WorldWideScience

Sample records for fibrotic tissue utilizing

  1. Soluble guanylate cyclase stimulation prevents fibrotic tissue remodeling and improves survival in salt-sensitive Dahl rats.

    Directory of Open Access Journals (Sweden)

    Sandra Geschka

    Full Text Available A direct pharmacological stimulation of soluble guanylate cyclase (sGC is an emerging therapeutic approach to the management of various cardiovascular disorders associated with endothelial dysfunction. Novel sGC stimulators, including riociguat (BAY 63-2521, have a dual mode of action: They sensitize sGC to endogenously produced nitric oxide (NO and also directly stimulate sGC independently of NO. Little is known about their effects on tissue remodeling and degeneration and survival in experimental malignant hypertension.Mortality, hemodynamics and biomarkers of tissue remodeling and degeneration were assessed in Dahl salt-sensitive rats maintained on a high salt diet and treated with riociguat (3 or 10 mg/kg/d for 14 weeks. Riociguat markedly attenuated systemic hypertension, improved systolic heart function and increased survival from 33% to 85%. Histological examination of the heart and kidneys revealed that riociguat significantly ameliorated fibrotic tissue remodeling and degeneration. Correspondingly, mRNA expression of the pro-fibrotic biomarkers osteopontin (OPN, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1 and plasminogen activator inhibitor-1 (PAI-1 in the myocardium and the renal cortex was attenuated by riociguat. In addition, riociguat reduced plasma and urinary levels of OPN, TIMP-1, and PAI-1.Stimulation of sGC by riociguat markedly improves survival and attenuates systemic hypertension and systolic dysfunction, as well as fibrotic tissue remodeling in the myocardium and the renal cortex in a rodent model of pressure and volume overload. These findings suggest a therapeutic potential of sGC stimulators in diseases associated with impaired cardiovascular and renal functions.

  2. AKAP12 mediates barrier functions of fibrotic scars during CNS repair.

    Directory of Open Access Journals (Sweden)

    Jong-Ho Cha

    Full Text Available The repair process after CNS injury shows a well-organized cascade of three distinct stages: inflammation, new tissue formation, and remodeling. In the new tissue formation stage, various cells migrate and form the fibrotic scar surrounding the lesion site. The fibrotic scar is known as an obstacle for axonal regeneration in the remodeling stage. However, the role of the fibrotic scar in the new tissue formation stage remains largely unknown. We found that the number of A-kinase anchoring protein 12 (AKAP12-positive cells in the fibrotic scar was increased over time, and the cells formed a structure which traps various immune cells. Furthermore, the AKAP12-positive cells strongly express junction proteins which enable the structure to function as a physical barrier. In in vivo validation, AKAP12 knock-out (KO mice showed leakage from a lesion, resulting from an impaired structure with the loss of the junction complex. Consistently, focal brain injury in the AKAP12 KO mice led to extended inflammation and more severe tissue damage compared to the wild type (WT mice. Accordingly, our results suggest that AKAP12-positive cells in the fibrotic scar may restrict excessive inflammation, demonstrating certain mechanisms that could underlie the beneficial actions of the fibrotic scar in the new tissue formation stage during the CNS repair process.

  3. Transurethral resection of fibrotic scar tissue combined with temporary urethral stent placement for patients with in anterior urethral stricture

    Directory of Open Access Journals (Sweden)

    Cheol Yong Yoon

    2014-08-01

    Full Text Available Introduction Fibrotic scar formation is a main cause of recurrent urethral stricture after initial management with direct vision internal urethrotomy (DVIU. In the present study, we devised a new technique of combined the transurethral resection of fibrotic scar tissue and temporary urethral stenting, using a thermo-expandable urethral stent (MemokathTM 044TW in patients with anterior urethral stricture. Materials and Methods As a first step, multiple incisions were made around stricture site with cold-cutting knife and Collins knife electrode to release a stricture band. Fibrotic tissue was then resected with a 13Fr pediatric resectoscope before deployment of a MemokathTM 044TW stent (40 – 60mm on a pre-mounted sheath using 0° cystoscopy. Stents were removed within 12 months after initial placement. Results We performed this technique on 11 consecutive patients with initial (n = 4 and recurrent (n = 7 anterior urethral stricture (April 2009 – February 2013. At 18.9 months of mean follow-up (12-34 months, mean Qmax (7.8±3.9ml/sec vs 16.8 ± 4.8ml/sec, p < 0.001, IPSS (20.7 vs 12.5, p = 0.001 , and QoL score (4.7 vs 2.2, p < 0.001 were significantly improved. There were no significant procedure-related complications except two cases of tissue ingrowth at the edge of stent, which were amenable by transurethral resection. In 7 patients, an average 1.4 times (1-5 times of palliative urethral dilatation was carried out and no patients underwent open surgical urethroplasty during the follow-up period. Conclusion Combined transurethral resection and temporary urethral stenting is a effective therapeutic option for anterior urethral stricture. Further investigations to determine the long-term effects, and safety profile of this new technique are warranted.

  4. Biodegradable microspheres for the sustained release of PDGF-receptor directed PPB-HSA targeted to the fibrotic kidney

    NARCIS (Netherlands)

    Teekamp, Naomi; van Dijk, Fransien; Beljaars, Eleonora; Hinrichs, Wouter; Poelstra, Klaas; Frijlink, H.W.; Olinga, Peter

    2016-01-01

    Platelet Derived Growth Factor (PDGF) plays a key role in the development of fibrotic processes in several tissues. Accordingly, the PDGFβ receptor is abundantly present in these fibrotic tissues. Specific targeting to this receptor is established for a series of compounds in different animal

  5. Anti-fibrotic effect of pirfenidone in muscle derived-fibroblasts from Duchenne muscular dystrophy patients.

    Science.gov (United States)

    Zanotti, Simona; Bragato, Cinzia; Zucchella, Andrea; Maggi, Lorenzo; Mantegazza, Renato; Morandi, Lucia; Mora, Marina

    2016-01-15

    Tissue fibrosis, characterized by excessive deposition of extracellular matrix proteins, is the end point of diseases affecting the kidney, bladder, liver, lung, gut, skin, heart and muscle. In Duchenne muscular dystrophy (DMD), connective fibrotic tissue progressively substitutes muscle fibers. So far no specific pharmacological treatment is available for muscle fibrosis. Among promising anti-fibrotic molecules, pirfenidone has shown anti-fibrotic and anti-inflammatory activity in animal and cell models, and has already been employed in clinical trials. Therefore we tested pirfenidone anti-fibrotic properties in an in vitro model of muscle fibrosis. We evaluated effect of pirfenidone on fibroblasts isolated from DMD muscle biopsies. These cells have been previously characterized as having a pro-fibrotic phenotype. We tested cell proliferation and migration, secretion of soluble collagens, intracellular levels of collagen type I and fibronectin, and diameter of 3D fibrotic nodules. We found that pirfenidone significantly reduced proliferation and cell migration of control and DMD muscle-derived fibroblasts, decreased extracellular secretion of soluble collagens by control and DMD fibroblasts, as well as levels of collagen type I and fibronectin, and, in DMD fibroblasts only, reduced synthesis and deposition of intracellular collagen. Furthermore, pirfenidone was able to reduce the diameter of fibrotic-nodules in our 3D model of in vitro fibrosis. These pre-clinical results indicate that pirfenidone has potential anti-fibrotic effects also in skeletal muscle fibrosis, urging further studies in in vivo animal models of muscular dystrophy in order to translate the drug into the treatment of muscle fibrosis in DMD patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Biodegradable microspheres for the sustained release of PDGF-receptor directed pPB-HSA targeted to the fibrotic kidney

    NARCIS (Netherlands)

    Teekamp, Naomi; van Dijk, Fransien; Beljaars, Eleonora; Hinrichs, Wouter; Steendam, Rob; Zuidema, Johan; Poelstra, Klaas; Frijlink, H.W.; Olinga, Peter

    2016-01-01

    Platelet Derived Growth Factor (PDGF) plays a key role in the development of fibrotic processes in several tissues. Accordingly, the PDGF receptor is abundantly present in these fibrotic tissues. Specific targeting to this receptor is established for a series of compounds in different animal models,

  7. Fibrocytes in the Fibrotic Lung: Altered Phenotype Detected by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Charles eReese

    2014-06-01

    Full Text Available Fibrocytes are bone marrow hematopoietic-derived cells that also express a mesenchymal cell marker (commonly collagen I and participate in fibrotic diseases of multiple organs. Given their origin, they or their precursors must be circulating cells before recruitment into target tissues. While most previous studies focused on circulating fibrocytes, here we focus on the fibrocyte phenotype in fibrotic tissue. The study’s relevance to human disease is heightened by use of a model in which bleomycin is delivered systemically, recapitulating several features of human scleroderma including multi-organ fibrosis not observed when bleomycin is delivered directly into the lungs. Using flow cytometry, we find in the fibrotic lung a large population of CD45high fibrocytes (called Region I rarely found in vehicle-treated control mice. A second population of CD45+ fibrocytes (called Region II is observed in both control and fibrotic lung. The level of CD45 in circulating fibrocytes is far lower than in either Region I or II lung fibrocytes. The chemokine receptors CXCR4 and CCR5 are expressed at higher levels in Region I than in Region II and are present at very low levels in all other lung cells including CD45+/collagen I- leucocytes. The collagen chaperone HSP47 is present at similar high levels in both Regions I and II, but at a higher level in fibrotic lung than in control lung. There is also a major population of HSP47high/CD45- cells in fibrotic lung not present in control lung. CD44 is present at higher levels in Region I than in Region II and at much lower levels in all other cells including CD45+/collagen I- leucocytes. When lung fibrosis is inhibited by restoring caveolin-1 activity using a caveolin-1 scaffolding domain peptide (CSD, a strong correlation is observed between fibrocyte number and fibrosis score. In summary, the distinctive phenotype of fibrotic lung fibrocytes suggests that fibrocyte differentiation occurs primarily within the

  8. Gene expression profile of the fibrotic response in the peritoneal cavity.

    Science.gov (United States)

    Le, S J; Gongora, M; Zhang, B; Grimmond, S; Campbell, G R; Campbell, J H; Rolfe, B E

    2010-01-01

    The cellular response to materials implanted in the peritoneal cavity has been utilised to produce tissue for grafting to hollow smooth muscle organs (blood vessels, bladder, uterus and vas deferens). To gain insight into the regulatory mechanisms involved in encapsulation of a foreign object, and subsequent differentiation of encapsulating cells, the present study used microarray technology and real-time RT-PCR to identify the temporal changes in gene expression associated with tissue development. Immunohistochemical analysis showed that 3-7 days post-implantation of foreign objects (cubes of boiled egg white) into rats, they were encapsulated by tissue comprised primarily of haemopoietic (CD45(+)) cells, mainly macrophages (CD68(+), CCR1(+)). By day 14, tissue capsule cells no longer expressed CD68, but were positive for myofibroblast markers alpha-smooth muscle (SM) actin and SM22. In accordance with these results, gene expression data showed that early capsule (days 3-7) development was dominated by the expression of monocyte/macrophage-specific genes (CD14, CSF-1, CSF-1R, MCP-1) and pro-inflammatory mediators such as transforming growth factor (TGF-beta). As tissue capsule development progressed (days 14-21), myofibroblast-associated and pro-fibrotic genes (associated with TGF-beta and Wnt/beta-catenin signalling pathways, including Wnt 4, TGFbetaRII, connective tissue growth factor (CTGF), SMADs-1, -2, -4 and collagen-1 subunits) were significantly up-regulated. The up-regulation of genes associated with Cardiovascular and Skeletal and Muscular System Development at later time-points suggests the capacity of cells within the tissue capsule for further differentiation to smooth muscle, and possibly other cell types. The identification of key regulatory pathways and molecules associated with the fibrotic response to implanted materials has important applications not only for optimising tissue engineering strategies, but also to control deleterious fibrotic

  9. Rac inhibition reverses the phenotype of fibrotic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Shi-wen Xu

    Full Text Available BACKGROUND: Fibrosis, the excessive deposition of scar tissue by fibroblasts, is one of the largest groups of diseases for which there is no therapy. Fibroblasts from lesional areas of scleroderma patients possess elevated abilities to contract matrix and produce alpha-smooth muscle actin (alpha-SMA, type I collagen and CCN2 (connective tissue growth factor, CTGF. The basis for this phenomenon is poorly understood, and is a necessary prerequisite for developing novel, rational anti-fibrotic strategies. METHODS AND FINDINGS: Compared to healthy skin fibroblasts, dermal fibroblasts cultured from lesional areas of scleroderma (SSc patients possess elevated Rac activity. NSC23766, a Rac inhibitor, suppressed the persistent fibrotic phenotype of lesional SSc fibroblasts. NSC23766 caused a decrease in migration on and contraction of matrix, and alpha-SMA, type I collagen and CCN2 mRNA and protein expression. SSc fibroblasts possessed elevated Akt phosphorylation, which was also blocked by NSC23766. Overexpression of rac1 in normal fibroblasts induced matrix contraction and alpha-SMA, type I collagen and CCN2 mRNA and protein expression. Rac1 activity was blocked by PI3kinase/Akt inhibition. Basal fibroblast activity was not affected by NSC23766. CONCLUSION: Rac inhibition may be considered as a novel treatment for the fibrosis observed in SSc.

  10. Prevention of the Post-traumatic Fibrotic Response in Joints

    Science.gov (United States)

    2014-10-01

    The American journal of forensic medicine and pathology . 1988; 9(4):310-2. 14 APPENDICES: An abstract submitted for the ORS conference...clinical problem of posttraumatic joint stiffness, a pathology that reduces the range of motion (ROM) of injured joints and contributes to the...development of osteoarthritis. The fundamental hypothesis that drives the current study is that pathological fibrotic response of injured joint tissues

  11. Are mast cells instrumental for fibrotic diseases?

    Directory of Open Access Journals (Sweden)

    Catherine eOvered-Sayer

    2014-01-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a fatal lung disorder of unknown etiology characterised by accumulation of lung fibroblasts and extracellular matrix deposition, ultimately leading to compromised tissue architecture and lung function capacity. IPF has a heterogeneous clinical course; however the median survival after diagnosis is only 3-5 years. The pharmaceutical and biotechnology industry has made many attempts to find effective treatments for IPF, but the disease has so far defied all attempts at therapeutic intervention. Clinical trial failures may arise for many reasons, including disease heterogeneity, lack of readily measurable clinical end points other than overall survival, and, perhaps most of all, a lack of understanding of the underlying molecular mechanisms of the progression of IPF.The precise link between inflammation and fibrosis remains unclear, but it appears that immune cells can promote fibrosis by releasing fibrogenic factors. So far, however, therapeutic approaches targeting macrophages, neutrophils, or lymphocytes have failed to alter disease pathogenesis. A new cell to garner research interest in fibrosis is the mast cell. Increased numbers of mast cells have long been known to be present in pulmonary fibrosis and clinically correlations between mast cells and fibrosis have been reported. More recent data suggests that mast cells may contribute to the fibrotic process by stimulating fibroblasts resident in the lung, thus driving the pathogenesis of the disease. In this review, we will discuss the mast cell and its physiological role in tissue repair and remodelling, as well as its pathological role in fibrotic diseases such as IPF, where the process of tissue repair and remodelling is thought to be dysregulated.

  12. Absorbed dose in fibrotic microenvironment models employing Monte Carlo simulation

    International Nuclear Information System (INIS)

    Zambrano Ramírez, O.D.; Rojas Calderón, E.L.; Azorín Vega, E.P.; Ferro Flores, G.; Martínez Caballero, E.

    2015-01-01

    The presence or absence of fibrosis and yet more, the multimeric and multivalent nature of the radiopharmaceutical have recently been reported to have an effect on the radiation absorbed dose in tumor microenvironment models. Fibroblast and myofibroblast cells produce the extracellular matrix by the secretion of proteins which provide structural and biochemical support to cells. The reactive and reparative mechanisms triggered during the inflammatory process causes the production and deposition of extracellular matrix proteins, the abnormal excessive growth of the connective tissue leads to fibrosis. In this work, microenvironment (either not fibrotic or fibrotic) models composed of seven spheres representing cancer cells of 10 μm in diameter each with a 5 μm diameter inner sphere (cell nucleus) were created in two distinct radiation transport codes (PENELOPE and MCNP). The purpose of creating these models was to determine the radiation absorbed dose in the nucleus of cancer cells, based on previously reported radiopharmaceutical retain (by HeLa cells) percentages of the 177 Lu-Tyr 3 -octreotate (monomeric) and 177 Lu-Tyr 3 -octreotate-AuNP (multimeric) radiopharmaceuticals. A comparison in the results between the PENELOPE and MCNP was done. We found a good agreement in the results of the codes. The percent difference between the increase percentages of the absorbed dose in the not fibrotic model with respect to the fibrotic model of the codes PENELOPE and MCNP was found to be under 1% for both radiopharmaceuticals. (authors)

  13. Re-expression of pro-fibrotic, embryonic preserved mediators in irradiated arterial vessels of the head and neck region.

    Science.gov (United States)

    Möbius, Patrick; Preidl, Raimund H M; Weber, Manuel; Amann, Kerstin; Neukam, Friedrich W; Wehrhan, Falk

    2017-11-01

    Surgical treatment of head and neck malignancies frequently includes microvascular free tissue transfer. Preoperative radiotherapy increases postoperative fibrosis-related complications up to transplant loss. Fibrogenesis is associated with re-expression of embryonic preserved tissue developmental mediators: osteopontin (OPN), regulated by sex-determining region Y‑box 9 (Sox9), and homeobox A9 (HoxA9) play important roles in pathologic tissue remodeling and are upregulated in atherosclerotic vascular lesions; dickkopf-1 (DKK1) inhibits pro-fibrotic and atherogenic Wnt signaling. We evaluated the influence of irradiation on expression of these mediators in arteries of the head and neck region. DKK1, HoxA9, OPN, and Sox9 expression was examined immunohistochemically in 24 irradiated and 24 nonirradiated arteries of the lower head and neck region. The ratio of positive cells to total cell number (labeling index) in the investigated vessel walls was assessed semiquantitatively. DKK1 expression was significantly decreased, whereas HoxA9, OPN, and Sox9 expression were significantly increased in irradiated compared to nonirradiated arterial vessels. Preoperative radiotherapy induces re-expression of embryonic preserved mediators in arterial vessels and may thus contribute to enhanced activation of pro-fibrotic downstream signaling leading to media hypertrophy and intima degeneration comparable to fibrotic development steps in atherosclerosis. These histopathological changes may be promoted by HoxA9-, OPN-, and Sox9-related inflammation and vascular remodeling, supported by downregulation of anti-fibrotic DKK1. Future pharmaceutical strategies targeting these vessel alterations, e. g., bisphosphonates, might reduce postoperative complications in free tissue transfer.

  14. The Role of γδ T Cells in Fibrotic Diseases.

    Science.gov (United States)

    Bank, Ilan

    2016-10-31

    Inflammation induced by toxins, micro-organisms, or autoimmunity may result in pathogenic fibrosis, leading to long-term tissue dysfunction, morbidity, and mortality. Immune cells play a role in both induction and resolution of fibrosis. γδ T cells are an important group of unconventional T cells characterized by their expression of non-major histocompatibility complex restricted clonotypic T cell receptors for non-peptide antigens. Accumulating evidence suggests that subsets of γδ T cells in experimentally induced fibrosis following bleomycin treatment, or infection with Bacillus subtilis, play pro-inflammatory roles that instigate fibrosis, whereas the same cells may also play a role in resolving fibrosis. These processes appear to be linked at least in part to the cytokines produced by the cells at various stages, with interleukin (IL)-17 playing a central role in the inflammatory phase driving fibrosis, but later secretion of IL-22, interferon γ, and CXCL10 preventing pathologic fibrosis. Moreover, γδ T cells appear to be involved, in an antigen-driven manner, in the prototypic human fibrotic disease, systemic sclerosis (SSc). In this paper we review in brief the scientific publications that have implicated γδ T cells in fibrotic diseases and their pro- and anti-fibrotic effects.

  15. Anti-pulmonary fibrotic activity of salvianolic acid B was screened by a novel method based on the cyto-biophysical properties.

    Science.gov (United States)

    Liu, Miao; Zheng, Mingjing; Xu, Hanying; Liu, Lianqing; Li, Yanchun; Xiao, Wei; Li, Jianchun; Ma, Enlong

    Various methods have been used to evaluate anti-fibrotic activity of drugs. However, most of them are complicated, labor-intensive and lack of efficiency. This study was intended to develop a rapid method for anti-fibrotic drugs screening based on biophysical properties. A549 cells in vitro were stimulated with transforming growth factor-β1 (TGF-β1), and fibrogenesis was confirmed by conventional immunological assays. Meanwhile, the alterations of cyto-biophysical properties including morphology, roughness and stiffness were measured utilizing atomic force microscopy (AFM). It was found that fibrogenesis was accompanied with changes of cellular biophysical properties. TGF-β1-stimulated A549 cells became remarkably longer, rougher and stiffer than the control. Then, the effect of N-acetyl-L-cysteine (NAC) as a positive drug on ameliorating fibrogenesis in TGF-β1-stimulated A549 cells was verified respectively by immunological and biophysical markers. The result of Principal Component Analysis showed that stiffness was a leading index among all biophysical markers during fibrogenesis. Salvianolic acid B (SalB), a natural anti-oxidant, was detected by AFM to protect TGF-β1-stimulated A549 cells against stiffening. Then, SalB treatment was provided in preventive mode on a rat model of bleomycin (BLM) -induced pulmonary fibrosis. The results showed that SalB treatment significantly ameliorated BLM-induced histological alterations, blocked collagen accumulations and reduced α-SMA expression in lung tissues. All these results revealed the anti-pulmonary fibrotic activity of SalB. Detection of cyto-biophysical properties were therefore recommended as a rapid method for anti-pulmonary fibrotic drugs screening. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Anti-pulmonary fibrotic activity of salvianolic acid B was screened by a novel method based on the cyto-biophysical properties

    International Nuclear Information System (INIS)

    Liu, Miao; Zheng, Mingjing; Xu, Hanying; Liu, Lianqing; Li, Yanchun; Xiao, Wei; Li, Jianchun; Ma, Enlong

    2015-01-01

    Various methods have been used to evaluate anti-fibrotic activity of drugs. However, most of them are complicated, labor-intensive and lack of efficiency. This study was intended to develop a rapid method for anti-fibrotic drugs screening based on biophysical properties. A549 cells in vitro were stimulated with transforming growth factor-β1 (TGF-β1), and fibrogenesis was confirmed by conventional immunological assays. Meanwhile, the alterations of cyto-biophysical properties including morphology, roughness and stiffness were measured utilizing atomic force microscopy (AFM). It was found that fibrogenesis was accompanied with changes of cellular biophysical properties. TGF-β1-stimulated A549 cells became remarkably longer, rougher and stiffer than the control. Then, the effect of N-acetyl-L-cysteine (NAC) as a positive drug on ameliorating fibrogenesis in TGF-β1-stimulated A549 cells was verified respectively by immunological and biophysical markers. The result of Principal Component Analysis showed that stiffness was a leading index among all biophysical markers during fibrogenesis. Salvianolic acid B (SalB), a natural anti-oxidant, was detected by AFM to protect TGF-β1-stimulated A549 cells against stiffening. Then, SalB treatment was provided in preventive mode on a rat model of bleomycin (BLM) -induced pulmonary fibrosis. The results showed that SalB treatment significantly ameliorated BLM-induced histological alterations, blocked collagen accumulations and reduced α-SMA expression in lung tissues. All these results revealed the anti-pulmonary fibrotic activity of SalB. Detection of cyto-biophysical properties were therefore recommended as a rapid method for anti-pulmonary fibrotic drugs screening. - Highlights: • Fibrogenesis was accompanied with the changes of cyto-biophysical properties. • Cyto-biophysical properties could be markers for anti-fibrotic drugs screening. • Stiffness is a leading index among all biophysical markers. • SalB was

  17. Anti-pulmonary fibrotic activity of salvianolic acid B was screened by a novel method based on the cyto-biophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Miao; Zheng, Mingjing; Xu, Hanying [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016 (China); Liu, Lianqing [Shenyang Institute of Automation China Academy of Sciences, Shenyang, 110016 (China); Li, Yanchun [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016 (China); Xiao, Wei [Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing, 222001 (China); Li, Jianchun, E-mail: lijianchun0317@sina.com.cn [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016 (China); Ma, Enlong, E-mail: enlong_ma2014@hotmail.com [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016 (China); Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing, 222001 (China)

    2015-12-04

    Various methods have been used to evaluate anti-fibrotic activity of drugs. However, most of them are complicated, labor-intensive and lack of efficiency. This study was intended to develop a rapid method for anti-fibrotic drugs screening based on biophysical properties. A549 cells in vitro were stimulated with transforming growth factor-β1 (TGF-β1), and fibrogenesis was confirmed by conventional immunological assays. Meanwhile, the alterations of cyto-biophysical properties including morphology, roughness and stiffness were measured utilizing atomic force microscopy (AFM). It was found that fibrogenesis was accompanied with changes of cellular biophysical properties. TGF-β1-stimulated A549 cells became remarkably longer, rougher and stiffer than the control. Then, the effect of N-acetyl-L-cysteine (NAC) as a positive drug on ameliorating fibrogenesis in TGF-β1-stimulated A549 cells was verified respectively by immunological and biophysical markers. The result of Principal Component Analysis showed that stiffness was a leading index among all biophysical markers during fibrogenesis. Salvianolic acid B (SalB), a natural anti-oxidant, was detected by AFM to protect TGF-β1-stimulated A549 cells against stiffening. Then, SalB treatment was provided in preventive mode on a rat model of bleomycin (BLM) -induced pulmonary fibrosis. The results showed that SalB treatment significantly ameliorated BLM-induced histological alterations, blocked collagen accumulations and reduced α-SMA expression in lung tissues. All these results revealed the anti-pulmonary fibrotic activity of SalB. Detection of cyto-biophysical properties were therefore recommended as a rapid method for anti-pulmonary fibrotic drugs screening. - Highlights: • Fibrogenesis was accompanied with the changes of cyto-biophysical properties. • Cyto-biophysical properties could be markers for anti-fibrotic drugs screening. • Stiffness is a leading index among all biophysical markers. • SalB was

  18. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics.

    Directory of Open Access Journals (Sweden)

    Maryna Perepelyuk

    Full Text Available Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G' and G" and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver.

  19. Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis

    NARCIS (Netherlands)

    Kinashi, Hiroshi; Falke, Lucas L.; Nguyen, Tri Q.; Bovenschen, Niels; Aten, Jan; Leask, Andrew; Ito, Yasuhiko; Goldschmeding, Roel

    2017-01-01

    Lymphangiogenesis is correlated with the degree of renal interstitial fibrosis. Pro-fibrotic transforming growth factor beta induces VEGF-C production, the main driver of lymphangiogenesis. Connective tissue growth factor (CTGF) is an important determinant of fibrotic tissue remodeling, but its

  20. Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis

    NARCIS (Netherlands)

    Kinashi, Hiroshi; Falke, Lucas L.; Nguyen, Tri Q.; Bovenschen, Niels; Aten, Jan; Leask, Andrew; Ito, Yasuhiko; Goldschmeding, Roel

    2017-01-01

    Lymphangiogenesis is correlated with the degree of renal interstitial fibrosis. Pro-fibrotic transforming growth factor β induces VEGF-C production, the main driver of lymphangiogenesis. Connective tissue growth factor (CTGF) is an important determinant of fibrotic tissue remodeling, but its

  1. Application of Electrocautery Needle Knife Combined with Balloon Dilatation versus Balloon Dilatation in the Treatment of Tracheal Fibrotic Scar Stenosis.

    Science.gov (United States)

    Bo, Liyan; Li, Congcong; Chen, Min; Mu, Deguang; Jin, Faguang

    Electrocautery needle knives can largely reduce scar and granulation tissue hyperplasia and play an important role in treating patients with benign stricture. The aim of this retrospective study was to evaluate the efficacy and safety of electrocautery needle knife combined with balloon dilatation versus balloon dilatation alone in the treatment of tracheal stenosis caused by tracheal intubation or tracheotomy. We retrospectively analysed the clinical data of 43 patients with tracheal stenosis caused by tracheotomy or tracheal intubation in our department from January 2013 to January 2016. Among these 43 patients, 23 had simple web-like stenosis and 20 had complex steno sis. All patients were treated under general anaesthesia, and the treatment methods were (1) balloon dilatation alone, (2) needle knife excision of fibrotic tissue combined with balloon dilatation, and (3) needle knife radial incision of fibrotic tissue combined with balloon dilatation. After treatment the symptoms, such as shortness of breath, were markedly improved immediately in all cases. The stenosis degree of patients who were treated with the elec-trocautery needle knife combined with balloon dilatation had better improvement compared with that of those treated with balloon dilatation treatment alone after 3 months (0.45 ± 0.04 vs. 0.67 ± 0.05, p knife combined with balloon dilatation is an effective and safe treatment for tracheal fibrotic stenosis compared with balloon dilatation alone. © 2017 S. Karger AG, Basel.

  2. Innate Lymphoid Cells: A Promising New Regulator in Fibrotic Diseases.

    Science.gov (United States)

    Zhang, Yi; Tang, Jun; Tian, Zhiqiang; van Velkinburgh, Jennifer C; Song, Jianxun; Wu, Yuzhang; Ni, Bing

    2016-09-02

    Fibrosis is a consequence of chronic inflammation and the persistent accumulation of extracellular matrix, for which the cycle of tissue injury and repair becomes a predominant feature. Both the innate and adaptive immune systems play key roles in the progress of fibrosis. The recently identified subsets of innate lymphoid cells (ILCs), which are mainly localize to epithelial surfaces, have been characterized as regulators of chronic inflammation and tissue remodeling, representing a functional bridge between the innate and adaptive immunity. Moreover, recent research has implicated ILCs as potential contributing factors to several kinds of fibrosis diseases, such as hepatic fibrosis and pulmonary fibrosis. Here, we will summarize and discuss the key roles of ILCs and their related factors in fibrotic diseases and their potential for translation to the clinic.

  3. Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses.

    Science.gov (United States)

    Kim, Ha Ryong; Lee, Kyuhong; Park, Chang We; Song, Jeong Ah; Shin, Da Young; Park, Yong Joo; Chung, Kyu Hyuck

    2016-03-01

    aerosol particles would induce an airway barrier injury via ROS, release fibrotic inflammatory cytokines, and trigger a wound-healing response, leading to pulmonary fibrosis. A simultaneous state of tissue destruction and inflammation caused by PHMG-phosphate had whipped up a "perfect storm" in the respiratory tract.

  4. Sensitivity of reentrant driver localization to electrophysiological parameter variability in image-based computational models of persistent atrial fibrillation sustained by a fibrotic substrate

    Science.gov (United States)

    Deng, Dongdong; Murphy, Michael J.; Hakim, Joe B.; Franceschi, William H.; Zahid, Sohail; Pashakhanloo, Farhad; Trayanova, Natalia A.; Boyle, Patrick M.

    2017-09-01

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, causing morbidity and mortality in millions worldwide. The atria of patients with persistent AF (PsAF) are characterized by the presence of extensive and distributed atrial fibrosis, which facilitates the formation of persistent reentrant drivers (RDs, i.e., spiral waves), which promote fibrillatory activity. Targeted catheter ablation of RD-harboring tissues has shown promise as a clinical treatment for PsAF, but the outcomes remain sub-par. Personalized computational modeling has been proposed as a means of non-invasively predicting optimal ablation targets in individual PsAF patients, but it remains unclear how RD localization dynamics are influenced by inter-patient variability in the spatial distribution of atrial fibrosis, action potential duration (APD), and conduction velocity (CV). Here, we conduct simulations in computational models of fibrotic atria derived from the clinical imaging of PsAF patients to characterize the sensitivity of RD locations to these three factors. We show that RDs consistently anchor to boundaries between fibrotic and non-fibrotic tissues, as delineated by late gadolinium-enhanced magnetic resonance imaging, but those changes in APD/CV can enhance or attenuate the likelihood that an RD will anchor to a specific site. These findings show that the level of uncertainty present in patient-specific atrial models reconstructed without any invasive measurements (i.e., incorporating each individual's unique distribution of fibrotic tissue from medical imaging alongside an average representation of AF-remodeled electrophysiology) is sufficiently high that a personalized ablation strategy based on targeting simulation-predicted RD trajectories alone may not produce the desired result.

  5. Characteristic patterns in the fibrotic lung. Comparing idiopathic pulmonary fibrosis with chronic lung allograft dysfunction.

    Science.gov (United States)

    Fernandez, Isis E; Heinzelmann, Katharina; Verleden, Stijn; Eickelberg, Oliver

    2015-03-01

    Tissue fibrosis, a major cause of death worldwide, leads to significant organ dysfunction in any organ of the human body. In the lung, fibrosis critically impairs gas exchange, tissue oxygenation, and immune function. Idiopathic pulmonary fibrosis (IPF) is the most detrimental and lethal fibrotic disease of the lung, with an estimated median survival of 50% after 3-5 years. Lung transplantation currently remains the only therapeutic alternative for IPF and other end-stage pulmonary disorders. Posttransplant lung function, however, is compromised by short- and long-term complications, most importantly chronic lung allograft dysfunction (CLAD). CLAD affects up to 50% of all transplanted lungs after 5 years, and is characterized by small airway obstruction with pronounced epithelial injury, aberrant wound healing, and subepithelial and interstitial fibrosis. Intriguingly, the mechanisms leading to the fibrotic processes in the engrafted lung exhibit striking similarities to those in IPF; therefore, antifibrotic therapies may contribute to increased graft function and survival in CLAD. In this review, we focus on these common fibrosis-related mechanisms in IPF and CLAD, comparing and contrasting clinical phenotypes, the mechanisms of fibrogenesis, and biomarkers to monitor, predict, or prognosticate disease status.

  6. Development and Implementation of Discrete Polymeric Microstructural Cues for Applications in Cardiac Tissue Engineering

    Science.gov (United States)

    Pinney, James Richardson

    Chronic fibrosis caused by acute myocardial infarction (MI) leads to increased morbidity and mortality due to cardiac dysfunction. Despite care in the acute setting of MI, subsequent development of scar tissue and a lack of treatments for this maladaptive response lead to a poor prognosis. This has increased burdens on the cost of healthcare due to chronic disability. Here a novel therapeutic strategy that aims to mitigate myocardial fibrosis by utilizing injectable polymeric microstructural cues to attenuate the fibrotic response and improve functional outcomes is presented. Additionally, applications of integrated chemical functionalizations into discrete, micro-scale polymer structures are discussed in the realm of tissue engineering in order to impart enhancements in in vivo localization, three-dimensional manipulation and drug delivery. Polymeric microstructures, termed "microrods" and "microcubes", were fabricated using photolithographic techniques and studied in three-dimensional culture models of the fibrotic environment and by direct injection into the infarct zone of adult Sprague-Dawley rats. In vitro gene expression and functional and histological results were analyzed, showing a dose-dependent down-regulation fibrotic indicators and improvement in cardiac function. Furthermore, iron oxide nanoparticles and functionalized fluorocarbons were incorporated into the polymeric microdevices to promote in situ visualization by magnetic resonance imaging as well as to facilitate the manipulation and alignment of microstructural cues in a tissue-realistic environment. Lastly, successful encapsulation of native MGF peptide within microrods is demonstrated with release over two weeks as a proof of concept in the ability to locally deliver myogenic or supportive pharmacotherapeutics to the injured myocardium. This work demonstrates the efficacy and versatility of discrete microtopographical cues to attenuate the fibrotic response after MI and suggests a novel

  7. Assessment of fibrotic liver disease with multimodal nonlinear optical microscopy

    Science.gov (United States)

    Lu, Fake; Zheng, Wei; Tai, Dean C. S.; Lin, Jian; Yu, Hanry; Huang, Zhiwei

    2010-02-01

    Liver fibrosis is the excessive accumulation of extracellular matrix proteins such as collagens, which may result in cirrhosis, liver failure, and portal hypertension. In this study, we apply a multimodal nonlinear optical microscopy platform developed to investigate the fibrotic liver diseases in rat models established by performing bile duct ligation (BDL) surgery. The three nonlinear microscopy imaging modalities are implemented on the same sectioned tissues of diseased model sequentially: i.e., second harmonic generation (SHG) imaging quantifies the contents of the collagens, the two-photon excitation fluorescence (TPEF) imaging reveals the morphology of hepatic cells, while coherent anti-Stokes Raman scattering (CARS) imaging maps the distributions of fats or lipids quantitatively across the tissue. Our imaging results show that during the development of liver fibrosis (collagens) in BDL model, fatty liver disease also occurs. The aggregated concentrations of collagen and fat constituents in liver fibrosis model show a certain correlationship between each other.

  8. A higher volume of fibrotic tissue on virtual histology prior to coronary stent implantation predisposes to more pronounced neointima proliferation.

    Science.gov (United States)

    Haine, Steven; Wouters, Kristien; Miljoen, Hielko; Vandendriessche, Tom; Claeys, Marc; Bosmans, Johan; Vrints, Christiaan

    2018-04-01

    Since neointima smooth muscle cells (SMC) mainly originate from the vessel wall, we investigated whether atherosclerotic plaque composition influences subsequent in-stent neointima proliferation and restenosis. We performed intravascular ultrasound (IVUS) with virtual histology in 98 patients prior to elective bare-metal stent (BMS) implantation in de novo coronary artery lesions. Virtual histology variables pre-percutaneous coronary intervention (PCI) were related to in-stent neointima proliferation six months after implantation assessed as late luminal loss of 0.88 mm (interquartile range (IQR) 0.37-1.23 mm) on angiography and as maximal percentage area stenosis of 42% (IQR 33-59%) and percentage volume intima hyperplasia of 27% (IQR 20-36%) on IVUS. A ridge-trace based multiple linear regression model was constructed to account for multicollinearity of the virtual histology variables and was corrected for implanted stent length (18 mm, IQR 15-23 mm), stent diameter (3.0 mm, IQR 2.75-3.5 mm) and lesion volume (146 mm³, IQR 80-201 mm³) prior to PCI. Fibrous tissue volume prior to PCI (49 mm³, IQR 30-77 mm³) was significantly and independently related to late luminal loss (p = .038), maximal percentage area stenosis (p = .041) and percentage volume intima hyperplasia (p = .004). Neither absolute nor relative amounts of fibrofatty, calcified or necrotic core tissue appeared related to any of the restenosis parameters. Subgroup analysis after exclusion of acute coronary syndrome (ACS) patients yielded similar results. Lesions with more voluminous fibrotic tissue pre-PCI show more pronounced in-stent neointima proliferation, even after correction for lesion plaque volume.

  9. Canine visceral leishmaniasis as a systemic fibrotic disease

    Science.gov (United States)

    Silva, Lucelia C; Castro, Rodrigo S; Figueiredo, Maria M; Michalick, Marilene S M; Tafuri, Washington L; Tafuri, Wagner L

    2013-01-01

    We propose that canine visceral leishmaniasis (CVL) is a systemic fibrotic disease, as evidenced by the wide distribution of fibrosis that we have found in the dogs suffering from chronic condition. The inflammatory cells apparently direct fibrosis formation. Twenty-four cases (symptomatic dogs) were identified from a total of one hundred and five cases that had been naturally infected with Leishmania chagasi and had been documented during an epidemiological survey of CVL carried out by the metropolitan area of the municipality of Belo Horizonte, MG, Brazil. The histological criterion was intralobular liver fibrosis, as has been described previously in dogs with visceral leishmaniasis. In addition to the findings in the liver, here we describe and quantify conspicuous and systemic deposition of collagen in other organs, including spleen, cervical lymph nodes, lung and kidney of all the infected symptomatic dogs. Thus we report that there is a systematic fibrotic picture in these animals, where inflammatory cells appear to direct fibrosis in all organs that have been studied. Therefore we propose that CVL is a systemic fibrotic disease. PMID:23419132

  10. Transient activation of Wnt/β-catenin signaling reporter in fibrotic scar formation after compression spinal cord injury in adult mice.

    Science.gov (United States)

    Yamagami, Takashi; Pleasure, David E; Lam, Kit S; Zhou, Chengji J

    2018-02-19

    After traumatic spinal cord injury (SCI), a scar may form with a fibrotic core (fibrotic scar) and surrounding reactive astrocytes (glial scar) at the lesion site. The scar tissue is considered a major obstacle preventing regeneration both as a physical barrier and as a source for secretion of inhibitors of axonal regeneration. Understanding the mechanism of scar formation and how to control it may lead to effective SCI therapies. Using a compression-SCI model on adult transgenic mice, we demonstrate that the canonical Wnt/β-catenin signaling reporter TOPgal (TCF/Lef1-lacZ) positive cells appeared at the lesion site by 5 days, peaked on 7 days, and diminished by 14 days post injury. Using various representative cell lineage markers, we demonstrate that, these transiently TOPgal positive cells are a group of Fibronectin(+);GFAP(-) fibroblast-like cells in the core scar region. Some of them are proliferative. These results indicate that Wnt/β-catenin signaling may play a key role in fibrotic scar formation after traumatic spinal cord injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Mast Cells Density in Fibrotic Capsule of Enchondroma and Well-Differentiated Chondrosarcoma: A Method for Histopathologic Differentiation

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Kharazi Fard

    2012-02-01

    Full Text Available Background: An enchondroma is a benign and a well-differentiated chondrosarcoma is an invasive chondroid tumor with high recurrence potential. In spite of biologic differences, these two tumors have very similar histopathologic appearance. It has been shown that the biologic nature of the connective tissue around benign and malignant tumors varies in the number of mast cells. The aim of this study was to study the histopathologic distinction of enchondroma and well-differentiated chondrosarcoma using the density of the mast cells in fibrotic capsule. Methods: Twelve enchondroma and 15 well-differentiated chondrosarcoma were collected from Pathology department of Cancer Institute and Central Pathology department of Imam Khomeini Hospital in Tehran. 3 micron paraffin embedded tissue sections were stained by toluidine blue for mast cells counting. Mast cells were counted in fibrous capsule of all cases. Mast cells counts were accomplished in 10 high power fields .The average number of mast cells in 10HPF was determined as an index for each lesion. Mann-Whitney U test was used for statistical analysis. Results: Mean index in enchondroma and well-differentiated chondrosarcoma groups were 0.1±0.12 and 0.31±0.33 respectively, showing a significant difference between number of mast cells in the fibrotic capsule in these two lesions (p=0.028. Comparison of the corresponding points in ROC curve, showed a cut-off point = 0.15, with positive predictive value of 61%, negative predictive value 71%, specificity of 33.3% and sensitivity of 66.7%, (p=0.025. Conclusion: Average density of the mast cells in the surrounding fibrotic capsules of enchondroma and well-differentiated chondrosarcoma along with other criterions, could be a beneficial factor for histologically differentiation between these two lesions.

  12. Inactive fibrotic lesions versus pulmonary tuberculosis with negative bacteriology.

    Science.gov (United States)

    Solsona Peiró, Jordi; de Souza Galvão, Maria Luiza; Altet Gómez, Maria Neus

    2014-11-01

    This article analyzes the concept of inactive fibrotic lesions of presumed tuberculous origin (old healed tuberculosis), defined by radiological characteristics and a positive tuberculin skin test (TST), and we examine the evidence-based foundation for the indication of treatment of latent tuberculosis infection in these cases. We explore the risk of reactivation in older and recent literature, and the problems raised by the differential diagnosis with active tuberculosis with negative bacteriology. We also analyze data on the prevalence of fibrotic lesions in the recent literature. We examine the possible role of Interferon Gamma Release Assays (IGRAs) versus TST and other molecular antigen detection techniques in sputum that can aid in establishing the diagnosis and we discuss the current indications for chemoprophylaxis and the different options available. We propose diagnostic guidelines and therapeutic algorithms based on risk stratification by age and other factors in the management of radiological lesions that raise a differential diagnosis between fibrotic lesions and active pulmonary tuberculosis with negative bacteriology. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  13. Macrophages during the fibrotic process: M2 as friend and foe.

    Directory of Open Access Journals (Sweden)

    Tarcio Teodoro Braga

    2015-11-01

    Full Text Available Macrophages play essential activities in homeostasis maintenance, tissue regeneration and wound healing. However, when the physiological process of wound healing is deregulated by persistent insults and chronic diseases, macrophages can participate actively in the development of fibrosis. In this regard, the exacerbation or resolution of fibrosis depends on the type of macrophages polarized and the severity and duration of the inflammatory insult. M1 macrophages use glycolytic metabolism to optimize oxygen consumption and activate myofibroblasts and fibrocytes. On the other hand, M2 macrophages, which use oxidative metabolism, have anti-inflammatory properties due to their capacity to produce and secrete IL-10, TGFβ and arginase that promotes tissue repair. However, when the primary insult is not controlled and there is a persistent M2 macrophage activity, these cells promote ECM deposition through the continuous production of TGFβ and growth factors. In this scenario, M2 macrophages act as a break point between normal wound healing and the pro-fibrotic process. Here, we review the aspects of tissue repair based on macrophage biology and we evidence scar formation is directly related to the degree of inflammation, but also with the appearance of M2 macrophages.

  14. The in vivo anti-fibrotic function of calcium sensitive receptor (CaSR) modulating poly(p-dioxanone-co-l-phenylalanine) prodrug.

