures of natural enemies were found on yellow sticky traps in the two treatments throughout the study. The opportunities and benefits of cutting wild grapevines as a cultural control in grape integrated pest management programs in eastern North America are discussed.

  10. Elimination of Grapevine fleck virus by in vitro Chemotherapy

    Directory of Open Access Journals (Sweden)

    Ionela Cătălina GUŢĂ

    2014-06-01

    Full Text Available Grapevine fleck virus produces a ubiquitous disease, latent in European grapevine varieties (Vitis vinifera L. and in most American rootstocks, being found in all viticultural countries, in simple or complex infections with other more dangerous viruses. Different techniques for sanitation showed controversial results regarding fleck elimination in grapevine. In vitro culture of ‘Tămâioasă românească’ 3-2-2 with fleck virus and ‘Burgund’ 63 Mn with double infection (Grapevine fleck virus and Grapevine virus A, naturally infected have been submitted to hemotherapy using a combination of ribavirin and oseltamivir in three concentration variants (V1-40 mg/L ribavirin + 40 mg/L oseltamivir; V2-20 mg/L ribavirin + 40 mg/L oseltamivir; V3-20 mg/L ribavirin + 80 mg/L oseltamivir and three consecutive subcultures. The plants regenerated after each subculture were evaluated by ELISA from the viewpoint of virus elimination and the RT-PCR was used for confirmation of the diagnostic. Due the phytotoxic effect of viricides, the ltiplication rate decreased on experimental variants in the next subculture comparatively to the control, but no mortality of explants has been registered. Grapevine fleck virus has been 100% eliminated both from simple and mixed infections on all variants by in vitro chemotherapy, under the simultaneous action of two viricides. Unsatisfactory results have been achieved with Grapevine virus A elimination.

  11. Complete genome sequence of the biofilm-forming Microbacterium sp. strain BH-3-3-3, isolated from conventional field-grown lettuce (Lactuca sativa) in Norway.

    Science.gov (United States)

    Dees, Merete Wiken; Brurberg, May Bente; Lysøe, Erik

    2017-03-01

    The genus Microbacterium contains bacteria that are ubiquitously distributed in various environments and includes plant-associated bacteria that are able to colonize tissue of agricultural crop plants. Here, we report the 3,508,491 bp complete genome sequence of Microbacterium sp. strain BH-3-3-3, isolated from conventionally grown lettuce (Lactuca sativa) from a field in Vestfold, Norway. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession CP017674.

  12. Evaluation of Cold Tolerance in Field Grown Mentha (Mentha piperita‎‏ L.)‎ under ‎Laboratory Conditions by Electrolyte Leakage Test

    OpenAIRE

    T Kheirkhah; A Nezami; M Kafi; Gh. A. Asadi

    2015-01-01

    In order to determine cold tolerance of field grown Mentha (Mentha Piperita L.) under controlled conditions, using electrolyte leakage index, an experiment was carried out at the College of Agriculture, Ferdowsi University of Mashhad, based on a completely randomized design with four replications. Experimental factors included six freezing temperatures (Zero, -4, -8, -12, -16 and -20 °C), seven harvest ‎time (November, December, January, February, March, April and May) and ‎four Peppermint or...

  13. Sorosphaera viticola, a plasmodiophorid parasite of grapevine

    Directory of Open Access Journals (Sweden)

    S. Neuhauser

    2009-05-01

    Full Text Available >Sorosphaera viticola is a soil-borne, endophytic parasite of grapevine. It is classifi ed within the plasmodiophorids, an enigmatic group of obligate biotrophic parasites of higher plants. Sorosphaera viticola has been found abundantly in the roots of Vitis spp. in Germany and Canada. This may indicate a global distribution of this root parasite. But its biphasic life-cycle, its soil-borne nature and its co-occurrence with other soil-borne pathogens make an assessment of the disease pattern or a possible yield reduction of this fungus diffi cult.

  14. The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch grown in the field and sugar beet (Beta vulgaris L. grown in hydroponics

    Directory of Open Access Journals (Sweden)

    Hamdi eEl-Jendoubi

    2014-01-01

    Full Text Available Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch trees grown in the field and sugar beet (Beta vulgaris L. cv. ‘Orbis’ grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated and basal (untreated leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs.

  15. The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics

    Science.gov (United States)

    El-Jendoubi, Hamdi; Vázquez, Saúl; Calatayud, Ángeles; Vavpetič, Primož; Vogel-Mikuš, Katarina; Pelicon, Primož; Abadía, Javier; Abadía, Anunciación; Morales, Fermín

    2014-01-01

    Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch) trees grown in the field and sugar beet (Beta vulgaris L. cv. “Orbis”) grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated) and basal (untreated) leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume) and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs. PMID:24478782

  16. The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics.

    Science.gov (United States)

    El-Jendoubi, Hamdi; Vázquez, Saúl; Calatayud, Angeles; Vavpetič, Primož; Vogel-Mikuš, Katarina; Pelicon, Primož; Abadía, Javier; Abadía, Anunciación; Morales, Fermín

    2014-01-01

    Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch) trees grown in the field and sugar beet (Beta vulgaris L. cv. "Orbis") grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated) and basal (untreated) leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume) and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs.

  17. Transcriptional Characterization of a Widely-Used Grapevine Rootstock Genotype under Different Iron-Limited Conditions.

    Science.gov (United States)

    Vannozzi, Alessandro; Donnini, Silvia; Vigani, Gianpiero; Corso, Massimiliano; Valle, Giorgio; Vitulo, Nicola; Bonghi, Claudio; Zocchi, Graziano; Lucchin, Margherita

    2016-01-01

    Iron chlorosis is a serious deficiency that affects orchards and vineyards reducing quality and yield production. Chlorotic plants show abnormal photosynthesis and yellowing shoots. In grapevine iron uptake and homeostasis are most likely controlled by a mechanism known as "Strategy I," characteristic of non-graminaceous plants and based on a system of soil acidification, iron reduction and transporter-mediated uptake. Nowadays, grafting of varieties of economic interest on tolerant rootstocks is widely used practice against many biotic and abiotic stresses. Nevertheless, many interspecific rootstocks, and in particular those obtained by crossing exclusively non-vinifera genotypes, can show limited nutrient uptake and transport, in particular for what concerns iron. In the present study, 101.14, a commonly used rootstock characterized by susceptibility to iron chlorosis was subjected to both Fe-absence and Fe-limiting conditions. Grapevine plantlets were grown in control, Fe-deprived, and bicarbonate-supplemented hydroponic solutions. Whole transcriptome analyses, via mRNA-Seq, were performed on root apices of stressed and unstressed plants. Analysis of differentially expressed genes (DEGs) confirmed that Strategy I is the mechanism responsible for iron uptake in grapevine, since many orthologs genes to the Arabidopsis "ferrome" were differentially regulated in stressed plant. Molecular differences in the plant responses to Fe absence and presence of bicarbonate were also identified indicating the two treatments are able to induce response-mechanisms only partially overlapping. Finally, we measured the expression of a subset of genes differentially expressed in 101.14 (such as IRT1, FERRITIN1, bHLH38/39) or known to be fundamental in the "strategy I" mechanism (AHA2 and FRO2) also in a tolerant rootstock (M1) finding important differences which could be responsible for the different degrees of tolerance observed.

  18. Effect of climate change on infection of grapevine by downy and powdery mildew under controlled environment.

    Science.gov (United States)

    Pugliese, M; Gullino, M L; Garibaldi, A

    2011-01-01

    Plant responses to elevated CO2 and temperature have been much studied in recent years, but effects of climate change on pathological responses are largerly unknown. The pathosystems grapevine (Vitis vinifera) - downy mildew (Plasmopara viticola) and powdery mildew (Erysiphe necatrix) were chosen as models to assess the potential impact of increased CO2 and temperature on disease incidence and severity under controlled environment. Grapevine potted plants were grown in phytotrons under 4 different simulated climatic conditions: (1) standard temperature (ranging from 18 degrees to 22 degrees C) and standard CO2 concentration (450 ppm); (2) standard temperature and elevated CO2 concentration (800 ppm); (3) elevated temperature (ranging from 22 degrees to 26 degrees C, 4 degrees C higher than standard) and standard CO2 concentration; (4) elevated temperature and CO2 concentration. Each plant was inoculated with a spore suspension containing 5x10(5) cfu/ml. Disease index and physiological parameters (chlorophyll content, fluorescence, assimilation rate) were assessed. Results showed an increase of the chlorophyll content with higher temperatures and CO2 concentration, to which consequently corresponded an higher fluorescence index. Disease incidence of downy mildew increased when both CO2 and temperatures were higher, while an increase in CO2 did not influenced powdery mildew incidence, probably due to the increased photosynthetic activity of plants under such conditions. Considering that the rising concentrations of CO2 and other greenhouse gases will lead to an increase in global temperature and longer seasons, we can assume that this will allow more time for pathogens evolution and could increase pathogen survival, indirectly affecting downy and powdery mildews of grapevine.

  19. Transcriptional Characterization of a Widely-Used Grapevine Rootstock Genotype under Different Iron-Limited Conditions

    Science.gov (United States)

    Vannozzi, Alessandro; Donnini, Silvia; Vigani, Gianpiero; Corso, Massimiliano; Valle, Giorgio; Vitulo, Nicola; Bonghi, Claudio; Zocchi, Graziano; Lucchin, Margherita

    2017-01-01

    Iron chlorosis is a serious deficiency that affects orchards and vineyards reducing quality and yield production. Chlorotic plants show abnormal photosynthesis and yellowing shoots. In grapevine iron uptake and homeostasis are most likely controlled by a mechanism known as “Strategy I,” characteristic of non-graminaceous plants and based on a system of soil acidification, iron reduction and transporter-mediated uptake. Nowadays, grafting of varieties of economic interest on tolerant rootstocks is widely used practice against many biotic and abiotic stresses. Nevertheless, many interspecific rootstocks, and in particular those obtained by crossing exclusively non-vinifera genotypes, can show limited nutrient uptake and transport, in particular for what concerns iron. In the present study, 101.14, a commonly used rootstock characterized by susceptibility to iron chlorosis was subjected to both Fe-absence and Fe-limiting conditions. Grapevine plantlets were grown in control, Fe-deprived, and bicarbonate-supplemented hydroponic solutions. Whole transcriptome analyses, via mRNA-Seq, were performed on root apices of stressed and unstressed plants. Analysis of differentially expressed genes (DEGs) confirmed that Strategy I is the mechanism responsible for iron uptake in grapevine, since many orthologs genes to the Arabidopsis “ferrome” were differentially regulated in stressed plant. Molecular differences in the plant responses to Fe absence and presence of bicarbonate were also identified indicating the two treatments are able to induce response-mechanisms only partially overlapping. Finally, we measured the expression of a subset of genes differentially expressed in 101.14 (such as IRT1, FERRITIN1, bHLH38/39) or known to be fundamental in the “strategy I” mechanism (AHA2 and FRO2) also in a tolerant rootstock (M1) finding important differences which could be responsible for the different degrees of tolerance observed. PMID:28105035

  20. Biotechnology of temperate fruit trees and grapevines.

    Science.gov (United States)

    Laimer, Margit; Mendonça, Duarte; Maghuly, Fatemeh; Marzban, Gorji; Leopold, Stephan; Khan, Mahmood; Balla, Ildiko; Katinger, Hermann

    2005-01-01

    Challenges concerning fruit trees and grapevines as long lived woody perennial crops require adapted biotechnological approaches, if solutions are to be found within a reasonable time frame. These challenges are represented by the need for correct identification of genetic resources, with the foreseen use either in conservation or in breeding programmes. Molecular markers provide most accurate information and will be the major solution for questions about plant breeders rights. Providing healthy planting material and rapid detection of newly introduced pathogens by reliable methods involving serological and molecular biological tools will be a future challenge of increases importance, given the fact that plant material travels freely in the entire European Union. But also new breeding goals and transgenic solutions are part of the biotechnological benefits, e.g. resistance against biotic and abiotic stress factors, modified growth habits, modified nutritional properties and altered processing and storage qualities. The successful characterization of transgenic grapevines and stone fruit trees carrying genes of viral origin in different vectors constructed under ecological consideration, will be presented. Beyond technical feasibility, efficiency of resistance, environmental safety and Intellectual Property Rights, also public acceptance needs consideration and has been addressed in a specific project. The molecular determination of internal quality parameters of food can also be addressed by the use of biotechnological tools. Patient independent detection tools for apple allergens have been developed and should allow to compare fruits from different production systems, sites, and genotypes for their content of health threatening compounds.

  1. Quantitative anatomy of grapevine (Vitis L. leaf blade

    Directory of Open Access Journals (Sweden)

    Valentine S. Codreanu

    2013-04-01

    Full Text Available Current investigations were conducted to clarify the features of grapevine which are adaptive to drought and can be used in selection and introduction of VitisL. There are determined biometric values of 21 morpho-anatomic characters of leaf blade for 10 species of grapevine, 10 cultivars of V. viniferaL. and 10 distant hybrids V. vinifera× Muscadinia rotundifoliaMichx. As a result of this study 6 leaf blade quantitative characters which determine relative grapevine drought resistance were described. The most drought resistant species, sorts and hybrids of grapevine are that which have: a greater average thickness of leaf blade; b smaller surface (average area of leaf blade; c less ratio between average area and average volume of dried leaf blade; d greater mass of dried leaf blade; e higher degrees of the leaf succulence and sclerophylly.

  2. Design and evaluation of a grapevine pruner for biofungicide application.

    Science.gov (United States)

    Ho, M A; Squire, L M; Sabeh, N C; Giles, D K; VanderGheynst, J S

    2005-05-01

    Eutypa lata is a significant grapevine pathogen with limited means of prevention and control. The biological control agent Fusarium lateritium can prevent E. lata infection if applied directly onto a vine pruning wound. F. lateritium was suspended and stored in an invert emulsion formulation. A commercially available pruning shear was modified to dispense the formulated F. lateritium onto the cutting blade for direct application onto the pruning wound simultaneously with grapevine cutting. The modified pruner was tested for its ability to cover grapevine pruning wounds using the emulsion formulation. Efficacy of formulated F. lateritium on pruned grapevine canes was also studied using the pruner for application. Addition of grooves in the pruning blade significantly improved wound coverage. Biological efficacy testing determined that applying formulated F. lateritium with the modified pruner was as effective as pipetting formulation directly onto the pruning wound.

  3. Transient expression assays in grapevine: a step towards genetic improvement

    National Research Council Canada - National Science Library

    Jelly, Noémie S; Valat, Laure; Walter, Bernard; Maillot, Pascale

    2014-01-01

    In the past few years, the usefulness of transient expression assays has continuously increased for the characterization of unknown gene function and metabolic pathways. In grapevine ( Vitis vinifera L...

  4. Inheritance of downy mildew (Plasmopara viticola) and anthracnose (Sphaceloma ampelinum) resistance in grapevines.

    Science.gov (United States)

    Poolsawat, O; Mahanil, S; Laosuwan, P; Wongkaew, S; Tharapreuksapong, A; Reisch, B I; Tantasawat, P A

    2013-12-13

    Downy mildew (Plasmopara viticola) and anthracnose (Sphaceloma ampelinum) are two of the major diseases of most grapevine (Vitis vinifera L.) cultivars grown in Thailand. Therefore, breeding grapevines for improved downy mildew and anthracnose resistance is crucial. Factorial crosses were made between three downy mildew and/or anthracnose resistant lines ('NY88.0517.01', 'NY65.0550.04', and 'NY65.0551.05'; male parents) and two or three susceptible cultivars of V. vinifera ('Black Queen', 'Carolina Black Rose', and/or 'Italia'; female parents). F1 hybrid seedlings were evaluated for downy mildew and anthracnose resistance using a detached/excised leaf assay. For both diseases, the general combining ability (GCA) variance among male parents was significant, while the variance of GCA among females and the specific combining ability (SCA) variance were not significant, indicating the prevalence of additive over non-additive gene actions. The estimated narrow sense heritabilities of downy mildew and anthracnose resistance were 55.6 and 79.2%, respectively, suggesting that downy mildew/anthracnose resistance gene(s) were highly heritable. The 'Carolina Black Rose x NY65.0550.04' cross combination is recommended for future use.

  5. Phytotoxic metabolites produced by Botryosphaeriaceae involved in grapevine trunk diseases

    OpenAIRE

    Basso, Sara; Andolfi, Anna; Maddau, Lucia; Linaldeddu, Benedetto Teodoro; Deidda, Antonio; Serra, Salvatorica; Cimmino, Alessio; Evidente, Antonio

    2013-01-01

    Fungi belonging to the Botryosphaeriaceae family are well known as cosmopolitan pathogens, saprophytes and endophytes and occur on a wide range of hosts including grapevine. More recently, a new species of Lasiodiplodia was isolated from declining grapevines in Sardinia (Italy). This still undescribed species showed to produce in liquid culture several phytotoxic secondary metabolites. In this communication the chemical and biological characterization of these bioactive secondary metabolit...

  6. The Soil Microbiome Influences Grapevine-Associated Microbiota

    OpenAIRE

    Zarraonaindia, Iratxe; Owens, Sarah M.; Weisenhorn, Pamela; West, Kristin; Hampton-Marcell, Jarrad; Lax, Simon; Bokulich, Nicholas A; Mills, David A.; Martin, Gilles; Taghavi, Safiyh; van der Lelie, Daniel; Gilbert, Jack A

    2015-01-01

    ABSTRACT Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacteri...

  7. Abstracts of oral and poster presentations given at the 8th International Workshop on Grapevine Trunk Diseases, Valencia, Spain, 18–21 June 2012

    Directory of Open Access Journals (Sweden)

    AA. VV.

    2012-09-01

    Full Text Available The 8th International Workshop on Grapevine Trunk Diseases was held in Valencia, Spain, on June 18–21 2012. The meeting was attended by 120 participants and 103 papers were presented either as oral or poster presentations in four sessions: Pathogen Detection and Characterization, Epidemiology, Host-Pathogen Interaction and Disease Management. A special session was dedicated on implications of trunk diseases for grapevine nurseries with five invited presentations, followed by several oral and poster presentations. A field trip to the Utiel-Requena wine-producing area was undertaken on June the 20th, including visits to vineyards and a winery. The workshop is the 8th organised by members of the International Council on Grapevine Trunk Diseases (www.icgtd.org, a subject matter committee of the International Society for Plant Pathology (www.isppweb.org.

  8. Proteomic analysis of shoot tissue during photoperiod induced growth cessation in V. riparia Michx. grapevines

    Directory of Open Access Journals (Sweden)

    Victor Kim J

    2010-08-01

    Full Text Available Abstract Background Growth cessation, cold acclimation and dormancy induction in grapevines and other woody perennial plants native to temperate continental climates is frequently triggered by short photoperiods. The early induction of these processes by photoperiod promotes winter survival of grapevines in cold temperate zones. Examining the molecular processes, in particular the proteomic changes in the shoot, will provide greater insight into the signaling cascade that initiates growth cessation and dormancy induction. To begin understanding transduction of the photoperiod signal, Vitis riparia Michx. grapevines that had grown for 35 days in long photoperiod (long day, LD, 15 h were subjected to either a continued LD or a short photoperiod (short day, SD, 13 h treatment. Shoot tips (4-node shoot terminals were collected from each treatment at 7 and 28 days of LD and SD for proteomic analysis via two-dimensional (2D gel electrophoresis. Results Protein profiles were characterized in V. riparia shoot tips during active growth or SD induced growth cessation to examine physiological alterations in response to differential photoperiod treatments. A total of 1054 protein spots were present on the 2D gels. Among the 1054 proteins, 216 showed differential abundance between LD and SD (≥ two-fold ratio, p-value ≤ 0.05. After 7 days, 39 protein spots were more abundant in LD and 30 were more abundant in SD. After 28 days, 93 protein spots were more abundant in LD and 54 were more abundant in SD. MS/MS spectrometry was performed to determine the functions of the differentially abundant proteins. Conclusions The proteomics analysis uncovered a portion of the signal transduction involved in V. riparia grapevine growth cessation and dormancy induction. Different enzymes of the Calvin-Benson cycle and glutamate synthetase isoforms were more abundant either in LD or SD treatments. In LD tissues the significantly differentially more abundant proteins

  9. Understanding grapevine-microbiome interactions: implications for viticulture industry

    Science.gov (United States)

    Zarraonaindia, Iratxe; Gilbert, Jack A.

    2015-01-01

    Until recently, the analysis of complex communities such as that of the grapevine-microbe holobiont has been limited by the fact that most microbes are not culturable under laboratory conditions (less than 1%). However, metagenomics, the study of the genetic material recovered directly from environmental samples without the need for enrichment or of culturing, has led to open an unprecedented era in the field of microbiology. Importantly, this technological advance has now become so pervasive that it is being regularly applied to explore soils and plants of agricultural interest. Interestingly, many large companies are taking notice, with significant financial investment being used to exploring ways to manipulate the productivity, disease resistance and stress tolerance for crops by influencing the microbiome. To understand which microbes one needs to manipulate to influence this valuable characteristics, we need to sequence the microbiome and capture the genetic and hence functional metabolic information contained therein. For viticulture and other agricultural fields where the crop is also associated to particular flavor properties that may also be manipulated, understanding how the bacteria, fungi and viruses influence the development and hence chemical makeup of the crop is essential. PMID:28357290

  10. Effect of bioagents and resistance inducers on grapevine crown gall

    Directory of Open Access Journals (Sweden)

    E. Biondi

    2010-01-01

    Full Text Available Bioagents and chemicals were applied to one-year old grafted vines (Ancelotta/420A in glasshouse and field experiments set up at the Vivai Cooperativi Rauscedo (VCR, Pordenone, Italy. In the glasshouse, holes were drilled in vines on the rootstock and the holes were charged with suspensions of different strains of Pseudomonas spp., and with the biofungicides BS-F4 and Serenade, both based on Bacillus subtilis, before inoculation with a vitopine Agrobacterium vitis strain. The growth retardant Regalis and the resistance inducer Bion were applied to the vines two weeks before inoculation with the pathogen. Six months after inoculation, disease incidence was lowest when BS-F4 had been applied. In the field trial, the vines were wounded by making a cut in the crown, after which they were dipped into the antagonist suspensions just before inoculation with the pathogen. In the two weeks before inoculation, the root systems of the vines were dipped into Regalis and Bion solutions at 7 day intervals. Only these resistance inducers and BS-F4 significantly reduced disease severity. The results indicate that a potential for defence against A. vitis may exist even in susceptible grapevine cultivars, and that this potential can be activated by diverse elicitors.

  11. Resistance induced component of management of diseases of grapevine

    Directory of Open Access Journals (Sweden)

    Jusciélio Barbosa

    2009-08-01

    Full Text Available The use of induced resistance presents as a viable alternative in the management of diseases of the vine. Accordingly, the objective of this study was to evaluate the efficiency of Agro Mos® and potassium phosphite in controlling diseases of grapevine under field conditions in the Valley San Francisco. O test was conducted under field conditions in the experimental area IFSertão Pernambucano, Petrolina, PE, using the cultivar Petit Sirah. The experimental design was in randomized blocks, composed of five treatments and five replicates: T1 - control; T2 - Cabrio Top® - CT (2kg ha-1; T3 - Agro Mos® - AM (3mL L-1; T4 - Fosfito de potássio - FP (4mL L-1; T5 - Agro Mos® - AM (3mL L-1 interleaved with the fungicide Cabrio Top® - CT (2kg ha-1. Each plot consisted of eight plants. Data were subjected to analysis of variance and averages compared by Tukey test at 5%. Conditions in which the experiment was developed, the use of potassium phosphite and Agro-Mos® promoted a significant reduction in the incidence of Plasmopara viticola and Uncinula necator.Key-words: resistance induced, Plasmopara viticola, Uncinula necator.

  12. Understanding grapevine-microbiome interactions: implications for viticulture industry

    Directory of Open Access Journals (Sweden)

    Iratxe Zarraonaindia

    2015-05-01

    Full Text Available Until recently, the analysis of complex communities such as that of the grapevine-microbe holobiont has been limited by the fact that most microbes are notculturable under laboratory conditions (less than 1%. However, metagenomics, the study of the genetic material recovered directly from environmental samples without the need for enrichment or of culturing, has led to open an unprecedented era in the field of microbiology. Importantly, this technological advance has now become so pervasive that it is being regularly applied to explore soils and plants of agricultural interest. Interestingly, many large companies are taking notice, with significant financial investment being used to exploring ways to manipulate the productivity, disease resistance and stress tolerance for crops by influencing the microbiome. To understand which microbes one needs to manipulate to influence this valuable characteristics, we need to sequence the microbiome and capture the genetic and hence functional metabolic information contained therein. For viticulture and other agricultural fields where the crop is also associated to particular flavor properties that may also be manipulated, understanding how the bacteria, fungi and viruses influence the development and hence chemical makeup of the crop is essential.

  13. Black-foot disease of grapevine: an update on taxonomy, epidemiology and management strategies

    National Research Council Canada - National Science Library

    Carlos AGUSTÍ-BRISACH; Josep ARMENGOL

    2013-01-01

    Black-foot is one of the most destructive grapevine trunk diseases in nurseries and young vineyards, causing necrotic root lesions, wood necrosis of the rootstock base, and a gradual decline and death of grapevines...

  14. Macro- and microscopic leaf characteristics of six grapevine genotypes (Vitis spp.) with different susceptibilities to grapevine downy mildew

    OpenAIRE

    Boso Alonso, Susana; Alonso-Villaverde Iglesias, Virginia; Santiago Blanco, José Luis; Gago Montaña, Pilar; Dürrenberger, M.; Düggelin, M.; Kassemeyer, H. H.; Martínez Rodríguez, María del Carmen

    2010-01-01

    This work reports the leaf morphology of six grapevine genotypes, five belonging to Vitis vinifera and one to Vitis riparia. Earlier studies on these genotypes showed different levels of susceptibility to grapevine downy mildew (Plasmopara viticola). The aim of this work was to detect differences between the leaf morphology of these cultivars at the macro- and microscopic levels, and to characterize morphological traits which could be associated with susceptibility and resistance to downy ...

  15. Metal-Semiconductor Field-Effect Transistors Fabricated Using DVT Grown n-MoSe2 Crystals With Cu-Schottky Gates

    Directory of Open Access Journals (Sweden)

    C.K. Sumesh

    2011-01-01

    Full Text Available Metal-semiconductor field-effect transistors (MESFETs based on DVT grown MoSe2 crystals and Cu Schottky gate have been fabricated and studied. When Schottky gate voltage (Vgs changes from 0 to 10 V, the source-drain current (Ids increases exponentially with Vgs and the conductance shows a drastic increase with positive Vgs. The fabricated n-MoSe2 MESFET have a saturated current level of about 100 mA and maximum transconductance of about 53 mA/V. Their results suggest a way of fabricating MESFETs from layered metal dichalcogenide semiconducting materials.

  16. Electric field-tunable BaxSr1-xTiO3 films with high figures of merit grown by molecular beam epitaxy

    Science.gov (United States)

    Mikheev, Evgeny; Kajdos, Adam P.; Hauser, Adam J.; Stemmer, Susanne

    2012-12-01

    We report on the dielectric properties of BaxSr1-xTiO3 (BST) films grown by molecular beam epitaxy on epitaxial Pt bottom electrodes. Paraelectric films (x ≲ 0.5) exhibit dielectric losses that are similar to those of BST single crystals and ceramics. Films with device quality factors greater than 1000 and electric field tunabilities exceeding 1:5 are demonstrated. The results provide evidence for the importance of stoichiometry control and the use of a non-energetic deposition technique for achieving high figures of merit of tunable devices with BST thin films.

  17. Tunnel Field-Effect Transistor with Epitaxially Grown Tunnel Junction Fabricated by Source/Drain-First and Tunnel-Junction-Last Processes

    Science.gov (United States)

    Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Masahara, Meishoku; Ota, Hiroyuki

    2013-04-01

    We fabricate p- and n-channel Si tunnel field-effect transistors (TFETs) with an epitaxially grown tunnel junction. In a novel source/drain-first and tunnel-junction-last fabrication process, a thin epitaxial undoped Si channel (epichannel) is deposited on a preferentially fabricated p- or n-type source area. The epichannel sandwiched by a gate insulator and a highly doped source well acts as a parallel-plate tunnel capacitor, which effectively multiplies drain current with an enlarged tunnel area. On the basis of its simple structure and easy fabrication, symmetric n- and p-transistor and complementary metal oxide semiconductor inverter operations were successfully demonstrated.

  18. Organic and nitrogen fertilization of soil under Syrah grapevine: effects on soil chemical properties and nitrate concentration.

    OpenAIRE

    Davi José Silva; Luís Henrique Bassoi; Marlon Gomes da Rocha; Alexsandro Oliveira da Silva; Magnus Dall’Igna Deon

    2016-01-01

    ABSTRACT Viticulture is an activity of great social and economic importance in the lower-middle region of the São Francisco River valley in northeastern Brazil. In this region, the fertility of soils under vineyards is generally poor. To assess the effects of organic and nitrogen fertilization on chemical properties and nitrate concentrations in an Argissolo Vermelho-Amarelo (Typic Plinthustalf), a field experiment was carried out in Petrolina, Pernambuco, on Syrah grapevines. Treatments cons...

  19. Organic and Nitrogen Fertilization of Soil under ‘Syrah’ Grapevine: Effects on Soil Chemical Properties and Nitrate Concentration

    OpenAIRE

    Silva,Davi José; Bassoi,Luís Henrique; Rocha,Marlon Gomes da; Silva, Alexsandro Oliveira da [UNESP; Deon,Magnus Dall'Igna

    2016-01-01

    ABSTRACT Viticulture is an activity of great social and economic importance in the lower-middle region of the São Francisco River valley in northeastern Brazil. In this region, the fertility of soils under vineyards is generally poor. To assess the effects of organic and nitrogen fertilization on chemical properties and nitrate concentrations in an Argissolo Vermelho-Amarelo (Typic Plinthustalf), a field experiment was carried out in Petrolina, Pernambuco, on Syrah grapevines. Treatments cons...

  20. The Transcriptional Responses and Metabolic Consequences of Acclimation to Elevated Light Exposure in Grapevine Berries

    Directory of Open Access Journals (Sweden)

    Kari du Plessis

    2017-07-01

    Full Text Available An increasing number of field studies that focus on grapevine berry development and ripening implement systems biology approaches; the results are highlighting not only the intricacies of the developmental programming/reprogramming that occurs, but also the complexity of how profoundly the microclimate influences the metabolism of the berry throughout the different stages of development. In a previous study we confirmed that a leaf removal treatment to Sauvignon Blanc grapes, grown in a highly characterized vineyard, primarily affected the level of light exposure to the berries throughout their development. A full transcriptomic analysis of berries from this model vineyard details the underlying molecular responses of the berries in reaction to the exposure and show how the berries acclimated to the imposing light stress. Gene expression involved in the protection of the photosynthetic machinery through rapid protein-turnover and the expression of photoprotective flavonoid compounds were most significantly affected in green berries. Overall, the transcriptome analysis showed that the berries implemented multiple stress-mitigation strategies in parallel and metabolite analysis was used to support the main findings. Combining the transcriptome data and amino acid profiling provided evidence that amino acid catabolism probably contributed to the mitigation of a likely energetic deficit created by the upregulation of (energetically costly stress defense mechanisms. Furthermore, the rapid turnover of essential proteins involved in the maintenance of primary metabolism and growth in the photosynthetically active grapes appeared to provide precursors for the production of protective secondary metabolites such as apocarotenoids and flavonols in the ripening stages of the berries. Taken together, these results confirmed that the green grape berries responded to light stress much like other vegetative organs and were able to acclimate to the increased

  1. Integrated management of root-knot nematode, Meloidogyne incognita infestation in tomato and grapevine.

    Science.gov (United States)

    Kumari, N Swarna; Sivakumar, C V

    2005-01-01

    An integrated approach with the obligate bacterial parasite, Pasteuria penetrans and nematicides was assessed for the management of the root-knot nematode, Meloidogyne incognita infestation in tomato and grapevine. Seedlings of tomato cv. Co3 were transplanted into pots filled with sterilized soil and inoculated with nematodes (5000 juveniles/pot). The root powder of P. penetrans at 10 mg/pot was applied alone and in combination with carbofuran at 6 mg/pot. Application of P. penetrans along with carbofuran recorded lowest nematode infestation (107 nematodes/200 g soil) compared to control (325 nematodes/200 g soil). The rate of parasitization was 83.1% in the carbofuran and P. penetrans combination treatment as against 61.0% in the P. penetrans treatment only. The plant growth was also higher in the combination treatment compared to all other treatments. A field trial was carried out to assess the efficacy of P. penetrans and nematicides viz., carbofuran and phorate in the management of root-knot nematode, M. incognita infestation of grapevine cv. Muscat Hamburg. A nematode and P. penetrans infested grapevine field was selected and treatments either with carbofuran or phorate at 1 g a.i/vine was given. The observations were recorded at monthly interval. The results showed that the soil nematode population was reduced in nematicide treated plots. Suppression of nematodes was higher under phorate (117 nematodes/200 g soil) than under carbofuran (126.7 nematodes/200 g soil) treatment. The number of juveniles parasitized was also influenced by nematicides and spore load carried/juvenile with phorate being superior and the increase being 17.0 and 29.0% respectively over the control. The results of these experiment confirmed the compatibility of P. penetrans with nematicides and its biological control potential against the root-knot nematode.

  2. Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases.

    Science.gov (United States)

    Romero, Fernando M; Marina, María; Pieckenstain, Fernando L

    2016-04-01

    This work aimed to characterize potentially endophytic culturable bacteria from leaves of cultivated tomato and analyze their potential for growth promotion and biocontrol of diseases caused by Botrytis cinerea and Pseudomonas syringae. Bacteria were obtained from inner tissues of surface-disinfected tomato leaves of field-grown plants. Analysis of 16S rRNA gene sequences identified bacterial isolates related to Exiguobacterium aurantiacum (isolates BT3 and MT8), Exiguobacterium spp. (isolate GT4), Staphylococcus xylosus (isolate BT5), Pantoea eucalypti (isolate NT6), Bacillus methylotrophicus (isolate MT3), Pseudomonas veronii (isolates BT4 and NT2), Pseudomonas rhodesiae (isolate BT2) and Pseudomonas cichorii (isolate NT3). After seed inoculation, BT2, BT4, MT3, MT8, NT2 and NT6 were re-isolated from leaf extracts. NT2, BT2, MT3 and NT6 inhibited growth of Botrytis cinerea and Pseudomonas syringae pv. tomato in vitro, produced antimicrobial compounds and reduced leaf damage caused by B. cinerea. Some of these isolates also promoted growth of tomato plants, produced siderophores, the auxin indole-3-acetic and solubilized inorganic phosphate. Thus, bacterial communities of leaves from field-grown tomato plants were found to harbor potentially endophytic culturable beneficial bacteria capable of antagonizing pathogenic microorganisms and promoting plant growth, which could be used as biological control agents and biofertilizers/biostimulators for promotion of tomato plant growth. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Nitrogen Fertilizer Optimization and Cultivar Selection for Rice Grown near Mountainous Slopes in Orissa, India-A Field Experiment and Simulation Model Study

    Institute of Scientific and Technical Information of China (English)

    D. K. Swain; S. Herath; A. Pathirana; R. N. Dash

    2005-01-01

    Degradation of the natural resource base has led to decline in crop yields or stagnation that caused food shortages at varying degrees among mountain families. Rice, the major staple food in Asia,is suffering from lack of suitable cultivar and N fertilizer management, when grown near mountainous slopes under rain-fed agro-ecosystem.An investigation through a field experiment and simulation study was conducted at United Nations University, Tokyo to select suitable rice cultivars and N fertilizer level for the rice grown near mountainous slopes in Orissa, India. The field experiment was conducted during wet season (June to November) of 2001 at Kasiadihi village of Dhenkanal district, Orissa,India with eight popular rice cultivars of medium (120~130 d) and long duration (135~150 d) group and Ranjit of long duration group followed by 4,730group, across N levels. CERES-Rice model was used to simulated grain yield of these two selected cultivars using historical weather data of the past 18years (1983~2000). Long duration cultivar Ranjit registered higher yield with lower stability as compared medium duration cultivar Mahamaya over the past 18 years. An optimum N fertilizer level of 80rain-fed ecosystem near mountainous slopes in Orissa,India to attain optimum yield potential of cultivar.

  4. Thickness-modulated tungsten–carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields

    Directory of Open Access Journals (Sweden)

    Ismael García Serrano

    2016-11-01

    Full Text Available We report efficient vortex pinning in thickness-modulated tungsten–carbon-based (W–C nanostructures grown by focused ion beam induced deposition (FIBID. By using FIBID, W–C superconducting films have been created with thickness modulation properties exhibiting periodicity from 60 to 140 nm, leading to a strong pinning potential for the vortex lattice. This produces local minima in the resistivity up to high magnetic fields (2.2 T in a broad temperature range due to commensurability effects between the pinning potential and the vortex lattice. The results show that the combination of single-step FIBID fabrication of superconducting nanostructures with built-in artificial pinning landscapes and the small intrinsic random pinning potential of this material produces strong periodic pinning potentials, maximizing the opportunities for the investigation of fundamental aspects in vortex science under changing external stimuli (e.g., temperature, magnetic field, electrical current.

  5. Multienergy gold ion implantation for enhancing the field electron emission characteristics of heterogranular structured diamond films grown on Au-coated Si substrates

    Science.gov (United States)

    Sankaran, K. J.; Manoharan, D.; Sundaravel, B.; Lin, I. N.

    2016-09-01

    Multienergy Au-ion implantation enhanced the electrical conductivity of heterogranular structured diamond films grown on Au-coated Si substrates to a high level of 5076.0 (Ω cm)-1 and improved the field electron emission (FEE) characteristics of the films to low turn-on field of 1.6 V/μm, high current density of 5.4 mA/cm2 (@ 2.65 V/μm), and high lifetime stability of 1825 min. The catalytic induction of nanographitic phases in the films due to Au-ion implantation and the formation of diamond-to-Si eutectic interface layer due to Au-coating on Si together encouraged the efficient conducting channels for electron transport, thereby improved the FEE characteristics of the films.

  6. Single- and few-walled carbon nanotubes grown at temperatures as low as 450 degrees c: electrical and field emission characterization.

    Science.gov (United States)

    Gohier, A; Djouadi, M A; Dubosc, M; Granier, A; Minea, T M; Sirghi, L; Rossi, F; Paredez, P; Alvarez, F

    2007-09-01

    Single-wall (SW-) and few-walled (FW-) carbon nanotubes (CNTs) were synthesized on aluminum/ cobalt coated silicon at temperatures as low as 450 degrees C by plasma enhanced chemical vapor deposition technique (PECVD). The SWCNTs and FWCNTs grow vertically oriented and well separated from each other. The cold field emission studies of as-grown SWCNTs and FWCNTs showed low turn-on field emission threshold voltages, strongly dependent of the nanotubes morphology. Current-voltage curves of individual CNTs, measured by conductive atomic force microscopy (CAFM), showed an electrical resistance of about 90 Komega, that is attributed mainly to the resistance of the contact between the CNTs and the conductive CAFM tip (Au and Pt).

  7. High magnetic field matching effects in NbN films induced by template grown dense ferromagnetic nanowires arrays

    DEFF Research Database (Denmark)

    Hallet, X.; Mátéfi-Tempfli, Mária; Michotte, S.;

    2009-01-01

    magnetic nanowires. Matching effects have been observed up to 2.5 T (11th matching field) and are maintained at low temperature. An appreciable enhancement of the superconducting properties is observed. At low fields, a hysteretic behavior in the magnetoresistance is found, directly related...

  8. USEFULNESS OF THE GRAPEVINE VIRUS-INFECTED COLLECTION

    Directory of Open Access Journals (Sweden)

    Elena-Cocuţa Buciumeanu

    2012-04-01

    Full Text Available In order to use the virus-infected material as reference in various studies, a grapevine virus collection was established at NRDIBH Ştefănşti-Argeş. The vines are infected with 1-3 of the main specific viruses of this crop: fanleaf virus, leafroll associated virus serotypes 1+3, fleck virus and virus A. Different lots of plants belonging to the same cultivar are infected with different viruses. The own rooted or grafted potted plants are maintained in an insect-proof greenhouse. The main goals of the study of grapevine under the influence of virus infection had in view: symptoms, in vitro behaviour of virus infected grapevine, virus elimination, plant positive control in the diagnostic process. The symptoms produced by viral infection can affect the whole plant (systemic symptoms or they are visible on certain parts of the plant (local symptoms. In vitro studies of virus infected grapevines comparatively with the healthy material aimed with the quantitative and qualitative aspects of the culture: multiplication and rooting rates, shoots elongation, abnormal cuttings and vitrification phenomena. Infected grapevine cultivars and clones were subjected to virus elimination through thermotherapy, chemotherapy or electrotherapy, combined with in vitro culture. The diagnosis of leafroll, fleck, vein necrosis and corky bark diseases have been done by in vitro micrografting, as rapid biological method of virus detection. Samples collected from infected vines were used as material testing for virus detection by ELISA in inter-laboratory comparisons and Iaboratory-performed validation.

  9. Genetic characterization of some Romanian red wine grapevine varieties

    Science.gov (United States)

    Ghetea, Ligia Gabriela; Motoc, Rozalia Magda; Niculescu, Ana-Maria; Litescu, Simona Carmen; Duma, Virgil-Florin; Popescu, Carmen Florentina

    2008-04-01

    In our study we have considered three of the most valuable Romanian red wine grapevine cultivars: Feteasca neagra, Feteasca alba and Novac. We have chosen to study grapevine because grapes and wine are an important part of a healthy diet, and because red grapes have the highest content of proanthocyanidins, that act as antioxidants (free radical scavengers) in the human body. Proanthocyanidins possess anti-mutagenic, anti-tumor, anti-viral activities and they present many other confirmed or potential benefits. Genotyping method was applied in order to asses the genetic profile at 14 microsatellite loci, for two cultivars: Feteasca neagra and Feteasca alba. In order to achieve this, the HPLC-DAD method was used. The content of anthocyans in grape skin from two cultivars - Feteasca neagra and Novac - was measured. Microsatellite markers have been certified as powerful tools for assessing genetic identities and genetic relationships between grapevine gene pools. Genetic characterization of grapevine cultivars can certify their authenticity and purity, two features that have a direct effect on the quality and value of the finished product, the wine. In our country, this is the first attempt in order to establish a genetic profile for valuable Romanian origin grapevine varieties. In some of the 14 microsatellitic loci, Feteasca neagra and Feteasca alba cultivars presented allele size variants different from the values cited in the literature, proving that these cultivars belong to a geographical distinct gene pool. The content of anthocyans in Feteasca neagra grape skin was significantly higher than in Novac.