    Science.gov (United States)

    Wang, Bing; Wen, Aiping; Feng, Chengmin; Niu, Lijing; Xiao, Xin; Luo, Le; Shen, Chengyi; Zhu, Jiang; Lei, Jun; Zhang, Xiaoming

    2018-04-13

    In present study, the apoptosis induction and proliferation suppression effects of l-phenylalanine (l-Phe) on fibroblasts were confirmed. The action sites of l-Phe on fibroblasts suppression were deduced to be calcium sensitive receptor (CaSR) which could cause the release of endoplasmic reticulum (ER) Ca 2+ stores; disruption of intracellular Ca 2+ homeostasis triggers cell apoptosis via the ER or mitochondrial pathways. The down-regulation of CaSR were observed after the application of l-Phe, and the results those l-Phe triggered the increasing of intracellular Ca 2+ concentration and calcineurin expression, and then the apoptosis and increasing G1 fraction of fibroblasts have verified our deduction. Hence, l-Phe could be seen as a kind of anti-fibrotic drugs for the crucial participation of fibroblast in the occurrence of fibrosis. And then, poly(p-dioxanone-co-l-phenylalanine) (PDPA) which could prolong the in-vivo anti-fibrotic effect of l-Phe for the sustained release of l-Phe during its degradation could be treated as anti-fibrotic polymer prodrugs. Based on the above, the in vivo anti-fibrotic function of PDPA was evaluated in rabbit ear scarring, rat peritoneum lipopolysaccharide, and rat sidewall defect/cecum abrasion models. PDPA reduced skin scarring and suppressed peritoneal fibrosis and post operation adhesion as well as secretion of transforming growth factor-β1 in injured tissue. These results indicate that PDPA is an effective agent for preventing fibrosis following tissue injury. We have previously demonstrated that poly(p-dioxanone-co-l-phenylalanine) (PDPA) could induce apoptosis to fibroblast and deduced that the inhibitory effect comes from l-phenylalanine. In present study, the inhibition mechanism of l-phenylalanine on fibroblast proliferation was demonstrated. The calcium sensitive receptor (CaSR) was found to be the action site. The CaSR was downregulated after the application of l-phenylalanine, and then the ER Ca 2+ stores were released

  15. Anti-fibrotic effects of a novel small compound on the regulation of cytokine production in a mouse model of colorectal fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Jin [Center for Matrix Biology and Medicine, Tokai University School of Medicine, Kanagawa (Japan); Department of Gastroenterology, Tokai University School of Medicine, Kanagawa (Japan); Hozumi, Katsuto, E-mail: hozumi@is.icc.u-tokai.ac.jp [Center for Matrix Biology and Medicine, Tokai University School of Medicine, Kanagawa (Japan); Department of Immunology, Tokai University School of Medicine, Kanagawa (Japan); Sumiyoshi, Hideaki [Center for Matrix Biology and Medicine, Tokai University School of Medicine, Kanagawa (Japan); Department of Regenerative Medicine, Tokai University School of Medicine, Kanagawa (Japan); Yazawa, Masaki; Hirano, Ken-ichi [Department of Immunology, Tokai University School of Medicine, Kanagawa (Japan); Abe, Jun; Higashi, Kiyoshi [Environmental Health Science Laboratory, Sumitomo Chemical Company Limited, Osaka (Japan); Inagaki, Yutaka [Center for Matrix Biology and Medicine, Tokai University School of Medicine, Kanagawa (Japan); Department of Regenerative Medicine, Tokai University School of Medicine, Kanagawa (Japan); Mine, Tetsuya [Department of Gastroenterology, Tokai University School of Medicine, Kanagawa (Japan)

    2015-12-25

    Intestinal fibrotic stricture is a major complication of inflammatory bowel disease. Despite its clinical importance, anti-fibrotic therapy has not been implemented. Transforming growth factor-β (TGF-β) is considered to be a major factor contributing to tissue fibrosis. We have previously shown that the administration of a small compound, HSc025, which promotes the nuclear translocation of YB-1 as a downstream effector of IFN-γ and antagonizes TGF-β/Smad signaling, improves fibrosis in several murine tissues. In this study, we evaluated the anti-fibrotic effect of HSc025 on colorectal fibrosis in TNBS-induced murine chronic colitis. Daily oral administration of HSc025 (3, 15 and 75 mg/kg) suppressed collagen production and decreased the severity of colorectal fibrosis in a dose-dependent manner. In addition, the local production of TGF-β was decreased after HSc025 treatment, whereas that of IL-13 and TNF-α was not affected. HSc025 administration maintained the level of IFN-γ production, even at a late stage when IFN-γ production was lost without the drug treatment. These results demonstrate that HSc025 could be a therapeutic candidate for intestinal fibrosis in inflammatory bowel disease that acts by altering the local production of cytokines, as well as by directly suppressing collagen production. - Highlights: • Colorectal fibrosis of TNBS-induced colitis was attenuated by HSc025 administration. • Local production of TGF-b was suppressed by the modulation of TGF-b/IFN-g signaling. • Derepression of IFN-g production was induced by the drug treatment.

  16. Anti-fibrotic effects of a novel small compound on the regulation of cytokine production in a mouse model of colorectal fibrosis

    International Nuclear Information System (INIS)

    Imai, Jin; Hozumi, Katsuto; Sumiyoshi, Hideaki; Yazawa, Masaki; Hirano, Ken-ichi; Abe, Jun; Higashi, Kiyoshi; Inagaki, Yutaka; Mine, Tetsuya

    2015-01-01

    Intestinal fibrotic stricture is a major complication of inflammatory bowel disease. Despite its clinical importance, anti-fibrotic therapy has not been implemented. Transforming growth factor-β (TGF-β) is considered to be a major factor contributing to tissue fibrosis. We have previously shown that the administration of a small compound, HSc025, which promotes the nuclear translocation of YB-1 as a downstream effector of IFN-γ and antagonizes TGF-β/Smad signaling, improves fibrosis in several murine tissues. In this study, we evaluated the anti-fibrotic effect of HSc025 on colorectal fibrosis in TNBS-induced murine chronic colitis. Daily oral administration of HSc025 (3, 15 and 75 mg/kg) suppressed collagen production and decreased the severity of colorectal fibrosis in a dose-dependent manner. In addition, the local production of TGF-β was decreased after HSc025 treatment, whereas that of IL-13 and TNF-α was not affected. HSc025 administration maintained the level of IFN-γ production, even at a late stage when IFN-γ production was lost without the drug treatment. These results demonstrate that HSc025 could be a therapeutic candidate for intestinal fibrosis in inflammatory bowel disease that acts by altering the local production of cytokines, as well as by directly suppressing collagen production. - Highlights: • Colorectal fibrosis of TNBS-induced colitis was attenuated by HSc025 administration. • Local production of TGF-b was suppressed by the modulation of TGF-b/IFN-g signaling. • Derepression of IFN-g production was induced by the drug treatment.

  17. Re-expression of pro-fibrotic, embryonic preserved mediators in irradiated arterial vessels of the head and neck region

    Energy Technology Data Exchange (ETDEWEB)

    Moebius, Patrick; Preidl, Raimund H.M.; Weber, Manuel; Neukam, Friedrich W.; Wehrhan, Falk [Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Department of Oral and Maxillofacial Surgery, University Hospital of Erlangen, Erlangen (Germany); Amann, Kerstin [Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Department of Nephropathology, Institute of Pathology, University Hospital of Erlangen, Erlangen (Germany)

    2017-11-15

    Surgical treatment of head and neck malignancies frequently includes microvascular free tissue transfer. Preoperative radiotherapy increases postoperative fibrosis-related complications up to transplant loss. Fibrogenesis is associated with re-expression of embryonic preserved tissue developmental mediators: osteopontin (OPN), regulated by sex-determining region Y-box 9 (Sox9), and homeobox A9 (HoxA9) play important roles in pathologic tissue remodeling and are upregulated in atherosclerotic vascular lesions; dickkopf-1 (DKK1) inhibits pro-fibrotic and atherogenic Wnt signaling. We evaluated the influence of irradiation on expression of these mediators in arteries of the head and neck region. DKK1, HoxA9, OPN, and Sox9 expression was examined immunohistochemically in 24 irradiated and 24 nonirradiated arteries of the lower head and neck region. The ratio of positive cells to total cell number (labeling index) in the investigated vessel walls was assessed semiquantitatively. DKK1 expression was significantly decreased, whereas HoxA9, OPN, and Sox9 expression were significantly increased in irradiated compared to nonirradiated arterial vessels. Preoperative radiotherapy induces re-expression of embryonic preserved mediators in arterial vessels and may thus contribute to enhanced activation of pro-fibrotic downstream signaling leading to media hypertrophy and intima degeneration comparable to fibrotic development steps in atherosclerosis. These histopathological changes may be promoted by HoxA9-, OPN-, and Sox9-related inflammation and vascular remodeling, supported by downregulation of anti-fibrotic DKK1. Future pharmaceutical strategies targeting these vessel alterations, e. g., bisphosphonates, might reduce postoperative complications in free tissue transfer. (orig.) [German] Die operative Behandlung von Tumoren im Kopf- und Halsbereich umfasst den Transfer mikrovaskulaerer Gewebetransplantate. Praeoperative Bestrahlung verursacht eine erhoehte Inzidenz

  18. Surgical management of fibrotic encapsulation of the fluocinolone acetonide implant in CAPN5-associated proliferative vitreoretinopathy.

    Science.gov (United States)

    Tlucek, Paul S; Folk, James C; Sobol, Warren M; Mahajan, Vinit B

    2013-01-01

    To review fibrosis of fluocinolone acetonide (FA) implants in subjects with CAPN5 autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV). A retrospective case series was assembled from ADNIV patients in which there was fibrotic encapsulation of a fluocinolone acetonide implant. CAPN5 genotypes and surgical repair techniques were reviewed. Two eyes of two ADNIV patients developed a fibrotic capsule over the fluocinolone acetonide implant. Both patients had Stage IV disease. Patient A had a c.731T > C mutation in the CAPN5 gene and patient B had a c.728G > T mutation. The fibrotic membrane was surgically excised and the implant function was restored. The exuberant fibrotic response in later stages of ADNIV may be resistant to local immunosuppression with steroids. Surgical excision of fibrotic membranes over FA implants can reestablish local steroid delivery in cases of severe proliferative vitreoretinopathy.

  19. Fibrotic idiopathic interstitial pneumonias: HRCT findings that predict mortality

    Energy Technology Data Exchange (ETDEWEB)

    Edey, Anthony J.; Hansell, David M. [The Royal Brompton Hospital, Department of Radiology, London (United Kingdom); Devaraj, Anand A. [St. George' s NHS Foundation Trust, Department of Radiology, Tooting (United Kingdom); Barker, Robert P. [Frimley Park Hosptal, Department of Radiology, Frimley, Surrey (United Kingdom); Nicholson, Andrew G. [The Royal Brompton Hospital, Department of Histopathology, London (United Kingdom); Wells, Athol U. [The Royal Brompton Hospital, Interstitial Lung Disease Unit, London (United Kingdom)

    2011-08-15

    The study aims were to identify CT features that predict outcome of fibrotic idiopathic interstitial pneumonia (IIP) when information from lung biopsy data is unavailable. HRCTs of 146 consecutive patients presenting with fibrotic IIP were studied. Visual estimates were made of the extent of abnormal lung and proportional contribution of fine and coarse reticulation, microcystic (cysts {<=}4 mm) and macrocystic honeycombing. A score for severity of traction bronchiectasis was also assigned. Using death as our primary outcome measure, variables were analysed using the Cox proportional hazards model. CT features predictive of a worse outcome were coarse reticulation, microcystic and macrocystic honeycombing, as well as overall extent of lung abnormality (p < 0.001). Importantly, increased severity of traction bronchiectasis, corrected for extent of parenchymal abnormality, was predictive of poor prognosis regardless of the background pattern of abnormal lung (HR = 1.04, CI = 1.03-1.06, p < 0.001). On bivariate Cox analysis microcystic honeycombing was a more powerful determinant of a poor prognosis than macrocystic honeycombing. In fibrotic IIPs we have shown that increasingly severe traction bronchiectasis is indicative of higher mortality irrespective of the HRCT pattern and extent of disease. Extent of microcystic honeycombing is a more powerful determinant of outcome than macrocystic honeycombing. (orig.)

  20. Surgical management of fibrotic encapsulation of the fluocinolone acetonide implant in CAPN5-associated proliferative vitreoretinopathy

    Directory of Open Access Journals (Sweden)

    Tlucek PS

    2013-06-01

    Full Text Available Paul S Tlucek,1 James C Folk,1 Warren M Sobol,2 Vinit B Mahajan1,3 1Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA; 2Retina Physicians and Surgeons, Dayton, OH, USA; 3Omics Laboratory, University of Iowa, Iowa City, IA, USA Objective: To review fibrosis of fluocinolone acetonide (FA implants in subjects with CAPN5 autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV. Methods: A retrospective case series was assembled from ADNIV patients in which there was fibrotic encapsulation of a fluocinolone acetonide implant. CAPN5 genotypes and surgical repair techniques were reviewed. Results: Two eyes of two ADNIV patients developed a fibrotic capsule over the fluocinolone acetonide implant. Both patients had Stage IV disease. Patient A had a c.731T > C mutation in the CAPN5 gene and patient B had a c.728G > T mutation. The fibrotic membrane was surgically excised and the implant function was restored. Conclusion: The exuberant fibrotic response in later stages of ADNIV may be resistant to local immunosuppression with steroids. Surgical excision of fibrotic membranes over FA implants can reestablish local steroid delivery in cases of severe proliferative vitreoretinopathy. Keywords: autosomal dominant neovascular inflammatory vitreoretinopathy, ADNIV, CAPN5, calpain-5, Retisert, fluocinolone acetonide, fibrotic encapsulation

  1. Natural killer cell-dependent anti-fibrotic pathway in liver injury via Toll-like receptor-9.

    Directory of Open Access Journals (Sweden)

    Lina Abu-Tair

    Full Text Available The toll-like receptor-9 (TLR9 agonist cytosine phosphate guanine (CpG, activates hepatic stellate cells (HSCs and mediates fibrosis. We investigated the TLR9 effects on lymphocyte/HSCs interactions. Liver fibrosis was induced in wild-type (WT mice by intra-peritoneal carbon-tetrachloride (CCl4 induction for 6 weeks. Fibrotic groups were intravenously treated by a vehicle versus CpG along last 2 weeks. Compared to vehicle-treated fibrotic WT, the in-vivo CpG-treatment significantly attenuated hepatic fibrosis and inflammation, associated with decreased CD8 and increased NK liver cells. In-vitro, co-cultures with vehicle-treated fibrotic NK cells increased HSCs proliferation (P<0.001 while their CpG-treated counterparts achieved a significant decrease. To investigate the role of lymphocytes, TLR9(-/- mice induced-hepatic fibrosis were used. Although TLR9(-/- mice manifested lower fibrotic profile as compared to their wild-type (WT counterparts, senescence (SA-β-Gal activity in the liver and ALT serum levels were significantly greater. In an adoptive transfer model; irradiated WT and TLR9(-/- recipients were reconstituted with naïve WT or TLR9(-/- lymphocytes. The adoptive transfer of TLR9(-/- versus WT lymphocytes led to increased fibrosis of WT recipients. TLR9(-/- fibrotic recipients reconstituted with TLR9(-/- or WT lymphocytes showed no changes in hepatic fibrosis severity or ALT serum levels. TLR9 activation had inconsistent effects on lymphocytes and HSCs. The net balance of TLR9 activation in WT, displayed significant anti-fibrotic activity, accompanied by CD8 suppression and increased NK-cells, activity and adherence to HSCs. The pro-fibrotic and pro-inflammatory properties of TLR9(-/- lymphocytes fail to activate HSCs with an early senescence in TLR9(-/- mice.

  2. Effect of ionizing radiations on connective tissue

    International Nuclear Information System (INIS)

    Altman, K.I.; Gerber, G.B.

    1980-01-01

    The effects of ionizing radiations on connective tissue in lung, heart, vasculature, kidney, skin, and skeletal tissues are reviewed. Special emphasis is given to the effect of ionizing radiations on vasculo-connective tissue and fibrotic changes following radiation-induced injury to organs and tissues. In order to put the subject matter in proper prospective, the general biochemistry, physiology, and pathology of connective tissue is reviewed briefly together with the participation of connective tissue in disease. The review closes with an assessment of future problems and an enumeration and discussion of important, as yet unanswered questions

  3. Nuclear magnetic resonance relaxation times for human lung cancer and lung tissues

    International Nuclear Information System (INIS)

    Matsuura, Yoshifumi; Shioya, Sumie; Kurita, Daisaku; Ohta, Takashi; Haida, Munetaka; Ohta, Yasuyo; Suda, Syuichi; Fukuzaki, Minoru.

    1994-01-01

    We investigated the nuclear magnetic resonance (NMR) relaxation times, T 1 and T 2 , for lung cancer tissue, and other samples of lung tissue obtained from surgical specimens. The samples were nine squamous cell carcinomas, five necrotic squamous cell carcinomas, 15 adenocarcinomas, two benign mesotheliomas, and 13 fibrotic lungs. The relaxation times were measured with a 90 MHz NMR spectrometer and the results were correlated with histological changes. The values of T 1 and T 2 for squamous cell carcinoma and mesothelioma were significantly longer than those of adenocarcinoma and fibrotic lung tissue. There were no significant differences in values of T 1 and T 2 between adenocarcinoma and lung tissue. The values of T 1 and T 2 for benign mesothelioma were similar to those of squamous cell carcinoma, which suggested that increases in T 1 and T 2 are not specific to malignant tissues. (author)

  4. Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture

    Science.gov (United States)

    Abbah, Sunny A.; Thomas, Dilip; Browne, Shane; O'Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-02-01

    Extracellular matrix synthesis and remodelling are driven by increased activity of transforming growth factor beta 1 (TGF-β1). In tendon tissue repair, increased activity of TGF-β1 leads to progressive fibrosis. Decorin (DCN) and interleukin 10 (IL-10) antagonise pathological collagen synthesis by exerting a neutralising effect via downregulation of TGF-β1. Herein, we report that the delivery of DCN and IL-10 transgenes from a collagen hydrogel system supresses the constitutive expression of TGF-β1 and a range of pro-fibrotic extracellular matrix genes.

  5. Aging and the cardiac collagen matrix: Novel mediators of fibrotic remodelling.

    Science.gov (United States)

    Horn, Margaux A; Trafford, Andrew W

    2016-04-01

    Cardiovascular disease is a leading cause of death worldwide and there is a pressing need for new therapeutic strategies to treat such conditions. The risk of developing cardiovascular disease increases dramatically with age, yet the majority of experimental research is executed using young animals. The cardiac extracellular matrix (ECM), consisting predominantly of fibrillar collagen, preserves myocardial integrity, provides a means of force transmission and supports myocyte geometry. Disruptions to the finely balanced control of collagen synthesis, post-synthetic deposition, post-translational modification and degradation may have detrimental effects on myocardial functionality. It is now well established that the aged heart is characterized by fibrotic remodelling, but the mechanisms responsible for this are incompletely understood. Furthermore, studies using aged animal models suggest that interstitial remodelling with disease may be age-dependent. Thus with the identification of new therapeutic strategies targeting fibrotic remodelling, it may be necessary to consider age-dependent mechanisms. In this review, we discuss remodelling of the cardiac collagen matrix as a function of age, whilst highlighting potential novel mediators of age-dependent fibrotic pathways. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo

    International Nuclear Information System (INIS)

    Ostrau, Christian; Huelsenbeck, Johannes; Herzog, Melanie; Schad, Arno; Torzewski, Michael; Lackner, Karl J.; Fritz, Gerhard

    2009-01-01

    Background and purpose: HMG-CoA-reductase inhibitors (statins) are widely used lipid-lowering drugs. Moreover, they have pleiotropic effects on cellular stress responses, proliferation and apoptosis in vitro. Here, we investigated whether lovastatin attenuates acute and subchronic ionizing radiation-induced normal tissue toxicity in vivo. Materials and methods: Four hours to 24 h after total body irradiation (6 Gy) of Balb/c mice, acute pro-inflammatory and pro-fibrotic responses were analyzed. To comprise subchronic radiation toxicity, mice were irradiated twice with 2.5 Gy and analyses were performed 3 weeks after the first radiation treatment. Molecular markers of inflammation and fibrosis as well as organ toxicities were measured. Results: Lovastatin attenuated IR-induced activation of NF-κB, mRNA expression of cell adhesion molecules and mRNA expression of pro-inflammatory and pro-fibrotic marker genes (i.e. TNFα, IL-6, TGFβ, CTGF, and type I and type III collagen) in a tissue- and time-dependent manner. γH2AX phosphorylation stimulated by IR was not affected by lovastatin, indicating that the statin has no major impact on the induction of DNA damage in vivo. Radiation-induced thrombopenia was significantly alleviated by lovastatin. Conclusions: Lovastatin inhibits both acute and subchronic IR-induced pro-inflammatory and pro-fibrotic responses and cell death in normal tissue in vivo. Therefore, lovastatin might be useful for selectively attenuating acute and subchronic normal tissue damage caused by radiotherapy.

  7. Nonparenchymal cells cultivated from explants of fibrotic liver resemble endothelial and smooth muscle cells from blood vessel walls

    International Nuclear Information System (INIS)

    Voss, B.; Rauterberg, J.; Pott, G.; Brehmer, U.; Allam, S.; Lehmann, R.; von Bassewitz, D.B.

    1982-01-01

    Tissue specimens from human fibrotic liver obtained by needle biopsy were cultured. Two cell types emerged from the tissue explants. From their morphology and biosynthetic products they resembled smooth muscle cells and endothelial cells from blood vessel walls. In the endothelial cells, factor VIII-associated protein was demonstrated by indirect immunofluorescence. Synthesis of collagen types I and III, basement membrane collagen types IV and V, and fibronectin by both cell types was observed by immunofluorescence microscopy. Homogeneous cultures of smooth muscle cells were observed in subcultures. After incubation with [ 14 C]glycine, collagen was isolated and characterized by CM cellulose chromatography, and consisted mainly of types I and III. These data suggest involvement of mesenchymal cells in hepatic fibrosis; they presumably originate from blood vessel or sinusoidal walls

  8. Tissue response to silicone rubber when used as a root canal filling.

    Science.gov (United States)

    Kasman, F G; Goldman, M

    1977-04-01

    To test the tissue compatibility of silicone rubber when it is used as a root canal filler, excess material was intentionally forced into the apical tissues in primates. The tissue response was one of general acceptance, with the usual response being fibrotic encapsulation. A low degree of inflammation was noted. Further studies are in progress.

  9. A new nonlinear parameter in the developed strain-to-applied strain of the soft tissues and its application in ultrasound elasticity imaging.

    Science.gov (United States)

    Xu, Jingping; Tripathy, Sakya; Rubin, Jonathan M; Stidham, Ryan W; Johnson, Laura A; Higgins, Peter D R; Kim, Kang

    2012-03-01

    Strain developed under quasi-static deformation has been mostly used in ultrasound elasticity imaging (UEI) to determine the stiffness change of tissues. However, the strain measure in UEI is often less sensitive to a subtle change of stiffness. This is particularly true for Crohn's disease where we have applied strain imaging to the differentiation of acutely inflamed bowel from chronically fibrotic bowel. In this study, a new nonlinear elastic parameter of the soft tissues is proposed to overcome this limit. The purpose of this study is to evaluate the newly proposed method and demonstrate its feasibility in the UEI. A nonlinear characteristic of soft tissues over a relatively large dynamic range of strain was investigated. A simplified tissue model based on a finite element (FE) analysis was integrated with a laboratory developed ultrasound radio-frequency (RF) signal synthesis program. Two-dimensional speckle tracking was applied to this model to simulate the nonlinear behavior of the strain developed in a target inclusion over the applied average strain to the surrounding tissues. A nonlinear empirical equation was formulated and optimized to best match the developed strain-to-applied strain relation obtained from the FE simulation. The proposed nonlinear equation was applied to in vivo measurements and nonlinear parameters were further empirically optimized. For an animal model, acute and chronic inflammatory bowel disease was induced in Lewis rats with trinitrobenzene sulfonic acid (TNBS)-ethanol treatments. After UEI, histopathology and direct mechanical measurements were performed on the excised tissues. The extracted nonlinear parameter from the developed strain-to-applied strain relation differentiated the three different tissue types with 1.96 ± 0.12 for normal, 1.50 ± 0.09 for the acutely inflamed and 1.03 ± 0.08 for the chronically fibrotic tissue. T-tests determined that the nonlinear parameters between normal, acutely inflamed and fibrotic tissue

  10. Nootkatone confers hepatoprotective and anti-fibrotic actions in a murine model of liver fibrosis by suppressing oxidative stress, inflammation, and apoptosis.

    Science.gov (United States)

    Kurdi, Amani; Hassan, Kamal; Venkataraman, Balaji; Rajesh, Mohanraj

    2018-02-01

    In this study, the hepatoprotective and anti-fibrotic actions of nootkatone (NTK) were investigated using carbon tetrachloride (CCl 4 )-induced liver fibrosis in mice. CCl 4 administration elevated serum aspartate and alanine transaminases levels, respectively. In addition, CCl 4 produced hepatic oxidative and nitrative stress, characterized by diminished hemeoxygenase-1 expression, antioxidant defenses, and accumulation of 4-hydroxynonenal and 3-nitrotyrosine. Furthermore, CCl 4 administration evoked profound expression of pro-inflammatory cytokine expressions such as tumor necrosis factor-α, monocyte chemoattractant protein-1, and interleukin-1β in hepatic tissues, which corroborated with nuclear factor κB activation. Additionally, CCl 4 -treated animals exhibited higher apoptosis, characterized by increased caspase 3 activity, DNA fragmentation, and poly (ADP-ribose) polymerase activation. Moreover, histological and biochemical investigations revealed marked fibrosis in the livers of CCl 4 -administered animals. However, NTK treatment mitigated CCl 4 -induced phenotypic changes. In conclusion, our findings suggest that NTK exerts hepatoprotective and anti-fibrotic actions by suppressing oxidative stress, inflammation, and apoptosis. © 2017 Wiley Periodicals, Inc.

  11. MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells.

    Science.gov (United States)

    Li, Chen Xi; Talele, Nilesh P; Boo, Stellar; Koehler, Anne; Knee-Walden, Ericka; Balestrini, Jenna L; Speight, Pam; Kapus, Andras; Hinz, Boris

    2017-03-01

    Expansion on stiff culture substrates activates pro-fibrotic cell programs that are retained by mechanical memory. Here, we show that priming on physiologically soft silicone substrates suppresses fibrogenesis and desensitizes mesenchymal stem cells (MSCs) against subsequent mechanical activation in vitro and in vivo, and identify the microRNA miR-21 as a long-term memory keeper of the fibrogenic program in MSCs. During stiff priming, miR-21 levels were gradually increased by continued regulation through the acutely mechanosensitive myocardin-related transcription factor-A (MRTF-A/MLK-1) and remained high over 2 weeks after removal of the mechanical stimulus. Knocking down miR-21 once by the end of the stiff-priming period was sufficient to erase the mechanical memory and sensitize MSCs to subsequent exposure to soft substrates. Soft priming and erasing mechanical memory following cell culture expansion protects MSCs from fibrogenesis in the host wound environment and increases the chances for success of MSC therapy in tissue-repair applications.

  12. Utility of Shear Wave Elastography for Diagnosing Chronic Autoimmune Thyroiditis

    Directory of Open Access Journals (Sweden)

    Takahiro Fukuhara

    2015-01-01

    Full Text Available The aims of this study were to evaluate the utility of shear wave elastography (SWE using acoustic radiation force impulse (ARFI for diagnosing chronic autoimmune thyroiditis (CAT and to verify the effect of fibrotic thyroid tissue on shear wave velocity (SWV. The subjects were 229 patients with 253 normal thyroid lobes (controls and 150 CAT lobes. The SWV for CAT (2.47 ± 0.57 m/s was significantly higher than that for controls (1.59 ± 0.41 m/s (P<0.001. The area under the receiver operating characteristics (ROC curve for CAT was 0.899, and the SWV cut-off value was 1.96 m/s. The sensitivity, specificity, and diagnostic accuracy were 87.4%, 78.7%, and 85.1%, respectively. Levels of anti-thyroperoxidase antibodies and thyroid isthmus thickness were correlated with tissue stiffness in CAT. However, there was no correlation between levels of anti-thyroglobulin antibodies and tissue stiffness. Quantitative SWE is useful for diagnosing CAT, and it is possible that SWE can be used to evaluate the degree of fibrosis in patients with CAT.

  13. Comparative pharmacokinetic and tissue distribution profiles of four major bioactive components in normal and hepatic fibrosis rats after oral administration of Fuzheng Huayu recipe.

    Science.gov (United States)

    Yang, Tao; Liu, Shan; Wang, Chang-Hong; Tao, Yan-Yan; Zhou, Hua; Liu, Cheng-Hai

    2015-10-10

    Fuzheng Huayu recipe (FZHY) is a herbal product for the treatment of liver fibrosis approved by the Chinese State Food and Drug Administration (SFDA), but its pharmacokinetics and tissue distribution had not been investigated. In this study, the liver fibrotic model was induced with intraperitoneal injection of dimethylnitrosamine (DMN), and FZHY was given orally to the model and normal rats. The plasma pharmacokinetics and tissue distribution profiles of four major bioactive components from FZHY were analyzed in the normal and fibrotic rat groups using an ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. Results revealed that the bioavailabilities of danshensu (DSS), salvianolic acid B (SAB) and rosmarinic acid (ROS) in liver fibrotic rats increased 1.49, 3.31 and 2.37-fold, respectively, compared to normal rats. There was no obvious difference in the pharmacokinetics of amygdalin (AMY) between the normal and fibrotic rats. The tissue distribution of DSS, SAB, and AMY trended to be mostly in the kidney and lung. The distribution of DSS, SAB, and AMY in liver tissue of the model rats was significantly decreased compared to the normal rats. Significant differences in the pharmacokinetics and tissue distribution profiles of DSS, ROS, SAB and AMY were observed in rats with hepatic fibrosis after oral administration of FZHY. These results provide a meaningful basis for developing a clinical dosage regimen in the treatment of hepatic fibrosis by FZHY. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Serial changes and prognostic implications of CT findings in combined pulmonary fibrosis and emphysema: comparison with fibrotic idiopathic interstitial pneumonias alone.

    Science.gov (United States)

    Lee, Geewon; Kim, Ki Uk; Lee, Ji Won; Suh, Young Ju; Jeong, Yeon Joo

    2017-05-01

    Background Although fibrotic idiopathic interstitial pneumonias (IIPs) alone and those combined with pulmonary emphysema are naturally progressive diseases, the process of deterioration and outcomes are variable. Purpose To evaluate and compare serial changes of computed tomography (CT) abnormalities and prognostic predictive factors in fibrotic IIPs alone and those combined with pulmonary emphysema. Material and Methods A total of 148 patients with fibrotic IIPs alone (82 patients) and those combined with pulmonary emphysema (66 patients) were enrolled. Semi-quantitative CT analysis was used to assess the extents of CT characteristics which were evaluated on initial and follow-up CT images. Univariate and multivariate analyses were performed to assess the effects of clinical and CT variables on survival. Results Significant differences were noted between fibrotic scores, as determined using initial CT scans, in the fibrotic IIPs alone (21.22 ± 9.83) and those combined with pulmonary emphysema groups (14.70 ± 7.28) ( P pulmonary emphysema group. Multivariate Cox proportional hazards analysis showed changes in the extent of GGO (hazard ratio, 1.056) and the presence of lung cancer (hazard ratio, 4.631) were predictive factors of poor survivals. Conclusion Although patients with fibrotic IIPs alone and those combined with pulmonary emphysema have similar mortalities, lung cancer was more prevalent in patients with fibrotic IIPs combined with pulmonary emphysema. Furthermore, changes in the extent of GGO and the presence of lung cancer were independent prognostic factors of poor survivals.

  15. The use of Compton scattering to differentiate between classifications of normal and diseased breast tissue

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Elaine A; Farquharson, Michael J; Flinton, David M [School of Allied Health Sciences, City University, Charterhouse Square, London EC1M 6PA (United Kingdom)

    2005-07-21

    This study describes a technique for measuring the electron density of breast tissue utilizing Compton scattered photons. The K{sub {alpha}}{sub 2} line from a tungsten target industrial x-ray tube (57.97 keV) was used and the scattered x-rays collected at an angle of 30{sup 0}. At this angle the Compton and coherent photon peaks can be resolved using an energy dispersive detector and a peak fitting algorithm. The system was calibrated using solutions of known electron density. The results obtained from a pilot study of 22 tissues are presented. The tissue samples investigated comprise four different tissue classifications: adipose, malignancy, fibroadenoma and fibrocystic change (FCC). It is shown that there is a difference between adipose and malignant tissue, to a value of 9.0%, and between adipose and FCC, to a value of 12.7%. These figures are found to be significant by statistical analysis. The differences between adipose and fibroadenoma tissues (2.2%) and between malignancy and FCC (3.4%) are not significant. It is hypothesized that the alteration in glucose uptake within malignant cells may cause these tissues to have an elevated electron density. The fibrotic nature of tissue that has undergone FCC gives the highest measure of all tissue types.

  16. The use of Compton scattering to differentiate between classifications of normal and diseased breast tissue

    Science.gov (United States)

    Ryan, Elaine A.; Farquharson, Michael J.; Flinton, David M.

    2005-07-01

    This study describes a technique for measuring the electron density of breast tissue utilizing Compton scattered photons. The Kα2 line from a tungsten target industrial x-ray tube (57.97 keV) was used and the scattered x-rays collected at an angle of 30°. At this angle the Compton and coherent photon peaks can be resolved using an energy dispersive detector and a peak fitting algorithm. The system was calibrated using solutions of known electron density. The results obtained from a pilot study of 22 tissues are presented. The tissue samples investigated comprise four different tissue classifications: adipose, malignancy, fibroadenoma and fibrocystic change (FCC). It is shown that there is a difference between adipose and malignant tissue, to a value of 9.0%, and between adipose and FCC, to a value of 12.7%. These figures are found to be significant by statistical analysis. The differences between adipose and fibroadenoma tissues (2.2%) and between malignancy and FCC (3.4%) are not significant. It is hypothesized that the alteration in glucose uptake within malignant cells may cause these tissues to have an elevated electron density. The fibrotic nature of tissue that has undergone FCC gives the highest measure of all tissue types.

  17. The use of Compton scattering to differentiate between classifications of normal and diseased breast tissue

    International Nuclear Information System (INIS)

    Ryan, Elaine A; Farquharson, Michael J; Flinton, David M

    2005-01-01

    This study describes a technique for measuring the electron density of breast tissue utilizing Compton scattered photons. The K α2 line from a tungsten target industrial x-ray tube (57.97 keV) was used and the scattered x-rays collected at an angle of 30 0 . At this angle the Compton and coherent photon peaks can be resolved using an energy dispersive detector and a peak fitting algorithm. The system was calibrated using solutions of known electron density. The results obtained from a pilot study of 22 tissues are presented. The tissue samples investigated comprise four different tissue classifications: adipose, malignancy, fibroadenoma and fibrocystic change (FCC). It is shown that there is a difference between adipose and malignant tissue, to a value of 9.0%, and between adipose and FCC, to a value of 12.7%. These figures are found to be significant by statistical analysis. The differences between adipose and fibroadenoma tissues (2.2%) and between malignancy and FCC (3.4%) are not significant. It is hypothesized that the alteration in glucose uptake within malignant cells may cause these tissues to have an elevated electron density. The fibrotic nature of tissue that has undergone FCC gives the highest measure of all tissue types

  18. Spatial and dose–response analysis of fibrotic lung changes after stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Vinogradskiy, Yevegeniy; Diot, Quentin; Kavanagh, Brian; Schefter, Tracey; Gaspar, Laurie; Miften, Moyed

    2013-01-01

    Purpose: Stereotactic body radiation therapy (SBRT) is becoming the standard of care for early stage nonoperable lung cancers. Accurate dose–response modeling is challenging for SBRT because of the decreased number of clinical toxicity events. As a surrogate for a clinical toxicity endpoint, studies have proposed to use radiographic changes in follow up computed tomography (CT) scans to evaluate lung SBRT normal tissue effects. The purpose of the current study was to use local fibrotic lung regions to spatially and dosimetrically evaluate lung changes in patients that underwent SBRT.Methods: Forty seven SBRT patients treated at our institution from 2003 to 2009 were used for the current study. Our patient cohort had a total of 148 follow up CT scans ranging from 3 to 48 months post-therapy. Post-treatment scans were binned into intervals of 3, 6, 12, 18, 24, 30, and 36 months after the completion of treatment. Deformable image registration was used to align the follow up CT scans with the pretreatment CT and dose distribution. Areas of visible fibrotic changes were contoured. The centroid of each gross tumor volume (GTV) and contoured fibrosis volume was calculated and the fibrosis volume location and movement (magnitude and direction) relative to the GTV and 30 Gy isodose centroid were analyzed. To perform a dose–response analysis, each voxel in the fibrosis volume was sorted into 10 Gy dose bins and the average CT number value for each dose bin was calculated. Dose–response curves were generated by plotting the CT number as a function of dose bin and time posttherapy.Results: Both fibrosis and GTV centroids were concentrated in the upper third of the lung. The average radial movement of fibrosis centroids relative to the GTV centroids was 2.6 cm with movement greater than 5 cm occurring in 11% of patients. Evaluating dose–response curves revealed an overall trend of increasing CT number as a function of dose. The authors observed a CT number plateau at

  19. Relaxin reduces susceptibility to post-infarct atrial fibrillation in mice due to anti-fibrotic and anti-inflammatory properties.

    Science.gov (United States)

    Beiert, Thomas; Tiyerili, Vedat; Knappe, Vincent; Effelsberg, Verena; Linhart, Markus; Stöckigt, Florian; Klein, Sabine; Schierwagen, Robert; Trebicka, Jonel; Nickenig, Georg; Schrickel, Jan W; Andrié, René P

    2017-08-26

    Relaxin-2 (RLX) is a peptide hormone that exerts beneficial anti-fibrotic and anti-inflammatory effects in diverse models of cardiovascular disease. The goal of this study was to determine the effects of RLX treatment on the susceptibility to atrial fibrillation (AF) after myocardial infarction (MI). Mice with cryoinfarction of the left anterior ventricular wall were treated for two weeks with either RLX (75 μg/kg/d) or vehicle (sodium acetate) delivered via subcutaneously implanted osmotic minipumps. RLX treatment significantly attenuated the increase in AF-inducibility following cryoinfarction and reduced the mean duration of AF episodes. Furthermore, epicardial mapping of both atria revealed an increase in conduction velocity. In addition to an attenuation of atrial hypertrophy, chronic application of RLX reduced atrial fibrosis, which was linked to a significant reduction in atrial mRNA expression of connective tissue growth factor. Transcript levels of the pro-inflammatory cytokines interleukin-6 and interleukin-1β were reduced in RLX treated mice, but macrophage infiltration into atrial myocardium was similar in the vehicle and RLX treated groups. Treatment with RLX in mice after MI reduces susceptibility to AF due to anti-inflammatory and anti-fibrotic properties. Because to these favorable actions, RLX may become a new therapeutic option in the treatment of AF, even when complicating MI. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Epithelial-mesenchymal transition: An emerging target in tissue fibrosis

    Science.gov (United States)

    Li, Meirong; Luan, Fuxin; Zhao, Yali; Hao, Haojie; Zhou, Yong; Han, Weidong

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is involved in a variety of tissue fibroses. Fibroblasts/myofibroblasts derived from epithelial cells contribute to the excessive accumulation of fibrous connective tissue in damaged tissue, which can lead to permanent scarring or organ malfunction. Therefore, EMT-related fibrosis cannot be neglected. This review highlights the findings that demonstrate the EMT to be a direct contributor to the fibroblast/myofibroblast population in the development of tissue fibrosis and helps to elucidate EMT-related anti-fibrotic strategies, which may enable the development of therapeutic interventions to suppress EMT and potentially reverse organ fibrosis. PMID:26361988

  1. Traumatic hallux varus repair utilizing a soft-tissue anchor: a case report.

    Science.gov (United States)

    Labovitz, J M; Kaczander, B I

    2000-01-01

    Hallux varus is usually iatrogenic in nature; however, congenital and acquired etiologies have been described in the literature. The authors present a case of traumatic hallux varus secondary to rupture of the adductor tendon. Surgical correction was performed using a soft tissue anchor for maintenance of the soft tissues utilized for repair.

  2. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis.

    Science.gov (United States)

    Taroni, Jaclyn N; Greene, Casey S; Martyanov, Viktor; Wood, Tammara A; Christmann, Romy B; Farber, Harrison W; Lafyatis, Robert A; Denton, Christopher P; Hinchcliff, Monique E; Pioli, Patricia A; Mahoney, J Matthew; Whitfield, Michael L

    2017-03-23

    Systemic sclerosis (SSc) is a multi-organ autoimmune disease characterized by skin fibrosis. Internal organ involvement is heterogeneous. It is unknown whether disease mechanisms are common across all involved affected tissues or if each manifestation has a distinct underlying pathology. We used consensus clustering to compare gene expression profiles of biopsies from four SSc-affected tissues (skin, lung, esophagus, and peripheral blood) from patients with SSc, and the related conditions pulmonary fibrosis (PF) and pulmonary arterial hypertension, and derived a consensus disease-associate signature across all tissues. We used this signature to query tissue-specific functional genomic networks. We performed novel network analyses to contrast the skin and lung microenvironments and to assess the functional role of the inflammatory and fibrotic genes in each organ. Lastly, we tested the expression of macrophage activation state-associated gene sets for enrichment in skin and lung using a Wilcoxon rank sum test. We identified a common pathogenic gene expression signature-an immune-fibrotic axis-indicative of pro-fibrotic macrophages (MØs) in multiple tissues (skin, lung, esophagus, and peripheral blood mononuclear cells) affected by SSc. While the co-expression of these genes is common to all tissues, the functional consequences of this upregulation differ by organ. We used this disease-associated signature to query tissue-specific functional genomic networks to identify common and tissue-specific pathologies of SSc and related conditions. In contrast to skin, in the lung-specific functional network we identify a distinct lung-resident MØ signature associated with lipid stimulation and alternative activation. In keeping with our network results, we find distinct MØ alternative activation transcriptional programs in SSc-associated PF lung and in the skin of patients with an "inflammatory" SSc gene expression signature. Our results suggest that the innate immune

  3. A simple method for measuring glucose utilization of insulin-sensitive tissues by using the brain as a reference

    International Nuclear Information System (INIS)

    Namba, Hiroki; Nakagawa, Keiichi; Iyo, Masaomi; Fukushi, Kiyoshi; Irie, Toshiaki

    1994-01-01

    A simple method, without measurement of the plasma input function, to obtain semiquantitative values of glucose utilization in tissues other than the brain with radioactive deoxyglucose is reported. The brain, in which glucose utilization is essentially insensitive to plasma glucose and insulin concentrations, was used as an internal reference. The effects of graded doses of oral glucose loading (0.5, 1 and 2 mg/g body weight) on insulin-sensitive tissues (heart, muscle and fat tissue) were studied in the rat. By using the brain-reference method, dose-dependent increases in glucose utilization were clearly shown in all the insulin-sensitive tissues examined. The method seems to be of value for measurement of glucose utilization using radioactive deoxyglucose and positron emission tomography in the heart or other insulin-sensitive tissues, especially during glucose loading. (orig.)

  4. A pilot study of the characterization of hepatic tissue strain in children with cystic-fibrosis-associated liver disease (CFLD) by acoustic radiation force impulse imaging

    International Nuclear Information System (INIS)

    Behrens, Christopher B.; Langholz, Juliane H.; Eiler, Jessika; Jenewein, Raphael; Fuchs, Konstantin; Alzen, Gerhard F.P.; Naehrlich, Lutz; Harth, Sebastian; Krombach, Gabriele A.

    2013-01-01

    Progressive fibrotic alterations of liver tissue represent a major complication in children with cystic fibrosis. Correct assessment of cystic-fibrosis-associated liver disease (CFLD) in clinical routine is a challenging issue. Sonographic elastography based on acoustic radiation force impulse imaging (ARFI) is a new noninvasive approach for quantitatively assessing in vivo elasticity of biological tissues in many organs. To characterize ARFI elastography as a diagnostic tool to assess alteration of liver tissue elasticity related to cystic fibrosis in children. ARFI elastography and B-mode US imaging were performed in 36 children with cystic fibrosis. The children's clinical history and laboratory parameters were documented. According to the findings on conventional US, children were assigned to distinct groups indicating severity of hepatic tissue alterations. The relationship between US findings and respective elastography values was assessed. Additionally, differences between ARFI elastography values of each US group were statistically tested. Children with sonomorphologic characteristics of fibrotic tissue remodeling presented significantly increased values for tissue elasticity. Children with normal B-mode US or discrete signs of hepatic tissue alterations showed a tendency toward increased tissue stiffness indicating early tissue remodeling. Assessment of children with CFLD by means of ARFI elastography yields adequate results when compared to conventional US. For detection of early stages of liver disease with mild fibrotic reactions of hepatic tissue, ARFI elastography might offer diagnostic advantages over conventional US. Thus, liver stiffness measured by means of elastography might represent a valuable biological parameter for evaluation and follow-up of CFLD. (orig.)

  5. A pilot study of the characterization of hepatic tissue strain in children with cystic-fibrosis-associated liver disease (CFLD) by acoustic radiation force impulse imaging

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher B.; Langholz, Juliane H.; Eiler, Jessika; Jenewein, Raphael; Fuchs, Konstantin; Alzen, Gerhard F.P. [University Hospital Giessen, Department of Pediatric Radiology, Giessen (Germany); Naehrlich, Lutz [University Hospital Giessen, Department of Pediatrics, Giessen (Germany); Harth, Sebastian; Krombach, Gabriele A. [University Hospital Giessen, Department of Radiology, Giessen (Germany)

    2013-03-15

    Progressive fibrotic alterations of liver tissue represent a major complication in children with cystic fibrosis. Correct assessment of cystic-fibrosis-associated liver disease (CFLD) in clinical routine is a challenging issue. Sonographic elastography based on acoustic radiation force impulse imaging (ARFI) is a new noninvasive approach for quantitatively assessing in vivo elasticity of biological tissues in many organs. To characterize ARFI elastography as a diagnostic tool to assess alteration of liver tissue elasticity related to cystic fibrosis in children. ARFI elastography and B-mode US imaging were performed in 36 children with cystic fibrosis. The children's clinical history and laboratory parameters were documented. According to the findings on conventional US, children were assigned to distinct groups indicating severity of hepatic tissue alterations. The relationship between US findings and respective elastography values was assessed. Additionally, differences between ARFI elastography values of each US group were statistically tested. Children with sonomorphologic characteristics of fibrotic tissue remodeling presented significantly increased values for tissue elasticity. Children with normal B-mode US or discrete signs of hepatic tissue alterations showed a tendency toward increased tissue stiffness indicating early tissue remodeling. Assessment of children with CFLD by means of ARFI elastography yields adequate results when compared to conventional US. For detection of early stages of liver disease with mild fibrotic reactions of hepatic tissue, ARFI elastography might offer diagnostic advantages over conventional US. Thus, liver stiffness measured by means of elastography might represent a valuable biological parameter for evaluation and follow-up of CFLD. (orig.)

  6. Downregulation of the S1P Transporter Spinster Homology Protein 2 (Spns2 Exerts an Anti-Fibrotic and Anti-Inflammatory Effect in Human Renal Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Olivier Blanchard

    2018-05-01

    Full Text Available Sphingosine kinase (SK catalyses the formation of sphingosine 1-phosphate (S1P, which acts as a key regulator of inflammatory and fibrotic reactions, mainly via S1P receptor activation. Here, we show that in the human renal proximal tubular epithelial cell line HK2, the profibrotic mediator transforming growth factor β (TGFβ induces SK-1 mRNA and protein expression, and in parallel, it also upregulates the expression of the fibrotic markers connective tissue growth factor (CTGF and fibronectin. Stable downregulation of SK-1 by RNAi resulted in the increased expression of CTGF, suggesting a suppressive effect of SK-1-derived intracellular S1P in the fibrotic process, which is lost when SK-1 is downregulated. In a further approach, the S1P transporter Spns2, which is known to export S1P and thereby reduces intracellular S1P levels, was stably downregulated in HK2 cells by RNAi. This treatment decreased TGFβ-induced CTGF and fibronectin expression, and it abolished the strong induction of the monocyte chemotactic protein 1 (MCP-1 by the pro-inflammatory cytokines tumor necrosis factor (TNFα and interleukin (IL-1β. Moreover, it enhanced the expression of aquaporin 1, which is an important water channel that is expressed in the proximal tubules, and reverted aquaporin 1 downregulation induced by IL-1β/TNFα. On the other hand, overexpression of a Spns2-GFP construct increased S1P secretion and it resulted in enhanced TGFβ-induced CTGF expression. In summary, our data demonstrate that in human renal proximal tubular epithelial cells, SK-1 downregulation accelerates an inflammatory and fibrotic reaction, whereas Spns2 downregulation has an opposite effect. We conclude that Spns2 represents a promising new target for the treatment of tubulointerstitial inflammation and fibrosis.

  7. Rac1 GTPase regulates 11β hydroxysteroid dehydrogenase type 2 and fibrotic remodeling.

    Science.gov (United States)

    Lavall, Daniel; Schuster, Pia; Jacobs, Nadine; Kazakov, Andrey; Böhm, Michael; Laufs, Ulrich

    2017-05-05

    The aim of the study was to characterize the role of Rac1 GTPase for the mineralocorticoid receptor (MR)-mediated pro-fibrotic remodeling. Transgenic mice with cardiac overexpression of constitutively active Rac1 (RacET) develop an age-dependent phenotype with atrial dilatation, fibrosis, and atrial fibrillation. Expression of MR was similar in RacET and WT mice. The expression of 11β hydroxysteroid dehydrogenase type 2 (11β-HSD2) was age-dependently up-regulated in the atria and the left ventricles of RacET mice on mRNA and protein levels. Statin treatment inhibiting Rac1 geranylgeranylation reduced 11β-HSD2 up-regulation. Samples of human left atrial myocardium showed a positive correlation between Rac1 activity and 11β-HSD2 expression ( r = 0.7169). Immunoprecipitation showed enhanced Rac1-bound 11β-HSD2 relative to Rac1 expression in RacET mice that was diminished with statin treatment. Both basal and phorbol 12-myristate 13-acetate (PMA)-induced NADPH oxidase activity were increased in RacET and correlated positively with 11β-HSD2 expression ( r = 0.788 and r = 0.843, respectively). In cultured H9c2 cardiomyocytes, Rac1 activation with l-buthionine sulfoximine increased; Rac1 inhibition with NSC23766 decreased 11β-HSD2 mRNA and protein expression. Connective tissue growth factor (CTGF) up-regulation induced by aldosterone was prevented with NSC23766. Cardiomyocyte transfection with 11β-HSD2 siRNA abolished the aldosterone-induced CTGF up-regulation. Aldosterone-stimulated MR nuclear translocation was blocked by the 11β-HSD2 inhibitor carbenoxolone. In cardiac fibroblasts, nuclear MR translocation induced by aldosterone was inhibited with NSC23766 and spironolactone. NSC23766 prevented the aldosterone-induced proliferation and migration of cardiac fibroblasts and the up-regulation of CTGF and fibronectin. In conclusion, Rac1 GTPase regulates 11β-HSD2 expression, MR activation, and MR-mediated pro-fibrotic signaling. © 2017 by The American Society for

  8. Efficacy and Safety of the Collagenase of the Bacterium Clostridium Histolyticum for the Treatment of Capsular Contracture after Silicone Implants: Ex-Vivo Study on Human Tissue.

    Directory of Open Access Journals (Sweden)

    Sebastian Fischer

    Full Text Available The fibrotic capsule that surrounds silicone implants consists mainly of collagen. The FDA-approved collagenase of the bacterium clostridium histolyticum provides a reasonable treatment option. Safety and efficacy at the female breast site must be evaluated before clinical utilization.We incubated 20 samples of fibrotic capsule as well as 12 full thickness skin grafts harvested from the female breast site for 24 hours with different doses of collagenase. Outcome measures involved histological assessment of thickness and density of the capsule tissue as well as the skin grafts. Furthermore, we performed a collagen assay and immunohistochemistry staining for collagen subtypes.Collagenase treatment was able to degrade human capsule contracture tissue ex-vivo. The remaining collagen subtype after degradation was type 4 only. 0.3 mg/ml of collagenase was most effective in reducing capsule thickness when compared with higher concentrations. Of note, effectiveness was inversely related to capsule density, such that there was less reduction in thickness with higher capsule densities and vice versa. Furthermore, the application of 0.3mg/ml collagenase did not lead to thinning or perforation of full thickness skin grafts.Adjustment of collagenase dose will depend on thickness and density of the contracted capsule. A concentration of 0.3mg/ml seems to be safe and effective in an ex-vivo setting. The remaining collagen subtype 4 is suitable to serve as a neo-capsule/acellular tissue matrix. Collagenase treatment for capsular contracture may soon become a clinical reality.

  9. Fibrotic scar formation in central serous chorioretinopathy developed during systemic treatment with corticosteroids

    NARCIS (Netherlands)

    Hooymans, JMM

    1998-01-01

    Background: The purpose of the study is to demonstrate the development of subretinal fibrotic scar formation in central serous chorioretinopathy (CSCR) that developed during systemic corticosteroid treatment. Methods: The clinical and photographic records of a patient in whom an unusual

  10. Vitrification and xenografting of human ovarian tissue.

    Science.gov (United States)

    Amorim, Christiani Andrade; Dolmans, Marie-Madeleine; David, Anu; Jaeger, Jonathan; Vanacker, Julie; Camboni, Alessandra; Donnez, Jacques; Van Langendonckt, Anne

    2012-11-01

    To assess the efficiency of two vitrification protocols to cryopreserve human preantral follicles with the use of a xenografting model. Pilot study. Gynecology research unit in a university hospital. Ovarian biopsies were obtained from seven women aged 30-41 years. Ovarian tissue fragments were subjected to one of three cryopreservation protocols (slow freezing, vitrification protocol 1, and vitrification protocol 2) and xenografted for 1 week to nude mice. The number of morphologically normal follicles after cryopreservation and grafting and fibrotic surface area were determined by histologic analysis. Apoptosis was assessed by the TUNEL method. Morphometric analysis of TUNEL-positive surface area also was performed. Follicle proliferation was evaluated by immunohistochemistry. After xenografting, a difference was observed between the cryopreservation procedures applied. According to TUNEL analysis, both vitrification protocols showed better preservation of preantral follicles than the conventional freezing method. Moreover, histologic evaluation showed a significantly higher proportion of primordial follicles in vitrified (protocol 2)-warmed ovarian tissue than in frozen-thawed tissue. The proportion of growing follicles and fibrotic surface area was similar in all groups. Vitrification procedures appeared to preserve not only the morphology and survival of preantral follicles after 1 week of xenografting, but also their ability to resume folliculogenesis. In addition, vitrification protocol 2 had a positive impact on the quiescent state of primordial follicles after xenografting. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Primary cutaneous marginal zone lymphoma associated with juxta-articular fibrotic nodules in a teenager.

    Science.gov (United States)

    Ghatalia, Pooja; Porter, Joanne; Wroblewski, Danielle; Carlson, John Andrew

    2013-05-01

    Primary cutaneous marginal zone lymphoma (PCMZL) has rarely been reported in teenagers and is occasionally associated with Borrelia burgdorferi infection. Juxta-articular fibrotic nodules represent a unique, localized fibrosing response to spirochete infections, namely Borreliosis. Herein, we report a 15-year-old healthy boy who presented with a 4-year history of progressive acquisition of asymptomatic, erythematous nodules, ≤ 3 cm, beginning with his right forearm (3), then right arm (1) and lastly his right inner thigh (1). Biopsy showed PCMZL in three of five samples, and inflamed, fibrotic nodules, near the elbow in two. The bottom heavy lymphomatous nodules consisted of mostly small CD20+ CD43+ lymphocytes, some with plasmacytoid features. Mature plasma cells were lambda light chain restricted by in situ hybridization. The juxta-articular fibrotic nodules were located in the deep dermis and subcutis, had peripheral plasma cell-rich infiltrates, and showed nodular sclerosis (morphea profunda-like) in one, and lamellar and angiocentric sclerosis in the other reminiscent of quiescent lesions of chronic localized fibrosing leukocytoclastic vasculitis. Immunohistochemistry for B. burgdorferi revealed rare positive organisms; however, polymerase chain reaction (PCR) and serology were negative for B. burgdorferi as were serologic and/or PCR assays for Bartonella henselae, Ba. quintana, Ehrlichia chaffeensis, Treponema pallidum, Helicobacter pylori and Babesia microti. No evidence of extracutaneous disease was found by the review of systems and imaging studies. A 4-week trial of doxycycline therapy failed, whereas intralesional (IL) corticosteroid therapy induced rapid regression of his nodules. After two local recurrences, also treated with IL corticosteroids, he is well, without cutaneous disease, 20 months later. A literature review of 19 pediatric cases PCMZL reveals a similar natural history as adult PCMZL. Despite negative serology and PCR for B. burgdorferi

  12. Anti-fibrotic and anti-tumorigenic effects of rhein, a natural anthraquinone derivative, in mammalian stellate and carcinoma cells.

    Science.gov (United States)

    Tsang, Siu Wai; Bian, Zhao-Xiang

    2015-03-01

    Anthraquinone compounds have been recognized to possess antiinflammatory, anti-fibrotic and anti-tumour properties and thus applied in human and veterinary therapeutics as active substances of medicinal products. Amongst the anthraquinones isolated from Rheum palmatum, also known as da-huang, rhein was detected as one of the highest metabolite contents in the bloodstream of mammals. The biological activities of rhein therefore deserve detailed investigation. In this study, we aimed to delineate the mechanism of inhibitory actions of rhein on fibrotic and tumorigenic processes by means of various biochemical assays, such as immunofluorescent staining, real-time polymerase chain reaction (PCR) and western blotting analyses in rat pancreatic stellate cells (LTC-14), human pancreatic ductal adenocarcinoma cells (PANC-1) and human colon carcinoma cells (SW480 and SW620). Our results demonstrated that the application of rhein notably suppressed the mRNA and protein levels of various fibrotic and tumorigenic mediators including alpha-smooth muscle actin, type I collagen, fibronectin, N-cadherin and matrix metalloproteinases in the testing mammalian cells. The mechanism of the suppressive actions of rhein was associated with the modulation of the sonic hedgehog and serine-threonine kinase signalling pathways. In conclusion, we suggest that rhein may serve as a therapeutic or an adjuvant agent in anti-fibrotic and anti-tumorigenic approaches. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Do We Need Exercise Tests to Detect Gas Exchange Impairment in Fibrotic Idiopathic Interstitial Pneumonias?

    Directory of Open Access Journals (Sweden)

    Benoit Wallaert

    2012-01-01

    Full Text Available In patients with fibrotic idiopathic interstitial pneumonia (f-IIP, the diffusing capacity for carbon monoxide (DLCO has been used to predict abnormal gas exchange in the lung. However, abnormal values for arterial blood gases during exercise are likely to be the most sensitive manifestations of lung disease. The aim of this study was to compare DLCO, resting PaO2, P(A-aO2 at cardiopulmonary exercise testing peak, and oxygen desaturation during a 6-min walk test (6MWT. Results were obtained in 121 patients with idiopathic pulmonary fibrosis (IPF, n=88 and fibrotic nonspecific interstitial pneumonias (NSIP, n=33. All but 3 patients (97.5% had low DLCO values (35 mmHg and 100 (83% demonstrated significant oxygen desaturation during 6MWT (>4%. Interestingly 27 patients had low DLCO and normal P(A-aO2, peak and/or no desaturation during the 6MWT. The 3 patients with normal DLCO also had normal PaO2, normal P(A-aO2, peak, and normal oxygen saturation during 6MWT. Our results demonstrate that in fibrotic IIP, DLCO better defines impairment of pulmonary gas exchange than resting PaO2, exercise P(A-aO2, peak, or 6MWT SpO2.

  14. Synergistic effect of bolus exposure to zinc oxide nanoparticles on bleomycin-induced secretion of pro-fibrotic cytokines without lasting fibrotic changes in murine lungs.

    Science.gov (United States)

    Wu, Wenting; Ichihara, Gaku; Hashimoto, Naozumi; Hasegawa, Yoshinori; Hayashi, Yasuhiko; Tada-Oikawa, Saeko; Suzuki, Yuka; Chang, Jie; Kato, Masashi; D'Alessandro-Gabazza, Corina N; Gabazza, Esteban C; Ichihara, Sahoko

    2014-12-30

    Zinc oxide (ZnO) nanoparticles are widely used in various products, and the safety evaluation of this manufactured material is important. The present study investigated the inflammatory and fibrotic effects of pulmonary exposure to ZnO nanoparticles in a mouse model of pulmonary fibrosis. Pulmonary fibrosis was induced by constant subcutaneous infusion of bleomycin (BLM). Female C57BL/6Jcl mice were divided into BLM-treated and non-treated groups. In each treatment group, 0, 10, 20 or 30 µg of ZnO nanoparticles were delivered into the lungs through pharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) and the lungs were sampled at Day 10 or 14 after administration. Pulmonary exposure by a single bolus of ZnO nanoparticles resulted in severe, but transient inflammatory infiltration and thickening of the alveolar septa in the lungs, along with the increase of total and differential cell counts in BLAF. The BALF level of interleukin (IL)-1β and transforming growth factor (TGF)-β was increased at Day 10 and 14, respectively. At Day 10, the synergistic effect of BLM and ZnO exposure was detected on IL-1β and monocyte chemotactic protein (MCP)-1 in BALF. The present study demonstrated the synergistic effect of pulmonary exposure to ZnO nanoparticles and subcutaneous infusion of BLM on the secretion of pro-fibrotic cytokines in the lungs.

  15. Mechanotransduction-modulated fibrotic microniches reveal the contribution of angiogenesis in liver fibrosis

    Science.gov (United States)

    Liu, Longwei; You, Zhifeng; Yu, Hongsheng; Zhou, Lyu; Zhao, Hui; Yan, Xiaojun; Li, Dulei; Wang, Bingjie; Zhu, Lu; Xu, Yuzhou; Xia, Tie; Shi, Yan; Huang, Chenyu; Hou, Wei; Du, Yanan

    2017-12-01

    The role of pathological angiogenesis on liver fibrogenesis is still unknown. Here, we developed fibrotic microniches (FμNs) that recapitulate the interaction of liver sinusoid endothelial cells (LSECs) and hepatic stellate cells (HSCs). We investigated how the mechanical properties of their substrates affect the formation of capillary-like structures and how they relate to the progression of angiogenesis during liver fibrosis. Differences in cell response in the FμNs were synonymous of the early and late stages of liver fibrosis. The stiffness of the early-stage FμNs was significantly elevated due to condensation of collagen fibrils induced by angiogenesis, and led to activation of HSCs by LSECs. We utilized these FμNs to understand the response to anti-angiogenic drugs, and it was evident that these drugs were effective only for early-stage liver fibrosis in vitro and in an in vivo mouse model of liver fibrosis. Late-stage liver fibrosis was not reversed following treatment with anti-angiogenic drugs but rather with inhibitors of collagen condensation. Our work reveals stage-specific angiogenesis-induced liver fibrogenesis via a previously unrevealed mechanotransduction mechanism which may offer precise intervention strategies targeting stage-specific disease progression.

  16. Development of experimental fibrotic liver diseases animal model by Carbon Tetracholoride.

    Science.gov (United States)

    Gitiara, Atoosa; Tokhanbigli, Samaneh; Mazhari, Sogol; Baghaei, Kaveh; Hatami, Behzad; Hashemi, Seyed Mahmoud; Asadi Rad, Ali; Moradi, Afshin; Nasiri, Meyam; Zarrabi Ahrabi, Nakisa; Zali, Mohammad Reza

    2017-01-01

    This study is presenting an effective method of inducing liver fibrosis by CCL4 as a toxin in two different breeds of rat models. Liver fibrosis is a result of inflammation and liver injury caused by wound healing responses which ultimately lead to liver failure. Consequently, after liver fibrosis, the progression will be continued to liver cirrhosis and at the end stage hepatocellular carcinoma (HCC). Many studies have demonstrated that one of the most important causes of liver fibrosis is Non-alcoholic steatohepatitis (NASH). Fibrotic Liver is affected by an excessive accumulation of extracellular matrix (ECM) proteins like collagen and α-SMA. In two different experiments, male Vistar, and Sprague Dawley Rat models ranging from 200±60, corresponding to an age of approximately 10 weeks were utilized in order to induce CCL4 treated liver fibrosis. After 6 weeks of CCL4 injection, different tests have been carried out to verify the liver fibrosis including serum markers such as Aspartate aminotransferase (AST) and Alanine aminotransferase (ALT), molecular tests containing, laminin and α-SMA and also pathological observation by Hematoxylin and eosin staining in both fibrosis and control group. The results of Pathology and Real-time PCR showed that fibrosis was induced much more effectively in Sprague Dawley rat model compared with Wistar rats.

  17. Epithelial-mesenchymal transition in tissue repair and fibrosis.

    Science.gov (United States)

    Stone, Rivka C; Pastar, Irena; Ojeh, Nkemcho; Chen, Vivien; Liu, Sophia; Garzon, Karen I; Tomic-Canic, Marjana

    2016-09-01

    The epithelial-mesenchymal transition (EMT) describes the global process by which stationary epithelial cells undergo phenotypic changes, including the loss of cell-cell adhesion and apical-basal polarity, and acquire mesenchymal characteristics that confer migratory capacity. EMT and its converse, MET (mesenchymal-epithelial transition), are integral stages of many physiologic processes and, as such, are tightly coordinated by a host of molecular regulators. Converging lines of evidence have identified EMT as a component of cutaneous wound healing, during which otherwise stationary keratinocytes (the resident skin epithelial cells) migrate across the wound bed to restore the epidermal barrier. Moreover, EMT plays a role in the development of scarring and fibrosis, as the matrix-producing myofibroblasts arise from cells of the epithelial lineage in response to injury but are pathologically sustained instead of undergoing MET or apoptosis. In this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues and organs. We conclude that further investigation into the contribution of EMT to the faulty repair of fibrotic wounds might identify components of EMT signaling as common therapeutic targets for impaired healing in many tissues. Graphical Abstract Model for injury-triggered EMT activation in physiologic wound repair (left) and fibrotic wound healing (right).

  18. Lack of inhibitory effects of the anti-fibrotic drug imatinib on endothelial cell functions in vitro and in vivo.

    Science.gov (United States)

    Venalis, Paulius; Maurer, Britta; Akhmetshina, Alfiya; Busch, Nicole; Dees, Clara; Stürzl, Michael; Zwerina, Jochen; Jüngel, Astrid; Gay, Steffen; Schett, Georg; Distler, Oliver; Distler, Jörg H W

    2009-10-01

    Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by microangiopathy with progressive loss of capillaries and tissue fibrosis. Imatinib exerts potent anti-fibrotic effects and is currently evaluated in clinical trials. The aim of the present study was to exclude that the anti-fibrotic effects of imatinib are complicated by inhibitory effects on endothelial cell functions, which might augment vascular disease in SSc. Endothelial cells and mice were treated with pharmacologically relevant concentrations of imatinib. The expression of markers of vascular activation was assessed with real-time PCR. Proliferation was analysed with the cell counting experiments and the MTT assay. Apoptosis was quantified with caspase 3 assays, annexin V in vitro and with TUNEL staining in vivo. Migration was studied with scratch and transwell assays. Tube forming was investigated with the matrigel assay. Imatinib did not alter the expression of markers of vascular activation. Imatinib did not increase the percentage of annexin V positive cells or the activity of caspase 3. No reduction in proliferation or metabolic activity of endothelial cells was observed. Imatinib did not affect migration of endothelial cells and did not reduce the formation of capillary tubes. Consistent with the in vitro data, no difference in the number of apoptotic endothelial cells was observed in vivo in mice treated with imatinib. Imatinib does not inhibit activation, viability, proliferation, migration or tube forming of endothelial cells in vitro and in vivo. Thus, treatment with imatinib might not augment further endothelial cell damage in SSc.

  19. Serum Metabolomic Characterization of Liver Fibrosis in Rats and Anti-Fibrotic Effects of Yin-Chen-Hao-Tang

    Directory of Open Access Journals (Sweden)

    Hongyang Zhang

    2016-01-01

    Full Text Available Yin-Chen-Hao-Tang (YCHT is a famous Chinese medicine formula which has long been used in clinical practice for treating various liver diseases, such as liver fibrosis. However, to date, the mechanism for its anti-fibrotic effects remains unclear. In this paper, an ultra-performance liquid chromatography-time-of-flight mass spectrometry (UPLC-TOF-MS-based metabolomic study was performed to characterize dimethylnitrosamine (DMN-induced liver fibrosis in rats and evaluate the therapeutic effects of YCHT. Partial least squares-discriminant analysis (PLS-DA showed that the model group was well separated from the control group, whereas the YCHT-treated group exhibited a tendency to restore to the controls. Seven significantly changed fibrosis-related metabolites, including unsaturated fatty acids and lysophosphatidylcholines (Lyso-PCs, were identified. Moreover, statistical analysis demonstrated that YCHT treatment could reverse the levels of most metabolites close to the normal levels. These results, along with histological and biochemical examinations, indicate that YCHT has anti-fibrotic effects, which may be due to the suppression of oxidative stress and resulting lipid peroxidation involved in hepatic fibrogenesis. This study offers new opportunities to improve our understanding of liver fibrosis and the anti-fibrotic mechanisms of YCHT.

  20. Measurement of tissue viscoelasticity with ultrasound

    Science.gov (United States)

    Greenleaf, J. F.; Alizad, A.

    2017-02-01

    Tissue properties such as elasticity and viscosity have been shown to be related to such tissue conditions as contraction, edema, fibrosis, and fat content among others. Magnetic Resonance Elastography has shown outstanding ability to measure the elasticity and in some cases the viscosity of tissues, especially in the liver, providing the ability to stage fibrotic liver disease similarly to biopsy. We discuss ultrasound methods of measuring elasticity and viscosity in tissues. Many of these methods are becoming widely available in the extant ultrasound machines distributed throughout the world. Some of the methods to be discussed are in the developmental stage. The advantages of the ultrasound methods are that the imaging instruments are widely available and that many of the viscoelastic measurements can be made during a short addition to the normal ultrasound examination time. In addition, the measurements can be made by ultrasound repetitively and quickly allowing evaluation of dynamic physiologic function in circumstances such as muscle contraction or artery relaxation. Measurement of viscoelastic tissue mechanical properties will become a consistent part of clinical ultrasound examinations in our opinion.

  1. Proteoglycan and proteome profiling of central human pulmonary fibrotic tissue utilizing miniaturized sample preparation

    DEFF Research Database (Denmark)

    Malmström, Johan; Larsen, Kristoffer; Hansson, Lennart

    2002-01-01

    -dimensional electrophoresis was interfaced to miniaturized sample preparation techniques using microcapillary extraction. Four protein groups were identified; cytoskeletal, adhesion, scavenger and metabolic proteins. These patient's proteomes showed a high degree of heterogeneity between patients but larger homogeneity...

  2. Inflammation and angiogenesis in fibrotic lung disease.

    Science.gov (United States)

    Keane, Michael P; Strieter, Robert M; Lynch, Joseph P; Belperio, John A

    2006-12-01

    The pathogenesis of pulmonary fibrosis is poorly understood. Although inflammation has been presumed to have an important role in the development of fibrosis this has been questioned recently, particularly with regard to idiopathic pulmonary fibrosis (IPF). It is, however, increasingly recognized that the polarization of the inflammatory response toward a type 2 phenotype supports fibroproliferation. Increased attention has been on the role of noninflammatory structural cells such as the fibroblast, myofibroblast, epithelial cell, and endothelial cells. Furthermore, the origin of these cells appears to be multifactorial and includes resident cells, bone marrow-derived cells, and epithelial to mesenchymal transition. Increasing evidence supports the presence of vascular remodeling in fibrotic lung disease, although the precise role in the pathogenesis of fibrosis remains to be determined. Therefore, the pathogenesis of pulmonary fibrosis is complex and involves the interaction of multiple cell types and compartments within the lung.

  3. Targeted inhibition of disheveled PDZ domain via NSC668036 depresses fibrotic process

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cong, E-mail: wangcongweihai@126.com [Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing, Hankou Road 22, Jiangsu 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093 (China); State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093 (China); Dai, Jinghong, E-mail: daijinghongnew@163.com [Department of Respiratory Medicine, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University (China); Sun, Zhaorui, E-mail: lanseyunduan@163.com [Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing, Hankou Road 22, Jiangsu 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093 (China); State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093 (China); Department of Emergency, Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210093 (China); Shi, Chaowen, E-mail: willscw@live.cn [Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing, Hankou Road 22, Jiangsu 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093 (China); State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093 (China); Cao, Honghui, E-mail: caohonghui92@gmail.com [Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing, Hankou Road 22, Jiangsu 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093 (China); State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093 (China); and others

    2015-02-01

    In this study, we determined the effects of transforming growth factor-beta (TGF-β) and Wnt/β-catenin signaling on myofibroblast differentiation of NIH/3T3 fibroblasts in vitro and evaluated the therapeutic efficacy of NSC668036 in bleomycin-induced pulmonary fibrosis murine model. In vitro study, NSC668036, a small organic inhibitor of the PDZ domain in Dvl, suppressed β-catenin-driven gene transcription and abolished TGF-β1-induced migration, expression of collagen I and α-smooth muscle actin (α-SMA) in fibroblasts. In vivo study, we found that NSC668036 significantly suppressed accumulation of collagen I, α-SMA, and TGF-β1 but increased the expression of CK19, Occludin and E-cadherin that can inhibit pulmonary fibrogenesis. Because fibrotic lung exhibit aberrant activation of Wnt/β-catenin signaling, these data collectively suggest that inhibition of Wnt/β-catenin signaling at the Dvl level may be an effective approach to the treatment of fibrotic lung diseases. - Highlights: • NSC668036 inhibited the proliferation and migration of NIH/3T3 fibroblasts. • NSC668036 suppressed the Wnt/β-catenin signaling pathway. • TGF-β-induced stimulation of profibrotic responses were inhibited by NSC668036. • NSC668036 can inhibit the development of bleomycin-induced pulmonary fibrosis.

  4. Tissue response to intraperitoneal implants of polyethylene oxide-modified polyethylene terephthalate.

    Science.gov (United States)

    Desai, N P; Hubbell, J A

    1992-01-01

    Polyethylene terephthalate films surface modified with polyethylene oxide of mol wt 18,500 g/mol (18.5 k) by a previously described technique, were implanted in the peritoneal cavity of mice, along with their respective untreated controls, for periods of 1-28 d. The implants were retrieved and examined for tissue reactivity and cellular adherence. The control polyethylene terephthalate surfaces showed an initial inflammatory reaction followed by an extensive fibrotic response with a mean thickness of 60 microns at 28 d. By contrast, polyethylene oxide-modified polyethylene terephthalate showed only a mild inflammatory response and no fibrotic encapsulation throughout the implantation period: at 28 d a cellular monolayer was observed. Apparently either the polyethylene oxide-modified surface was stimulating less inflammation, which was in turn stimulating less fibroblastic overgrowth, or the cellular adhesion to the polyethylene oxide-modified surface was too weak to support cellular multilayers.

  5. Increased in vivo glucose utilization in 30-day-old obese Zucker rat: Role of white adipose tissue

    International Nuclear Information System (INIS)

    Krief, S.; Bazin, R.; Dupuy, F.; Lavau, M.

    1988-01-01

    In vivo whole-body glucose utilization and uptake in multiple individual tissues were investigated in conscious 30-day-old Zucker rats, which when obese are hyperphagic, hyperinsulinemic, and normoglycemic. Whole-body glucose metabolism (assessed by [3- 3 H]glucose) was 40% higher in obese (fa/fa) than in lean (Fa/fa) rats, suggesting that obese rats were quite responsive to their hyperinsulinemia. In obese compared with lean rats, tissue glucose uptake was increased by 15, 12, and 6 times in dorsal, inguinal, perigonadal white depots, respectively; multiplied by 2.5 in brown adipose tissue; increased by 50% in skin from inguinal region but not in that from cranial, thoracic, or dorsal area; and increased twofold in diaphragm but similar in heart in proximal intestine, and in total muscular mass of limbs. The data establish that in young obese rats the hypertrophied white adipose tissue was a major glucose-utilizing tissue whose capacity for glucose disposal compared with that of half the muscular mass. Adipose tissue could therefore play an important role in the homeostasis of glucose in obese rats in the face of their increased carbohydrate intake

  6. Scleral fixation of a subluxated intraocular lens-capsular bag complex through a fibrotic continuous curvilinear capsulorhexis.

    Science.gov (United States)

    Gimbel, Howard V; Brucks, Matthew; Dardzhikova, Albena A; Camoriano, Gerardo D

    2011-04-01

    Several strategies have been devised to manage in-the-bag intraocular lens (IOL) subluxation. We describe a method of fixating the IOL-capsular bag complex to the sclera using the fibrotic ring that develops around the continuous curvilinear capsulorhexis (CCC). Two, preferably 3, double-armed 10-0 polypropylene sutures are passed around the fibrotic CCC rim of the capsule and out the Hoffman scleral pockets and then tied in the scleral tunnels to center the IOL-bag complex. This technique provides an alternative approach to repositioning and fixating the IOL-bag complex that is especially useful in cases in which removal and replacement of the IOL would be difficult. It also provides more than 2-point fixation to achieve perfect IOL centration. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. In vitro evaluation of a basic fibroblast growth factor-containing hydrogel toward vocal fold lamina propria scar treatment.

    Science.gov (United States)

    Erndt-Marino, Josh D; Jimenez-Vergara, Andrea C; Diaz-Rodriguez, Patricia; Kulwatno, Jonathan; Diaz-Quiroz, Juan Felipe; Thibeault, Susan; Hahn, Mariah S

    2018-04-01

    Scarring of the vocal fold lamina propria can lead to debilitating voice disorders that can significantly impair quality of life. The reduced pliability of the scar tissue-which diminishes proper vocal fold vibratory efficiency-results in part from abnormal extracellular matrix (ECM) deposition by vocal fold fibroblasts (VFF) that have taken on a fibrotic phenotype. To address this issue, bioactive materials containing cytokines and/or growth factors may provide a platform to transition fibrotic VFF within the scarred tissue toward an anti-fibrotic phenotype, thereby improving the quality of ECM within the scar tissue. However, for such an approach to be most effective, the acute host response resulting from biomaterial insertion/injection likely also needs to be considered. The goal of the present work was to evaluate the anti-fibrotic and anti-inflammatory capacity of an injectable hydrogel containing tethered basic fibroblast growth factor (bFGF) in the dual context of scar and biomaterial-induced acute inflammation. An in vitro co-culture system was utilized containing both activated, fibrotic VFF and activated, pro-inflammatory macrophages (MΦ) within a 3D poly(ethylene glycol) diacrylate (PEGDA) hydrogel containing tethered bFGF. Following 72 h of culture, alterations in VFF and macrophage phenotype were evaluated relative to mono-culture and co-culture controls. In our co-culture system, bFGF reduced the production of fibrotic markers collagen type I, α smooth muscle actin, and biglycan by activated VFF and promoted wound-healing/anti-inflammatory marker expression in activated MΦ. Cumulatively, these data indicate that bFGF-containing hydrogels warrant further investigation for the treatment of vocal fold lamina propria scar. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1258-1267, 2018. © 2017 Wiley Periodicals, Inc.

  8. Proangiogenic scaffolds as functional templates for cardiac tissue engineering.

    Science.gov (United States)

    Madden, Lauran R; Mortisen, Derek J; Sussman, Eric M; Dupras, Sarah K; Fugate, James A; Cuy, Janet L; Hauch, Kip D; Laflamme, Michael A; Murry, Charles E; Ratner, Buddy D

    2010-08-24

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30-40 microm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response.

  9. Utilization of 14C-tyrosine in brain and peripheral tissues of developmentally protein malnourished rats

    International Nuclear Information System (INIS)

    Miller, M.; Leahy, J.P.; McConville, F.; Morgane, P.J.; Resnick, O.

    1978-01-01

    Prior studies of developmentally protein malnourished rats have reported substantial changes in brain and peripheral utilization of 14 C-leucine, 14 C-phenylalanine, and 14 C-tryptophan. In the present study rats born to dams fed a low protein diet (8% casein) compared to the offspring of control rats fed a normal diet (25% casein) showed few significant differences in the uptake and incorporation of 14 C-tyrosine into brain and peripheral tissues from birth to age 21 days. At birth, the 8% casein pups exhibited significant decreases in brain and peripheral tissue incorporation of tracer only at short post-injection times (10 and 20 min), but not at longer intervals (90 and 180 min). During ontogenetic development (Days 5-21), the 8% casein rats showed significant increases in uptake of 14 C-tyrosine into the brain and peripheral tissues on Day 11 and a significantly higher percent incorporation of tracer into brain protein on Day 21 as compared to the 25% casein rats. For the most part, there were no significant changes in incorporation of radioactivity in peripheral tissues for the 2 diet groups on these post-birth days. Overall, the data indicates that developmental protein malnutrition causes relatively fewer changes in brain and peripheral utilization of the semi-essential amino acid tyrosine than those observed in previous studies with essential amino acids

  10. High inorganic phosphate causes DNMT1 phosphorylation and subsequent fibrotic fibroblast activation

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiaoying [Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Xu, Xingbo [Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Zeisberg, Elisabeth M. [Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); German Center for Cardiovascular Research (DZHK), Göttingen (Germany); Zeisberg, Michael, E-mail: mzeisberg@med.uni-goettingen.de [Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); German Center for Cardiovascular Research (DZHK), Göttingen (Germany)

    2016-04-08

    Phosphate is an essential constituent of critical cellular functions including energy metabolism, nucleic acid synthesis and phosphorylation-dependent cell signaling. Increased plasma phosphate levels are an independent risk factor for lowered life-expectancy as well as for heart and kidney failure. Nevertheless, direct cellular effects of elevated phosphate concentrations within the microenvironment are poorly understood and have been largely neglected in favor of phosphor-regulatory hormones. Because interstitial fibrosis is the common determinant of chronic progressive kidney disease, and because fibroblasts are major mediators of fibrogenesis, we here explored the effect of high extracellular phosphate levels on renal fibroblasts. We demonstrate that high inorganic phosphate directly induces fibrotic fibroblast activation associated with increased proliferative activity, increased expression of α-smooth muscle actin and increased synthesis of type I collagen. We further demonstrate that such fibroblast activation is dependent on phosphate influx, aberrant phosphorylation of DNA methyltransferase DNMT1 and aberrant CpG island promoter methylation. In summary, our studies demonstrate that elevated phosphate concentrations induce pro-fibrotic fibroblast activation independent of phospho-regulatory hormones. - Highlights: • We exposed human kidney fibroblasts to media containing 1 mM or 3 mM phosphate. • Increased phosphate influx causes phosphorylation of DNA methyltransferase Dnmt1. • Phosphorylated Dnmt1 causes promoter methylation and transcriptional silencing of RASAL1. • Depletion of RASAL1 causes increased intrinsic Ras-GTP activity and fibroblast activation. • Inorganic phosphate causes fibroblast activation independent of phospho-regulatory hormones.

  11. Lung tissue remodeling in the acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    Souza Alba Barros de

    2003-01-01

    Full Text Available Acute respiratory distress syndrome (ARDS is characterized by diffuse alveolar damage, and evolves progressively with three phases: exsudative, fibroproliferative, and fibrotic. In the exudative phase, there are interstitial and alveolar edemas with hyaline membrane. The fibropro­liferative phase is characterized by exudate organization and fibroelastogenesis. There is proliferation of type II pneumocytes to cover the damaged epithelial surface, followed by differentiation into type I pneumocytes. The fibroproliferative phase starts early, and its severity is related to the patient?s prognosis. The alterations observed in the phenotype of the pulmonary parenchyma cells steer the tissue remodeling towards either progressive fibrosis or the restoration of normal alveolar architecture. The fibrotic phase is characterized by abnormal and excessive deposition of extracellular matrix proteins, mainly collagen. The dynamic control of collagen deposition and degradation is regulated by metalloproteinases and their tissular regulators. The deposition of proteoglycans in the extracellular matrix of ARDS patients needs better study. The regulation of extracellular matrix remodeling, in normal conditions or in several pulmonary diseases, such as ARDS, results from a complex mechanism that integrate the transcription of elements that destroy the matrix protein and produce activation/inhibition of several cellular types of lung tissue. This review article will analyze the ECM organization in ARDS, the different pulmonary parenchyma remodeling mechanisms, and the role of cytokines in the regulation of the different matrix components during the remodeling process.

  12. Anti-fibrotic effect of natural toxin bee venom on animal model of unilateral ureteral obstruction.

    Science.gov (United States)

    An, Hyun Jin; Kim, Kyung Hyun; Lee, Woo Ram; Kim, Jung Yeon; Lee, Sun Jae; Pak, Sok Cheon; Han, Sang Mi; Park, Kwan Kyu

    2015-05-29

    Progressive renal fibrosis is the final common pathway for all kidney diseases leading to chronic renal failure. Bee venom (BV) has been widely used as a traditional medicine for various diseases. However, the precise mechanism of BV in ameliorating the renal fibrosis is not fully understood. To investigate the therapeutic effects of BV against unilateral ureteral obstruction (UUO)-induced renal fibrosis, BV was given intraperitoneally after ureteral ligation. At seven days after UUO surgery, the kidney tissues were collected for protein analysis and histologic examination. Histological observation revealed that UUO induced a considerable increase in the number of infiltrated inflammatory cells. However, BV treatment markedly reduced these reactions compared with untreated UUO mice. The expression levels of TNF-α and IL-1β were significantly reduced in BV treated mice compared with UUO mice. In addition, treatment with BV significantly inhibited TGF-β1 and fibronectin expression in UUO mice. Moreover, the expression of α-SMA was markedly withdrawn after treatment with BV. These findings suggest that BV attenuates renal fibrosis and reduces inflammatory responses by suppression of multiple growth factor-mediated pro-fibrotic genes. In conclusion, BV may be a useful therapeutic agent for the prevention of fibrosis that characterizes progression of chronic kidney disease.

  13. Anti-Fibrotic Effect of Natural Toxin Bee Venom on Animal Model of Unilateral Ureteral Obstruction

    Directory of Open Access Journals (Sweden)

    Hyun Jin An

    2015-05-01

    Full Text Available Progressive renal fibrosis is the final common pathway for all kidney diseases leading to chronic renal failure. Bee venom (BV has been widely used as a traditional medicine for various diseases. However, the precise mechanism of BV in ameliorating the renal fibrosis is not fully understood. To investigate the therapeutic effects of BV against unilateral ureteral obstruction (UUO-induced renal fibrosis, BV was given intraperitoneally after ureteral ligation. At seven days after UUO surgery, the kidney tissues were collected for protein analysis and histologic examination. Histological observation revealed that UUO induced a considerable increase in the number of infiltrated inflammatory cells. However, BV treatment markedly reduced these reactions compared with untreated UUO mice. The expression levels of TNF-α and IL-1β were significantly reduced in BV treated mice compared with UUO mice. In addition, treatment with BV significantly inhibited TGF-β1 and fibronectin expression in UUO mice. Moreover, the expression of α-SMA was markedly withdrawn after treatment with BV. These findings suggest that BV attenuates renal fibrosis and reduces inflammatory responses by suppression of multiple growth factor-mediated pro-fibrotic genes. In conclusion, BV may be a useful therapeutic agent for the prevention of fibrosis that characterizes progression of chronic kidney disease.

  14. Anti-fibrotic effects of theophylline on lung fibroblasts

    International Nuclear Information System (INIS)

    Yano, Yukihiro; Yoshida, Mitsuhiro; Hoshino, Shigenori; Inoue, Koji; Kida, Hiroshi; Yanagita, Masahiko; Takimoto, Takayuki; Hirata, Haruhiko; Kijima, Takashi; Kumagai, Toru; Osaki, Tadashi; Tachibana, Isao; Kawase, Ichiro

    2006-01-01

    Theophylline has been used in the management of bronchial asthma and chronic obstructive pulmonary disease for over 50 years. It has not only a bronchodilating effect, but also an anti-inflammatory one conducive to the inhibition of airway remodeling, including subepithelial fibrosis. To date however, whether theophylline has a direct inhibitory effect on airway fibrosis has not been established. To clarify this question, we examined whether theophylline affected the function of lung fibroblasts. Theophylline suppressed TGF-β-induced type I collagen (COL1) mRNA expression in lung fibroblasts and also inhibited fibroblast proliferation stimulated by FBS and TGF-β-induced α-SMA protein. A cAMP analog also inhibited TGF-β-induced COL1 mRNA expression in lung fibroblasts. A PKA inhibitor reduced the inhibitory effect of theophylline on TGF-β-induced COL1 mRNA expression. These results indicate that theophylline exerts anti-fibrotic effects, at least partly, through the cAMP-PKA pathway

  15. CT manifestations of radiation-induced change in chest tissue

    International Nuclear Information System (INIS)

    Pagani, J.J.; Libshitz, H.I.

    1982-01-01

    The computed tomographic appearance of acute and chronic radiation change in the thorax is described. Acute radiation pneumonitis demonstrates patchy, confluent regions of increased pulmonary attenuation. Chronic changes include soft tissue density fibrotic changes that blend smoothly with the pleural surfaces and adjacent mediastinal structures. Also seen are bronchiectatic changes and distortion of normal intrathoracic anatomic relationships. Both the acute and chronic changes usually make linear lateral margins with adjacent aerated lung. Development of a discrete mass or focal cavitation after the radiation changes have become stable is suspect for recurrent tumor or infection

  16. Fell-Muir lecture: connective tissue growth factor (CCN2) – a pernicious and pleiotropic player in the development of kidney fibrosis

    Science.gov (United States)

    Mason, Roger M

    2013-01-01

    Connective tissue growth factor (CTGF, CCN2) is a member of the CCN family of matricellular proteins. It interacts with many other proteins, including plasma membrane proteins, modulating cell function. It is expressed at low levels in normal adult kidney cells but is increased in kidney diseases, playing important roles in inflammation and in the development of glomerular and interstitial fibrosis in chronic disease. This review reports the evidence for its expression in human and animal models of chronic kidney disease and summarizes data showing that anti-CTGF therapy can successfully attenuate fibrotic changes in several such models, suggesting that therapies targeting CTGF and events downstream of it in renal cells may be useful for the treatment of human kidney fibrosis. Connective tissue growth factor stimulates the development of fibrosis in the kidney in many ways including activating cells to increase extracellular matrix synthesis, inducing cell cycle arrest and hypertrophy, and prolonging survival of activated cells. The relationship between CTGF and the pro-fibrotic factor TGFβ is examined and mechanisms by which CTGF promotes signalling by the latter are discussed. No specific cellular receptors for CTGF have been discovered but it interacts with and activates several plasma membrane proteins including low-density lipoprotein receptor-related protein (LRP)-1, LRP-6, tropomyosin-related kinase A, integrins and heparan sulphate proteoglycans. Intracellular signalling and downstream events triggered by such interactions are reviewed. Finally, the relationships between CTGF and several anti-fibrotic factors, such as bone morphogenetic factor-4 (BMP4), BMP7, hepatocyte growth factor, CCN3 and Oncostatin M, are discussed. These may determine whether injured tissue heals or progresses to fibrosis. PMID:23110747

  17. TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds.

    Science.gov (United States)

    Qi, Yu; Jiang, Dongsheng; Sindrilaru, Anca; Stegemann, Agatha; Schatz, Susanne; Treiber, Nicolai; Rojewski, Markus; Schrezenmeier, Hubert; Vander Beken, Seppe; Wlaschek, Meinhard; Böhm, Markus; Seitz, Andreas; Scholz, Natalie; Dürselen, Lutz; Brinckmann, Jürgen; Ignatius, Anita; Scharffetter-Kochanek, Karin

    2014-02-01

    Proper activation of macrophages (Mφ) in the inflammatory phase of acute wound healing is essential for physiological tissue repair. However, there is a strong indication that robust Mφ inflammatory responses may be causal for the fibrotic response always accompanying adult wound healing. Using a complementary approach of in vitro and in vivo studies, we here addressed the question of whether mesenchymal stem cells (MSCs)-due to their anti-inflammatory properties-would control Mφ activation and tissue fibrosis in a murine model of full-thickness skin wounds. We have shown that the tumor necrosis factor-α (TNF-α)-stimulated protein 6 (TSG-6) released from MSCs in co-culture with activated Mφ or following injection into wound margins suppressed the release of TNF-α from activated Mφ and concomitantly induced a switch from a high to an anti-fibrotic low transforming growth factor-β1 (TGF-β1)/TGF-β3 ratio. This study provides insight into what we believe to be a previously undescribed multifaceted role of MSC-released TSG-6 in wound healing. MSC-released TSG-6 was identified to improve wound healing by limiting Mφ activation, inflammation, and fibrosis. TSG-6 and MSC-based therapies may thus qualify as promising strategies to enhance tissue repair and to prevent excessive tissue fibrosis.