  10. Genomics technologies to study structural variations in the grapevine genome

    Directory of Open Access Journals (Sweden)

    Cardone Maria Francesca

    2016-01-01

    Full Text Available Grapevine is one of the most important crop plants in the world. Recently there was great expansion of genomics resources about grapevine genome, thus providing increasing efforts for molecular breeding. Current cultivars display a great level of inter-specific differentiation that needs to be investigated to reach a comprehensive understanding of the genetic basis of phenotypic differences, and to find responsible genes selected by cross breeding programs. While there have been significant advances in resolving the pattern and nature of single nucleotide polymorphisms (SNPs on plant genomes, few data are available on copy number variation (CNV. Furthermore association between structural variations and phenotypes has been described in only a few cases. We combined high throughput biotechnologies and bioinformatics tools, to reveal the first inter-varietal atlas of structural variation (SV for the grapevine genome. We sequenced and compared four table grape cultivars with the Pinot noir inbred line PN40024 genome as the reference. We detected roughly 8% of the grapevine genome affected by genomic variations. Taken into account phenotypic differences existing among the studied varieties we performed comparison of SVs among them and the reference and next we performed an in-depth analysis of gene content of polymorphic regions. This allowed us to identify genes showing differences in copy number as putative functional candidates for important traits in grapevine cultivation.

  11. Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac) and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton

    Science.gov (United States)

    Luo, Jun-Yu; Zhang, Shuai; Peng, Jun; Zhu, Xiang-Zhen; Lv, Li-Min; Wang, Chun-Yi; Li, Chun-Hua; Zhou, Zhi-Guo; Cui, Jin-Jie

    2017-01-01

    An increasing area of transgenic Bacillus thuringiensis (Bt) cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW) Helicoverpa armigera (Hübner) in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac) and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]). We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels. PMID:28099508

  12. Photoprotection of PSI by Far-Red Light Against the Fluctuating Light-Induced Photoinhibition in Arabidopsis thaliana and Field-Grown Plants.

    Science.gov (United States)

    Kono, Masaru; Yamori, Wataru; Suzuki, Yoshihiro; Terashima, Ichiro

    2017-01-01

    It has been reported that PSI photoinhibition is induced even in wild-type plants of Arabidopsis thaliana, rice and other species by exposure of leaves to fluctuating light (FL) for a few hours. Because plants are exposed to FL in nature, they must possess protective mechanisms against the FL-induced photodamage. Here, using A. thaliana grown at various irradiances, we examined PSI photoprotection by far-red (FR) light at intensities comparable with those observed in nature. Dark-treated leaves were illuminated by red FL alternating high/low light at 1,200/30 µmol m-2 s-1 for 800 ms/10 s. By this FL treatment without FR light for 120 min, the level of photo-oxidizable P700 was decreased by 30% even in the plants grown at high irradiances. The addition of continuous FR light during the FL suppressed this damage almost completely. With FR light, P700 was kept in a more oxidized state in both low- and high-light phases. The protective effect of FR light was diminished more in mutants of the NADH dehydrogenase-like complex (NDH)-mediated cyclic electron flow around PSI (CEF-PSI) than in the PGR5 (proton gradient regulation 5)-mediated CEF-PSI, indicating that the NDH-mediated CEF-PSI would be a major contributor to PSI photoprotection in the presence of FR light. We also confirmed that PSI photoinhibition decreased with the increase in growth irradiance in A. thaliana and field-grown plants, and that this PSI photodamage was largely suppressed by addition of FR light. These results clearly indicate that the most effective PSI protection is realized in the presence of FR light. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Growth, Yield and Fruit Quality of Grapevines under Organic and Biodynamic Management.

    Science.gov (United States)

    Döring, Johanna; Frisch, Matthias; Tittmann, Susanne; Stoll, Manfred; Kauer, Randolf

    2015-01-01

    The main objective of this study was to determine growth, yield and fruit quality of grapevines under organic and biodynamic management in relation to integrated viticultural practices. Furthermore, the mechanisms for the observed changes in growth, yield and fruit quality were investigated by determining nutrient status, physiological performance of the plants and disease incidence on bunches in three consecutive growing seasons. A field trial (Vitis vinifera L. cv. Riesling) was set up at Hochschule Geisenheim University, Germany. The integrated treatment was managed according to the code of good practice. Organic and biodynamic plots were managed according to Regulation (EC) No 834/2007 and Regulation (EC) No 889/2008 and according to ECOVIN- and Demeter-Standards, respectively. The growth and yield of the grapevines differed strongly among the different management systems, whereas fruit quality was not affected by the management system. The organic and the biodynamic treatments showed significantly lower growth and yield in comparison to the integrated treatment. The physiological performance was significantly lower in the organic and the biodynamic systems, which may account for differences in growth and cluster weight and might therefore induce lower yields of the respective treatments. Soil management and fertilization strategy could be responsible factors for these changes. Yields of the organic and the biodynamic treatments partially decreased due to higher disease incidence of downy mildew. The organic and the biodynamic plant protection strategies that exclude the use of synthetic fungicides are likely to induce higher disease incidence and might partially account for differences in the nutrient status of vines under organic and biodynamic management. Use of the biodynamic preparations had little influence on vine growth and yield. Due to the investigation of important parameters that induce changes especially in growth and yield of grapevines under

  14. Ferrisia gilli (Hemiptera: Pseudococcidae) Transmits Grapevine Leafroll-Associated Viruses.

    Science.gov (United States)

    Wistrom, C M; Blaisdell, G K; Wunderlich, L R; Almeida, R P P; Daane, K M

    2016-08-01

    Several mealybug species are vectors of grapevine leafroll-associated viruses (GLRaV), which cause the economically important grapevine leafroll disease in grape-producing regions worldwide. The mealybug Ferrisia gilli Gullan is a new pest of grapevines in El Dorado County, located in the Sierra Foothill wine-growing region of California. GLRaV species 1, 2, 3, and 4LV have been detected in vineyards with symptomatic vines in the Sierra Foothills. We conducted controlled virus acquisition and transmission experiments using source vine accessions infected with different combinations of GLRaV. We determined that F. gilli acquired GLRaV 1, 2, 3, and 4LV, and transmitted GLRaV-3 and GLRaV-4LV to uninfected recipient vines. Like numerous other mealybug species, in addition to causing direct damage to vines, F. gilli poses a threat to the grape industry as a vector of economically damaging viruses.

  15. Grapevine bud break prediction for cool winter climates

    Science.gov (United States)

    Nendel, Claas

    2010-05-01

    Statistical analysis of bud break data for grapevine ( Vitis vinifera L. cvs. Riesling and Müller-Thurgau) at 13 sites along the northern boundary of commercial grapevine production in Europe revealed that, for all investigated sites, the heat summation method for bud break prediction can be improved if the starting date for the accumulation of heat units is specifically determined. Using the coefficient of variance as a criterion, a global minimum for each site can be identified, marking the optimum starting date. Furthermore, it was shown that the application of a threshold temperature for the heat summation method does not lead to an improved prediction of bud break. Using site-specific parameters, bud break of grapevine can be predicted with an accuracy of ± 2.5 days. Using average parameters, the prediction accuracy is reduced to ± 4.5 days, highlighting the sensitivity of the heat summation method to the quality and the representativeness of the driving temperature data.

  16. Transgenic and mutation-based suppression of a berberine bridge enzyme-like (BBL) gene family reduces alkaloid content in field-grown tobacco.

    Science.gov (United States)

    Lewis, Ramsey S; Lopez, Harry O; Bowen, Steve W; Andres, Karen R; Steede, William T; Dewey, Ralph E

    2015-01-01

    Motivation exists to develop tobacco cultivars with reduced nicotine content for the purpose of facilitating compliance with expected tobacco product regulations that could mandate the lowering of nicotine levels per se, or the reduction of carcinogenic alkaloid-derived tobacco specific nitrosamines (TSNAs). A berberine bridge enzyme-like (BBL) gene family was recently characterized for N. tabacum and found to catalyze one of the final steps in pyridine alkaloid synthesis for this species. Because this gene family acts downstream in the nicotine biosynthetic pathway, it may represent an attractive target for genetic strategies with the objective of reducing alkaloid content in field-grown tobacco. In this research, we produced transgenic doubled haploid lines of tobacco cultivar K326 carrying an RNAi construct designed to reduce expression of the BBL gene family. Field-grown transgenic lines carrying functional RNAi constructs exhibited average cured leaf nicotine levels of 0.684%, in comparison to 2.454% for the untransformed control. Since numerous barriers would need to be overcome to commercialize transgenic tobacco cultivars, we subsequently pursued a mutation breeding approach to identify EMS-induced mutations in the three most highly expressed isoforms of the BBL gene family. Field evaluation of individuals possessing different homozygous combinations of truncation mutations in BBLa, BBLb, and BBLc indicated that a range of alkaloid phenotypes could be produced, with the triple homozygous knockout genotype exhibiting greater than a 13-fold reduction in percent total alkaloids. The novel source of genetic variability described here may be useful in future tobacco breeding for varied alkaloid levels.

  17. An assessment of the impact of ambient ozone on field-grown crops in New Jersey using the EDU method: part 2-soybean (Glycine max (L.) Merr.).

    Science.gov (United States)

    Brennan, E G; Clarke, B B; Greenhalgh-Weidman, B; Smith, G

    1990-01-01

    The yields of eleven commercially grown soybean cultivars were compared in ethylenediurea (EDU)-treated and non-treated field plots in New Brunswick, New Jersey, over a 4 year period. No statistically significant difference between treatments was found for any cultivar; the inference being ambient ozone did not adversely affect soybean yield. Succeeding field experiments supported this interpretation of the data. 'Sanilac' white bean, a legume known to be more sensitive to O(3) than soybean, was found to produce a significantly greater yield in EDU-treated than non-treated plots, unlike a companion planting of 'Williams 82' soybean which did not exhibit the differential response. The results indicated that the specific EDU protocol used in the soybean experiments is capable of detecting an ozone effect in a legume. Moreover, in a concurrent greenhouse experiment the yield of EDU-treated Sanilac white bean was not significantly different from non-treated plants in the absence of ozone pollution. In a dose-response field experiment during a year of unusually high O(3) pollution, yield of 'Williams 82' increased slightly with each EDU increment up to 500 ppm and decreased at 1000 ppm. The difference between non-treated and EDU-treated plants, however, was not statistically significant. There was no evidence to suggest that the EDU concentration (500 ppm) used in previous soybean experiments reduced seed yield. Fortuitously, the tolerance of commercially-grown soybean to ambient ozone is at least partially conditioned by the practce of not irrigating the crop. The New Jersey results are in agreement with reports from Maryland, Georgia and Tennessee in which an adverse impact of ambient O(3) was not found in soybean, but contrary to a current predictive model.

  18. Evaluation of Cold Tolerance in Field Grown Mentha (Mentha piperita‎‏ L.‎ under ‎Laboratory Conditions by Electrolyte Leakage Test

    Directory of Open Access Journals (Sweden)

    T Kheirkhah

    2015-09-01

    Full Text Available In order to determine cold tolerance of field grown Mentha (Mentha Piperita L. under controlled conditions, using electrolyte leakage index, an experiment was carried out at the College of Agriculture, Ferdowsi University of Mashhad, based on a completely randomized design with four replications. Experimental factors included six freezing temperatures (Zero, -4, -8, -12, -16 and -20 °C, seven harvest ‎time (November, December, January, February, March, April and May and ‎four Peppermint organs (leaves, Stems, Stolons and Rhizomes. So, field grown ‎and acclimated Pepermint was harvested from the faculty field every month. ‎After separating the Peppermint organs, they were subjected to freezing ‎temperatures. The membrane stability index was measured through ‎electrolyte leakage (EL and also lethal temperature 50 ‎according to EL (LT50el was determined. The results showed that electrolyte leakages were affected significantly by freezing temperature. By reduction of freezing temperature electrolyte leakages percentage increased. Among different organs of peppermint, stolon and leaf were the most cold tolerant and the most cold sensitive according to EL and LT50el , respectively. Also cold tolerance varied according to different harvest time in all organs. However, in May, all organs had lowest cold tolerance. Also leaves and stolons had the highest and the lowest LT50el, respectively. For all organs the highest LT50el‎ was observed in May. According to the high correlation between electrolyte leakages percent and LT50el (r = 0.96**, it seems that using this index for evaluation of freezing tolerance injury in Mentha piperita could be useful.

  19. Phenotypic and molecular fingerprinting of fast growing rhizobia of field-grown pigeonpea from the eastern edge of the Brazilian Pantanal.

    Science.gov (United States)

    Costa, F M; Schiavo, J A; Brasil, M S; Leite, J; Xavier, G R; Fernandes, P I

    2014-01-21

    The aim of this study was to evaluate the diversity of rhizobial isolates obtained from root nodules of pigeonpea plants grown at the eastern edge of the Brazilian Pantanal. The bacterial isolates were isolated from root nodules from field-growing pigeonpea grown in two rural settlements of the Aquidauana municipality. The bacterial isolates were characterized phenotypically by means of cultural characterization, intrinsic antibiotic resistance (IAR), salt and high incubation temperature tolerance, and amylolytic and cellulolytic activities. The molecular characterization of the bacterial isolates was carried out using amplified ribosomal DNA restriction analysis (ARDRA) and Box-polymerase chain reaction (PCR) techniques. In addition, the symbiotic performance of selected rhizobial isolates was evaluated in a greenhouse experiment using sterile substrate. The phenotypic characterization revealed that the bacterial strains obtained from pigeonpea root nodules presented characteristics that are uncommon among rhizobial isolates, indicating the presence of new species nodulating the pigeonpea plants in the Brazilian Pantanal. The molecular fingerprinting of these bacterial isolates also showed a highly diverse collection, with both techniques revealing less than 25% similarity among bacterial isolates. The evaluation of symbiotic performance also indicated the presence of microorganisms with high potential to increase the growth and nitrogen content at the shoots of pigeonpea plants. The results obtained in this study indicate the presence of a highly diversified rhizobial community nodulating the pigeonpea at the eastern edge of the Brazilian Pantanal.

  20. Phaeomoniella chlamydospora and Phaeoacremonium spp. in grapevines from Uruguay.

    Directory of Open Access Journals (Sweden)

    Eduardo ABREO

    2011-12-01

    Full Text Available Symptoms corresponding to esca and Petri diseases have been described in Uruguay as being associated with Phaeomoniella chlamydospora and Phaeoacremonium spp. Isolates of Phaeoacremonium spp. recovered from diseased grapevines were characterized and identified. Additionally, specific primers developed for Pa. chlamydospora and Phaeoacremonium spp. were evaluated for direct detection of these fungi in asymptomatic grapevine tissues. The bark was removed, and the trunk underneath was surface-disinfected. Chips from symptomatic grapevines were plated on potato dextrose agar and incubated at 25°C. Isolates were identified morphologically and phylogenetically. Sequences of ITS rDNA, β-tubulin and actin genes made it possible to identify 52 isolates as Pa. chlamydospora, 33 as Pm. aleophilum, and one as Pm. australiense. The Pm. aleophilum isolates were divided into three groups by their growth pattern and their colony shape at 37°C: a white colonies with yellow or brown reverse; b brown colonies with clear margin and a dark center on the reverse; c brown colonies with dark-brown diffusible pigments and brown reverse. Further studies are required to explain these differences. Primers Pac1f/Pac2r specific for Phaeoacremonium spp., PalN1/Pal2 specific for Pm. aleophilum, F2bt/R1bt specific for Pm. aleophilum and ten other Phaeoacremonium species, and Pch1/Pch2 and Pmo1f/Pmo2r, both specific for Pa. chlamydospora were evaluated on the DNA of target fungi and some of other fungi frequently isolated from diseased vine tissues. F2bt/R1bt and Pmo1f/ Pmo2r were selected, and were used in a nested PCR to detect Phaeoacremonium spp. and Pa. chlamydospora in asymptomatic canes of nursery mother grapevines. Nine out of ten sampled grapevines tested positive for one of the fungi. Molecular diagnosis is potentially a useful method to assess the health of mother grapevines.

  1. Heavy metals accumulation in parts of paddy Oryza sativa L. grown in paddy field adjacent to ultrabasic soil

    Science.gov (United States)

    Hadif, Waqeed Mahdi; Rahim, Sahibin Abd; Sahid, Ismail; Bhuiyan, Atiqur Rahman; Ibrahim, Izyanti

    2015-09-01

    The present study was carried out to evaluate the accumulation and translocation of heavy metals from soil around the root zone to various parts of the paddy plant, namely the roots, stems, leaves and rice grains. This study was conducted in 2014 in paddy field adjacent to ultrabasic soil (field 1 and 2) located in Ranau, Sabah and one field (Field 3) taken as control located at the UKM experimental plot in peninsular of Malaysia. The plant species used in the present investigation is Paddy Batu. The heavy metals studied were Chromium (Cr), Iron (Fe) and Nickel (Ni). Heavy metals in soil and plant were extracted by wet digestion method. Heavy metals present in paddy plants and soils extract were measured using the ICP-MS. Heavy metals concentrations in the plant parts in descending order is the root > leaves > stem > rice grain. Lower concentration of all heavy metals in soils and plant parts was shown by the control site (Field 3) in UKM Bangi. Higher concentration of heavy metals occurred in the roots compared to other above ground parts (stem, leaves, and grains) of the paddy plant in all of the paddy field. The bioaccumulation factor (BAF) of heavy metals in all locations were recorded in descending order as Ni > Cr > Fe, the BAF values for all metals in the rice grains were low, whereas the BAF values were recorded high for Ni in all locations. The results also showed that Fe was the most predominant metal ion in the roots, followed by Ni then Cr.

  2. In vitro digestibility, protein composition and techno-functional properties of Saskatchewan grown yellow field peas (Pisum sativum L.) as affected by processing.

    Science.gov (United States)

    Ma, Zhen; Boye, Joyce I; Hu, Xinzhong

    2017-02-01

    Saskatchewan grown yellow field pea was subjected to different processing conditions including dehulling, micronization, roasting, conventional/microwave cooking, germination, and combined germination and conventional cooking/roasting. Their nutritional and antinutritional compositions, functional properties, microstructure, thermal properties, in vitro protein and starch digestibility, and protein composition were studied. Processed field peas including conventional cooked yellow peas (CCYP), microwave cooked yellow peas (MCYP), germinated-conventional cooked yellow peas (GCCYP), and germinated-roasted yellow peas (GRYP) exhibited the significantly higher in vitro protein digestibility (IVPD), which was in accordance with their significantly lower trypsin inhibitor activity and tannin content. The SDS-PAGE and size exclusion HPLC profiles of untreated pea proteins and their hydrolysates also confirmed the IVPD result that these four treatments facilitated the hydrolysis of pea proteins to a greater extent. The CCYP, MCYP, GCCYP, and GRYP also exhibited significantly higher starch digestibility which was supported by their lower onset (To), peak (Tp), and conclusion (Tc) temperatures obtained from DSC thermogram, their lower pasting properties and starch damage results, as well as their distinguished amorphous flakes' configuration observed on the scanning electron microscopic image. LC/ESI-MS/MS analysis following in-gel digests of SDS-PAGE separated proteins allowed detailed compositional characterization of pea proteins. The present study would provide fundamental information to help to better understand the functionality of field peas as ingredients, and particularly in regards to agri-food industry to improve the process efficiency of field peas with enhanced nutritional and techno-functional qualities.

  3. Variations and constancy of mercury and methylmercury accumulation in rice grown at contaminated paddy field sites in three Provinces of China.

    Science.gov (United States)

    Li, B; Shi, J B; Wang, X; Meng, M; Huang, L; Qi, X L; He, B; Ye, Z H

    2013-10-01

    Many paddy fields have been contaminated by mercury (Hg) in mining areas of China. In this study, twenty-six rice cultivars and three Hg contaminated paddy fields in different geographic regions were selected for field trials and aimed to investigate the variations and similarities in total Hg (THg) and methylmercury (MeHg) accumulations in brown rice (seeds) across sites. Our results revealed widescale cultivar variation in THg (13-52 ng g(-1) at Wanshan) and MeHg (3.5-23 ng g(-1)) accumulation and %MeHg (17.7-89%) in seeds. The ability to translocate is an important factor in the levels of THg and MeHg in seed. Cultivar tended to stability in THg accumulation across sites. Some cultivars accumulated lower concentrations of both THg and MeHg in seeds at fields seriously contaminated by Hg. Present results suggest that appropriate cultivar selection is a possible way to reduce THg and MeHg accumulation in seeds of rice grown in Hg-contaminated regions.

  4. Spliceosomal intron size expansion in domesticated grapevine (Vitis vinifera

    Directory of Open Access Journals (Sweden)

    Goertzen Leslie R

    2011-03-01

    Full Text Available Abstract Background Spliceosomal introns are important components of eukaryotic genes as their structure, sizes and contents reflect the architecture of gene and genomes. Intron size, determined by both neutral evolution, repetitive elements activities and potential functional constraints, varies significantly in eukaryotes, suggesting unique dynamics and evolution in different lineages of eukaryotic organisms. However, the evolution of intron size, is rarely studied. To investigate intron size dynamics in flowering plants, in particular domesticated grapevines, a survey of intron size and content in wine grape (Vitis vinifera Pinot Noir genes was conducted by assembling and mapping the transcriptome of V. vinifera genes from ESTs to characterize and analyze spliceosomal introns. Results Uncommonly large size of spliceosomal intron was observed in V. vinifera genome, otherwise inconsistent with overall genome size dynamics when comparing Arabidopsis, Populus and Vitis. In domesticated grapevine, intron size is generally not related to gene function. The composition of enlarged introns in grapevines indicated extensive transposable element (TE activity within intronic regions. TEs comprise about 80% of the expanded intron space and in particular, recent LTR retrotransposon insertions are enriched in these intronic regions, suggesting an intron size expansion in the lineage leading to domesticated grapevine, instead of size contractions in Arabidopsis and Populus. Comparative analysis of selected intronic regions in V. vinifera cultivars and wild grapevine species revealed that accelerated TE activity was associated with grapevine domestication, and in some cases with the development of specific cultivars. Conclusions In this study, we showed intron size expansion driven by TE activities in domesticated grapevines, likely a result of long-term vegetative propagation and intensive human care, which simultaneously promote TE proliferation and

  5. Metagenomic analysis of viruses associated with field-grown and retail lettuce identifies human and animal viruses.

    Science.gov (United States)

    Aw, Tiong Gim; Wengert, Samantha; Rose, Joan B

    2016-04-16

    The emergence of culture- and sequence-independent metagenomic methods has not only provided great insight into the microbial community structure in a wide range of clinical and environmental samples but has also proven to be powerful tools for pathogen detection. Recent studies of the food microbiome have revealed the vast genetic diversity of bacteria associated with fresh produce. However, no work has been done to apply metagenomic methods to tackle viruses associated with fresh produce for addressing food safety. Thus, there is a little knowledge about the presence and diversity of viruses associated with fresh produce from farm-to-fork. To address this knowledge gap, we assessed viruses on commercial romaine and iceberg lettuces in fields and a produce distribution center using a shotgun metagenomic sequencing targeting both RNA and DNA viruses. Commercial lettuce harbors an immense assemblage of viruses that infect a wide range of hosts. As expected, plant pathogenic viruses dominated these communities. Sequences of rotaviruses and picobirnaviruses were also identified in both field-harvest and retail lettuce samples, suggesting an emerging foodborne transmission threat that has yet to be fully recognized. The identification of human and animal viruses in lettuce samples in the field emphasizes the importance of preventing viral contamination on leafy greens starting at the field. Although there are still some inherent experimental and bioinformatics challenges in applying viral metagenomic approaches for food safety testing, this work will facilitate further application of this unprecedented deep sequencing method to food samples.

  6. Influence of transplant size on the above- and below-ground performance of four contrasting field-grown lettuce cultivars

    NARCIS (Netherlands)

    Kerbiriou, P.J.; Stomph, T.J.; Lammerts Van Bueren, E.; Struik, P.C.

    2013-01-01

    Background and aims: Modern lettuce cultivars underperform under conditions of variable temporal and spatial resource availability, common in organic or low-input production systems. Information is scarce on the impact of below-ground traits on such resource acquisition and performance of field-grow

  7. Influence of transplant size on the above- and below-ground performance of four contrasting field-grown lettuce cultivars

    NARCIS (Netherlands)

    Kerbiriou, P.J.; Stomph, T.J.; Lammerts Van Bueren, E.; Struik, P.C.

    2013-01-01

    Background and aims: Modern lettuce cultivars underperform under conditions of variable temporal and spatial resource availability, common in organic or low-input production systems. Information is scarce on the impact of below-ground traits on such resource acquisition and performance of field-grow

  8. Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat.

    Science.gov (United States)

    Teng, Wan; Deng, Yan; Chen, Xin-Ping; Xu, Xiao-Feng; Chen, Ri-Yuan; Lv, Yang; Zhao, Yan-Yan; Zhao, Xue-Qiang; He, Xue; Li, Bin; Tong, Yi-Ping; Zhang, Fu-Suo; Li, Zhen-Sheng

    2013-03-01

    The adaptations of root morphology, physiology, and biochemistry to phosphorus supply have been characterized intensively. However, characterizing these adaptations at molecular level is largely neglected under field conditions. Here, two consecutive field experiments were carried out to investigate the agronomic traits and root traits of wheat (Triticum aestivum L.) at six P-fertilizer rates. Root samples were collected at flowering to investigate root dry weight, root length density, arbusular-mycorrhizal colonization rate, acid phosphatase activity in rhizosphere soil, and expression levels of genes encoding phosphate transporter, phosphatase, ribonucleases, and expansin. These root traits exhibited inducible, inhibitory, or combined responses to P deficiency, and the change point for responses to P supply was at or near the optimal P supply for maximum grain yield. This research improves the understanding of mechanisms of plant adaptation to soil P in intensive agriculture and provides useful information for optimizing P management based on the interactions between soil P dynamics and root processes.

  9. Solution-processed n-type fullerene field-effect transistors prepared using CVD-grown graphene electrodes: improving performance with thermal annealing.

    Science.gov (United States)

    Jeong, Yong Jin; Yun, Dong-Jin; Jang, Jaeyoung; Park, Seonuk; An, Tae Kyu; Kim, Lae Ho; Kim, Se Hyun; Park, Chan Eon

    2015-03-07

    Solution-processed organic field effect transistors (OFETs), which are amenable to facile large-area processing methods, have generated significant interest as key elements for use in all-organic electronic applications aimed at realizing low-cost, lightweight, and flexible devices. The low performance levels of n-type solution-processed bottom-contact OFETs unfortunately continue to pose a barrier to their commercialization. In this study, we introduced a combination of CVD-grown graphene source/drain (S/D) electrodes and fullerene (C60) in a solution-processable n-type semiconductor toward the fabrication of n-type bottom-contact OFETs. The C60 coating in the channel region was achieved by modifying the surface of the oxide gate dielectric layer with a phenyl group-terminated self-assembled monolayer (SAM). The graphene and phenyl group in the SAMs induced π-π interactions with C60, which facilitated the formation of a C60 coating. We also investigated the effects of thermal annealing on the reorganization properties and field-effect performances of the overlaying solution-processed C60 semiconductors. We found that thermal annealing of the C60 layer on the graphene surface improved the crystallinity of the face-centered cubic (fcc) phase structure, which improved the OFET performance and yielded mobilities of 0.055 cm(2) V(-1) s(-1). This approach enables the realization of solution-processed C60-based FETs using CVD-grown graphene S/D electrodes via inexpensive and solution-process techniques.

  10. Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis.

    Science.gov (United States)

    Chastain, Daryl R; Snider, John L; Collins, Guy D; Perry, Calvin D; Whitaker, Jared; Byrd, Seth A

    2014-11-01

    Much effort has been expended to improve irrigation efficiency and drought tolerance of agronomic crops; however, a clear understanding of the physiological mechanisms that interact to decrease source strength and drive yield loss has not been attained. To elucidate the underlying mechanisms contributing to inhibition of net carbon assimilation under drought stress, three cultivars of Gossypium hirsutum were grown in the field under contrasting irrigation regimes during the 2012 and 2013 growing season near Camilla, Georgia, USA. Physiological measurements were conducted on three sample dates during each growing season (providing a broad range of plant water status) and included, predawn and midday leaf water potential (ΨPD and ΨMD), gross and net photosynthesis, dark respiration, photorespiration, and chlorophyll a fluorescence. End-of-season lint yield was also determined. ΨPD ranged from -0.31 to -0.95MPa, and ΨMD ranged from -1.02 to -2.67MPa, depending upon irrigation regime and sample date. G. hirsutum responded to water deficit by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis, thereby limiting PN and decreasing lint yield (lint yield declines observed during the 2012 growing season only). Conversely, even extreme water deficit, causing a 54% decline in PN, did not negatively affect actual quantum yield, maximum quantum yield, or photosynthetic electron transport. It is concluded that PN is primarily limited in drought-stressed G. hirsutum by decreased stomatal conductance, along with increases in respiratory and photorespiratory carbon losses, not inhibition or down-regulation of electron transport through photosystem II. It is further concluded that ΨPD is a reliable indicator of drought stress and the need for irrigation in field-grown cotton.

  11. Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascorbate.

    Science.gov (United States)

    Jubany-Marí, T; Munné-Bosch, S; Alegre, L

    2010-05-01

    Abiotic stresses, such as drought, can increase the production of reactive oxygen species (ROS) in plants. An increase in ROS levels can provoke a partial or severe oxidation of cellular components inducing redox status changes, so continuous control of ROS and therefore of their metabolism is decisive under stress conditions. The present work focuses on the contribution of one pro-oxidant, hydrogen peroxide (H(2)O(2)) and one antioxidant, ascorbate (AA) and its redox status, in the control of plant responses to drought-oxidative stress in resistant plants growing in field conditions. After a general introduction to the concept of drought and oxidative stress and its relationship, we describe the role of H(2)O(2) in drought stress responses, emphasizing the importance of studies in H(2)O(2) subcellular localization, needed for a better understanding of its role in plant responses to stress. Although more studies are needed in the study of changes of redox status in plants subjected to stress, the AA pools and its redox status can be indicative of its involvement as a part of cellular mechanisms by which the plant respond to drought-induced oxidative stress. The mechanism of resistance and/or tolerance to drought-oxidative stress is complex, especially when studies are carried out in plants growing in field conditions, where an interaction of stresses occurs. This study sheds light on the mechanisms of plant responses to water-oxidative stress in plants growing in the field.

  12. GRAPEVINE FE-CHLOROSIS ON PODUNAVLJE VINEGROWING AREA

    Directory of Open Access Journals (Sweden)

    Mato Drenjančević

    2012-06-01

    Full Text Available The characteristic of Podunavlje vinegrowing area in the far east of the Republic of Croatia is carbonate soil with loess as a parent substrate. Chlorosis is common on this soil and it is often caused by excess concentrations of calcium and magnesium and deficiency of iron and zinc. It can also be resulted by inactivation, if it is transformed so that a plant can not use it. The lack of iron in grape vine is resulted in leaf vein, first in younger leaves where the venation remains green, and then marginal necrosis and defoliation are developed. The results of the study include the data based on the field researches of Podunavlje vinegrowing subregion and exact research of fertilization field trial. Field research of Podunavlje vinegrowing subregion, vineyards of Srijem, Erdut and Baranya were conducted in July 2007. The field research consisted of locating plantations, measuring plantations chlorosis, determining their general condition and measuring total concentration of chloroplast pigments by an indirect method (chlorophyll meter on the chlorotic and nonchlorotic plants of a grapevine. The intensity of a relative chlorosis was calculated from data measured by a chlorophyll meter. Field research was located on the production area of a company Agro-Ilok ltd. in Ilok, locality Radoš, and carried out during the period 2008 and 2009. It included cultivar Welsh Riesling, grapevine stock Kober 5BB, the most important white cultivar and grapevine stock in the vinegrowing region Continental Croatia. The experiment was set up according to a split plot method at 5x3 levels. The main factor A consisted of different chemical treatments in a basic fertilization: : A1 = 0 control without fertilization; A2 = 150 kg P2O5 + 300 K2O kg ha-1 (KCl; A3 = 150 kg P2O5 + 300 K2O kg ha-1 (K2SO4; A4 = 150 kg P2O5 + 300 K2O kg ha-1 (KCl + 25 kg ha-1 Fe - FeSO4x7H2O; A5 = 150 kg P2O5 + 300 K2O kg ha-1 (K2SO4 + 25 kg ha-1 Fe - FeSO4x7H2O. Factor B had got three levels

  13. Genetic and functional diversity of soil microbial communities associated to grapevine plants and wine quality

    Science.gov (United States)

    Mocali, Stefano; Fabiano, Arturo; Kuramae, Eiko; de Hollander, Matias; Kowalchuck, George; Vignozzi, Nadia; Valboa, Giuseppe; Pastorelli, Roberta; Fornasier, Flavio; Priori, Simone; Costantini, Edoardo

    2014-05-01

    Introduction Despite the economic importance of vineyards in Italy, the wine sector is facing severe challenges from increased global competition and climate changes. The quality of the grape at harvest has a strong direct impact on final wine quality and the strong relationship between wine composition, aroma, taste and soil properties has been outlined in the "Terroir concept". However, information on the impact of soil microbial communities on soil functions, grapevine plants and wine quality is still lacking. Objectives The aim of this study was to explore the composition and the potential functions of soil microbial communities associated to grapevine plants grown in two soils which showed similar physical, chemical and hydrological properties but which provided a different wine quality. Materials and Methods Soils from two sites of the Chianti region in Tuscany (BRO11 and BRO12) cultivated with the grapevine cultivar Sangiovese with contrasting wine quality were examined by means of a structural and functional approach: specifically, GeoChip microarrays, pyrosequencing of 16S rRNA and 18S rRNA genes, enzyme assays and measurements of some soil biological properties, such as microbial biomass C and soil respiration, were carried out. Results Enzyme assays and soil biological analyses revealed a higher biological activity in BRO11 as compared to BRO12. The structure of soil microbial communities, assessed using 16S and 18S rRNA gene-targeted pyrosequencing, revealed a higher presence of Actinobacteria in the BRO12 than in the BRO11 soil where, in contrast, the alfa-Proteobacteria are more abundant. GeoChip microarray analyses revealed a consistent difference in genes involved in S cycling, with a significant overrepresentation of sulfur-oxidation genes in BRO11 and increased levels of sulfate reduction genes BRO12. These results are consistent with the high content of sulfates and the abundance of Firmicutes such as Sulfobacillus thermosulfidooxidans in the BRO

  14. Cytoplasmic- and extracellular-proteome analysis of Diplodia seriata: a phytopathogenic fungus involved in grapevine decline

    Directory of Open Access Journals (Sweden)

    Cobos Rebeca

    2010-09-01

    Full Text Available Abstract Background The phytopathogenic fungus Diplodia seriata, whose genome remains unsequenced, produces severe infections in fruit trees (fruit blight and grapevines. In this crop is recognized as one of the most prominent pathogens involved in grapevine trunk disease (or grapevine decline. This pathology can result in the death of adult plants and therefore it produces severe economical losses all around the world. To date no genes or proteins have been characterized in D. seriata that are involved in the pathogenicity process. In an effort to help identify potential gene products associated with pathogenicity and to gain a better understanding of the biology of D. seriata, we initiated a proteome-level study of the fungal mycelia and secretome. Results Intracellular and secreted proteins from D. seriata collected from liquid cultures were separated using two-dimensional gel electrophoresis. About 550 cytoplasmic proteins were reproducibly present in 3 independent extractions, being 53 identified by peptide mass fingerprinting and tandem mass spectrometry. The secretome analysis showed 75 secreted proteins reproducibly present in 3 biological replicates, being 16 identified. Several of the proteins had been previously identified as virulence factors in other fungal strains, although their contribution to pathogenicity in D. seriata remained to be analyzed. When D. seriata was grown in a medium supplemented with carboxymethylcellulose, 3 proteins were up-regulated and 30 down-regulated. Within the up-regulated proteins, two were identified as alcohol dehydrogenase and mitochondrial peroxyrredoxin-1, suggesting that they could play a significant role in the pathogenicity process. As for the 30 down-regulated proteins, 9 were identified being several of them involved in carbohydrate metabolism. Conclusions This study is the first report on proteomics on D. seriata. The proteomic data obtained will be important to understand the pathogenicity

  15. High critical current density under magnetic fields in as-grown MgB{sub 2} thin films deposited by molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Haruta, M [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Fujiyoshi, T [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Kihara, S [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Sueyoshi, T [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Miyahara, K [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Harada, Y [Iwate Industry Promotion Centre, Iioka-shinden 3-35-2, Morioka, Iwate 020-0852 (Japan); Yoshizawa, M [Graduate School of Engineering, Iwate University, Ueda 4-3-5, Morioka, Iwate 020-8551 (Japan); Takahashi, T [Graduate School of Engineering, Iwate University, Ueda 4-3-5, Morioka, Iwate 020-8551 (Japan); Iriuda, H [Graduate School of Engineering, Iwate University, Ueda 4-3-5, Morioka, Iwate 020-8551 (Japan); Oba, T [Graduate School of Engineering, Iwate University, Ueda 4-3-5, Morioka, Iwate 020-8551 (Japan); Awaji, S [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Watanabe, K [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Miyagawa, R [Kumamoto Industrial Research Institute, 3-11-38 Higashi-machi, Kumamoto 862-0901 (Japan)

    2007-01-15

    As-grown MgB{sub 2} thin films were prepared by a MBE method under the conditions of low temperature, low deposition rate and high vacuum for applications in electric devices. The MgB{sub 2} thin films deposited on MgO and Ti buffered ZnO substrates have considerably higher J{sub c} under magnetic fields among MgB{sub 2} thin films reported before. The value of J{sub c} for the MgB{sub 2} thin film deposited on Ti buffered ZnO has been 5.8 x 10{sup 5} A cm{sup -2} at 10 K, 5 T in the magnetic field applied parallel to the c axis. In the angular dependence of J{sub c}, the peak of J{sub c} attributable to c-axis-correlated pinning centres has been observed when the magnetic field was applied parallel to the c axis. (rapid communication)

  16. Effect of liming on nickel bioavailability and toxicity to oat and soybean grown in field soils containing aged emissions from a nickel refinery.

    Science.gov (United States)

    Cioccio, Stephen; Gopalapillai, Yamini; Dan, Tereza; Hale, Beverley

    2017-04-01

    Remediation of soils elevated in trace metals so that the soils may provide ecosystems services is typically achieved through pH adjustment or addition of sorbents. The present study aimed to generate higher-tier in situ toxicity data for elevated nickel (Ni) in soils with and without lime addition and to explore the effect of liming on soil chemistry and bioavailability of Ni to plants. A multiyear study of agronomic yield of field-grown oat and soybean occurred in 3 adjacent fields that had received air emissions from a Ni refinery for 66 yr. The soil Ni concentration in the plots ranged between 1300 mg/kg and 4900 mg/kg, and each field was amended with either 50 Mg/ha, 10 Mg/ha, or 0 Mg/ha (or tonnes/ha) of crushed dolomitic limestone. As expected, liming raised the pH of the soils and subsequently reduced the plant availability of Ni. Toxicity thresholds (effective concentrations causing 50% reduction in growth) for limed soils supported the hypothesis that liming reduces toxicity. Relationships were found between relative yield and soil cation exchange capacity and between relative yield and soil pH, corroborating findings of the European Union Risk Assessments and the Metals in Asia studies, respectively. Higher tier ecotoxicity data such as these are a valuable contribution to risk assessment for Ni in soils. Environ Toxicol Chem 2017;36:1110-1119. © 2016 SETAC. © 2016 SETAC.

  17. Populations of Bemisia tabaci (Homoptera: Aleyrodidae) on cotton grown in open-top field chambers enriched with CO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Butler, G.D. Jr.; Kimball, B.A.; Mauney, J.R.

    1985-02-01

    Atmospheric CO/sub 2/ levels are anticipated to rise from the current ambient level of ca. 350 ..mu..l/liter to 500-600 ..mu..l/liter in the next 50 to 75 years. Plant scientists are artificially enhancing the CO/sub 2/ environment of crop plants to increase photosynthesis, which is currently limited by inadequate levels of CO/sub 2/. It is not known how increases of CO/sub 2/ might affect consumers in the food chain. Population levels of sweet potato whitefly (SPWF), Bermisiaa tabaci (Gennadius), were assessed with sticky traps placed in a field experiment wherein cotton was grown in open-top field chambers that were enriched with CO/sub 2/ at levels approaching 200% ambient concentration levels. Although trapping started at the first of June, only an occasional SPWF was caught until early August. At that time populations began to increase at an exponential rate similar to that observed in commercial cotton fields in Arizona and California in previous years. There was no difference in rate of buildup of SPWF in ambient and CO/sub 2/-enriched chambers in either wet or dry irrigation treatment. Thus, it seems that raised CO/sub 2/ levels, either natural or artificial, do not affect SPWF populations.

  18. Absence of internalization of Escherichia coli O157:H7 into germinating tissue of field-grown leafy greens.

    Science.gov (United States)

    Erickson, Marilyn C; Webb, Cathy C; Díaz-Pérez, Juan Carlos; Davey, Lindsey E; Payton, Alison S; Flitcroft, Ian D; Phatak, Sharad C; Doyle, Michael P

    2014-02-01

    Both growth chamber and field studies were conducted to investigate the potential for Escherichia coli O157:H7 to be internalized into leafy green tissue when seeds were germinated in contaminated soil. Internalized E. coli O157:H7 was detected by enrichment in both spinach (Spinacia oleracea L.) and lettuce (Lactuca sativa L.) seedlings when seeds were germinated within the growth chamber in autoclaved and nonautoclaved soil, respectively, contaminated with E. coli O157:H7 at 2.0 and 3.8 log CFU/g, respectively. Internalized E. coli O157:H7 populations could be detected by enumeration within leafy green tissues either by increasing the pathogen levels in the soil or by autoclaving the soil. Attempts to maximize the exposure of seed to E. coli O157:H7 by increasing the mobility of the microbe either through soil with a higher moisture content or through directly soaking the seeds in an E. coli O157:H7 inoculum did not increase the degree of internalization. Based on responses obtained in growth chamber studies, internalization of E. coli O157:H7 surrogates (natural isolates of Shiga toxin-negative E. coli O157:H7 or recombinant [stx- and eae-negative] outbreak strains of E. coli O157:H7) occurred to a slightly lesser degree than did internalization of the virulent outbreak strains of E. coli O157:H7. The apparent lack of internalized E. coli O157:H7 when spinach and lettuce were germinated from seed in contaminated soil (ca. 3 to 5 log CFU/g) in the field and the limited occurrence of surface contamination on the seedlings suggest that competition from indigenous soil bacteria and environmental stresses were greater in the field than in the growth chamber. On the rare occasion that soil contamination with E. coli O157:H7 exceeded 5 log CFU/g in a commercial field, this pathogen probably would not be internalized into germinating leafy greens and/or would not still be present at the time of harvest.