  18. Modeling the Human Scarred Heart In Vitro: Toward New Tissue Engineered Models.

    Science.gov (United States)

    Deddens, Janine C; Sadeghi, Amir Hossein; Hjortnaes, Jesper; van Laake, Linda W; Buijsrogge, Marc; Doevendans, Pieter A; Khademhosseini, Ali; Sluijter, Joost P G

    2017-02-01

    Cardiac remodeling is critical for effective tissue healing, however, excessive production and deposition of extracellular matrix components contribute to scarring and failing of the heart. Despite the fact that novel therapies have emerged, there are still no lifelong solutions for this problem. An urgent need exists to improve the understanding of adverse cardiac remodeling in order to develop new therapeutic interventions that will prevent, reverse, or regenerate the fibrotic changes in the failing heart. With recent advances in both disease biology and cardiac tissue engineering, the translation of fundamental laboratory research toward the treatment of chronic heart failure patients becomes a more realistic option. Here, the current understanding of cardiac fibrosis and the great potential of tissue engineering are presented. Approaches using hydrogel-based tissue engineered heart constructs are discussed to contemplate key challenges for modeling tissue engineered cardiac fibrosis and to provide a future outlook for preclinical and clinical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Extra-pancreatic invasion induces lipolytic and fibrotic changes in the adipose microenvironment, with released fatty acids enhancing the invasiveness of pancreatic cancer cells

    Science.gov (United States)

    Okumura, Takashi; Ohuchida, Kenoki; Sada, Masafumi; Abe, Toshiya; Endo, Sho; Koikawa, Kazuhiro; Iwamoto, Chika; Miura, Daisuke; Mizuuchi, Yusuke; Moriyama, Taiki; Nakata, Kohei; Miyasaka, Yoshihiro; Manabe, Tatsuya; Ohtsuka, Takao; Nagai, Eishi; Mizumoto, Kazuhiro; Oda, Yoshinao; Hashizume, Makoto; Nakamura, Masafumi

    2017-01-01

    Pancreatic cancer progression involves components of the tumor microenvironment, including stellate cells, immune cells, endothelial cells, and the extracellular matrix. Although peripancreatic fat is the main stromal component involved in extra-pancreatic invasion, its roles in local invasion and metastasis of pancreatic cancer remain unclear. This study investigated the role of adipose tissue in pancreatic cancer progression using genetically engineered mice (Pdx1-Cre; LSL-KrasG12D; Trp53R172H/+) and an in vitro model of organotypic fat invasion. Mice fed a high fat diet had significantly larger primary pancreatic tumors and a significantly higher rate of distant organ metastasis than mice fed a standard diet. In the organotypic fat invasion model, pancreatic cancer cell clusters were smaller and more elongated in shape and showed increased fibrosis. Adipose tissue-derived conditioned medium enhanced pancreatic cancer cell invasiveness and gemcitabine resistance, as well as inducing morphologic changes in cancer cells and increasing the numbers of lipid droplets in their cytoplasm. The concentrations of oleic, palmitoleic, and linoleic acids were higher in adipose tissue-derived conditioned medium than in normal medium, with these fatty acids significantly enhancing the migration of cancer cells. Mature adipocytes were smaller and the concentration of fatty acids in the medium higher when these cells were co-cultured with cancer cells. These findings indicate that lipolytic and fibrotic changes in peripancreatic adipose tissue enhance local invasiveness and metastasis via adipocyte-released fatty acids. Inhibition of fatty acid uptake by cancer cells may be a novel therapy targeting interactions between cancer and stromal cells. PMID:28407685

  20. FOXO1 expression in keratinocytes promotes connective tissue healing

    Science.gov (United States)

    Zhang, Chenying; Lim, Jason; Liu, Jian; Ponugoti, Bhaskar; Alsadun, Sarah; Tian, Chen; Vafa, Rameen; Graves, Dana T.

    2017-01-01

    Wound healing is complex and highly orchestrated. It is well appreciated that leukocytes, particularly macrophages, are essential for inducing the formation of new connective tissue, which requires the generation of signals that stimulate mesenchymal stem cells (MSC), myofibroblasts and fibroblasts. A key role for keratinocytes in this complex process has yet to be established. To this end, we investigated possible involvement of keratinocytes in connective tissue healing. By lineage-specific deletion of the forkhead box-O 1 (FOXO1) transcription factor, we demonstrate for the first time that keratinocytes regulate proliferation of fibroblasts and MSCs, formation of myofibroblasts and production of collagen matrix in wound healing. This stimulation is mediated by a FOXO1 induced TGFβ1/CTGF axis. The results provide direct evidence that epithelial cells play a key role in stimulating connective tissue healing through a FOXO1-dependent mechanism. Thus, FOXO1 and keratinocytes may be an important therapeutic target where healing is deficient or compromised by a fibrotic outcome. PMID:28220813

  1. Targeting of TAM Receptors Ameliorates Fibrotic Mechanisms in Idiopathic Pulmonary Fibrosis.

    Science.gov (United States)

    Espindola, Milena S; Habiel, David M; Narayanan, Rohan; Jones, Isabelle; Coelho, Ana L; Murray, Lynne A; Jiang, Dianhua; Noble, Paul W; Hogaboam, Cory M

    2018-06-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant lung remodeling, which progressively abolishes lung function in an RTK (receptor tyrosine kinase)-dependent manner. Gas6 (growth arrest-specific 6) ligand, Tyro3 (TYRO3 protein tyrosine kinase 3), and Axl (anexelekto) RTK expression and activity are increased in IPF. To determine if targeting these RTK pathways would inhibit fibroblast activation and the development of pulmonary fibrosis. Quantitative genomic, proteomic, and functional analyses were used to determine Gas6/TAM (Tyro3, Axl, and Mertk [MER proto-oncogene, tyrosine kinase]) RTK expression and activation in tissues and fibroblasts from normal and IPF lungs. The profibrotic impact of these RTK pathways were also examined in bleomycin-induced pulmonary fibrosis and in SCID/Bg mice that developed pulmonary fibrosis after the intravenous administration of primary IPF fibroblasts. Gas6, Axl, and Tyro3 were increased in both rapidly and slowly progressive IPF compared with normal lung samples and fibroblasts. Targeting these pathways with either specific antibodies directed at Gas6 or Axl, or with small-molecule TAM inhibitors indicated that the small molecule-mediated targeting approach was more efficacious in both in vitro and in vivo studies. Specifically, the TAM receptor inhibitor R428 (also known as BGB324) significantly inhibited the synthetic, migratory, and proliferative properties of IPF fibroblasts compared with the other Gas6/TAM receptor targeting agents. Finally, loss of Gas6 expression decreased lung fibrotic responses to bleomycin and treatment with R428 inhibited pulmonary fibrosis in humanized SCID/Bg mice. Gas6/TAM receptor activity contributes to the activation of pulmonary fibroblasts in IPF, suggesting that targeting this RTK pathway might be an effective antifibrotic strategy in this disease.

  2. Connective matrix organization in human pulmonary fibrosis. Collagen polymorphism analysis in fibrotic deposits by immunohistological methods.

    Science.gov (United States)

    Takiya, C; Peyrol, S; Cordier, J F; Grimaud, J A

    1983-01-01

    In the interstitium of the alveolar septa in the peripheral parts of the lung, four molecular types of collagen (I, III, IV and V) each with different morphological appearances, can be identified. The structural integrity of collagens accounts for the physiological efficiency of the lung. Fibrous thickening of alveolar septa is an invariable result of various diseases affecting the interstitium of the lung. The light and electron microscopic findings, and the immunological typing of collagens in six cases of fibrotic alveolar disease, are described. In the alveolar septa, two different compartments (the alveolo-capillary junction and the supportive axis) were affected by fibrosis: the alveolo-capillary junction was widened by the addition of interstitial collagens to basement membranes. In the axis, the increase of interstitial (types I and III) collagen gave rise to different patterns of connective matrix organization, graded as Loose or Dense depending on quantitative alterations of the type I/III ratio. The mode of organization of the fibrotic lung connective matrix, which depends on the quality of deposits in the matrix, may be correlated with the evolution of interstitial pulmonary fibrosis, in terms of its stability, remodelling ability and reversibility.

  3. 25-Hydroxycholesterol promotes fibroblast-mediated tissue remodeling through NF-κB dependent pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Tomohiro [Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, 811-1 Kimiidera, Wakayama 641-8509 (Japan); Sugiura, Hisatoshi, E-mail: sugiura@rm.med.tohoku.ac.jp [Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 (Japan); Koarai, Akira; Kikuchi, Takashi; Hiramatsu, Masataka; Kawabata, Hiroki; Akamatsu, Keiichiro; Hirano, Tsunahiko; Nakanishi, Masanori; Matsunaga, Kazuto; Minakata, Yoshiaki [Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, 811-1 Kimiidera, Wakayama 641-8509 (Japan); Ichinose, Masakazu [Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 (Japan)

    2013-05-01

    Abnormal structural alterations termed remodeling, including fibrosis and alveolar wall destruction, are important features of the pathophysiology of chronic airway diseases such as chronic obstructive pulmonary disease (COPD) and asthma. 25-hydroxycholesterol (25-HC) is enzymatically produced by cholesterol 25-hydorxylase (CH25H) in macrophages and is reported to be involved in the formation of arteriosclerosis. We previously demonstrated that the expression of CH25H and production of 25HC were increased in the lungs of COPD. However, the role of 25-HC in lung tissue remodeling is unknown. In this study, we investigated the effect of 25-HC on fibroblast-mediated tissue remodeling using human fetal lung fibroblasts (HFL-1) in vitro. 25-HC significantly augmented α-smooth muscle actin (SMA) (P<0.001) and collagen I (P<0.001) expression in HFL-1. 25-HC also significantly enhanced the release and activation of matrix metallaoproteinase (MMP)-2 (P<0.001) and MMP-9 (P<0.001) without any significant effect on the production of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. 25-HC stimulated transforming growth factor (TGF)-β{sub 1} production (P<0.01) and a neutralizing anti-TGF-β antibody restored these 25-HC-augmented pro-fibrotic responses. 25-HC significantly promoted the translocation of nuclear factor (NF)-κB p65 into the nuclei (P<0.01), but not phospholylated-c-jun, a complex of activator protein-1. Pharmacological inhibition of NF-κB restored the 25-HC-augmented pro-fibrotic responses and TGF-β{sub 1} release. These results suggest that 25-HC could contribute to fibroblast-mediated lung tissue remodeling by promoting myofibroblast differentiation and the excessive release of extracellular matrix protein and MMPs via an NF-κB-TGF-β dependent pathway.

  4. Experimental study on active specific immunotherapy utilizing the immunotherapy utilizing the immune reaction of low-dose irradiated tumor tissue, 3

    International Nuclear Information System (INIS)

    Ogawa, Yasuhiro; Imanaka, Kazufumi; Gose, Kyuhei; Imajo, Yoshinari; Kimura, Shuji

    1982-01-01

    We have already demonstrated the remarkable effect of the active specific immunotherapy utilizing tumor cells and infiltrating lymphocytes prepared from a low-dose irradiated tumor tissue after cytoreductive radiotherapy. In the present study, the active specific immunotherapy using the tumor cells and infiltrating lymphocytes which were cryopreserved at -196 0 C in liquid nitrogen was investigated in female C3H/He mice inoculated MM46 tumor. Irradiation with the dose of 3,000 rads was performed on the sixth day. The tumor cells and lymphocytes which were separated from 2,000 rads-irradiated tumor tissue were frozen by the program freezer to be preserved at -196 0 C for two months and were thawed to inject into the tumor-bearing mice on the thirteenth day. Anti-tumor effect was evaluated by the regression of the tumor and survival curves. The remarkable regression of the tumor (p < 0.01) and significant elongation of the survival period (p < 0.1) were observed in the group which received the active specific immunotherapy using the cryopreserved tumor cells and lymphocytes as well as the group using the fresh tumor cells and lymphocytes prepared from a low-dose irradiated tumor tissue. (author)

  5. Control of Scar Tissue Formation in the Cornea: Strategies in Clinical and Corneal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Samantha L. Wilson

    2012-09-01

    Full Text Available Corneal structure is highly organized and unified in architecture with structural and functional integration which mediates transparency and vision. Disease and injury are the second most common cause of blindness affecting over 10 million people worldwide. Ninety percent of blindness is permanent due to scarring and vascularization. Scarring caused via fibrotic cellular responses, heals the tissue, but fails to restore transparency. Controlling keratocyte activation and differentiation are key for the inhibition and prevention of fibrosis. Ophthalmic surgery techniques are continually developing to preserve and restore vision but corneal regression and scarring are often detrimental side effects and long term continuous follow up studies are lacking or discouraging. Appropriate corneal models may lead to a reduced need for corneal transplantation as presently there are insufficient numbers or suitable tissue to meet demand. Synthetic optical materials are under development for keratoprothesis although clinical use is limited due to implantation complications and high rejection rates. Tissue engineered corneas offer an alternative which more closely mimic the morphological, physiological and biomechanical properties of native corneas. However, replication of the native collagen fiber organization and retaining the phenotype of stromal cells which prevent scar-like tissue formation remains a challenge. Careful manipulation of culture environments are under investigation to determine a suitable environment that simulates native ECM organization and stimulates keratocyte migration and generation.

  6. Balancing photosynthetic light-harvesting and light-utilization capacities in potato leaf tissue during acclimation to different growth temperatures

    Science.gov (United States)

    Steffen, K. L.; Wheeler, R. M.; Arora, R.; Palta, J. P.; Tibbitts, T. W.

    1995-01-01

    We investigated the effect of temperature during growth and development on the relationship between light-harvesting capacity, indicated by chlorophyll concentration, and light-utilization potential, indicated by light- and bicarbonate-saturated photosynthetic oxygen evolution, in Solanum tuberosum L. cv. Norland. Clonal plantlets were transplanted and grown at 20 degrees C for 2 weeks before transfer to 12, 16, 20, 24 and 28 degrees C for 6 weeks. After 4 weeks of the temperature treatments, leaf tissue fresh weights per area were one-third higher in plants grown at 12 degrees C vs those grown at 28 degrees C. Conversely, chlorophyll content per area in tissue grown at 12 degrees C was less than one-half of that of tissue grown at 28 degrees C at 4 weeks. Photosynthetic capacity measured at a common temperature of 20 degrees C and expressed on a chlorophyll basis was inversely proportional to growth temperature. Leaf tissue from plants grown at 12 degrees C for 4 weeks had photosynthetic rates that were 3-fold higher on a chlorophyll basis than comparable tissue from plants grown at 28 degrees C. These results suggest that the relationship between light-harvesting capacity and light-utilization potential varies 3-fold in response to the growth temperatures examined. The role of this response in avoidance of photoinhibition is discussed.

  7. Elevation of transforming growth factor beta (TGFbeta) and its downstream mediators in subcutaneous foreign body capsule tissue.

    Science.gov (United States)

    Li, Allen G; Quinn, Matthew J; Siddiqui, Yasmin; Wood, Michael D; Federiuk, Isaac F; Duman, Heather M; Ward, W Kenneth

    2007-08-01

    Foreign body encapsulation represents a chronic fibrotic response and has been a major obstacle that reduces the useful life of implanted biomedical devices. The precise mechanism underlying such an encapsulation is still unknown. We hypothesized that, considering its central role in many other fibrotic conditions, transforming growth factor beta (TGFbeta) may play an important role during the formation of foreign body capsule (FBC). In the present study, we implanted mock sensors in rats subcutaneously and excised FBC samples at day 7, 21, and 48-55 postimplantation. The most abundant TGFbeta isoform in all tissues was TGFbeta1, which was expressed minimally in control tissue. The expression of both TGFbeta1 RNA and protein was significantly increased in FBC tissues at all time points, with the highest level in day 7 FBC. The number of cells stained for phosphorylated Smad2, an indication of activated TGFbeta signaling, paralleled the expression of TGFbeta. A similar dynamic change was also observed in the numbers of FBC myofibroblasts, which in response to TGFbeta, differentiate from quiescent fibroblasts and synthesize collagen. Type I collagen, the most prominent downstream target of TGFbeta in fibrosis, was found in abundance in the FBC, especially during the latter time periods. We suggest that TGFbeta plays an important role in the FBC formation. Inhibition of TGFbeta signaling could be a promising strategy in the prevention of FBC formation, thereby extending the useful life of subcutaneous implants.

  8. Myocardial fibrosis and pro-fibrotic markers in end-stage heart failure patients during continuous-flow left ventricular assist device support

    NARCIS (Netherlands)

    Lok, Sjoukje I.; Nous, Fay M. A.; van Kuik, Joyce; van der Weide, Petra; Winkens, Bjorn; Kemperman, Hans; Huisman, Andre; Lahpor, Jaap R; de Weger, Roel A.; de Jonge, Nicolaas

    OBJECTIVES: During support with a left ventricular assist device (LVAD), partial reverse remodelling takes place in which fibrosis plays an important role. In this study, we analysed the histological changes and expression of fibrotic markers in patients with advanced heart failure (HF) during

  9. Identification of Two Novel Anti-Fibrotic Benzopyran Compounds Produced by Engineered Strains Derived from Streptomyces xiamenensis M1-94P that Originated from Deep-Sea Sediments

    Directory of Open Access Journals (Sweden)

    Lei Feng

    2013-10-01

    Full Text Available The benzopyran compound obtained by cultivating a mangrove-derived strain, Streptomyces xiamenensis strain 318, shows multiple biological effects, including anti-fibrotic and anti-hypertrophic scar properties. To increase the diversity in the structures of the available benzopyrans, by means of biosynthesis, the strain was screened for spontaneous rifampicin resistance (Rif, and a mutated rpsL gene to confer streptomycin resistance (Str, was introduced into the S. xiamenensis strain M1-94P that originated from deep-sea sediments. Two new benzopyran derivatives, named xiamenmycin C (1 and D (2, were isolated from the crude extracts of a selected Str-Rif double mutant (M6 of M1-94P. The structures of 1 and 2 were identified by analyzing extensive spectroscopic data. Compounds 1 and 2 both inhibit the proliferation of human lung fibroblasts (WI26, and 1 exhibits better anti-fibrotic activity than xiamenmycin. Our study presents the novel bioactive compounds isolated from S. xiamenensis mutant strain M6 constructed by ribosome engineering, which could be a useful approach in the discovery of new anti-fibrotic compounds.

  10. Fibrogenic Cell Plasticity Blunts Tissue Regeneration and Aggravates Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Patrizia Pessina

    2015-06-01

    Full Text Available Preservation of cell identity is necessary for homeostasis of most adult tissues. This process is challenged every time a tissue undergoes regeneration after stress or injury. In the lethal Duchenne muscular dystrophy (DMD, skeletal muscle regenerative capacity declines gradually as fibrosis increases. Using genetically engineered tracing mice, we demonstrate that, in dystrophic muscle, specialized cells of muscular, endothelial, and hematopoietic origins gain plasticity toward a fibrogenic fate via a TGFβ-mediated pathway. This results in loss of cellular identity and normal function, with deleterious consequences for regeneration. Furthermore, this fibrogenic process involves acquisition of a mesenchymal progenitor multipotent status, illustrating a link between fibrogenesis and gain of progenitor cell functions. As this plasticity also was observed in DMD patients, we propose that mesenchymal transitions impair regeneration and worsen diseases with a fibrotic component.

  11. Long-term follow-up of bronchus-associated lymphoid tissue lymphomas (BALTOMA)

    International Nuclear Information System (INIS)

    Gaffke, G.; Jost, D.; Stroszcynski, C.; Puls, R.; Schlecht, I.; Felix, R.; Ludwig, W.D.; Hosten, N.

    2002-01-01

    Purpose: The purpose of this work was to describe the findings and the long term follow up of pathologically confirmed bronchus-associated lymphoid tissue lymphoma (BALTOMA) in 6 patients. Methods: CT examinations and conventional radiological examinations were reviewed and compared to describe typical radiological findings and patterns of pulmonary manifestations. It were described the number of lesions and characteristics like presence of airspace consolidation, ground-glass attenuation, bubble-like radio-lucencies, air bronchogram, bronchial dilatation, Infiltration and the long term behaviour of the manifestations. Results: Lesions with a positive air bronchogram, no infiltration of extrapulmonary tissue or extrapulmonary manifestations were revealed as typical findings. Only a slow or no progression of disease was shown in most patients over a term of up to twelve years. Conclusions: The lymphoma of the bronchus-associated lymphoid tissue of the lung is a rare tumor. A positive air bronchogram, a multiplicity of disease, bilateral lesions, a fibrotic transformation of the lung tissue and no growth or only a slow groth over al long term of observation are typical radiological findings. (orig.) [de

  12. Anti-fibrotic efficacy of nintedanib in pulmonary fibrosis via the inhibition of fibrocyte activity.

    Science.gov (United States)

    Sato, Seidai; Shinohara, Shintaro; Hayashi, Shinya; Morizumi, Shun; Abe, Shuichi; Okazaki, Hiroyasu; Chen, Yanjuan; Goto, Hisatsugu; Aono, Yoshinori; Ogawa, Hirohisa; Koyama, Kazuya; Nishimura, Haruka; Kawano, Hiroshi; Toyoda, Yuko; Uehara, Hisanori; Nishioka, Yasuhiko

    2017-09-15

    Nintedanib, a tyrosine kinase inhibitor that is specific for platelet-derived growth factor receptors (PDGFR), fibroblast growth factor receptors (FGFR), and vascular endothelial growth factor receptors (VEGFR), has recently been approved for idiopathic pulmonary fibrosis. Fibrocytes are bone marrow-derived progenitor cells that produce growth factors and contribute to fibrogenesis in the lungs. However, the effects of nintedanib on the functions of fibrocytes remain unclear. Human monocytes were isolated from the peripheral blood of healthy volunteers. The expression of growth factors and their receptors in fibrocytes was analyzed using ELISA and Western blotting. The effects of nintedanib on the ability of fibrocytes to stimulate lung fibroblasts were examined in terms of their proliferation. The direct effects of nintedanib on the differentiation and migration of fibrocytes were also assessed. We investigated whether nintedanib affected the accumulation of fibrocytes in mouse lungs treated with bleomycin. Human fibrocytes produced PDGF, FGF2, and VEGF-A. Nintedanib and specific inhibitors for each growth factor receptor significantly inhibited the proliferation of lung fibroblasts stimulated by the supernatant of fibrocytes. Nintedanib inhibited the migration and differentiation of fibrocytes induced by growth factors in vitro. The number of fibrocytes in the bleomycin-induced lung fibrosis model was reduced by the administration of nintedanib, and this was associated with anti-fibrotic effects. These results support the role of fibrocytes as producers of and responders to growth factors, and suggest that the anti-fibrotic effects of nintedanib are at least partly mediated by suppression of fibrocyte function.

  13. Curcumin inhibits TGF-β1-induced connective tissue growth factor expression through the interruption of Smad2 signaling in human gingival fibroblasts.

    Science.gov (United States)

    Chen, Jung-Tsu; Wang, Chen-Ying; Chen, Min-Huey

    2018-01-13

    Many fibrotic processes are associated with an increased level of transforming growth factor-β1 (TGF-β1). TGF-β1 can increase synthesis of matrix proteins and enhance secretion of protease inhibitors, resulting in matrix accumulation. Connective tissue growth factor (CTGF) is a downstream profibrotic effector of TGF-β1 and is associated with the fibrosis in several human organs. Curcumin has been applied to reduce matrix accumulation in fibrotic diseases. This study was aimed to evaluate whether curcumin could suppress TGF-β1-induced CTGF expression and its related signaling pathway involving in this inhibitory action in primary human gingival fibroblasts. The differences in CTGF expression among three types of gingival overgrowth and normal gingival tissues were assessed by immunohistochemistry. Gingival fibroblast viability in cultured media with different concentrations of curcumin was studied by MTT assay. The effect of curcumin on TGF-β1-induced CTGF expression in primary human gingival fibroblasts was examined by immunoblotting. Moreover, the proteins involved in TGF-β1 signaling pathways including TGF-β1 receptors and Smad2 were also analyzed by immunoblotting. CTGF was highly expressed in fibroblasts, epithelial cells and some of endothelial cells, smooth muscle cells, and inflammatory cells in phenytoin-induced gingival overgrowth tissues rather than in those of hereditary and inflammatory gingival overgrowth tissues. Moreover, CTGF expression in the epithelial and connective tissue layers was higher in phenytoin-induced gingival overgrowth tissues than in normal gingival tissues. Curcumin was nontoxic and could reduce TGF-β1-induced CTGF expression by attenuating the phosphorylation and nuclear translocation of Smad2. Curcumin can suppress TGF-β1-induced CTGF expression through the interruption of Smad2 signaling. Copyright © 2018. Published by Elsevier B.V.

  14. Anti-fibrotic effects of Cuscuta chinensis with in vitro hepatic stellate cells and a thioacetamide-induced experimental rat model.

    Science.gov (United States)

    Kim, Jin Seoub; Koppula, Sushruta; Yum, Mun Jeong; Shin, Gwang Mo; Chae, Yun Jin; Hong, Seok Min; Lee, Jae Dong; Song, MinDong

    2017-12-01

    Cuscuta chinensis Lam. (Convolvulaceae) has been used as a traditional herbal remedy for treating liver and kidney disorders. Anti-fibrotic effects of C. chinensis extract (CCE) in cellular and experimental animal models were investigated. HSC-T6 cell viability, cell cycle and apoptosis were analysed using MTT assay, flow cytometry and Annexin V-FITC/PI staining techniques. Thioacetamide (TAA)-induced fibrosis model was established using Sprague Dawley rats (n = 10). Control, TAA, CCE 10 (TAA with CCE 10 mg/kg), CCE 100 (TAA with CCE 100 mg/kg) and silymarin (TAA with silymarin 50 mg/kg). Fibrosis was induced by TAA (200 mg/kg, i.p.) twice per week for 13 weeks. CCE and silymarin were administered orally two times per week from the 7th to 13th week. Fibrotic related gene expression (α-SMA, Col1α1 and TGF-β1) was measured by RT-PCR. Serum biomarkers, glutathione (GSH) and hydroxyproline were estimated by spectrophotometer using commercial kits. CCE (0.05 and 0.1 mg/mL) and silymarin (0.05 mg/mL) treatment significantly (p < 0.01 and p < 0.001) induced apoptosis (11.56%, 17.52% for CCE; 16.50% for silymarin, respectively) in activated HSC-T6 cells, compared with control group (7.26%). Further, rat primary HSCs showed changes in morphology with CCE 0.1 mg/mL treatment. In in vivo studies, CCE (10 and 100 mg/kg) treatment ameliorated the TAA-induced altered levels of serum biomarkers, fibrotic related gene expression, GSH, hydroxyproline significantly (p < 0.05-0.001) and rescued the histopathological changes. CCE can be developed as a potential agent in the treatment of hepatofibrosis.

  15. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins.

    Science.gov (United States)

    Halper, Jaroslava; Kjaer, Michael

    2014-01-01

    -elastic extracellular matrixes, and interact closely with tropoelastin and integrins. Not only do microfibrils provide structural integrity of specific organ systems, but they also provide a scaffold for elastogenesis in elastic tissues. Fibrillin is important for the assembly of elastin into elastic fibers. Mutations in the fibrillin-1 gene are closely associated with Marfan syndrome. Fibulins are tightly connected with basement membranes, elastic fibers and other components of extracellular matrix and participate in formation of elastic fibers. Tenascins are ECM polymorphic glycoproteins found in many connective tissues in the body. Their expression is regulated by mechanical stress both during development and in adulthood. Tenascins mediate both inflammatory and fibrotic processes to enable effective tissue repair and play roles in pathogenesis of Ehlers-Danlos, heart disease, and regeneration and recovery of musculo-tendinous tissue. One of the roles of thrombospondin 1 is activation of TGFβ. Increased expression of thrombospondin and TGFβ activity was observed in fibrotic skin disorders such as keloids and scleroderma. Cartilage oligomeric matrix protein (COMP) or thrombospondin-5 is primarily present in the cartilage. High levels of COMP are present in fibrotic scars and systemic sclerosis of the skin, and in tendon, especially with physical activity, loading and post-injury. It plays a role in vascular wall remodeling and has been found in atherosclerotic plaques as well.

  16. NAMPT-mediated NAD+ biosynthesis is indispensable for adipose tissue plasticity and development of obesity

    Directory of Open Access Journals (Sweden)

    Karen Nørgaard Nielsen

    2018-05-01

    Full Text Available Objective: The ability of adipose tissue to expand and contract in response to fluctuations in nutrient availability is essential for the maintenance of whole-body metabolic homeostasis. Given the nutrient scarcity that mammals faced for millions of years, programs involved in this adipose plasticity were likely evolved to be highly efficient in promoting lipid storage. Ironically, this previously advantageous feature may now represent a metabolic liability given the caloric excess of modern society. We speculate that nicotinamide adenine dinucleotide (NAD+ biosynthesis exemplifies this concept. Indeed NAD+/NADH metabolism in fat tissue has been previously linked with obesity, yet whether it plays a causal role in diet-induced adiposity is unknown. Here we investigated how the NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT supports adipose plasticity and the pathological progression to obesity. Methods: We utilized a newly generated Nampt loss-of-function model to investigate the tissue-specific and systemic metabolic consequences of adipose NAD+ deficiency. Energy expenditure, glycemic control, tissue structure, and gene expression were assessed in the contexts of a high dietary fat burden as well as the transition back to normal chow diet. Results: Fat-specific Nampt knockout (FANKO mice were completely resistant to high fat diet (HFD-induced obesity. This was driven in part by reduced food intake. Furthermore, HFD-fed FANKO mice were unable to undergo healthy expansion of adipose tissue mass, and adipose depots were rendered fibrotic with markedly reduced mitochondrial respiratory capacity. Yet, surprisingly, HFD-fed FANKO mice exhibited improved glucose tolerance compared to control littermates. Removing the HFD burden largely reversed adipose fibrosis and dysfunction in FANKO animals whereas the improved glucose tolerance persisted. Conclusions: These findings indicate that adipose NAMPT plays an essential role in

  17. Neuroinflammatory Mechanisms of Connective Tissue Fibrosis: Targeting Neurogenic and Mast Cell Contributions

    Science.gov (United States)

    Monument, Michael J.; Hart, David A.; Salo, Paul T.; Befus, A. Dean; Hildebrand, Kevin A.

    2015-01-01

    Significance: The pathogenesis of fibrogenic wound and connective tissue healing is complex and incompletely understood. Common observations across a vast array of human and animal models of fibroproliferative conditions suggest neuroinflammatory mechanisms are important upstream fibrogenic events. Recent Advances: As detailed in this review, mast cell hyperplasia is a common observation in fibrotic tissue. Recent investigations in human and preclinical models of hypertrophic wound healing and post-traumatic joint fibrosis provides evidence that fibrogenesis is governed by a maladaptive neuropeptide-mast cell-myofibroblast signaling pathway. Critical Issues: The blockade and manipulation of these factors is providing promising evidence that if timed correctly, the fibrogenic process can be appropriately regulated. Clinically, abnormal fibrogenic healing responses are not ubiquitous to all patients and the identification of those at-risk remains an area of priority. Future Directions: Ultimately, an integrated appreciation of the common pathobiology shared by many fibrogenic connective tissue conditions may provide a scientific framework to facilitate the development of novel antifibrotic prevention and treatment strategies. PMID:25785237

  18. Gene expression profiles associated with the presence of a fibrotic focus and the growth pattern in lymph node-negative breast cancer

    NARCIS (Netherlands)

    G. van den Eynden; M. Smid (Marcel); S.J. van Laere (Steven); C.G. Colpaert (Cecile); U.D. van Auwera; T.X. Bich; P. van Dam (Peter); M.A. den Bakker (Michael); L.Y. Dirix (Luc); E.A. van Marck (Eric); P.B. Vermeulen (Peter); J.A. Foekens (John)

    2008-01-01

    textabstractPurpose: A fibrotic focus, the scar-like area found in the center of an invasive breast tumor, is a prognostic parameter associated with an expansive growth pattern, hypoxia, and (lymph) angiogenesis. Little is known about the molecular pathways involved. Experimental Design: Sixty-five

  19. Box Isolation of Fibrotic Areas (BIFA): A Patient-Tailored Substrate Modification Approach for Ablation of Atrial Fibrillation.

    Science.gov (United States)

    Kottkamp, Hans; Berg, Jan; Bender, Roderich; Rieger, Andreas; Schreiber, Doreen

    2016-01-01

    Catheter ablation strategies beyond pulmonary vein isolation (PVI) for treatment of atrial fibrillation (AF) are less well defined. Increasing clinical data indicate that atrial fibrosis is a critical common left atrial (LA) substrate in AF patients (pts). We applied a new substrate modification concept according to the individual fibrotic substrate as estimated from electroanatomic voltage mapping (EAVM) in 41 pts undergoing catheter ablation of AF. First, EAVM during sinus rhythm was done in redo cases of 10 pts with paroxysmal AF despite durable PVI. Confluent low-voltage areas (LVA) were found in all pts and were targeted with circumferential isolation, so-called box isolation of fibrotic areas (BIFA). This strategy led to stable sinus rhythm in 9/10 pts and was transferred prospectively to first procedures of 31 pts with nonparoxysmal AF. In 13 pts (42%), no LVA (atrial tachycardia was achieved in 72.2% of pts and in 83.3% of pts with 1.17 procedures/patient. In approximately 40% of pts with nonparoxysmal AF, no substantial LVA were identified, and PVI alone showed high success rate. In pts with paroxysmal AF despite durable PVI and in approximately 60% of pts with nonparoxysmal AF, individually localized LVA were identified and could be targeted successfully with the BIFA strategy. © 2015 Wiley Periodicals, Inc.

  20. Deletion of nardilysin prevents the development of steatohepatitis and liver fibrotic changes.

    Directory of Open Access Journals (Sweden)

    Shoko Ishizu-Higashi

    Full Text Available Nonalcoholic steatohepatitis (NASH is an inflammatory form of nonalcoholic fatty liver disease that progresses to liver cirrhosis. It is still unknown how only limited patients with fatty liver develop NASH. Tumor necrosis factor (TNF-α is one of the key molecules in initiating the vicious circle of inflammations. Nardilysin (N-arginine dibasic convertase; Nrd1, a zinc metalloendopeptidase of the M16 family, enhances ectodomain shedding of TNF-α, resulting in the activation of inflammatory responses. In this study, we aimed to examine the role of Nrd1 in the development of NASH. Nrd1+/+ and Nrd1-/- mice were fed a control choline-supplemented amino acid-defined (CSAA diet or a choline-deficient amino acid-defined (CDAA diet. Fatty deposits were accumulated in the livers of both Nrd1+/+ and Nrd1-/- mice by the administration of the CSAA or CDAA diets, although the amount of liver triglyceride in Nrd1-/- mice was lower than that in Nrd1+/+ mice. Serum alanine aminotransferase levels were increased in Nrd1+/+ mice but not in Nrd1-/- mice fed the CDAA diet. mRNA expression of inflammatory cytokines were decreased in Nrd1-/- mice than in Nrd1+/+ mice fed the CDAA diet. While TNF-α protein was detected in both Nrd1+/+ and Nrd1-/- mouse livers fed the CDAA diet, secretion of TNF-α in Nrd1-/- mice was significantly less than that in Nrd1+/+ mice, indicating the decreased TNF-α shedding in Nrd1-/- mouse liver. Notably, fibrotic changes of the liver, accompanied by the increase of fibrogenic markers, were observed in Nrd1+/+ mice but not in Nrd1-/- mice fed the CDAA diet. Similar to the CDAA diet, fibrotic changes were not observed in Nrd1-/- mice fed a high-fat diet. Thus, deletion of nardilysin prevents the development of diet-induced steatohepatitis and liver fibrogenesis. Nardilysin could be an attractive target for anti-inflammatory therapy against NASH.

  1. Effect-independent measures of tissue response to fractionated radiation

    International Nuclear Information System (INIS)

    Thames, H.D.

    1984-01-01

    Tissue repair factors are measures of sparing from dose fractionation, in the absence of proliferation. A desirable feature of any repair factor is that it be independent of the level of injury induced in the tissue, since otherwise the comparison of tissues on the basis of the factor would not be meaningful. The repair factors F/sub R/ and F/sub rec/ are increasing functions of D/sub 1/, and depend on level of skin reaction after fractionated radiation. By contrast, β/α is effect-independent as a measure of repair capacity in skin, gut, and bone marrow. For late fibrotic reactions in the kidney, there was an increase in β/α with increased levels of injury that was statistically insignificant. The halftime, T/sub 1/2/, for intracellular repair processes in tissues is a measure of repair kinetics. Effect-independence is defend for T/sub 1/2/ as independence from size of dose per fraction. T/sub 1/2/ is independent of fraction size in skin, gut, and spinal cord, and is longer (1.5 hours) in the late-reacting tissues (lung and spinal cord) than in those that react acutely (less than 1 hour), with skin as the exception (1.3 hours). Therefore, early and late-responding normal tissues may be distinguished in terms of both repair capacity and repair kinetics: repair is slower in late-responding tissues, which are also more sensitive to changes in dose fractionation

  2. Multi-walled carbon nanotube-induced genotoxic, inflammatory and pro-fibrotic responses in mice: Investigating the mechanisms of pulmonary carcinogenesis

    DEFF Research Database (Denmark)

    Rahman, Luna; Jacobsen, Nicklas Raun; Aziz, Syed Abdul

    2017-01-01

    The International Agency for Research on Cancer has classified one type of multi-walled carbon nanotubes (MWCNTs) as possibly carcinogenic to humans. However, the underlying mechanisms of MWCNT- induced carcinogenicity are not known. In this study, the genotoxic, mutagenic, inflammatory, and fibr......The International Agency for Research on Cancer has classified one type of multi-walled carbon nanotubes (MWCNTs) as possibly carcinogenic to humans. However, the underlying mechanisms of MWCNT- induced carcinogenicity are not known. In this study, the genotoxic, mutagenic, inflammatory......, and fibrotic potential of MWCNTs were investigated. Muta™Mouse adult females were exposed to 36±6 or 109±18μg/mouse of Mitsui-7, or 26±2 or 78±5μg/mouse of NM-401, once a week for four consecutive weeks via intratracheal instillations, alongside vehicle-treated controls. Samples were collected 90days following...... extents. However, there was no evidence of DNA damage as measured by the comet assay following Mitsui-7 exposure, or increases in lacZ mutant frequency, for either MWCNTs. Increased p53 expression was observed in the fibrotic foci induced by both MWCNTs. Gene expression analysis revealed perturbations...

  3. Change in FVC and survival in chronic fibrotic hypersensitivity pneumonitis.

    Science.gov (United States)

    Gimenez, Andrea; Storrer, Karin; Kuranishi, Lilian; Soares, Maria Raquel; Ferreira, Rimarcs Gomes; Pereira, Carlos A C

    2018-04-01

    The predictive value of the decline in FVC by ≥10% on survival in patients with fibrotic hypersensitivity pneumonitis is unknown. Of 112 patients included, 66 (59%) had surgical lung biopsies. Patients with ≥10% decline in predicted FVC after 6-12 months had a significantly increased risk of all-cause mortality (median survival 53 months, 95% CI 37 to 69 vs 139 months, 95% CI 66 to 212 months, p=0.007). On multivariate analysis remained associated with increasing mortality: decline in FVC by ≥10% (HR 4.13, 95% CI 1.96 to 8.70, p=0.005), lower FVC% (HR 1.03, 95% CI 1.01 to 1.05, p=0.003) and with decreasing mortality improvement with antigen avoidance (HR 0.18, 95% CI 0.04 to 0.77, p=0.021). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Expanded polytetrafluoroethylene membrane alters tissue response to implanted Ahmed glaucoma valve.

    Science.gov (United States)

    DeCroos, Francis Char; Ahmad, Sameer; Kondo, Yuji; Chow, Jessica; Mordes, Daniel; Lee, Maria Regina; Asrani, Sanjay; Allingham, R Rand; Olbrich, Kevin C; Klitzman, Bruce

    2009-07-01

    Long-term intraocular pressure control by glaucoma drainage implants is compromised by the formation of an avascular fibrous capsule that surrounds the glaucoma implant and increases aqueous outflow resistance. It is possible to alter this fibrotic tissue reaction and produce a more vascularized and potentially more permeable capsule around implanted devices by enclosing them in a porous membrane. Ahmed glaucoma implants modified with an outer 5-microm pore size membrane (termed porous retrofitted implant with modified enclosure or PRIME-Ahmed) and unmodified glaucoma implants were implanted into paired rabbit eyes. After 6 weeks, the devices were explanted and subject to histological analysis. A tissue response containing minimal vascularization, negligible immune response, and a thick fibrous capsule surrounded the unmodified Ahmed glaucoma implant. In comparison, the tissue response around the PRIME-Ahmed demonstrated a thinner fibrous capsule (46.4 +/- 10.8 microm for PRIME-Ahmed versus 94.9 +/- 21.2 microm for control, p vascularized near the tissue-material interface. A prominent chronic inflammatory response was noted as well. Encapsulating the aqueous outflow pathway with a porous membrane produces a more vascular tissue response and thinner fibrous capsule compared with a standard glaucoma implant plate. Enhanced vascularity and a thinner fibrous capsule may reduce aqueous outflow resistance and improve long-term glaucoma implant performance.

  5. Utility Values for Advanced Soft Tissue Sarcoma Health States from the General Public in the United Kingdom

    Directory of Open Access Journals (Sweden)

    Julian F. Guest

    2013-01-01

    Full Text Available Soft tissue sarcomas are a rare type of cancer generally treated with palliative chemotherapy when in the advanced stage. There is a lack of published health utility data for locally advanced “inoperable”/metastatic disease (ASTS, essential for calculating the cost-effectiveness of current and future treatments. This study estimated time trade-off (TTO and standard gamble (SG preference values associated with four ASTS health states (progressive disease, stable disease, partial response, complete response among members of the general public in the UK (n=207. The four health states were associated with decreases in preference values from full health. Complete response was the most preferred health state (mean utility of 0.60 using TTO. The second most preferred health state was partial response followed by stable disease (mean utilities were 0.51 and 0.43, respectively, using TTO. The least preferred health state was progressive disease (mean utility of 0.30 using TTO. The utility value for each state was significantly different from one another (P<0.001. This study demonstrated and quantified the impact that different treatment responses may have on the health-related quality of life of patients with ASTS.

  6. Modification of polysaccharides: Pharmaceutical and tissue engineering applications with commercial utility (patents).

    Science.gov (United States)

    Malviya, Rishabha; Sharma, Pramod Kumar; Dubey, Susheel Kumar

    2016-11-01

    Polymer modifications open new era for the development of polymers with requisite properties. Use of modified polymers is practically boundless. Different studies focus on biomedical applications of chemically modified polysaccharides. Development and utilization of modified polysaccharides get attention to be used as carrier for pharmaceutical drug delivery as well as tissue engineering scaffolds. Grafted polymer shows better cellular regeneration, signal transmission, diagnostic and imaging material than putative form. This review article aims to discuss various approaches to modify naturally derived polymer and their applications as pharmaceutical drug carrier and as a material for wound dressing and artificial cartilage due to better biophysical cues. Manuscript included various patents based on the applications of modified polymers and techniques used to modify polymers. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Adipose tissue fibrosis in human cancer cachexia: the role of TGFβ pathway.

    Science.gov (United States)

    Alves, Michele Joana; Figuerêdo, Raquel Galvão; Azevedo, Flavia Figueiredo; Cavallaro, Diego Alexandre; Neto, Nelson Inácio Pinto; Lima, Joanna Darck Carola; Matos-Neto, Emidio; Radloff, Katrin; Riccardi, Daniela Mendes; Camargo, Rodolfo Gonzalez; De Alcântara, Paulo Sérgio Martins; Otoch, José Pinhata; Junior, Miguel Luiz Batista; Seelaender, Marília

    2017-03-14

    Cancer cachexia is a multifactorial syndrome that dramatically decreases survival. Loss of white adipose tissue (WAT) is one of the key characteristics of cachexia. WAT wasting is paralleled by microarchitectural remodeling in cachectic cancer patients. Fibrosis results from uncontrolled ECM synthesis, a process in which, transforming growth factor-beta (TGFβ) plays a pivotal role. So far, the mechanisms involved in adipose tissue (AT) re-arrangement, and the role of TGFβ in inducing AT remodeling in weight-losing cancer patients are poorly understood. This study examined the modulation of ECM components mediated by TGFβ pathway in fibrotic AT obtained from cachectic gastrointestinal cancer patients. After signing the informed consent form, patients were enrolled into the following groups: cancer cachexia (CC, n = 21), weight-stable cancer (WSC, n = 17), and control (n = 21). The total amount of collagen and elastic fibers in the subcutaneous AT was assessed by histological analysis and by immunohistochemistry. TGFβ isoforms expression was analyzed by Multiplex assay and by immunohistochemistry. Alpha-smooth muscle actin (αSMA), fibroblast-specific protein (FSP1), Smad3 and 4 were quantified by qPCR and/or by immunohistochemistry. Interleukin (IL) 2, IL5, IL8, IL13 and IL17 content, cytokines known to be associated with fibrosis, was measured by Multiplex assay. There was an accumulation of collagen and elastic fibers in the AT of CC, as compared with WSC and controls. Collagens type I, III, VI, and fibronectin expression was enhanced in the tissue of CC, compared with both WSC and control. The pronounced expression of αSMA in the surrounding of adipocytes, and the increased mRNA content for FSP1 (20-fold) indicate the presence of activated myofibroblasts; particularly in CC. TGFβ1 and TGFβ3 levels were up-regulated by cachexia in AT, as well in the isolated adipocytes. Smad3 and Smad4 labeling was found to be more evident in the fibrotic areas

  8. Bioprinting of Cartilage and Skin Tissue Analogs Utilizing a Novel Passive Mixing Unit Technique for Bioink Precellularization

    Science.gov (United States)

    Thayer, Patrick Scott; Orrhult, Linnea Stridh; Martínez, Héctor

    2018-01-01

    Bioprinting is a powerful technique for the rapid and reproducible fabrication of constructs for tissue engineering applications. In this study, both cartilage and skin analogs were fabricated after bioink pre-cellularization utilizing a novel passive mixing unit technique. This technique was developed with the aim to simplify the steps involved in the mixing of a cell suspension into a highly viscous bioink. The resolution of filaments deposited through bioprinting necessitates the assurance of uniformity in cell distribution prior to printing to avoid the deposition of regions without cells or retention of large cell clumps that can clog the needle. We demonstrate the ability to rapidly blend a cell suspension with a bioink prior to bioprinting of both cartilage and skin analogs. Both tissue analogs could be cultured for up to 4 weeks. Histological analysis demonstrated both cell viability and deposition of tissue specific extracellular matrix (ECM) markers such as glycosaminoglycans (GAGs) and collagen I respectively. PMID:29364216

  9. Tissue bionics: examples in biomimetic tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Green, David W [Bone and Joint Research Group, Developmental Origins of Health and Disease, General Hospital, University of Southampton, SO16 6YD (United Kingdom)], E-mail: Hindoostuart@googlemail.com

    2008-09-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic.

  10. Tissue bionics: examples in biomimetic tissue engineering

    International Nuclear Information System (INIS)

    Green, David W

    2008-01-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic

  11. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues.

    Science.gov (United States)

    Nassari, Sonya; Duprez, Delphine; Fournier-Thibault, Claire

    2017-01-01

    Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult.

  12. Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis.

    Science.gov (United States)

    Besschetnova, Tatiana Y; Ichimura, Takaharu; Katebi, Negin; St Croix, Brad; Bonventre, Joseph V; Olsen, Bjorn R

    2015-03-01

    It is well known that angiogenesis is linked to fibrotic processes in fibroproliferative diseases, but insights into pathophysiological processes are limited, due to lack of understanding of molecular mechanisms controlling endothelial and fibroblastic homeostasis. We demonstrate here that the matrix receptor anthrax toxin receptor 1 (ANTXR1), also known as tumor endothelial marker 8 (TEM8), is an essential component of these mechanisms. Loss of TEM8 function in mice causes reduced synthesis of endothelial basement membrane components and hyperproliferative and leaky blood vessels in skin. In addition, endothelial cell alterations in mutants are almost identical to those of endothelial cells in infantile hemangioma lesions, including activated VEGF receptor signaling in endothelial cells, increased expression of the downstream targets VEGF and CXCL12, and increased numbers of macrophages and mast cells. In contrast, loss of TEM8 in fibroblasts leads to increased rates of synthesis of fiber-forming collagens, resulting in progressive fibrosis in skin and other organs. Compromised interactions between TEM8-deficient endothelial and fibroblastic cells cause dramatic reduction in the activity of the matrix-degrading enzyme MMP2. In addition to insights into mechanisms of connective tissue homeostasis, our data provide molecular explanations for vascular and connective tissue abnormalities in GAPO syndrome, caused by loss-of-function mutations in ANTXR1. Furthermore, the loss of MMP2 activity suggests that fibrotic skin abnormalities in GAPO syndrome are, in part, the consequence of pathophysiological mechanisms underlying syndromes (NAO, Torg and Winchester) with multicentric skin nodulosis and osteolysis caused by homozygous loss-of-function mutations in MMP2. Copyright © 2014 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  13. Effects of heat stress on dynamic absorption process, tissue distribution and utilization efficiency of vitamin C in broilers

    International Nuclear Information System (INIS)

    Liu Guohua; Chen Guosheng; Cai Huiyi

    1998-01-01

    The experiment was conducted to determine the effects of heat stress on ascorbic acid nutritional physiology of broilers with radioisotope technology. 3 H-Vc was fed to broilers and then the blood, liver, kidney, breast muscle, and excreta were sampled to determine the dynamic absorption process, the tissue distribution and the utilization efficiency of vitamin C. The results indicated that the absorption, metabolism and mobilization of supplemented vitamin C in broilers with heat stress was faster than that in broilers without heat stress. However, the utilization efficiency of supplemented vitamin C in broilers with heat stress was not higher than that of broilers without heat stress

  14. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy.

    Science.gov (United States)

    Hasan, Anwarul; Waters, Renae; Roula, Boustany; Dana, Rahbani; Yara, Seif; Alexandre, Toubia; Paul, Arghya

    2016-07-01

    Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Atrial remodeling and metabolic dysfunction in idiopathic isolated fibrotic atrial cardiomyopathy.

    Science.gov (United States)

    Cui, Chang; Jiang, Xiaohong; Ju, Weizhu; Wang, Jiaxian; Wang, Daowu; Sun, Zheng; Chen, Minglong

    2018-04-26

    Idiopathic isolated fibrotic atrial cardiomyopathy (IIF-ACM) is a novel subtype of cardiomyopathy characterized by atrial fibrosis that does not involve the ventricular myocardium and is associated with significant atrial tachyarrhythmia. The mechanisms underlying its pathogenesis are unknown. Atrium samples were obtained from 3 patients with IIF-ACM via surgical intervention. Control samples were consisted of 3 atrium biopsies from patients with congenital heart disease and normal sinus rhythm, matched for gender, age and basic clinical characteristics. Comparative histology, immunofluorescence staining, electron microscopy and proteomics analyses were carried out to explore the unique pathogenesis of IIF-ACM. IIF-ACM atria displayed disordered myofibrils, profound fibrosis and mitochondrial damages compared to the control atria. Proteomics profiling identified metabolic pathways as the most profound changes in IIF-ACM. Our study suggested that metabolic changes in the atrial myocardium caused mitochondrial oxidative stress and potential cell damage, which further led to atrial fibrosis and myofibril disorganization, the characteristic phenotype of IIF-ACM. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effect-independent measures of tissue responses to fractionated irradiation

    International Nuclear Information System (INIS)

    Thames, H.D. Jr.

    1984-01-01

    Tissue repair factors measure the sparing that can be achieved from dose fractionation in the absence of proliferation. Four repair factors are analysed in these terms: Fsub(R),Fsub(rec), the ratio of linear-quadratic survival model parameters β/α and the half-time Tsub(1/2) for intracellular repair processes. Theoretically, Fsub(R) and Fsub(rec) are increasing functions of D 1 , and thus depend on level of effect. This is confirmed by analysis of skin reactions after multifractionated radiation. By contrast, β/α is effect-independent as a measure of repair capacity in skin, gut, and bone marrow, tissues for which it is reasonable to assume that survival of identifiable target cells is the primary determinant of the endpoint. For a functional endpoint not clearly connected with the depletion of a specific target-cell population (late fibrotic reactions in the kidney), there was an increase in β/α with increased levels of injury, but this was statistically insignificant. Tsub(1/2) is independent of fraction size in skin, gut, and spinal cord, and is longer (1.5 hours) in the late-reacting tissues (lung and spinal cord) than in those that react acutely (Tsub(1/2) less than 1 hour), with skin as the exception (Tsub(1/2) approx. 1.3 hours). (author)

  17. Detection of hydroxyapatite in calcified cardiovascular tissues.

    Science.gov (United States)

    Lee, Jae Sam; Morrisett, Joel D; Tung, Ching-Hsuan

    2012-10-01

    The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. The anti-fibrotic agent pirfenidone synergizes with cisplatin in killing tumor cells and cancer-associated fibroblasts

    International Nuclear Information System (INIS)

    Mediavilla-Varela, Melanie; Boateng, Kingsley; Noyes, David; Antonia, Scott J.

    2016-01-01

    Anti-fibrotic drugs such as pirfenidone have been developed for the treatment of idiopathic pulmonary fibrosis. Because activated fibroblasts in inflammatory conditions have similar characteristics as cancer-associated fibroblasts (CAFs) and CAFs contribute actively to the malignant phenotype, we believe that anti-fibrotic drugs have the potential to be repurposed as anti-cancer drugs. The effects of pirfenidone alone and in combination with cisplatin on human patient-derived CAF cell lines and non-small cell lung cancer (NSCLC) cell lines were examined. The impact on cell death in vitro as well as tumor growth in a mouse model was determined. Annexin V/PI staining and Western blot analysis were used to characterize cell death. Synergy was assessed with the combination index method using Calcusyn software. Pirfenidone alone induced apoptotic cell death in lung CAFs at a high concentration (1.5 mg/mL). However, co-culture in vitro experiments and co-implantation in vivo experiments showed that the combination of low doses of cisplatin (10 μM) and low doses of pirfenidone (0.5 mg/mL), in both CAFs and tumors, lead to increased cell death and decreased tumor progression, respectively. Furthermore, the combination of cisplatin and pirfenidone in NSCLC cells (A549 and H157 cells) leads to increased apoptosis and synergistic cell death. Our studies reveal for the first time that the combination of cisplatin and pirfenidone is active in preclinical models of NSCLC and therefore may be a new therapeutic approach in this disease. The online version of this article (doi:10.1186/s12885-016-2162-z) contains supplementary material, which is available to authorized users

  19. Bone marrow-derived mesenchymal stem cells effectively regenerate fibrotic liver in bile duct ligation rat model.

    Science.gov (United States)

    Mohamed, Hoda E; Elswefy, Sahar E; Rashed, Laila A; Younis, Nahla N; Shaheen, Mohamed A; Ghanim, Amal M H

    2016-03-01

    Mesenchymal stem cells (MSCs) have attracted lots of attention for the treatment of acute liver failure and end-stage liver diseases. This study aimed at investigating the fundamental mechanism by which bone marrow-derived MSCs (BM-MSCs) induce liver regeneration of fibrotic liver in rats. Rats underwent bile duct ligation (BDL) surgery and four weeks later they were treated with either BM-MSCs (3 × 10(6) cells /rat, once, tail vein injection) or silymarin (100 mg/kg, daily, orally) for four weeks. Liver function tests and hepatic oxidative stress were determined. Hepatic injury and fibrosis were assessed by H and E, Sirus red staining and immunohistochemical expression of α-smooth muscle actin (α-SMA). Hepatocyte growth factor (HGF) and the gene expression of cytokeratin-19 (CK-19) and matrix metalloproteinase-2 (MMP-2) in liver tissue were determined. BDL induced cholestatic liver injury characterized by elevated ALT and AST activities, bilirubin and decreased albumin. The architecture damage was staged as Metavir score: F3, A3. Fibrosis increased around proliferating bile duct as indicated by sirus red staining and α-SMA immunostaining. Fibrogenesis was favored over fibrolysis and confirmed by decreased HGF with increased expression of CK-19, but decreased MMP-2 expression. BM-MSCs treatment restored deteriorated liver functions and restored the histological changes, resolved fibrosis by improving liver regenerative capabilities (P liver regenerative capabilities can be stimulated by BM-MSCs via augmentation of HGF that subsequently up-regulate MMP-2 mRNA while downregulating CK-19 mRNA. © 2016 by the Society for Experimental Biology and Medicine.

  20. Epithelial-Mesenchymal Transition in Tissue Repair and Fibrosis

    Science.gov (United States)

    Stone, Rivka C.; Pastar, Irena; Ojeh, Nkemcho; Chen, Vivien; Liu, Sophia; Garzon, Karen I.; Tomic-Canic, Marjana

    2016-01-01

    Epithelial-mesenchymal transition (EMT) describes the global process by which stationary epithelial cells undergo phenotypic changes, including loss of cell-cell adhesion and apical-basal polarity, and acquire mesenchymal characteristics which confer migratory capacity. EMT and its converse, MET (mesenchymal-to-epithelial transition), are integral stages of many physiologic processes, and as such are tightly coordinated by a host of molecular regulators. Converging lines of evidence have identified EMT as a component of cutaneous wound healing, during which otherwise stationary keratinocytes - the resident skin epithelial cells - migrate across the wound bed to restore the epidermal barrier. Moreover, EMT also plays a role in the development of scarring and fibrosis, as the matrix-producing myofibroblast arises from cells of epithelial lineage in response to injury but is pathologically sustained instead of undergoing MET or apoptosis. In this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues and organs. We conclude that further investigation into the contribution of EMT to the impaired repair of fibrotic wounds may identify components of EMT signaling as common therapeutic targets for impaired healing in many tissues. PMID:27461257

  1. Regeneration of soft tissues is promoted by MMP1 treatment after digit amputation in mice.

    Directory of Open Access Journals (Sweden)

    Xiaodong Mu

    Full Text Available The ratio of matrix metalloproteinases (MMPs to the tissue inhibitors of metalloproteinases (TIMPs in wounded tissues strictly control the protease activity of MMPs, and therefore regulate the progress of wound closure, tissue regeneration and scar formation. Some amphibians (i.e. axolotl/newt demonstrate complete regeneration of missing or wounded digits and even limbs; MMPs play a critical role during amphibian regeneration. Conversely, mammalian wound healing re-establishes tissue integrity, but at the expense of scar tissue formation. The differences between amphibian regeneration and mammalian wound healing can be attributed to the greater ratio of MMPs to TIMPs in amphibian tissue. Previous studies have demonstrated the ability of MMP1 to effectively promote skeletal muscle regeneration by favoring extracellular matrix (ECM remodeling to enhance cell proliferation and migration. In this study, MMP1 was administered to the digits amputated at the mid-second phalanx of adult mice to observe its effect on digit regeneration. Results indicated that the regeneration of soft tissue and the rate of wound closure were significantly improved by MMP1 administration, but the elongation of the skeletal tissue was insignificantly affected. During digit regeneration, more mutipotent progenitor cells, capillary vasculature and neuromuscular-related tissues were observed in MMP1 treated tissues; moreover, there was less fibrotic tissue formed in treated digits. In summary, MMP1 was found to be effective in promoting wound healing in amputated digits of adult mice.

  2. Skin-Tissue-sparing Excision with Electrosurgical Peeling (STEEP): a surgical treatment option for severe hidradenitis suppurativa Hurley stage II/III.

    Science.gov (United States)

    Blok, J L; Spoo, J R; Leeman, F W J; Jonkman, M F; Horváth, B

    2015-02-01

    Surgery is the only curative treatment for removal of the persistent sinus tracts in the skin that are characteristic of severe hidradenitis suppurativa (HS). Complete resection of the affected tissue by wide excision is currently regarded as the preferred surgical technique in these cases. However, relatively large amounts of healthy tissue are removed with this method and suitable skin-tissue-saving techniques aiming at creating less-extensive surgical defects are therefore needed in severe HS. We describe a skin-tissue-saving surgical technique for HS Hurley stage II-III disease: the Skin-Tissue-sparing Excision with Electrosurgical Peeling (STEEP) procedure. In contrast to wide excisions that generally reach into the deep subcutaneous fat, the fat is maximally spared with the STEEP procedure by performing successive tangential excisions of lesional tissue until the epithelialized bottom of the sinus tracts has been reached. From here, secondary intention healing can occur. In addition, fibrotic tissue is completely removed in the same manner as this also serves as a source of recurrence. This tissue-sparing technique results in low recurrence rates, high patient satisfaction with relatively short healing times and favourable cosmetic outcomes without contractures. © 2014 European Academy of Dermatology and Venereology.

  3. Tissue Inhibitor of Matrix Metalloproteinase-1 Promotes Myocardial Fibrosis by Mediating CD63-Integrin β1 Interaction.

    Science.gov (United States)

    Takawale, Abhijit; Zhang, Pu; Patel, Vaibhav B; Wang, Xiuhua; Oudit, Gavin; Kassiri, Zamaneh

    2017-06-01

    Myocardial fibrosis is excess accumulation of the extracellular matrix fibrillar collagens. Fibrosis is a key feature of various cardiomyopathies and compromises cardiac systolic and diastolic performance. TIMP1 (tissue inhibitor of metalloproteinase-1) is consistently upregulated in myocardial fibrosis and is used as a marker of fibrosis. However, it remains to be determined whether TIMP1 promotes tissue fibrosis by inhibiting extracellular matrix degradation by matrix metalloproteinases or via an matrix metalloproteinase-independent pathway. We examined the function of TIMP1 in myocardial fibrosis using Timp1 -deficient mice and 2 in vivo models of myocardial fibrosis (angiotensin II infusion and cardiac pressure overload), in vitro analysis of adult cardiac fibroblasts, and fibrotic myocardium from patients with dilated cardiomyopathy (DCM). Timp1 deficiency significantly reduced myocardial fibrosis in both in vivo models of cardiomyopathy. We identified a novel mechanism for TIMP1 action whereby, independent from its matrix metalloproteinase-inhibitory function, it mediates an association between CD63 (cell surface receptor for TIMP1) and integrin β1 on cardiac fibroblasts, initiates activation and nuclear translocation of Smad2/3 and β-catenin, leading to de novo collagen synthesis. This mechanism was consistently observed in vivo, in cultured cardiac fibroblasts, and in human fibrotic myocardium. In addition, after long-term pressure overload, Timp1 deficiency persistently reduced myocardial fibrosis and ameliorated diastolic dysfunction. This study defines a novel matrix metalloproteinase-independent function of TIMP1 in promoting myocardial fibrosis. As such targeting TIMP1 could prove to be a valuable approach in developing antifibrosis therapies. © 2017 American Heart Association, Inc.

  4. Proteolytic processing of connective tissue growth factor in normal ocular tissues and during corneal wound healing.

    Science.gov (United States)

    Robinson, Paulette M; Smith, Tyler S; Patel, Dilan; Dave, Meera; Lewin, Alfred S; Pi, Liya; Scott, Edward W; Tuli, Sonal S; Schultz, Gregory S

    2012-12-13

    Connective tissue growth factor (CTGF) is a fibrogenic cytokine that is up-regulated by TGF-β and mediates most key fibrotic actions of TGF-β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. This study addresses the role of proteolytic processing of CTGF in human corneal fibroblasts (HCF) stimulated with TGF-β, normal ocular tissues and wounded corneas. Proteolytic processing of CTGF in HCF cultures, normal animal eyes, and excimer laser wounded rat corneas were examined by Western blot. The identity of a 21-kDa band was determined by tandem mass spectrometry, and possible alternative splice variants of CTGF were assessed by 5' Rapid Amplification of cDNA Ends (RACE). HCF stimulated by TGF-β contained full length 38-kDa CTGF and fragments of 25, 21, 18, and 13 kDa, while conditioned medium contained full length 38- and a 21-kDa fragment of CTGF that contained the middle "hinge" region of CTGF. Fragmentation of recombinant CTGF incubated in HCF extracts was blocked by the aspartate protease inhibitor, pepstatin. Normal mouse, rat, and rabbit whole eyes and rabbit ocular tissues contained abundant amounts of C-terminal 25- and 21-kDa fragments and trace amounts of 38-kDa CTGF, although no alternative transcripts were detected. All forms of CTGF (38, 25, and 21 kDa) were detected during healing of excimer ablated rat corneas, peaking on day 11. Proteolytic processing of 38-kDa CTGF occurs during corneal wound healing, which may have important implications in regulation of corneal scar formation.

  5. Erhuang Formula ameliorates renal damage in adenine-induced chronic renal failure rats via inhibiting inflammatory and fibrotic responses.

    Science.gov (United States)

    Zhang, Chun-Yan; Zhu, Jian-Yong; Ye, Ying; Zhang, Miao; Zhang, Li-Jun; Wang, Su-Juan; Song, Ya-Nan; Zhang, Hong

    2017-11-01

    The present study aimed to evaluate the protective effects of Erhuang Formula (EHF) and explore its pharmacological mechanisms on adenine-induced chronic renal failure (CRF). The compounds in EHF were analyzed by HPLC/MS. Adenine-induced CRF rats were administrated by EHF. The effects were evaluated by renal function examination and histology staining. Immunostaining of some proteins related cell adhesion was performedin renal tissues, including E-cadherin, β-catenin, fibronectin and laminin. The qRT-PCR was carried out determination of gene expression related inflammation and fibrosis including NF-κB, TNF-α, TGF-β1, α-SMA and osteopontin (OPN). Ten compounds in EHF were identified including liquiritigenin, farnesene, vaccarin, pachymic acid, cycloastragenol, astilbin, 3,5,6,7,8,3',4'-heptemthoxyflavone, physcion, emodin and curzerene. Abnormal renal function and histology had significant improvements by EHF treatment. The protein expression of β-catenin, fibronectin and laminin were significantly increased and the protein expression of E-cadherin significantly decreased in CRF groups. However, these protein expressions were restored to normal levels in EHF group. Furthermore, low expression of PPARγ and high expression of NF-κB, TNF-α, TGF-β1, α-SMA and OPN were substantially restored by EHF treatment in a dose-dependent manner. EHF ameliorated renal damage in adenine-induced CRF rats, and the mechanisms might involve in the inhibition of inflammatory and fibrotic responses and the regulation of PPARγ, NF-κB and TGF-β signaling pathways. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Plasma CCN2/connective tissue growth factor is associated with right ventricular dysfunction in patients with neuroendocrine tumors

    Directory of Open Access Journals (Sweden)

    Aakhus Svend

    2010-01-01

    Full Text Available Abstract Background Carcinoid heart disease, a known complication of neuroendocrine tumors, is characterized by right heart fibrotic lesions. Carcinoid heart disease has traditionally been defined by the degree of valvular involvement. Right ventricular (RV dysfunction due to mural involvement may also be a manifestation. Connective tissue growth factor (CCN2 is elevated in many fibrotic disorders. Its role in carcinoid heart disease is unknown. We sought to investigate the relationship between plasma CCN2 and valvular and mural involvement in carcinoid heart disease. Methods Echocardiography was performed in 69 patients with neuroendocrine tumors. RV function was assessed using tissue Doppler analysis of myocardial systolic strain. Plasma CCN2 was analyzed using an enzyme-linked immunosorbent assay. Mann-Whitney U, Kruskal-Wallis, Chi-squared and Fisher's exact tests were used to compare groups where appropriate. Linear regression was used to evaluate correlation. Results Mean strain was -21% ± 5. Thirty-three patients had reduced RV function (strain > -20%, mean -16% ± 3. Of these, 8 had no or minimal tricuspid and/or pulmonary regurgitation (TR/PR. Thirty-six patients had normal or mildly reduced RV function (strain ≤ -20%, mean -25% ± 3. There was a significant inverse correlation between RV function and plasma CCN2 levels (r = 0.47, p Conclusions Elevated plasma CCN2 levels are associated with RV dysfunction and valvular regurgitation in NET patients. CCN2 may play a role in neuroendocrine tumor-related cardiac fibrosis and may serve as a marker of its earliest stages.

  7. RNA sequencing reveals a depletion of collagen targeting microRNAs in Dupuytren's disease

    NARCIS (Netherlands)

    Riester, Scott M.; Arsoy, Diren; Camilleri, Emily T.; Dudakovic, Amel; Paradise, Christopher R.; Evans, Jared M.; Torres-Mora, Jorge; Rizzo, Marco; Kloen, Peter; Julio, Marianna Kruithof-de; van Wijnen, Andre J.; Kakar, Sanjeev

    2015-01-01

    Dupuytren's disease is an inherited disorder in which patients develop fibrotic contractures of the hand. Current treatment strategies include surgical excision or enzymatic digestion of fibrotic tissue. MicroRNAs, which are key posttranscriptional regulators of genes expression, have been shown to

  8. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  9. Non-invasive measurement and imaging of tissue iron oxide nanoparticle concentrations in vivo using proton relaxometry

    International Nuclear Information System (INIS)

    St Pierre, T G; Clark, P R; Chua-anusorn, W; Fleming, A; Pardoe, H; Jeffrey, G P; Olynyk, J K; Pootrakul, P; Jones, S; Moroz, P

    2005-01-01

    Magnetic nanoparticles and microparticles can be found in biological tissues for a variety of reasons including pathological deposition of biogenic particles, administration of synthetic particles for scientific or clinical reasons, and the inclusion of biogenic magnetic particles for the sensing of the geomagnetic field. In applied magnetic fields, the magnetisation of tissue protons can be manipulated with radiofrequency radiation such that the macroscopic magnetisation of the protons precesses freely in the plane perpendicular to the applied static field. The presence of magnetic particles within tissue enhances the rate of dephasing of proton precession with higher concentrations of particles resulting in higher dephasing rates. Magnetic resonance imaging instruments can be used to measure and image the rate of decay of spin echo recoverable proton transverse magnetisation (R 2 ) within tissues enabling the measurement and imaging of magnetic particle concentrations with the aid of suitable calibration curves. Applications include the non-invasive measurement of liver iron concentrations in iron-overload disorders and measurement and imaging of magnetic particle concentrations used in magnetic hyperthermia therapy. Future applications may include the tracking of magnetically labelled drugs or biomolecules and the measurement of fibrotic liver damage

  10. Plant tissue culture techniques

    Directory of Open Access Journals (Sweden)

    Rolf Dieter Illg

    1991-01-01

    Full Text Available Plant cell and tissue culture in a simple fashion refers to techniques which utilize either single plant cells, groups of unorganized cells (callus or organized tissues or organs put in culture, under controlled sterile conditions.

  11. Interferon-γ production by tubulointerstitial human CD56bright natural killer cells contributes to renal fibrosis and chronic kidney disease progression.

    Science.gov (United States)

    Law, Becker M P; Wilkinson, Ray; Wang, Xiangju; Kildey, Katrina; Lindner, Mae; Rist, Melissa J; Beagley, Kenneth; Healy, Helen; Kassianos, Andrew J

    2017-07-01

    Natural killer (NK) cells are a population of lymphoid cells that play a significant role in mediating innate immune responses. Studies in mice suggest a pathological role for NK cells in models of kidney disease. In this study, we characterized the NK cell subsets present in native kidneys of patients with tubulointerstitial fibrosis, the pathological hallmark of chronic kidney disease. Significantly higher numbers of total NK cells (CD3 - CD56 + ) were detected in renal biopsies with tubulointerstitial fibrosis compared with diseased biopsies without fibrosis and healthy kidney tissue using multi-color flow cytometry. At a subset level, both the CD56 dim NK cell subset and particularly the CD56 bright NK cell subset were elevated in fibrotic kidney tissue. However, only CD56 bright NK cells significantly correlated with the loss of kidney function. Expression of the tissue-retention and -activation molecule CD69 on CD56 bright NK cells was significantly increased in fibrotic biopsy specimens compared with non-fibrotic kidney tissue, indicative of a pathogenic phenotype. Further flow cytometric phenotyping revealed selective co-expression of activating receptor CD335 (NKp46) and differentiation marker CD117 (c-kit) on CD56 bright NK cells. Multi-color immunofluorescent staining of fibrotic kidney tissue localized the accumulation of NK cells within the tubulointerstitium, with CD56 bright NK cells (NKp46 + CD117 + ) identified as the source of pro-inflammatory cytokine interferon-γ within the NK cell compartment. Thus, activated interferon-γ-producing CD56 bright NK cells are positioned to play a key role in the fibrotic process and progression to chronic kidney disease. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  12. OM-101 Decreases the Fibrotic Response Associated with Proliferative Vitreoretinopathy

    Science.gov (United States)

    Dvashi, Zeev; Ben-Yaakov, Keren; Weinberg, Tamir; Greenwald, Yoel

    2017-01-01

    Purpose This study aimed to investigate the effect of OM-101 on the fibrotic response occurring in proliferative vitreoretinopathy (PVR) in an animal model. Methods Antifibrotic effect of OM-101 was investigated in vivo. As control, eight weeks old c57black mice underwent intravitreal injection with Hepes (group A) or dispase (0.3 units), to induce retinal detachment (RD) and PVR. The dispase-injected mice were randomly divided into two groups B and C (N = 25 mice); in group C, the eyes were treated with intravitreal injection of OM-101 (3 μl), and group B with PBS, as a control. After additional five days, mice were injected with the same initial treatment. Three days later, mice were euthanized, and the eyes were enucleated and processed for histological analysis. Results Intravitreal injection of dispase caused RD in 64% of the mice in group B, and 93% of those mice had PVR. Only 32% of mice treated with OM-101 and dispase (group C) developed RD, and only 25% of those developed PVR. Conclusions OM-101 was found effective in reducing the incidence of RD and PVR maintaining the normal architecture of the retina. This study suggests that OM-101 is a potentially effective and safe drug for the treatment of PVR patients. PMID:29109865

  13. Fibrotic Venous Remodeling and Nonmaturation of Arteriovenous Fistulas.

    Science.gov (United States)

    Martinez, Laisel; Duque, Juan C; Tabbara, Marwan; Paez, Angela; Selman, Guillermo; Hernandez, Diana R; Sundberg, Chad A; Tey, Jason Chieh Sheng; Shiu, Yan-Ting; Cheung, Alfred K; Allon, Michael; Velazquez, Omaida C; Salman, Loay H; Vazquez-Padron, Roberto I

    2018-03-01

    The frequency of primary failure in arteriovenous fistulas (AVFs) remains unacceptably high. This lack of improvement is due in part to a poor understanding of the pathobiology underlying AVF nonmaturation. This observational study quantified the progression of three vascular features, medial fibrosis, intimal hyperplasia (IH), and collagen fiber organization, during early AVF remodeling and evaluated the associations thereof with AVF nonmaturation. We obtained venous samples from patients undergoing two-stage upper-arm AVF surgeries at a single center, including intraoperative veins at the first-stage access creation surgery and AVFs at the second-stage transposition procedure. Paired venous samples from both stages were used to evaluate change in these vascular features after anastomosis. Anatomic nonmaturation (AVF diameter never ≥6 mm) occurred in 39 of 161 (24%) patients. Neither preexisting fibrosis nor IH predicted AVF outcomes. Postoperative medial fibrosis associated with nonmaturation (odds ratio [OR], 1.55; 95% confidence interval [95% CI], 1.05 to 2.30; P =0.03, per 10% absolute increase in fibrosis), whereas postoperative IH only associated with failure in those individuals with medial fibrosis over the population's median value (OR, 2.63; 95% CI, 1.07 to 6.46; P =0.04, per increase of 1 in the intima/media ratio). Analysis of postoperative medial collagen organization revealed that circumferential alignment of fibers around the lumen associated with AVF nonmaturation (OR, 1.38; 95% CI, 1.03 to 1.84; P =0.03, per 10° increase in angle). This study demonstrates that excessive fibrotic remodeling of the vein after AVF creation is an important risk factor for nonmaturation and that high medial fibrosis determines the stenotic potential of IH. Copyright © 2018 by the American Society of Nephrology.

  14. Preoperative chemotherapy of bone and soft tissue sarcomas. Evaluation with dynamic MR imaging

    International Nuclear Information System (INIS)

    Ando, Yoko; Fukatsu, Hiroshi; Isomura, Takayuki; Itoh, Shigeki; Ishigaki, Takeo; Yamamura, Shigeki; Sugiura, Hideshi; Satoh, Keiji.

    1995-01-01

    Dynamic MR imaging and conventional angiography were performed in eleven patients with musculoskeletal malignant tumors before and after preoperative chemotherapy in order to evaluate its effect. Dynamic MRI was obtained with GRASS (TR/TE/FA=50/10-13/30) or SE (TR/TE=150-350/20). Although resected specimen in one case of osteosarcoma had the necrotic ratio of more than 90%, it had marked early enhancement in dynamic MRI, and microscopic examination revealed fibrotic necrosis with many capillaries. In soft tissue sarcomas with hemorrhage and/or cystic change, dynamic MRI findings did not necessarily correlate with the chemotherapy effect. Dynamic MRI was more useful than angiography because of its ability to show tumor vascularity and of its non-invasiveness. (author)

  15. A simple indentation device for measuring micrometer-scale tissue stiffness

    Energy Technology Data Exchange (ETDEWEB)

    Levental, I; Levental, K R; Janmey, P A [Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104 (United States); Klein, E A; Assoian, R [Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Miller, R T [Departments of Medicine and Physiology, Louis Stokes VAMC, Cleveland, OH (United States); Wells, R G, E-mail: janmey@mail.med.upenn.ed [Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2010-05-19

    Mechanical properties of cells and extracellular matrices are critical determinants of function in contexts including oncogenic transformation, neuronal synapse formation, hepatic fibrosis and stem cell differentiation. The size and heterogeneity of biological specimens and the importance of measuring their mechanical properties under conditions that resemble their environments in vivo present a challenge for quantitative measurement. Centimeter-scale tissue samples can be measured by commercial instruments, whereas properties at the subcellular (nm) scale are accessible by atomic force microscopy, optical trapping, or magnetic bead microrheometry; however many tissues are heterogeneous on a length scale between micrometers and millimeters which is not accessible to most current instrumentation. The device described here combines two commercially available technologies, a micronewton resolution force probe and a micromanipulator for probing soft biological samples at sub-millimeter spatial resolution. Several applications of the device are described. These include the first measurement of the stiffness of an intact, isolated mouse glomerulus, quantification of the inner wall stiffness of healthy and diseased mouse aortas, and evaluation of the lateral heterogeneity in the stiffness of mouse mammary glands and rat livers with correlation of this heterogeneity with malignant or fibrotic pathology as evaluated by histology.

  16. Fibrotic changes after postmastectomy radiotherapy and reconstructive surgery in breast cancer. A retrospective analysis in 109 patients

    International Nuclear Information System (INIS)

    Classen, Johannes; St. Vincentius-Kliniken, Karlsruhe; Nitzsche, Sibille; Wallwiener, Diethelm; Brucker, Sara; Kristen, Peter; Souchon, Rainer; Bamberg, Michael

    2010-01-01

    The purpose of this study was to analyze the probability and time course of fibrotic changes in breast reconstruction before or after postmastectomy radiotherapy (PMRT). Between 1995 and 2004, 109 patients were treated with PMRT at Tuebingen University and underwent heterologous (HL) or autologous (AL) breast reconstruction prior or subsequent to radiation therapy. Fibrosis of the reconstructed breast after radiotherapy was assessed using the Baker score for HL reconstructions and the Common Terminology Criteria for Adverse Events (CTCAE) for all patients. Actuarial rates of fibrosis were calculated for the maximum degree acquired during follow- up and at the last follow-up visit documented. Median time to follow-up was 34 months (3-227 months). Radiotherapy was applied with a median total dose of 50.4 Gy. A total of 44 patients (40.4%) received a boost treatment with a median dose of 10 Gy. Breast reconstruction was performed with AL, HL, or combined techniques in 20, 82, and 7 patients, respectively. The 3-year incidence of ≥ grade III maximum fibrosis was 20% and 43% for Baker and CTCAE scores, respectively. The corresponding figures for fibrosis at last follow-up visit were 18% and 2%. The 3-year rate of surgical correction of the contralateral breast was 30%. Initially unplanned surgery of the reconstructed breast was performed in 39 patients (35.8%). Boost treatment and type of cosmetic surgery (HL vs. AL) were not significantly associated with the incidence of fibrosis. We found severe fibrosis to be a frequent complication after PMRT radiotherapy and breast reconstruction. However, surgical intervention can ameliorate the majority of high grade fibrotic events leading to acceptable long-term results. No treatment parameters associated with the rate of fibrosis could be identified. (orig.)

  17. The effect of keratinocytes on the biomechanical characteristics and pore microstructure of tissue engineered skin using deep dermal fibroblasts.

    Science.gov (United States)

    Varkey, Mathew; Ding, Jie; Tredget, Edward E

    2014-12-01

    Fibrosis affects most organs, it results in replacement of normal parenchymal tissue with collagen-rich extracellular matrix, which compromises tissue architecture and ultimately causes loss of function of the affected organ. Biochemical pathways that contribute to fibrosis have been extensively studied, but the role of biomechanical signaling in fibrosis is not clearly understood. In this study, we assessed the effect keratinocytes have on the biomechanical characteristics and pore microstructure of tissue engineered skin made with superficial or deep dermal fibroblasts in order to determine any biomaterial-mediated anti-fibrotic influences on tissue engineered skin. Tissue engineered skin with deep dermal fibroblasts and keratinocytes were found to be less stiff and contracted and had reduced number of myofibroblasts and lower expression of matrix crosslinking factors compared to matrices with deep fibroblasts alone. However, there were no such differences between tissue engineered skin with superficial fibroblasts and keratinocytes and matrices with superficial fibroblasts alone. Also, tissue engineered skin with deep fibroblasts and keratinocytes had smaller pores compared to those with superficial fibroblasts and keratinocytes; pore size of tissue engineered skin with deep fibroblasts and keratinocytes were not different from those matrices with deep fibroblasts alone. A better understanding of biomechanical characteristics and pore microstructure of tissue engineered skin may prove beneficial in promoting normal wound healing over pathologic healing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Serial High-Resolution Computed Tomography Imaging in Patients with Wegener Granulomatosis: Differentiation Between Active Inflammatory and Chronic Fibrotic Lesions

    International Nuclear Information System (INIS)

    Lohrmann, C.; Uhl, M.; Schaefer, O.; Ghanem, N.; Kotter, E.; Langer, M.

    2005-01-01

    PURPOSE: To evaluate pulmonary pathologies in Wegener granulomatosis with sequential computed tomography (CT) in order to differentiate active inflammatory lesions from chronic fibrotic lesions. MATERIAL AND METHODS: Serial CT findings in 38 patients with Wegener granulomatosis were retrospectively analyzed (mean follow-up period, 21 months). The presence, extension, and distribution of the following findings were evaluated with CT: parenchymal nodules, masses, ground-glass attenuation, airspace consolidation, bronchial wall-thickening, bronchiectasis, linear areas of attenuation, pleural irregularities, pleural effusions, hilar and mediastinal lymphadenopathy. RESULTS: Observed in 92% of patients, nodules were the most common CT pathology. Areas of ground-glass attenuation, consolidation, masses of linear attenuation, and tracheal/bronchial wall-thickening were detected in 24%, 26%, 32%, 39%, and 68% of patients. At follow-up, the clearance of lesions was most consistent for areas of ground-glass attenuation (89%), masses (87%), and cavitated nodules (85%). In the follow-up scan, 58% of all nodules, 47% of pulmonary consolidations, and 66% of bronchial wall-thickening were completely resolved. Areas of bronchiectasis and septal/non-septal lines remained stable in 70% and 71% of patients. CONCLUSION: The majority of the lesions decreased or resolved completely with or without areas of linear attenuation. Ground-glass attenuation, cavitated nodules and masses appear to represent active inflammatory lesions. In most probability, areas of bronchiectasis and septal/non-septal lines more often represent chronic fibrotic changes rather than active inflammatory changes. In combination with clinical evaluation and bronchoscopy, CT assists in the assessment of disease activity

  19. Serial High-Resolution Computed Tomography Imaging in Patients with Wegener Granulomatosis: Differentiation Between Active Inflammatory and Chronic Fibrotic Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Lohrmann, C.; Uhl, M.; Schaefer, O.; Ghanem, N.; Kotter, E.; Langer, M. [Univ. Hospital of Freiburg (Germany). Dept. of Radiology

    2005-08-01

    PURPOSE: To evaluate pulmonary pathologies in Wegener granulomatosis with sequential computed tomography (CT) in order to differentiate active inflammatory lesions from chronic fibrotic lesions. MATERIAL AND METHODS: Serial CT findings in 38 patients with Wegener granulomatosis were retrospectively analyzed (mean follow-up period, 21 months). The presence, extension, and distribution of the following findings were evaluated with CT: parenchymal nodules, masses, ground-glass attenuation, airspace consolidation, bronchial wall-thickening, bronchiectasis, linear areas of attenuation, pleural irregularities, pleural effusions, hilar and mediastinal lymphadenopathy. RESULTS: Observed in 92% of patients, nodules were the most common CT pathology. Areas of ground-glass attenuation, consolidation, masses of linear attenuation, and tracheal/bronchial wall-thickening were detected in 24%, 26%, 32%, 39%, and 68% of patients. At follow-up, the clearance of lesions was most consistent for areas of ground-glass attenuation (89%), masses (87%), and cavitated nodules (85%). In the follow-up scan, 58% of all nodules, 47% of pulmonary consolidations, and 66% of bronchial wall-thickening were completely resolved. Areas of bronchiectasis and septal/non-septal lines remained stable in 70% and 71% of patients. CONCLUSION: The majority of the lesions decreased or resolved completely with or without areas of linear attenuation. Ground-glass attenuation, cavitated nodules and masses appear to represent active inflammatory lesions. In most probability, areas of bronchiectasis and septal/non-septal lines more often represent chronic fibrotic changes rather than active inflammatory changes. In combination with clinical evaluation and bronchoscopy, CT assists in the assessment of disease activity.

  20. TGF-β1 downregulates COX-2 expression leading to decrease of PGE2 production in human lung cancer A549 cells, which is involved in fibrotic response to TGF-β1.

    Directory of Open Access Journals (Sweden)

    Erina Takai

    Full Text Available Transforming growth factor-ß1 (TGF-β1 is a multifunctional cytokine that is involved in various pathophysiological processes, including cancer progression and fibrotic disorders. Here, we show that treatment with TGF-β1 (5 ng/mL induced downregulation of cyclooxygenase-2 (COX-2, leading to reduced synthesis of prostaglandin E2 (PGE2, in human lung cancer A549 cells. Treatment of cells with specific inhibitors of COX-2 or PGE2 receptor resulted in growth inhibition, indicating that the COX-2/PGE2 pathway contributes to proliferation in an autocrine manner. TGF-β1 treatment induced growth inhibition, which was attenuated by exogenous PGE2. TGF-β1 is also a potent inducer of epithelial mesenchymal transition (EMT, a phenotype change in which epithelial cells differentiate into fibroblastoid cells. Supplementation with PGE2 or PGE2 receptor EP4 agonist PGE1-alcohol, as compared with EP1/3 agonist sulprostone, inhibited TGF-β1-induced expression of fibronectin and collagen I (extracellular matrix components. Exogenous PGE2 or PGE2 receptor agonists also suppressed actin remodeling induced by TGF-β1. These results suggest that PGE2 has an anti-fibrotic effect. We conclude that TGF-β1-induced downregulation of COX-2/PGE2 signaling is involved in facilitation of fibrotic EMT response in A549 cells.

  1. Connective Tissue Growth Factor Domain 4 Amplifies Fibrotic Kidney Disease through Activation of LDL Receptor-Related Protein 6.

    Science.gov (United States)

    Johnson, Bryce G; Ren, Shuyu; Karaca, Gamze; Gomez, Ivan G; Fligny, Cécile; Smith, Benjamin; Ergun, Ayla; Locke, George; Gao, Benbo; Hayes, Sebastian; MacDonnell, Scott; Duffield, Jeremy S

    2017-06-01

    Connective tissue growth factor (CTGF), a matrix-associated protein with four distinct cytokine binding domains, has roles in vasculogenesis, wound healing responses, and fibrogenesis and is upregulated in fibroblasts and myofibroblasts in disease. Here, we investigated the role of CTGF in fibrogenic cells. In mice, tissue-specific inducible overexpression of CTGF by kidney pericytes and fibroblasts had no bearing on nephrogenesis or kidney homeostasis but exacerbated inflammation and fibrosis after ureteral obstruction. These effects required the WNT receptor LDL receptor-related protein 6 (LRP6). Additionally, pericytes isolated from these mice became hypermigratory and hyperproliferative on overexpression of CTGF. CTGF is cleaved in vivo into distinct domains. Treatment with recombinant domain 1, 1+2 (N terminus), or 4 (C terminus) independently activated myofibroblast differentiation and wound healing responses in cultured pericytes, but domain 4 showed the broadest profibrotic activity. Domain 4 exhibited low-affinity binding to LRP6 in in vitro binding assays, and inhibition of LRP6 or critical signaling cascades downstream of LRP6, including JNK and WNT/ β -catenin, inhibited the biologic activity of domain 4. Administration of blocking antibodies specifically against CTGF domain 4 or recombinant Dickkopf-related protein-1, an endogenous inhibitor of LRP6, effectively inhibited inflammation and fibrosis associated with ureteral obstruction in vivo Therefore, domain 4 of CTGF and the WNT signaling pathway are important new targets in fibrosis. Copyright © 2017 by the American Society of Nephrology.

  2. Mouse genetic approaches applied to the normal tissue radiation response

    International Nuclear Information System (INIS)

    Haston, Christina K.

    2012-01-01

    The varying responses of inbred mouse models to radiation exposure present a unique opportunity to dissect the genetic basis of radiation sensitivity and tissue injury. Such studies are complementary to human association studies as they permit both the analysis of clinical features of disease, and of specific variants associated with its presentation, in a controlled environment. Herein I review how animal models are studied to identify specific genetic variants influencing predisposition to radiation-induced traits. Among these radiation-induced responses are documented strain differences in repair of DNA damage and in extent of tissue injury (in the lung, skin, and intestine) which form the base for genetic investigations. For example, radiation-induced DNA damage is consistently greater in tissues from BALB/cJ mice, than the levels in C57BL/6J mice, suggesting there may be an inherent DNA damage level per strain. Regarding tissue injury, strain specific inflammatory and fibrotic phenotypes have been documented for principally, C57BL/6 C3H and A/J mice but a correlation among responses such that knowledge of the radiation injury in one tissue informs of the response in another is not evident. Strategies to identify genetic differences contributing to a trait based on inbred strain differences, which include linkage analysis and the evaluation of recombinant congenic (RC) strains, are presented, with a focus on the lung response to irradiation which is the only radiation-induced tissue injury mapped to date. Such approaches are needed to reveal genetic differences in susceptibility to radiation injury, and also to provide a context for the effects of specific genetic variation uncovered in anticipated clinical association studies. In summary, mouse models can be studied to uncover heritable variation predisposing to specific radiation responses, and such variations may point to pathways of importance to phenotype development in the clinic.

  3. Gadolinium diethylenetriamine pentaacetic acid enhanced magnetic resonance imagings in cardiomyopathic hamsters. Histopathologic correlation

    International Nuclear Information System (INIS)

    Aso, Hiroko

    1995-01-01

    To assess the significance of gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA)-enhanced magnetic resonance (MR) imaging, the findings were correlated with histopathological findings in cardiomyopathic hamsters (Bio 14.6). In hamsters given 1 mBq of Gd-DTPA, autoradiography revealed uptake of Gd-DTPA corresponding to the fibrotic tissue. According to the degree of fibrosis and inflammation, the tissue was graded into three. The ratio of contrast enhancement in the fibrotic area to that in the normal area was significantly higher in grade 1 than grades 2 and 3, and in grade 2 than grade 3. Next, hamsters in various age groups were given 0.2 mmol/kg intravenously. In the age group of 2-5 month, contrast enhancement was homogeneously observed in the entire myocardium. In the age group of 8-10 years, it was entirely observed, partly with heterogeneous enhancement. In the age group of 11-12 years, contrast enhancement was not different from that in the normal hamsters. Histological examination revealed that fibrosis changed from grade 1 through grade 3 with advancing age. In conclusion, MR imaging for myocardiopathy showed signal intensity reflecting the fibrotic tissue. Contrast enhancement of MR imaging was stronger when much more inflammatory cells were involved and fibrotic tissues were filled with much more blood vessels. Thus MR imaging may be a promising tool for evaluating the severity of myocardiopathy. (N.K.)

  4. Fibrotic encapsulation of orthodontic appliance in palate.

    Science.gov (United States)

    Muthu, Jananni; Muthanandam, Sivaramakrishnan; Umapathy, Gubernath; Kannan, Anitha Logaranjani

    2017-01-01

    Iatrogenic trauma though not serious is very common in dental practice. Orthodontic treatment can inflict such injuries as they are prolonged over a long period of time. Ill-fabricated orthodontic appliances, such as wires and brackets, or the patients' habits such as application of constant pressure over the appliance can traumatize the adjacent oral soft tissues. In rare cases, these appliances can get embedded into the mucosa and gingival tissues. This case report describes one such case of iatrogenic trauma to the palatal mucosa due to entrapment of a tongue spike appliance and its surgical management.

  5. The Role of Transforming Growth Factor Beta-1 in the Progression of HIV/AIDS and Development of Non-AIDS-Defining Fibrotic Disorders

    Directory of Open Access Journals (Sweden)

    Annette J. Theron

    2017-11-01

    Full Text Available Even after attainment of sustained viral suppression following implementation of highly active antiretroviral therapy, HIV-infected persons continue to experience persistent, low-grade, systemic inflammation. Among other mechanisms, this appears to result from ongoing microbial translocation from a damaged gastrointestinal tract. This HIV-related chronic inflammatory response is paralleled by counteracting, but only partially effective, biological anti-inflammatory processes. Paradoxically, however, this anti-inflammatory response not only exacerbates immunosuppression but also predisposes for development of non-AIDS-related, non-communicable disorders. With respect to the pathogenesis of both sustained immunosuppression and the increased frequency of non-AIDS-related disorders, the anti-inflammatory/profibrotic cytokine, transforming growth factor-β1 (TGF-β1, which remains persistently elevated in both untreated and virally suppressed HIV-infected persons, may provide a common link. In this context, the current review is focused on two different, albeit related, harmful activities of TGF-β1 in HIV infection. First, on the spectrum of anti-inflammatory/immunosuppressive activities of TGF-β1 and the involvement of this cytokine, derived predominantly from T regulatory cells, in driving disease progression in HIV-infected persons via both non-fibrotic and profibrotic mechanisms. Second, the possible involvement of sustained elevations in circulating and tissue TGF-β1 in the pathogenesis of non-AIDS-defining cardiovascular, hepatic, pulmonary and renal disorders, together with a brief comment on potential TGF-β1-targeted therapeutic strategies.