  19. The effects of PLA biodegradable and polypropylene nonwoven crop mulches on selected components of tomato grown in the field

    OpenAIRE

    Zawiska Izabela; Siwek Piotr

    2014-01-01

    The results of two years (2010-2011) of field studies using two types of nonwoven mulches (one biodegradable, polylactic acid PLA 54 g m-2, and traditional polypropylene PP 50 g m-2) on the yield and quality of tomato are presented. Seeds of tomato (‘Mundi’ F1) were sown in a greenhouse, in containers filled with perlite and sand, and then the plants at the cotyledon stage were replanted in multipot trays filled with substrate for vegetable plants. In the last week of May, seedlings were plan...

  20. Expression QTL mapping in grapevine--revisiting the genetic determinism of grape skin colour.

    Science.gov (United States)

    Huang, Yung-Fen; Bertrand, Yves; Guiraud, Jean-Luc; Vialet, Sandrine; Launay, Amandine; Cheynier, Véronique; Terrier, Nancy; This, Patrice

    2013-06-01

    Expression quantitative locus (eQTL) mapping was proposed as a valuable approach to dissect the genetic basis of transcript variation, one of the prime causes of natural phenotypic variation. Few eQTL studies have been performed on woody species due to the difficulty in sample homogenisation. Based on previous knowledge on berry colour formation, we performed eQTL mapping in field experimentation of grapevine with appropriate sampling criteria. The transcript level of VvUFGT, a key enzyme for anthocyanin synthesis was measured by real-time qRT-PCR in grape berry on a 191-individual pseudo-F1 progeny, derived from a cross between Syrah and Grenache cultivars. Two eQTLs were identified: one, explaining 20%, of genotypic variance and co-locating with VvUFGT itself (cis-eQTL), was principally due to the contrast between Grenache alleles; the other, explaining 35% of genotypic variance, was a trans-eQTL due to Syrah allelic contrast and co-located with VvMYBAs, transcription factors known to activate the expression of VvUFGT. This study assessed and validated the feasibility of eQTL mapping approach in grapevine and offered insights and new hypotheses on grape skin colour formation.

  1. An innovative pot system for monitoring the effects of water stress on grapevines and grape quality

    Science.gov (United States)

    Puccioni, Sergio; Leprini, Marco; Mocali, Stefano; Perria, Rita; Priori, Simone; Storchi, Paolo; Zombardo, Alessandra; Costantini, Edoardo

    2016-04-01

    The advantage of a pot system is the possibility to control many variables and factors with a large number of replicates, obtaining statistically significant results in only one year of experimentation. An innovative pot system for the monitoring of grapevine water stress was set up. The system consists of 99 pots of 70 liters, filled by 3 different soils collected from premium vineyards of the Chianti Classico district (Tuscany). The soils showed different texture (clay-loam, loam and sandy-loam), different gravel and carbonate content, and different available water capacity (AWC). The same soils had been field monitored for grapevine water stress; therefore it was possible to compare the grapevine behaviour both in pot and in field conditions. The grapevine cultivar was Pinot noir clone ENTAV 115, which can be used to investigate the genetic expression in response to environmental factors, since its genome has been sequenced. Different rootstocks theses were compared: not grafted, 1103 Paulsen and M101-14. Each combination rootstock-soil was repeated 9 times. Every pot was equipped for drip irrigation and with electrodes for soil moisture determination by TDR. A non-stop automated control unit recorded meteorological data (temperature and rainfalls), soil temperature and water potential on 9 selected pots. These 9 selected pots were also used to calibrate a model for soil water volume/tension curve. Soil, leaves and grapes samples from each pot were collected for microbial community determination, through NGS analysis. A preliminary study was based on testing the ability of the system to simulate the natural growing conditions of the grapevines. Therefore the grape performances of the potted plants were compared to those of plants cultivated in the vineyards where the soils were taken. In July 2015 three levels of water supply were tested during 5 weeks (up to veraison) in order to study the effects of water stress on the plants and the grape. Later, all the pots

  2. Fruit-localized photoreceptors increase phenolic compounds in berry skins of field-grown Vitis vinifera L. cv. Malbec.

    Science.gov (United States)

    González, Carina Verónica; Fanzone, Martín Leandro; Cortés, Leandro Emanuel; Bottini, Rubén; Lijavetzky, Diego Claudio; Ballaré, Carlos Luis; Boccalandro, Hernán Esteban

    2015-02-01

    Sunlight exposure has multiple effect on fruits, as it affects the light climate perceived by fruit photoreceptors and fruit tissue temperature. In grapes (Vitis vinifera L.), light exposure can have a strong effect on fruit quality and commercial value; however, the mechanisms of light action are not well understood. The role of fruit-localized photoreceptors in the control of berry quality traits was evaluated under field conditions in a commercial vineyard in Mendoza (Argentina). Characterization of the diurnal dynamics of the fruit light environment in a vertical trellis system indicated that clusters were shaded by leaves during most of the photoperiod. Supplementation of the fruit light environment from 20 days before veraison until technological harvest showed that red (R, 660 nm) and blue (B, 470 nm) light strongly increased total phenolic compound levels at harvest in the berry skins without affecting sugar content, acidity or berry size. Far-red (FR, 730 nm) and green (G, 560 nm) light supplementation had relatively small effects. The stimulation of berry phytochromes and cryptochromes favored accumulation of flavonoid and non-flavonoid compounds, including anthocyanins, flavonols, flavanols, phenolic acids and stilbenes. These results demonstrate that the chemical composition of grape berries is modulated by the light quality received by the clusters under field conditions, and that fruit photoreceptors are not saturated even in areas of high insolation and under management systems that are considered to result in a relatively high exposure of fruits to solar radiation. Therefore, manipulation of the light environment or the light sensitivity of fruits could have significant effects on critical grape quality traits. Published by Elsevier Ltd.

  3. Bacterial endophytic communities in the grapevine depend on pest management.

    Science.gov (United States)

    Campisano, Andrea; Antonielli, Livio; Pancher, Michael; Yousaf, Sohail; Pindo, Massimo; Pertot, Ilaria

    2014-01-01

    Microbial plant endophytes are receiving ever-increasing attention as a result of compelling evidence regarding functional interaction with the host plant. Microbial communities in plants were recently reported to be influenced by numerous environmental and anthropogenic factors, including soil and pest management. In this study we used automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and pyrosequencing of 16S rDNA to assess the effect of organic production and integrated pest management (IPM) on bacterial endophytic communities in two widespread grapevines cultivars (Merlot and Chardonnay). High levels of the dominant Ralstonia, Burkholderia and Pseudomonas genera were detected in all the samples We found differences in the composition of endophytic communities in grapevines cultivated using organic production and IPM. Operational taxonomic units (OTUs) assigned to the Mesorhizobium, Caulobacter and Staphylococcus genera were relatively more abundant in plants from organic vineyards, while Ralstonia, Burkholderia and Stenotrophomonas were more abundant in grapevines from IPM vineyards. Minor differences in bacterial endophytic communities were also found in the grapevines of the two cultivars.

  4. Physiological and agronomical responses of Syrah grapevine under protected cultivation

    Directory of Open Access Journals (Sweden)

    Claudia Rita de Souza

    2015-01-01

    Full Text Available The performance of Syrah grapevine under protected cultivation with different plastic films was evaluated during 2012 and 2013 seasons in South of Minas Gerais State. Agronomical and physiological measurements were done on eight years old grapevines, grafted onto ‘1103 Paulsen’ rootstock cultivated under uncovered conditions, covered with transparent and with diffuse plastic films. Both plastic covers induced the highest shoot growth rate and specific leaf area. The diffuse plastic induced greater differences on leaf area, pruning weight and leaf chlorophyll content as compared to uncovered vines. Grapevines under diffuse plastic also had the lowest rates of photosynthesis, stomatal conductance and transpiration. Leaf starch, glucose and fructose contents were not affected by treatment, but leaf sucrose was reduced by transparent plastic. The leaf and stem water potential were higher under diffuse plastic. In 2013, grapevines under diffuse plastic showed the highest yields mainly due to decreased rot incidence and increased cluster weight. Furthermore, berries under diffuse plastic showed the highest anthocyanins concentration. The use of diffuse plastic induces more agronomical benefits to produce Syrah grape under protected cultivation.

  5. Messenger RNA exchange between scions and rootstocks in grafted grapevines

    Science.gov (United States)

    We demonstrated the existence of genome-scale mRNA exchange in grafted grapevines, a woody fruit species with significant economic importance. By using diagnostic SNPs derived from high throughput genome sequencing, we identified more than three thousand genes transporting mRNAs across graft junctio...

  6. Pollen Morphology and Boron Concentration in Floral Tissues as Factors Triggering Natural and GA-Induced Parthenocarpic Fruit Development in Grapevine

    Science.gov (United States)

    Pérez-Díaz, Ricardo; Yáñez, Mónica; Tapia, Jaime; Moreno, Yerko

    2015-01-01

    Parthenocarpic fruit development (PFD) reduces fruit yield and quality in grapevine. Parthenocarpic seedless berries arise from fruit set without effective fertilization due to defective pollen germination. PFD has been associated to micronutrient deficiency but the relation of this phenomenon with pollen polymorphism has not been reported before. In this work, six grapevine cultivars with different tendency for PFD and grown under micronutrient-sufficient conditions were analyzed to determine pollen structure and germination capability as well as PFD rates. Wide variation in non-germinative abnormal pollen was detected either among cultivars as well as for the same cultivar in different growing seasons. A straight correlation with PFD rates was found (R2 = 0.9896), suggesting that natural parthenocarpy is related to defective pollen development. Such relation was not observed when PFD was analyzed in grapevine plants exposed to exogenous gibberellin (GA) or abscissic acid (ABA) applications at pre-anthesis. Increase (GA treatment) or reduction (ABA treatment) in PFD rates without significative changes in abnormal pollen was determined. Although these plants were maintained at sufficient boron (B) condition, a down-regulation of the floral genes VvBOR3 and VvBOR4 together with a reduction of floral B content in GA-treated plants was established. These results suggest that impairment in B mobility to reproductive tissues and restriction of pollen tube growth could be involved in the GA-induced parthenocarpy. PMID:26440413

  7. Grapevine phenology and climate change in Georgia

    Science.gov (United States)

    Cola, G.; Failla, O.; Maghradze, D.; Megrelidze, L.; Mariani, L.

    2016-10-01

    While the climate of Western Europe has been deeply affected by the abrupt climate change that took place in the late `1980s of the twentieth century, a similar signal is detected only few years later, in 1994, in Georgia. Grapevine phenology is deeply influenced by climate and this paper aimed to analyze how phenological timing changed before and after the climatic change of 1994. Availability of thermal resources in the two climatic phases for the five altitudinal belts in the 0-1250-m range was analyzed. A phenological dataset gathered in two experimental sites during the period 2012-2014, and a suitable thermal dataset was used to calibrate a phenological model based on the normal approach and able to describe BBCH phenological stages 61 (beginning of flowering), 71 (fruit set), and 81 (veraison). Calibration was performed for four relevant Georgian varieties (Mtsvane Kakhuri, Rkatsiteli, Ojaleshi, and Saperavi). The model validation was performed on an independent 3-year dataset gathered in Gorizia (Italy). Furthermore, in the case of variety Rkatsiteli, the model was applied to the 1974-2013 thermal time series in order to obtain phenological maps of the Georgian territory. Results show that after the climate change of 1994, Rkatsiteli showed an advance, more relevant at higher altitudes where the whole increase of thermal resource was effectively translated in phenological advance. For instance the average advance of veraison was 5.9 days for 250-500 m asl belt and 18.1 days for 750-1000 m asl). On the other hand, at lower altitudes, phenological advance was depleted by superoptimal temperatures. As a final result, some suggestions for the adaptation of viticultural practices to the current climatic phase are provided.

  8. Sowing Density: A Neglected Factor Fundamentally Affecting Root Distribution and Biomass Allocation of Field Grown Spring Barley (Hordeum Vulgare L.).

    Science.gov (United States)

    Hecht, Vera L; Temperton, Vicky M; Nagel, Kerstin A; Rascher, Uwe; Postma, Johannes A

    2016-01-01

    Studies on the function of root traits and the genetic variation in these traits are often conducted under controlled conditions using individual potted plants. Little is known about root growth under field conditions and how root traits are affected by agronomic practices in particular sowing density. We hypothesized that with increasing sowing density, root length density (root length per soil volume, cm cm(-3)) increases in the topsoil as well as specific root length (root length per root dry weight, cm g(-1)) due to greater investment in fine roots. Therefore, we studied two spring barley cultivars at ten different sowing densities (24-340 seeds m(-2)) in 2 consecutive years in a clay loam field in Germany and established sowing density dose-response curves for several root and shoot traits. We took soil cores for measuring roots up to a depth of 60 cm in and between plant rows (inter-row distance 21 cm). Root length density increased with increasing sowing density and was greatest in the plant row in the topsoil (0-10 cm). Greater sowing density increased specific root length partly through greater production of fine roots in the topsoil. Rooting depth (D50) of the major root axes (root diameter class 0.4-1.0 mm) was not affected. Root mass fraction decreased, while stem mass fraction increased with sowing density and over time. Leaf mass fraction was constant over sowing density but greater leaf area was realized through increased specific leaf area. Considering fertilization, we assume that light competition caused plants to grow more shoot mass at the cost of investment into roots, which is partly compensated by increased specific root length and shallow rooting. Increased biomass per area with greater densities suggest that density increases the efficiency of the cropping system, however, declines in harvest index at densities over 230 plants m(-2) suggest that this efficiency did not translate into greater yield. We conclude that plant density is a

  9. Anatomy, chlorophyll content and photosynthetic potential in grapevine leaves under plastic cover

    Directory of Open Access Journals (Sweden)

    Geraldo Chavarria

    2012-09-01

    Full Text Available The present study evaluated the anatomy, chlorophyll content and photosynthetic potential of grapevine leaves grown under plastic cover. The experiment was carried out in vineyards of Moscato Giallo cultivar covered and uncovered with plastic. A block design with 10 selected plants was used for each area (covered and uncovered. Twelve leaves (six of them fully exposed to solar radiation and six grown under shaded conditions were collected from each area and were fixed and analyzed microscopically (thickness of the adaxial and abaxial epidermis and of the palisade and spongy parenchymas. Chlorophyll content and photosynthetic potential were determined in the vineyard at veraison and after harvest. Plastic covering increased the thickness of the palisade parenchyma in exposed and shaded leaves due to solar radiation restriction. However, the leaves from the covered vineyard did not have the same response to the restriction of solar radiation, as observed in the uncovered vineyard. The thickness of the adaxial and abaxial epidermis and of the spongy parenchyma did not vary due to solar radiation restriction. Chlorophyll content increased in the leaves of covered plants. The photosynthetic potential of the vines is not affected by solar radiation restriction imposed by plastic cover due to anatomical modification in leaves.

  10. Distinctive Anthocyanin Accumulation Responses to Temperature and Natural UV Radiation of Two Field-Grown Vitis vinifera L. Cultivars

    Directory of Open Access Journals (Sweden)

    Ana Fernandes de Oliveira

    2015-01-01

    Full Text Available The responses of two red grape varieties, Bovale Grande (syn. Carignan and Cannonau (syn. Grenache, to temperature and natural UV radiation were studied in a three-years field experiment conducted in Sardinia (Italy, under Mediterranean climate conditions. Vines were covered with plastic films with different transmittances to UV radiation and compared to uncovered controls. Light intensity and spectral composition at the fruit zone were monitored and berry skin temperature was recorded from veraison. Total skin anthocyanin content (TSA and composition indicated positive but inconsistent effects of natural UV light. Elevated temperatures induced alterations to a greater extent, decreasing TSA and increasing the degree of derivatives acylation. In Cannonau total soluble solids increases were not followed by increasing TSA as in Bovale Grande, due to both lower phenolic potential and higher sensitivity to permanence of high temperatures. Multi linear regression analysis tested the effects of different ranges of temperature as source of variation on anthocyanin accumulation patterns. To estimate the thermal time for anthocyanin accumulation, the use of normal heat hours model had benefit from the addition of predictor variables that take into account the permanence of high (>35 °C and low (<15 °C and <17 °C temperatures during ripening.

  11. Self-assembling iron oxyhydroxide/oxide tubular structures: laboratory-grown and field examples from Rio Tinto

    Science.gov (United States)

    Barge, Laura M.; Cardoso, Silvana S. S.; Cartwright, Julyan H. E.; Doloboff, Ivria J.; Flores, Erika; Macías-Sánchez, Elena; Sainz-Díaz, C. Ignacio; Sobrón, Pablo

    2016-11-01

    Rio Tinto in southern Spain has become of increasing astrobiological significance, in particular for its similarity to environments on early Mars. We present evidence of tubular structures from sampled terraces in the stream bed at the source of the river, as well as ancient, now dry, terraces. This is the first reported finding of tubular structures in this particular environment. We propose that some of these structures could be formed through self-assembly via an abiotic mechanism involving templated precipitation around a fluid jet, a similar mechanism to that commonly found in so-called chemical gardens. Laboratory experiments simulating the formation of self-assembling iron oxyhydroxide tubes via chemical garden/chemobrionic processes form similar structures. Fluid-mechanical scaling analysis demonstrates that the proposed mechanism is plausible. Although the formation of tube structures is not itself a biosignature, the iron mineral oxidation gradients across the tube walls in laboratory and field examples may yield information about energy gradients and potentially habitable environments.

  12. Comprehensive Evaluation of the Properties of Nanocrystalline Diamond Coatings Grown Using CVD with E/H Field Glow Discharge Stabilization

    Directory of Open Access Journals (Sweden)

    Iu. Nasieka

    2015-01-01

    Full Text Available The nanocrystalline diamond films (coatings were prepared using the plasma enhanced chemical vapor deposition (PECVD technique. In this method, direct current (DC glow discharge in the crossed E/H fields was used to activate the gas phase. The diamond coatings were deposited from the working gas mixture CH4/H2 with addition of nitrogen in various concentrations. It was ascertained that addition of N2 to the working gas mixture leads to reduction in the sizes of diamond grains as well as to the substantial decrease in the resistivity of the studied films. The electrophysical data are in good agreement with the changes induced by varying the N2 content in the Raman scattering spectra. The increase in the N2 concentration causes significant lowering of the crystalline diamond related peak and increase in the intensity of the peaks related to the sp2-bonded carbon. These changes in the spectra indicate significant disordering of the structure of prepared films and its uniformity in the nanodiamond film volume. With the great possibility, it is associated with a decrease in the sizes of diamond crystalline grains and tendency of NCD film to amorphization.

  13. Lime and Phosphate Amendment Can Significantly Reduce Uptake of Cd and Pb by Field-Grown Rice

    Directory of Open Access Journals (Sweden)

    Rongbo Xiao

    2017-03-01

    Full Text Available Agricultural soils are suffering from increasing heavy metal pollution, among which, paddy soil polluted by heavy metals is frequently reported and has elicited great public concern. In this study, we carried out field experiments on paddy soil around a Pb-Zn mine to study amelioration effects of four soil amendments on uptake of Cd and Pb by rice, and to make recommendations for paddy soil heavy metal remediation, particularly for combined pollution of Cd and Pb. The results showed that all the four treatments can significantly reduce the Cd and Pb content in the late rice grain compared with the early rice, among which, the combination amendment of lime and phosphate had the best remediation effects where rice grain Cd content was reduced by 85% and 61%, respectively, for the late rice and the early rice, and by 30% in the late rice grain for Pb. The high reduction effects under the Ca + P treatment might be attributed to increase of soil pH from 5.5 to 6.7. We also found that influence of the Ca + P treatment on rice production was insignificant, while the available Cd and Pb content in soil was reduced by 16.5% and 11.7%, respectively.

  14. Community structures and antagonistic activities of the bacteria associated with surface-sterilized pepper plants grown in different field soils.

    Science.gov (United States)

    Kang, Sin Ae; Han, Jae Woo; Kim, Beom Seok

    2016-12-01

    Endophytic bacteria may act individually or in consortia in controlling certain plant diseases. In this study, pepper plants (Capsicum annuum L. cv. Nokkwang) were cultivated in glasshouse conditions using field soils collected from two different geographic locations, Deokso (DS) and Gwangyang (GY) in Korea. Community structure and antifungal activity of pepper endophytic bacteria were analyzed using culture-independent (PCR-DGGE) and culture-dependent (plating) methods, respectively. Dissimilarities were observed between DGGE profiles of DS and GY samples at all plant tissues. However, sequencing of the major DGGE bands revealed an enrichment of Firmicutes in the leaves of plants propagated in either soil. Similar results were observed with the culturable assays. Firmicutes dominated the isolates from both leaf samples, DS leaf (100 %) and GY leaf (83.3 %), although the genus compositions of DS leaf and GY leaf isolates were different. We assessed the antifungal activity of each isolate recovered to better understand the potential role that these endophytic bacteria may play. Of the 27 representative isolates from DS plant samples, 17 isolates (63.0 %) had antagonistic activity against at least one of the fungi tested. Seventeen isolates from GY plant samples (58.6 %) displayed antagonistic properties. The results show that the endophytic communities differ in the same plant species when propagated in different soils. Exploring the internal tissues of plants growing in diverse soil environments could be a way to find potential candidates for biocontrol agents.

  15. Short day transcriptomic programming during induction of dormancy in grapevine

    Directory of Open Access Journals (Sweden)

    Anne Y Fennell

    2015-11-01

    Full Text Available Bud dormancy in grapevine is an adaptive strategy for the survival of drought, high and low temperatures and freeze dehydration stress that limit the range of cultivar adaptation. Therefore, development of a comprehensive understanding of the biological mechanisms involved in bud dormancy is needed to promote advances in selection and breeding, and to develop improved cultural practices for existing grape cultivars. The seasonally indeterminate grapevine, which continuously develops compound axillary buds during the growing season, provides an excellent system for dissecting dormancy, because the grapevine does not transition through terminal bud development prior to dormancy. This study used gene expression patterns and targeted metabolite analysis of two grapevine genotypes, that are short photoperiod responsive (Vitis riparia and non-responsive (V. hybrid, Seyval for dormancy development, to determine differences between bud maturation and dormancy commitment. Grapevine gene expression and metabolites were monitored at seven time points under long (LD, 15 h and short (SD, 13 h day treatments. The use of age-matched buds and a small (2h photoperiod difference minimized developmental differences and allowed us to separate general photoperiod from dormancy specific gene responses. Gene expression profiles indicated three distinct phases (perception, induction and dormancy in SD-induced dormancy development in V. riparia. Different genes from the NAC DOMAIN CONTAINING PROTEIN 19 and WRKY families of transcription factors were differentially expressed in each phase of dormancy. Metabolite and transcriptome analyses indicated ABA, trehalose, raffinose and resveratrol compounds have a potential role in dormancy commitment. Finally, a comparison between V. riparia compound axillary bud dormancy and dormancy responses in other species emphasized the relationship between dormancy and the expression of genes associated with C3HC4-TYPE RING FINGER, NAC

  16. Short day transcriptomic programming during induction of dormancy in grapevine

    Science.gov (United States)

    Fennell, Anne Y.; Schlauch, Karen A.; Gouthu, Satyanarayana; Deluc, Laurent G.; Khadka, Vedbar; Sreekantan, Lekha; Grimplet, Jerome; Cramer, Grant R.; Mathiason, Katherine L.

    2015-01-01

    Bud dormancy in grapevine is an adaptive strategy for the survival of drought, high and low temperatures and freeze dehydration stress that limit the range of cultivar adaptation. Therefore, development of a comprehensive understanding of the biological mechanisms involved in bud dormancy is needed to promote advances in selection and breeding, and to develop improved cultural practices for existing grape cultivars. The seasonally indeterminate grapevine, which continuously develops compound axillary buds during the growing season, provides an excellent system for dissecting dormancy, because the grapevine does not transition through terminal bud development prior to dormancy. This study used gene expression patterns and targeted metabolite analysis of two grapevine genotypes that are short photoperiod responsive (Vitis riparia) and non-responsive (V. hybrid, Seyval) for dormancy development to determine differences between bud maturation and dormancy commitment. Grapevine gene expression and metabolites were monitored at seven time points under long (LD, 15 h) and short (SD, 13 h) day treatments. The use of age-matched buds and a small (2 h) photoperiod difference minimized developmental differences and allowed us to separate general photoperiod from dormancy specific gene responses. Gene expression profiles indicated three distinct phases (perception, induction and dormancy) in SD-induced dormancy development in V. riparia. Different genes from the NAC DOMAIN CONTAINING PROTEIN 19 and WRKY families of transcription factors were differentially expressed in each phase of dormancy. Metabolite and transcriptome analyses indicated ABA, trehalose, raffinose and resveratrol compounds have a potential role in dormancy commitment. Finally, a comparison between V. riparia compound axillary bud dormancy and dormancy responses in other species emphasized the relationship between dormancy and the expression of RESVERATROL SYNTHASE and genes associated with C3HC4-TYPE RING

  17. Effect of a transverse magnetic field on solidification morphology and microstructures of pure Sn and Sn-15 wt% Pb alloys grown by a Czochralski method

    Science.gov (United States)

    Shen, Zhe; Zhong, Yunbo; Wang, Huai; Ren, Weili; Lei, Zuosheng; Ren, Zhongming

    2015-12-01

    The pure Sn and Sn-15 wt% Pb alloys were grown by a Czochralski method under various magnetic flux densities in this paper. The influence of thermoelectric magnetic (TEM) flows and buoyancy flows on solidification morphology, macrosegregation and microstructures had been investigated experimentally, and the velocity magnitude of TEM flows and buoyancy flows had been studied by 3D numerical simulations. The experimental results indicate that the modification of solidification morphology and microstructures is attributed to the unidirectional Pb solutes transport caused by TEM flows. The 3D numerical simulations results show that the buoyancy flows dominate the flows in the melt under a weak transverse magnetic field (B≤0.43 T), and the unidirectional TEM flows at the vicinity of solid-liquid interface become the dominant flows in the melt with the increase of magnetic field. The interaction of TEM flows and buoyancy flows affecting solidification morphology and microstructures during directional solidification of alloys by the Czochralski method under various magnetic flux densities has been discussed and a corresponding simple evolution mechanism of dendritic growth has been proposed.

  18. Expression pattern conferred by a glutamic acid-rich protein gene promoter in field-grown transgenic cassava (Manihot esculenta Crantz).

    Science.gov (United States)

    Beltrán, J; Prías, M; Al-Babili, S; Ladino, Y; López, D; Beyer, P; Chavarriaga, P; Tohme, J

    2010-05-01

    A major constraint for incorporating new traits into cassava using biotechnology is the limited list of known/tested promoters that encourage the expression of transgenes in the cassava's starchy roots. Based on a previous report on the glutamic-acid-rich protein Pt2L4, indicating a preferential expression in roots, we cloned the corresponding gene including promoter sequence. A promoter fragment (CP2; 731 bp) was evaluated for its potential to regulate the expression of the reporter gene GUSPlus in transgenic cassava plants grown in the field. Intense GUS staining was observed in storage roots and vascular stem tissues; less intense staining in leaves; and none in the pith. Consistent with determined mRNA levels of the GUSPlus gene, fluorometric analyses revealed equal activities in root pulp and stems, but 3.5 times less in leaves. In a second approach, the activity of a longer promoter fragment (CP1) including an intrinsic intron was evaluated in carrot plants. CP1 exhibited a pronounced tissue preference, conferring high expression in the secondary phloem and vascular cambium of roots, but six times lower expression levels in leaf vascular tissues. Thus, CP1 and CP2 may be useful tools to improve nutritional and agronomical traits of cassava by genetic engineering. To date, this is the first study presenting field data on the specificity and potential of promoters for transgenic cassava.

  19. Application of Selected Reaction Monitoring Mass Spectrometry to Field Grown Crop Plants To Allow Dissection of the Molecular Mechanisms of Abiotic Stress Tolerance.

    Directory of Open Access Journals (Sweden)

    Richard P. Jacoby

    2013-02-01

    Full Text Available One major constraint upon the application of molecular crop breeding approaches is the small number of genes linked to agronomically desirable traits through defined biochemical mechanisms. Proteomic investigations of crop plants under abiotic stress treatments have identified many proteins that differ in control versus stress comparisons, however this broad profiling of cell physiology is poorly suited to ranking the effects and identifying the specific proteins that are causative in agronomically relevant traits. Here we will reason that insights into a protein’s function, its biochemical process and links to stress tolerance are more likely to arise through approaches that evaluate these differential abundances of proteins and include varietal comparisons, precise discrimination of protein isoforms, enrichment of functionally related proteins and integration of proteomic datasets with physiological measurements of both lab and field grown plants. We will briefly explain how applying the emerging proteomic technology of multiplexed selective reaction monitoring mass spectrometry with its accuracy and throughput can facilitate and enhance these approaches and provide a clear means to rank the growing cohort of stress responsive proteins. We will also highlight the benefit of integrating proteomic analyses with cultivar-specific genetic databases and physiological assessments of cultivar performance in relevant field environments for revealing deeper insights into molecular crop improvement.

  20. Factors Affecting Polyphenol Biosynthesis in Wild and Field Grown St. John’s Wort (Hypericum perforatum L. Hypericaceae/Guttiferae

    Directory of Open Access Journals (Sweden)

    Gianni Sacchetti

    2009-02-01

    Full Text Available The increasing diffusion of herbal products is posing new questions: why are products so often different in their composition and efficacy? Which approach is more suitable to increase the biochemical productivity of medicinal plants with large-scale, low-cost solutions? Can the phytochemical profile of a medicinal plant be modulated in order to increase the accumulation of its most valuable constituents? Will polyphenol-rich medicinal crops ever be traded as commodities? Providing a proactive answer to such questions is an extremely hard task, due to the large number of variables involved: intraspecific chemodiversity, plant breeding, ontogenetic stage, post-harvest handling, biotic and abiotic factors, to name but a few. An ideal path in this direction should include the definition of optimum pre-harvesting and post-harvesting conditions and the availability of specific Good Agricultural Practices centered on secondary metabolism enhancement. The first steps to be taken are undoubtedly the evaluation and the organization of scattered data regarding the diverse factors involved in the optimization of medicinal plant cultivation, in order to provide an interdisciplinary overview of main possibilities, weaknesses and drawbacks. This review is intended to be a synopsis of the knowledge on this regard focused on Hypericum perforatum L. (Hypericaceae/Guttiferae secondary metabolites of phenolic origin, with the aim to provide a reference and suggest an evolution towards the maximization of St. John's Wort bioactive constituents. Factors considered emerged not only from in-field agronomic results, but also from physiological, genetical, biotic, abiotic and phytochemical data that could be scaled up to the application level. To increase quality for final beneficiaries, growers’ profits and ultimately transform phenolic-rich medicinal crops into commodities, the emerging trend suggests an integrated and synergic approach. Agronomy and genetics will

  1. Synergistic Effects of Agronet Covers and Companion Cropping on Reducing Whitefly Infestation and Improving Yield of Open Field-Grown Tomatoes

    Directory of Open Access Journals (Sweden)

    Stella Mutisya

    2016-09-01

    Full Text Available Tomatoes (Lycopersicon esculentum Mill are one of the biggest vegetable crops in the world, supplying a wide range of vitamins, minerals and fibre in human diets. In the tropics, tomatoes are predominantly grown under sub-optimal conditions by subsistence farmers, with exposure to biotic and abiotic stresses in the open field. Whitefly (Bemisia tabaci Gennadius is one of the major pests of the tomato, potentially causing up to 100% yield loss. To control whitefly, most growers indiscriminately use synthetic insecticides which negatively impact the environment, humans, and other natural pest management systems, while also increasing cost of production. This study sought to investigate the effectiveness of agronet covers and companion planting with aromatic basil (Ocimum basilicum L. as an alternative management strategy for whitefly in tomatoes and to evaluate the use of these treatments ontomato growth and yield. Two trials were conducted at the Horticulture Research and Training Field, Egerton University, Njoro, Kenya. Treatments comprised a combination of two factors, (1 growing environment (agronet and no agronet and (2 companion planting with a row of basil surrounding tomato plants, a row of basil in between adjacent rows of tomato, no companion planting. Agronet covers and companion cropping with a row of basil planted between adjacent tomato rows significantly lowered B. tabaci infestation in tomatoes by 68.7%. Better tomato yields were also recorded in treatments where the two treatments were used in combination. Higher yield (13.75 t/ha was obtained from tomatoes grown under agronet cover with a basil row planted in between adjacent rows of the tomato crop compared to 5.9 t/ha in the control. Non-marketable yield was also lowered to5.9 t/ha compared to 9.8 t/ha in the control following the use of the two treatments in combination. The results of this study demonstrate the potential viability of using companion cropping and agronet

  2. Effect of AlN growth temperature on trap densities of in-situ metal-organic chemical vapor deposition grown AlN/AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistors

    Directory of Open Access Journals (Sweden)

    Joseph J. Freedsman

    2012-06-01

    Full Text Available The trapping properties of in-situ metal-organic chemical vapor deposition (MOCVD grown AlN/AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistors (MIS-HFETs with AlN layers grown at 600 and 700 °C has been quantitatively analyzed by frequency dependent parallel conductance technique. Both the devices exhibited two kinds of traps densities, due to AlN (DT-AlN and AlGaN layers (DT-AlGaN respectively. The MIS-HFET grown at 600 °C showed a minimum DT-AlN and DT-AlGaN of 1.1 x 1011 and 1.2 x 1010 cm-2eV-1 at energy levels (ET -0.47 and -0.36 eV. Further, the gate-lag measurements on these devices revealed less degradation ∼ ≤ 5% in drain current density (Ids-max. Meanwhile, MIS-HFET grown at 700 °C had more degradation in Ids-max ∼26 %, due to high DT-AlN and DT-AlGaN of 3.4 x 1012 and 5 x 1011 cm-2eV-1 positioned around similar ET. The results shows MIS-HFET grown at 600 °C had better device characteristics with trap densities one order of magnitude lower than MIS-HFET grown at 700 °C.

  3. Impact of Ozone Gradient on Grapevine Leaves

    Science.gov (United States)

    Alebic-Juretic, Ana; Bokan-Vucelic, Itana; Mifka, Boris; Zatezalo, Marija; Zubak, Velimir

    2017-04-01

    Due to complex orography and air mass circulation, the Rijeka Bay area is characterized by O3 gradient, with concentrations risen with the altitude (1). Therefore AOT40 values were often exceeded and should result in harmful effects on vegetation. Based on previous controlled experiments (2), we examined the possible effect of atmospheric ozone on grape leaves under natural O3 gradient. Grapevine leaves (2-5) were collected from May to September 2016 at two sampling points in the proximity of two AQM stations: Site 1 in the city centre (20m asl) and Site 2 (186m asl) in the suburban settlement. Subsequent to weighing and determination of surface area, the leaves (0,5 g) were extracted in 95% ethanol and analysed on chlorophyl a (Chla), chlorophyl b (Chlb) and carotene (Car) content by UV-VIS spectrometry on 3 wavelengths (664, 649, 470 nm) (3) In summer 2016 O3 gradient was not that pronounced as usual (1), but stil the concentrations differed by approx. 20%, exceeding national AOT40 value at both sites (22.360 and 28.061 μg m-3 h, respectively, at Sites 1 and 2). The concentrations of other pollutants were bellow limit values (LV). The Cha and Chb in a sample leaves collected at the end of May at Site 2 are equal to that with filtered O3 in control experiment (2), i.e. without damage caused by ozone, while the Car content is lower approx. 50% and is kept at the same level. The con-centrations of pigments obtained in July prooved the possible damage by O3, while in subsequent months could speed up natural ageing. This is the first evidence of O3 damage on plants in the Rijeka Bay area, in spite of weaker O3 gradient and lacking visible signs of damage. Preliminary results indicate the need for more frequent sampling, particularly in the period included in AOT40 (May-July). References: 1. Alebić-Juretić A (2012) Int J Remote Sensing, 33(2): 335-345 2. Britvec M, Reichenauer T, Soja G., Ljubešić N, Pećina M (2001) Biologia (Bratislava),56/4: 417-424 3. Sumanata

  4. Characterization of a symbiotically effective Rhizobium resistant to arsenic: Isolated from the root nodules of Vigna mungo (L.) Hepper grown in an arsenic-contaminated field.

    Science.gov (United States)

    Mandal, Santi M; Pati, Bikas R; Das, Amit K; Ghosh, Ananta K

    2008-04-01

    Bacteria were isolated from the root nodules of Vigna mungo (L.) Hepper, grown in an arsenic-contaminated field and the strain was selected by its nodulation ability as well as better arsenic tolerant capacity compared to others. The selected strain was identified as Rhizobium by 16S rDNA sequencing and designated as VMA301. Phylogenetic analysis of the gene sequences showed its close relatedness with Sinorhizobium fredii. LC(50) value of arsenate for the bacteria as determined by flow cytometry was found to be 2.8 mM and arsenic uptake was measured by atomic absorption spectrometry as 0.048 mg g(-1) biomass. The high amount of arsenic was toxic to the cell, which changed the morphology of the bacteria to an elongated shape. Presence of a transcriptional regulatory gene (ArsR) of the ars genetic system was confirmed by amplification and sequencing. The symbiotic property of the isolate was also confirmed by amplification and sequencing of the NodC gene. These results indicate that the isolated Rhizobium bacteria may exert dual roles in the environment, arsenic bioremediation from the soil as well as increase of soil fertility through nitrogen fixation.

  5. Factors affecting the effects of EDU on growth and yield of field-grown bush beans (Phaseolus vulgaris L.), with varying degrees of sensitivity to ozone.

    Science.gov (United States)

    Elagöz, Vahram; Manning, William J

    2005-08-01

    The effects of foliar applications of ethylenediurea (EDU) on responses to ozone by field-grown bush bean (Phaseolus vulgaris L.) lines 'S156' (O(3)-sensitive) and 'R123' (O(3)-tolerant), and cultivars 'BBL 290' (O(3)-sensitive) and 'BBL 274' (O(3)-tolerant) were investigated during the 2001 and 2002 growing seasons. EDU was applied weekly to designated plants between primary leaf expansion and pod senescence. Results were compared with control plants at harvests made at pod maturation and pod senescence. In 2001, average hourly ambient O(3) concentrations ranged between 41 and 59 ppb for a total of 303 h; in 2002, for 355 h. EDU applications prior to pod maturation significantly increased the number of marketable pods in 'R123', but not for the other cultivars. Harvests at pod senescence showed significant improvements in crop yield production in EDU-treated 'S156' plants, whereas for EDU-treated 'R123' plants significant reductions were determined in above-ground biomass and seed production. In contrast, results from 'BBL 290' and 'BBL 274' at both harvest points were inconclusive. Growth and reproductive responses of O(3)-sensitive and O(3)-tolerant bush bean plants to EDU applications varied, depending on developmental stages, duration of EDU applications, and fluctuations in ambient O(3).

  6. Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce.

    Directory of Open Access Journals (Sweden)

    Susanne Schreiter

    Full Text Available Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica 3Re4-18 in field-grown lettuce in soils inoculated with Rhizoctonia solani AG1-IB or not. Two independent experiments were carried out in 2011 on an experimental plot system with three soil types sharing the same cropping history and weather conditions for more than 10 years. Rifampicin resistant mutants of the inoculants were used to evaluate their colonization in the rhizosphere of lettuce. The rhizosphere bacterial community structure was analyzed by denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from total community DNA to get insights into the effects of the inoculants and R. solani on the indigenous rhizosphere bacterial communities. Both inoculants showed a good colonization ability of the rhizosphere of lettuce with more than 10(6 colony forming units per g root dry mass two weeks after planting. An effect of the soil type on rhizosphere competence was observed for 3Re4-18 but not for RU47. In both experiments a comparable rhizosphere competence was observed and in the presence of the inoculants disease symptoms were either significantly reduced, or at least a non-significant trend was shown. Disease severity was highest in diluvial sand followed by alluvial loam and loess loam suggesting that the soil types differed in their conduciveness for bottom rot disease. Compared to effect of the soil type of the rhizosphere bacterial communities, the effects of the pathogen and the inoculants were less pronounced. The soil types had a surprisingly low influence on rhizosphere competence and biocontrol activity while they

  7. Processing of n+/p-/p+ strip detectors with atomic layer deposition (ALD) grown Al2O3 field insulator on magnetic Czochralski silicon (MCz-si) substrates

    Science.gov (United States)

    Härkönen, J.; Tuovinen, E.; Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T.; Junkes, A.; Wu, X.; Li, Z.

    2016-08-01

    Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n+ segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO2 interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al2O3) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current-voltage and capacitance-voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×1015 neq/cm2 proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.

  8. Avaliação do enraizamento, desenvolvimento de raízes e parte aérea de porta-enxertos de videira em condições de campo Evaluation of rooting, development of roots and shoot biomass from rootstock of grapevine, in field conditions

    Directory of Open Access Journals (Sweden)

    Marco Antonio Tecchio

    2007-12-01

    Full Text Available Objetivou-se neste trabalho avaliar o enraizamento, a brotação e o desenvolvimento de raízes de diferentes porta-enxertos de videira em condições de campo. Estacas lenhosas dos porta-enxertos '420 A', 'Golia', '5C', '8B', 'RR101-14', 'SO4', '99R', 'Kober 5BB', 'IAC 766', 'IAC 572', 'IAC 571-6', 'Ripária do Traviú' e 'Rupestris du Lot' foram colocadas em canteiro de terra, sem tratamento prévio. O delineamento foi em blocos ao acaso, com cinco repetições e vinte estacas por parcela, com as estacas dispostas em espaçamento de 12 x 5cm. As estacas foram colocadas para enraizar no início de julho e removidas no final de setembro para as avaliações. A porcentagem de estacas enraizadas variou de 79% para 'Ripária do Traviú' a 99% para o 'RR101-14'. Quanto à brotação, o 'Ripária do Traviú' apresentou 47%, 'IAC 571-6', 'IAC 572', '420 A', 'Rupestris du Lot', 'Kober', 'IAC 766', '8B', '5C', apresentaram de 76 a 89% e 'Golia', 'SO4', '99R' e 'RR 101-14' mais de 90%. 'IAC 572' e 'IAC 571-6' apresentaram o menor número de raízes por estaca, no entanto, foram as que apresentaram raízes mais desenvolvidas, seguidas pelo '5C' e 'Rupestris du Lot'. 'Kober 5BB' e 'Ripária do Traviú' apresentaram as raízes menos desenvolvidas. As demais variedades apresentaram valores intermediários. Concluiu-se que, entre todos os porta-enxertos, o 'Ripária do Traviú' apresentou os menores índices de enraizamento e brotação das estacas, nas condições de campo.The goals of this investigation was to evaluate the rooting, budding and development of roots from different rootstock of grapevine, in field conditions. Ligneous cutting of rootstock '420 A', 'Golia', '5C', '8B', 'RR101-14', 'SO4', '99R', 'Kober 5BB', 'IAC 766', 'IAC 572', 'IAC 571-6', 'Ripária do Traviú' and 'Rupestris du Lot' were planted in soil, without previous preparation. The experimental design was done in randomized blocks, with five repetitions and twenty cutting per plot

  9. Grapevine rootstock effects on scion sap phenolic levels, resistance to Xylella fastidiosa infection, and progression of Pierce’s disease

    Science.gov (United States)

    The xylem-limited bacterium Xylella fastidiosa (Xf) causes Pierce’s disease (PD), an important disease of grapevine, Vitis vinifera L. Grapevine rootstocks were developed to provide increased resistance to root disease, but rootstock effects on cane and vine diseases remain unclear. Grapevines that ...