  6. Effects of protein-coated nanofibers on conformation of gingival fibroblast spheroids: potential utility for connective tissues regeneration.

    Science.gov (United States)

    Kaufman, Gili; Whitescarver, Ryan; Nunes, Laiz; Palmer, Xavier-Lewis; Skrtic, Drago; Tutak, Wojtek

    2017-10-09

    Deep wounds in the gingiva caused by trauma or surgery require a rapid and robust healing of connective tissues. We propose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels of specific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature of dense and soft connective tissues. Gingival fibroblast monolayers and 3D spheroids were cultured on ECM substrate and covered with gas-blown poly-(DL-lactide-co-glycolide) (PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed by F-actin staining and confocal microscopy. Thicknesses of the cell layers, developed within the nanofibers, were quantified by imageJ software. The expression of collagen1α1 chain (Col1α1), fibronectin, and metalloproteinase 2 (MMP2) encoding genes was determined by quantitative reverse transcription analysis. Collagen- and fibrin- coated nanofibers induced cell migration toward fibers and supported cellular growth within the scaffolds. Both proteins affected the spatial rearrangement of fibroblasts by favoring packed cell clusters or intermittent cell spreading. These cell arrangements resembled the structural characteristic of dense and soft connective tissues, respectively. Within 3 days of incubation, fibroblast spheroids interacted with the fibers and grew robustly by increasing their thickness compared to monolayers. While the ECM key components, such as fibronectin and MMP2 encoding genes, were expressed in both protein groups, Col1α1 was predominantly expressed in bundled fibroblasts grown on collagen fibers. This enhanced expression of collagen1 is typical for dense connective tissue. Based on results of this study, our gas-blown, collagen- and fibrin-coated PLGA nanofibers are viable candidates for

  7. Effects of protein-coated nanofibers on conformation of gingival fibroblast spheroids: potential utility for connective tissue regeneration.

    Science.gov (United States)

    Kaufman, Gili; Whitescarver, Ryan A; Nunes, Laiz; Palmer, Xavier-Lewis; Skrtic, Drago; Tutak, Wojtek

    2018-01-24

    Deep wounds in the gingiva caused by trauma or surgery require a rapid and robust healing of connective tissues. We propose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels of specific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature of dense and soft connective tissues. Gingival fibroblast monolayers and 3D spheroids were cultured on ECM substrate and covered with gas-blown poly-(DL-lactide-co-glycolide) (PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed by F-actin staining and confocal microscopy. Thicknesses of the cell layers, developed within the nanofibers, were quantified by ImageJ software. The expression of collagen1α1 chain (Col1α1), fibronectin, and metalloproteinase 2 (MMP2) encoding genes was determined by quantitative reverse transcription analysis. Collagen- and fibrin- coated nanofibers induced cell migration toward fibers and supported cellular growth within the scaffolds. Both proteins affected the spatial rearrangement of fibroblasts by favoring packed cell clusters or intermittent cell spreading. These cell arrangements resembled the structural characteristic of dense and soft connective tissues, respectively. Within three days of incubation, fibroblast spheroids interacted with the fibers, and grew robustly by increasing their thickness compared to monolayers. While the ECM key components, such as fibronectin and MMP2 encoding genes, were expressed in both protein groups, Col1α1 was predominantly expressed in bundled fibroblasts grown on collagen fibers. This enhanced expression of collagen1 is typical for dense connective tissue. Based on results of this study, our gas-blown, collagen- and fibrin-coated PLGA nanofibers are viable candidates for

  8. Modification of polysaccharides: Pharmaceutical and tissue engineering applications with commercial utility (patents)

    Energy Technology Data Exchange (ETDEWEB)

    Malviya, Rishabha, E-mail: rishabhamalviya19@gmail.com [Polymer Science Laboratory, Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greator Noida, UP (India); Department of Pharmacy, Uttarkhand Technical University, Dehradun, Uttarkhand (India); Sharma, Pramod Kumar [Polymer Science Laboratory, Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greator Noida, UP (India); Dubey, Susheel Kumar [Siddarth Institute of Pharmacy, Dehradun, Uttarkhand (India)

    2016-11-01

    Polymer modifications open new era for the development of polymers with requisite properties. Use of modified polymers is practically boundless. Different studies focus on biomedical applications of chemically modified polysaccharides. Development and utilization of modified polysaccharides get attention to be used as carrier for pharmaceutical drug delivery as well as tissue engineering scaffolds. Grafted polymer shows better cellular regeneration, signal transmission, diagnostic and imaging material than putative form. This review article aims to discuss various approaches to modify naturally derived polymer and their applications as pharmaceutical drug carrier and as a material for wound dressing and artificial cartilage due to better biophysical cues. Manuscript included various patents based on the applications of modified polymers and techniques used to modify polymers. - Highlights: • Properties of natural polysaccharides can be modulated by modification in their basic backbone. • Polysaccharides can be easily modified using microwave irradiation as compared to conventional closed vessel modification. • Biodegradable and biocompatible nature of modified polymer promotes their use in targeted cellular delivery of pharmaceuticals. • Studies show strong support that biodegradable polymers have ability to modulate cell signaling, cellular attachment, migration, proliferation and differentiation. • Manuscript reveals the fact that various commercial patents have been granted for the use of modified polymer.

  9. Differential diagnosis between benign and malignant soft tissue tumors utilizing ultrasound parameters.

    Science.gov (United States)

    Morii, Takeshi; Kishino, Tomonori; Shimamori, Naoko; Motohashi, Mitsue; Ohnishi, Hiroaki; Honya, Keita; Aoyagi, Takayuki; Tajima, Takashi; Ichimura, Shoichi

    2018-01-01

    Preoperative discrimination between benign and malignant soft tissue tumors is critical for the prevention of excess application of magnetic resonance imaging and biopsy as well as unplanned resection. Although ultrasound, including power Doppler imaging, is an easy, noninvasive, and cost-effective modality for screening soft tissue tumors, few studies have investigated reliable discrimination between benign and malignant soft tissue tumors. To establish a modality for discrimination between benign and malignant soft tissue tumors using ultrasound, we extracted the significant risk factors for malignancy based on ultrasound information from 40 malignant and 56 benign pathologically diagnosed soft tissue tumors and established a scoring system based on these risk factors. The maximum size, tumor margin, and vascularity evaluated using ultrasound were extracted as significant risk factors. Using the odds ratio from a multivariate regression model, a scoring system was established. Receiver operating characteristic analyses revealed a high area under the curve value (0.85), confirming the accuracy of the scoring system. Ultrasound is a useful modality for establishing the differential diagnosis between benign and malignant soft tissue tumors.

  10. Effect of anesthesia on glucose production and utilization in rats

    International Nuclear Information System (INIS)

    Penicaud, L.; Ferre, P.; Kande, J.; Leturque, A.; Issad, T.; Girard, J.

    1987-01-01

    This study was undertaken to determine the effects of pentobarbital anesthesia (50 mg/kg ip) on glucose kinetics and individual tissue glucose utilization in vivo, in chronically catheterized rats. Glucose turnover studies were carried out using [3- 3 H] glucose as tracer. A transient hyperglycemia and an increased glucose production were observed 3 min after induction of anesthesia. However, 40 min after induction of anesthesia, glycemia returned to the level observed in awake animals, whereas glucose turnover was decreased by 30% as compared with unanesthetized rats. These results are discussed with regard to the variations observed in plasma insulin, glucagon, and catecholamine levels. Glucose utilization by individual tissues was studied by the 2-[1- 3 H] deoxyglucose technique. A four- to fivefold decrease in glucose utilization was observed in postural muscles (soleus and adductor longus), while in other nonpostural muscles (epitrochlearis, tibialis anterior, extensor digitorum longus, and diaphragm) and other tissues (white and brown adipose tissues) anesthesia did not modify the rate of glucose utilization. A decrease in glucose utilization was also observed in the brain

  11. Successful vitrification and autografting of baboon (Papio anubis) ovarian tissue.

    Science.gov (United States)

    Amorim, Christiani A; Jacobs, Sophie; Devireddy, Ram V; Van Langendonckt, Anne; Vanacker, Julie; Jaeger, Jonathan; Luyckx, Valérie; Donnez, Jacques; Dolmans, Marie-Madeleine

    2013-08-01

    Can a vitrification protocol using an ethylene glycol/dimethyl sulphoxide-based solution and a cryopin successfully cryopreserve baboon ovarian tissue? Our results show that baboon ovarian tissue can be successfully cryopreserved with our vitrification protocol. Non-human primates have already been used as an animal model to test vitrification protocols for human ovarian tissue cryopreservation. Ovarian biopsies from five adult baboons were vitrified, warmed and autografted for 5 months. After grafting, follicle survival, growth and function and also the quality of stromal tissue were assessed histologically and by immunohistochemistry. The influence of the vitrification procedure on the cooling rate was evaluated by a computer model. After vitrification, warming and long-term grafting, follicles were able to grow and maintain their function, as illustrated by Ki67, anti-Müllerian hormone (AMH) and growth differentiation factor-9 (GDF-9) immunostaining. Corpora lutea were also observed, evidencing successful ovulation in all the animals. Stromal tissue quality did not appear to be negatively affected by our cryopreservation procedure, as demonstrated by vascularization and proportions of fibrotic areas, which were similar to those found in fresh ungrafted ovarian tissue. Despite our promising findings, before applying this technique in a clinical setting, we need to validate it by achieving pregnancies. In addition to encouraging results obtained with our vitrification procedure for non-human ovarian tissue, this study also showed, for the first time, expression of AMH and GDF-9 in ovarian follicles. This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (grant Télévie No. 7.4507.10, grant 3.4.590.08 awarded to Marie-Madeleine Dolmans), Fonds Spéciaux de Recherche, Fondation St Luc, Foundation Against Cancer, and Department of Mechanical Engineering at Louisiana State University (support to Ram Devireddy), and

  12. Reconstruction of complicated skull base defects utilizing free tissue transfer.

    Science.gov (United States)

    Djalilian, Hamid R; Gapany, Markus; Levine, Samuel C

    2002-11-01

    We managed five patients with large skull base defects complicated by complex infections with microvascular free tissue transfer. The first patient developed an infection, cerebrospinal fluid (CSF) leak, and meningitis after undergoing a translabyrinthine resection of an acoustic neuroma. The second patient had a history of a gunshot wound to the temporal bone, with a large defect and an infected cholesteatoma that caused several episodes of meningitis. The third through the fifth patients had persistent CSF leakage and infection refractory to conventional therapy. In all cases prior attempts of closure with fat grafts or regional flaps had failed. Rectus abdominis myofascial free flap, radial forearm free flap or a gracilis muscle free flap was used after debridement of the infected cavities. The CSF leaks, local infections, and meningitis were controlled within a week. In our experience, microvascular free tissue provides the necessary bulk of viable, well-vascularized tissue, which not only assures a mechanical seal but also helps clear the local infection.

  13. Transforming growth factor-β1/Smad/connective tissue growth factor axis: The main pathway in radiation-induced fibrosis of osteoradionecrosis?

    Directory of Open Access Journals (Sweden)

    Qian Wei Zhuang

    2013-01-01

    Full Text Available Introduction: Osteoradionecrosis (ORN of the mandible is a serious complication following radiation therapy for malignancies of the head and neck. Radiation-induced fibrosis (RIF is a new theory that accounts for the damage to normal tissues after radiotherapy, and the radiation-induced fibroatrophic mechanism includes the free-radical formation, endothelial dysfunction, inflammation, microvascular thrombosis, fibrosis and remodeling, and finally bone and tissue necrosis. The Hypothesis: Previous studies revealed that transforming growth factor-β1 (TGF-β1 is the master switch cytokine responsible for the regulation of fibroblast proliferation and differentiation that result in RIF. Among the targets of TGF-β1, connective tissue growth factor (CTGF is a downstream mediator through the Smad3/4 pathway and plays an important role in connective tissue homeostasis and fibroblast proliferation. Studies have proved that the TGF-β1/Smad/CTGF signaling pathway is involved in the RIF of soft tissues, so the authors put forward a hypothesis that the TGF-β1/Smad/CTGF axis is also the main pathway in RIF of ORN. Evaluation of the Hypothesis: The validation of our hypothesis may provide new insights for better understanding the pathogenesis of ORN and open new perspectives for anti-fibrotic therapies, and pioneer novel approaches to treat ORN.

  14. Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation.

    Science.gov (United States)

    Molofsky, Ari B; Savage, Adam K; Locksley, Richard M

    2015-06-16

    Interleukin-33 (IL-33) is a nuclear-associated cytokine of the IL-1 family originally described as a potent inducer of allergic type 2 immunity. IL-33 signals via the receptor ST2, which is highly expressed on group 2 innate lymphoid cells (ILC2s) and T helper 2 (Th2) cells, thus underpinning its association with helminth infection and allergic pathology. Recent studies have revealed ST2 expression on subsets of regulatory T cells, and for a role for IL-33 in tissue homeostasis and repair that suggests previously unrecognized interactions within these cellular networks. IL-33 can participate in pathologic fibrotic reactions, or, in the setting of microbial invasion, can cooperate with inflammatory cytokines to promote responses by cytotoxic NK cells, Th1 cells, and CD8(+) T cells. Here, we highlight the regulation and function of IL-33 and ST2 and review their roles in homeostasis, damage, and inflammation, suggesting a conceptual framework for future studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Cell-based and biomaterial approaches to connective tissue repair

    Science.gov (United States)

    Stalling, Simone Suzette

    Connective tissue injuries of skin, tendon and ligament, heal by a reparative process in adults, filling the wound site with fibrotic, disorganized scar tissue that poorly reflects normal tissue architecture or function. Conversely, fetal skin and tendon have been shown to heal scarlessly. Complete regeneration is not intrinsically ubiquitous to all fetal tissues; fetal diaphragmatic and gastrointestinal injuries form scars. In vivo studies suggest that the presence of fetal fibroblasts is essential for scarless healing. In the orthopaedic setting, adult anterior cruciate ligament (ACL) heals poorly; however, little is known about the regenerative capacity of fetal ACL or fetal ACL fibroblasts. We characterized in vitro wound healing properties of fetal and adult ACL fibroblasts demonstrating that fetal ACL fibroblasts migrate faster and elaborate greater quantities of type I collagen, suggesting the healing potential of the fetal ACL may not be intrinsically poor. Similar to fetal ACL fibroblasts, fetal dermal fibroblasts also exhibit robust cellular properties. We investigated the age-dependent effects of dermal fibroblasts on tendon-to-bone healing in rat supraspinatus tendon injuries, a reparative injury model. We hypothesized delivery of fetal dermal fibroblasts would increase tissue organization and mechanical properties in comparison to adult dermal fibroblasts. However, at 1 and 8 weeks, the presence of dermal fibroblasts, either adult or fetal, had no significant effect on tissue histology or mechanical properties. There was a decreasing trend in cross-sectional area of repaired tendons treated with fetal dermal fibroblasts in comparison to adult, but this finding was not significant in comparison to controls. Finally, we synthesized a novel polysaccharide, methacrylated methylcellulose (MA-MC), and fabricated hydrogels using a well-established photopolymerization technique. We characterized the physical and mechanical properties of MA-MC hydrogels in

  16. 64Cu-DOTA as a surrogate positron analog of Gd-DOTA for cardiac fibrosis detection with PET: pharmacokinetic study in a rat model of chronic MI.

    Science.gov (United States)

    Kim, Heejung; Lee, Sung-Jin; Davies-Venn, Cynthia; Kim, Jin Su; Yang, Bo Yeun; Yao, Zhengsheng; Kim, Insook; Paik, Chang H; Bluemke, David A

    2016-02-01

    The aim of this study was to investigate the pharmacokinetics of (64)Cu-DOTA (1,4,7,10-azacyclododecane-N,N',N'',N'''-tetraacetic acid), a positron surrogate analog of the late gadolinium (Gd)-enhancement cardiac magnetic resonance agent, Gd-DOTA, in a rat model of chronic myocardial infarction (MI) and its microdistribution in the cardiac fibrosis by autoradiography. DOTA was labeled with (64)Cu-acetate. CD rats (n=5) with MI by left anterior descending coronary artery ligation and normal rats (n=6) were injected intravenously with (64)Cu-DOTA (18.5 MBq, 0.02 mmol DOTA/kg). Dynamic PET imaging was performed for 60 min after injection. (18)F-Fluorodeoxyglucose ([(18)F]-FDG) PET imaging was performed to identify the viable myocardium. For the region of interest analysis, the (64)Cu-DOTA PET image was coregistered to the [(18)F]-FDG PET image. To validate the PET images, slices of heart samples from the base to the apex were analyzed using autoradiography and by histological staining with Masson's trichrome. (64)Cu-DOTA was rapidly taken up in the infarct area. The time-activity curves demonstrated that (64)Cu-DOTA concentrations in the blood, fibrotic tissue, and perfusion-rich organs peaked within a minute post injection; thereafter, it was rapidly washed out in parallel with blood clearance and excreted through the renal system. The blood clearance curve was biphasic, with a distribution half-life of less than 3 min and an elimination half-life of ∼21.8 min. The elimination half-life of (64)Cu-DOTA from the focal fibrotic tissue (∼22.4 min) and the remote myocardium (∼20.1 min) was similar to the blood elimination half-life. Consequently, the uptake ratios of focal fibrosis-to-blood and remote myocardium-to-blood remained stable for the time period between 10 and 60 min. The corresponding ratios obtained from images acquired from 30 to 60 min were 1.09 and 0.59, respectively, indicating that the concentration of (64)Cu-DOTA in the focal

  17. Tanshinon IIA injection accelerates tissue expansion by reducing the formation of the fibrous capsule.

    Science.gov (United States)

    Yu, Qingxiong; Sheng, Lingling; Yang, Mei; Zhu, Ming; Huang, Xiaolu; Li, Qingfeng

    2014-01-01

    The tissue expansion technique has been applied to obtain new skin tissue to repair large defects in clinical practice. The implantation of tissue expander could initiate a host response to foreign body (FBR), which leads to fibrotic encapsulation around the expander and prolongs the period of tissue expansion. Tanshinon IIA (Tan IIA) has been shown to have anti-inflammation and immunoregulation effect. The rat tissue expansion model was used in this study to observe whether Tan IIA injection systematically could inhibit the FBR to reduce fibrous capsule formation and accelerate the process of tissue expansion. Forty-eight rats were randomly divided into the Tan IIA group and control group with 24 rats in each group. The expansion was conducted twice a week to maintain a capsule pressure of 60 mmHg. The expansion volume and expanded area were measured. The expanded tissue in the two groups was harvested, and histological staining was performed; proinflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) and transforming growth factor-β (TGF-β) were examined. The expansion volume and the expanded area in the Tan IIA group were greater than that of the control group. The thickness of the fibrous capsule in the Tan IIA group was reduced with no influence on the normal skin regeneration. Decreased infiltration of macrophages, lower level of TNF-α, IL-6, IL-1β and TGF-β, less proliferating myofibroblasts and enhanced neovascularization were observed in the Tan IIA group. Our findings indicated that the Tan IIA injection reduced the formation of the fibrous capsule and accelerated the process of tissue expansion by inhibiting the FBR.

  18. Tanshinon IIA injection accelerates tissue expansion by reducing the formation of the fibrous capsule.

    Directory of Open Access Journals (Sweden)

    Qingxiong Yu

    Full Text Available The tissue expansion technique has been applied to obtain new skin tissue to repair large defects in clinical practice. The implantation of tissue expander could initiate a host response to foreign body (FBR, which leads to fibrotic encapsulation around the expander and prolongs the period of tissue expansion. Tanshinon IIA (Tan IIA has been shown to have anti-inflammation and immunoregulation effect. The rat tissue expansion model was used in this study to observe whether Tan IIA injection systematically could inhibit the FBR to reduce fibrous capsule formation and accelerate the process of tissue expansion. Forty-eight rats were randomly divided into the Tan IIA group and control group with 24 rats in each group. The expansion was conducted twice a week to maintain a capsule pressure of 60 mmHg. The expansion volume and expanded area were measured. The expanded tissue in the two groups was harvested, and histological staining was performed; proinflammatory cytokines such as tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6 and interleukin-1β (IL-1β and transforming growth factor-β (TGF-β were examined. The expansion volume and the expanded area in the Tan IIA group were greater than that of the control group. The thickness of the fibrous capsule in the Tan IIA group was reduced with no influence on the normal skin regeneration. Decreased infiltration of macrophages, lower level of TNF-α, IL-6, IL-1β and TGF-β, less proliferating myofibroblasts and enhanced neovascularization were observed in the Tan IIA group. Our findings indicated that the Tan IIA injection reduced the formation of the fibrous capsule and accelerated the process of tissue expansion by inhibiting the FBR.

  19. Percutaneous window chamber method for chronic intravital microscopy of sensor-tissue interactions.

    Science.gov (United States)

    Koschwanez, Heidi E; Klitzman, Bruce; Reichert, W Monty

    2008-11-01

    A dorsal, two-sided skin-fold window chamber model was employed previously by Gough in glucose sensor research to characterize poorly understood physiological factors affecting sensor performance. We have extended this work by developing a percutaneous one-sided window chamber model for the rodent dorsum that offers both a larger subcutaneous area and a less restrictive tissue space than previous animal models. A surgical procedure for implanting a sensor into the subcutis beneath an acrylic window (15 mm diameter) is presented. Methods to quantify changes in the microvascular network and red blood cell perfusion around the sensors using noninvasive intravital microscopy and laser Doppler flowmetry are described. The feasibility of combining interstitial glucose monitoring from an implanted sensor with intravital fluorescence microscopy was explored using a bolus injection of fluorescein and dextrose to observe real-time mass transport of a small molecule at the sensor-tissue interface. The percutaneous window chamber provides an excellent model for assessing the influence of different sensor modifications, such as surface morphologies, on neovascularization using real-time monitoring of the microvascular network and tissue perfusion. However, the tissue response to an implanted sensor was variable, and some sensors migrated entirely out of the field of view and could not be observed adequately. A percutaneous optical window provides direct, real-time images of the development and dynamics of microvascular networks, microvessel patency, and fibrotic encapsulation at the tissue-sensor interface. Additionally, observing microvessels following combined bolus injections of a fluorescent dye and glucose in the local sensor environment demonstrated a valuable technique to visualize mass transport at the sensor surface.

  20. The PPARα/γ Agonist, Tesaglitazar, Improves Insulin Mediated Switching of Tissue Glucose and Free Fatty Acid Utilization In Vivo in the Obese Zucker Rat

    Directory of Open Access Journals (Sweden)

    Kristina Wallenius

    2013-01-01

    Full Text Available Metabolic flexibility was assessed in male Zucker rats: lean controls, obese controls, and obese rats treated with the dual peroxisome proliferator activated receptor (PPAR agonist, tesaglitazar, 3 μmol/kg/day for 3 weeks. Whole body glucose disposal rate ( and hepatic glucose output (HGO were assessed under basal fasting and hyperinsulinemic isoglycemic clamp conditions using [3,3H]glucose. Indices of tissue specific glucose utilization ( were measured at basal, physiological, and supraphysiological levels of insulinemia using 2-deoxy-D-[2,6-3H]glucose. Finally, whole body and tissue specific FFA and glucose utilization and metabolic fate were evaluated under basal and hyperinsulinemic conditions using a combination of [U-13C]glucose, 2-deoxy-D-[U-14C]glucose, [U-14C]palmitate, and [9,10-3H]-(R-bromopalmitate. Tesaglitazar improved whole body insulin action by greater suppression of HGO and stimulation of compared to obese controls. This involved increased insulin stimulation of in fat and skeletal muscle as well as increased glycogen synthesis. Tesaglitazar dramatically improved insulin mediated suppression of plasma FFA level, whole body turnover (, and muscle, liver, and fat utilization. At basal insulin levels, tesaglitazar failed to lower HGO or compared to obese controls. In conclusion, the results demonstrate that tesaglitazar has a remarkable ability to improve insulin mediated control of glucose and FFA fluxes in obese Zucker rats.

  1. Predictors of idiopathic pulmonary fibrosis in absence of radiologic honeycombing: A cross sectional analysis in ILD patients undergoing lung tissue sampling.

    Science.gov (United States)

    Salisbury, Margaret L; Xia, Meng; Murray, Susan; Bartholmai, Brian J; Kazerooni, Ella A; Meldrum, Catherine A; Martinez, Fernando J; Flaherty, Kevin R

    2016-09-01

    Idiopathic pulmonary fibrosis (IPF) can be diagnosed confidently and non-invasively when clinical and computed tomography (CT) criteria are met. Many do not meet these criteria due to absence of CT honeycombing. We investigated predictors of IPF and combinations allowing accurate diagnosis in individuals without honeycombing. We utilized prospectively collected clinical and CT data from patients enrolled in the Lung Tissue Research Consortium. Included patients had no honeycombing, no connective tissue disease, underwent diagnostic lung biopsy, and had CT pattern consistent with fibrosing ILD (n = 200). Logistic regression identified clinical and CT variables predictive of IPF. The probability of IPF was assessed at various cut-points of important clinical and CT variables. A multivariable model adjusted for age and gender found increasingly extensive reticular densities (OR 2.93, CI 95% 1.55-5.56, p = 0.001) predicted IPF, while increasing ground glass densities predicted a diagnosis other than IPF (OR 0.55, CI 95% 0.34-0.89, p = 0.02). The model-based probability of IPF was 80% or greater in patients with age at least 60 years and extent of reticular density one-third or more of total lung volume; for patients meeting or exceeding these clinical thresholds the specificity for IPF is 96% (CI 95% 91-100%) with 21 of 134 (16%) biopsies avoided. In patients with suspected fibrotic ILD and absence of CT honeycombing, extent of reticular and ground glass densities predict a diagnosis of IPF. The probability of IPF exceeds 80% in subjects over age 60 years with one-third of total lung having reticular densities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Striking regression of subcutaneous fibrosis induced by high doses of gamma rays using a combination of pentoxifylline and α-tocopherol: an experimental study

    International Nuclear Information System (INIS)

    Lefaix, Jean-Louis; Delanian, Sylvie; Vozenin, Marie-Catherine; Leplat, Jean-Jacques; Tricaud, Yves; Martin, Michele

    1999-01-01

    Purpose: To establish a successful treatment of subcutaneous fibrosis developing after high doses of gamma rays, suitable for use in clinical practice. Methods and Materials: We used an animal model of acute localized gamma irradiation simulating accidental overexposure in humans. Three groups of 5 Large White pigs were irradiated using a collimated 192 Ir source to deliver a single dose of 160 Gy onto the skin surface (100%) of the outer side of the thigh. A well-defined block of necrosis developed within a few weeks which had healed after 26 weeks to leave a block of subcutaneous fibrosis involving skin and skeletal muscle. One experimental group of 5 pigs was dosed orally for 26 weeks starting 26 weeks after irradiation with 1600 mg/120 kg body weight of pentoxifylline (PTX) included in the reconstituted food during its fabrication, and another group of 5 was dosed orally for the same period with a daily dose of 1600 mg/120 kg body weight of PTX combined with 2000 IU/120 kg body weight of α-tocopherol. Five irradiated control pigs were given normal food only. Animals were assessed for changes in the density of the palpated fibrotic block and in the dimensions of the projected cutaneous surface. Depth of scar tissue was determined by ultrasound. Physical and sonographic findings were confirmed by autopsy 26 weeks after treatment started. The density, length, width, and depth of the block of fibrotic scar tissue, and the areas and volume of its projected cutaneous surface, were compared before treatment, 6 and 13 weeks thereafter, and at 26 weeks. Results: The experimental animals exhibited no change in behavior and no abnormal clinical or anatomic signs. No modifications were observed in the block of fibrotic scar tissue of pigs dosed with PTX alone. However, significant softening and shrinking of this block were noted in the pigs dosed with PTX + α-tocopherol 13 weeks after treatment started and at autopsy, when mean regression was ∼ 30% for length, ∼ 50

  3. Myofibroblasts in experimental hydronephrosis

    NARCIS (Netherlands)

    Diamond, J R; van Goor, H; Ding, G; Engelmyer, E

    Interstitial fibrosis is a common outcome of longterm ureteral obstruction. One pathological arm of the fibrotic reaction in diverse tissue loci and experimental models is the retraction of granulation tissue. The role of the myofibroblast in granulation tissue contraction and fibrocontractive

  4. Immunofluorescence in multiple tissues utilizing serum from a patient affected by systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Piotr Brzezinski

    2012-01-01

    Full Text Available Introduction: Lupus erythematosus is a chronic, inflammatory autoimmune disease that can affect multiple organs. Lupus can affect many parts of the body, especially in systemic lupus erythematosus (SLE; affected tissues may include the joints, skin, kidneys, heart, lungs, blood vessels, and brain. Case report: A 46-year-old female presented with pruritus, photosensitivity and edema of the cheeks of about 2 years duration, and was evaluated by a dermatologist. On examination, multiple telangiectasias were present on the cheeks, with erythema, edema and a malar rash observed. A review of systems documented breathing difficulty and pleuitic pain, joint pain and joint edema, photosensitivity, cardiac dysrhythmia, and periodic pain in the back close to the kidneys. Methods: Skin biopsies for hematoxylin and eosin testing, as well for direct and indirect immunofluorescence were performed, in addition to multiple diagnostic blood tests, chest radiography and directed immunologic testing. Results: The blood testing showed elevated C-reactive protein. Direct and indirect immunofluorescence testing utilizing monkey esophagus, mouse and pig heart and kidney, normal human eyelid skin and veal brain demonstrated strong reactivity to several components of smooth muscle, nerves, blood vessels, skin basement membrane zone and sweat gland ducts and skin meibomian glands. Anti-endomysium antibodies were detected as well as others, especially using FITC conjugated Complement/C1q, FITC conjugated anti-human immunoglobulin IgG and FITC conjugated anti-human fibrinogen. Conclusions: We conclude that both direct and indirect immunofluorescence using several substrates can unveil previously undocumented autoantibodies in multiple organs in lupus erythematosus, and that these findings could be utilized to complement existing diagnostic testing for this disorder.

  5. Relaxin reduces susceptibility to post-infarct atrial fibrillation in mice due to anti-fibrotic and anti-inflammatory properties

    DEFF Research Database (Denmark)

    Beiert, Thomas; Tiyerili, Vedat; Knappe, Vincent

    2017-01-01

    Background Relaxin-2 (RLX) is a peptide hormone that exerts beneficial anti-fibrotic and anti-inflammatory effects in diverse models of cardiovascular disease. The goal of this study was to determine the effects of RLX treatment on the susceptibility to atrial fibrillation (AF) after myocardial...... infarction (MI). Methods Mice with cryoinfarction of the left anterior ventricular wall were treated for two weeks with either RLX (75 μg/kg/d) or vehicle (sodium acetate) delivered via subcutaneously implanted osmotic minipumps. Results RLX treatment significantly attenuated the increase in AF......-inducibility following cryoinfarction and reduced the mean duration of AF episodes. Furthermore, epicardial mapping of both atria revealed an increase in conduction velocity. In addition to an attenuation of atrial hypertrophy, chronic application of RLX reduced atrial fibrosis, which was linked to a significant...

  6. Hemorrhagic lesions in soft tissue: utility and limitations of magnetic resonance

    International Nuclear Information System (INIS)

    Legorburu, A.; Oleaga, L.; Ibarra, V.; Grande, D.

    1998-01-01

    We present four patients with hemorrhagic soft tissue tumors. The diagnosis was malignant fibrous histiocytoma in three of the patients and hematoma in the fourth. We show the magnetic resonance findings in these four cases, stressing the value of this technique in the assessment of the extension of soft tissue tumors. The difficulty in differentiating tumors with bleeding, as often occurs with malignant fibrous histiocytoma, from true hematomas. (Author) 8 refs

  7. Leonurine (SCM-198) attenuates myocardial fibrotic response via inhibition of NADPH oxidase 4.

    Science.gov (United States)

    Liu, Xin-Hua; Pan, Li-Long; Deng, Hai-Yan; Xiong, Qing-Hui; Wu, Dan; Huang, Guo-Ying; Gong, Qi-Hai; Zhu, Yi-Zhun

    2013-01-01

    In our previous studies, we have reported that leonurine, a plant phenolic alkaloid in Herba leonuri, exerted cardioprotective properties in a number of preclinical experiments. Herein, we investigated the roles and the possible mechanisms of leonurine for reducing fibrotic responses in angiotensin II (Ang II)-stimulated primary neonatal rat cardiac fibroblasts and post-myocardial infarction (MI) rats. In in vitro experiments performed in neonatal rat cardiac fibroblasts, leonurine (10-20 μM) pretreatment attenuated Ang II-induced activation of extracellular signal-regulated kinase 1/2, production of intracellular reactive oxygen species (ROS), expression and activity of matrix metalloproteinase (MMP)-2/9, and expression of α-smooth muscle actin and types I and III collagen. A small interfering RNA-mediated knockdown strategy for NADPH oxidase 4 (Nox4) revealed that Nox4 was required for Ang II-induced activation of cardiac fibroblasts. In vivo studies using a post-MI model in rats indicated that administration of leonurine inhibited myocardial fibrosis while reducing cardiac Nox4 expression, ROS production, NF-κB activation, and plasma MMP-2 activity. In conclusion, our results provide the first evidence that leonurine could prevent cardiac fibrosis and the activation of cardiac fibroblasts partly through modulation of a Nox4-ROS pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Soft tissue expansion before vertical ridge augmentation: Inflatable silicone balloons or self-filling osmotic tissue expanders?

    Directory of Open Access Journals (Sweden)

    Prasad Vijayrao Dhadse

    2014-01-01

    Full Text Available Recent advances in periodontal plastic surgical procedures allow the clinician to reconstruct deficient alveolar ridges in more predictable ways than previously possible. Placement of implant/s in resorbed ridges poses numerous challenges to the clinician for successful esthetic and functional rehabilitation. The reconstruction frequently utilizes one or combination of periodontal plastic surgical procedures in conjunction with autogenous bone grafting, allogenic bone block grafting, ridge split techniques, distraction osteogenesis, or guided bone regeneration (GBR for most predictable outcomes. Current surgical modalities used in reconstruction of alveolar ridge (horizontal and/or vertical component often involve the need of flap transfer. Moreover, there is compromise in tissue integrity and color match owing to different surgical site and the tissue utilized is insufficient in quantity leading to post surgical graft exposition and/or loss of grafted bone. Soft tissue expansion (STE by implantation of inflatable silicone balloon or self filling osmotic tissue expanders before reconstructive surgery can overcome these disadvantages and certainly holds a promise for effective method for generation of soft tissue thereby achieving predictable augmentation of deficient alveolar ridges for the implant success. This article focuses and compares these distinct tissue expanders for their clinical efficacy of achieving excess tissue that predominantly seems to be prerequisite for ridge augmentation which can be reasonably followed by successful placement of endosseous fixtures.

  9. Dose-dependent induction of transforming growth factor β (TGF-β) in the lung tissue of fibrosis-prone mice after thoracic irradiation

    International Nuclear Information System (INIS)

    Ruebe, Claudia E.; Uthe, Daniela; Schmid, Kurt W.; Richter, Klaus D.; Wessel, Jan; Schuck, Andreas; Willich, Norman; Ruebe, Christian

    2000-01-01

    Purpose: The lung is the major dose-limiting organ for radiotherapy of cancer in the thoracic region. The pathogenesis of radiation-induced lung injury at the molecular level is still unclear. Immediate cellular damage after irradiation is supposed to result in cytokine-mediated multicellular interactions with induction and progression of fibrotic tissue reactions. The purpose of this investigation was to evaluate the acute and long-term effects of radiation on the gene expression of transforming growth factor beta (TGF-β) in a model of lung injury using fibrosis-sensitive C57BL/6 mice. Methods and Materials: The thoraces of C57BL/6 mice were irradiated with 6 and 12 Gy, respectively. Treated and sham-irradiated control mice were sacrificed at times corresponding to the latent period (1, 3, 6, 12, 24, 48, 72 hours and 1 week postirradiation), the pneumonic phase (2, 4, 8, and 16 weeks postirradiation), and the beginning of the fibrotic phase (24 weeks postirradiation). The lung tissue from three different mice per dosage and time point was analyzed by a combination of polymerase chain reaction (PCR), immunohistochemistry, and light microscopy. The mRNA expression of TGF-β was quantified by competitive reverse transcriptase/polymerase chain reaction (RT-PCR); the cellular origin of the TGF-β protein was identified by immunohistochemical staining (alkaline phosphatase-anti-alkaline phosphatase [APAAP]). The cytokine expression on mRNA and protein level was correlated with the histopathological alterations. Results: Following thoracic irradiation with a single dose of 12 Gy, radiation-induced TGF-β release in lung tissue was appreciable already within the first hours (1, 3, and 6 hours postirradiation) and reached a significant increase after 12 hours; subsequently (48 hours, 72 hours, and 1 week postirradiation) the TGF-β expression declined to basal levels. At the beginning of the pneumonic phase, irradiation-mediated stimulation of TGF-β release reached

  10. Distribution of Ca, Fe, Cu and Zn in primary colorectal cancer and secondary colorectal liver metastases

    International Nuclear Information System (INIS)

    Al-Ebraheem, A.; Mersov, A.; Gurusamy, K.; Farquharson, M.J.

    2010-01-01

    A microbeam synchrotron X-ray fluorescence (μSRXRF) technique has been used to determine the localization and the relative concentrations of Zn, Cu, Fe and Ca in primary colorectal cancer and secondary colorectal liver metastases. 24 colon and 23 liver samples were examined, all of which were formalin fixed tissues arranged as microarrays of 1.0 mm diameter and 10 μm thickness. The distribution of these metals was compared with light transmission images of adjacent sections that were H and E stained to reveal the location of the cancer cells. Histological details were provided for each sample which enable concentrations of all elements in different tissue types to be compared. In the case of liver, significant differences have been found for all elements when comparing tumour, normal, necrotic, fibrotic, and blood vessel tissues (Kruskal Wallis Test, P<0.0001). The concentrations of all elements have also been found to be significantly different among tumour, necrotic, fibrotic, and mucin tissues in the colon samples (Kruskal Wallis Test, P<0.0001). The concentrations of all elements have been compared between primary colorectal samples and colorectal liver metastases. Concentration of Zn, Cu, Fe and Ca are higher in all types of liver tissues compared to those in the colon tissues. Comparing liver tumour and colon tumour samples, significant differences have been found for all elements (Mann Whitney, P<0.0001). For necrotic tissues, significant increase has been found for Zn, Ca, Cu and Fe (Mann Whitney, P<0.0001 for Fe and Zn, 0.014 for Ca, and 0.001 for Cu). The liver fibrotic levels of Zn, Ca, Cu and Fe were higher than the fibrotic colon areas (independent T test, P=0.007 for Zn and Mann Whitney test P<0.0001 for Cu, Fe and Ca). For the blood vessel tissue, the analysis revealed that the difference was only significant for Fe (P=0.009) from independent T test.

  11. Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts

    International Nuclear Information System (INIS)

    Samoszuk, Michael; Kanakubo, Emi; Chan, John K

    2005-01-01

    The purpose of this study was to test the hypothesis that mast cells that are present in fibrotic regions of cancer can suppress the growth of tumor cells through an indirect mechanism involving peri-tumoral fibroblasts. We first immunostained a wide variety of human cancers for the presence of degranulated mast cells. In a subsequent series of controlled in vitro experiments, we then co-cultured UACC-812 human breast cancer cells with normal fibroblasts in the presence or absence of different combinations and doses of mast cell tryptase, mast cell heparin, a lysate of the human mast cell line HMC-1, and fibroblast growth factor-7 (FGF-7), a powerful, heparin-binding growth factor for breast epithelial cells. Degranulating mast cells were localized predominantly in the fibrous tissue of every case of breast cancer, head and neck cancer, lung cancer, ovarian cancer, non-Hodgkin's lymphoma, and Hodgkin's disease that we examined. Mast cell tryptase and HMC-1 lysate had no significant effect on the clonogenic growth of cancer cells co-cultured with fibroblasts. By contrast, mast cell heparin at multiple doses significantly reduced the size and number of colonies of tumor cells co-cultured with fibroblasts, especially in the presence of FGF-7. Neither heparin nor FGF-7, individually or in combination, produced any significant effect on the clonogenic growth of breast cancer cells cultured without fibroblasts. Degranulating mast cells are restricted to peri-tumoral fibrous tissue, and mast cell heparin is a powerful inhibitor of clonogenic growth of tumor cells co-cultured with fibroblasts. These results may help to explain the well-known ability of heparin to inhibit the growth of primary and metastatic tumors

  12. Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts

    Directory of Open Access Journals (Sweden)

    Kanakubo Emi

    2005-09-01

    Full Text Available Abstract Background The purpose of this study was to test the hypothesis that mast cells that are present in fibrotic regions of cancer can suppress the growth of tumor cells through an indirect mechanism involving peri-tumoral fibroblasts. Methods We first immunostained a wide variety of human cancers for the presence of degranulated mast cells. In a subsequent series of controlled in vitro experiments, we then co-cultured UACC-812 human breast cancer cells with normal fibroblasts in the presence or absence of different combinations and doses of mast cell tryptase, mast cell heparin, a lysate of the human mast cell line HMC-1, and fibroblast growth factor-7 (FGF-7, a powerful, heparin-binding growth factor for breast epithelial cells. Results Degranulating mast cells were localized predominantly in the fibrous tissue of every case of breast cancer, head and neck cancer, lung cancer, ovarian cancer, non-Hodgkin's lymphoma, and Hodgkin's disease that we examined. Mast cell tryptase and HMC-1 lysate had no significant effect on the clonogenic growth of cancer cells co-cultured with fibroblasts. By contrast, mast cell heparin at multiple doses significantly reduced the size and number of colonies of tumor cells co-cultured with fibroblasts, especially in the presence of FGF-7. Neither heparin nor FGF-7, individually or in combination, produced any significant effect on the clonogenic growth of breast cancer cells cultured without fibroblasts. Conclusion Degranulating mast cells are restricted to peri-tumoral fibrous tissue, and mast cell heparin is a powerful inhibitor of clonogenic growth of tumor cells co-cultured with fibroblasts. These results may help to explain the well-known ability of heparin to inhibit the growth of primary and metastatic tumors.

  13. An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury.

    Science.gov (United States)

    Aurora, Amit; Roe, Janet L; Corona, Benjamin T; Walters, Thomas J

    2015-10-01

    Extracellular matrix (ECM) derived scaffolds continue to be investigated for the treatment of volumetric muscle loss (VML) injuries. Clinically, ECM scaffolds have been used for lower extremity VML repair; in particular, MatriStem™, a porcine urinary bladder matrix (UBM), has shown improved functional outcomes and vascularization, but limited myogenesis. However, efficacy of the scaffold for the repair of traumatic muscle injuries has not been examined systematically. In this study, we demonstrate that the porcine UBM scaffold when used to repair a rodent gastrocnemius musculotendinous junction (MTJ) and tibialis anterior (TA) VML injury does not support muscle tissue regeneration. In the MTJ model, the scaffold was completely resorbed without tissue remodeling, suggesting that the scaffold may not be suitable for the clinical repair of muscle-tendon injuries. In the TA VML injury, the scaffold remodeled into a fibrotic tissue and showed functional improvement, but not due to muscle fiber regeneration. The inclusion of physical rehabilitation also did not improve functional response or tissue remodeling. We conclude that the porcine UBM scaffold when used to treat VML injuries may hasten the functional recovery through the mechanism of scaffold mediated functional fibrosis. Thus for appreciable muscle regeneration, repair strategies that incorporate myogenic cells, vasculogenic accelerant and a myoconductive scaffold need to be developed. Published by Elsevier Ltd.

  14. Precision-cut kidney slices (PCKS to study development of renal fibrosis and efficacy of drug targeting ex vivo

    Directory of Open Access Journals (Sweden)

    Fariba Poosti

    2015-10-01

    Full Text Available Renal fibrosis is a serious clinical problem resulting in the greatest need for renal replacement therapy. No adequate preventive or curative therapy is available that could be clinically used to target renal fibrosis specifically. The search for new efficacious treatment strategies is therefore warranted. Although in vitro models using homogeneous cell populations have contributed to the understanding of the pathogenetic mechanisms involved in renal fibrosis, these models poorly mimic the complex in vivo milieu. Therefore, we here evaluated a precision-cut kidney slice (PCKS model as a new, multicellular ex vivo model to study the development of fibrosis and its prevention using anti-fibrotic compounds. Precision-cut slices (200-300 μm thickness were prepared from healthy C57BL/6 mouse kidneys using a Krumdieck tissue slicer. To induce changes mimicking the fibrotic process, slices were incubated with TGFβ1 (5 ng/ml for 48 h in the presence or absence of the anti-fibrotic cytokine IFNγ (1 µg/ml or an IFNγ conjugate targeted to PDGFRβ (PPB-PEG-IFNγ. Following culture, tissue viability (ATP-content and expression of α-SMA, fibronectin, collagen I and collagen III were determined using real-time PCR and immunohistochemistry. Slices remained viable up to 72 h of incubation, and no significant effects of TGFβ1 and IFNγ on viability were observed. TGFβ1 markedly increased α-SMA, fibronectin and collagen I mRNA and protein expression levels. IFNγ and PPB-PEG-IFNγ significantly reduced TGFβ1-induced fibronectin, collagen I and collagen III mRNA expression, which was confirmed by immunohistochemistry. The PKCS model is a novel tool to test the pathophysiology of fibrosis and to screen the efficacy of anti-fibrotic drugs ex vivo in a multicellular and pro-fibrotic milieu. A major advantage of the slice model is that it can be used not only for animal but also for (fibrotic human kidney tissue.

  15. Celecoxib, but not indomethacin, ameliorates the hypertensive and perivascular fibrotic actions of cyclosporine in rats: Role of endothelin signaling

    International Nuclear Information System (INIS)

    El-Mas, Mahmoud M.; Helmy, Maged W.; Ali, Rabab M.; El-Gowelli, Hanan M.