  10. Metabolic consequences of infection of grapevine (Vitis vinifera L.) cv. "Modra frankinja" with flavescence dorée phytoplasma

    DEFF Research Database (Denmark)

    Prezelj, Nina; Covington, Elizabeth; Roitsch, Thomas Georg

    2016-01-01

    Flavescence dorée, caused by the quarantine phytoplasma FDp, represents the most devastating of the grapevine yellows diseases in Europe. In an integrated study we have explored the FDp-grapevine interaction in infected grapevines of cv. "Modra frankinja" under natural conditions in the vineyard....

  11. Cultivating the Grapevine: An Analysis of Rumor Principles and Concepts

    Science.gov (United States)

    2015-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited CULTIVATING THE...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE CULTIVATING THE GRAPEVINE: AN ANALYSIS OF RUMOR PRINCIPLES AND CONCEPTS 5...Specifically, this study draws from a review of current and historical literature on rumor theory to distill a set of principles to guide the successful

  12. Influence of water stress on Botryosphaeriaceae disease expression in grapevines

    Directory of Open Access Journals (Sweden)

    Jan VAN NIEKERK

    2011-12-01

    Full Text Available Several species in Botryosphaeriaceae have been associated with grapevine trunk diseases. To evaluate the effect of water stress on infection of grapevines by Botryosphaeriaceae spp., 1-year-old Shiraz/101-14 Mgt nursery grapevine plants were planted in plastic potting bags and placed outdoors under shade netting. Five weeks after planting, vines were pruned and the pruning wounds inoculated with spore suspensions of Neofusicoccum australe, Neofusicoccum parvum, Lasiodiplodia theobromae or Diplodia seriata. Control treatments consisted of applications of sterile water or a Trichoderma harzianum spore suspension. Stem inoculations were done by inserting a colonised or uncolonised agar plug into a wound made in each stem. Four different irrigation regimes were introduced 12 weeks after planting to simulate varying degrees of water stress. Measurements of stomatal conductance, photosynthetic rate and leaf spectrometry were made to monitor physiological stress. Eight months after inoculation, vines were uprooted and the root, shoot and plant mass of each vine determined. Lesions observed in the inoculated pruning wounds and stems were also measured. Vines subjected to the lowest irrigation regime were significantly smaller than optimally irrigated vines. Water stressed vines also had significantly lower photosynthetic rates and levels of stomatal conductance compared with vines receiving optimal irrigation, indicating that these plants experienced significantly higher levels of physiological stress. The mean lesion length was significantly longer in the pruning wounds and stems of plants subjected to the lowest irrigation regime, with lesion length declining linearly with increasing irrigation volume. These results clearly indicate that when a grapevine is exposed to water stress, colonisation and disease expression by Botryosphaeriaceae spp. are much more severe.

  13. Mechanisms of frost adaptation and freeze damage in grapevine buds

    OpenAIRE

    Badulescu Valle, Radu Virgil

    2002-01-01

    Mechanisms of frost hardening in compound (latent) buds of the grapevine cultivar ?Bacchus? were tested with different methods during three winters. The investigated parameters were LTE/HTE (low temperature exotherm/high temperature exotherm), water content, starch, sugar- and anions combination and bud histology. Water content from wood and buds was determined regularly every 2 weeks from March 1998 until Mai 2000. The lowest water content in wood and buds (about 40 %) was found ...

  14. Fungi inhabiting healthy grapevine canes (Vitis spp. in some nurseries

    Directory of Open Access Journals (Sweden)

    Ewa Król

    2012-12-01

    Full Text Available The purpose of this study, conducted in the years 2000 - 2002, was to identify fungi species colonizing apparently healthy canes and to investigate whether canes storage modify the quantitative and qualitative composition of these fungi. The plant material was collected from 5 commercial plantations growing in various regions of Poland, taking into consideration 8 cultivars which were the most frequently cultivated. From each plantation and cultivar 20 apparently healthy canes were randomly sampled in two terms: before storage - November/December (term I and 3-4 months after storage - February/March (term II. The results showed that from asymptomatic canes 2746 isolates of fungi belonging to 23 species were obtained, but the majority of them origined from canes analysed after storage. It was found that P. viticola is able to live latently within grapevine tissue in Polish conditions because isolates of this fungus from visually healty canes the all studied plantations and terms were obtained. Among the other fungi species inhabiting grapevine canes Alternaria alternata and Fusarium spp. dominated. Moreover, both in term I and term II Botrytis cinerea, Phoma spp., Epicoccum purpurascens and Cladosporium cladosporioides were frequently isolated, whereas fungi from the genus Acremonium only in the term I. Each time isolates of Trichoderma spp. and Gliocladium spp. were also obtained. Inhabitation of grapevine canes by various fungi species shown in the present experiment indicate the danger of pathogens spread with propagation material on the new plantations.

  15. The Soil Microbiome Influences Grapevine-Associated Microbiota

    Science.gov (United States)

    Zarraonaindia, Iratxe; Owens, Sarah M.; Weisenhorn, Pamela; West, Kristin; Hampton-Marcell, Jarrad; Lax, Simon; Bokulich, Nicholas A.; Mills, David A.; Martin, Gilles; Taghavi, Safiyh; van der Lelie, Daniel

    2015-01-01

    ABSTRACT Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterial reservoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root microbiota was significantly influenced by soil pH and C:N ratio, and changes in leaf- and grape-associated microbiota were correlated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e.g., Rhizobiaceae and Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic factors and vineyard management. PMID:25805735

  16. Effects of long term exposure to hydrogen fluoride on grapevines

    Energy Technology Data Exchange (ETDEWEB)

    Murray, F.

    1984-01-01

    Grapevines Vitis vinifera L. Shiraz were exposed to hydrogen fluoride in open-top chambers for 189 days at mean atmospheric fluoride concentrations of 0.27, 0.17 or 0.07 ..mu..g HFm/sup -3/. Grapevines growing under ambient conditions outside the chambers were exposed to a mean atmospheric fluoride concentration of 0.08 ..mu..g HFm/sup -3/. The maximum leaf fluoride concentrations associated with these treatments were 62, 27, 9 and 15 ..mu..g Fg/sup -1/, respectively. Foliar necrosis was first observed on grapevines exposed to 0.27 and 0.17 ..mu..g HFm/sup -3/ after 83 and 99 days, respectively. Exposure to fluoride increased the fluoride content of berries and peduncles, and reduced leaf chlorophyll a and total chlorophyll concentration at both mid-season and harvest. Exposure to 0.17 ..mu..g HF m/sup -3/ was associated with higher total acid content of grapes than other treatments. Fluoride had no significant effect on bunch weight, number of bunches, grape yield, grape water or potential alcohol content, leaf chlorophyll b or leaf protein concentration. The high accumulation of fluoride in peduncles, but low fluoride accumulation in berries, suggests that the peduncle acts to block the translocation of fluoride from sites of uptake to the fruit. 42 references, 1 figure, 5 tables.

  17. Verification of the stomatal conductance of Nebbiolo grapevine

    Institute of Scientific and Technical Information of China (English)

    Stefania PRINO; Federico SPANNA; Claudio CASSARDO

    2009-01-01

    Wine is one of the most important Italian export products, and Nebbiolo is one of the most respected Italian grapes. In the summer of 2007, a measurement campaign was carried out in a Nebbiolo vineyard located in Vezza d'Alba, near Cuneo, Italy. Using a gauge of trade gases and some other insU'uments, we recorded the stomatal conductance and also some physiological parameters useful for estimating the dependence of stomatal conductance on environmental variables. The goal of this experiment was improving the parameterization of grapevine evapotranspiration through the assessment of the stomatal conductance and, in particular, of the functional dependence of the stomatal conductance on the following variables: the photosynthetically active radiation, the atmospheric temperature, the atmospheric moisture deficit, and the carbon dioxide concentration. The observations allowed us to check and, in some cases, to adapt the existing' general parameterizations found in literature. The results showed some significant differences with the existing parameterizations concerning the atmospheric temperature, the atmospheric moisture deficit, and the carbon dioxide concentration. The parameterizations obtained in this experiment, although referring to a specific plant and site (namely the Nebbiolo at Vezza d'Alba), could allow assessment of the best environmental conditions under which the Nebbiolo grapevine production is the best, and in future could be tested for other grapevines or climates.

  18. Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer

    Science.gov (United States)

    Gutiérrez, Salvador; Tardaguila, Javier; Fernández-Novales, Juan; Diago, María P.

    2015-01-01

    The identification of different grapevine varieties, currently attended using visual ampelometry, DNA analysis and very recently, by hyperspectral analysis under laboratory conditions, is an issue of great importance in the wine industry. This work presents support vector machine and artificial neural network’s modelling for grapevine varietal classification from in-field leaf spectroscopy. Modelling was attempted at two scales: site-specific and a global scale. Spectral measurements were obtained on the near-infrared (NIR) spectral range between 1600 to 2400 nm under field conditions in a non-destructive way using a portable spectrophotometer. For the site specific approach, spectra were collected from the adaxial side of 400 individual leaves of 20 grapevine (Vitis vinifera L.) varieties one week after veraison. For the global model, two additional sets of spectra were collected one week before harvest from two different vineyards in another vintage, each one consisting on 48 measurement from individual leaves of six varieties. Several combinations of spectra scatter correction and smoothing filtering were studied. For the training of the models, support vector machines and artificial neural networks were employed using the pre-processed spectra as input and the varieties as the classes of the models. The results from the pre-processing study showed that there was no influence whether using scatter correction or not. Also, a second-degree derivative with a window size of 5 Savitzky-Golay filtering yielded the highest outcomes. For the site-specific model, with 20 classes, the best results from the classifiers thrown an overall score of 87.25% of correctly classified samples. These results were compared under the same conditions with a model trained using partial least squares discriminant analysis, which showed a worse performance in every case. For the global model, a 6-class dataset involving samples from three different vineyards, two years and leaves

  19. Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer.

    Directory of Open Access Journals (Sweden)

    Salvador Gutiérrez

    Full Text Available The identification of different grapevine varieties, currently attended using visual ampelometry, DNA analysis and very recently, by hyperspectral analysis under laboratory conditions, is an issue of great importance in the wine industry. This work presents support vector machine and artificial neural network's modelling for grapevine varietal classification from in-field leaf spectroscopy. Modelling was attempted at two scales: site-specific and a global scale. Spectral measurements were obtained on the near-infrared (NIR spectral range between 1600 to 2400 nm under field conditions in a non-destructive way using a portable spectrophotometer. For the site specific approach, spectra were collected from the adaxial side of 400 individual leaves of 20 grapevine (Vitis vinifera L. varieties one week after veraison. For the global model, two additional sets of spectra were collected one week before harvest from two different vineyards in another vintage, each one consisting on 48 measurement from individual leaves of six varieties. Several combinations of spectra scatter correction and smoothing filtering were studied. For the training of the models, support vector machines and artificial neural networks were employed using the pre-processed spectra as input and the varieties as the classes of the models. The results from the pre-processing study showed that there was no influence whether using scatter correction or not. Also, a second-degree derivative with a window size of 5 Savitzky-Golay filtering yielded the highest outcomes. For the site-specific model, with 20 classes, the best results from the classifiers thrown an overall score of 87.25% of correctly classified samples. These results were compared under the same conditions with a model trained using partial least squares discriminant analysis, which showed a worse performance in every case. For the global model, a 6-class dataset involving samples from three different vineyards, two years

  20. Evaluation of grapevine as a host for the glassy-winged sharpshooter

    Science.gov (United States)

    Grapevine was evaluated as a feeding and oviposition host for the glassy-winged sharpshooter. Two sets of experiments were conducted. The first set compared performance and preference of glassy-winged sharpshooter females for grapevine (cv. Chardonnay) versus cowpea (Vigna unguiculata cultivar black...

  1. Molecular and phenotypic characterisation of novel Phaeoacremonium species isolated from esca diseased grapevines

    NARCIS (Netherlands)

    Essakhi, S.; Mugnai, L.; Crous, P.W.; Groenewald, J.Z.; Surico, G.

    2008-01-01

    Petri disease and esca are very destructive grapevine decline diseases that occur in most countries where grapevine (Vitis vinifera) is cultivated. Phaeoacremonium species are among the principal hyphomycetes associated with symptoms of the two diseases, producing a range of enzymes and phytotoxic m

  2. Epigenetic repressor-like genes are differentially regulated during grapevine (Vitis vinifera L.) development.

    Science.gov (United States)

    Almada, Rubén; Cabrera, Nuri; Casaretto, José A; Peña-Cortés, Hugo; Ruiz-Lara, Simón; González Villanueva, Enrique

    2011-10-01

    Grapevine sexual reproduction involves a seasonal separation between inflorescence primordia (flowering induction) and flower development. We hypothesized that a repression mechanism implicating epigenetic changes could play a role in the seasonal separation of these two developmental processes in grapevine. Therefore, the expression of five grapevine genes with homology to the Arabidopsis epigenetic repressor genes FERTILIZATION INDEPENDENT ENDOSPERM (FIE), EMBRYONIC FLOWER 2 (EMF2), CURLY LEAF (CLF), MULTICOPY SUPPRESSOR OF IRA 1 (MSI1) and SWINGER (SWN) was analyzed during the development of buds and vegetative and reproductive organs. During bud development, the putative grapevine epigenetic repressor genes VvCLF, VvEMF2, VvMSI1, VvSWN and VvFIE are mainly expressed in latent buds at the flowering induction period, but also detected during bud burst and inflorescence/flower development. The overlapping expression patterns of grapevine PcG-like genes in buds suggest that chromatin remodeling mechanisms could be operating during grapevine bud development for controlling processes such as seasonal flowering, dormancy and bud burst. Furthermore, the expression of grapevine PcG-like genes was also detected in fruits and vegetative organs, suggesting that epigenetic changes could be at the basis of the regulation of various proliferation-differentiation cell transitions that occur during grapevine development.

  3. Molecular and phenotypic characterisation of novel Phaeoacremonium species isolated from esca diseased grapevines

    NARCIS (Netherlands)

    Essakhi, S.; Mugnai, L.; Crous, P.W.; Groenewald, J.Z.; Surico, G.

    2008-01-01

    Petri disease and esca are very destructive grapevine decline diseases that occur in most countries where grapevine (Vitis vinifera) is cultivated. Phaeoacremonium species are among the principal hyphomycetes associated with symptoms of the two diseases, producing a range of enzymes and phytotoxic

  4. Modelling Growth and Partitioning of Annual Above-Ground Vegetative and Reproductive Biomass of Grapevine

    Science.gov (United States)

    Meggio, Franco; Vendrame, Nadia; Maniero, Giovanni; Pitacco, Andrea

    2014-05-01

    In the current climate change scenarios, both agriculture and forestry inherently may act as carbon sinks and consequently can play a key role in limiting global warming. An urgent need exists to understand which land uses and land resource types have the greatest potential to mitigate greenhouse gas (GHG) emissions contributing to global change. A common believe is that agricultural fields cannot be net carbon sinks due to many technical inputs and repeated disturbances of upper soil layers that all contribute to a substantial loss both of the old and newly-synthesized organic matter. Perennial tree crops (vineyards and orchards), however, can behave differently: they grow a permanent woody structure, stand undisturbed in the same field for decades, originate a woody pruning debris, and are often grass-covered. In this context, reliable methods for quantifying and modelling emissions and carbon sequestration are required. Carbon stock changes are calculated by multiplying the difference in oven dry weight of biomass increments and losses with the appropriate carbon fraction. These data are relatively scant, and more information is needed on vineyard management practices and how they impact vineyard C sequestration and GHG emissions in order to generate an accurate vineyard GHG footprint. During the last decades, research efforts have been made for estimating the vineyard carbon budget and its allocation pattern since it is crucial to better understand how grapevines control the distribution of acquired resources in response to variation in environmental growth conditions and agronomic practices. The objective of the present study was to model and compare the dynamics of current year's above-ground biomass among four grapevine varieties. Trials were carried out over three growing seasons in field conditions. The non-linear extra-sums-of-squares method demonstrated to be a feasible way of growth models comparison to statistically assess significant differences among

  5. A SURVEY OF SIZES AND WEIGHTS OF BEMISIA TABACI(HOMOPTERA: ALEYRODIDAE)B BIOTYPE LIFE STAGES FROM FIELD GROWN COTTON AND CANTALOUPES

    Institute of Scientific and Technical Information of China (English)

    Chang-chiChu; JamesS.Buckner; KamilKarut; ThomasP.Freeman; DennisR.Nelson; ThomasJ.Henneberryl

    2003-01-01

    Size and weight measurements were made for all the life stages of Bemisia tabaci (Gennadius) B biotype from field grown cotton ( Gossypium hirsutum L. ) and cantaloupe ( Cucumis melo L., var. cantalupensis )in Phoenix, AZ and Fargo, ND, USA in 2000 and 2001. Nymphal volumes were derived from the measurements.The average nymphal volume increase for settled 1 st to the late 4th instar was exponential. The greatest increase in body volume occurred during development from the 3rd to early 4th instar. Nymphs on cotton leaves were wider,but not longer compared with those on cantaloupe. Ventral and dorsal depth ratios of nymphal bodies from 1st tolate 4th instars from cantaloupe leaves were significantly greater compared with those from cotton leaves. During nymphal development from 1st to 4th instar, the average (from the two host species) ventral body half volume in-creased by nearly 51 times compared with an increase of 28 times for the dorsal body half volume. Adult female and male average lengths, from heads to wing tips, were 1 126 μm and 953 μm, respectively. Average adult fe-male and male weights were 39 and 17 μg, respectively. Average widths, lengths, and weights of eggs from cottonand cantaloupe were, 99 μm, 197 μm, and 0.8 μg, respectively. Average widths, lengths, and weights for exu-viae of non-parasitized nymphs from both cotton and cantaloupe were 492 μm, 673 μm, and 1.20 μg, respective-ly; and widths, lengths, and weights of parasitized nymph exuviae were 452 μm, 665 μm, and 3.62 μg, respec-tively. Both exuviae from non-parasitized and parasitized nymphs from cotton leaves were wider, longer, and heavier than those from cantaloupe leaves.

  6. Alteration of foliar flavonoid chemistry induced by enhanced UV-B radiation in field-grown Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii.

    Science.gov (United States)

    Warren, Jeffrey M; Bassman, John H; Mattinson, D Scott; Fellman, John K; Edwards, Gerald E; Robberecht, Ronald

    2002-03-01

    Chromatographic analyses of foliage from several tree species illustrate the species-specific effects of UV-B radiation on both quantity and composition of foliar flavonoids. Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii were field-grown under modulated ambient (1x) and enhanced (2x) biologically effective UV-B radiation. Foliage was harvested seasonally over a 3-year period, extracted, purified and the flavonoid fraction applied to a mu Bondapak/C(18) column HPLC system sampling at 254 nm. Total flavonoid concentrations in Quercus rubra foliage were more than twice (leaf area basis) that of the other species; Pseudotsuga menziesii foliage had intermediate levels and P. ponderosa had the lowest concentrations of total flavonoids. No statistically significant UV-B radiation-induced effects were found in total foliar flavonoid concentrations for any species; however, concentrations of specific compounds within each species exhibited significant treatment effects. Higher (but statistically insignificant) levels of flavonoids were induced by UV-B irradiation in 1- and 2-year-old P. ponderosa foliage. Total flavonoid concentrations in 2-year-old needles increased by 50% (1x ambient UV-B radiation) or 70% (2x ambient UV-B radiation) from that of 1-year-old tissue. Foliar flavonoids of Q. rubra under enhanced UV-B radiation tended to shift from early-eluting compounds to less polar flavonoids eluting later. There were no clear patterns of UV-B radiation effects on 1-year-old P. menziesii foliage. However, 2-year-old tissue had slightly higher foliar flavonoids under the 2x UV-B radiation treatment compared to ambient levels. Results suggest that enhanced UV-B radiation will alter foliar flavonoid composition and concentrations in forest tree species, which could impact tissue protection, and ultimately, competition, herbivory or litter decomposition.

  7. NMR-Based Metabolic Profiling of Field-Grown Leaves from Sugar Beet Plants Harbouring Different Levels of Resistance to Cercospora Leaf Spot Disease

    Directory of Open Access Journals (Sweden)

    Yasuyo Sekiyama

    2017-01-01

    Full Text Available Cercospora leaf spot (CLS is one of the most serious leaf diseases for sugar beet (Beta vulgaris L. worldwide. The breeding of sugar beet cultivars with both high CLS resistance and high yield is a major challenge for breeders. In this study, we report the nuclear magnetic resonance (NMR-based metabolic profiling of field-grown leaves for a subset of sugar beet genotypes harbouring different levels of CLS resistance. Leaves were collected from 12 sugar beet genotypes at four time points: seedling, early growth, root enlargement, and disease development stages. 1H-NMR spectra of foliar metabolites soluble in a deuterium-oxide (D2O-based buffer were acquired and subjected to multivariate analyses. A principal component analysis (PCA of the NMR data from the sugar beet leaves shows clear differences among the growth stages. At the later time points, the sugar and glycine betaine contents were increased, whereas the choline content was decreased. The relationship between the foliar metabolite profiles and resistance level to CLS was examined by combining partial least squares projection to latent structure (PLS or orthogonal PLS (OPLS analysis and univariate analyses. It was difficult to build a robust model for predicting precisely the disease severity indices (DSIs of each genotype; however, GABA and Gln differentiated susceptible genotypes (genotypes with weak resistance from resistant genotypes (genotypes with resistance greater than a moderate level before inoculation tests. The results suggested that breeders might exclude susceptible genotypes from breeding programs based on foliar metabolites profiled without inoculation tests, which require an enormous amount of time and effort.

  8. Age-related changes in oxidative stress markers and abscisic acid levels in a drought-tolerant shrub, Cistus clusii grown under Mediterranean field conditions.

    Science.gov (United States)

    Munné-Bosch, Sergi; Lalueza, Patricia

    2007-03-01

    Compared with our knowledge of senescence in annuals and biennials, little is known about age-related changes in perennials. To get new insights into the mechanisms underlying aging in perennials, we measured oxidative stress markers in leaves and organelles, together with abscisic acid levels in leaves of 2- and 7-year-old Cistus clusii dunal plants grown under Mediterranean field conditions. Recently emerged leaves, which either appeared during autumn or spring, were compared to evaluate the effects of environmental constraints on oxidative stress and abscisic acid accumulation as plants aged. Plant aging led to an enhanced oxidation of ot-tocopherol and ascorbate, increased lipid peroxidation and reduced PSII efficiency in leaves during the more stressful conditions of spring and summer, but not during autumn. Analyses of lipid peroxidation in organelles isolated from the same leaves revealed that oxidative stress occurred both in chloroplasts and mitochondria. Although both plant groups showed similar leaf water and nitrogen contents throughout the study, abscisic acid levels were markedly higher (up to 75%) in 7-year-old plants compared to 2-year-old plants throughout the study. It is concluded that (a) meristematic tissues of C. clusii maintain the capacity to make new leaves with no symptoms of oxidative stress for several years, unless these leaves are exposed to environmental constraints, (b) leaves of oldest plants show higher oxidative stress than those of young plants when exposed to adverse climatic conditions, thus supporting the idea that the oxidative stress associated with aging is due at least partly to extrinsic factors, (c) at the subcellular level, age-induced oxidative stress occurs both in chloroplasts and mitochondria, and (d) even in the absence of environmental stress, newly emerged leaves accumulate higher amounts of ABA as plants age.

  9. Factors affecting the effects of EDU on growth and yield of field-grown bush beans (Phaseolus vulgaris L.), with varying degrees of sensitivity to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Elagoez, Vahram [Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003 (United States)]. E-mail: velagoz@nsm.umass.edu; Manning, William J. [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States)

    2005-08-15

    The effects of foliar applications of ethylenediurea (EDU) on responses to ozone by field-grown bush bean (Phaseolus vulgaris L.) lines 'S156' (O{sub 3}-sensitive) and 'R123' (O{sub 3}-tolerant), and cultivars 'BBL 290' (O{sub 3}-sensitive) and 'BBL 274' (O{sub 3}-tolerant) were investigated during the 2001 and 2002 growing seasons. EDU was applied weekly to designated plants between primary leaf expansion and pod senescence. Results were compared with control plants at harvests made at pod maturation and pod senescence. In 2001, average hourly ambient O{sub 3} concentrations ranged between 41 and 59 ppb for a total of 303 h; in 2002, for 355 h. EDU applications prior to pod maturation significantly increased the number of marketable pods in 'R123', but not for the other cultivars. Harvests at pod senescence showed significant improvements in crop yield production in EDU-treated 'S156' plants, whereas for EDU-treated 'R123' plants significant reductions were determined in above-ground biomass and seed production. In contrast, results from 'BBL 290' and 'BBL 274' at both harvest points were inconclusive. Growth and reproductive responses of O{sub 3}-sensitive and O{sub 3}-tolerant bush bean plants to EDU applications varied, depending on developmental stages, duration of EDU applications, and fluctuations in ambient O{sub 3}. - Plant sensitivity to ozone, stage of plant development, number of applications of EDU and ambient ozone affect bean plant responses to EDU.

  10. Uptake and transport of radioactive cesium and strontium into grapevines after leaf contamination

    Science.gov (United States)

    Zehnder, H. J.; Kopp, P.; Eikenberg, J.; Feller, U.; Oertli, J. J.

    1995-07-01

    From 1989 to 1993 the foliar uptake of radioactive strontium (Sr-85) and cesium (Cs-134) by selected leaves of grapevine plants and the subsequent redistribution within the plants was examined under controlled conditions in a greenhouse. The radionuclides were applied as chlorides. These plants were grown in large pots containing a mixture of local soil and peat. Plant and soil samples were analyzed throughout the growing season and also during the following vegetation period. Only traces of the applied radiostrontium were taken up by the leaves. This element was essentially not redistributed within the plants. In contrast, radiocesium was easily taken up through the leaf surface, transported to other plant parts and to some extent released from the roots into the soil. Cesium reaching the soil may interact with clay particles causing a very reduced availability for plants. Therefore the soil may act as a long-term sink for radiocesium. On the other hand, grape berries represent transient sinks. The cesium levels in the berries decreased again in a late phase of maturation, but the mechanisms causing this loss are not yet identified. During the second vegetation period, only a very minor proportion of the radiocesium taken up previously by the plants was present in the above ground parts.

  11. Soil management with respect to nitrogen mobilization and nutrient supply of grapevines on loess soil

    Science.gov (United States)

    Mehofer, Martin

    2017-04-01

    The effects of different methods of soil management on the nutrient supply and the vine quality of organically grown `Grüner Veltliner` grapevines (Guyot double) were investigated in the winegrowing region Wagram of Lower Austria (municipality: Großriedenthal). Under permanent green cover the mineral nitrogen content in the soil was significantly lower than under green cover only in each second row. Regarding the nitrogen demand of the vine the best results of the mineral nitrogen content in soil were found by loosening up the soil by the end of April and breaking it open two weeks later. Permanent green cover inhibited shoot length development and the total acidity of the must was lower. The content of yeast assimilable nitrogen and the yield were reduced, but must density as well as potassium and ash contents of the wine were slightly higher. There were no differences in the vinification of the grapes of different origins. Significant differences in the sensory evaluation could not be related to different methods of soil cultivation.

  12. Characterization of iron deficiency symptoms in grapevine (Vitis spp.) leaves by reflectance spectroscopy.

    Science.gov (United States)

    Rustioni, Laura; Grossi, Daniele; Brancadoro, Lucio; Failla, Osvaldo

    2017-09-01

    The work aims at the description of the iron deficiency symptoms in grapevine leaves by reflectance spectroscopy at the plant and leaf levels. 5 genotypes of Vitis spp. were selected and grown in hydroponic conditions with and without iron supply. 450 spectra were collected among basal, young and apical leaves, as well as veins and interveinal areas. Iron deficiency produced significant and characteristic modifications in the pigment accumulation, proportion and distribution in plants. Basal leaves resulted to have higher concentrations of photosynthetic pigments in stressed plants with respect to the control, probably due to compensation effects. Iron deficient plants had lower chlorophyll concentrations in young and apical leaves. In the apical zone, also the relative composition of pigments appeared to be modified, explaining the reddish-yellowish apex appearance of iron deficient vines. Finally, the pigment distribution along the shoot characterized the symptoms, as well as the spectral variations among veins and interveinal areas. These results could support future applications in vineyard management (e.g.: symptom identification and detection; precision fertilization) as well as breeding programs for new rootstock selections (e.g.: fast screenings of seedlings). Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Comparing Kaolin and Pinolene to Improve Sustainable Grapevine Production during Drought.

    Science.gov (United States)

    Brillante, Luca; Belfiore, Nicola; Gaiotti, Federica; Lovat, Lorenzo; Sansone, Luigi; Poni, Stefano; Tomasi, Diego

    2016-01-01

    Viticulture is widely practiced in dry regions, where the grapevine is greatly exposed to water stress. Optimizing plant water use efficiency (WUE) without affecting crop yield, grape and wine quality is crucial to limiting use of water for irrigation and to significantly improving viticulture sustainability. This study examines the use in vineyards of particle film technology (engineered kaolin) and compares it to a film-forming antitranspirant (pinolene), traditionally used to limit leaf water loss, and to an untreated control. The trial was carried out under field conditions over three growing seasons, during which moderate to very severe plant water stress (down to -1.9 MPa) was measured through stem water potential. Leaf stomatal conductance (gs) and photosynthesis rate (An) were measured during the seasons and used to compute intrinsic WUE (WUEi, defined as An/gs ratio). Leaf temperature was also recorded and compared between treatments. Bunch quantity, bunch and berry weight, sugar accumulation, anthocyanin and flavonoid contents were measured. Finally, microvinifications were performed and resultant wines subjected to sensory evaluation.Results showed that the use of kaolin increased grapevine intrinsic WUE (+18% on average as compared to unsprayed vines) without affecting berry and bunch weight and quantity, or sugar level. Anthocyanin content increased (+35%) in kaolin treatment, and the wine was judged more attractive (p-value <0.05) and slightly more appreciated (p-value < 0.1) than control. Pinolene did not increase WUEi, limiting An more than gs; grapes with this treatment contained lower sugar and anthocyanin content than control, and the obtained wine was the least appreciated. This study demonstrates that particle film technology can improve vine WUEi and wine quality at the same time, while traditional antitranspirants were not as effective for these purposes. This positive effect can be used in interaction with other already-demonstrated uses of

  14. Comparing Kaolin and Pinolene to Improve Sustainable Grapevine Production during Drought.

    Directory of Open Access Journals (Sweden)

    Luca Brillante

    Full Text Available Viticulture is widely practiced in dry regions, where the grapevine is greatly exposed to water stress. Optimizing plant water use efficiency (WUE without affecting crop yield, grape and wine quality is crucial to limiting use of water for irrigation and to significantly improving viticulture sustainability. This study examines the use in vineyards of particle film technology (engineered kaolin and compares it to a film-forming antitranspirant (pinolene, traditionally used to limit leaf water loss, and to an untreated control. The trial was carried out under field conditions over three growing seasons, during which moderate to very severe plant water stress (down to -1.9 MPa was measured through stem water potential. Leaf stomatal conductance (gs and photosynthesis rate (An were measured during the seasons and used to compute intrinsic WUE (WUEi, defined as An/gs ratio. Leaf temperature was also recorded and compared between treatments. Bunch quantity, bunch and berry weight, sugar accumulation, anthocyanin and flavonoid contents were measured. Finally, microvinifications were performed and resultant wines subjected to sensory evaluation.Results showed that the use of kaolin increased grapevine intrinsic WUE (+18% on average as compared to unsprayed vines without affecting berry and bunch weight and quantity, or sugar level. Anthocyanin content increased (+35% in kaolin treatment, and the wine was judged more attractive (p-value <0.05 and slightly more appreciated (p-value < 0.1 than control. Pinolene did not increase WUEi, limiting An more than gs; grapes with this treatment contained lower sugar and anthocyanin content than control, and the obtained wine was the least appreciated. This study demonstrates that particle film technology can improve vine WUEi and wine quality at the same time, while traditional antitranspirants were not as effective for these purposes. This positive effect can be used in interaction with other already

  15. Development and Comparison of Symptom Indices for Quantifying Grapevine Resistance to Pierce's Disease.

    Science.gov (United States)

    Krivanek, A F; Stevenson, J F; Walker, M A

    2005-01-01

    ABSTRACT Symptoms of Pierce's disease (PD) were assessed under greenhouse conditions on field-resistant and field-susceptible grapevines in order to characterize the PD resistance phenotype in the genus Vitis. A cane maturation index (CMI) was developed to quantify the green-islands symptom, which was measured at 12 weeks post-bacterial inoculation, along with leaf scorch and percentage of xylem vessels blocked by occlusions. Canes of resistant genotypes matured normally and had a significantly lower CMI score of 0.9 (on a 0-to-6 scale) compared with 5.1 for the susceptible genotypes. The CMI scoring method had a high correlation (R(2) = 0.91) with previously characterized field performance, whereas leaf scorch had only a moderate correlation (R(2) = 0.51) with field performance. Average scorched area on leaves of the susceptible and resistant genotypes was 80 and 48%, respectively, demonstrating that leaf scorch can be extensive in resistant genotypes under the presented screening conditions, and suggesting that systemic infection can occur in all evaluated genotypes. Occlusions within both stem and petiole vessels were composed principally of tyloses and were significantly higher in petioles than in stems of either resistant or susceptible backgrounds. Susceptible genotypes displayed a higher level of stem tylose occlusions relative to resistant genotypes, but correlation to field performance was low (R(2) = 0.13). Ease of use and high correlation to field performance makes CMI scoring a better choice for PD resistance evaluations relative to other phenotypic symptom assessments.

  16. Response of grapevine leaves to Plasmopara viticola infection by means of measurement of reflectance and fluorescence signals

    Directory of Open Access Journals (Sweden)

    David Šebela

    2012-01-01

    Full Text Available Response of grapevine leaf tissue naturally infected by Plasmopara viticola in field was measured by means of chlorophyll fluorescence and reflectance signals. Three susceptible grapevine varieties (Cabernet Sauvignon, Pinot Blanc and Pinot Gris were used in this study. Since the infection impairs photosynthetic activity, distribution of FV/FM parameter (maximum quantum yield of Photosystem II over the leaf was effective to discriminate healthy and naturally infected leaf tissue. FV/FM was reduced ~ 25% in all infected leaf parts. Infected leaf spots expressed significantly altered chlorophyll fluorescence induction kinetics expressing much slower electron transport rate both on donor and acceptor site of PSII. Vegetation reflectance indices followed the variations in pigment content after the fungal infection. R750/R700 (R2 = 0.877 and CRI (carotenoid reflectance index; R2 = 0.735 were the most potent to follow changes in chlorophylls and carotenoids contents, respectively. Infected leaf tissue exhibited decrease in chlorophyll a (~50 % as well as carotenoids (~70%. We conclude that combination of chlorophyll fluorescence and reflectance measurements can be used as an effective non-invasive tool for an early detection of Plasmopara viticola in field as well as for estimation of the level of infection.

  17. In situ 13CO2 pulse labelling of field-grown eucalypt trees revealed the effects of potassium nutrition and throughfall exclusion on phloem transport of photosynthetic carbon.

    Science.gov (United States)

    Epron, Daniel; Cabral, Osvaldo Machado Rodrigues; Laclau, Jean-Paul; Dannoura, Masako; Packer, Ana Paula; Plain, Caroline; Battie-Laclau, Patricia; Moreira, Marcelo Zacharias; Trivelin, Paulo Cesar Ocheuze; Bouillet, Jean-Pierre; Gérant, Dominique; Nouvellon, Yann

    2016-01-01

    Potassium (K) is an important limiting factor of tree growth, but little is known of the effects of K supply on the long-distance transport of photosynthetic carbon (C) in the phloem and of the interaction between K fertilization and drought. We pulse-labelled 2-year-old Eucalyptus grandis L. trees grown in a field trial combining K fertilization (+K and -K) and throughfall exclusion (+W and -W), and we estimated the velocity of C transfer by comparing time lags between the uptake of (13)CO2 and its recovery in trunk CO2 efflux recorded at different heights. We also analysed the dynamics of the labelled photosynthates recovered in the foliage and in the phloem sap (inner bark extract). The mean residence time of labelled C in the foliage was short (21-31 h). The time series of (13)C in excess in the foliage was affected by the level of fertilization, whereas the effect of throughfall exclusion was not significant. The velocity of C transfer in the trunk (0.20-0.82 m h(-1)) was twice as high in +K trees than in -K trees, with no significant effect of throughfall exclusion except for one +K -W tree labelled in the middle of the drought season that was exposed to a more pronounced water stress (midday leaf water potential of -2.2 MPa). Our results suggest that besides reductions in photosynthetic C supply and in C demand by sink organs, the lower velocity under K deficiency is due to a lower cross-sectional area of the sieve tubes, whereas an increase in phloem sap viscosity is more likely limiting phloem transport under drought. In all treatments, 10 times less (13)C was recovered in inner bark extracts at the bottom of the trunk when compared with the base of the crown, suggesting that a large part of the labelled assimilates has been exported out of the phloem and replaced by unlabelled C. This supports the 'leakage-retrieval mechanism' that may play a role in maintaining the pressure gradient between source and sink organs required to sustain high

  18. The detection of viruses and phytoplasmas in dwarfed shoots of grapevine varieties Aurelius and Neuburger

    Directory of Open Access Journals (Sweden)

    Věra Holleinová

    2012-01-01

    Full Text Available The survey of occurrence of six chosen virus pathogens and phytoplasmas complex was done on plants of grapevine (Vitis vinifera L. which showed symptoms of short-shoot syndrom. The results of serological and molecular tests did not confirm either virus or phytoplasma infection as the main source of short-shoot syndrom. The presence of 6 viruses in samples taken from 45 affected plants of grapevine on 4 habitats. The highest occurrence of viruses was found out on habitat Moravská Nová Ves, where all taken samples were infected by Grapevine leafroll-associated virus GLRaV-1 (100 %. In 66 % of the samples taken from that habitat were detected mixed infection of Grapevine virus A and GLRaV-1. These 2 pathogens but were not detected in samples from affected plants from the other habitats or very sporadically – just in 2 plants. Another 4 virus pathogens were detected either sporadically (Grapevine fleck virus, Grapevine leafroll-assoc. virus GLRaV-3, Arabis mosaic virus or not at all (Grapevine fanleaf virus. From 270 tests made to 6 viruses were only 20 positive, e. g. 7.4 %. It means that from 45 plants were 15 infected at least by 1 virus (33 %. The phytoplasmas complex was tested in 28 plants. The result was positive only in 1 plant, by another test the Potato stolbur phytoplasma was confirmed.

  19. Revisiting Vitis vinifera subtilase gene family: a possible role in grapevine resistance against Plasmopara viticola

    Directory of Open Access Journals (Sweden)

    Joana Figueiredo

    2016-11-01

    Full Text Available Subtilisin-like proteases, also known as subtilases, are a very diverse family of serine peptidases present in many organisms. In grapevine, there are hints of the involvement of subtilases in defence mechanisms, but their role is not yet understood. The first characterization of the subtilase gene family was performed in 2014. However, simultaneously, the grapevine genome was re-annotated and several sequences were re-annotated or retrieved. We have performed a re-characterization of this family in grapevine and identified 82 genes coding for 97 putative proteins, as result of alternative splicing. All the subtilases identified present the characteristic S8 peptidase domain and the majority of them also have a pro-domain I9 inhibitor, a protease-associated (PA domain and a signal peptide for targeting to the secretory pathway. Phylogenetic studies revealed six subtilase groups denominated VvSBT1 to VvSBT6. As several evidences have highlighted the participation of plant subtilases in response to biotic stimulus, we have investigated subtilase participation in grapevine resistance to Plasmopara viticola, the causative agent of downy mildew. Fourteen grapevine subtilases presenting either high homology to P69C from tomato, SBT3.3 from Arabidopsis thaliana or located near the Resistance to Plasmopara viticola (RPV locus were selected. Expression studies were conducted in the grapevine-P. viticola pathosystem with resistant and susceptible cultivars. Our results may indicate that some of grapevine subtilisins are potentially participating in the defence response against this biotrophic oomycete.

  20. Grapevine water absorption in different soils. A spatio-temporal analysis.

    Science.gov (United States)

    Brillante, Luca; Bois, Benjamin; Lévêque, Jean; Mathieu, Olivier

    2015-04-01

    Hillslope vineyards show complex water dynamics between soil and plants. To gain further insight of this relationship, 8 grapevine plots were monitored during two vintages (2011-2013), on Corton Hill, Burgundy, France. Grapevine water status was monitored weekly by surveying water potential, and at harvest, using δ13C analysis of grape juice. Soil volumetric humidity was also measured weekly, using TDR probes. A pedotransfer function was developed to transform Electrical Resistivity Tomography (ERT) into Soil Volume Water and therefore to spatialise and describe variations in space and time in the Fraction of Transpirable Soil Water (FTSW). During the two years of monitoring, grapevines experienced great variation in water status, which ranged from low to substantial water deficit. With this freshly developed method, it was possible to observe differences in water absorption pattern by roots, in different soils, and at different depth. Great heterogeneity was observed, both laterally and vertically in grapevine water absorption. The contribution of each soil region to plant water status varies according to grapevine water status. It is different between day and night and depends from soil characteristics. It is to our knowledge the first time that water absorption by grapevine is revealed in space (2D) and time, and has therefore allowed a deeper comprehension of plant and soil dynamics in grapevine.

  1. Oxidative stress homeostasis in grapevine (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Luisa C Carvalho

    2015-03-01

    Full Text Available Plants can maintain growth and reproductive success by sensing changes in the environment and reacting through mechanisms at molecular, cellular, physiological and developmental levels. Each stress condition prompts a unique response although some overlap between the reactions to abiotic stress (drought, heat, cold, salt or high light and to biotic stress (pathogens does occur. A common feature in the response to all stresses is the onset of oxidative stress, through the production of reactive oxygen species (ROS. As hydrogen peroxide and superoxide are involved in stress signaling, a tight control in ROS homeostasis requires a delicate balance of systems involved in their generation and degradation. If the plant lacks the capacity to generate scavenging potential, this can ultimately lead to death. In grapevine, antioxidant homeostasis can be considered at whole plant levels and during the development cycle. The most striking example lies in berries and their derivatives, such as wine, with nutraceutical properties associated with their antioxidant capacity. Antioxidant homeostasis is tightly regulated in leaves, assuring a positive balance between photosynthesis and respiration, explaining the tolerance of many grapevine varieties to extreme environments.In this review we will focus on antioxidant metabolites, antioxidant enzymes, transcriptional regulation and cross-talk with hormones prompted by abiotic stress conditions. We will also discuss three situations that require specific homeostasis balance: biotic stress, the oxidative burst in berries at veraison and in vitro systems. The genetic plasticity of the antioxidant homeostasis response put in evidence by the different levels of tolerance to stress presented by grapevine varieties will be addressed. The gathered information is relevant to foster varietal adaptation to impending climate changes, to assist breeders in choosing the more adapted varieties and to suitable viticulture

  2. Photosynthetic Characteristics and Antioxidative Metabolism of Flag Leaves in Responses to Nitrogen Application During Grain Filling of Field-Grown Wheat

    Institute of Scientific and Technical Information of China (English)

    CAI Rui-guo; WANG Zhen-lin; ZHANG Min; YIN Yan-ping; WANG Ping; ZHANG Ti-bin; GU Feng; DAI Zhong-min; LIANG Tai-bo; WU Yun-hai

    2008-01-01

    A two-factorial experiment was conducted with two wheat cultivars,SN1391(large spike and large grain)and GC8901(multiple spike and medium grain),and two nitrogen(N)application rates(12 and 24 g N m-2),to investigate the responses of photosynthetic characteristics and antioxidative metabolism to nitrogen rates in flag leaves of field-grown wheat during grain filling.The results showed that the content of N and chlorophyll(Chl)in wheat flag leaves decreased after anthesis and the net photosynthetic rate(Pn),effective quantum yield of PS II(ΦPS Ⅱ),efficiency of excitation capture by open PS H reaction centers(Fv'/Fm'),and photochemical quenching coefficient(qp)began to decrease at 14 days after anthesis.However,the maximal efficiency of PS II photochemistry(Fv/Fm)decreased slightly until the late period of senescence and the nonphotochemical quenching coefficient(NPQ)increased during flag leaves' senescence.As a result,a conflict came into being between absorption and utilization to light energy in flag leaves during senescence,which might accelerate the senescence of flag leaves.Compared with GC8901,the lower plant population of SN1391during grain filling was helpful to maintain the higher content of photosynthetic pigment,activity of PS U,and Pn in flag leaves during senescence.The delayed decrease in antioxidative enzyme activity and the lower degree of membrane lipid peroxidation in the senescing leaves of SN1391 were beneficial to protect the photosynthetic apparatus,which lead to the prolonged duration of CO2 assimilation.With the increase of N application,the Chl content of SN1391 flag leaves and the efficiency of excitation captured by open PS II centers increased.At the same time,the thermal dissipation in SN1391 flag leaves at high N(HN)treatment decreased and ?PsⅡimproved greatly,which were favorable to the increase of Pn.The SOD,POD,CAT and APX activities in the flag leaves of SN1391 increased markedly at HN treatment,indicating that these enzymes

  3. Development Correlations of the Buds of Grapevine (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Liliana ROTARU

    2010-06-01

    Full Text Available The development characteristics of different buds of the grapevine are mainly related by stimulation and/or inhibition effects, the action of which is still inexplicable. The present study examines the development dynamics of the buds of a one-year old branch after excision of different buds and the application of ?-naphtyl acetic acid (ANA, as well as the growth capacity of each bud individually. We verified the effects of acrotony cited previously by various researchers. These effects are due to different developmental characteristics of which could to lay the groundwork for the improvement of different productions methods.

  4. Comparative detection of a large population of grapevine viruses by TaqMan(®) RT-qPCR and ELISA.

    Science.gov (United States)

    Bruisson, Sébastien; Lebel, Sylvain; Walter, Bernard; Prevotat, Laurent; Seddas, Sam; Schellenbaum, Paul

    2017-02-01

    Grapevine (Vitis spp.) can be infected by numerous viruses that are often widespread and of great economic importance. Reliable detection methods are necessary for sanitary selection which is the only way to partly control grapevine virus diseases. Biological indexing and ELISA are currently the standard methods for screening propagation material, and PCR-methods are becoming increasingly popular. Due to the diversity of virus isolates, it is essential to verify that the tests allow the detection of the largest possible virus populations. We developed three quadruplex TaqMan(®) RT-qPCR assays for detecting nine different viruses that cause considerable damage in many vineyards world-wide. Each assay is designed to detect three viruses and the grapevine Actin as an internal control. A large population of grapevines from diverse cultivars and geographic location was tested for the presence of nine viruses: Arabis mosaic virus (ArMV), Grapevine fleck virus (GFkV), Grapevine fanleaf virus (GFLV), Grapevine leafroll-associated viruses (GLRaV-1, -2, -3), Grapevine rupestris stem pitting-associated virus (GRSPaV), Grapevine virus A (GVA), and Grapevine virus B (GVB). In general, identical results were obtained with multiplex TaqMan(®) RT-qPCR and ELISA although, in some cases, viruses could be detected by only one of the two techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Influence of epiphytic bacteria from grapevine leaves on Phomopsis viticola Sacc.

    Directory of Open Access Journals (Sweden)

    Ewa Król

    2013-12-01

    Full Text Available Out of 282 isolates of epiphytic bacteria population originating from grapevine leaves 15% inhibited growth of Phomopsis viticola on potato-dextrose agar. Protective activity of 16 isolates, representing different morphological groups was tested on one-year old of grapevine stems fragments. Majority of bacterial isolates which inhibited the fungus growth in-vitro provided no protection of stems fragments against P. viticola. The efficiency of protection activity of bacterial isolates tested decreased with time. The most effective isolates of bacteria in protection of grapevine stemswere identified as Bacillus sp. and Pseudomonas fluorescens.

  6. VARYING DEGREE OF GRAFTING COMPATIBILITY BETWEEN CV. CHARDONNAY, MERLOT AND DIFFERENT GRAPEVINE ROOTSTOCKS

    Directory of Open Access Journals (Sweden)

    Slavica TODIĆ

    2006-02-01

    Full Text Available Level of affi nity between grapevine rootstock and Vitis vinifera as scion, quality of reproductive materials and technological actions in grapevine rootstock production process determine success in grapevine rootstock production in large extent. Practical training showed that difference in level of compatibility between grapevine rootstock and grafted Vitis vinifera cultivars are existing. Direct effects of these differences are unequal yield of fi rst class grafted grapevine rootlings. In this paper, level of compatibility in nursery between clones of cv. Chardonnay BCL 75, VCR4 and cv. Merlot R18, MCL 519 and grapevine rootstocks Kober 5BB (Vitis berlandieri x V. riparia, SO4 (V. berlandieri x V. riparia and 41B (Chasselas x V.berlandieri were investigated. The trial was conducted in commercial grapevine nursery located in Velika Drenova, Serbia. As an index of compatibility, grade of high quality grapevine grafted rootlings, dry matter in mature shoots and root system development were used. Grafting was done by `tongue grafting` indoor technique. Stratifi cation was done in sand, on temperature of the stratifi cation material of 26-28oC, and humidity of around 90%. Grafted cuttings were waxed twice: before stratifi cation, and before planting in the nursery. Grafted rootlings were classed in two classes according to regulations of quality, (Yugoslav Offi cial Register, 26/79. Grafted rootlings that did not satisfi ed standard criteria were discarded. Both clones of cv. Chardonnay gave the highest percentage of I class grafted rootlings on grapevine rootstock 41B: clone BCL 75 – 60% and clone VCR4 – 61%. In the same combination, those grapevine grafted rootlings had the highest weight of the root system. Lower percentage of obtained I class grafted rootlings was established on rootstock Kober 5BB, while statistically signifi cantly lower yields were obtained on grapevine rootstock SO4: clone BCL75 – 43% and clone VCR4 – 48%. Dry

  7. Determination of the activity signature of key carbohydrate metabolism enzymes in phenolic-rich grapevine tissues

    DEFF Research Database (Denmark)

    Covington, Elizabeth Dunn; Roitsch, Thomas Georg; Dermastia, Marina

    2016-01-01

    assays for enzymes of primary carbohydrate metabolism, while based on our recently published one for quantitative measurement of activities using coupled spectrophotometric assays in a 96-well format, is tailored to the complexities of phenolic- and anthocyanin-rich extracts from grapevine leaf....... As a case study we applied the protocol to grapevine leaf samples infected with plant pathogenic bacteria 'Candidatus Phytoplasma solani', known to alter carbohydrate metabolism in grapevine. The described adaptations may be useful for determination of metabolic fingerprints for physiological phenotyping...

  8. Exploring the genetic variability in water use efficiency: Evaluation of inter and intra cultivar genetic diversity in grapevines.

    Science.gov (United States)

    Tortosa, Ignacio; Escalona, José Mariano; Bota, Josefina; Tomás, Magdalena; Hernández, Esther; Escudero, Enrique García; Medrano, Hipólito

    2016-10-01

    Genetic improvement of crop Water Use Efficiency (WUE) is a general goal because the increasing water scarcity and the trend to a more sustainable agriculture. For grapevines, this subject is relevant and need an urgent response because their wide distribution in semi-arid areas. New cultivars are difficult to introduce in viticulture due to the narrow dependency of consumer appreciation often linked to a certain particular wine taste. Clones of reputed cultivars would presumably be more accepted but little is known on the intra-cultivar genetic variability of the WUE. The present work compares, on the basis of two field assays, the variability of intrinsic water use efficiency (WUEi) in a large collection of cultivars in contrast with a collection of clones of Tempranillo cultivar. The results show that clonal variability of WUEi was around 80% of the inter-cultivar, thus providing a first assessment on the opportunity for clonal selection by WUE. Plotting the WUEi data against stem water potential or stomatal conductance it was possible to identify cultivars and clones out of the confidence intervals of this linear regression thus with significantly higher and lower WUEi values. The present results contribute to open the expectative for a genetic improvement of grapevine WUE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Growth, Yielding and Healthiness of Grapevine Cultivars ‘Solaris’ and ‘Regent’ in Response to Fertilizers and Biostimulants

    Directory of Open Access Journals (Sweden)

    Lisek Jerzy

    2016-12-01

    Full Text Available In the years 2008–2015, field experiments were conducted on the vines of cultivars ‘Solaris’ and ‘Regent’ grafted on SO4 rootstock. The following treatments: 1. control (untreated, 2. NPK (mineral fertilization 70 kg N·ha−1; 40 kg P·ha−1; 120 kg K·ha−1, 3. mycorrhizal substrate (AMF – Arbuscular Mycorrhizal Fungi, 4. NPK + AMF, 5. manure (before planting, 6. NPK + manure (before planting, 7. Bioilsa, 8. NPK + Bioilsa, 9. BF-Ecomix, 10. NPK + BF-Ecomix, 11. Ausma and 12. NPK + Ausma were applied to evaluate the usefulness of biostimulants and mineral and organic fertilizers in organic grapevine production in “cool climate” conditions of Poland. The tests did not show a definite positive effect of the biostimulants and organic fertilizers on growth, yielding and healthiness of the cultivars ‘Solaris’ and ‘Regent’. There were no substantial differences in total marketable yield in the years 2009 to 2015 between control and other treatments. Grapevines planted in soil rich in minerals grew and yielded well despite no mineral fertilization for a number of years. In 2014, when the air humidity was high during vegetation, intensive rotting of the berries of cultivar ‘Solaris’, caused by Botrytis cinerea, was observed on plants fertilized with NPK.

  10. Effects of moderate and high rates of biochar and compost on grapevine growth in a greenhouse experiment

    Directory of Open Access Journals (Sweden)

    Arianna Bozzolo

    2017-03-01

    Full Text Available Biochar is used as soil amendment and enhancer of plant growth, but the mechanisms involved in grapevine are not understood. In this study, the short-term effects of amendments were evaluated in a trial combining three substrates (biochar, compost, peat-based media with three doses (30, 70, 100% along a time sequence on 1-year-old bare root cuttings of grapevine. Amendments were analyzed for elemental composition. Soil pH, electrical conductivity (EC, chlorophyll (CHL, flavonoids (FL, anthocyans (ANT and nitrogen balance index (NBI were measured.Biochar differed from other amendments for stable C structures, where nutrients and lignin residues were high in compost. Biochar increased soil pH, whereas biochar plus compost mixture augmented EC. The amended plants had detrimental effects on root, true and lateral leaves. Nevertheless, at the lowest rate biochar increased the primary shoot and total scion to root biomass ratio. Among biochemicals, ANT and NBI were mostly affected by biochar, while compost gave only slight increments. Thus, although biochar rate was not adequate for the shedding in open field our results suggest that biochar might be useful in nursery when used at low dosages.

  11. Grapevine Pathogenic Microorganisms: Understanding Infection Strategies and Host Response Scenarios.

    Science.gov (United States)

    Armijo, Grace; Schlechter, Rudolf; Agurto, Mario; Muñoz, Daniela; Nuñez, Constanza; Arce-Johnson, Patricio

    2016-01-01

    Grapevine (Vitis vinifera L.) is one of the most important fruit crop worldwide. Commercial cultivars are greatly affected by a large number of pathogenic microorganisms that cause diseases during pre- and/or post-harvest periods, affecting production, processing and export, along with fruit quality. Among the potential threats, we can find bacteria, fungi, oomycete, or viruses with different life cycles, infection mechanisms and evasion strategies. While plant-pathogen interactions are cycles of resistance and susceptibility, resistance traits from natural resources are selected and may be used for breeding purposes and for a sustainable agriculture. In this context, here we summarize some of the most important diseases affecting V. vinifera together with their causal agents. The aim of this work is to bring a comprehensive review of the infection strategies deployed by significant types of pathogens while understanding the host response in both resistance and susceptibility scenarios. New approaches being used to uncover grapevine status during biotic stresses and scientific-based procedures needed to control plant diseases and crop protection are also addressed.

  12. Mitochondria change dynamics and morphology during grapevine leaf senescence.

    Directory of Open Access Journals (Sweden)

    Cristina Ruberti

    Full Text Available Leaf senescence is the last stage of development of an organ and is aimed to its ordered disassembly and nutrient reallocation. Whereas chlorophyll gradually degrades during senescence in leaves, mitochondria need to maintain active to sustain the energy demands of senescing cells. Here we analysed the motility and morphology of mitochondria in different stages of senescence in leaves of grapevine (Vitis vinifera, by stably expressing a GFP (green fluorescent protein reporter targeted to these organelles. Results show that mitochondria were less dynamic and markedly changed morphology during senescence, passing from the elongated, branched structures found in mature leaves to enlarged and sparse organelles in senescent leaves. Progression of senescence in leaves was not synchronous, since changes in mitochondria from stomata were delayed. Mitochondrial morphology was also analysed in grapevine cell cultures. Mitochondria from cells at the end of their growth curve resembled those from senescing leaves, suggesting that cell cultures might represent a useful model system for senescence. Additionally, senescence-associated mitochondrial changes were observed in plants treated with high concentrations of cytokinins. Overall, morphology and dynamics of mitochondria might represent a reliable senescence marker for plant cells.

  13. Mitochondria change dynamics and morphology during grapevine leaf senescence.

    Science.gov (United States)

    Ruberti, Cristina; Barizza, Elisabetta; Bodner, Martina; La Rocca, Nicoletta; De Michele, Roberto; Carimi, Francesco; Lo Schiavo, Fiorella; Zottini, Michela

    2014-01-01

    Leaf senescence is the last stage of development of an organ and is aimed to its ordered disassembly and nutrient reallocation. Whereas chlorophyll gradually degrades during senescence in leaves, mitochondria need to maintain active to sustain the energy demands of senescing cells. Here we analysed the motility and morphology of mitochondria in different stages of senescence in leaves of grapevine (Vitis vinifera), by stably expressing a GFP (green fluorescent protein) reporter targeted to these organelles. Results show that mitochondria were less dynamic and markedly changed morphology during senescence, passing from the elongated, branched structures found in mature leaves to enlarged and sparse organelles in senescent leaves. Progression of senescence in leaves was not synchronous, since changes in mitochondria from stomata were delayed. Mitochondrial morphology was also analysed in grapevine cell cultures. Mitochondria from cells at the end of their growth curve resembled those from senescing leaves, suggesting that cell cultures might represent a useful model system for senescence. Additionally, senescence-associated mitochondrial changes were observed in plants treated with high concentrations of cytokinins. Overall, morphology and dynamics of mitochondria might represent a reliable senescence marker for plant cells.

  14. Climate change impacts and adaptive strategies: lessons from the grapevine.

    Science.gov (United States)

    Mosedale, Jonathan R; Abernethy, Kirsten E; Smart, Richard E; Wilson, Robert J; Maclean, Ilya M D

    2016-11-01

    The cultivation of grapevines for winemaking, known as viticulture, is widely cited as a climate-sensitive agricultural system that has been used as an indicator of both historic and contemporary climate change. Numerous studies have questioned the viability of major viticulture regions under future climate projections. We review the methods used to study the impacts of climate change on viticulture in the light of what is known about the effects of climate and weather on the yields and quality of vineyard harvests. Many potential impacts of climate change on viticulture, particularly those associated with a change in climate variability or seasonal weather patterns, are rarely captured. Key biophysical characteristics of viticulture are often unaccounted for, including the variability of grapevine phenology and the exploitation of microclimatic niches that permit successful cultivation under suboptimal macroclimatic conditions. We consider how these same biophysical characteristics permit a variety of strategies by which viticulture can adapt to changing climatic conditions. The ability to realize these strategies, however, is affected by uneven exposure to risks across the winemaking sector, and the evolving capacity for decision-making within and across organizational boundaries. The role grape provenance plays in shaping perceptions of wine value and quality illustrates how conflicts of interest influence decisions about adaptive strategies within the industry. We conclude by considering what lessons can be taken from viticulture for studies of climate change impacts and the capacity for adaptation in other agricultural and natural systems. © 2016 John Wiley & Sons Ltd.

  15. Dissipation of glyphosate from grapevine soils in Sonora, Mexico

    Directory of Open Access Journals (Sweden)

    Norma J. Salazar López

    2016-10-01

    Full Text Available Grapevine is one of the important crops in Sonora, due to revenue generation from its export to foreign countries. Among the most widely used herbicides for this crop is glyphosate, which is considered moderately toxic and persistent. The present research evaluates the dissipation of glyphosate in grapevine planted soil at three depths (5, 30 and 60 cm. Sampling was carried out before glyphosate application, and 5, 10, 18, 27, and 65 days after. Glyphosate was extracted from soil samples using ammonium hydroxide. The derivate extracts were partitioned with dichloromethane and analyzed using gas chromatography with pulsed flame photometric detector (PFPD. The results showed that average glyphosate residues are significantly greater at 5 cm (0.09 mg kg-1 than the other depths (30 and 60 cm, having a difference of 0.078 mg kg-1 between them (P < 0.03. Glyphosate concentration time profiles were similar; it reached maximum soil concentration in a range of 10 to 18 days after application. The half-life of glyphosate in soil has an average of 39 days at all depths. Our data suggests that the release in soil of glyphosate applied to weeds delays its transference to soil by 14 days, and extends residue half life to 55 days after application. These results could be the basis for further research, including more environmental parameters that could affect the dissipation or degradation process in soil.

  16. Precision breeding of grapevine (Vitis vinifera L.) for improved traits.

    Science.gov (United States)

    Gray, Dennis J; Li, Zhijian T; Dhekney, Sadanand A

    2014-11-01

    This review provides an overview of recent technological advancements that enable precision breeding to genetically improve elite cultivars of grapevine (Vitis vinifera L.). Precision breeding, previously termed "cisgenic" or "intragenic" genetic improvement, necessitates a better understanding and use of genomic resources now becoming accessible. Although it is now a relatively simple task to identify genetic elements and genes from numerous "omics" databases, the control of major agronomic and enological traits often involves the currently unknown participation of many genes and regulatory machineries. In addition, genetic evolution has left numerous vestigial genes and sequences without tangible functions. Thus, it is critical to functionally test each of these genetic entities to determine their real-world functionality or contribution to trait attributes. Toward this goal, several diverse techniques now are in place, including cell culture systems to allow efficient plant regeneration, advanced gene insertion techniques, and, very recently, resources for genomic analyses. Currently, these techniques are being used for high-throughput expression analysis of a wide range of grapevine-derived promoters and disease-related genes. It is envisioned that future research efforts will be extended to the study of promoters and genes functioning to enhance other important traits, such as fruit quality and vigor.

  17. Bioactive stilbenes from Vitis vinifera grapevine shoots extracts.

    Science.gov (United States)

    Chaher, Nassima; Arraki, Kamel; Dillinseger, Elsa; Temsamani, Hamza; Bernillon, Stéphane; Pedrot, Eric; Delaunay, Jean-Claude; Mérillon, Jean-Michel; Monti, Jean-Pierre; Izard, Jean-Claude; Atmani, Djebbar; Richard, Tristan

    2014-03-30

    Viticultural residues from commercial viticultural activities represent a potentially important source of bioactive stilbenes such as resveratrol. The main aim of the present study was therefore to isolate, identify and perform biological assays against amyloid-β peptide aggregation of original stilbenes from Vitis vinifera shoots. A new resveratrol oligomer, (Z)-cis-miyabenol C (3), was isolated from Vitis vinifera grapevine shoots together with two newly reported oligostilbenes from Vitis vinifera shoots, vitisinol C (1) and (E)-cis-miyabenol C (2), and six known compounds: piceatannol, resveratrol, (E)-ε-viniferin (trans-ε-viniferin), ω-viniferin, vitisinol C and (E)-miyabenol C. The structures of these resveratrol derivatives were established on the basis of detailed spectroscopic analysis including nuclear magnetic resonance experiments. All the newly reported compounds were tested for their anti-aggregative activity against amyloid-β fibril formation. Vitisinol C was found to exert a significant activity against amyloid-β aggregation. Vitis vinifera grapevine shoots are potentially interesting as a source of new bioactive stilbenes, such as vitisinol C. © 2013 Society of Chemical Industry.

  18. Phytotoxins Produced by Fungi Associated with Grapevine Trunk Diseases

    Directory of Open Access Journals (Sweden)

    Antonio Evidente

    2011-12-01

    Full Text Available Up to 60 species of fungi in the Botryosphaeriaceae family, genera Cadophora, Cryptovalsa, Cylindrocarpon, Diatrype, Diatrypella, Eutypa, Eutypella, Fomitiporella, Fomitiporia, Inocutis, Phaeoacremonium and Phaeomoniella have been isolated from decline-affected grapevines all around the World. The main grapevine trunk diseases of mature vines are Eutypa dieback, the esca complex and cankers caused by the Botryospheriaceae, while in young vines the main diseases are Petri and black foot diseases. To understand the mechanism of these decline-associated diseases and the symptoms associated with them, the toxins produced by the pathogens involved in these diseases were isolated and characterised chemically and biologically. So far the toxins of only a small number of these decline fungi have been studied. This paper presents an overview of the toxins produced by the most serious of these vine wood pathogens: Eutypa lata, Phaeomoniella chlamydospora, Phaeoacremonium aleophilum and some taxa in the Botryosphaeriaceae family, and examines how these toxins produce decline symptoms. The chemical structure of these metabolites and in some cases their vivotoxin nature are also discussed.

  19. Phytotoxins produced by fungi associated with grapevine trunk diseases.

    Science.gov (United States)

    Andolfi, Anna; Mugnai, Laura; Luque, Jordi; Surico, Giuseppe; Cimmino, Alessio; Evidente, Antonio

    2011-12-01

    Up to 60 species of fungi in the Botryosphaeriaceae family, genera Cadophora, Cryptovalsa, Cylindrocarpon, Diatrype, Diatrypella, Eutypa, Eutypella, Fomitiporella, Fomitiporia, Inocutis, Phaeoacremonium and Phaeomoniella have been isolated from decline-affected grapevines all around the World. The main grapevine trunk diseases of mature vines are Eutypa dieback, the esca complex and cankers caused by the Botryospheriaceae, while in young vines the main diseases are Petri and black foot diseases. To understand the mechanism of these decline-associated diseases and the symptoms associated with them, the toxins produced by the pathogens involved in these diseases were isolated and characterised chemically and biologically. So far the toxins of only a small number of these decline fungi have been studied. This paper presents an overview of the toxins produced by the most serious of these vine wood pathogens: Eutypa lata, Phaeomoniella chlamydospora, Phaeoacremonium aleophilum and some taxa in the Botryosphaeriaceae family, and examines how these toxins produce decline symptoms. The chemical structure of these metabolites and in some cases their vivotoxin nature are also discussed.

  20. ‘Bois noir’: new phytoplasma disease of grapevine in Iran

    Directory of Open Access Journals (Sweden)

    Mirchenari Seyed Mehdi

    2015-01-01

    Full Text Available Recently, grapevines showing symptoms suggesting the ‘bois noir’ phytoplasma disease were observed in vineyards located in several central provinces of Iran. Polymerase chain reaction assays using phytoplasma universal primer pair P1A/P7A followed by primer pair R16F2n/R16R2 in nested PCR, confirmed the association of phytoplasmas with symptomatic grapevines. The results of RFLP analyses using HpaII, HinfI, MseI, RsaI, and TaqI restriction enzymes, indicated that grapevine phytoplasma isolates in these regions could be related to the 16SrXII group. Sequence analyses of the partial 16S rRNA gene confirmed that Iranian grapevine phytoplasmas are associated with ‘Candidatus Phytoplasma solani’. This is the first report of the ‘bois noir’ disease outbreak in Iran

  1. Surface disinfection procedure and in vitro regeneration of grapevine (Vitis vinifera L.) axillary buds

    National Research Council Canada - National Science Library

    M F Lazo-Javalera; R Troncoso-Rojas; M E Tiznado-Hernández; M A Martínez-Tellez; I Vargas-Arispuro; M A Islas-Osuna; M Rivera-Domínguez

    2016-01-01

      Establishment of an efficient explants surface disinfection protocol is essential for in vitro cell and tissue culture as well as germplasm conservation, such as the case of Grapevine (Vitis spp.) culture...

  2. Genetic structure of the fungal grapevine pathogen Eutypa lata from four continents

    Science.gov (United States)

    The generalist ascomycete fungus Eutypa lata causes Eutypa dieback of grapevine (Vitis vinifera) worldwide. To decipher the cosmopolitan distribution of this fungus, the population genetic structure of 17 geographic samples was investigated from four continental regions (Australia, California, Europ...

  3. Surface disinfection procedure and in vitro regeneration of grapevine (Vitis vinifera L.) axillary buds

    National Research Council Canada - National Science Library

    Lazo-Javalera, M F; Troncoso-Rojas, R; Tiznado-Hernández, M E; Martínez-Tellez, M A; Vargas-Arispuro, I; Islas-Osuna, M A; Rivera-Domínguez, M

    2016-01-01

    Establishment of an efficient explants surface disinfection protocol is essential for in vitro cell and tissue culture as well as germplasm conservation, such as the case of Grapevine (Vitis spp.) culture...

  4. Plant Stress Responses and Phenotypic Plasticity in the Epigenomics Era: Perspectives on the Grapevine Scenario, a Model for Perennial Crop Plants

    Science.gov (United States)

    Fortes, Ana M.; Gallusci, Philippe

    2017-01-01

    Epigenetic marks include Histone Post-Translational Modifications and DNA methylation which are known to participate in the programming of gene expression in plants and animals. These epigenetic marks may be subjected to dynamic changes in response to endogenous and/or external stimuli and can have an impact on phenotypic plasticity. Studying how plant genomes can be epigenetically shaped under stressed conditions has become an essential issue in order to better understand the molecular mechanisms underlying plant stress responses and enabling epigenetic in addition to genetic factors to be considered when breeding crop plants. In this perspective, we discuss the contribution of epigenetic mechanisms to our understanding of plant responses to biotic and abiotic stresses. This regulation of gene expression in response to environment raises important biological questions for perennial species such as grapevine which is asexually propagated and grown worldwide in contrasting terroirs and environmental conditions. However, most species used for epigenomic studies are annual herbaceous plants, and epigenome dynamics has been poorly investigated in perennial woody plants, including grapevine. In this context, we propose grape as an essential model for epigenetic and epigenomic studies in perennial woody plants of agricultural importance. PMID:28220131

  5. Plant Stress Responses and Phenotypic Plasticity in the Epigenomics Era: Perspectives on the Grapevine Scenario, a Model for Perennial Crop Plants.

    Science.gov (United States)

    Fortes, Ana M; Gallusci, Philippe

    2017-01-01

    Epigenetic marks include Histone Post-Translational Modifications and DNA methylation which are known to participate in the programming of gene expression in plants and animals. These epigenetic marks may be subjected to dynamic changes in response to endogenous and/or external stimuli and can have an impact on phenotypic plasticity. Studying how plant genomes can be epigenetically shaped under stressed conditions has become an essential issue in order to better understand the molecular mechanisms underlying plant stress responses and enabling epigenetic in addition to genetic factors to be considered when breeding crop plants. In this perspective, we discuss the contribution of epigenetic mechanisms to our understanding of plant responses to biotic and abiotic stresses. This regulation of gene expression in response to environment raises important biological questions for perennial species such as grapevine which is asexually propagated and grown worldwide in contrasting terroirs and environmental conditions. However, most species used for epigenomic studies are annual herbaceous plants, and epigenome dynamics has been poorly investigated in perennial woody plants, including grapevine. In this context, we propose grape as an essential model for epigenetic and epigenomic studies in perennial woody plants of agricultural importance.

  6. Selection and evaluation of phosphate-solubilizing bacteria from grapevine rhizospheres for use as biofertilizers

    OpenAIRE

    Min Liu; Xu Liu; Bao-Sen Cheng; Xue-Lei Ma; Xiao-Tong Lyu; Xian-Fang Zhao; Yan-Lun Ju; Zhuo Min; Yu-Lin Fang

    2016-01-01

    Phosphate-solubilizing bacteria (PSB) have the ability to solubilize insoluble phosphorus (P) and release soluble P. Extensive research has been performed with respect to PSB isolation from the rhizospheres of various plants, but little is known about the prevalence of PSB in the grapevine rhizosphere. In this study, we aimed to isolate and identify PSB from the grapevine rhizosphere in five vineyards of Northwest China, to characterize their plant-growth-promoting (PGP) traits, evaluate the ...

  7. Development of Virus-Induced Gene Expression and Silencing Vector Derived from Grapevine Algerian Latent Virus

    OpenAIRE

    Sang-Ho Park; Hoseong Choi; Semin Kim; Won Kyong Cho; Kook-Hyung Kim

    2016-01-01

    Grapevine Algerian latent virus (GALV) is a member of the genus Tombusvirus in the Tombusviridae and infects not only woody perennial grapevine plant but also herbaceous Nicotiana benthamiana plant. In this study, we developed GALV-based gene expression and virus-induced gene silencing (VIGS) vectors in N. benthamiana. The GALV coat protein deletion vector, pGMG, was applied to express the reporter gene, green fluorescence protein (GFP), but the expression of GFP was not detected due to the n...

  8. Production of highly bioactive resveratrol analogues pterostilbene and piceatannol in metabolically engineered grapevine cell cultures

    OpenAIRE

    Martínez‐Márquez, Ascensión; Morante‐Carriel, Jaime A.; Ramírez‐Estrada, Karla; Cusidó, Rosa M.; Palazon, Javier; Bru‐Martínez, Roque

    2016-01-01

    Grapevine stilbenes, particularly trans-resveratrol, have a demonstrated pharmacological activity. Other natural stilbenes derived from resveratrol such as pterostilbene or piceatannol, display higher oral bioavailability and bioactivity than the parent compound, but are far less abundant in natural sources. Thus, to efficiently obtain these bioactive resveratrol derivatives, there is a need to develop new bioproduction systems. Grapevine cell cultures are able to produce large amounts of eas...

  9. Suppression of gate leakage current in in-situ grown AlN/InAlN/AlN/GaN heterostructures based on the control of internal polarization fields

    Science.gov (United States)

    Kotani, Junji; Yamada, Atsushi; Ishiguro, Tetsuro; Yamaguchi, Hideshi; Nakamura, Norikazu

    2017-03-01

    This paper investigates the gate leakage characteristics of in-situ AlN capped InAlN/AlN/GaN heterostructures grown by metal-organic vapor phase epitaxy. It was revealed that the leakage characteristics of AlN capped InAlN/AlN/GaN heterostructures are strongly dependent on the growth temperature of the AlN cap. For an AlN capped structure with an AlN growth temperature of 740 °C, the leakage current even increased although there exists a large bandgap material on InAlN/AlN/GaN heterostructures. On the other hand, a large reduction of the gate leakage current by 4-5 orders of magnitudes was achieved with a very low AlN growth temperature of 430 °C. X-ray diffraction analysis of the AlN cap grown at 740 °C indicated that the AlN layer is tensile-strained. In contrast to this result, the amorphous structure was confirmed for the AlN cap grown at 430 °C by transmission electron microscopy. Furthermore, theoretical analysis based on one-dimensional band simulation was carried out, and the large increase in two-dimensional electron gas (2DEG) observed in Hall measurements was well reproduced by taking into account the spontaneous and piezo-electric polarization in the AlN layer grown at 740 °C. For the AlN capped structure grown at 430 °C, it is believed that the reduced polarization field in the AlN cap suppressed the penetration of 2DEG into the InAlN barrier layer, resulting in a small impact on 2DEG mobility and density. We believe that an in-situ grown AlN cap with a very low growth temperature of 430 °C is a promising candidate for high-frequency/high-power GaN-based devices with low gate leakage current.

  10. The accumulation and localization of chalcone synthase in grapevine (Vitis vinifera L.).

    Science.gov (United States)

    Wang, Huiling; Wang, Wei; Zhan, JiCheng; Yan, Ailing; Sun, Lei; Zhang, Guojun; Wang, Xiaoyue; Ren, Jiancheng; Huang, Weidong; Xu, Haiying

    2016-09-01

    Chalcone synthase (CHS, E.C.2.3.1.74) is the first committed enzyme in the flavonoid pathway. Previous studies have primarily focused on the cloning, expression and regulation of the gene at the transcriptional level. Little is yet known about the enzyme accumulation, regulation at protein level, as well as its localization in grapevine. In present study, the accumulation, tissue and subcellular localization of CHS in different grapevine tissues (Vitis vinifera L. Cabernet Sauvignon) were investigated via the techniques of Western blotting, immunohistochemical localization, immunoelectron microscopy and confocal microscopy. The results showed that CHS were mainly accumulated in the grape berry skin, leaves, stem tips and stem phloem, correlated with flavonoids accumulation. The accumulation of CHS is developmental dependent in grape berry skin and flesh. Immunohistochemical analysis revealed that CHS were primarily localized in the exocarp and vascular bundles of the fruits during berry development; in palisade, spongy tissues and vascular bundles of the leaves; in the primary phloem and pith ray in the stems; in the growth point, leaf primordium, and young leaves of leaf buds; and in the endoderm and primary phloem of grapevine roots. Furthermore, at the subcellular level, the cell wall, cytoplasm and nucleus localized patterns of CHS were observed in the grapevine vegetative tissue cells. Results above indicated that distribution of CHS in grapevine was organ-specific and tissue-specific. This work will provide new insight for the biosynthesis and regulation of diverse flavonoid compounds in grapevine. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. SOYBEAN AND CASEIN HYDROLYSATES INDUCE GRAPEVINE IMMUNE RESPONSES AND RESISTANCE AGAINST PLASMOPARA VITICOLA

    Directory of Open Access Journals (Sweden)

    Nihed eLachhab

    2014-12-01

    Full Text Available Plasmopara viticola, the causal agent of grapevine downy mildew, is one of the most devastating grape pathogen in Europe and North America. Although phytochemicals are used to control pathogen infections, the appearance of resistant strains and the concern for possible adverse effects on environment and human health are increasing the search for alternative strategies. In the present investigation, we successfully tested two protein hydrolysates from soybean (soy and casein (cas to trigger grapevine resistance against P. viticola. On Vitis vinifera cv. Marselan plants, the application of soy and cas reduced the infected leaf surface by 76 and 63%, as compared to the control, respectively. Since both hydrolysates might trigger the plant immunity, we investigated their ability to elicit grapevine defence responses. On grapevine cell suspensions, a different free cytosolic calcium signature was recorded for each hydrolysate, whereas a similar transient phosphorylation of two MAP kinases of 45 and 49 kDa was observed. These signalling events were followed by transcriptome reprogramming, including the up-regulation of defence genes encoding pathogenesis-related (PR proteins and the stilbene synthase enzyme responsible for the biosynthesis of resveratrol, the main grapevine phytoalexin. Liquid chromatography analyses confirmed the production of resveratrol and its dimer metabolites, δ- and ε-viniferins. Overall, soy effects were more pronounced as compared to the cas one. Both hydrolysates proved to act as elicitors to enhance grapevine immunity against pathogen attack.

  12. DEVELOPMENT AND SUPPRESSION OF GRAPEVINE BLACK FOOT CAUSED BY ILYONECTRIA RADICICOLA

    Directory of Open Access Journals (Sweden)

    Khadeeja A. Saido

    2013-04-01

    Full Text Available Present study investigated the development and suppression of grapevine black foot using a highly virulent strain of Ilyonectria radicicola during 2010-2012 after its widespread outbreak in Duhok - Iraq since 2008. Inoculated roots showed distinctive symptoms of sunken necrotic lesions with internal black streaking of rootstocks. Production of mycelial mass (in vitro was higher at pH 5.0 resulting in 57% severity of foot rot compared to 46.16% at pH 7.0. In general, Kamali cv. was the most susceptible cultivar with 59.29% of stubby root growth affected compared to 53.32% and 40.83% on Rashmew and Taefi cvs. respectively. Wounding roots of a susceptible cultivar developed the conspicuous symptoms of black foot rot with a severity of 90%. Increasing the conidial inoculum was essential for severe infection development to more than 62%, whereas interaction between inoculation and wounding of roots increased lesion severity to 80.09%. However, acidic pH significantly enhanced disease progression on inoculated vine cuttings to 84.41% compared to 40% at neutral pH. Unfortunately, inoculum of Ilyonectria radicicola was not suppressed significantly even with fungicide application and continued its damage on Rashmew cv. Resulting in disease severity of 23.70% . More than 25% of the inoculated vines grown in amendments of Trichoderma harzianum and farmyard manures were infected compared to 14.80% and 20.73% of the non-inoculated. Exclusion of fungal inoculum improved the plant vigours as measured by dry weight and shoot growth, whereas significant stimulation of root growth were evidenced in the amended treatments particularly those with farmyard manures and fungicides. 

  13. Amelioration of drought-induced negative responses by elevated CO2 in field grown short rotation coppice mulberry (Morus spp.), a potential bio-energy tree crop.

    Science.gov (United States)

    Sekhar, Kalva Madhana; Reddy, Kanubothula Sitarami; Reddy, Attipalli Ramachandra

    2017-02-25

    Present study describes the responses of short rotation coppice (SRC) mulberry, a potential bio-energy tree, grown under interactive environment of elevated CO2 (E) and water stress (WS). Growth in E stimulated photosynthetic performance in well-watered (WW) as well as during WS with significant increases in light-saturated photosynthetic rates (A Sat), water use efficiency (WUEi), intercellular [CO2], and photosystem-II efficiency (F V/F M and ∆F/F M') with concomitant reduction in stomatal conductance (g s) and transpiration (E) compared to ambient CO2 (A) grown plants. Reduced levels of proline, H2O2, and malondialdehyde (MDA) and higher contents of antioxidants including ascorbic acid and total phenolics in WW and WS in E plants clearly demonstrated lesser oxidative damage. Further, A plants showed higher transcript abundance and antioxidant enzyme activities under WW as well as during initial stages of WS (15 days). However, with increasing drought imposition (30 days), A plants showed down regulation of antioxidant systems compared to their respective E plants. These results clearly demonstrated that future increased atmospheric CO2 enhances the photosynthetic potential and also mitigate the drought-induced oxidative stress in SRC mulberry. In conclusion, mulberry is a potential bio-energy tree crop which is best suitable for short rotation coppice forestry-based mitigation of increased [CO2] levels even under intermittent drought conditions, projected to prevail in the fast-changing global climate.

  14. New pheromone components of the grapevine moth Lobesia botrana.

    Science.gov (United States)

    Witzgall, Peter; Tasin, Marco; Buser, Hans-Ruedi; Wegner-Kiss, Gertrud; Mancebón, Vicente S Marco; Ioriatti, Claudio; Bäckman, Anna-Carin; Bengtsson, Marie; Lehmann, Lutz; Francke, Wittko

    2005-12-01

    Analysis of extracts of sex pheromone glands of grapevine moth females Lobesia botrana showed three previously unidentified compounds, (E)-7-dodecenyl acetate and the (E,E)- and (Z,E)-isomers of 7,9,11-dodecatrienyl acetate. This is the first account of a triply unsaturated pheromone component in a tortricid moth. The monoenic acetate (E)-7-dodecenyl acetate and the trienic acetate (7Z,9E,11)-dodecatrienyl acetate significantly enhanced responses of males to the main pheromone compound, (7E,9Z)-7,9-dodecadienyl acetate, in the wind tunnel. The identification of sex pheromone synergists in L. botrana may be of practical importance for the development of integrated pest management systems.

  15. Grapevine under deficit irrigation: hints from physiological and molecular data.

    Science.gov (United States)

    Chaves, M M; Zarrouk, O; Francisco, R; Costa, J M; Santos, T; Regalado, A P; Rodrigues, M L; Lopes, C M

    2010-05-01

    A large proportion of vineyards are located in regions with seasonal drought (e.g. Mediterranean-type climates) where soil and atmospheric water deficits, together with high temperatures, exert large constraints on yield and quality. The increasing demand for vineyard irrigation requires an improvement in the efficiency of water use. Deficit irrigation has emerged as a potential strategy to allow crops to withstand mild water stress with little or no decreases of yield, and potentially a positive impact on fruit quality. Understanding the physiological and molecular bases of grapevine responses to mild to moderate water deficits is fundamental to optimize deficit irrigation management and identify the most suitable varieties to those conditions. How the whole plant acclimatizes to water scarcity and how short- and long-distance chemical and hydraulic signals intervene are reviewed. Chemical compounds synthesized in drying roots are shown to act as long-distance signals inducing leaf stomatal closure and/or restricting leaf growth. This explains why some plants endure soil drying without significant changes in shoot water status. The control of plant water potential by stomatal aperture via feed-forward mechanisms is associated with 'isohydric' behaviour in contrast to 'anysohydric' behaviour in which lower plant water potentials are attained. This review discusses differences in this respect between grapevines varieties and experimental conditions. Mild water deficits also exert direct and/or indirect (via the light environment around grape clusters) effects on berry development and composition; a higher content of skin-based constituents (e.g. tannins and anthocyanins) has generally being reported. Regulation under water deficit of genes and proteins of the various metabolic pathways responsible for berry composition and therefore wine quality are reviewed.