    2015-01-01

    The immunosuppressant drug cyclosporine (CSA) is used with nonsteroidal antiinflammatory drugs (NSAIDs) in arthritic conditions. In this study, we investigated whether NSAIDs modify the deleterious hypertensive action of CSA and the role of endothelin (ET) receptors in this interaction. Pharmacologic, protein expression, and histopathologic studies were performed in rats to investigate the roles of endothelin receptors (ET A /ET B ) in the hemodynamic interaction between CSA and two NSAIDs, indomethacin and celecoxib. Tail-cuff plethysmography measurements showed that CSA (20 mg kg −1 day −1 , 10 days) increased systolic blood pressure (SBP) and heart rate (HR). CSA hypertension was associated with renal perivascular fibrosis and divergent changes in immunohistochemical signals of renal arteriolar ET A (increases) and ET B (decreases) receptors. While these effects of CSA were preserved in rats treated concomitantly with indomethacin (5 mg kg −1 day −1 ), celecoxib (10 mg kg −1 day −1 ) abolished the pressor, tachycardic, and fibrotic effects of CSA and normalized the altered renal ET A /ET B receptor expressions. Selective blockade of ET A receptors by atrasentan (5 mg kg −1 day −1 ) abolished the pressor response elicited by CSA or CSA plus indomethacin. Alternatively, BQ788 (ET B receptor blocker, 0.1 mg kg −1 day −1 ) caused celecoxib-sensitive elevations in SBP and potentiated the pressor response evoked by CSA. Together, the improved renovascular fibrotic and endothelin receptor profile (ET A downregulation and ET B upregulation) mediate, at least partly, the protective effect of celecoxib against the hypertensive effect of CSA. Clinically, the use of celecoxib along with CSA in the management of arthritic conditions might provide hypertension-free regimen. - Highlights: • Chronic CSA causes hypertension and renal perivascular fibrosis in rats. • CSA increased and decreased renal ET A and ET B receptor expression, respectively. • CSA

  16. Increased expression of Interleukin-13 and connective tissue growth factor, and their potential roles during foreign body encapsulation of subcutaneous implants.

    Science.gov (United States)

    Ward, W Kenneth; Li, Allen G; Siddiqui, Yasmin; Federiuk, Isaac F; Wang, Xiao-Jing

    2008-01-01

    The purpose of this study was to better understand whether interleukin-13 (IL-13) and connective tissue growth factor (CTGF) are highly expressed during foreign body encapsulation of subcutaneous devices. Mock biosensors were implanted into rats for three lengths of time (7-, 21- and 48-55 days) to address different stages of the foreign body response. Using quantitative real-time PCR and immunofluorescence, the expression of IL13, CTGF, collagen 1, decorin and fibronectin were measured in this tissue. IL-13, a product of Th2 cells, was highly expressed at all time points, with greatest expression at day 21. The IL-13 expression was paralleled by increased presence of T-cells at all time points. CTGF was also found to be more highly expressed in foreign body tissue than in controls. Collagen and decorin were highly expressed at the middle and later stages. Given the increased expression of IL-13 and CTGF in foreign body tissue, and their roles in other fibrotic disorders, these cytokines may well contribute to the formation of the foreign body capsule. Since the peak gene expression of IL-13 occurred later than the previously-reported TGFbeta expression peak, IL-13 is probably not the major stimulus to TGFbeta expression during foreign body encapsulation and may contribute to fibrosis independently.

  17. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  18. External Volume Expansion in Irradiated Tissue: Effects on the Recipient Site.

    Science.gov (United States)

    Chin, Michael S; Lujan-Hernandez, Jorge; Babchenko, Oksana; Bannon, Elizabeth; Perry, Dylan J; Chappell, Ava G; Lo, Yuan-Chyuan; Fitzgerald, Thomas J; Lalikos, Janice F

    2016-05-01

    External volume expansion prepares recipient sites to improve outcomes of fat grafting. For patients receiving radiotherapy after mastectomy, results with external volume expansion vary, and the relationship between radiotherapy and expansion remains unexplored. Thus, the authors developed a new translational model to investigate the effects in chronic skin fibrosis after radiation exposure. Twenty-four SKH1-E mice received 50 Gy of β-radiation to each flank and were monitored until fibrosis developed (8 weeks). External volume expansion was then applied at -25 mmHg to one side for 6 hours for 5 days. The opposite side served as the control. Perfusion changes were assessed with hyperspectral imaging. Mice were euthanized at 5 (n = 12) and 15 days (n = 12) after the last expansion application. Tissue samples were analyzed with immunohistochemistry for CD31 and Ki67, Masson trichrome for skin thickness, and picrosirius red to analyze collagen composition. All animals developed skin fibrosis 8 weeks after radiotherapy and became hypoperfused based on hyperspectral imaging. Expansion induced edema on treated sides after stimulation. Perfusion was decreased by 13 percent on the expansion side (p External volume expansion temporarily reduces perfusion, likely because of transient ischemia or edema. Together with mechanotransduction, these effects encourage a proangiogenic and proliferative environment in fibrotic tissue after radiotherapy in the authors' mouse model. Further studies are needed to assess these changes in fat graft retention.

  19. Biomarkers in Scleroderma: Progressing from Association to Clinical Utility.

    Science.gov (United States)

    Ligon, Colin; Hummers, Laura K

    2016-03-01

    Scleroderma is a heterogenous disease characterized by autoimmunity, a characteristic vasculopathy, and often widely varying extents of deep organ fibrosis. Recent advances in the understanding of scleroderma's evolution have improved the ability to identify subgroups of patients with similar prognosis in order to improve risk stratification, enrich clinical trials for patients likely to benefit from specific therapies, and identify promising therapeutic targets for intervention. High-throughput technologies have recently identified fibrotic and inflammatory effectors in scleroderma that exhibit strong prognostic ability and may be tied to disease evolution. Increasingly, the use of collections of assayed circulating proteins and patterns of gene expression in tissue has replaced single-marker investigations in understanding the evolution of scleroderma and in objectively characterizing disease extent. Lastly, identification of shared patterns of disease evolution has allowed classification of patients into latent disease subtypes, which may allow rapid clinical prognostication and targeted management in both clinical and research settings. The concept of biomarkers in scleroderma is expanding to include nontraditional measures of aggregate protein signatures and disease evolution. This review examines the recent advances in biomarkers with a focus on those approaches poised to guide prospective management or themselves serve as quantitative surrogate disease outcomes.

  20. Protocol for Monitoring Gulf War Veterans with Imbedded Fragments of Depleted Uranium

    Science.gov (United States)

    1993-03-01

    interest is evidence of total or partial fibrotic encapsulation ; local tissue necrosis; growing granuloma; or if there is evidence of a breakdown, a...formed fibrotic capsule. - If the fragment is encapsulated , remove and save the intact capsule (with the fragment still inside) if possible. If the...0704-0188 Public reporng burden for this owllectlon of infotmation iS estimated to average 1 hour par response , ircluding the time for revewing

  1. Cancerous tissue mapping from random lasing emission spectra

    International Nuclear Information System (INIS)

    Polson, R C; Vardeny, Z V

    2010-01-01

    Random lasing emission spectra have been collected from both healthy and cancerous tissues. The two types of tissue with optical gain have different light scattering properties as obtained from an average power Fourier transform of their random lasing emission spectra. The difference in the power Fourier transform leads to a contrast between cancerous and benign tissues, which is utilized for tissue mapping of healthy and cancerous regions of patients

  2. In vivo xenogeneic scaffold fate is determined by residual antigenicity and extracellular matrix preservation.

    Science.gov (United States)

    Wong, Maelene L; Wong, Janelle L; Vapniarsky, Natalia; Griffiths, Leigh G

    2016-06-01

    The immunological potential of animal-derived tissues and organs is the critical hurdle to increasing their clinical implementation. Glutaraldehyde-fixation cross-links proteins in xenogeneic tissues (e.g., bovine pericardium) to delay immune rejection, but also compromises the regenerative potential of the resultant biomaterial. Unfixed xenogeneic biomaterials in which xenoantigenicity has been ameliorated and native extracellular matrix (ECM) architecture has been maintained have the potential to overcome limitations of current clinically utilized glutaraldehyde-fixed biomaterials. The objective of this work was to determine how residual antigenicity and ECM architecture preservation modulate recipient immune and regenerative responses towards unfixed bovine pericardium (BP) ECM scaffolds. Disruption of ECM architecture during scaffold generation, with either SDS-decellularization or glutaraldehyde-fixation, stimulated recipient foreign body response and resultant fibrotic encapsulation following leporine subpannicular implantation. Conversely, BP scaffolds subjected to stepwise removal of hydrophilic and lipophilic antigens using amidosulfobetaine-14 (ASB-14) maintained native ECM architecture and thereby avoided fibrotic encapsulation. Removal of hydrophilic and lipophilic antigens significantly decreased local and systemic graft-specific, adaptive immune responses and subsequent calcification of BP scaffolds compared to scaffolds undergoing hydrophile removal only. Critically, removal of antigenic components and preservation of ECM architecture with ASB-14 promoted full-thickness recipient non-immune cellular repopulation of the BP scaffold. Further, unlike clinically utilized fixed BP, ASB-14-treated scaffolds fostered rapid intimal and medial vessel wall regeneration in a porcine carotid patch angioplasty model. This work highlights the importance of residual antigenicity and ECM architecture preservation in modulating recipient immune and regenerative

  3. Paracrine action of mesenchymal stromal cells delivered by microspheres contributes to cutaneous wound healing and prevents scar formation in mice.

    Science.gov (United States)

    Huang, Sha; Wu, Yan; Gao, Dongyun; Fu, Xiaobing

    2015-07-01

    Accumulating evidence suggests that mesenchymal stromal cells (MSCs) participate in wound healing to favor tissue regeneration and inhibit fibrotic tissue formation. However, the evidence of MSCs to suppress cutaneous scar is extremely rare, and the mechanism remains unidentified. This study aimed to demonstrate whether MSCs-as the result of their paracrine actions on damaged tissues-would accelerate wound healing and prevent cutaneous fibrosis. For efficient delivery of MSCs to skin wounds, microspheres were used to maintain MSC potency. Whether MSCs can accelerate wound healing and alleviate cutaneous fibrosis through paracrine action was investigated with the use of a Transwell co-culture system in vitro and a murine model in vivo. MSCs cultured on gelatin microspheres fully retained their cell surface marker expression profile, proliferation, differentiation and paracrine potential. Co-cultures of MSCs and fibroblasts indicated that the benefits of MSCs on suppressing fibroblast proliferation and its fibrotic behavior induced by inflammatory cytokines probably were caused by paracrine actions. Importantly, microspheres successfully delivered MSCs into wound margins and significantly accelerated wound healing and concomitantly reduced the fibrotic activities of cells within the wounds and excessive accumulation of extracellular matrix as well as the transforming growth factor-β1/transforming growth factor-β3 ratio. This study provides insight into what we believe to be a previously undescribed, multifaceted role of MSC-released protein in reducing cutaneous fibrotic formation. Paracrine action of MSCs delivered by microspheres may thus qualify as a promising strategy to enhance tissue repair and to prevent excessive fibrosis during cutaneous wound healing. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    Directory of Open Access Journals (Sweden)

    Viti Federica

    2008-04-01

    Full Text Available Abstract Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes.

  5. Tumor stroma-containing 3D spheroid arrays: A tool to study nanoparticle penetration

    NARCIS (Netherlands)

    Priwitaningrum, Dwi L.; Priwitaningrum, Dwi Lestari; Blondé, Jean-Baptiste Gabriel Marie; Blonde, Jean-Baptiste G.; Sridhar, Adithya; van Baarlen, Joop; Hennink, Wim E.; Storm, Gerrit; le Gac, Severine; Prakash, Jai

    2016-01-01

    Nanoparticle penetration through tumor tissue after extravasation is considered as a key issue for tumor distribution and therapeutic effects. Most tumors possess abundant stroma, a fibrotic tissue composed of cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM), which acts as a

  6. Inflammatory models drastically alter tumor growth and the immune microenvironment in hepatocellular carcinoma.

    Science.gov (United States)

    Markowitz, Geoffrey J; Michelotti, Gregory A; Diehl, Anna Mae; Wang, Xiao-Fan

    2015-04-01

    Initiation and progression of hepatocellular carcinoma (HCC) is intimately associated with a chronically diseased liver tissue. This diseased liver tissue background is a drastically different microenvironment from the healthy liver, especially with regard to immune cell prevalence and presence of mediators of immune function. To better understand the consequences of liver disease on tumor growth and the interplay with its microenvironment, we utilized two standard methods of fibrosis induction and orthotopic implantation of tumors into the inflamed and fibrotic liver to mimic the liver condition in human HCC patients. Compared to non-diseased controls, tumor growth was significantly enhanced under fibrotic conditions. The immune cells that infiltrated the tumors were also drastically different, with decreased numbers of natural killer cells but greatly increased numbers of immune-suppressive CD11b + Gr1 hi myeloid cells in both models of fibrosis. In addition, there were model-specific differences: Increased numbers of CD11b + myeloid cells and CD4 + CD25 + T cells were found in tumors in the bile duct ligation model but not in the carbon tetrachloride model. Induction of fibrosis altered the cytokine production of implanted tumor cells, which could have farreaching consequences on the immune infiltrate and its functionality. Taken together, this work demonstrates that the combination of fibrosis induction with orthotopic tumor implantation results in a markedly different tumor microenvironment and tumor growth kinetics, emphasizing the necessity for more accurate modeling of HCC progression in mice, which takes into account the drastic changes in the tissue caused by chronic liver disease.

  7. Engineering Complex Tissues

    Science.gov (United States)

    MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA

    2010-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue

  8. Feasibility of a semi-automated method for cardiac conduction velocity analysis of high-resolution activation maps

    NARCIS (Netherlands)

    Doshi, Ashish N.; Walton, Richard D.; Krul, Sébastien P.; de Groot, Joris R.; Bernus, Olivier; Efimov, Igor R.; Boukens, Bastiaan J.; Coronel, Ruben

    2015-01-01

    Myocardial conduction velocity is important for the genesis of arrhythmias. In the normal heart, conduction is primarily dependent on fiber direction (anisotropy) and may be discontinuous at sites with tissue heterogeneities (trabeculated or fibrotic tissue). We present a semi-automated method for

  9. Acquired RhD mosaicism identifies fibrotic transformation of thrombopoietin receptor-mutated essential thrombocythemia.

    Science.gov (United States)

    Montemayor-Garcia, Celina; Coward, Rebecca; Albitar, Maher; Udani, Rupa; Jain, Prachi; Koklanaris, Eleftheria; Battiwalla, Minoo; Keel, Siobán; Klein, Harvey G; Barrett, A John; Ito, Sawa

    2017-09-01

    Acquired copy-neutral loss of heterozygosity has been described in myeloid malignant progression with an otherwise normal karyotype. A 65-year-old woman with MPL-mutated essential thrombocythemia and progression to myelofibrosis was noted upon routine pretransplant testing to have mixed field reactivity with anti-D and an historic discrepancy in RhD type. The patient had never received transfusions or transplantation. Gel immunoagglutination revealed group A red blood cells and a mixed-field reaction for the D phenotype, with a predominant D-negative population and a small subset of circulating red blood cells carrying the D antigen. Subsequent genomic microarray single nucleotide polymorphism profiling revealed copy-neutral loss of heterozygosity of chromosome 1 p36.33-p34.2, a known molecular mechanism underlying fibrotic progression of MPL-mutated essential thrombocythemia. The chromosomal region affected by this copy-neutral loss of heterozygosity encompassed the RHD, RHCE, and MPL genes. We propose a model of chronological molecular events that is supported by RHD zygosity assays in peripheral lymphoid and myeloid-derived cells. Copy-neutral loss of heterozygosity events that lead to clonal selection and myeloid malignant progression may also affect the expression of adjacent unrelated genes, including those encoding for blood group antigens. Detection of mixed-field reactions and investigation of discrepant blood typing results are important for proper transfusion support of these patients and can provide useful surrogate markers of myeloproliferative disease progression. © 2017 AABB.

  10. Bone morphogenetic protein 2 and decorin expression in old fracture fragments and surrounding tissues.

    Science.gov (United States)

    Han, X G; Wang, D K; Gao, F; Liu, R H; Bi, Z G

    2015-09-21

    Bone morphogenetic protein 2 (BMP-2) can promote fracture healing. Although the complex role BMP-2 in bone formation is increasingly understood, the role of endogenous BMP-2 in nonunion remains unclear. Decorin (DCN) can promote the formation of bone matrix and calcium deposition to control bone morphogenesis. In this study, tissue composition and expression of BMP-2 and DCN were detected in different parts of old fracture zones to explore inherent anti-fibrotic ability and osteogenesis. Twenty-three patients were selected, including eight cases of delayed union and 15 cases of nonunion. Average duration of delayed union or nonunion was 15 months. Fracture fragments and surrounding tissues, including bone grafts, marrow cavity contents, and sticking scars, were categorically sampled during surgery. Through observation and histological testing, component comparisons were made between fracture fragments and surrounding tissue. The expression levels of DCN and BMP-2 in different tissues were detected by immunohistochemical staining and real-time polymerase chain reaction. The expression of DCN and BMP- 2 in different parts of the nonunion area showed that, compared with bone graft and marrow cavity contents, sticking scars had the highest expression of BMP-2. Compared with the marrow cavity contents and sticking scars, bone grafts had the highest expression of DCN. The low antifibrotic and osteogenic activity of the nonunion area was associated with non-co-expression of BMP-2 and DCN. Therefore, the co-injection of osteogenic factor BMP and DCN into the nonunion area can improve the induction of bone formation and enhance the conversion of the old scar, thereby achieving better nonunion treatment.

  11. Quantification of differences in the effective atomic numbers of healthy and cancerous tissues: A discussion in the context of diagnostics and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M. L. [School of Applied Sciences and Health Innovation Research Institute, RMIT University, Melbourne 3000 (Australia); Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne 3001 (Australia) and Medical Physics, WBRC, Alfred Hospital, Melbourne 3000 (Australia)

    2012-09-15

    Purpose: There are a range of genetic and nongenetic factors influencing the elemental composition of different human tissues. The elemental composition of cancerous tissues frequently differs from healthy tissue of the same organ, particularly in high-Z trace element concentrations. For this reason, one could suggest that this may be exploited in diagnostics and perhaps even influence dosimetry. Methods: In this work, for the first time, effective atomic numbers are computed for common cancerous and healthy tissues using a robust, energy-dependent approach between 10 keV and 100 MeV. These are then quantitatively compared within the context of diagnostics and dosimetry. Results: Differences between effective atomic numbers of healthy and diseased tissues are found to be typically less than 10%. Fibrotic tissues and calcifications of the breast exhibit substantial (tens to hundreds of percent) differences to healthy tissue. Expectedly, differences are most pronounced in the photoelectric regime and consequently most relevant for kV imaging/therapy and radionuclides with prominent low-energy peaks. Cancerous tissue of the testes and stomach have lower effective atomic numbers than corresponding healthy tissues, while diseased tissues of the other organ sites typically have higher values. Conclusions: As dose calculation approaches improve in accuracy, there may be an argument for the explicit inclusion of pathologies. This is more the case for breast, penile, prostate, nasopharyngeal, and stomach cancer, less so for testicular and kidney cancer. The calculated data suggest dual-energy computed tomography could potentially improve lesion identification in the aforementioned organs (with the exception of testicular cancer), with most import in breast imaging. Ultimately, however, the differences are very small. It is likely that the assumption of a generic 'tissue ramp' in planning will be sufficient for the foreseeable future, and that the Z differences do

  12. Quantification of differences in the effective atomic numbers of healthy and cancerous tissues: A discussion in the context of diagnostics and dosimetry

    International Nuclear Information System (INIS)

    Taylor, M. L.

    2012-01-01

    Purpose: There are a range of genetic and nongenetic factors influencing the elemental composition of different human tissues. The elemental composition of cancerous tissues frequently differs from healthy tissue of the same organ, particularly in high-Z trace element concentrations. For this reason, one could suggest that this may be exploited in diagnostics and perhaps even influence dosimetry. Methods: In this work, for the first time, effective atomic numbers are computed for common cancerous and healthy tissues using a robust, energy-dependent approach between 10 keV and 100 MeV. These are then quantitatively compared within the context of diagnostics and dosimetry. Results: Differences between effective atomic numbers of healthy and diseased tissues are found to be typically less than 10%. Fibrotic tissues and calcifications of the breast exhibit substantial (tens to hundreds of percent) differences to healthy tissue. Expectedly, differences are most pronounced in the photoelectric regime and consequently most relevant for kV imaging/therapy and radionuclides with prominent low-energy peaks. Cancerous tissue of the testes and stomach have lower effective atomic numbers than corresponding healthy tissues, while diseased tissues of the other organ sites typically have higher values. Conclusions: As dose calculation approaches improve in accuracy, there may be an argument for the explicit inclusion of pathologies. This is more the case for breast, penile, prostate, nasopharyngeal, and stomach cancer, less so for testicular and kidney cancer. The calculated data suggest dual-energy computed tomography could potentially improve lesion identification in the aforementioned organs (with the exception of testicular cancer), with most import in breast imaging. Ultimately, however, the differences are very small. It is likely that the assumption of a generic “tissue ramp” in planning will be sufficient for the foreseeable future, and that the Z differences do not

  13. Experimental study on active specific immunotherapy utilizing the immune reaction of low-dose irradiated tumor tissue, 7

    International Nuclear Information System (INIS)

    Ogawa, Yasuhiro; Maeda, Tomoho; Yoshida, Shoji; Yamamoto, Yoichi; Morita, Masaru

    1983-01-01

    We have already reported the remarkable effect of the active specific immunotherapy utilizing cryopreserved tumor cells and infiltrating mononuclear cells prepared from a lowdose irradiated tumor tissue after cytoreductive radiotherapy. In the present study, the effect of a biological response modifier, PSK combined with this active specific immunotherapy was investigated. Twelve-week-aged female C3H/He mice transplanted with MM46 tumor cells were received local radiotherapy with the dose of 3,000 rads by high energy electron beam on the fifth day after tumor inoculation. This active specific immunotherapy was performed on the twelveth day, and daily dose of 200 mg/kg of PSK was injected intraperitoneally from the sixth day to the tenth day. The more inhibition of the tumor growth was observed in the group which received this active specific immunotherapy combined with a biological response modifier, PSK compared with that received this active specific immunotherapy alone. (author)

  14. Experimental study on active specific immunotherapy utilizing the immune reaction of low-dose irradiated tumor tissue, 5

    International Nuclear Information System (INIS)

    Ogawa, Yasuhiro; Imanaka, Kazufumi; Gose, Kyuhei; Imajo, Yoshinari; Kimura, Shuji

    1982-01-01

    We have already reported the remarkable effect of the active specific immunotherapy utilizing cryopreserved tumor cells and infiltrating mononuclear cells prepared from a low-dose irradiated tumor tissue after cytoreductive radiotherapy. In the present study, the effect of a biological response modifier, OK-432 combined with this active specific immunotherapy was investigated. Twelve-week-aged female C3H/He mice transplanted with MM46 tumor cells were received local radiotherapy with the dose of 3,000 rads by high energy electron beam on the sixth day after inoculation. This active specific immunotherapy was performed on the thirteenth day, and daily dose of 1.0 KE of OK-432 was injected intraperitoneally from the thirteenth day to the seventeenth day. The inhibition of the tumor growth was observed in the group which received this active specific immunotherapy combined with a biological response modifier, OK-432 compared with that received this active specific immunotherapy alone. (author)

  15. The tissue microarray OWL schema: An open-source tool for sharing tissue microarray data

    Directory of Open Access Journals (Sweden)

    Hyunseok P Kang

    2010-01-01

    Full Text Available Background: Tissue microarrays (TMAs are enormously useful tools for translational research, but incompatibilities in database systems between various researchers and institutions prevent the efficient sharing of data that could help realize their full potential. Resource Description Framework (RDF provides a flexible method to represent knowledge in triples, which take the form Subject- Predicate-Object. All data resources are described using Uniform Resource Identifiers (URIs, which are global in scope. We present an OWL (Web Ontology Language schema that expands upon the TMA data exchange specification to address this issue and assist in data sharing and integration. Methods: A minimal OWL schema was designed containing only concepts specific to TMA experiments. More general data elements were incorporated from predefined ontologies such as the NCI thesaurus. URIs were assigned using the Linked Data format. Results: We present examples of files utilizing the schema and conversion of XML data (similar to the TMA DES to OWL. Conclusion: By utilizing predefined ontologies and global unique identifiers, this OWL schema provides a solution to the limitations of XML, which represents concepts defined in a localized setting. This will help increase the utilization of tissue resources, facilitating collaborative translational research efforts.

  16. Anti-fibrotic effects of Ginsan

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Ji-young; Lee, Jung-woo; Son, Hyeog-jin; Kim, Hyung-doo; Han, Young-soo; Yun, Yeon-sook; Song, Jie-young [Korea institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2006-07-01

    Pulmonary fibrosis is the consequence of a variety of diseases with no satisfying treatment option. Therapy induced fibrosis also limits the efficacy of chemotherapy and radiotherapy in numerous cancers. It has been proposed that fibrogenesis is not a unique pathologic process but rather, is due to an excess of the same biologic events involved in normal tissue repair. Persistent and exaggerated wound healing ultimately leads to an excess of fibroblast replication and matrix deposition. Several studies revealed that TGF-{beta}1, collagen 1, fibronectin, various chemokine and some anti-oxidant are overexpressed in radiation induced pulmonary fibrosis. A number of studies were performed that polysaccharide extracted from Panax ginseng C.A. Meyer, ginsan, has been demonstrated to be a potent promising biological response modifier (BRM), including proliferation of lymphocytes, generation of lymphokine activated killer cells, and production of several cytokines. On the basis of several results of the ability of ginsan on modulation of redox system and cytokine balance, we examined whether ginsan directly regulates fibroblast proliferation, differentiation factors, and also investigated the mechanism of the antifibrotic effects of ginsan.

  17. Extracellular matrix hydrogels from decellularized tissues: Structure and function.

    Science.gov (United States)

    Saldin, Lindsey T; Cramer, Madeline C; Velankar, Sachin S; White, Lisa J; Badylak, Stephen F

    2017-02-01

    Extracellular matrix (ECM) bioscaffolds prepared from decellularized tissues have been used to facilitate constructive and functional tissue remodeling in a variety of clinical applications. The discovery that these ECM materials could be solubilized and subsequently manipulated to form hydrogels expanded their potential in vitro and in vivo utility; i.e. as culture substrates comparable to collagen or Matrigel, and as injectable materials that fill irregularly-shaped defects. The mechanisms by which ECM hydrogels direct cell behavior and influence remodeling outcomes are only partially understood, but likely include structural and biological signals retained from the native source tissue. The present review describes the utility, formation, and physical and biological characterization of ECM hydrogels. Two examples of clinical application are presented to demonstrate in vivo utility of ECM hydrogels in different organ systems. Finally, new research directions and clinical translation of ECM hydrogels are discussed. More than 70 papers have been published on extracellular matrix (ECM) hydrogels created from source tissue in almost every organ system. The present manuscript represents a review of ECM hydrogels and attempts to identify structure-function relationships that influence the tissue remodeling outcomes and gaps in the understanding thereof. There is a Phase 1 clinical trial now in progress for an ECM hydrogel. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Procoagulant, tissue factor-bearing microparticles in bronchoalveolar lavage of interstitial lung disease patients: an observational study.

    Directory of Open Access Journals (Sweden)

    Federica Novelli

    without affecting tissue factor mRNA. Procoagulant microparticles are increased in interstitial lung diseases and correlate with functional impairment. These structures might contribute to the activation of factor X and to the factor Xa-mediated fibrotic response in lung injury.

  19. Early onset of disc degeneration in SM/J mice is associated with changes in ion transport systems and fibrotic events.

    Science.gov (United States)

    Zhang, Ying; Xiong, Chi; Kudelko, Mateusz; Li, Yan; Wang, Cheng; Wong, Yuk Lun; Tam, Vivian; Rai, Muhammad Farooq; Cheverud, James; Lawson, Heather A; Sandell, Linda; Chan, Wilson C W; Cheah, Kathryn S E; Sham, Pak C; Chan, Danny

    2018-04-09

    Intervertebral disc degeneration (IDD) causes back pain and sciatica, affecting quality of life and resulting in high economic/social burden. The etiology of IDD is not well understood. Along with aging and environmental factors, genetic factors also influence the onset, progression and severity of IDD. Genetic studies of risk factors for IDD using human cohorts are limited by small sample size and low statistical power. Animal models amenable to genetic and functional studies of IDD provide desirable alternatives. Despite differences in size and cellular content as compared to human intervertebral discs (IVDs), the mouse is a powerful model for genetics and assessment of cellular changes relevant to human biology. Here, we provide evidence for early onset disc degeneration in SM/J relative to LG/J mice with poor and good tissue healing capacity respectively. In the first few months of life, LG/J mice maintain a relatively constant pool of notochordal-like cells in the nucleus pulposus (NP) of the IVD. In contrast, chondrogenic events are observed in SM/J mice beginning as early as one-week-old, with progressive fibrotic changes. Further, the extracellular matrix changes in the NP are consistent with IVD degeneration. Leveraging on the genomic data of two parental and two recombinant inbred lines, we assessed the genetic contribution to the NP changes and identified processes linked to the regulation of ion transport systems. Significantly, "transport" system is also in the top three gene ontology (GO) terms from a comparative proteomic analysis of the mouse NP. These findings support the potential of the SM/J, LG/J and their recombinant inbred lines for future genetic and biological analysis in mice and validation of candidate genes and biological relevance in human cohort studies. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE [1] partner repository with the dataset identifier PXD008784. Copyright © 2017. Published by

  20. Activation of the connective tissue growth factor (CTGF-transforming growth factor β 1 (TGF-β 1 axis in hepatitis C virus-expressing hepatocytes.

    Directory of Open Access Journals (Sweden)

    Tirumuru Nagaraja

    Full Text Available BACKGROUND: The pro-fibrogenic cytokine connective tissue growth factor (CTGF plays an important role in the development and progression of fibrosis in many organ systems, including liver. However, its role in the pathogenesis of hepatitis C virus (HCV-induced liver fibrosis remains unclear. METHODS: In the present study, we assessed CTGF expression in HCV-infected hepatocytes using replicon cells containing full-length HCV genotype 1 and the infectious HCV clone JFH1 (HCV genotype 2 by real-time PCR, Western blot analysis and confocal microscopy. We evaluated transforming growth factor β1 (TGF-β1 as a key upstream mediator of CTGF production using neutralizing antibodies and shRNAs. We also determined the signaling molecules involved in CTGF production using various immunological techniques. RESULTS: We demonstrated an enhanced expression of CTGF in two independent models of HCV infection. We also demonstrated that HCV induced CTGF expression in a TGF-β1-dependent manner. Further dissection of the molecular mechanisms revealed that CTGF production was mediated through sequential activation of MAPkinase and Smad-dependent pathways. Finally, to determine whether CTGF regulates fibrosis, we showed that shRNA-mediated knock-down of CTGF resulted in reduced expression of fibrotic markers in HCV replicon cells. CONCLUSION: Our studies demonstrate a central role for CTGF expression in HCV-induced liver fibrosis and highlight the potential value of developing CTGF-based anti-fibrotic therapies to counter HCV-induced liver damage.

  1. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry

    Science.gov (United States)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal

  2. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering.

    Science.gov (United States)

    Kim, Hwan D; Amirthalingam, Sivashanmugam; Kim, Seunghyun L; Lee, Seunghun S; Rangasamy, Jayakumar; Hwang, Nathaniel S

    2017-12-01

    Various strategies have been explored to overcome critically sized bone defects via bone tissue engineering approaches that incorporate biomimetic scaffolds. Biomimetic scaffolds may provide a novel platform for phenotypically stable tissue formation and stem cell differentiation. In recent years, osteoinductive and inorganic biomimetic scaffold materials have been optimized to offer an osteo-friendly microenvironment for the osteogenic commitment of stem cells. Furthermore, scaffold structures with a microarchitecture design similar to native bone tissue are necessary for successful bone tissue regeneration. For this reason, various methods for fabricating 3D porous structures have been developed. Innovative techniques, such as 3D printing methods, are currently being utilized for optimal host stem cell infiltration, vascularization, nutrient transfer, and stem cell differentiation. In this progress report, biomimetic materials and fabrication approaches that are currently being utilized for biomimetic scaffold design are reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Understanding the Process of Fibrosis in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Yacine Kharraz

    2014-01-01

    Full Text Available Fibrosis is the aberrant deposition of extracellular matrix (ECM components during tissue healing leading to loss of its architecture and function. Fibrotic diseases are often associated with chronic pathologies and occur in a large variety of vital organs and tissues, including skeletal muscle. In human muscle, fibrosis is most readily associated with the severe muscle wasting disorder Duchenne muscular dystrophy (DMD, caused by loss of dystrophin gene function. In DMD, skeletal muscle degenerates and is infiltrated by inflammatory cells and the functions of the muscle stem cells (satellite cells become impeded and fibrogenic cells hyperproliferate and are overactivated, leading to the substitution of skeletal muscle with nonfunctional fibrotic tissue. Here, we review new developments in our understanding of the mechanisms leading to fibrosis in DMD and several recent advances towards reverting it, as potential treatments to attenuate disease progression.

  4. Comparative analysis of lysyl oxidase (like) family members in pulmonary fibrosis.

    Science.gov (United States)

    Aumiller, Verena; Strobel, Benjamin; Romeike, Merrit; Schuler, Michael; Stierstorfer, Birgit E; Kreuz, Sebastian

    2017-03-10

    Extracellular matrix (ECM) composition and stiffness are major driving forces for the development and persistence of fibrotic diseases. Lysyl oxidase (LOX) and LOX-like (LOXL) proteins play crucial roles in ECM remodeling due to their collagen crosslinking and intracellular functions. Here, we systematically investigated LOX/L expression in primary fibroblasts and epithelial cells under fibrotic conditions, Bleomycin (BLM) induced lung fibrosis and in human IPF tissue. Basal expression of all LOX/L family members was detected in epithelial cells and at higher levels in fibroblasts. Various pro-fibrotic stimuli broadly induced LOX/L expression in fibroblasts, whereas specific induction of LOXL2 and partially LOX was observed in epithelial cells. Immunohistochemical analysis of lung tissue from 14 IPF patients and healthy donors revealed strong induction of LOX and LOXL2 in bronchial and alveolar epithelium as well as fibroblastic foci. Using siRNA experiments we observed that LOXL2 and LOXL3 were crucial for fibroblast-to-myofibroblast transition (FMT). As FMT could only be reconstituted with an enzymatically active LOXL2 variant, we conclude that LOXL2 enzymatic function is crucial for fibroblast transdifferentiation. In summary, our study provides a comprehensive analysis of the LOX/L family in fibrotic lung disease and indicates prominent roles for LOXL2/3 in fibroblast activation and LOX/LOXL2 in IPF.

  5. Optimizing signal output: effects of viscoelasticity and difference frequency on vibroacoustic radiation of tissue-mimicking phantoms

    Science.gov (United States)

    Namiri, Nikan K.; Maccabi, Ashkan; Bajwa, Neha; Badran, Karam W.; Taylor, Zachary D.; St. John, Maie A.; Grundfest, Warren S.; Saddik, George N.

    2018-02-01

    Vibroacoustography (VA) is an imaging technology that utilizes the acoustic response of tissues to a localized, low frequency radiation force to generate a spatially resolved, high contrast image. Previous studies have demonstrated the utility of VA for tissue identification and margin delineation in cancer tissues. However, the relationship between specimen viscoelasticity and vibroacoustic emission remains to be fully quantified. This work utilizes the effects of variable acoustic wave profiles on unique tissue-mimicking phantoms (TMPs) to maximize VA signal power according to tissue mechanical properties, particularly elasticity. A micro-indentation method was utilized to provide measurements of the elastic modulus for each biological replica. An inverse relationship was found between elastic modulus (E) and VA signal amplitude among homogeneous TMPs. Additionally, the difference frequency (Δf ) required to reach maximum VA signal correlated with specimen elastic modulus. Peak signal diminished with increasing Δf among the polyvinyl alcohol specimen, suggesting an inefficient vibroacoustic response by the specimen beyond a threshold of resonant Δf. Comparison of these measurements may provide additional information to improve tissue modeling, system characterization, as well as insights into the unique tissue composition of tumors in head and neck cancer patients.

  6. The Effect of Incorporation of SDF-1α into PLGA Scaffolds on Stem Cell Recruitment and the Inflammatory Response

    OpenAIRE

    Thevenot, Paul; Nair, Ashwin; Shen, Jinhui; Lotfi, Parisa; Ko, Cheng Yu; Tang, Liping

    2010-01-01

    Despite significant advances in the understanding of tissue responses to biomaterials, most implants are still plagued by inflammatory responses which can lead to fibrotic encapsulation. This is of dire consequence in tissue engineering, where seeded cells and bioactive components are separated from the native tissue, limiting the regenerative potential of the design. Additionally, these interactions prevent desired tissue integration and angiogenesis, preventing functionality of the design. ...

  7. Acid-base balance and cardiac index in SO2-bronchitic, papaine-emphysematous and paraquat-fibrotic rats after isoproterenol treatment.

    Science.gov (United States)

    Vértes, K; Debreczeni, L A

    1990-01-01

    SO2-bronchitis, papaine-emphysema and paraquat fibrosis were induced in Wistar rats. Blood pressure, cardiac index, total peripheral resistance, arterial blood gas values, parameters of acid-base balance were determined. Effects of 0.1 and 0.3 microgram.-1.min-1 isoproterenol iv. infusion were examined. Morphologic alterations of the lungs were verified by histopathological examinations. All the parameters investigated were found to be normal in the control rats. The treated groups differed from the normal ones: an increased blood pressure was observed in emphysema and fibrosis. A decreased cardiac index was characteristic of chronic bronchitis, high cardiac index of emphysema, high TPR of bronchitis and arterial hypoxaemy of fibrosis. The groups reacted differently to beta adrenergic stimulation: in bronchitic and fibrotic rats the cardiac index was augmented, whereas in emphysematous ones the increase proved to be smaller. The effects of isoproterenol infusion can be related to the altered beta-receptor function in the various experimental pulmonary diseases.

  8. Peptide-Based Materials for Cartilage Tissue Regeneration.

    Science.gov (United States)

    Hastar, Nurcan; Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2017-01-01

    Cartilaginous tissue requires structural and metabolic support after traumatic or chronic injuries because of its limited capacity for regeneration. However, current techniques for cartilage regeneration are either invasive or ineffective for long-term repair. Developing alternative approaches to regenerate cartilage tissue is needed. Therefore, versatile scaffolds formed by biomaterials are promising tools for cartilage regeneration. Bioactive scaffolds further enhance the utility in a broad range of applications including the treatment of major cartilage defects. This chapter provides an overview of cartilage tissue, tissue defects, and the methods used for regeneration, with emphasis on peptide scaffold materials that can be used to supplement or replace current medical treatment options.

  9. Increased Th1, Th17 and pro-fibrotic responses in hepatitis C-infected patients are down-regulated after 12 weeks of treatment with pegylated interferon plus ribavirin.

    Science.gov (United States)

    Jimenez-Sousa, Maria Angeles; Almansa, Raquel; de la Fuente, Concha; Caro-Paton, Agustín; Ruiz, Lourdes; Sanchez-Antolín, Gloria; Gonzalez, Jose Manuel; Aller, Rocio; Alcaide, Noelia; Largo, Pilar; Resino, Salvador; de Lejarazu, Raul Ortiz; Bermejo-Martin, Jesus F

    2010-06-01

    Hepatitis C virus causes significant morbidity and mortality worldwide. The infection induces up-regulation of cytokine and chemokines commonly linked to the development of cellular and pro-inflammatory antiviral responses. The current standard in hepatitis C treatment consists of combination regimens of pegylated interferon-alpha plus ribavirin. The impact of combined treatment in the host immune response is still poorly understood. In the present study, we profiled 27 cytokines, chemokines and growth factors involved in the innate and adaptive responses to the virus in the serum of 27 hepatitis C virus-infected patients, before and after 12 weeks of combined treatment, and compared them to 10 healthy controls. Hepatitis C virus infection induced not only the secretion of chemokines and cytokines participating in Th1 responses (MIP-1 alpha, IP-10, TNF-alpha, IL-12p70, IL-2), but also cytokines involved in the development of Th17 responses (IL-6, IL-8, IL-9 and IL-17) and two pro-fibrotic factors (FGF-b, VEGF). The most important increases included MIP-1 alpha (4.7-fold increase compared to the control group), TNF-alpha (3.0-fold), FGF-b (3.4-fold), VEGF (3.5-fold), IP-10 (3.6-fold), IL-17 (107.0-fold), IL-9 (7.5-fold), IL-12p70 (7.0-fold), IL-2 (5.6-fold) and IL-7 (5.6-fold). Combined treatment with pegylated interferon-alpha plus ribavirin down-modulated the secretion of key Th1 and Th17 pro-inflammatory mediators, and pro-fibrotic growth factors as early as 12 weeks after treatment initiation. MIP-1 alpha, FGF-b, IL-17 decreased in a more dramatic manner in the group of responder patients than in the group of non-responders (fold-change in cEVR; fold-change in NcEVR): MIP-1 alpha (4.72;1.71), FGF-b (4.54;1.21), IL-17 (107.1;1.8). Correlation studies demonstrated that the decreases in the levels of these mediators were significantly associated with each other, pointing to a coordinated effect of the treatment on their secretion (r coefficient; p value): [ FGF

  10. Cicatricial organising pneumonia mimicking a fibrosing interstitial pneumonia.

    Science.gov (United States)

    Churg, Andrew; Wright, Joanne L; Bilawich, AnaMaria

    2018-04-01

    Organising pneumonia (OP) is composed of loose granulation tissue plugs in distal airspaces; these disappear with steroid treatment. Recently a variant labelled 'cicatricial' OP has been described in which the granulation tissue organised to much denser fibrous tissue but still retained the usual pattern of OP. Here we report 10 patients thought to have an interstitial lung disease, and who on biopsy had a variant of cicatricial OP characterised by linear bands or small nodular masses of dense fibrous tissue that does not resemble ordinary OP. The bands/nodules were usually distributed randomly but occasionally resembled fibrotic non-specific interstitial pneumonia in local areas. Small foci of loose granulation tissue at the edge of the fibrotic bands sometimes mimicked fibroblast foci. Recognisable conventional OP was always present, but often in very small amounts. Four cases, including one patient with Ehlers-Danlos syndrome, showed formation of bone in the fibrotic bands and nodules. On computerised tomography (CT) scan of the chest some cases looked like typical OP, but some demonstrated only irregularly distributed linear opacities, sometimes with associated calcification. Follow-up imaging on six cases showed that the process either markedly improved or remained stable over time; no case had progressive disease. Cicatricial OP with this pathological pattern represents an uncommon form of OP that appears to be a generally benign process which may have persisting linear opacities on CT scan but that does not progress; however, it can be confused on biopsy and CT with a fibrosing interstitial pneumonia. © 2017 John Wiley & Sons Ltd.

  11. Utility of Tissue Transglutaminase Immunohistochemistry in Pediatric Duodenal Biopsies: Patterns of Expression and Role in Celiac Disease—A Clinicopathologic Review

    Directory of Open Access Journals (Sweden)

    Saeeda Almarzooqi

    2013-01-01

    Full Text Available Tissue transglutaminase (tTG is a ubiquitous multifunctional protein. It has roles in various cellular processes. tTG is a major target of autoantibodies in celiac disease, and its expression by immunohistochemistry in pediatric celiac disease has not been fully examined. We studied tTG expression in 78 pediatric duodenal biopsies by utilizing an antibody to transglutaminase 2. Serum tTG was positive in all celiac cases evaluated. Serum antiserum endomysial antibody (EMA and tTG were negative in all control subjects and in inflammatory bowel disease and eosinophilic gastroenteritis. There was a statistically significant difference between cases of celiac disease and normal controls in terms of tTG immunohistochemical staining in duodenal biopsies surface epithelium ( value = 0.0012. There was no significant statistical difference in terms of staining of the villous surface or crypt between the cases of celiac disease and cases with IBD ( value = 0.5970 and 0.5227, resp.. There was no detected correlation between serum tTG values and immunohistochemical positivity on duodenal biopsy in cases of celiac disease ( value = 1. There was no relationship between Marsh classification and positivity of villous surface for tTG ( value = 0.4955. We conclude that tTG has limited utility in diagnosis of celiac disease in pediatric duodenal biopsies.

  12. Hole Burning Imaging Studies of Cancerous and Analogous Normal Ovarian Tissues Utilizing Organelle Specific Dyes

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Satoshi [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Presented in this dissertation is the successful demonstration that nonphotochemical hole burning (NPWB) imaging can be used to study in vitro tissue cellular systems for discerning differences in cellular ultrastructures due to cancer development. This has been accomplished with the surgically removed cancerous ovarian and analogous normal peritoneal tissues from the same patient and the application of a fluorescent mitochondrion specific dye, Molecular Probe MitoFluor Far Red 680 (MF680), commonly known as rhodamine 800, that has been proven to exhibit efficient NPHB. From the results presented in Chapters 4 and 5 , and Appendix B, the following conclusions were made: (1) fluorescence excitation spectra of MF680 and confocal microscopy images of thin sliced tissues incubated with MF680 confirm the site-specificity of the probe molecules in the cellular systems. (2) Tunneling parameters, {lambda}{sub 0} and σΛ, as well as the standard hole burning parameters (namely, γ and S), have been determined for the tissue samples by hole growth kinetics (HGK) analyses. Unlike the preliminary cultured cell studies, these parameters have not shown the ability to distinguish tissue cellular matrices surrounding the chromophores. (3) Effects of an external electric (Stark) field on the nonphotochemical holes have been used to determine the changes in permanent dipole moment (fΔμ) for MF680 in tissue samples when burn laser polarization is parallel to the Stark field. Differences are detected between fΔμs in the two tissue samples, with the cancerous tissue exhibiting a more pronounced change (1.35-fold increase) in permanent dipole moment change relative to the normal analogs. It is speculated that the difference may be related to differences in mitochondrial membrane potentials in these tissue samples. (4) In the HGK mode, hole burning imaging (HBI) of cells adhered to coverslips and cooled to liquid helium temperatures in the complete absence of

  13. Quantitative Characterization of Collagen in the Fibrotic Capsule Surrounding Implanted Polymeric Microparticles through Second Harmonic Generation Imaging.