  16. VitisNet: "Omics" integration through grapevine molecular networks.

    Directory of Open Access Journals (Sweden)

    Jérôme Grimplet

    Full Text Available BACKGROUND: Genomic data release for the grapevine has increased exponentially in the last five years. The Vitis vinifera genome has been sequenced and Vitis EST, transcriptomic, proteomic, and metabolomic tools and data sets continue to be developed. The next critical challenge is to provide biological meaning to this tremendous amount of data by annotating genes and integrating them within their biological context. We have developed and validated a system of Grapevine Molecular Networks (VitisNet. METHODOLOGY/PRINCIPAL FINDINGS: The sequences from the Vitis vinifera (cv. Pinot Noir PN40024 genome sequencing project and ESTs from the Vitis genus have been paired and the 39,424 resulting unique sequences have been manually annotated. Among these, 13,145 genes have been assigned to 219 networks. The pathway sets include 88 "Metabolic", 15 "Genetic Information Processing", 12 "Environmental Information Processing", 3 "Cellular Processes", 21 "Transport", and 80 "Transcription Factors". The quantitative data is loaded onto molecular networks, allowing the simultaneous visualization of changes in the transcriptome, proteome, and metabolome for a given experiment. CONCLUSIONS/SIGNIFICANCE: VitisNet uses manually annotated networks in SBML or XML format, enabling the integration of large datasets, streamlining biological functional processing, and improving the understanding of dynamic processes in systems biology experiments. VitisNet is grounded in the Vitis vinifera genome (currently at 8x coverage and can be readily updated with subsequent updates of the genome or biochemical discoveries. The molecular network files can be dynamically searched by pathway name or individual genes, proteins, or metabolites through the MetNet Pathway database and web-portal at http://metnet3.vrac.iastate.edu/. All VitisNet files including the manual annotation of the grape genome encompassing pathway names, individual genes, their genome identifier, and chromosome

  17. Burgundy regional climate change and its potential impact on grapevines

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yiwen [University of Burgundy, Center for Climate Research, UMR 5210 CNRS, Dijon (France); G.C. Rieber Climate Institute at the Nansen Environment and Remote Sensing Center, Bergen (Norway); Castel, Thierry [University of Burgundy, Center for Climate Research, UMR 5210 CNRS, Dijon (France); AgroSup, Department of Agriculture and Environment, Dijon (France); Richard, Yves; Cuccia, Cedric [University of Burgundy, Center for Climate Research, UMR 5210 CNRS, Dijon (France); Bois, Benjamin [University of Burgundy, Center for Climate Research, UMR 5210 CNRS, Dijon (France); IUVV, University of Burgundy, Dijon (France)

    2012-10-15

    ARPEGE general circulation model simulations were dynamically downscaled by The Weather Research and Forecasting Model (WRF) for the study of climate change and its impact on grapevine growth in Burgundy region in France by the mid twenty-first century. Two time periods were selected: 1970-1979 and 2031-2040. The WRF model driven by ERA-INTERIM reanalysis data was validated against in situ surface temperature observations. The daily maximum and minimum surface temperature (T{sub max} and T{sub min}) were simulated by the WRF model at 8 x 8 km horizontal resolution. The averaged daily T{sub max} for each month during 1970-1979 have good agreement with observations, the averaged daily T{sub min} have a warm bias about 1-2 K. The daily T{sub max} and T{sub min} for each month (domain averaged) during 2031-2040 show a general increase. The largest increment ({proportional_to}3 K) was found in summer. The smallest increments (<1 K) were found in spring and fall. The spatial distribution of temperature increment shows a strong meridional gradient, high in south in summer, reversing in winter. The resulting potential warming rate in summer is equivalent to 4.7 K/century under the IPCC A2 emission scenario. The dynamically downscaled T{sub max} and T{sub min} were used to simulate the grape (Pinot noir grape variety) flowering and veraison dates. For 2031-2040, the projected dates are 8 and 12 days earlier than those during 1970-1979, respectively. The simulated hot days increase more than 50% in the two principal grapevine regions. They show strong impact on Pinot noir development. (orig.)

  18. Phenolic Compounds and Bioactivity of Healthy and Infected Grapevine Leaf Extracts from Red Varieties Merlot and Vranac (Vitis vinifera L.).

    Science.gov (United States)

    Anđelković, Marko; Radovanović, Blaga; Anđelković, Ana Milenkovic; Radovanović, Vladimir

    2015-09-01

    We investigated the phenolic composition, radical scavenging activity, and antimicrobial activity of grapevine leaf extracts from two red grape varieties, Vranac and Merlot (Vitis vinifera L.). The extracts were prepared from healthy grapevine leaves and those infected by Plasmopara viticola (downy mildew). The phenolic composition of the grapevine leaf extracts was determined using spectrophotometric assays and reverse-phase high performance liquid chromatography (RP-HPLC). The radical scavenging activity of grapevine leaf extracts was determined by the 2,2-diphenyl-1-picrylhydrazyl assay, and their antimicrobial activity was determined by microwell dilution tests. The total phenolic content was higher in healthy grapevine leaf extracts than in infected grapevine leaf extracts. The RP-HPLC analysis detected significant amounts of flavonols, phenolic acids, and flavan-3-ols, and small amounts of stilbenes in the grapevine leaf extracts. Compared with the infected grapevine leaf extracts, the healthy grapevine leaf extracts were richer in flavonols, phenolic acids, and flavan-3-ols, but had lower stilbenes contents. All extracts showed strong free radical scavenging activity, which was strongly correlated with the total phenolic content (R(2) = 0.978). The extracts showed a stronger antimicrobial activity towards Gram-positive bacterial strains than towards Gram-negative bacterial strains and yeast. The phenolic compounds in grapevine leaves were responsible for their strong radical scavenging and antimicrobial activities. Together, these results demonstrate that grapevine leaves have high nutritional value and can be used as a fresh food and to prepare extracts that can be used as additives in food and medicines.

  19. Vascular Occlusions in Grapevines with Pierce’s Disease Make Disease Symptom Development Worse1[OA

    Science.gov (United States)

    Sun, Qiang; Sun, Yuliang; Walker, M. Andrew; Labavitch, John M.

    2013-01-01

    Vascular occlusions are common structural modifications made by many plant species in response to pathogen infection. However, the functional role(s) of occlusions in host plant disease resistance/susceptibility remains controversial. This study focuses on vascular occlusions that form in stem secondary xylem of grapevines (Vitis vinifera) infected with Pierce’s disease (PD) and the impact of occlusions on the hosts’ water transport and the systemic spread of the causal bacterium Xylella fastidiosa in infected vines. Tyloses are the predominant type of occlusion that forms in grapevine genotypes with differing PD resistances. Tyloses form throughout PD-susceptible grapevines with over 60% of the vessels in transverse sections of all examined internodes becoming fully blocked. By contrast, tylose development was mainly limited to a few internodes close to the point of inoculation in PD-resistant grapevines, impacting only 20% or less of the vessels. The extensive vessel blockage in PD-susceptible grapevines was correlated to a greater than 90% decrease in stem hydraulic conductivity, compared with an approximately 30% reduction in the stems of PD-resistant vines. Despite the systemic spread of X. fastidiosa in PD-susceptible grapevines, the pathogen colonized only 15% or less of the vessels in any internode and occurred in relatively small numbers, amounts much too small to directly block the vessels. Therefore, we concluded that the extensive formation of vascular occlusions in PD-susceptible grapevines does not prevent the pathogen’s systemic spread in them, but may significantly suppress the vines’ water conduction, contributing to PD symptom development and the vines’ eventual death. PMID:23292789

  20. Vascular occlusions in grapevines with Pierce's disease make disease symptom development worse.

    Science.gov (United States)

    Sun, Qiang; Sun, Yuliang; Walker, M Andrew; Labavitch, John M

    2013-03-01

    Vascular occlusions are common structural modifications made by many plant species in response to pathogen infection. However, the functional role(s) of occlusions in host plant disease resistance/susceptibility remains controversial. This study focuses on vascular occlusions that form in stem secondary xylem of grapevines (Vitis vinifera) infected with Pierce's disease (PD) and the impact of occlusions on the hosts' water transport and the systemic spread of the causal bacterium Xylella fastidiosa in infected vines. Tyloses are the predominant type of occlusion that forms in grapevine genotypes with differing PD resistances. Tyloses form throughout PD-susceptible grapevines with over 60% of the vessels in transverse sections of all examined internodes becoming fully blocked. By contrast, tylose development was mainly limited to a few internodes close to the point of inoculation in PD-resistant grapevines, impacting only 20% or less of the vessels. The extensive vessel blockage in PD-susceptible grapevines was correlated to a greater than 90% decrease in stem hydraulic conductivity, compared with an approximately 30% reduction in the stems of PD-resistant vines. Despite the systemic spread of X. fastidiosa in PD-susceptible grapevines, the pathogen colonized only 15% or less of the vessels in any internode and occurred in relatively small numbers, amounts much too small to directly block the vessels. Therefore, we concluded that the extensive formation of vascular occlusions in PD-susceptible grapevines does not prevent the pathogen's systemic spread in them, but may significantly suppress the vines' water conduction, contributing to PD symptom development and the vines' eventual death.

  1. Host plant volatiles induce oriented flight behaviour in male European grapevine moths, Lobesia botrana.

    Science.gov (United States)

    von Arx, Martin; Schmidt-Büsser, Daniela; Guerin, Patrick M

    2011-10-01

    The European grapevine moth Lobesia botrana relies on a female produced sex pheromone for long-distance mate finding. Grapevine moth males compete heavily during limited time windows for females. The aim of this study was to investigate the perception of host plant volatiles by grapevine moth males and whether such compounds elicit upwind oriented flights. We compared five host plant headspace extracts by means of gas chromatography linked electroantennogram (EAG) recording. We identified 12 common host plant volatiles (aliphatic esters, aldehydes, and alcohols, aromatic compounds and terpenes) that elicit EAG responses from grapevine moth males and that occur in at least three of the host plant volatile headspace extracts tested. Subsequently the behavioural response of grapevine moth males to four these compounds presented singly and in mixtures (1-hexanol, 1-octen-3-ol, (Z)-3-hexenyl acetate and (E)-β-caryophyllene) was recorded in a wind tunnel. Grapevine moth males engaged in upwind flights to all of four compounds when released singly at 10,000 pg/min and to all, except 1-octen-3-ol, when released at 100 pg/min. A blend of the four host plant volatiles released at 10,000 pg/min and mixed at a ratio based on the analysis of Vitis vinifera cv. Solaris volatile emissions attracted significantly more males than any single compound. Grapevine moth males perceive and respond to host plant volatiles at biologically relevant levels indicating that host plant volatiles figure as olfactory cues and that L. botrana males can discern places where the likelihood of encountering females is higher.

  2. DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins

    Science.gov (United States)

    Malnoy, Mickael; Viola, Roberto; Jung, Min-Hee; Koo, Ok-Jae; Kim, Seokjoong; Kim, Jin-Soo; Velasco, Riccardo; Nagamangala Kanchiswamy, Chidananda

    2016-01-01

    The combined availability of whole genome sequences and genome editing tools is set to revolutionize the field of fruit biotechnology by enabling the introduction of targeted genetic changes with unprecedented control and accuracy, both to explore emergent phenotypes and to introduce new functionalities. Although plasmid-mediated delivery of genome editing components to plant cells is very efficient, it also presents some drawbacks, such as possible random integration of plasmid sequences in the host genome. Additionally, it may well be intercepted by current process-based GMO regulations, complicating the path to commercialization of improved varieties. Here, we explore direct delivery of purified CRISPR/Cas9 ribonucleoproteins (RNPs) to the protoplast of grape cultivar Chardonnay and apple cultivar such as Golden delicious fruit crop plants for efficient targeted mutagenesis. We targeted MLO-7, a susceptible gene in order to increase resistance to powdery mildew in grape cultivar and DIPM-1, DIPM-2, and DIPM-4 in the apple to increase resistance to fire blight disease. Furthermore, efficient protoplast transformation, the molar ratio of Cas9 and sgRNAs were optimized for each grape and apple cultivar. The targeted mutagenesis insertion and deletion rate was analyzed using targeted deep sequencing. Our results demonstrate that direct delivery of CRISPR/Cas9 RNPs to the protoplast system enables targeted gene editing and paves the way to the generation of DNA-free genome edited grapevine and apple plants. PMID:28066464

  3. Ampelographic Description and Sanitary Analysis of Four Istrian Grapevine Varieties (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Djordano Persuric

    2014-02-01

    Full Text Available Istrian Peninsula, one of the five districts within viticultural region of Coastal Croatia, provides great geological-reliefal and climatic diversity and various production conditions. This research studied the autochthonous varieties and their sanitary status in old vineyards. Considering the age of vineyard, ten locations were chosen where four autochthonous varieties ‘Malvasia istarska’, ‘Teran’, ‘Borgonja’, and ‘Pergola velika’ were identified using ampelographic description according to OIV descriptors. Morphological characteristics of chosen varieties were described using OIV parameters and must was chemically analysed (pH value, sugar content, titratable acidity. High intra cultivar variability was found for weight of a single bunch especially for ‘Teran’. There were also differences in sugar content of must particularly for ‘Pergola velika’. Must pH was low for all varieties with predominantly low acidity value. Sanitary status of vines was determined by testing the plant samples for the presence of three grapevine viruses (GLRaV-1, GLRaV-3 and GFLV using DAS-ELISA. The percentage of infection for GFLV was 55.6% while for GLRaV-1 and GLRaV-3 it was 61.1%. Results showed that some morphological characteristics differ from characteristics described in literature. With purpose of preserving the biodiversity of autochthonous varieties and for future researches, healthy propagation material will be collected and planted in collection field of autochthonous varieties at the Institute of Agriculture and Tourism, Poreč.

  4. Terahertz time domain spectroscopy allows contactless monitoring of grapevine water status

    Directory of Open Access Journals (Sweden)

    Luis Gonzaga Santesteban

    2015-06-01

    Full Text Available Agriculture is the sector with the greatest water consumption, since food production is frequently based on crop irrigation. Proper irrigation management requires reliable information on plant water status, but all the plant-based methods to determine it suffer from several inconveniences, mainly caused by the necessity of destructive sampling or of alteration of the plant organ due to contact installation. The aim of this work is to test if THz time domain reflectance measurements made on the grapevine trunk allows contactless monitoring of plant status. The experiments were performed on a potted 14-years old plant, using a general purpose THz emitter receiver head.Trunk THz time-domain reflection signal proved to be very sensitive to changes in plant water availability, as its pattern follows the trend of soil water content and trunk growth variations. Therefore, it could be used to contactless monitor plant water status. Apart from that, THz reflection signal was observed to respond to light conditions which, according to a specifically designed girdling experiment, was caused by changes in the phloem. This latter results opens a promising field of research for contactless monitoring of phloem activity.

  5. DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins.

    Science.gov (United States)

    Malnoy, Mickael; Viola, Roberto; Jung, Min-Hee; Koo, Ok-Jae; Kim, Seokjoong; Kim, Jin-Soo; Velasco, Riccardo; Nagamangala Kanchiswamy, Chidananda

    2016-01-01

    The combined availability of whole genome sequences and genome editing tools is set to revolutionize the field of fruit biotechnology by enabling the introduction of targeted genetic changes with unprecedented control and accuracy, both to explore emergent phenotypes and to introduce new functionalities. Although plasmid-mediated delivery of genome editing components to plant cells is very efficient, it also presents some drawbacks, such as possible random integration of plasmid sequences in the host genome. Additionally, it may well be intercepted by current process-based GMO regulations, complicating the path to commercialization of improved varieties. Here, we explore direct delivery of purified CRISPR/Cas9 ribonucleoproteins (RNPs) to the protoplast of grape cultivar Chardonnay and apple cultivar such as Golden delicious fruit crop plants for efficient targeted mutagenesis. We targeted MLO-7, a susceptible gene in order to increase resistance to powdery mildew in grape cultivar and DIPM-1, DIPM-2, and DIPM-4 in the apple to increase resistance to fire blight disease. Furthermore, efficient protoplast transformation, the molar ratio of Cas9 and sgRNAs were optimized for each grape and apple cultivar. The targeted mutagenesis insertion and deletion rate was analyzed using targeted deep sequencing. Our results demonstrate that direct delivery of CRISPR/Cas9 RNPs to the protoplast system enables targeted gene editing and paves the way to the generation of DNA-free genome edited grapevine and apple plants.

  6. Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field.

    Science.gov (United States)

    Hassan, Tamoor Ul; Bano, Asghari; Naz, Irum

    2017-06-03

    The aim of the study was to determine tolerance of plant growth promoting rhizobacteria (PGPR) in different concentrations of Cu, Cr, Co, Cd, Ni, Mn, and Pb and to evaluate the PGPR-modulated bioavailability of different heavy metals in the rhizosphere soil and wheat tissues, grown in saline sodic soil. Bacillus cereus and Pseudomonas moraviensis were isolated from Cenchrus ciliaris L. growing in the Khewra salt range. Seven-day-old cultures of PGPR were applied on wheat as single inoculum, co-inoculation and carrier-based biofertilizer (using maize straw and sugarcane husk as carrier). At 100 ppm of Cr and Cu, the survival rates of rhizobacteria were decreased by 40%. Single inoculation of PGPR decreased 50% of Co, Ni, Cr and Mn concentrations in the rhizosphere soil. Co-inoculation of PGPR and biofertilizer treatment further augmented the decreases by 15% in Co, Ni, Cr and Mn over single inoculation except Pb and Co where decreases were 40% and 77%, respectively. The maximum decrease in biological concentration factor (BCF) was observed for Cd, Co, Cr, and Mn. P. moraviensis inoculation decreases the biological accumulation coefficient (BAC) as well as translocation factor (TF) for Cd, Cr, Cu Mn, and Ni. The PGPR inoculation minimized the deleterious effects of heavy metals, and the addition of carriers further assisted the PGPR.

  7. Comparing effects of low levels of herbicides on greehouse- and field-grown potatoes (Solanum tuberosum L.), soybeans (Glycine max L.) and peas (Pisum sataivum L.)

    Science.gov (United States)

    While laboratory toxicology tests are generally easy to perform, cost effective and readily interpreted, they have been questioned for their environmental relevance. In contrast, field tests are considered realistic while producing results that are difficult to interpret and exp...

  8. High-throughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field-grown oilseed rape (Brassica napus L.).

    Science.gov (United States)

    Thomas, C L; Graham, N S; Hayden, R; Meacham, M C; Neugebauer, K; Nightingale, M; Dupuy, L X; Hammond, J P; White, P J; Broadley, M R

    2016-04-06

    Root traits can be selected for crop improvement. Techniques such as soil excavations can be used to screen root traits in the field, but are limited to genotypes that are well-adapted to field conditions. The aim of this study was to compare a low-cost, high-throughput root phenotyping (HTP) technique in a controlled environment with field performance, using oilseed rape (OSR;Brassica napus) varieties. Primary root length (PRL), lateral root length and lateral root density (LRD) were measured on 14-d-old seedlings of elite OSR varieties (n = 32) using a 'pouch and wick' HTP system (∼40 replicates). Six field experiments were conducted using the same varieties at two UK sites each year for 3 years. Plants were excavated at the 6- to 8-leaf stage for general vigour assessments of roots and shoots in all six experiments, and final seed yield was determined. Leaves were sampled for mineral composition from one of the field experiments. Seedling PRL in the HTP system correlated with seed yield in four out of six (r = 0·50, 0·50, 0·33, 0·49;P HTP systems to screen this trait in both elite and more genetically diverse, non-field-adapted OSR. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  9. Shared and host-specific microbiome diversity and functioning of grapevine and accompanying weed plants.

    Science.gov (United States)

    Samad, Abdul; Trognitz, Friederike; Compant, Stéphane; Antonielli, Livio; Sessitsch, Angela

    2017-04-01

    Weeds and crop plants select their microbiota from the same pool of soil microorganisms, however, the ecology of weed microbiomes is poorly understood. We analysed the microbiomes associated with roots and rhizospheres of grapevine and four weed species (Lamium amplexicaule L., Veronica arvensis L., Lepidium draba L. and Stellaria media L.) growing in proximity in the same vineyard using 16S rRNA gene sequencing. We also isolated and characterized 500 rhizobacteria and root endophytes from L. draba and grapevine. Microbiome data analysis revealed that all plants hosted significantly different microbiomes in the rhizosphere as well as in root compartment, however, differences were more pronounced in the root compartment. The shared microbiome of grapevine and the four weed species contained 145 OTUs (54.2%) in the rhizosphere, but only nine OTUs (13.2%) in the root compartment. Seven OTUs (12.3%) were shared in all plants and compartments. Approximately 56% of the major OTUs (>1%) showed more than 98% identity to bacteria isolated in this study. Moreover, weed-associated bacteria generally showed a higher species richness in the rhizosphere, whereas the root-associated bacteria were more diverse in the perennial plants grapevine and L. draba. Overall, weed isolates showed more plant growth-promoting characteristics compared with grapevine isolates. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Occurrence fungi causing black foot on young grapevines and nursery rootstock plants in Italy

    Directory of Open Access Journals (Sweden)

    Antonia CARLUCCI

    2017-05-01

    Full Text Available Summary. Young grapevine plants with decline and wood necrosis symptoms were collected from vineyards and nurseries in the Apulia and Molise regions, Italy, from 2013 to 2015. Isolations of fungi were prepared from 45 diseased grapevine plants, and the cultures were identified. Several species commonly associated with Petri disease, Botryosphaeria dieback, and black foot disease were isolated. A detailed study was carried out, and 182 isolates resembling Cylindrocarpon-like asexual forms were identified through morphological characterisation and DNA analysis of internal transcribed spacer regions 1 and 2 of the rRNA gene and the partial β-tubulin gene. Dactylonectria torrensensis and Ilyonectria liriodendri were identified based on morphological features and the partial histone 3 gene, so these fungi can be defined as the causal agents of black foot on grapevine for the first time in Italy. Thelonectria blackeriella is also described as a new species, through morphological characterisation and multigenic analysis using sequence data for five loci (large subunit RNA, internal transcribed spacers, β-tubulin, actin, RNA polymerase II subunit 1. This new species was associated with black foot symptoms according to preliminary pathogenicity tests, with representative isolates of each of the three species. Pathogenicity tests showed that these species can cause black streaking in the wood of 1-year-old grapevine rootstock shoots. The identification of D. torresensis, I. liriodendri and T. blackeriella from young grapevine plants and rooted rootstock highlights the importance of black foot disease in Italy, which has previously been overlooked.

  11. Profiling of Disease-Related Metabolites in Grapevine Internode Tissues Infected with Agrobacterium vitis

    Directory of Open Access Journals (Sweden)

    Sung-Min Jung

    2016-12-01

    Full Text Available Green shoot cuttings of 10 different grapevine species were inoculated with Agrobacterium vitis to find disease-related metabolites in the grapevine. Crown galls formed 60 days after inoculation varied in gall severity (GS evaluated by gall incidence (GI and gall diameter (GD, which were classified into three response types as RR (low GI and small GD, SR (high GI and small GD, and SS (high GI and large GD, corresponding to resistant, moderately resistant, and susceptible responses, respectively. In this, 4, 4, and 2 Vitis species were classified into RR, SR, and SS, respectively. Gas chromatography mass spectrometry (GC-MS analysis of the grapevine stem metabolites with A. vitis infection showed 134 metabolites in various compound classes critically occurred, which were differentially clustered with the response types by the principal component analysis. Multivariate analysis of the metabolite profile revealed that 11 metabolites increased significantly in relation to the response types, mostly at post-inoculation stages, more prevalently (8 metabolites at two days after inoculation than other stages, and more related to SS (7 metabolites than RR (3 metabolites or SR (one metabolite. This suggests most of the disease-related metabolites may be rarely pre-existing but mostly induced by pathogen infection largely for facilitating gall development except stilbene compound resveratrol, a phytoalexin that may be involved in the resistance response. All of these aspects may be used for the selection of resistant grapevine cultivars and their rootstocks for the control of the crown gall disease of the grapevine.

  12. Genetic characterization of autochthonous grapevine cultivars from Eastern Turkey by simple sequence repeats (SSRs

    Directory of Open Access Journals (Sweden)

    Sadiye Peral Eyduran

    2016-01-01

    Full Text Available In this research, two well-recognized standard grape cultivars, Cabernet Sauvignon and Merlot, together with eight historical autochthonous grapevine cultivars from Eastern Anatolia in Turkey, were genetically characterized by using 12 pairs of simple sequence repeat (SSR primers in order to evaluate their genetic diversity and relatedness. All of the used SSR primers produced successful amplifications and revealed DNA polymorphisms, which were subsequently utilized to evaluate the genetic relatedness of the grapevine cultivars. Allele richness was implied by the identification of 69 alleles in 8 autochthonous cultivars with a mean value of 5.75 alleles per locus. The average expected heterozygosity and observed heterozygosity were found to be 0.749 and 0.739, respectively. Taking into account the generated alleles, the highest number was recorded in VVC2C3 and VVS2 loci (nine and eight alleles per locus, respectively, whereas the lowest number was recorded in VrZAG83 (three alleles per locus. Two main clusters were produced by using the unweighted pair-group method with arithmetic mean dendrogram constructed on the basis of the SSR data. Only Cabernet Sauvignon and Merlot cultivars were included in the first cluster. The second cluster involved the rest of the autochthonous cultivars. The results obtained during the study illustrated clearly that SSR markers have verified to be an effective tool for fingerprinting grapevine cultivars and carrying out grapevine biodiversity studies. The obtained data are also meaningful references for grapevine domestication.

  13. High-throughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field-grown oilseed rape (Brassica napus L.)

    Science.gov (United States)

    Thomas, C. L.; Graham, N. S.; Hayden, R.; Meacham, M. C.; Neugebauer, K.; Nightingale, M.; Dupuy, L. X.; Hammond, J. P.; White, P. J.; Broadley, M. R.

    2016-01-01

    Background and Aims Root traits can be selected for crop improvement. Techniques such as soil excavations can be used to screen root traits in the field, but are limited to genotypes that are well-adapted to field conditions. The aim of this study was to compare a low-cost, high-throughput root phenotyping (HTP) technique in a controlled environment with field performance, using oilseed rape (OSR; Brassica napus) varieties. Methods Primary root length (PRL), lateral root length and lateral root density (LRD) were measured on 14-d-old seedlings of elite OSR varieties (n = 32) using a ‘pouch and wick’ HTP system (∼40 replicates). Six field experiments were conducted using the same varieties at two UK sites each year for 3 years. Plants were excavated at the 6- to 8-leaf stage for general vigour assessments of roots and shoots in all six experiments, and final seed yield was determined. Leaves were sampled for mineral composition from one of the field experiments. Key Results Seedling PRL in the HTP system correlated with seed yield in four out of six (r = 0·50, 0·50, 0·33, 0·49; P root traits might therefore be of limited additional selection value, given that vigour can be measured easily on shoots/canopies. In contrast, LRD cannot be assessed easily in the field and, if LRD can improve nutrient uptake, then it may be possible to use HTP systems to screen this trait in both elite and more genetically diverse, non-field-adapted OSR. PMID:27052342

  14. Evaluation of Exposure to Heavy Metals Cu, Zn, Cd and Pb in Vegetables Grown in the Olericultures of Zanjan Province\\'s Fields

    Directory of Open Access Journals (Sweden)

    L Tabande

    2016-06-01

    Full Text Available Background and Objective: The contamination of soils and plants with heavy metals is a serious and growing problem. The present study aimed to determine the concentration of heavy metals in soil and some agricultural products and the probability of risks due to their consumption. Materials and Methods: This cross-sectional descriptive study was performed using random sampling at harvest time in 2014 on 205 samples of vegetable crops (Leek, chard, parsley, watermelon, melon, tomatoes, cucumber, potatoes, onion, garlic, radish, green peas, and broad bean and 129 samples of soils under cultivation. Concentrations of Cu, Zn, Cd, and Pb in soil and plant samples were determined by an atomic absorption instrument and the data was analyzed using SPSS software. Results: There were significant differences between the mean concentrations of Pb, Cu, and Zn for different vegetables (P<0.001, but no significant difference was observed for Cd. The highest mean levels of Pb, Cd, Cu, and Zn were detected in parsley, chard, broad bean, and leek respectively. However, there was no heavy metal pollution in the remainder of the vegetables and soil samples (with the exception of agricultural soils adjacent to the lead mine of Mahneshan area studied. Hazard probability (HQ of each element for cancerous diseases was less than unit and the intake of heavy metals was lower than the Provisional Tolerable Daily Intake (PTDI. Conclusion: The results of this study indicated that major accumulation of heavy metals was obtained in leafy vegetables. Therefore, much attention should be paid to consumption of leafy vegetables, especially vegetables grown in the surrounding industrial areas.

  15. A greenhouse and field-based study to determine the accumulation of arsenic in common homegrown vegetables grown in mining-affected soils.

    Science.gov (United States)

    Ramirez-Andreotta, Monica D; Brusseau, Mark L; Artiola, Janick F; Maier, Raina M

    2013-01-15

    The uptake of arsenic by plants from contaminated soils presents a health hazard that may affect home gardeners neighboring contaminated environments. A controlled greenhouse study was conducted in parallel with a co-created citizen science program (home garden experiment) to characterize the uptake of arsenic by common homegrown vegetables near the Iron King Mine and Humboldt Smelter Superfund site in southern Arizona. The greenhouse and home garden arsenic soil concentrations varied considerably, ranging from 2.35 to 533 mg kg(-1). In the greenhouse experiment four vegetables were grown in three different soil treatments and in the home garden experiment a total of 63 home garden produce samples were obtained from 19 properties neighboring the site. All vegetables accumulated arsenic in both the greenhouse and home garden experiments, ranging from 0.01 to 23.0 mg kg(-1) dry weight. Bioconcentration factors were determined and show that arsenic uptake decreased in the order: Asteraceae>Brassicaceae>Amaranthaceae>Cucurbitaceae>Liliaceae>Solanaceae>Fabaceae. Certain members of the Asteraceae and Brassicaceae plant families have been previously identified as hyperaccumulator plants, and it can be inferred that members of these families have genetic and physiological capacity to accumulate, translocate, and resist high amounts of metals. Additionally, a significant linear correlation was observed between the amount of arsenic that accumulated in the edible portion of the plant and the arsenic soil concentration for the Asteraceae, Brassicaceae, Amaranthaceae, and Fabaceae families. The results suggest that home gardeners neighboring mining operations or mine tailings with elevated arsenic levels should be made aware that arsenic can accumulate considerably in certain vegetables, and in particular, it is recommended that gardeners limit consumption of vegetables from the Asteraceae and Brassicaceae plant families.

  16. Biological and productive properties of the forms of grapevine cultivar Traminer in the subregion of Niš

    Directory of Open Access Journals (Sweden)

    Ćirković Bratislav M.

    2012-01-01

    Full Text Available Traminer is a well-known grapevine cultivar. It is thought to originate from Tramin, Italy, wherefrom it has been introduced to many European countries (France, Switzerland, Austria, Germany. Researches included two Traminer cultivar forms: White Traminer and Red Traminer. Examinations were carried out in a collection vineyard of the Viticulture and Wine Production Center of Niš. The collection vineyard was planted in 1995, with planting space of 3 x 1.2 m. Examinations took three years (2004-2006 and encompassed phenological observations, fertility, vegetative potential of a vine, resistance to Botrytis cinerea and wine quality. A detailed ampelographic description of two Traminer cultivar forms was also provided according to O.I.V. descriptors. The purpose of this paper is to determine growth, fertility, yield, and grape and wine quality of the examined Traminer cultivar forms in the viticultural subregion of Niš. According to the results obtained, the examined forms could be successfully grown in this region. Average grape yield varied depending on conditions of the particular year. White Traminer recorded higher yield, while Red Traminer recorded better quality. In addition, the best vines have been selected within the forms, and they will be used in further studies and multiplication.

  17. Physiological responses in roots of the grapevine rootstock 140 Ruggeri subjected to Fe deficiency and Fe-heme nutrition.

    Science.gov (United States)

    López-Rayo, Sandra; Di Foggia, Michele; Rodrigues Moreira, Erica; Donnini, Silvia; Bombai, Giuseppe; Filippini, Gianfranco; Pisi, Annamaria; Rombolà, Adamo D

    2015-11-01

    Iron (Fe)-heme containing fertilizers can effectively prevent Fe deficiency. This paper aims to investigate root physiological responses after a short period of Fe-heme nutrition and Fe deficiency under two pH conditions (with or without HEPES) in the Fe chlorosis-tolerant grapevine rootstock 140 Ruggeri. Organic acids in root exudates, Fe reduction capacity, both roots and root exudates contributions, together with other physiological parameters associated to plant Fe status were evaluated in plants grown in hydroponics. Analyses of root tips by SEM, and Raman and IR spectra of the precipitates of Fe-heme fertilizers were performed. The physiological responses adopted by the tolerant 140 Ruggeri to the application of Fe-heme indicated an increased Fe reduction capacity of the roots. This is the first report showing oxalic, tartaric, malic and ascorbic as major organic acids in Vitis spp. root exudates. Plants reacted to Fe deficiency condition exuding a higher amount of ascorbic acid in the rhizosphere. The presence of HEPES in the medium favoured the malic acid exudation. The lowest concentration of oxalic acid was found in exudates of plants subjected to Fe-heme and could be associated to a higher accumulation in their root tips visualized by SEM analysis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Effect of high soil copper concentration on mycorrhizal grapevines

    Science.gov (United States)

    Nogales, Amaia; Santos, Erika S.; Viegas, Wanda; Aran, Diego; Pereira, Sofia H.; Vidigal, Patricia; Lopes, Carlos M.; Abreu, M. Manuela

    2017-04-01

    Repeated application of Copper (Cu) based fungicides in vineyards since the end of the 19th century has led to a significant increase in the concentration of this chemical element in many viticultural soils. Although Cu is an essential micronutrient for most organisms, it can be toxic for the development and survival of plants and soil (micro)organisms at high concentrations and eventually lead to yield loses in viticulture, as it negatively affects key physiological and biogeochemical processes. However, some soil microorganisms, including arbuscular mycorrhizal fungi (AMF), have developed adaptive mechanisms for persistence in environments with supra-optimal levels of essential elements or in the presence of harmful ones, as well as for increasing plant tolerance to such abiotic stress conditions. The objective of this work was to evaluate the effect of a high total soil concentration of Cu on microbial soil activity as well as on the development of mycorrhizal and non-mycorrhizal grapevines. A microcosm assay was set up under greenhouse and controlled conditions. Touriga Nacional grapevine variety plants grafted onto 1103P rootstocks were inoculated either with the AMF Rhizophagus irregularis or Funneliformis mosseae, or were left as non-inoculated controls. After three months, they were transplanted to containers filled with 4 kg of a sandy soil (pH: 7.0; electrical conductivity: 0.08 mS/cm; [organic C]: 5.6 g/kg; [N-NO3]: 1.1 mg/kg; [N-NH4]: 2.5 mg/kg; [extractable K]: 45.1 mg/kg; [extractable P]: 52.3 mg/kg), collected near to a vineyard in Pegões (Portugal). Two treatments were carried out: with and without Cu application. The soil with high Cu concentration was prepared by adding 300 mg Cu/kg (in the form of an aqueous solution of CuSO4·5H2O) followed by an incubation during four weeks in plastic bags at room temperature in dark. Physico-chemical soil characteristics (pH, electrical conductivity and nutrients concentration in available fraction), soil

  19. Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps.

    Science.gov (United States)

    Teh, Soon Li; Fresnedo-Ramírez, Jonathan; Clark, Matthew D; Gadoury, David M; Sun, Qi; Cadle-Davidson, Lance; Luby, James J

    2017-01-01

    Quantitative trait locus (QTL) identification in perennial fruit crops is impeded largely by their lengthy generation time, resulting in costly and labor-intensive maintenance of breeding programs. In a grapevine (genus Vitis) breeding program, although experimental families are typically unreplicated, the genetic backgrounds may contain similar progenitors previously selected due to their contribution of favorable alleles. In this study, we investigated the utility of joint QTL identification provided by analyzing half-sib families. The genetic control of powdery mildew was studied using two half-sib F1 families, namely GE0711/1009 (MN1264 × MN1214; N = 147) and GE1025 (MN1264 × MN1246; N = 125) with multiple species in their ancestry. Maternal genetic maps consisting of 1077 and 1641 single nucleotide polymorphism (SNP) markers, respectively, were constructed using a pseudo-testcross strategy. Ratings of field resistance to powdery mildew were obtained based on whole-plant evaluation of disease severity. This 2-year analysis uncovered two QTLs that were validated on a consensus map in these half-sib families with improved precision relative to the parental maps. Examination of haplotype combinations based on the two QTL regions identified strong association of haplotypes inherited from 'Seyval blanc', through MN1264, with powdery mildew resistance. This investigation also encompassed the use of microsatellite markers to establish a correlation between 206-bp (UDV-015b) and 357-bp (VViv67) fragment sizes with resistance-carrying haplotypes. Our work is one of the first reports in grapevine demonstrating the use of SNP-based maps and haplotypes for QTL identification and tagging of powdery mildew resistance in half-sib families.

  20. Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Plauborg, Finn; Jacobsen, Sven-Erik

    2012-01-01

    in field lysimeters with sand, sandy loam and sandy clay loam soil. Despite application of the same amount of nitrogen (120 kg N ha−1) to all plots, there were large differences in crop nitrogen-uptake for sandy clay loam (134 kg ha−1), sandy loam (102 kg ha−1) and sand (77 kg ha−1) under full irrigation...

  1. RNA-Sequencing Reveals Biological Networks during Table Grapevine (‘Fujiminori’) Fruit Development

    Science.gov (United States)

    Shangguan, Lingfei; Mu, Qian; Fang, Xiang; Zhang, Kekun; Jia, Haifeng; Li, Xiaoying; Bao, Yiqun; Fang, Jinggui

    2017-01-01

    Grapevine berry development is a complex and genetically controlled process, with many morphological, biochemical and physiological changes occurring during the maturation process. Research carried out on grapevine berry development has been mainly concerned with wine grape, while barely focusing on table grape. ‘Fujiminori’ is an important table grapevine cultivar, which is cultivated in most provinces of China. In order to uncover the dynamic networks involved in anthocyanin biosynthesis, cell wall development, lipid metabolism and starch-sugar metabolism in ‘Fujiminori’ fruit, we employed RNA-sequencing (RNA-seq) and analyzed the whole transcriptome of grape berry during development at the expanding period (40 days after full bloom, 40DAF), véraison period (65DAF), and mature period (90DAF). The sequencing depth in each sample was greater than 12×, and the expression level of nearly half of the expressed genes were greater than 1. Moreover, greater than 64% of the clean reads were aligned to the Vitis vinifera reference genome, and 5,620, 3,381, and 5,196 differentially expressed genes (DEGs) were identified between different fruit stages, respectively. Results of the analysis of DEGs showed that the most significant changes in various processes occurred from the expanding stage to the véraison stage. The expression patterns of F3’H and F3’5’H were crucial in determining red or blue color of the fruit skin. The dynamic networks of cell wall development, lipid metabolism and starch-sugar metabolism were also constructed. A total of 4,934 SSR loci were also identified from 4,337 grapevine genes, which may be helpful for the development of phylogenetic analysis in grapevine and other fruit trees. Our work provides the foundation for developmental research of grapevine fruit as well as other non-climacteric fruits. PMID:28118385

  2. Low-field microwave absorption and magnetoresistance in iron nanostructures grown by electrodeposition on n-type lightly doped silicon substrates

    Science.gov (United States)

    Felix, J. F.; Figueiredo, L. C.; Mendes, J. B. S.; Morais, P. C.; Araujo, C. I. L. de.

    2015-12-01

    In this study we investigate magnetic properties, surface morphology and crystal structure in iron nanoclusters electrodeposited on lightly doped (100) n-type silicon substrates. Our goal is to investigate the spin injection and detection in the Fe/Si lateral structures. The samples obtained under electric percolation were characterized by magnetoresistive and magnetic resonance measurements with cycling the sweeping applied field in order to understand the spin dynamics in the as-produced samples. The observed hysteresis in the magnetic resonance spectra, plus the presence of a broad peak in the non-saturated regime confirming the low field microwave absorption (LFMA), were correlated to the peaks and slopes found in the magnetoresistance curves. The results suggest long range spin injection and detection in low resistive silicon and the magnetic resonance technique is herein introduced as a promising tool for analysis of electric contactless magnetoresistive samples.

  3. Synthesis, structural and field emission properties of multiwall carbon nanotube-graphene-like nanocarbon hybrid films grown by microwave plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chockalingam, Sreekumar, E-mail: sreekuc@nplindia.org [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Bisht, Atul [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Kesarwani, A.K. [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Singh, B.P. [Physics and Engineering of Carbon, Materials Physics and Engineering Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Chand, Jagdish [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Singh, V.N. [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India)

    2015-04-15

    Multiwall carbon nanotube (MWCNT)-graphene-like nanocarbon hybrid films were directly deposited on nickel substrate without any pre-treatment in a single-step by microwave plasma enhanced chemical vapor deposition (MW PECVD) technique at 600 °C. The effects of hydrogen partial pressure on the growth of MWCNT-graphene-like nanocarbon hybrid films and their structural, morphological and field emission properties were investigated. High resolution scanning electron microscope revealed MWCNT structure. High resolution transmission electron microscope images and Raman spectra revealed graphene-like nanocarbon film. Raman spectra showed 2D, G, D and D + G peaks at approximately 2690, 1590, 1350 and 2930 cm{sup −1}, respectively. The minimum threshold field for electron emission was found to be 3.6 V/μm corresponding to 1 μA/cm{sup 2} current density for the MWCNT-graphene-like nanocarbon hybrid film deposited at 20 Torr pressure whereas the maximum current density of 0.12 mA/cm{sup 2} and field enhancement factor of ∼3356 was obtained for the sample deposited at 5 Torr pressure. - Highlights: • MWCNT-graphene-like nanocarbon hybrid films were synthesized by MWPECVD technique. • Effect of pressure on the structural and field emission properties has been studied. • FESEM revealed MWCNT and HRTEM revealed graphene-like nanocarbon film structure. • Minimum E{sub T} = 3.6 V/μm with β = 3164 has been obtained in the film deposited at 20 Torr. • Maximum J = 0.12 mA/cm{sup 2} with β = 3356 has been obtained in the film deposited at 5 Torr.

  4. Modeling the effect of doping on the catalyst-assisted growth and field emission properties of plasma-grown graphene sheet

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Neha; Sharma, Suresh C.; Sharma, Rinku [Department of Applied Physics, Delhi Technological University (DTU), Shahbad Daulatpur, Bawana Road, Delhi-110042 (India)

    2016-08-15

    A theoretical model describing the effect of doping on the plasma-assisted catalytic growth of graphene sheet has been developed. The model accounts the charging rate of the graphene sheet, kinetics of all the plasma species, including the doping species, and the growth rate of graphene nuclei and graphene sheet due to surface diffusion, and accretion of ions on the catalyst nanoparticle. Using the model, it is observed that nitrogen and boron doping can strongly influence the growth and field emission properties of the graphene sheet. The results of the present investigation indicate that nitrogen doping results in reduced thickness and shortened height of the graphene sheet; however, boron doping increases the thickness and height of the graphene sheet. The time evolutions of the charge on the graphene sheet and hydrocarbon number density for nitrogen and boron doped graphene sheet have also been examined. The field emission properties of the graphene sheet have been proposed on the basis of the results obtained. It is concluded that nitrogen doped graphene sheet exhibits better field emission characteristics as compared to undoped and boron doped graphene sheet. The results of the present investigation are consistent with the existing experimental observations.

  5. Low-field microwave absorption and magnetoresistance in iron nanostructures grown by electrodeposition on n-type lightly doped silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Felix, J.F. [Universidade Federal de Viçosa-UFV, Departamento de Física, 36570-900 Viçosa, MG (Brazil); Universidade de Brasília-UnB, Instituto de Física, Núcleo de Física Aplicada, 70910-900 Brasília, DF (Brazil); Figueiredo, L.C. [Universidade de Brasília-UnB, Instituto de Física, Núcleo de Física Aplicada, 70910-900 Brasília, DF (Brazil); Mendes, J.B.S. [Universidade Federal de Viçosa-UFV, Departamento de Física, 36570-900 Viçosa, MG (Brazil); Morais, P.C. [Universidade de Brasília-UnB, Instituto de Física, Núcleo de Física Aplicada, 70910-900 Brasília, DF (Brazil); Huazhong University of Science and Technology, School of Automation, 430074 Wuhan (China); Araujo, C.I.L. de., E-mail: dearaujo@ufv.br [Universidade de Brasília-UnB, Instituto de Física, Núcleo de Física Aplicada, 70910-900 Brasília, DF (Brazil)

    2015-12-01

    In this study we investigate magnetic properties, surface morphology and crystal structure in iron nanoclusters electrodeposited on lightly doped (100) n-type silicon substrates. Our goal is to investigate the spin injection and detection in the Fe/Si lateral structures. The samples obtained under electric percolation were characterized by magnetoresistive and magnetic resonance measurements with cycling the sweeping applied field in order to understand the spin dynamics in the as-produced samples. The observed hysteresis in the magnetic resonance spectra, plus the presence of a broad peak in the non-saturated regime confirming the low field microwave absorption (LFMA), were correlated to the peaks and slopes found in the magnetoresistance curves. The results suggest long range spin injection and detection in low resistive silicon and the magnetic resonance technique is herein introduced as a promising tool for analysis of electric contactless magnetoresistive samples. - Highlights: • Electrodeposition of Fe nanostructures on high resistive silicon substrates. • Spin polarized current among clusters through Si suggested by isotropic magnetoresistance. • Low field microwave absorption arising from the sample shape anisotropy. • Contactless magnetoresistive device characterization by resonance measurements.

  6. Control strategies for grapevine phytoplasma diseases: factors influencing the profitability of replacing symptomatic plants

    Directory of Open Access Journals (Sweden)

    Francesco PAVAN

    2012-05-01

    Full Text Available The course of ‘flavescence dorée’ (FD and ‘bois noir’ (BN diseases can result in either recovery or death of affected grapevines. When farmers observe symptomatic grapevines, they must choose whether to replace or maintain the plants. To establish whether there is an advantage in replacing symptomatic grapevines, data were collected on the costs of replacing them (removing the diseased plants and planting new grapevines, with resultant yield loss during the rearing period and growing them on (yield losses in symptomatic grapevines over the following years. To calculate the cost of maintaining FD-infected plants, the possibility was also considered that symptomatic grapevines may be sources of phytoplasmas for the vector Scaphoideus titanus Ball. The symptomatic course of BN was observed in ‘Chardonnay’, and of FD in ‘Chardonnay’, ‘Merlot’ and ‘Perera’ grape cultivars. The costs of replacement decreased with the increase in the productive lifetime of the vineyards. The cost of maintenance was greatly influenced by the course of the diseases, and in the case of FD, also by the risk of new infections due to the fact that S. titanus acquires phytoplasmas from infected grapevines. The replacement of plants affected by BN is not profitable when recovery is the most frequent course of the disease, particularly when it is considered that replantings can, in turn, become infected. The replacement of plants affected by FD is not profitable for cultivars with a recovery near to 100% (‘Merlot’, whereas it is necessary for cultivars where the course of the disease is frequently lethal (‘Perera’. For cultivars with intermediate sensitivity, the decision varies in relation to agronomic/economic factors and to the risk of new infections (‘Chardonnay’. For FD, both replacement and maintenance strategies need to be associated with S. titanus control inside and outside the vineyards. In the case of maintenance the infected

  7. A Fundamental Step in IPM on Grapevine: Evaluating the Side Effects of Pesticides on Predatory Mites

    Directory of Open Access Journals (Sweden)

    Alberto Pozzebon

    2015-10-01

    Full Text Available Knowledge on side effects of pesticides on non-target beneficial arthropods is a key point in Integrated Pest Management (IPM. Here we present the results of four experiments conducted in vineyards where the effects of chlorpyrifos, thiamethoxam, indoxacarb, flufenoxuron, and tebufenozide were evaluated on the generalist predatory mites Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant, key biocontrol agents of herbivorous mites on grapevines. Results show that indoxacarb and tebufenozide had a low impact on the predatory mites considered here, while a significant impact was observed for chlorpyrifos, flufenoxuron, and thiamethoxam. The information obtained here should be considered in the design of IPM strategies on grapevine.

  8. Effects of sunlight exposure on grapevine powdery mildew development.

    Science.gov (United States)

    Austin, Craig N; Wilcox, Wayne F

    2012-09-01

    Natural and artificially induced shade increased grapevine powdery mildew (Erysiphe necator) severity in the vineyard, with foliar disease severity 49 to 75% higher relative to leaves in full sun, depending on the level of natural shading experienced and the individual experiment. Cluster disease severities increased by 20 to 40% relative to those on check vines when ultraviolet (UV) radiation was filtered from sunlight reaching vines in artificial shading experiments. Surface temperatures of leaves in full sunlight averaged 5 to 8°C higher than those in natural shade, and in one experiment, filtering 80% of all wavelengths of solar radiation, including longer wavelengths responsible for heating irradiated tissues, increased disease more than filtering UV alone. In controlled environment experiments, UV-B radiation reduced germination of E. necator conidia and inhibited both colony establishment (hyphal formation and elongation) and maturity (latent period). Inhibitory effects of UV-B radiation were significantly greater at 30°C than at 20 or 25°C. Thus, sunlight appears to inhibit powdery mildew development through at least two mechanisms, i.e., (i) UV radiation's damaging effects on exposed conidia and thalli of the pathogen; and (ii) elevating temperatures of irradiated tissues to a level supraoptimal or inhibitory for pathogen development. Furthermore, these effects are synergistic at temperatures near the upper threshold for disease development.

  9. VESPUCCI: exploring patterns of gene expression in grapevine

    Directory of Open Access Journals (Sweden)

    Marco eMoretto

    2016-05-01

    Full Text Available Large-scale transcriptional studies aim to decipher the dynamic cellular responses to a stimulus, like different environmental conditions. In the era of high-throughput omics biology, the most used technologies for these purposes are microarray and RNA-Seq, whose data are usually required to be deposited in public repositories upon publication. Such repositories have the enormous potential to provide a comprehensive view of how different experimental conditions lead to expression changes, by comparing gene expression across all possible measured conditions. Unfortunately, this task is greatly impaired by differences among experimental platforms that make direct comparisons difficult.In this paper we present the Vitis Expression Studies Platform Using COLOMBOS Compendia Instances (VESPUCCI, a gene expression compendium for grapevine which was built by adapting an approach originally developed for bacteria, and show how it can be used to investigate complex gene expression patterns. We integrated nearly all publicly available microarray and RNA-Seq expression data: 1608 gene expression samples from 10 different technological platforms. Each sample has been manually annotated using a controlled vocabulary developed ad hoc to ensure both human readability and computational tractability. Expression data in the compendium can be visually explored using several tools provided by the web interface or can be programmatically accessed using the REST interface. VESPUCCI is freely accessible at http://vespucci.colombos.fmach.it.

  10. Essential host plant cues in the grapevine moth

    Science.gov (United States)

    Tasin, Marco; Bäckman, Anna-Carin; Bengtsson, Marie; Ioriatti, Claudio; Witzgall, Peter

    2006-03-01

    Host plant odours attract gravid insect females for oviposition. The identification of these plant volatile compounds is essential for our understanding of plant insect relationships and contributes to plant breeding for improved resistance against insects. Chemical analysis of grape headspace and subsequent behavioural studies in the wind tunnel show that host finding in grapevine moth Lobesia botrana is encoded by a ratio-specific blend of three ubiquitous plant volatiles. The odour signal that attracts mated females to grape consists of the terpenoids ( E)-β-caryophyllene, ( E)-β-farnesene and ( E)-4,8-dimethyl-1,3,7-nonatriene. These compounds represent only a fraction of the volatiles released by grapes, and they are widespread compounds known throughout the plant kingdom. Specificity may be achieved by the blend ratio, which was 100:78:9 in grape headspace. This blend elicited anemotactic behaviour in moths at remarkably small amounts. Females were attracted at release rates of only a few nanograms per minute, at levels nearly as low as those known for the attraction of male moths to the female sex pheromones.

  11. Phylloxera and the grapevine: a sense of common purpose?

    Science.gov (United States)

    Battey, Nicholas H; Simmonds, Paul E

    2005-12-01

    The purpose of life is its continuation: survival is the reason things live. Here we explore this 'basic' of biology, by reference to the extraordinary life-cycle of the aphid-like pest phylloxera, and the complexity of its relationship with its host the grapevine. The effort and ingenuity that phylloxera employs to continue itself leads to a doubt that survival alone is sufficient reason. It has frequently been suggested that the reduction of life to a catalogue of facts (by science) creates this doubt, because it robs existence of its essence (which is something other than its mechanics). The part that science is said to steal is what Robert Pirsig calls Quality-the harmonious balance of things. Pirsig seems to imply that this is something inherent in things-and independent from us. A more mundane explanation is that the difference between facts and the complete reality is us-the tendency of mind to connect freely between different kinds of information. This possibility is briefly illustrated here by a myth based on the facts of phylloxera.

  12. Effect of temperature on the occurrence of O/sub 2/ and CO/sub 2/ insensitive photosynthesis in field grown plants. [Phaseolus vulgaris; Capsicum annum; Lycopersicon esculentum, Scrophularia desertorum; Cardaria draba, Populus fremontii

    Energy Technology Data Exchange (ETDEWEB)

    Sage, R.F.; Sharkey, T.D.

    1987-07-01

    The sensitivity of photosynthesis to O/sub 2/ and CO/sub 2/ was measured in leaves from field grown plants of six species (Phaseolus vulgaris, Capsicum annuum, Lycopersicon esculentum, Scrophularia desertorum, Cardaria draba, and Populus fremontii) from 5/sup 0/C to 35/sup 0/C using gas-exchange techniques. In all species but Phaseolus, photosynthesis was insensitive to O/sub 2/ in normal air below a species dependent temperature. CO/sub 2/ insensitivity occurred under the same conditions that resulted in O/sub 2/ insensitivity. A complete loss of O/sub 2/ sensitivity occurred up to 22/sup 0/C in Lycopersicon but only up to 6/sup 0/C in Scrophularia. In Lycopersicon and Populus, O/sub 2/ and CO/sub 2/ insensitivity occurred under conditions regularly encountered during the cooler portions of the day. Because O/sub 2/ insensitivity is an indicator of feedback limited photosynthesis, these results indicate that feedback limitations can play a role in determining the diurnal carbon gain in the field. At higher partial pressures of CO/sub 2/ the temperature at which O/sub 2/ insensitivity occurred was higher, indicating that feedback limitations in the field will become more important as the CO/sub 2/ concentration in the atmosphere increases.

  13. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes.

    Science.gov (United States)

    Tuberosa, Roberto; Sanguineti, Maria Corinna; Landi, Pierangelo; Giuliani, Marcella Michela; Salvi, Silvio; Conti, Sergio

    2002-01-01

    We investigated the overlap among quantitative trait loci (QTLs) in maize for seminal root traits measured in hydroponics with QTLs for grain yield under well-watered (GY-WW) and water-stressed (GY-WS) field conditions as well as for a drought tolerance index (DTI) computed as GY-WS/GY-WW. In hydroponics, 11, 7, 9, and 10 QTLs were identified for primary root length (R1L), primary root diameter (R1D), primary root weight (R1W), and for the weight of the adventitious seminal roots (R2W), respectively. In the field, 7, 8, and 9 QTLs were identified for GY-WW, GY-WS, and DTI, respectively. Despite the weak correlation of root traits in hydroponics with GY-WW, GY-WS, and DTI, a noticeable overlap between the corresponding QTLs was observed. QTLs for R2W most frequently and consistently overlapped with QTLs for GY-WW, GY-WS, and/or DTI. At four QTL regions, an increase in R2W was positively associated with GY-WW, GY-WS, and/or DTI. A 10 cM interval on chromosome 1 between PGAMCTA205 and php20644 showed the strongest effect on R1L, R1D, R2W, GY-WW, GY-WS, and DTI. These results indicate the feasibility of using hydroponics in maize to identify QTL regions controlling root traits at an early growth stage and also influencing GY in the field. A comparative analysis of the QTL regions herein identified with those described in previous studies investigating root traits in different maize populations revealed a number of QTLs in common.

  14. Multivariate data analysis and metabolic profiling of artemisinin and related compounds in high yielding varieties of Artemisia annua field-grown in Madagascar.

    Science.gov (United States)

    Suberu, John; Gromski, Piotr S; Nordon, Alison; Lapkin, Alexei

    2016-01-05

    An improved liquid chromatography-tandem mass spectrometry (LC-MS/MS) protocol for rapid analysis of co-metabolites of A. annua in raw extracts was developed and extensively characterized. The new method was used to analyse metabolic profiles of 13 varieties of A. annua from an in-field growth programme in Madagascar. Several multivariate data analysis techniques consistently show the association of artemisinin with dihydroartemisinic acid. These data support the hypothesis of dihydroartemisinic acid being the late stage precursor to artemisinin in its biosynthetic pathway. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Transgenic expression of trehalulose synthase results in high concentrations of the sucrose isomer trehalulose in mature stems of field-grown sugarcane.

    Science.gov (United States)

    Hamerli, Dénes; Birch, Robert G

    2011-01-01

    Sugarcane plants were developed that produce the sucrose isomers trehalulose and isomaltulose through expression of a vacuole-targeted trehalulose synthase modified from the gene in 'Pseudomonas mesoacidophila MX-45' and controlled by the maize ubiquitin (Ubi-1) promoter. Trehalulose concentration in juice increased with internode maturity, reaching about 600 mM, with near-complete conversion of sucrose in the most mature internodes. Plants remained vigorous, and trehalulose production in selected lines was retained over multiple vegetative generations under glasshouse and field conditions.

  16. Magnetic Flux-Trapping of Anisotropic-Grown Y-Ba-Cu-O Bulk Superconductors during and after Pulsed-Field Magnetizing Processes

    Science.gov (United States)

    Oka, T.; Yamada, Y.; Horiuchi, T.; Ogawa, J.; Fukui, S.; Sato, T.; Yokoyama, K.; Langer, M.

    2014-05-01

    The magnetic flux penetration into the melt-textured Y-Ba-Cu-O high temperature superconducting bulk magnets were precisely evaluated during and after the pulsed field magnetization processes operated at 30 K. The bulk magnets were carefully fabricated by the cold seeding method with use of a single and a pair of seed crystals composed of the Nd-Ba-Cu-O thin films. These seed crystals were put on the top surfaces of the precursors to let the large grains grow during the heat treatments. We observed the flux penetrations which occurred in the lower applied-field regions at around 3.1 T for the samples bearing the twin seeds than those of the single-seeded crystals at around 3.8 T. This means that the magnetic fluxes are capable of invading into the twin-seeded samples more easily than the single-seeds. It suggests that the anisotropic grain growths of parallel and normal to the rows of seed crystals affects the variations of Jc values with different distributions of the pinning centers, results in the preferential paths for the invading magnetic fluxes.

  17. Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L. grown at four international field sites.

    Directory of Open Access Journals (Sweden)

    Gareth J Norton

    Full Text Available The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of ∼ 300 accessions and 36.9 k single nucleotide polymorphisms (SNPs. The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with one of the US sites repeated over two years. GWA mapping on the whole dataset and on separate subpopulations of rice revealed a large number of loci significantly associated with variation in grain arsenic, copper, molybdenum and zinc. Seventeen of these loci were detected in data obtained from grain cultivated in more than one field location, and six co-localise with previously identified quantitative trait loci. Additionally, a number of candidate genes for the uptake or transport of these elements were located near significantly associated SNPs (within 200 kb, the estimated global linkage disequilibrium previously employed in this rice panel. This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally-variable traits in a highly genetically structured diversity panel.

  18. Cane pruning on Chardonnay grapevine in the high-altitude regions of Southern Brazil

    Directory of Open Access Journals (Sweden)

    Filho José Luiz Marcon

    2016-01-01

    Full Text Available High-altitude regions of southern Brazil, located above 900 m above sea level, the cordon training with spur pruning is widely used because of easier application. In these regions, Chardonnay wine grape shows potential to produce quality wines, however, in commercial vineyards, the training system used has not provided productivities that makes economically viable the cultivation of this variety. Given this, the present study aimed to evaluate the effect of different cane-pruning systems on the vegetative, productive and enological potential of Chardonnay grapevines grown in the high-altitude region of Southern Brazil. The experiment was conducted in a commercial Chardonnay vineyard, located in São Joaquim – Santa Catarina State (28o17 ′39”S and 49∘ 55′56” W, to 1230 m a.s.l during 2015 and 2016 vintages. Chardonnay vines (grafted on 1103 Paulsen were planted in 2010, with a 3.0 m (row × 1.0 m (vine spacing. The treatments consisted of different cane-pruning systems: Cordon spur-pruning (control; Sylvoz; Cazenave; Capovolto; single Guyot and double Guyot. Pruning was performed in August of each year when the buds were in the green tip developmental stage. Data was analyzed by Scott Knott test (p < 0.05 following a randomized block design with four replicates, each consisting of 12 vines per plot. We observed higher yield in the Cazenave and double Guyot training system with three and two more tons of grapes than spur-pruning respectively. The bud fertility was higher in plants trained in double Guyot. Vines spur-pruned showed higher relation of leaf area: production, with values above 100 cm2 g−1 grape at 2016 vintage. Commercial maturity of grapes (soluble solids, acidity and polyphenols did not differ among training systems studied. The results suggest that cane-pruning systems could be an alternative to increase production efficiency of Chardonnay in high-altitude region of southern Brazil.

  19. Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Silvia Dal Santo

    Full Text Available BACKGROUND: Expansins are proteins that loosen plant cell walls in a pH-dependent manner, probably by increasing the relative movement among polymers thus causing irreversible expansion. The expansin superfamily (EXP comprises four distinct families: expansin A (EXPA, expansin B (EXPB, expansin-like A (EXLA and expansin-like B (EXLB. There is experimental evidence that EXPA and EXPB proteins are required for cell expansion and developmental processes involving cell wall modification, whereas the exact functions of EXLA and EXLB remain unclear. The complete grapevine (Vitis vinifera genome sequence has allowed the characterization of many gene families, but an exhaustive genome-wide analysis of expansin gene expression has not been attempted thus far. METHODOLOGY/PRINCIPAL FINDINGS: We identified 29 EXP superfamily genes in the grapevine genome, representing all four EXP families. Members of the same EXP family shared the same exon-intron structure, and phylogenetic analysis confirmed a closer relationship between EXP genes from woody species, i.e. grapevine and poplar (Populus trichocarpa, compared to those from Arabidopsis thaliana and rice (Oryza sativa. We also identified grapevine-specific duplication events involving the EXLB family. Global gene expression analysis confirmed a strong correlation among EXP genes expressed in mature and green/vegetative samples, respectively, as reported for other gene families in the recently-published grapevine gene expression atlas. We also observed the specific co-expression of EXLB genes in woody organs, and the involvement of certain grapevine EXP genes in berry development and post-harvest withering. CONCLUSION: Our comprehensive analysis of the grapevine EXP superfamily confirmed and extended current knowledge about the structural and functional characteristics of this gene family, and also identified properties that are currently unique to grapevine expansin genes. Our data provide a model for the

  20. Effects of salinity and soil-drying on radiation use efficiency, water productivity, seed set and final yield of field-grown quinoa (Chenopodium quinoa Willd.)

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Ahmadi, S. H.; Jacobsen, S.-E.

    2012-01-01

    Drought and salinity reduce crop productivity especially in arid and semi-arid regions, and finding a crop which produces yield under these adverse conditions is therefore very important. Quinoa (Chenopodium quinoa Willd.) is such a crop. Hence, a study was conducted in field lysimeters...... to investigate the effect of salinity and soil–drying on radiation use efficiency, yield and water productivity of quinoa. Quinoa was exposed to five salinity levels (0, 10, 20, 30 and 40 dS m)1) of irrigation water from flower initiation onwards. During the seed-filling phase the five salinity levels were...... matter. Increasing salinity from 20 to 40 dS m)1 did not further decrease the seed number per m2 and seed yield, which shows that quinoa (cv. Titicaca) acclimated to saline conditions when exposed to salinity levels between 20 and 40 dS m)1....

  1. Tolerance of a field grown soybean cultivar to elevated ozone level is concurrent with higher leaflet ascorbic acid level, higher ascorbate-dehydroascorbate redox status, and long term photosynthetic productivity.

    Science.gov (United States)

    Michael Robinson, J; Britz, S J

    2000-01-01

    We examined the characteristics of ascorbic acid (ASC) level, dehydroascorbate (DHA) level, and the ASC-DHA redox status in the leaflets of two soybean cultivars grown in a field environment and exposed to elevated ozone (O(3)) levels. These two cultivars, one that preliminary evidence indicated to be O(3)-tolerant (cv Essex), and one that was indicated to be O(3)-sensitive (cv Forrest), were grown in open-top chambers during the summer of 1997. The plants were exposed daily to a controlled, moderately high O(3) level ( approximately 58 nl l(-1) air) in the light, beginning at the seedling stage and continuing to bean maturity. Concurrently, control plants were exposed to carbon-filtered, ambient air containing a relatively low O(3) level ( approximately 24 nl l(-1) air) during the same period. Elevated O(3) did not affect biomass per plant, mature leaf area accretion, or bean yield per plant of cv Essex. In contrast, elevated O(3) level decreased the biomass and bean yield per plant of cv Forrest by approximately 20%. Daily leaflet photosynthesis rate and stomatal conductance per unit area did not decrease in either cultivar as a result of prolonged O(3) exposure. A 10% lower mature leaflet area in O(3)-treated cv Forrest plants contributed to an ultimate limitation in long-term photosynthetic productivity (vegetative and bean yield). Possible factors causing cv Essex to be more O(3) tolerant than cv Forrest were: 1) mature leaflets of control and O(3)-treated cv Essex plants consistently maintained a higher daily ASC level than leaflets of cv Forrest plants, and 2) mature leaflets of cv Essex plants maintained a higher daily ASC-DHA redox status than leaflets of cv Forrest plants.

  2. Piezoelectric coupling in a field-effect transistor with a nanohybrid channel of ZnO nanorods grown vertically on graphene.

    Science.gov (United States)

    Quang Dang, Vinh; Kim, Do-Il; Thai Duy, Le; Kim, Bo-Yeong; Hwang, Byeong-Ung; Jang, Mi; Shin, Kyung-Sik; Kim, Sang-Woo; Lee, Nae-Eung

    2014-12-21

    Piezoelectric coupling phenomena in a graphene field-effect transistor (GFET) with a nano-hybrid channel of chemical-vapor-deposited Gr (CVD Gr) and vertically aligned ZnO nanorods (NRs) under mechanical pressurization were investigated. Transfer characteristics of the hybrid channel GFET clearly indicated that the piezoelectric effect of ZnO NRs under static or dynamic pressure modulated the channel conductivity (σ) and caused a positive shift of 0.25% per kPa in the Dirac point. However, the GFET without ZnO NRs showed no change in either σ or the Dirac point. Analysis of the Dirac point shifts indicated transfer of electrons from the CVD Gr to ZnO NRs due to modulation of their interfacial barrier height under pressure. High responsiveness of the hybrid channel device with fast response and recovery times was evident in the time-dependent behavior at a small gate bias. In addition, the hybrid channel FET could be gated by mechanical pressurization only. Therefore, a piezoelectric-coupled hybrid channel GFET can be used as a pressure-sensing device with low power consumption and a fast response time. Hybridization of piezoelectric 1D nanomaterials with a 2D semiconducting channel in FETs enables a new design for future nanodevices.

  3. Examination of the biological effects of high anionic peroxidase production in tobacco plants grown under field conditions. I. Insect pest damage.

    Science.gov (United States)

    Dowd, Patrick F; Lagrimini, L Mark

    2006-04-01

    At least 25 wild type and high peroxidase tobacco Nicotiana tabacum L. plants were examined semiweekly over several weeks for pest insect distribution and damage in a 2 year field study. Incidence and/or severity of naturally occurring caterpillar damage (dingy cutworm (Feltia ducens Walker), black cutworm (Agrotis ipsilon (Hufnagel), tobacco hornworm (Manduca sexta L.), and false tobacco budworm (= corn earworm Helicoverpa zea (Boddie)) was significantly reduced at several sample dates for high peroxidase vs. wild type plants. These results parallel those of prior laboratory studies with caterpillars. The number of adult whiteflies (Trialeurodes vaporariorum (Westwood) per plant was significantly reduced on high peroxidase compared to wild type plants on most sample dates in both years. The number of plants with leaves containing >100 aphids (primarily Myzus persicae Sulzer) per leaf on high peroxidase plants was significantly lower that on wild type plants after an equivalent invasion period in both years. A significantly higher proportion of aphids were found dead on leaf five of high peroxidase compared to wild type plants at most sample dates in both years. These results indicate that high peroxidase plants have resistance to a wide range of insects, implicating this enzyme as a broad range resistance mechanism.

  4. Bio-preparates support the productivity of potato plants grown under desert farming conditions of north Sinai: Five years of field trials

    Directory of Open Access Journals (Sweden)

    Mohammed T. Abbas

    2014-01-01

    Full Text Available Organic agriculture as well as good agricultural practices (GAPs intrigues the concern of both consumers and producers of agricultural commodities. Bio-preparates of various rhizospheric microorganisms (RMOs are potential sources of biological inputs supporting plant nutrition and health. The response of open-field potatoes to the application of RMO bio-preparates, the biofertilizer “Biofertile” and the bioagent “Biocontrol”, were experimented over 5 successive years under N-hunger of north Sinai desert soils. Both vegetative and tuber yields of a number of tested cultivars were significantly improved due to rhizobacterial treatments. In the majority of cases, the biofertilizer “Biofertile” did successfully supply ca. 50% of plant N requirements, as the yield of full N-fertilized plants was comparable to those received 50% N simultaneously with bio-preparates treatment. The magnitude of inoculation was cultivar-dependent; cvs. Valor and Oceania were among the most responsive ones. Bio-preparate introduction to the plant–soil system was successful via soaking of tubers and/or spraying the plant canopy. The “Biocontrol” formulation was supportive in controlling plant pathogens and significantly increased the fruit yields. The cumulative effect of both bio-preparates resulted in tuber yield increases of ca. 25% over control.

  5. Bio-preparates support the productivity of potato plants grown under desert farming conditions of north Sinai: Five years of field trials.

    Science.gov (United States)

    Abbas, Mohammed T; Hamza, Mervat A; Youssef, Hanan H; Youssef, Gehan H; Fayez, Mohamed; Monib, Mohamed; Hegazi, Nabil A

    2014-01-01

    Organic agriculture as well as good agricultural practices (GAPs) intrigues the concern of both consumers and producers of agricultural commodities. Bio-preparates of various rhizospheric microorganisms (RMOs) are potential sources of biological inputs supporting plant nutrition and health. The response of open-field potatoes to the application of RMO bio-preparates, the biofertilizer "Biofertile" and the bioagent "Biocontrol", were experimented over 5 successive years under N-hunger of north Sinai desert soils. Both vegetative and tuber yields of a number of tested cultivars were significantly improved due to rhizobacterial treatments. In the majority of cases, the biofertilizer "Biofertile" did successfully supply ca. 50% of plant N requirements, as the yield of full N-fertilized plants was comparable to those received 50% N simultaneously with bio-preparates treatment. The magnitude of inoculation was cultivar-dependent; cvs. Valor and Oceania were among the most responsive ones. Bio-preparate introduction to the plant-soil system was successful via soaking of tubers and/or spraying the plant canopy. The "Biocontrol" formulation was supportive in controlling plant pathogens and significantly increased the fruit yields. The cumulative effect of both bio-preparates resulted in tuber yield increases of ca. 25% over control.

  6. Phenotypic and histochemical traits of the interaction between Plasmopara viticola and resistant or susceptible grapevine varieties

    Directory of Open Access Journals (Sweden)

    Toffolatti Silvia

    2012-08-01

    Full Text Available Abstract Background Grapevine downy mildew, caused by Plasmopara viticola, is a very serious disease affecting mainly Vitis vinifera cultivated varieties around the world. Breeding for resistance through the crossing with less susceptible species is one of the possible means to reduce the disease incidence and the application of fungicides. The hybrid Bianca and some of its siblings are considered very promising but their resistance level can vary depending on the pathogen strain. Moreover, virulent strains characterized by high fitness can represent a potential threat to the hybrid cultivation. Results The host response and the pathogen virulence were quantitatively assessed by artificially inoculating cv Chardonnay, cv Bianca and their siblings with P. viticola isolates derived from single germinating oospores collected in various Italian viticultural areas. The host phenotypes were classified as susceptible, intermediate and resistant, according to the Area Under the Disease Progress Curve caused by the inoculated strain. Host responses in cv Bianca and its siblings significantly varied depending on the P. viticola isolates, which in turn differed in their virulence levels. The fitness of the most virulent strain did not significantly vary on the different hybrids including Bianca in comparison with the susceptible cv Chardonnay, suggesting that no costs are associated with virulence. Among the individual fitness components, only sporangia production was significantly reduced in cv Bianca and in some hybrids. Comparative histological analysis revealed differences between susceptible and resistant plants in the pathogen diffusion and cytology from 48 h after inoculation onwards. Defence mechanisms included callose depositions in the infected stomata, increase in peroxidase activity, synthesis of phenolic compounds and flavonoids and the necrosis of stomata and cells immediately surrounding the point of invasion and determined alterations in

  7. High temperature limits in vivo pollen tube growth rates by altering diurnal carbohydrate balance in field-grown Gossypium hirsutum pistils.

    Science.gov (United States)

    Snider, John L; Oosterhuis, Derrick M; Loka, Dimitra A; Kawakami, Eduardo M

    2011-07-15

    It has recently been reported that high temperature slows in vivo pollen tube growth rates in Gossypium hirsutum pistils under field conditions. Although numerous physical and biochemical pollen-pistil interactions are necessary for in vivo pollen tube growth to occur, studies investigating the influence of heat-induced changes in pistil biochemistry on in vivo pollen tube growth rates are lacking. We hypothesized that high temperature would alter diurnal pistil biochemistry and that pollen tube growth rates would be dependent upon the soluble carbohydrate content of the pistil during pollen tube growth. G. hirsutum seeds were sown on different dates to obtain flowers exposed to contrasting ambient temperatures but at the same developmental stage. Diurnal pistil measurements included carbohydrate balance, glutathione reductase (GR; EC 1.8.1.7), soluble protein, superoxide dismutase (SOD; EC 1.15.1.1), NADPH oxidase (NOX; EC 1.6.3.1), adenosine triphosphate (ATP), and water-soluble calcium. Soluble carbohydrate levels in cotton pistils were as much as 67.5% lower under high temperature conditions (34.6 °C maximum air temperature; August 4, 2009) than under cooler conditions (29.9 °C maximum air temperature; August 14, 2009). Regression analysis revealed that pollen tube growth rates were highly correlated with the soluble carbohydrate content of the pistil during pollen tube growth (r² = 0.932). Higher ambient temperature conditions on August 4 increased GR activity in the pistil only during periods not associated with in vivo pollen tube growth; pistil protein content declined earlier in the day under high temperatures; SOD and NOX were unaffected by either sample date or time of day; pistil ATP and water soluble calcium were unaffected by the warmer temperatures. We conclude that moderate heat stress significantly alters diurnal carbohydrate balance in the pistil and suggest that pollen tube growth rate through the style may be limited by soluble carbohydrate

  8. The effect of water availability on stand-level productivity, transpiration, water use efficiency and radiation use efficiency of field-grown willow clones

    Energy Technology Data Exchange (ETDEWEB)

    Linderson, Maj-Lena [Lund University, Lund (Sweden). Geobiosphere Science Centre, Department of Physical Geography and Ecosystems Analysis; Technical University of Denmark, Roskilde (Denmark). Risoe National Laboratory, Bio Systems Department; Iritz, Zinaida [Swedish International Development Cooperation Agency, Stockholm (Sweden); Lindroth, Anders [Lund University, Lund (Sweden). Geobiosphere Science Centre, Department of Physical Geography and Ecosystems Analysis

    2007-07-15

    The effect of water availability on stand-level productivity, transpiration, water use efficiency (WUE) and radiation use efficiency (RUE) is evaluated for different willow clones at stand level. The measurements were made during the growing season 2000 in a 3-year-old plantation in Scania, southernmost Sweden. Six willow clones were included in the study: L78183, SW Rapp, SW Jorunn, SW Jorr, SW Tora and SW Loden. All clones were exposed to two water treatments: rain-fed, non-irrigated treatment and reduced water availability by reduced soil water recharge. Field measurements of stem sap-flow and biometry are up-scaled to stand transpiration and stand dry substance production and used to assess WUE. RUE is estimated from the ratio between the stand dry substance production and the accumulated absorbed photosynthetic active radiation over the growing season. The total stand transpiration rate for the 5 months lies between 100 and 325 mm, which is fairly low compared to the Penman-Monteith transpiration for willow, reaching 400-450 mm for the same period. Mean WUE of all clones and treatments is 5.3 g/kg, which is high compared to earlier studies, while average RUE is 0.31 g/mol, which is slightly low compared to other results. Generally, all clones, except for Jorunn, seem to be better off concerning biomass production, WUE and RUE than the reference clone. Jorr, Jorunn and Loden also seem to be able to cope with the reduced water availability with increase in the water use efficiency. Tora performs significantly better than the other clones concerning both growth and efficiency in light and water use, but the effect of the dry treatment on stem growth shows sensitivity to water availability. The reduced stem growth could be due to a change in allocation patterns. (author)

  9. Changes in the relationship between tree size and aboveground respiration in field-grown hinoki cypress (Chamaecyparis obtusa) trees over three years.

    Science.gov (United States)

    Yokota, Taketo; Hagihara, Akio

    1998-01-01

    Respiration measurements of aerial parts of 18-year-old hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) trees were made under field conditions over three years to study changing relationships with tree age between respiration and phytomass, phytomass increment, and leaf mass. The relationship between annual respiration (r(a)) and phytomass (w(T)) was approximated by a proportional function (r(a) = aw(T)), where the proportional constant (a) decreased year by year. The effect of time on the relationship between annual respiration and phytomass of each sample tree was fitted by a power function. Respiration of the tree suppressed by the canopy decreased year by year, but respiration of the other trees increased slightly with age. The relationship between annual respiration and leaf mass was also approximated by a generalized power function. Excluding the suppressed tree, the relationship between annual respiration (r(a)) and the annual increment of aboveground phytomass (Deltaw(T)) was described by a proportional function (r(a) = 2.27Deltaw(T)), where the proportional constant, 2.27, was independent of sample tree and year, indicating that about 2.3 times of the annual aboveground phytomass increment equivalent was respired annually. For any tree, the time constant relationships between annual respiration and leaf mass and phytomass increment for different-sized trees were similar to the corresponding time continuum relationships. In contrast, the time continuum relationship between annual respiration and phytomass differed from the time constant relationship, indicating that respiration of less active woody tissue contributed significantly to aboveground respiration. Based on the relationship between tree size and annual respiration, annual aboveground stand respiration was estimated to be 25.0, 26.9, and 25.8 Mg(dm) ha(-1) year(-1) for the three consecutive years, respectively, and the corresponding aboveground stand biomass was 60.0, 69.0, and 76.8 Mg

  10. Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine

    NARCIS (Netherlands)

    Pessina, Stefano; Lenzi, Luisa; Perazzolli, Michele; Campa, Manuela; Costa, Dalla Lorenza; Urso, Simona; Valè, Giampiero; Salamini, Francesco; Velasco, Riccardo; Malnoy, Mickael

    2016-01-01

    Erysiphe necator is the causal agent of powdery mildew (PM), one of the most destructive diseases of grapevine. PM is controlled by sulfur-based and synthetic fungicides, which every year are dispersed into the environment. This is why PM-resistant varieties should become a priority for sustainable

  11. Acquisition of Flavescence Dorée Phytoplasma by Scaphoideus titanus Ball from Different Grapevine Varieties

    Directory of Open Access Journals (Sweden)

    Luciana Galetto

    2016-09-01

    Full Text Available Flavescence dorée (FD is a threat for wine production in the vineyard landscape of Piemonte, Langhe-Roero and Monferrato, Italy. Spread of the disease is dependent on complex interactions between insect, plant and phytoplasma. In the Piemonte region, wine production is based on local cultivars. The role of six local grapevine varieties as a source of inoculum for the vector Scaphoideus titanus was investigated. FD phytoplasma (FDP load was compared among red and white varieties with different susceptibility to FD. Laboratory-reared healthy S. titanus nymphs were caged for acquisition on infected plants to measure phytoplasma acquisition efficiency following feeding on different cultivars. FDP load for Arneis was significantly lower than for other varieties. Acquisition efficiency depended on grapevine variety and on FDP load in the source plants, and there was a positive interaction for acquisition between variety and phytoplasma load. S. titanus acquired FDP with high efficiency from the most susceptible varieties, suggesting that disease diffusion correlates more with vector acquisition efficiency than with FDP load in source grapevines. In conclusion, although acquisition efficiency depends on grapevine variety and on FDP load in the plant, even varieties supporting low FDP multiplication can be highly susceptible and good sources for vector infection, while poorly susceptible varieties may host high phytoplasma loads.

  12. First Report of Lasiodiplodia crassispora as a pathogen of grapevine trunks in South Africa

    NARCIS (Netherlands)

    Niekerk, van J.M.; Bester, W.; Halleen, F.; Crous, P.W.; Fourie, P.H.

    2010-01-01

    In 2003 and 2004, a survey of grapevine (Vitis vinifera L.) trunk pathogens was conducted in 30 vineyards in the Western and Northern Cape and Limpopo provinces of South Africa. In each vineyard, 20 visually healthy plants were sampled randomly by removing the distal part of one cordon arm. Isolatio

  13. Possibilities of environmentally acceptable control methods of American grapevine leafhopper (Scaphoideus titanus Ball, 1932

    Directory of Open Access Journals (Sweden)

    Žiga LAZNIK

    2015-11-01

    Full Text Available The American Grapevine Leafhopper (AGL (Scaphoideus titanus Ball, 1932 is a small insect of the family leafhoppers (Cicadellidae, originally spread across North America. Specie has been introduced to Europe, where is known primarily as a vector of phytoplasma Grapevine flavescence dorée (FD, (Candidatus Phytoplasma vitis, a disease-causing grapevine yellows. AGL was first found in Slovenia in 1983. First occurrence of grapevine yellows was confirmed in Slovenia in 2005. Since no effective biological control agents are known to date, AGL populations are suppressed using insecticides during the host plant's growth period. Some researchers reported that it is in both continents (North America, Europe abundance of natural enemies of the AGL very small. Researchers reported that some parasitoids (Drynidae: Hymenoptera and Pipunculidae: Diptera parasitize the AGL, but the percentage of efficiency is very low (from 1.3 to 0.8 %. Among the methods of integrated pest management of AGL methods of mating disruption, thermotherapy, and cover crops are used.

  14. Magnetic resonance imaging of water ascent in embolized xylem vessels of grapevine stem segments

    Science.gov (United States)

    Mingtao Wang; Melvin T. Tyree; Roderick E. Wasylishen

    2013-01-01

    Temporal and spatial information about water refilling of embolized xylem vessels and the rate of water ascent in these vessels is critical for understanding embolism repair in intact living vascular plants. High-resolution 1H magnetic resonance imaging (MRI) experiments have been performed on embolized grapevine stem segments while they were...

  15. Strategies for durable resistance to the grapevine powdery mildew fungus, Erysiphe necator

    Science.gov (United States)

    Nearly all cultivars of Vitis vinifera are highly susceptible to the grapevine powdery mildew fungus, Erysiphe necator. Grape breeders around the world are working to introgress resistance from wild Vitis. Of the widely-used introgressions, most involve dominant, race-specific resistance phenotype...

  16. Interaction of Ulocladium atrum, a Potential Biological Control Agent, with Botrytis cinerea and Grapevine Plantlets

    Directory of Open Access Journals (Sweden)

    Sébastien Ronseaux

    2013-09-01

    Full Text Available The effectiveness of biological control agent, Ulocladium atrum (isolates U13 and U16 in protecting Vitis vinifera L. cv. Chardonnay against gray mold disease caused by Botrytis cinerea, and simulation of the foliar defense responses was investigated. A degraded mycelium structure during cultural assay on potato dextrose agar revealed that U. atrum isolates U13 and U16 were both antagonistic to B. cinerea, mainly when isolates were inoculated two days before Botrytis. Under in vitro conditions, foliar application of U. atrum protected grapevine leaves against gray mold disease. An increase in chitinase activity was induced by the presence of U. atrum isolates indicating that the biological control agents triggered plant defense mechanisms. Moreover, U13 has the potential to colonize the grapevine plantlets and to improve their growth. The ability of U. atrum isolates to exhibit an antagonistic effect against B. cinerea in addition to their aptitude to induce plant resistance and to promote grapevine growth may explain a part of their biological activity. Hence, this study suggests that U. atrum provides a suitable biocontrol agent against gray mold in grapevines.

  17. Deep amplicon sequencing reveals mixed phytoplasma infection within single grapevine plants

    DEFF Research Database (Denmark)

    Nicolaisen, Mogens; Contaldo, Nicoletta; Makarova, Olga

    2011-01-01

    The diversity of phytoplasmas within single plants has not yet been fully investigated. In this project, deep amplicon sequencing was used to generate 50,926 phytoplasma sequences from 11 phytoplasma-infected grapevine samples from a PCR amplicon in the 5' end of the 16S region. After clustering ...

  18. Performance of several models for predicting budburst date of grapevine (Vitis vinifera L.).

    Science.gov (United States)

    García de Cortázar-Atauri, Iñaki; Brisson, Nadine; Gaudillere, Jean Pierre

    2009-07-01

    The budburst stage is a key phenological stage for grapevine (Vitis vinifera L.), with large site and cultivar variability. The objective of the present work was to provide a reliable agro-meteorological model for simulating grapevine budburst occurrence all over France. The study was conducted using data from ten cultivars of grapevine (Cabernet Sauvignon, Chasselas, Chardonnay, Grenache, Merlot, Pinot Noir, Riesling, Sauvignon, Syrah, Ugni Blanc) and five locations (Bordeaux, Colmar, Angers, Montpellier, Epernay). First, we tested two commonly used models that do not take into account dormancy: growing degree days with a base temperature of 10 degrees C (GDD(10)), and Riou's model (RIOU). The errors of predictions of these models ranged between 9 and 21 days. Second, a new model (BRIN) was studied relying on well-known formalisms for orchard trees and taking into account the dormancy period. The BRIN model showed better performance in predicting budburst date than previous grapevine models. Analysis of the components of BRIN formalisms (calculation of dormancy, use of hourly temperatures, base temperature) explained the better performances obtained with the BRIN model. Base temperature was the main driver, while dormancy period was not significant in simulating budburst date. For each cultivar, we provide the parameter estimates that showed the best performance for both the BRIN model and the GDD model with a base temperature of 5 degrees C.

  19. Acquisition of Flavescence Dorée Phytoplasma by Scaphoideus titanus Ball from Different Grapevine Varieties.

    Science.gov (United States)

    Galetto, Luciana; Miliordos, Dimitrios E; Pegoraro, Mattia; Sacco, Dario; Veratti, Flavio; Marzachì, Cristina; Bosco, Domenico

    2016-09-15

    Flavescence dorée (FD) is a threat for wine production in the vineyard landscape of Piemonte, Langhe-Roero and Monferrato, Italy. Spread of the disease is dependent on complex interactions between insect, plant and phytoplasma. In the Piemonte region, wine production is based on local cultivars. The role of six local grapevine varieties as a source of inoculum for the vector Scaphoideus titanus was investigated. FD phytoplasma (FDP) load was compared among red and white varieties with different susceptibility to FD. Laboratory-reared healthy S. titanus nymphs were caged for acquisition on infected plants to measure phytoplasma acquisition efficiency following feeding on different cultivars. FDP load for Arneis was significantly lower than for other varieties. Acquisition efficiency depended on grapevine variety and on FDP load in the source plants, and there was a positive interaction for acquisition between variety and phytoplasma load. S. titanus acquired FDP with high efficiency from the most susceptible varieties, suggesting that disease diffusion correlates more with vector acquisition efficiency than with FDP load in source grapevines. In conclusion, although acquisition efficiency depends on grapevine variety and on FDP load in the plant, even varieties supporting low FDP multiplication can be highly susceptible and good sources for vector infection, while poorly susceptible varieties may host high phytoplasma loads.

  20. GRAPEVINE VIRUS DISEASES:ECONOMIC IMPACT AND CURRENT ADVANCES IN VIRAL PROSPECTION AND MANAGEMENT

    Directory of Open Access Journals (Sweden)

    MARCOS FERNANDO BASSO

    Full Text Available ABSTRACT Grapevine (Vitis spp. is a major vegetative propagated fruit crop with high socioeconomic importance worldwide. It is susceptible to several graft-transmitted agents that cause several diseases and substantial crop losses, reducing fruit quality and plant vigor, and shorten the longevity of vines. The vegetative propagation and frequent exchanges of propagative material among countries contribute to spread these pathogens, favoring the emergence of complex diseases. Its perennial life cycle further accelerates the mixing and introduction of several viral agents into a single plant. Currently, approximately 65 viruses belonging to different families have been reported infecting grapevines, but not all cause economically relevant diseases. The grapevine leafroll, rugose wood complex, leaf degeneration and fleck diseases are the four main disorders having worldwide economic importance. In addition, new viral species and strains have been identified and associated with economically important constraints to grape production. In Brazilian vineyards, eighteen viruses, three viroids and two virus-like diseases had already their occurrence reported and were molecularly characterized. Here, we review the current knowledge of these viruses, report advances in their diagnosis and prospection of new species, and give indications about the management of the associated grapevine diseases.

  1. Transmission competency of single-female Xiphinema index lines for Grapevine fanleaf virus.

    Science.gov (United States)

    Demangeat, Gérard; Komar, Véronique; Van-Ghelder, Cyril; Voisin, Roger; Lemaire, Olivier; Esmenjaud, Daniel; Fuchs, Marc

    2010-04-01

    Grapevine fanleaf virus (GFLV) is vectored specifically from grapevine to grapevine by the ectoparasitic nematode Xiphinema index. Limited information is available on the vector competency of X. index populations from diverse geographical origins. We determined the transmissibility of two GFLV strains showing 4.6% amino acid divergence within their coat protein (e.g., strains F13 and GHu) by seven clonal lines of X. index developed from seven distinct populations from the Mediterranean basin (Cyprus, southern France, Israel, Italy, and Spain), northern France, and California. X. index lines derived from single adult females were produced on fig (Ficus carica) plants to obtain genetically homogenous aviruliferous clones. A comparative reproductive rate analysis on Vitis rupestris du Lot and V. vinifera cv. Cabernet Sauvignon showed significant differences among clones, with the single-female Cyprus line showing the highest rate (30-fold the initial population) and the Spain and California lines showing the lowest rate (10-fold increase), regardless of the grapevine genotype. However, there was no differential vector competency among the seven X. index lines for GFLV strains F13 and GHu. The implications of our findings for the dynamic of GFLV transmission in vineyards and screening of Vitis spp. for resistance to GFLV are discussed.

  2. Molecular analyses of Pythium irregulare isolates from grapevines in South Africa suggest a single variable species

    Science.gov (United States)

    The Pythium irregulare species complex is the most common and widespread Pythium spp. associated with grapevines in South Africa. This species complex can be subdivided into several morphological and phylogenetic species that are all highly similar at the sequence level. The complex includes P. re...

  3. A polyphasic approach for the characterization of endophytic Alternaria strains isolated from grapevines

    DEFF Research Database (Denmark)

    Polizzotto, Rachele; Andersen, Birgitte; Martini, Marta

    2012-01-01

    A polyphasic approach was set up and applied to characterize 20 fungal endophytes belonging to the genus Alternaria, recovered from grapevine in different Italian regions.Morphological, microscopical, molecular and chemical investigations were performed and the obtained results were combined in a...

  4. Grapevine cell early activation of specific responses to DIMEB, a resveratrol elicitor

    Directory of Open Access Journals (Sweden)

    Pilati Stefania

    2009-08-01

    Full Text Available Abstract Background In response to pathogen attack, grapevine synthesizes phytoalexins belonging to the family of stilbenes. Grapevine cell cultures represent a good model system for studying the basic mechanisms of plant response to biotic and abiotic elicitors. Among these, modified β-cyclodextrins seem to act as true elicitors inducing strong production of the stilbene resveratrol. Results The transcriptome changes of Vitis riparia × Vitis berlandieri grapevine cells in response to the modified β-cyclodextrin, DIMEB, were analyzed 2 and 6 h after treatment using a suppression subtractive hybridization experiment and a microarray analysis respectively. At both time points, we identified a specific set of induced genes belonging to the general phenylpropanoid metabolism, including stilbenes and hydroxycinnamates, and to defence proteins such as PR proteins and chitinases. At 6 h we also observed a down-regulation of the genes involved in cell division and cell-wall loosening. Conclusions We report the first large-scale study of the molecular effects of DIMEB, a resveratrol inducer, on grapevine cell cultures. This molecule seems to mimic a defence elicitor which enhances the physical barriers of the cell, stops cell division and induces phytoalexin synthesis.

  5. Cadophora species as trunk pathogens and wood-infecting fungi of grapevine in North America

    Science.gov (United States)

    Cadophora species, in particular Cadophora luteo-olivacea, are reported from grapevine (Vitis vinifera L.) in California, South Africa, Spain, Uruguay, and Canada. Frequent isolation from vines co-infected with the Esca pathogens (Togninia minima, Phaeomoniella chlamydospora), and confirmation of it...

  6. Identification of breeding signatures in grapevine hybrids, donors of resistances against downy and powdery mildew

    NARCIS (Netherlands)

    Vezzulli, S.; Peressotti, E.; Banchi, E.; Dolzani, C.; Micheli, S.; Stefanini, M.; Salamini, F.; Velasco, R.; Riaz, S.; Walker, M.A.; Reisch, B.I.; De Weg, Van W.E.; Bink, M.C.

    2015-01-01

    Grapevine (Vitis vinifera L.) is one of the most valuable crops in the world, but has been often plagued by encountering new parasites that still represent a major constraint, such as downy (DM) and powdery (PM) mildew. Nowadays, growers are still obliged to recur to a massive use of pesticides t

  7. Role of MLO genes in susceptibility to powdery mildew in apple and grapevine

    NARCIS (Netherlands)

    Pessina, Stefano

    2016-01-01

    Powdery mildew (PM) is a major fungal disease that threatens thousands of plant species. PM is caused by Podosphaera leucotricha in apple and Erysiphe necator in grapevine. Powdery mildew is controlled by frequent applications of fungicides, having negative effects on the environment, and leading to

  8. Changes in the proteome of grapevine leaves (Vitis vinifera L.) during long-term drought stress.

    Science.gov (United States)

    Król, Angelika; Weidner, Stanisław

    2017-04-01

    The essence of exploring and understanding mechanisms of plant adaptation to environmental stresses lies in the determination of patterns of the expression of proteins, identification of stress proteins and their association with the specific functions in metabolic pathways. To date, little information has been provided about the proteomic response of grapevine to the persistent influence of adverse environmental conditions. This article describes changes in the profile of protein accumulation in leaves of common grapevine (Vitis vinifera L.) seedlings in response to prolonged drought. Isolated proteins were separated by two-dimensional electrophoresis (2 DE), and the proteins whose level of accumulation changed significantly due to the applied stress factors were identified with tandem mass spectrometry MALDI TOF/TOF type. Analysis of the proteome of grapevine leaves led to the detection of many proteins whose synthesis changed in response to the applied stressor. Drought caused the most numerous changes in the accumulation of proteins associated with carbohydrate and energy metabolism, mostly connected with the pathways of glycolysis and photosystem II protein components. The biological function of the identified proteins is discussed with reference to the stress of drought. Some of the identified proteins, especially the ones whose accumulation increased during drought stress, may be responsible for the adaptation of grapevine to drought. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Performance of several models for predicting budburst date of grapevine ( Vitis vinifera L.)

    Science.gov (United States)

    García de Cortázar-Atauri, Iñaki; Brisson, Nadine; Gaudillere, Jean Pierre

    2009-07-01

    The budburst stage is a key phenological stage for grapevine ( Vitis vinifera L.), with large site and cultivar variability. The objective of the present work was to provide a reliable agro-meteorological model for simulating grapevine budburst occurrence all over France. The study was conducted using data from ten cultivars of grapevine (Cabernet Sauvignon, Chasselas, Chardonnay, Grenache, Merlot, Pinot Noir, Riesling, Sauvignon, Syrah, Ugni Blanc) and five locations (Bordeaux, Colmar, Angers, Montpellier, Epernay). First, we tested two commonly used models that do not take into account dormancy: growing degree days with a base temperature of 10°C (GDD10), and Riou’s model (RIOU). The errors of predictions of these models ranged between 9 and 21 days. Second, a new model (BRIN) was studied relying on well-known formalisms for orchard trees and taking into account the dormancy period. The BRIN model showed better performance in predicting budburst date than previous grapevine models. Analysis of the components of BRIN formalisms (calculation of dormancy, use of hourly temperatures, base temperature) explained the better performances obtained with the BRIN model. Base temperature was the main driver, while dormancy period was not significant in simulating budburst date. For each cultivar, we provide the parameter estimates that showed the best performance for both the BRIN model and the GDD model with a base temperature of 5°C.

  10. Cell wall modification in grapevine cells in response to UV stress investigated by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lesniewska, E.; Adrian, M.; Klinguer, A.; Pugin, A

    2004-08-15

    Despite cell wall reinforcement being a well-known defence mechanism of plants, it remains poorly characterized from a physical point of view. The objective of this work was to further describe this mechanism. Vitis vinifera cv Gamay cells were treated with UV-light (254 nm), a well-known elicitor of defence mechanisms in grapevines, and physical cell wall modifications were observed using the atomic force microscopy (AFM) under native conditions. The grapevine cell suspensions were continuously observed in their culture medium from 30 min to 24 h after elicitation. In the beginning, cellulose fibrils covered by a matrix surrounded the control and treated cells. After 3 h, the elicited cells displayed sprouted expansions around the cell wall that correspond to pectin chains. These expansions were not observed on untreated grapevine cells. The AFM tip was used to determine the average surface elastic modulus of cell wall that account for cell wall mechanical properties. The elasticity is diminished in UV-treated cells. In a comparative study, grapevine cells showed the same decrease in cell wall elasticity when treated with a fungal biotic elicitor of defence response. These results demonstrate cell wall strengthening by UV stress.

  11. Identification of breeding signatures in grapevine hybrids, donors of resistances against downy and powdery mildew

    NARCIS (Netherlands)

    Vezzulli, S.; Peressotti, E.; Banchi, E.; Dolzani, C.; Micheli, S.; Stefanini, M.; Salamini, F.; Velasco, R.; Riaz, S.; Walker, M.A.; Reisch, B.I.; De Weg, Van W.E.; Bink, M.C.

    2015-01-01

    Grapevine (Vitis vinifera L.) is one of the most valuable crops in the world, but has been often plagued by encountering new parasites that still represent a major constraint, such as downy (DM) and powdery (PM) mildew. Nowadays, growers are still obliged to recur to a massive use of pesticides

  12. Glassy-winged sharpshooter oviposition effects on foliar grapevine and red-tipped photinia terpenoid levels

    Science.gov (United States)

    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is an important vector of Xylella fastidiosa, the bacterium that causes Pierce's disease of grapevine and is a threat to grape production throughout the United States. Female GWSS deposit egg masses be...

  13. Deep amplicon sequencing reveals mixed phytoplasma infection within single grapevine plants

    DEFF Research Database (Denmark)

    Nicolaisen, Mogens; Contaldo, Nicoletta; Makarova, Olga

    2011-01-01

    The diversity of phytoplasmas within single plants has not yet been fully investigated. In this project, deep amplicon sequencing was used to generate 50,926 phytoplasma sequences from 11 phytoplasma-infected grapevine samples from a PCR amplicon in the 5' end of the 16S region. After clustering ...

  14. Absorção de nutrientes pelo tomateiro cultivado sob condições de campo e de ambiente protegido Nutrient absorption by tomato plants grown under field and protected conditions

    Directory of Open Access Journals (Sweden)

    Jamil Abdalla Fayad

    2002-03-01

    Full Text Available Foram realizados dois experimentos, na Universidade Federal de Viçosa, objetivando caracterizar a absorção de nutrientes pelo tomateiro cultivado sob condições de campo e de ambiente protegido. O primeiro, com a cultivar Santa Clara, cultivada a campo, no sistema de cerca cruzada e sete cachos. O segundo, em estufa plástica, com o híbrido EF-50, conduzidas verticalmente, mantendo-se oito cachos em cada uma. Ambos experimentos foram delineados em blocos ao acaso, com quatro repetições. O primeiro constituído por oito e o segundo por nove tratamentos. Em ambos experimentos, o padrão de absorção de nutrientes seguiu o acúmulo de matéria seca pelas plantas. No experimento de campo, a ordem decrescente de acúmulo de nutrientes na parte aérea foi: K, N, Ca, S, P, Mg, Cu, Mn, Fe e Zn, alcançando os valores máximos de 360; 206; 202; 49; 32; 29 kg.ha-1; 3.415; 2.173; 1.967 e 500 g.ha-1, respectivamente. Em ambiente protegido, o acúmulo de nutrientes na parte aérea do tomateiro decresceu na seguinte ordem: K, N, Ca, S, Mg, P, Mn, Fe; Cu e Zn, alcançando os valores de 264; 211; 195; 49; 40; 30 kg.ha-1; 3.200; 2.100; 1.600 e 700 g.ha-1, respectivamente. As taxas de absorção diária dos nutrientes são apresentadas bem como as porcentagens de absorção do N e de K em determinados períodos do crescimento do tomateiro, visando auxiliar na programação das épocas de aplicação destes nutrientes em cobertura.Two experiments were conducted at Universidade Federal de Viçosa to evaluate nutrient absortion by tomato plants grown under field and protected conditions. In the first experiment, tomato cv. Santa Clara was grown in the field with seven clusters/plant. In the second one tomato hybrid EF-50 was grown in plastic greenhouse and pruned to eight clusters. Both experiments were designed as randomized blocks, with four replicates. The first and second experiments were performed with eight and nine treatments, respectively. In both

  15. Identification and Characterization of MicroRNAs and Their Targets in Grapevine ( Vitis vinifera)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    MicroRNAs (miRNAs) are a class of newly identified, small, non-coding RNAs that play vital roles in regulation. Based on miRNAs unique features of expression pattern, evolutionary conservation, secondary structure and genetic requirements for biogenesis, computational predication strategy is adopted to predicate the novel miRNAs. In this research, potential miRNAs and their targets in grapevine (Vitis vinifera) were predicted. We used previously known plant miRNAs against grapevine genome sequence databases to search for potential miRNAs. A total of 81 potential miRNAs were detected following a range of strict filtering criteria. Using these potential miRNA sequences, we could further blast the mRNA database to find the potential targets in this species. Comparative analysis of miRNAs in grapevine and other species reveals that miRNAs exhibit an evolutional conservation, the number and function of miRNAs must have significantly expanded during the evolution of land plants. Furthermore divergence made versatile functions of miRNAs feasible. Cluster of miRNAs likely represents an ancient expression mechanism. Predicted target genes include not only transcription factors but also genes implicated in floral development, signal transduction, diseases and stress response. Till now, little is known about experimental or computational identification of miRNA in grapevine species. Increased knowledge of the biological mechanisms of the grapevine will allow targeted approaches to increase the quality of fruit and reduce the impact of parasites together with stress, which could enable a sustainable, environmentally-sound, farming policy.

  16. Spatio-temporal effects of soil and bedrock variability on grapevine water status in hillslope vineyards.

    Science.gov (United States)

    Brillante, Luca; Bois, Benjamin; Mathieu, Olivier; Leveque, Jean

    2014-05-01

    Hillslope vineyards show various and complex water dynamics between soil and plants, and in order to gain further insight into this phenomenon, 8 grapevine plots were monitored during three vintages, from 2010 to 2013, on Corton Hill, Burgundy, France. Plots were distributed along a topolithosequence from 330 to 270 metres a.s.l. Grapevine water status was monitored weekly by surveying water potential, and, at the end of the season, by the use of the δ13C analysis of grape juice. Soil profile of each plot was described and analysed (soil texture, gravel content, organic carbon, total nitrogen, pH, CEC). Soil volumetric humidity was measured weekly, using TDR probes. A pedotransfer function was developed to transform Electrical Resistivity Imaging (ERI) into soil volume wetness and therefore to spatialise and observe variation in the Fraction of Transpirable Soil Water (FTSW). During the three years of monitoring, grapevines experienced great variation in water status, which ranged from low to considerable water deficit (as expressed by pre-dawn leaf water potential and δ13C analysis of grape juice). With ERI imaging, it was possible to observe differences in water absorption pattern by roots, in different soils, and at different depth. In addition, significant differences were observed in grapevine water status in relation to variations in the physical characteristics of the terroir along the hillslope (i.e. the geo-pedological context, the elevation etc.). Grapevine water behaviour and plant-soil water relationships on the hillslope of Corton Hill have been extensively characterised in this study by ultimate technologies, allowing to present this terroir as a very interesting example for future generalisation and modelling of the hillslope vineyard water dynamics.

  17. Functions of EDS1-like and PAD4 genes in grapevine defenses against powdery mildew.

    Science.gov (United States)

    Gao, Fei; Dai, Ru; Pike, Sharon M; Qiu, Wenping; Gassmann, Walter

    2014-11-01

    The molecular interactions between grapevine and the obligate biotrophic fungus Erysiphe necator are not understood in depth. One reason for this is the recalcitrance of grapevine to genetic modifications. Using defense-related Arabidopsis mutants that are susceptible to pathogens, we were able to analyze key components in grapevine defense responses. We have examined the functions of defense genes associated with the salicylic acid (SA) pathway, including ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), EDS1-LIKE 2 (EDL2), EDL5 and PHYTOALEXIN DEFICIENT 4 (PAD4) of two grapevine species, Vitis vinifera cv. Cabernet Sauvignon, which is susceptible to E. necator, and V. aestivalis cv. Norton, which is resistant. Both VaEDS1 and VvEDS1 were previously found to functionally complement the Arabidopsis eds1-1 mutant. Here we show that the promoters of both VaEDS1 and VvEDS1 were induced by SA, indicating that the heightened defense of Norton is related to its high SA level. Other than Va/VvEDS1, only VaEDL2 complemented Arabidopsis eds1-1, whereas Va/VvPAD4 did not complement Arabidopsis pad4-1. Bimolecular fluorescence complementation results indicated that Vitis EDS1 and EDL2 proteins interact with Vitis PAD4 and AtPAD4, suggesting that Vitis EDS1/EDL2 forms a complex with PAD4 to confer resistance, as is known from Arabidopsis. However, Vitis EDL5 and PAD4 did not interact with Arabidopsis EDS1 or PAD4, correlating with their inability to function in Arabidopsis. Together, our study suggests a more complicated EDS1/PAD4 module in grapevine and provides insight into molecular mechanisms that determine disease resistance levels in Vitis species native to the North American continent.

  18. Dynamics and Reversibility of the DNA Methylation Landscape of Grapevine Plants (Vitis vinifera) Stressed by In Vitro Cultivation and Thermotherapy

    National Research Council Canada - National Science Library

    Baránek, Miroslav; Čechová, Jana; Raddová, Jana; Holleinová, Věra; Ondrušíková, Eva; Pidra, Miroslav

    2015-01-01

    ... investigated in grapevine plants (Vitis vinifera) stressed by in vitro cultivation. It was observed that significant part of induced epigenetic changes could be repeatedly established by exposure to particular planting and stress conditions...

  19. Relationship between Nacl Concentration of the Irrigation Water and the Plants Moisture Content of Four Antiphylloxeric Rootstocks of Grapevine

    National Research Council Canada - National Science Library

    FATBARDHA SHPATI; LUSH SUSAJ; ELISABETA SUSAJ

    2016-01-01

    Study for the relationship between whole plant moisture content and the shoot hardwood cuttings and NaCl concentration of four antiphylloxeric rootstocks of grapevine was conducted during 2014 -2015...

  20. Genome sequences and structures of two biologically distinct strains of Grapevine leafroll-associated virus 2 and sequence analysis.

    Science.gov (United States)

    Meng, Baozhong; Li, Caihong; Goszczynski, Dariusz E; Gonsalves, Dennis

    2005-08-01

    Grapevine leafroll-associated virus 2 (GLRaV-2), a member of the genus Closterovirus within Closteroviridae, is implicated in several important diseases of grapevines including "leafroll", "graft-incompatibility", and "quick decline" worldwide. Several GLRaV-2 isolates have been detected from different grapevine genotypes. However, the genomes of these isolates were not sequenced or only partially sequenced. Consequently, the relationship of these viral isolates at the molecular level has not been determined. Here, we group the various GLRaV-2 isolates into four strains based on their coat protein gene sequences. We show that isolates "PN" (originated from Vitis vinifera cv. "Pinot noir"), "Sem" (from V. vinifera cv. "Semillon") and "94/970" (from V. vinifera cv. "Muscat of Alexandria") belong to the same strain, "93/955" (from hybrid "LN-33") and "H4" (from V. rupestris "St. George") each represents a distinct strain, while Grapevine rootstock stem lesion-associated virus.

  1. Co‐infection by Botryosphaeriaceae and Ilyonectria spp. fungi during propagation causes decline of young grafted grapevines

    National Research Council Canada - National Science Library

    Whitelaw‐Weckert, M. A; Rahman, L; Appleby, L. M; Hall, A; Clark, A. C; Waite, H; Hardie, W. J

    2013-01-01

    ... . champini cv. R amsey rootstock) were assayed for microbial pathogens. I lyonectria spp. ( I . macrodidyma or I . liriodendra, producers of phytotoxin brefeldin A , BFA , and cause of black foot disease of grapevines...

  2. Grapevines respond to glassy-winged sharpshooter (Homalodisca vitripennis) oviposition by increasing local and systemic terpenoid levels

    Science.gov (United States)

    Grapevines (Vitis vinifera) have been observed to respond to oviposition by glassy-winged sharpshooters [Homalodisca vitripennis (Germar)(Hemiptera: Cicadellidae)] by producing volatile compounds that attract egg parasitoids such as Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae). Recent work ...

  3. Sterol composition in field-grown and cultured mycelia of Inonotus obliquus%桦褐孔菌野生菌丝体和培养菌丝体的甾体类化合物组成

    Institute of Scientific and Technical Information of China (English)

    郑维发; 刘彤; 项小燕; 顾琪

    2007-01-01

    for differing sterol composition, the field-grown and cultured mycelia were extracted with 80% ethanol at room temperature and total sterols were prepared using silicon gel column chromatography followed by identification using either GC-MS or spectroscopic methods. For culturing Inonotus obliquus, the seed culture was grown either in basic medium consisting of glucose (2%), yeast extract (0.5%), KH2PO4 (0.01%), MgSO4·7H2O (0.05%) and distilled water at pH 6.5, or the basic medium supplemented with serial concentrations of AgNO3. The results indicated that field-grown mycelia contained lanosterol and inotodiol (comprised 45.47% and 25.36% of the total sterols, respectively) and other 10 sterols (comprising the remaining 30.17%) including ergosterol biosynthetic intermediates such as 24-methylene dihydrolanosterol, 4,4-dimethylfecosterol, 4-methyl fecosterol, fecosterol and episterol. Column chromatography also led to the isolation of lanosterol, Inotodiol, trametenolic acid, foscoparianol B and a new triterpenoid foscoparianol D in field-grown mycelia. In comparison, the cultured mycelia only contained three sterols with ergosterol as the predominant one (82.20%). Lanosterol only accounted for 3.68%. Supplementing Ag+ into the culture at 0.28 μmol·L-1 greatly enhanced content of lanosterol (accounting for 56.81%) and decreased the content of ergosterol (18.5%) together with the presence of intermediates for ergosterol biosynthesis. These results suggested that the sterol composition in mycelia of the fungus can be diversified by supplementing substances inhibiting enzymatic process towards the synthesis of ergosterol. Harsh growth conditions in field environment (I.e. temperature variation, UV irradiation etc.) can delay the synthesis of ergosterol and hereby diversify the sterol composition in the mycelia of Inonotus obliquus.

  4. Abstracts of oral and poster presentation given at the first COST Action FA 1303 workshop on Grapevine Trunk Diseases, Cognac, France, 23-24 June 2015

    Directory of Open Access Journals (Sweden)

    2015-09-01

    Full Text Available The International COST Action FA1303 Workshop on “Sustainable control of Grapevine Trunk Diseases: current state and future prospects” was held in Cognac, France, on June 23-24 2015. The meeting was attended by 90 participants. Forty-eight oral and posterpapers were presented,in four sessions: Pathogen characterization, detection and epidemiology; Microbial ecology; Host-pathogen and fungus-fungus competitive interactions; and Disease management. A field trip to the nursery Mercier at Vix was undertaken on June the 22th and 25th, including a demonstration of the MYCORRAY detection tool in the nursery research lab. A second field trip was to the Hennessy cellar, on the  afternoon of June 23th.The workshop was organized by members of the COST Action FA1303 (www.managtd.eu, in collaboration with Hennessy.

  5. Relationships between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapevine plants, before and after ex vitro acclimatization.

    Science.gov (United States)

    Fila, Gianni; Badeck, Franz-W; Meyer, Sylvie; Cerovic, Zoran; Ghashghaie, Jaleh

    2006-01-01

    In vitro-cultured plants typically show a low photosynthetic activity, which is considered detrimental to subsequent ex vitro acclimatization. Studies conducted so far have approached this problem by analysing the biochemical and photochemical aspects of photosynthesis, while very little attention has been paid to the role of leaf conductance to CO(2) diffusion, which often represents an important constraint to CO(2) assimilation in naturally grown plants. Mesophyll conductance, in particular, has never been determined in in vitro plants, and no information exists as to whether it represents a limitation to carbon assimilation during in vitro growth and subsequent ex vitro acclimatization. In this study, by means of simultaneous gas exchange and chlorophyll fluorescence measurements, the stomatal and mesophyll conductance to CO(2) diffusion were assessed in in vitro-cultured plants of the grapevine rootstock '41B' (Vitis vinifera 'Chasselas'xVitis berlandieri), prior to and after ex vitro acclimatization. Their impact on electron transport rate partitioning and on limitation of potential net assimilation rate was analysed. In vitro plants had a high stomatal conductance, 155 versus 50 mmol m(-2) s(-1) in acclimatized plants, which ensured a higher CO(2) concentration in the chloroplasts, and a 7% higher electron flow to the carbon reduction pathway. The high stomatal conductance was counterbalanced by a low mesophyll conductance, 43 versus 285 mmol m(-2) s(-1), which accounted for a 14.5% estimated relative limitation to photosynthesis against 2.1% estimated in acclimatized plants. It was concluded that mesophyll conductance represents an important limitation for in vitro plant photosynthesis, and that in acclimatization studies the correct comparison of photosynthetic activity between in vitro and acclimatized plants must take into account the contribution of both stomatal and mesophyll conductance.

  6. Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.).

    Science.gov (United States)

    Bert, Pierre-François; Bordenave, Louis; Donnart, Martine; Hévin, Cyril; Ollat, Nathalie; Decroocq, Stéphane

    2013-02-01

    Iron is essential to plants for chlorophyll formation as well as for the functioning of various iron-containing enzymes. Iron deficiency chlorosis is a wide-spread disorder of plants, in particular, of those growing on calcareous soils. Among the different ways to control iron deficiency problems for crops, plant material and especially rootstock breeding is a suitable and reliable method, especially for fruit trees and grapes. The aim of the experiment was to characterize the genetic basis of grapevine chlorosis tolerance under lime stress conditions. A segregating population of 138 F1 genotypes issued from an inter-specific cross between Vitis vinifera Cabernet Sauvignon (tolerant) × V. riparia Gloire de Montpellier (sensitive) was developed and phenotyped both as cuttings and as rootstock grafted with Cabernet Sauvignon scions in pots containing non-chlorosing and chlorosing soils. Tolerance was evaluated by chlorosis score, leaf chlorophyll content and growth parameters of the shoots and roots. The experiments were performed in 2001, 2003 and 2006. The plants analysed in 2006 were reassessed in 2007. The most significant findings of the trial were: (a) the soil properties strongly affect plant development, (b) there are differences in tolerance among segregating genotypes when grown as cuttings or as rootstocks on calcareous soil, (c) calcareous conditions induced chlorosis and revealed quantitative trait loci (QTLs) implicated in polygenic control of tolerance, (d) rootstock strongly contributes to lime-induced chlorosis response, and (e) a QTL with strong effect (from 10 to 25 % of the chlorotic symptom variance) was identified on chromosome 13. This QTL colocalized with a QTL for chlorophyll content (R (2) = 22 %) and a major QTL for plant development that explains about 50 % of both aerial and root system biomass variation. These findings were supported by stable results among the different years of experiment. These results open new insights into the

  7. Processing of n{sup +}/p{sup −}/p{sup +} strip detectors with atomic layer deposition (ALD) grown Al{sub 2}O{sub 3} field insulator on magnetic Czochralski silicon (MCz-si) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, J., E-mail: jaakko.harkonen@helsinki.fi [Helsinki Institute of Physics (Finland); Tuovinen, E. [Helsinki Institute of Physics (Finland); VTT Technical Research Centre of Finland, Microsystems and Nanoelectronics (Finland); Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T. [Helsinki Institute of Physics (Finland); Junkes, A. [Institute for Experimental Physics, University of Hamburg (Germany); Wu, X. [VTT Technical Research Centre of Finland, Microsystems and Nanoelectronics (Finland); Picosun Oy, Tietotie 3, FI-02150 Espoo Finland (Finland); Li, Z. [School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2016-08-21

    Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n{sup +} segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO{sub 2} interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al{sub 2}O{sub 3}) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current–voltage and capacitance−voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×10{sup 15} n{sub eq}/cm{sup 2} proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.

  8. A decision support system (GesCoN) for managing fertigation in vegetable crops. Part II—model calibration and validation under different environmental growing conditions on field grown tomato

    Science.gov (United States)

    Conversa, Giulia; Bonasia, Anna; Di Gioia, Francesco; Elia, Antonio

    2015-01-01

    The GesCoN model was evaluated for its capability to simulate growth, nitrogen uptake, and productivity of open field tomato grown under different environmental and cultural conditions. Five datasets collected from experimental trials carried out in Foggia (IT) were used for calibration and 13 datasets collected from trials conducted in Foggia, Perugia (IT), and Florida (USA) were used for validation. The goodness of fitting was performed by comparing the observed and simulated shoot dry weight (SDW) and N crop uptake during crop seasons, total dry weight (TDW), N uptake and fresh yield (TFY). In SDW model calibration, the relative RMSE values fell within the good 10–15% range, percent BIAS (PBIAS) ranged between −11.5 and 7.4%. The Nash-Sutcliffe efficiency (NSE) was very close to the optimal value 1. In the N uptake calibration RRMSE and PBIAS were very low (7%, and −1.78, respectively) and NSE close to 1. The validation of SDW (RRMSE = 16.7%; NSE = 0.96) and N uptake (RRMSE = 16.8%; NSE = 0.96) showed the good accuracy of GesCoN. A model under- or overestimation of the SDW and N uptake occurred when higher or a lower N rates and/or a more or less efficient system were used compared to the calibration trial. The in-season adjustment, using the “SDWcheck” procedure, greatly improved model simulations both in the calibration and in the validation phases. The TFY prediction was quite good except in Florida, where a large overestimation (+16%) was linked to a different harvest index (0.53) compared to the cultivars used for model calibration and validation in Italian areas. The soil water content at the 10–30 cm depth appears to be well-simulated by the software, and the GesCoN proved to be able to adaptively control potential yield and DW accumulation under limited N soil availability scenarios and consequently to modify fertilizer application. The DSSwell simulate SDW accumulation and N uptake of different tomato genotypes grown under Mediterranean and

  9. A Decision Support System (GesCoN for Managing Fertigation in Vegetable Crops. Part II – Model calibration and validation under different environmental growing conditions on field grown tomato

    Directory of Open Access Journals (Sweden)

    Giulia eConversa

    2015-07-01

    Full Text Available The GesCoN model was evaluated for its capability to simulate growth, nitrogen uptake and productivity of open field tomato grown under different environmental and cultural conditions. Five datasets collected from experimental trials carried out in Foggia (IT were used for calibration and 13 datasets collected from trials conducted in Foggia, Perugia (IT and Florida (USA were used for validation. The goodness of fitting was performed by comparing the observed and simulated shoot dry weight (SDW and N crop uptake during crop seasons, total dry weight (TDW, N uptake and fresh yield (TFY. In SDW model calibration, the relative RMSE values fell within the good 10 to 15% range, percent BIAS (PBIAS ranged between -11.5% and 7.4%. The Nash-Sutcliffe efficiency (NSE was very close to the optimal value 1. In the N uptake calibration RRMSE and PBIAS were very low(7%, and -1.78, respectively and NSE close to 1. The validation of SDW (RRMSE=16.7%; NSE=0.96 and N uptake (RRMSE=16.8%; NSE=0.96 showed the good accuracy of GesCoN. A model under- or overestimation of the SDW and N uptake occurred when higher or a lower N rates and/or a more or less efficient system were used compared to the calibration trial. The in-season adjustment, using the SDWcheck procedure, greatly improved model simulations both in the calibration and in the validation phases. The TFY prediction was quite good except in Florida, where a large overestimation (+16% was linked to a different harvest index (0.53 compared the cultivars used for model calibration and validation in Italian areas. The soil water content at the 10-30 cm depth appears to be well simulated by the software, and the GesCoN proved to be able to adaptively control potential yield and DW accumulation under limited N soil availability scenarios and consequently to modify fertilizer application. The DSSwell simulate SDW accumulation and N uptake of different tomato genotypes grown under Mediterranean and subtropical

  10. Thermal behaviour of strontium tartrate single crystals grown in gel

    Indian Academy of Sciences (India)

    M H Rahimkutty; K Rajendra Babu; K Sreedharan Pillai; M R Sudarsana Kumar; C M K Nair

    2001-04-01

    Thermal behaviour of strontium tartrate crystals grown with the aid of sodium metasilicate gel is investigated using thermogravimetry (TG) and differential thermal analysis (DTA). Effect of magnetic field and dopant (Pb)2+ on the crystal stability is also studied using thermal analysis. This study reveals that water molecules are locked up in the lattice with different strengths in the grown crystals.

  11. 代森锰锌、乙撑硫脲在大棚、露地黄瓜上的残留动态对比研究%Comparison of Residual Dynamics of Mancozeb and Ethylenethioureaon Cucumbers Grown in Plastic House and Open Field

    Institute of Scientific and Technical Information of China (English)

    范志先; 叶志强; 许允成; 初丽伟

    2001-01-01

    The residual dynamics of mancozeb and ethylenethio urea on cucumbers grown in plastic house and open field were compared. After application, the dynamics of mancozeb residues on cucumbers grown in plastic house and field could be described, respectively, as Ct=1.058e-0.1282t,Ct=0.751 e-0.4689t, with a half-life of 5.4 and 1.4 days, respectively. The degradation of mancozeb on cucumbers grown in the plastic house was slower than that of cucumbers grown in open field. The dynamics of ethylenethiourea residues on cucumbers grown in plastic house and field could be described, respectively, as Ct=0.152e-0.1794t ,Ct=0.059e-0.1366t, and respectively with a half-life of 3.9 and 5.4 days. The degradation of eth ylenethiourea on cucumbers grown in the plastic house was faster than that of cucumbers grown in open field.%对代森锰锌、乙撑硫脲在大棚、露地黄瓜上的残留动态进行了对比研究。喷药后,代森锰锌在大棚黄瓜上的降解动态方程为Ct=1.058e-0. 1282t,露地为Ct=0.751e-0.4689t。半衰期分别为5.4 d和1.4 d。代森锰锌在大棚黄瓜上的降解速度要慢于露地黄瓜。乙撑硫脲在大棚黄瓜上的降解动态方程为Ct=0.152e-0.1794t,露地为Ct=0 .059e-0.1366t 。半衰期分别为3.9 d和5.4 d。乙撑硫脲在大棚黄瓜上的降解速度要稍快于露地黄瓜。

  12. A leafhopper-transmissible DNA virus with novel evolutionary lineage in the family geminiviridae implicated in grapevine redleaf disease by next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Sudarsana Poojari

    Full Text Available A graft-transmissible disease displaying red veins, red blotches and total reddening of leaves in red-berried wine grape (Vitis vinifera L. cultivars was observed in commercial vineyards. Next-generation sequencing technology was used to identify etiological agent(s associated with this emerging disease, designated as grapevine redleaf disease (GRD. High quality RNA extracted from leaves of grape cultivars Merlot and Cabernet Franc with and without GRD symptoms was used to prepare cDNA libraries. Assembly of highly informative sequence reads generated from Illumina sequencing of cDNA libraries, followed by bioinformatic analyses of sequence contigs resulted in specific identification of taxonomically disparate viruses and viroids in samples with and without GRD symptoms. A single-stranded DNA virus, tentatively named Grapevine redleaf-associated virus (GRLaV, and Grapevine fanleaf virus were detected only in grapevines showing GRD symptoms. In contrast, Grapevine rupestris stem pitting-associated virus, Hop stunt viroid, Grapevine yellow speckle viroid 1, Citrus exocortis viroid and Citrus exocortis Yucatan viroid were present in both symptomatic and non-symptomatic grapevines. GRLaV was transmitted by the Virginia creeper leafhopper (Erythroneura ziczac Walsh from grapevine-to-grapevine under greenhouse conditions. Molecular and phylogenetic analyses indicated that GRLaV, almost identical to recently reported Grapevine Cabernet Franc-associated virus from New York and Grapevine red blotch-associated virus from California, represents an evolutionarily distinct lineage in the family Geminiviridae with genome characteristics distinct from other leafhopper-transmitted geminiviruses. GRD significantly reduced fruit yield and affected berry quality parameters demonstrating negative impacts of the disease. Higher quantities of carbohydrates were present in symptomatic leaves suggesting their possible role in the expression of redleaf symptoms.

  13. Black-foot disease of grapevine: an update on taxonomy, epidemiology and management strategies

    Directory of Open Access Journals (Sweden)

    Carlos AGUSTÍ-BRISACH

    2013-09-01

    Full Text Available Black-foot is one of the most destructive grapevine trunk diseases in nurseries and young vineyards, causing necrotic root lesions, wood necrosis of the rootstock base, and a gradual decline and death of grapevines. Causal agents of the disease are included into the genera Campylocarpon, “Cylindrocarpon”, Cylindrocladiella and Ilyonectria. Recent taxonomical studies of Neonectria and related genera with “Cylindrocarpon”-like anamorphs based on morphological and phylogenetic studies, divided Neonectria into five genera. Thus, the current taxonomical position and classification of the causal agents of black-foot disease, mainly “Cylindrocarpon”/Ilyonectria, comprises one of the main topics of this review. The review also provides an update on geographical distribution, epidemiology and management strategies of the disease.  

  14. Phytotoxic Lipophilic Metabolites Produced by Grapevine Strains of Lasiodiplodia Species in Brazil.

    Science.gov (United States)

    Cimmino, Alessio; Cinelli, Tamara; Masi, Marco; Reveglia, Pierluigi; da Silva, Marcondes Araujo; Mugnai, Laura; Michereff, Sami J; Surico, Giuseppe; Evidente, Antonio

    2017-02-15

    Phytotoxic metabolites produced in liquid culture by six species of Lasiodiplodia isolated in Brazil and causing Botryosphaeria dieback of grapevine were chemically identified. As ascertained by LC/MS, L. brasiliense, L. crassispora, L. jatrophicola, and L. pseudotheobromae produced jasmonic acid, and L. brasiliense synthesized, besides jasmonic a