    Science.gov (United States)

    Akilbekova, Dana; Bratlie, Kaitlin M

    2015-01-01

    The collagenous capsule formed around an implant will ultimately determine the nature of its in vivo fate. To provide a better understanding of how surface modifications can alter the collagen orientation and composition in the fibrotic capsule, we used second harmonic generation (SHG) microscopy to evaluate collagen organization and structure generated in mice subcutaneously injected with chemically functionalized polystyrene particles. SHG is sensitive to the orientation of a molecule, making it a powerful tool for measuring the alignment of collagen fibers. Additionally, SHG arises from the second order susceptibility of the interrogated molecule in response to the electric field. Variation in these tensor components distinguishes different molecular sources of SHG, providing collagen type specificity. Here, we demonstrated the ability of SHG to differentiate collagen type I and type III quantitatively and used this method to examine fibrous capsules of implanted polystyrene particles. Data presented in this work shows a wide range of collagen fiber orientations and collagen compositions in response to surface functionalized polystyrene particles. Dimethylamino functionalized particles were able to form a thin collagenous matrix resembling healthy skin. These findings have the potential to improve the fundamental understanding of how material properties influence collagen organization and composition quantitatively.

  14. Quality of Life and Utility in Patients with Metastatic Soft Tissue and Bone Sarcoma: The Sarcoma Treatment and Burden of Illness in North America and Europe (SABINE Study

    Directory of Open Access Journals (Sweden)

    Peter Reichardt

    2012-01-01

    Full Text Available The aim of the study was to assess health-related quality of life (HRQoL among metastatic soft tissue (mSTS or bone sarcoma (mBS patients who had attained a favourable response to chemotherapy. We employed the EORTC QLQ-C30, the 3-item Cancer-Related Symptoms Questionnaire, and the EQ-5D instrument. HRQoL was evaluated overall and by health state in 120 mSTS/mBS patients enrolled in the SABINE study across nine countries in Europe and North America. Utility was estimated from responses to the EQ-5D instrument using UK population-based weights. The mean EQ-5D utility score was 0.69 for the pooled patient sample with little variation across health states. However, patients with progressive disease reported a clinically significant lower utility (0.56. Among disease symptoms, pain and respiratory symptoms are common. This study showed that mSTS/mBS is associated with reduced HRQoL and utility among patients with metastatic disease.

  15. Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.

    Directory of Open Access Journals (Sweden)

    Ashkan Maccabi

    Full Text Available Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E, long term shear modulus (η, and time constant (τ in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research.

  16. Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.

    Science.gov (United States)

    Maccabi, Ashkan; Shin, Andrew; Namiri, Nikan K; Bajwa, Neha; St John, Maie; Taylor, Zachary D; Grundfest, Warren; Saddik, George N

    2018-01-01

    Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research.

  17. The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-β signaling.

    Science.gov (United States)

    Borkham-Kamphorst, Erawan; Schaffrath, Christian; Van de Leur, Eddy; Haas, Ute; Tihaa, Lidia; Meurer, Steffen K; Nevzorova, Yulia A; Liedtke, Christian; Weiskirchen, Ralf

    2014-05-01

    tissue remodeling. CCN1/CYR61 gene transfer into extracellular matrix-producing liver cells is therefore potentially beneficial in liver fibrotic therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.

    Science.gov (United States)

    Yang, Maobin; Zhang, Hongming; Gangolli, Riddhi

    2014-05-01

    Bone and dental tissues in craniofacial region work as an important aesthetic and functional unit. Reconstruction of craniofacial tissue defects is highly expected to ensure patients to maintain good quality of life. Tissue engineering and regenerative medicine have been developed in the last two decades, and been advanced with the stem cell technology. Bone marrow derived mesenchymal stem cells are one of the most extensively studied post-natal stem cell population, and are widely utilized in cell-based therapy. Dental tissue derived mesenchymal stem cells are a relatively new stem cell population that isolated from various dental tissues. These cells can undergo multilineage differentiation including osteogenic and odontogenic differentiation, thus provide an alternative source of mesenchymal stem cells for tissue engineering. In this review, we discuss the important issues in mesenchymal stem cell biology including the origin and functions of mesenchymal stem cells, compare the properties of these two types of mesenchymal cells, update recent basic research and clinic applications in this field, and address important future challenges.

  19. Adventitial Fibroblasts induce a distinct Pro-inflammatory/Pro-fibrotic Macrophage Phenotype in Pulmonary Hypertension

    Science.gov (United States)

    El Kasmi, Karim C.; Pugliese, Steven C.; Riddle, Suzette R.; Poth, Jens M.; Anderson, Aimee L.; Frid, Maria G.; Li, Min; Pullamsetti, Soni S.; Savai, Rajkumar; Nagel, Maria A.; Fini, Mehdi A.; Graham, Brian B.; Tuder, Rubin M.; Friedman, Jacob E.; Eltzschig, Holger K.; Sokol, Ronald J.; Stenmark, Kurt R.

    2014-01-01

    Macrophage accumulation is not only a characteristic hallmark but also a critical component of pulmonary artery (PA) remodeling associated with pulmonary hypertension (PH). However, the cellular and molecular mechanisms that drive vascular macrophage activation and their functional phenotype remain poorly defined. Utilizing multiple levels of in vivo (bovine and rat models of hypoxia-induced PH, together with human tissue samples) and in vitro (primary mouse, rat, and bovine macrophages, human monocytes, as well as primary human and bovine fibroblasts) approaches, we observed that adventitial fibroblasts derived from hypertensive Pas (bovine and human) regulate macrophage activation. These fibroblasts activate macrophages through paracrine IL6 and STAT3, HIF1, and C/EBPβ signaling to drive expression of genes previously implicated in chronic inflammation, tissue remodeling, and PH. This distinct fibroblast-activated macrophage phenotype was independent of IL4/IL13-STAT6 and TLR-MyD88 signaling. We found that genetic STAT3 haplodeficiency in macrophages attenuated macrophage activation while complete STAT3 deficiency increased macrophage activation through compensatory upregulation of STAT1 signaling, while deficiency in C/EBPβ or HIF1 attenuated fibroblast driven macrophage activation. These findings challenge the current paradigm of IL4/IL13-STAT6 mediated alternative macrophage activation as the sole driver of vascular remodeling in PH and uncover a crosstalk between adventitial fibroblasts and macrophages in which paracrine IL6 activated STAT3, HIF1, and C/EBPβ signaling is critical for macrophage activation and polarization. Thus, targeting IL6 signaling in macrophages by completely inhibiting C/EBPβ, HIF1a or partially inhibiting STAT3 may hold therapeutic value for treatment of PH and other inflammatory conditions characterized by increased IL6 and absent IL4/IL13 signaling. PMID:24928992

  20. Utility of bronchial lavage fluids for epithelial growth factor receptor mutation assay in lung cancer patients: Comparison between cell pellets, cell blocks and matching tissue specimens

    Science.gov (United States)

    Asaka, Shiho; Yoshizawa, Akihiko; Nakata, Rie; Negishi, Tatsuya; Yamamoto, Hiroshi; Shiina, Takayuki; Shigeto, Shohei; Matsuda, Kazuyuki; Kobayashi, Yukihiro; Honda, Takayuki

    2018-01-01

    The detection of epidermal growth factor receptor (EGFR) mutations is necessary for the selection of suitable patients with non-small cell lung cancer (NSCLC) for treatment with EGFR tyrosine kinase inhibitors. Cytology specimens are known to be suitable for EGFR mutation detection, although tissue specimens should be prioritized; however, there are limited studies that examine the utility of bronchial lavage fluid (BLF) in mutation detection. The purpose of the present study was to investigate the utility of BLF specimens for the detection of EGFR mutations using a conventional quantitative EGFR polymerase chain reaction (PCR) assay. Initially, quantification cycle (Cq) values of cell pellets, cell-free supernatants and cell blocks obtained from three series of 1% EGFR mutation-positive lung cancer cell line samples were compared for mutation detection. In addition, PCR analysis of BLF specimens obtained from 77 consecutive NSCLC patients, detecting EGFR mutations was validated, and these results were compared with those for the corresponding formalin-fixed paraffin-embedded (FFPE) tissue specimens obtained by surgical resection or biopsy of 49 of these patients. The Cq values for mutation detection were significantly lower in the cell pellet group (average, 29.58) compared with the other groups, followed by those in cell-free supernatants (average, 34.15) and in cell blocks (average, 37.12) for all three series (P<0.05). Mutational status was successfully analyzed in 77 BLF specimens, and the results obtained were concordant with those of the 49 matching FFPE tissue specimens. Notably, EGFR mutations were even detected in 10 cytological specimens that contained insufficient tumor cells. EGFR mutation testing with BLF specimens is therefore a useful and reliable method, particularly when sufficient cancer cells are not obtained. PMID:29399190

  1. Tissue-specific functional networks for prioritizing phenotype and disease genes.

    Directory of Open Access Journals (Sweden)

    Yuanfang Guan

    Full Text Available Integrated analyses of functional genomics data have enormous potential for identifying phenotype-associated genes. Tissue-specificity is an important aspect of many genetic diseases, reflecting the potentially different roles of proteins and pathways in diverse cell lineages. Accounting for tissue specificity in global integration of functional genomics data is challenging, as "functionality" and "functional relationships" are often not resolved for specific tissue types. We address this challenge by generating tissue-specific functional networks, which can effectively represent the diversity of protein function for more accurate identification of phenotype-associated genes in the laboratory mouse. Specifically, we created 107 tissue-specific functional relationship networks through integration of genomic data utilizing knowledge of tissue-specific gene expression patterns. Cross-network comparison revealed significantly changed genes enriched for functions related to specific tissue development. We then utilized these tissue-specific networks to predict genes associated with different phenotypes. Our results demonstrate that prediction performance is significantly improved through using the tissue-specific networks as compared to the global functional network. We used a testis-specific functional relationship network to predict genes associated with male fertility and spermatogenesis phenotypes, and experimentally confirmed one top prediction, Mbyl1. We then focused on a less-common genetic disease, ataxia, and identified candidates uniquely predicted by the cerebellum network, which are supported by both literature and experimental evidence. Our systems-level, tissue-specific scheme advances over traditional global integration and analyses and establishes a prototype to address the tissue-specific effects of genetic perturbations, diseases and drugs.

  2. A compendium of canine normal tissue gene expression.

    Directory of Open Access Journals (Sweden)

    Joseph Briggs

    Full Text Available BACKGROUND: Our understanding of disease is increasingly informed by changes in gene expression between normal and abnormal tissues. The release of the canine genome sequence in 2005 provided an opportunity to better understand human health and disease using the dog as clinically relevant model. Accordingly, we now present the first genome-wide, canine normal tissue gene expression compendium with corresponding human cross-species analysis. METHODOLOGY/PRINCIPAL FINDINGS: The Affymetrix platform was utilized to catalogue gene expression signatures of 10 normal canine tissues including: liver, kidney, heart, lung, cerebrum, lymph node, spleen, jejunum, pancreas and skeletal muscle. The quality of the database was assessed in several ways. Organ defining gene sets were identified for each tissue and functional enrichment analysis revealed themes consistent with known physio-anatomic functions for each organ. In addition, a comparison of orthologous gene expression between matched canine and human normal tissues uncovered remarkable similarity. To demonstrate the utility of this dataset, novel canine gene annotations were established based on comparative analysis of dog and human tissue selective gene expression and manual curation of canine probeset mapping. Public access, using infrastructure identical to that currently in use for human normal tissues, has been established and allows for additional comparisons across species. CONCLUSIONS/SIGNIFICANCE: These data advance our understanding of the canine genome through a comprehensive analysis of gene expression in a diverse set of tissues, contributing to improved functional annotation that has been lacking. Importantly, it will be used to inform future studies of disease in the dog as a model for human translational research and provides a novel resource to the community at large.

  3. Correlations between transmembrane 4 L6 family member 5 (TM4SF5, CD151, and CD63 in liver fibrotic phenotypes and hepatic migration and invasive capacities.

    Directory of Open Access Journals (Sweden)

    Minkyung Kang

    Full Text Available Transmembrane 4 L6 family member 5 (TM4SF5 is overexpressed during CCl4-mediated murine liver fibrosis and in human hepatocellular carcinomas. The tetraspanins form tetraspanin-enriched microdomains (TEMs consisting of large membrane protein complexes on the cell surface. Thus, TM4SF5 may be involved in the signal coordination that controls liver malignancy. We investigated the relationship between TM4SF5-positive TEMs with liver fibrosis and tumorigenesis, using normal Chang hepatocytes that lack TM4SF5 expression and chronically TGFβ1-treated Chang cells that express TM4SF5. TM4SF5 expression is positively correlated with tumorigenic CD151 expression, but is negatively correlated with tumor-suppressive CD63 expression in mouse fibrotic and human hepatic carcinoma tissues, indicating cooperative roles of the tetraspanins in liver malignancies. Although CD151 did not control the expression of TM4SF5, TM4SF5 appeared to control the expression levels of CD151 and CD63. TM4SF5 interacted with CD151, and caused the internalization of CD63 from the cell surface into late lysosomal membranes, presumably leading to terminating the tumor-suppressive functions of CD63. TM4SF5 could overcome the tumorigenic effects of CD151, especially cell migration and extracellular matrix (ECM-degradation. Taken together, TM4SF5 appears to play a role in liver malignancy by controlling the levels of tetraspanins on the cell surface, and could provide a promising therapeutic target for the treatment of liver malignancies.

  4. Muc1 deficiency exacerbates pulmonary fibrosis in a mouse model of silicosis.

    Science.gov (United States)

    Kato, Kosuke; Zemskova, Marina A; Hanss, Alec D; Kim, Marianne M; Summer, Ross; Kim, Kwang Chul

    2017-11-25

    MUC1 (MUC in human and Muc in animals) is a membrane-tethered mucin expressed on the apical surface of lung epithelial cells. However, in the lungs of patients with interstitial lung disease, MUC1 is aberrantly expressed in hyperplastic alveolar type II epithelial (ATII) cells and alveolar macrophages (AM), and elevated levels of extracellular MUC1 are found in bronchoalveolar lavage (BAL) fluid and the serum of these patients. While pro-fibrotic effects of extracellular MUC1 have recently been described in cultured fibroblasts, the contribution of MUC1 to the pathobiology of pulmonary fibrosis is unknown. In this study, we hypothesized that MUC1 deficiency would reduce susceptibility to pulmonary fibrosis in a mouse model of silicosis. We employed human MUC1 transgenic mice, Muc1 deficient mice and wild-type mice on C57BL/6 background in these studies. Some mice received a one-time dose of crystalline silica instilled into their oropharynx in order to induce pulmonary fibrosis and assess the effects of Muc1 deficiency on fibrotic and inflammatory responses in the lung. As previously described in other mouse models of pulmonary fibrosis, we found that extracellular MUC1 levels were markedly increased in whole lung tissues, BALF and serum of human MUC1 transgenic mice after silica. We also detected an increase in total MUC1 levels in the lungs of these mice, indicating that production as well as release contributed to elevated levels after lung injury. Immunohistochemical staining revealed that increased MUC1 expression was mostly confined to ATII cells and AMs in areas of fibrotic remodeling, illustrating a pattern similar to the expression of MUC1 in human fibrotic lung tissues. However, contrary to our hypothesis, we found that Muc1 deficiency resulted in a worsening of fibrotic remodeling in the mouse lung as judged by an increase in number of silicotic nodules, an increase in lung collagen deposition and an increase in the severity of pulmonary inflammation

  5. Imaging of human breast tissue using polarization sensitive optical coherence tomography

    Science.gov (United States)

    Verma, Y.; Gautam, M.; Divakar Rao, K.; Swami, M. K.; Gupta, P. K.

    2011-12-01

    We report a study on the use of polarization sensitive optical coherence tomography (PSOCT) for discriminating malignant (invasive ductal carcinoma), benign (fibroadenoma) and normal (adipocytes) breast tissue sites. The results show that while conventional OCT, that utilizes only the intensity of light back-scattered from tissue microstructures, is able to discriminate breast tissues as normal (adipocytes) and abnormal (malignant and benign) tissues, PS-OCT helps in discriminating between malignant and benign tissue sites also. The estimated values of birefringence obtained from the PSOCT imaging show that benign breast tissue samples have significantly higher birefringence as compared to the malignant tissue samples.

  6. Inhibitory Effect of NH4Cl Treatment on Renal Tgfß1 Signaling Following Unilateral Ureteral Obstruction

    Directory of Open Access Journals (Sweden)

    Martina Feger

    2015-09-01

    Full Text Available Background/Aims: Consequences of obstructive nephropathy include tissue fibrosis, a major pathophysiological mechanism contributing to development of end-stage renal disease. Transforming growth factor β 1 (Tgfβ1 is involved in the progression of renal fibrosis. According to recent observations, ammonium chloride (NH4Cl prevented phosphate-induced vascular remodeling, effects involving decrease of Tgfβ1 expression and inhibition of Tgfβ1-dependent signaling. The present study, thus, explored whether NH4Cl influences renal Tgfβ1-induced pro-fibrotic signaling in obstructive nephropathy induced by unilateral ureteral obstruction (UUO. Methods: UUO was induced for seven days in C57Bl6 mice with or without additional treatment with NH4Cl (0.28 M in drinking water. Transcript levels were determined by RT-PCR as well as protein abundance by Western blotting, blood pH was determined utilizing a blood gas and chemistry analyser. Results: UUO increased renal mRNA expression of Tgfb1, Tgfβ-activated kinase 1 (Tak1 protein abundance and Smad2 phosphorylation in the nuclear fraction of the obstructed kidney tissues, effects blunted in NH4Cl treated mice as compared to control treated mice. The mRNA levels of the transcription factors nuclear factor of activated T cells 5 (Nfat5 and SRY (sex determining region Y-box 9 (Sox9 as well as of tumor necrosis factor α (Tnfα, interleukin 6 (Il6, plasminogen activator inhibitor 1 (Pai1 and Snai1 were up-regulated in the obstructed kidney tissues following UUO, effects again significantly ameliorated following NH4Cl treatment. Furthermore, the increased protein and mRNA expression of α-smooth muscle actin (α-Sma, fibronectin and collagen type I in the obstructed kidney tissues following UUO were significantly attenuated following NH4Cl treatment. Conclusion: NH4Cl treatment ameliorates Tgfβ1-dependent pro-fibrotic signaling and renal tissue fibrosis markers following obstructive nephropathy.

  7. Alteration of gene expression profile in Niemann-Pick type C mice correlates with tissue damage and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Mary C Vázquez

    Full Text Available BACKGROUND: Niemann-Pick type C disease (NPC is a neurovisceral lipid storage disorder mainly characterized by unesterified cholesterol accumulation in lysosomal/late endosomal compartments, although there is also an important storage for several other kind of lipids. The main tissues affected by the disease are the liver and the cerebellum. Oxidative stress has been described in various NPC cells and tissues, such as liver and cerebellum. Although considerable alterations occur in the liver, the pathological mechanisms involved in hepatocyte damage and death have not been clearly defined. Here, we assessed hepatic tissue integrity, biochemical and oxidative stress parameters of wild-type control (Npc1(+/+; WT and homozygous-mutant (Npc1(-/-; NPC mice. In addition, the mRNA abundance of genes encoding proteins associated with oxidative stress, copper metabolism, fibrosis, inflammation and cholesterol metabolism were analyzed in livers and cerebella of WT and NPC mice. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed various oxidative stress parameters in the liver and hepatic and cerebellum gene expression in 7-week-old NPC1-deficient mice compared with control animals. We found signs of inflammation and fibrosis in NPC livers upon histological examination. These signs were correlated with increased levels of carbonylated proteins, diminished total glutathione content and significantly increased total copper levels in liver tissue. Finally, we analyzed liver and cerebellum gene expression patterns by qPCR and microarray assays. We found a correlation between fibrotic tissue and differential expression of hepatic as well as cerebellar genes associated with oxidative stress, fibrosis and inflammation in NPC mice. CONCLUSIONS/SIGNIFICANCE: In NPC mice, liver disease is characterized by an increase in fibrosis and in markers associated with oxidative stress. NPC is also correlated with altered gene expression, mainly of genes involved in oxidative stress

  8. Utilization pattern and survival outcomes of adjuvant therapies in high-grade nonretroperitoneal abdominal soft tissue sarcoma: A population-based study.

    Science.gov (United States)

    Green, William Ross; Chokshi, Ravi; Jabbour, Salma K; DeLaney, Thomas F; Mahmoud, Omar

    2018-02-01

    Nonretroperitoneal abdominal soft tissue sarcoma (NRA-STS) is a rare disease with limited data supporting its management. Our study aimed to reveal the utilization patterns of adjuvant therapy and its potential survival benefits using the National Cancer Data Base. The analysis included patients with resected high-grade NRA-STS. Chi-square analysis was used to evaluate distribution of patient and tumor-related factors within treatment groups. The Kaplan-Meier and Cox proportional hazards model were utilized to evaluate overall survival according to treatment approach. Multivariate analysis was used to determine the impact of these factors on patients' outcome. Matched propensity score analysis was implemented to control for imbalance of confounding variables. At median follow-up of 49 months, 5-year overall survival improved from 46% without adjuvant radiation therapy to 52% (P = 0.009) with radiotherapy delivery with a 30% reduction in hazard of death (95% confidence interval = 0.58-0.84). On multivariate analysis, age <50, tumor <8 cm, negative margins and radiotherapy delivery were significant predictors of improved survival. Chemotherapy was not associated with significant survival improvement (Hazard Ratios [HR]: 0.89, P = 0.28). Adjuvant radiotherapy was associated with improved survival in high-grade NRA-STS. Chemotherapy was not associated with a survival improvement; however, further studies are needed to refine treatment strategies. © 2017 John Wiley & Sons Australia, Ltd.

  9. Reinforced chitosan-based heart valve scaffold and utility of bone marrow-derived mesenchymal stem cells for cardiovascular tissue engineering

    Science.gov (United States)

    Albanna, Mohammad Zaki

    utility for cardiovascular tissue engineering applications. Moreover, we evaluated the effect of various glycosaminoglycans (GAGs) on MSCs morphology and proliferation. Lastly, we studied the effect of stiffness of mechanically improved chitosan fibers on MSCs viability, attachment and proliferation. Results showed that MSCs proliferation improved in proportion to fiber stiffness.

  10. Initial evaluation of vascular ingrowth into superporous hydrogels.

    Science.gov (United States)

    Keskar, Vandana; Gandhi, Milind; Gemeinhart, Ernest J; Gemeinhart, Richard A

    2009-08-01

    There is a need for new materials and architectures for tissue engineering and regenerative medicine. Based upon our recent results developing novel scaffold architecture, we hypothesized that this new architecture would foster vascularization, a particular need for tissue engineering. We report on the potential of superporous hydrogel (SPH) scaffolds for in vivo cellular infiltration and vascularization. Poly(ethylene glycol) diacrylate (PEGDA) SPH scaffolds were implanted in the dorsum of severe combined immunodeficient (SCID) mice and harvested after 4 weeks of in vivo implantation. The SPHs were visibly red and vascularized, as apparent when compared to the non-porous hydrogel controls, which were macroscopically avascular. Host cell infiltration was observed throughout the SPHs. Blood cells and vascular structures, confirmed through staining for CD34 and smooth muscle alpha-actin, were observed throughout the scaffolds. This novel soft material may be utilized for cell transplantation, tissue engineering and in combination with cell therapies. The neovasularization and limited fibrotic response suggest that the architecture may be conducive to cell survival and rapid vessel development.

  11. What Are Asbestos-Related Lung Diseases?

    Science.gov (United States)

    ... asbestosis include: Fibrotic lung disease Pneumoconiosis (NOO-mo-ko-ne-O-sis) Interstitial (in-ter-STISH-al) ... tissue samples. One way is through bronchoscopy (bron-KOS-ko-pee). For this procedure, your doctor will ...

  12. Quantitative identification of senescent cells in aging and disease.

    Science.gov (United States)

    Biran, Anat; Zada, Lior; Abou Karam, Paula; Vadai, Ezra; Roitman, Lior; Ovadya, Yossi; Porat, Ziv; Krizhanovsky, Valery

    2017-08-01

    Senescent cells are present in premalignant lesions and sites of tissue damage and accumulate in tissues with age. In vivo identification, quantification and characterization of senescent cells are challenging tasks that limit our understanding of the role of senescent cells in diseases and aging. Here, we present a new way to precisely quantify and identify senescent cells in tissues on a single-cell basis. The method combines a senescence-associated beta-galactosidase assay with staining of molecular markers for cellular senescence and of cellular identity. By utilizing technology that combines flow cytometry with high-content image analysis, we were able to quantify senescent cells in tumors, fibrotic tissues, and tissues of aged mice. Our approach also yielded the finding that senescent cells in tissues of aged mice are larger than nonsenescent cells. Thus, this method provides a basis for quantitative assessment of senescent cells and it offers proof of principle for combination of different markers of senescence. It paves the way for screening of senescent cells for identification of new senescence biomarkers, genes that bypass senescence or senolytic compounds that eliminate senescent cells, thus enabling a deeper understanding of the senescent state in vivo. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  13. Infiltration of plasma rich in growth factors enhances in vivo angiogenesis and improves reperfusion and tissue remodeling after severe hind limb ischemia.

    Science.gov (United States)

    Anitua, Eduardo; Pelacho, Beatriz; Prado, Roberto; Aguirre, José Javier; Sánchez, Mikel; Padilla, Sabino; Aranguren, Xabier L; Abizanda, Gloria; Collantes, María; Hernandez, Milagros; Perez-Ruiz, Ana; Peñuelas, Ivan; Orive, Gorka; Prosper, Felipe

    2015-03-28

    PRGF is a platelet concentrate within a plasma suspension that forms an in situ-generated fibrin-matrix delivery system, releasing multiple growth factors and other bioactive molecules that play key roles in tissue regeneration. This study was aimed at exploring the angiogenic and myogenic effects of PRGF on in vitro endothelial cells (HUVEC) and skeletal myoblasts (hSkMb) as well as on in vivo mouse subcutaneously implanted matrigel and on limb muscles after a severe ischemia. Human PRGF was prepared and characterized. Both proliferative and anti-apoptotic responses to PRGF were assessed in vitro in HUVEC and hSkMb. In vivo murine matrigel plug assay was conducted to determine the angiogenic capacity of PRGF, whereas in vivo ischemic hind limb model was carried out to demonstrate PRGF-driven vascular and myogenic regeneration. Primary HUVEC and hSkMb incubated with PRGF showed a dose dependent proliferative and anti-apoptotic effect and the PRGF matrigel plugs triggered an early and significant sustained angiogenesis compared with the control group. Moreover, mice treated with PRGF intramuscular infiltrations displayed a substantial reperfusion enhancement at day 28 associated with a fibrotic tissue reduction. These findings suggest that PRGF-induced angiogenesis is functionally effective at expanding the perfusion capacity of the new vasculature and attenuating the endogenous tissue fibrosis after a severe-induced skeletal muscle ischemia. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Fibrocytes in pulmonary fibrosis: a brief synopsis

    Directory of Open Access Journals (Sweden)

    Shyam Maharaj

    2013-12-01

    Full Text Available Fibrocytes are bone marrow-derived, circulating mesenchymal progenitor cells that play a role in several fibrotic disorders, including lung fibrosis. They are attracted to injured tissue by various chemokines. It is likely that fibrocytes play a detrimental role in tissue homeostasis and promote fibrosis, although this paradigm needs further confirmation. This would make fibrocytes a possible novel treatment target for fibrotic disorders. Fibrocytes also have some potential as a biomarker for idiopathic pulmonary fibrosis (IPF and other diseases, but the promising preliminary data from single centre studies still require independent validation. Despite several, as yet, unresolved issues, it has become clear that fibrocytes are more than an incidental finding in lung injury and repair, and may hold great promise for the future of IPF management.

  15. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors.

    Science.gov (United States)

    Bhardwaj, Nandana; Devi, Dipali; Mandal, Biman B

    2015-02-01

    Damage to cartilage represents one of the most challenging tasks of musculoskeletal therapeutics due to its limited propensity for healing and regenerative capabilities. Lack of current treatments to restore cartilage tissue function has prompted research in this rapidly emerging field of tissue regeneration of functional cartilage tissue substitutes. The development of cartilaginous tissue largely depends on the combination of appropriate biomaterials, cell source, and stimulating factors. Over the years, various biomaterials have been utilized for cartilage repair, but outcomes are far from achieving native cartilage architecture and function. This highlights the need for exploration of suitable biomaterials and stimulating factors for cartilage regeneration. With these perspectives, we aim to present an overview of cartilage tissue engineering with recent progress, development, and major steps taken toward the generation of functional cartilage tissue. In this review, we have discussed the advances and problems in tissue engineering of cartilage with strong emphasis on the utilization of natural polymeric biomaterials, various cell sources, and stimulating factors such as biophysical stimuli, mechanical stimuli, dynamic culture, and growth factors used so far in cartilage regeneration. Finally, we have focused on clinical trials, recent innovations, and future prospects related to cartilage engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-β responsiveness

    Science.gov (United States)

    Marinković, Aleksandar; Mih, Justin D.; Park, Jin-Ah; Liu, Fei

    2012-01-01

    Lung fibroblast functions such as matrix remodeling and activation of latent transforming growth factor-β1 (TGF-β1) are associated with expression of the myofibroblast phenotype and are directly linked to fibroblast capacity to generate force and deform the extracellular matrix. However, the study of fibroblast force-generating capacities through methods such as traction force microscopy is hindered by low throughput and time-consuming procedures. In this study, we improved at the detail level methods for higher-throughput traction measurements on polyacrylamide hydrogels using gel-surface-bound fluorescent beads to permit autofocusing and automated displacement mapping, and transduction of fibroblasts with a fluorescent label to streamline cell boundary identification. Together these advances substantially improve the throughput of traction microscopy and allow us to efficiently compute the forces exerted by lung fibroblasts on substrates spanning the stiffness range present in normal and fibrotic lung tissue. Our results reveal that lung fibroblasts dramatically alter the forces they transmit to the extracellular matrix as its stiffness changes, with very low forces generated on matrices as compliant as normal lung tissue. Moreover, exogenous TGF-β1 selectively accentuates tractions on stiff matrices, mimicking fibrotic lung, but not on physiological stiffness matrices, despite equivalent changes in Smad2/3 activation. Taken together, these results demonstrate a pivotal role for matrix mechanical properties in regulating baseline and TGF-β1-stimulated contraction of lung fibroblasts and suggest that stiff fibrotic lung tissue may promote myofibroblast activation through contractility-driven events, whereas normal lung tissue compliance may protect against such feedback amplification of fibroblast activation. PMID:22659883

  17. Quantitative Characterization of Collagen in the Fibrotic Capsule Surrounding Implanted Polymeric Microparticles through Second Harmonic Generation Imaging.

    Directory of Open Access Journals (Sweden)

    Dana Akilbekova

    Full Text Available The collagenous capsule formed around an implant will ultimately determine the nature of its in vivo fate. To provide a better understanding of how surface modifications can alter the collagen orientation and composition in the fibrotic capsule, we used second harmonic generation (SHG microscopy to evaluate collagen organization and structure generated in mice subcutaneously injected with chemically functionalized polystyrene particles. SHG is sensitive to the orientation of a molecule, making it a powerful tool for measuring the alignment of collagen fibers. Additionally, SHG arises from the second order susceptibility of the interrogated molecule in response to the electric field. Variation in these tensor components distinguishes different molecular sources of SHG, providing collagen type specificity. Here, we demonstrated the ability of SHG to differentiate collagen type I and type III quantitatively and used this method to examine fibrous capsules of implanted polystyrene particles. Data presented in this work shows a wide range of collagen fiber orientations and collagen compositions in response to surface functionalized polystyrene particles. Dimethylamino functionalized particles were able to form a thin collagenous matrix resembling healthy skin. These findings have the potential to improve the fundamental understanding of how material properties influence collagen organization and composition quantitatively.

  18. Biomimetic material strategies for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Prabhakaran, Molamma P.; Venugopal, J.; Kai, Dan; Ramakrishna, Seeram

    2011-01-01

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  19. Biomimetic material strategies for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P., E-mail: nnimpp@nus.edu.sg [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Venugopal, J. [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (Singapore); Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-04-08

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  20. The role of mechanical loading in ligament tissue engineering.

    Science.gov (United States)

    Benhardt, Hugh A; Cosgriff-Hernandez, Elizabeth M

    2009-12-01

    Tissue-engineered ligaments have received growing interest as a promising alternative for ligament reconstruction when traditional transplants are unavailable or fail. Mechanical stimulation was recently identified as a critical component in engineering load-bearing tissues. It is well established that living tissue responds to altered loads through endogenous changes in cellular behavior, tissue organization, and bulk mechanical properties. Without the appropriate biomechanical cues, new tissue formation lacks the necessary collagenous organization and alignment for sufficient load-bearing capacity. Therefore, tissue engineers utilize mechanical conditioning to guide tissue remodeling and improve the performance of ligament grafts. This review provides a comparative analysis of the response of ligament and tendon fibroblasts to mechanical loading in current bioreactor studies. The differential effect of mechanical stimulation on cellular processes such as protease production, matrix protein synthesis, and cell proliferation is examined in the context of tissue engineering design.

  1. Hybrid Carbon-Based Scaffolds for Applications in Soft Tissue Reconstruction

    Science.gov (United States)

    Lafdi, Khalid; Joseph, Robert M.; Tsonis, Panagiotis A.

    2012-01-01

    Current biomedical scaffolds utilized in surgery to repair soft tissues commonly fail to meet the optimal combination of biomechanical and tissue regenerative properties. Carbon is a scaffold alternative that potentially optimizes the balance between mechanical strength, durability, and function as a cell and biologics delivery vehicle that is necessary to restore tissue function while promoting tissue repair. The goals of this study were to investigate the feasibility of fabricating hybrid fibrous carbon scaffolds modified with biopolymer, polycaprolactone and to analyze their mechanical properties and ability to support cell growth and proliferation. Environmental scanning electron microscopy, micro-computed tomography, and cell adhesion and cell proliferation studies were utilized to test scaffold suitability as a cell delivery vehicle. Mechanical properties were tested to examine load failure and elastic modulus. Results were compared to an acellular dermal matrix scaffold control (GraftJacket® [GJ] Matrix), selected for its common use in surgery for the repair of soft tissues. Results indicated that carbon scaffolds exhibited similar mechanical maximums and capacity to support fibroblast adhesion and proliferation in comparison with GJ. Fibroblast adhesion and proliferation was collinear with carbon fiber orientation in regions of sparsely distributed fibers and occurred in clusters in regions of higher fiber density and low porosity. Overall, fibroblast adhesion and proliferation was greatest in lower porosity carbon scaffolds with highly aligned fibers. Stepwise multivariate regression showed that the variability in maximum load of carbon scaffolds and controls were dependent on unique and separate sets of parameters. These finding suggested that there were significant differences in the functional implications of scaffold design and material properties between carbon and dermis derived scaffolds that affect scaffold utility as a tissue replacement

  2. Heavy metals in tissues of stranded short-finned pilot whales

    International Nuclear Information System (INIS)

    Stoneburner, D.L.

    1978-01-01

    Selected tissues from four short-finned pilot whales that stranded at Cumberland Island National Seashore were analyzed for total cadmium, mercury and selenium by neutron activation. Cadmium reached a maximum mean wet weight concentration of 31.4 ppm in the kidney tissues. Maximum mean wet weight concentrations of mercury, 230.9 ppm, and selenium, 44.2 ppm, were found in the liver tissues. The lowest concentration of each metal was found in the blubber. Postmortem examination showed that the whales had no food in their stomachs. The whales must have been utilizing metabolic reserves, contaminated with residual concentrations of heavy metals, prior to beaching. This utilization of reserves probably resulted in the high concentrations of cadmium, mercury and selenium found in the liver and kidney tissues. Since the heavy metal concentrations were three to four times greater in the stranded whales, as compared to apparently healthy whales of the same species, it is suggested that heavy metal toxicosis may have been a factor contributing to this particular stranding. (Auth.)

  3. A cadaveric study of bone tissue temperature during pin site drilling utilizing fluoroptic thermography.

    Science.gov (United States)

    Muffly, Matthew; Winegar, Corbett; Miller, Mark Carl; Altman, Gregory

    2018-05-03

    Using fluoroptic thermography, temperature was measured during pin site drilling of intact cortical human cadaver bone with a combination of one-step drilling, graduated drilling, and one-step drilling with irrigation of 5.0 mm Schanz pins. A 1440 rpm constant force drilling was used to on tibial diaphyses while a sensor probe placed 0.5 mm adjacent to the drill hole measured temperature. Four drilling techniques on each of the tibial segments were performed: 3.5mm drill bit, 5.0mm Schanz pin, 5.0 mm Schanz pin in 3.5 mm pre-drilled entry site, 5.0 mm Schanz pin utilizing irrigation. One-step drilling using a 5.0 mm Schanz pin without irrigation produced a temperature that exceeded the threshold temperature for heat-induced injury in 5 of the 8 trials. With the other three drilling techniques, only one in24 trials produced a temperature that would result in thermal injury. This difference was found to be statistically significant (p = 0.003). The use of irrigation significantly reduced the maximum bone tissue temperature in one-step drilling of a 5.0 mm Schanz pin (p = 0.02). One-step drilling with a 3.5 mm drill bit achieved maximum temperature significantly faster than graduated drilling and drilling with irrigation using a 5.0 mm Schanz pin (p drilling with a 5.0 mm Schanz pin into cortical bone can produce temperatures that can lead to heat-induced injury. Irrigation alone can reduce the temperatures sufficiently to avoid damage. Pre-drilling can increase temperatures significantly but the extent of any injury should be small.

  4. Multicompartment Drug Release System for Dynamic Modulation of Tissue Responses.

    Science.gov (United States)

    Morris, Aaron H; Mahal, Rajwant S; Udell, Jillian; Wu, Michelle; Kyriakides, Themis R

    2017-10-01

    Pharmacological modulation of responses to injury is complicated by the need to deliver multiple drugs with spatiotemporal resolution. Here, a novel controlled delivery system containing three separate compartments with each releasing its contents over different timescales is fabricated. Core-shell electrospun fibers create two of the compartments in the system, while electrosprayed spheres create the third. Utility is demonstrated by targeting the foreign body response to implants because it is a dynamic process resulting in implant failure. Sequential delivery of a drug targeting nuclear factor-κB (NF-κB) and an antifibrotic is characterized in in vitro experiments. Specifically, macrophage fusion and p65 nuclear translocation in the presence of releasate or with macrophages cultured on the surfaces of the constructs are evaluated. In addition, releasate from pirfenidone scaffolds is shown to reduce transforming growth factor-β (TGF-β)-induced pSMAD3 nuclear localization in fibroblasts. In vivo, drug eluting constructs successfully mitigate macrophage fusion at one week and fibrotic encapsulation in a dose-dependent manner at four weeks, demonstrating effective release of both drugs over different timescales. Future studies can employ this system to improve and prolong implant lifetimes, or load it with other drugs to modulate other dynamic processes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Epithelial-mesenchymal transition in keloid tissues and TGF-β1-induced hair follicle outer root sheath keratinocytes.

    Science.gov (United States)

    Yan, Li; Cao, Rui; Wang, Lianzhao; Liu, Yuanbo; Pan, Bo; Yin, Yanhua; Lv, Xiaoyan; Zhuang, Qiang; Sun, Xuejian; Xiao, Ran

    2015-01-01

    Keloid is a skin fibrotic disease with the characteristics of recurrence and invasion, its pathogenesis still remains unrevealed. The epithelial-mesenchymal transition (EMT) is critical for wound healing, fibrosis, recurrence, and invasion of cancer. We sought to investigate the EMT in keloid and the mechanism through which the EMT regulates keloid formation. In keloid tissues, the expressions of EMT-associated markers and transforming growth factor (TGF)-β1/Smad3 signaling were examined by immunohistochemistry. In the keloid epidermis and dermal tissue, the expressions of genes related to the regulation of skin homeostasis, fibroblast growth factor receptor 2 (FGFR2) and p63, were analyzed using quantitative real-time polymerase chain reaction. The results showed that accompanying the loss of the epithelial marker E-cadherin and the gain of the mesenchymal markers fibroblast-specific protein 1 (FSP1) and vimentin in epithelial cells from epidermis and skin appendages, and in endothelial cells from dermal microvessels, enhanced TGF-β1 expression and Smad3 phosphorylation were noted in keloid tissues. Moreover, alternative splicing of the FGFR2 gene switched the predominantly expressed isoform from FGFR2-IIIb to -IIIc, concomitant with the decreased expression of ΔNp63 and TAp63, which changes might partially account for abnormal epidermis and appendages in keloids. In addition, we found that TGF-β1-induced hair follicle outer root sheath keratinocytes (ORSKs) and normal skin epithelial cells underwent EMT in vitro with ORSKs exhibiting more obvious EMT changes and more similar expression profiles for EMT-associated and skin homeostasis-related genes as in keloid tissues, suggesting that ORSKs might play crucial roles in the EMT in keloids. Our study provided insights into the molecular mechanisms mediating the EMT pathogenesis of keloids. © 2015 by the Wound Healing Society.

  6. Diffuse reflectance spectroscopy for optical soft tissue differentiation as remote feedback control for tissue-specific laser surgery.

    Science.gov (United States)

    Stelzle, Florian; Tangermann-Gerk, Katja; Adler, Werner; Zam, Azhar; Schmidt, Michael; Douplik, Alexandre; Nkenke, Emeka

    2010-04-01

    Laser surgery does not provide haptic feedback for operating layer-by-layer and thereby preserving vulnerable anatomical structures like nerve tissue or blood vessels. Diffuse reflectance spectra can facilitate remote optical tissue differentiation. It is the aim of the study to use this technique on soft tissue samples, to set a technological basis for a remote optical feedback system for tissue-specific laser surgery. Diffuse reflectance spectra (wavelength range: 350-650 nm) of ex vivo types of soft tissue (a total of 10,800 spectra) of the midfacial region of domestic pigs were remotely measured under reduced environmental light conditions and analyzed in order to differentiate between skin, mucosa, muscle, subcutaneous fat, and nerve tissue. We performed a principal components (PC) analysis (PCA) to reduce the number of variables. Linear discriminant analysis (LDA) was utilized for classification. For the tissue differentiation, we calculated the specificity and sensitivity by receiver operating characteristic (ROC) analysis and the area under curve (AUC). Six PCs were found to be adequate for tissue differentiation with diffuse reflectance spectra using LDA. All of the types of soft tissue could be differentiated with high specificity and sensitivity. Only the tissue pairs nervous tissue/fatty tissue and nervous tissue/mucosa showed a decline of differentiation due to bio-structural similarity. However, both of these tissue pairs could still be differentiated with a specificity and sensitivity of more than 90%. Analyzing diffuse reflectance spectroscopy with PCA and LDA allows for remote differentiation of biological tissue. Considering the limitations of the ex vivo conditions, the obtained results are promising and set a basis for the further development of a feedback system for tissue-specific laser surgery. (c) 2010 Wiley-Liss, Inc.

  7. Imaging the hard/soft tissue interface.

    Science.gov (United States)

    Bannerman, Alistair; Paxton, Jennifer Z; Grover, Liam M

    2014-03-01

    Interfaces between different tissues play an essential role in the biomechanics of native tissues and their recapitulation is now recognized as critical to function. As a consequence, imaging the hard/soft tissue interface has become increasingly important in the area of tissue engineering. Particularly as several biotechnology based products have made it onto the market or are close to human trials and an understanding of their function and development is essential. A range of imaging modalities have been developed that allow a wealth of information on the morphological and physical properties of samples to be obtained non-destructively in vivo or via destructive means. This review summarizes the use of a selection of imaging modalities on interfaces to date considering the strengths and weaknesses of each. We will also consider techniques which have not yet been utilized to their full potential or are likely to play a role in future work in the area.

  8. Determination of a tissue-level failure evaluation standard for rat femoral cortical bone utilizing a hybrid computational-experimental method.

    Science.gov (United States)

    Fan, Ruoxun; Liu, Jie; Jia, Zhengbin; Deng, Ying; Liu, Jun

    2018-01-01

    Macro-level failure in bone structure could be diagnosed by pain or physical examination. However, diagnosing tissue-level failure in a timely manner is challenging due to the difficulty in observing the interior mechanical environment of bone tissue. Because most fractures begin with tissue-level failure in bone tissue caused by continually applied loading, people attempt to monitor the tissue-level failure of bone and provide corresponding measures to prevent fracture. Many tissue-level mechanical parameters of bone could be predicted or measured; however, the value of the parameter may vary among different specimens belonging to a kind of bone structure even at the same age and anatomical site. These variations cause difficulty in representing tissue-level bone failure. Therefore, determining an appropriate tissue-level failure evaluation standard is necessary to represent tissue-level bone failure. In this study, the yield and failure processes of rat femoral cortical bones were primarily simulated through a hybrid computational-experimental method. Subsequently, the tissue-level strains and the ratio between tissue-level failure and yield strains in cortical bones were predicted. The results indicated that certain differences existed in tissue-level strains; however, slight variations in the ratio were observed among different cortical bones. Therefore, the ratio between tissue-level failure and yield strains for a kind of bone structure could be determined. This ratio may then be regarded as an appropriate tissue-level failure evaluation standard to represent the mechanical status of bone tissue.

  9. Alveolar ridge augmentation by connective tissue grafting using a pouch method and modified connective tissue technique: A prospective study.

    Science.gov (United States)

    Agarwal, Ashish; Gupta, Narinder Dev

    2015-01-01

    Localized alveolar ridge defect may create physiological and pathological problems. Developments in surgical techniques have made it simpler to change the configuration of a ridge to create a more aesthetic and more easily cleansable shape. The purpose of this study was to compare the efficacy of alveolar ridge augmentation using a subepithelial connective tissue graft in pouch and modified connective tissue graft technique. In this randomized, double blind, parallel and prospective study, 40 non-smoker individuals with 40 class III alveolar ridge defects in maxillary anterior were randomly divided in two groups. Group I received modified connective tissue graft, while group II were treated with subepithelial connective tissue graft in pouch technique. The defect size was measured in its horizontal and vertical dimension by utilizing a periodontal probe in a stone cast at base line, after 3 months, and 6 months post surgically. Analysis of variance and Bonferroni post-hoc test were used for statistical analysis. A two-tailed P connective tissue graft proposed significantly more improvement as compare to connective tissue graft in pouch.

  10. The mechanical memory of lung myofibroblasts.

    Science.gov (United States)

    Balestrini, Jenna L; Chaudhry, Sidharth; Sarrazy, Vincent; Koehler, Anne; Hinz, Boris

    2012-04-01

    Fibroblasts differentiate into the highly synthetic and contractile myofibroblast phenotype when exposed to substrates with an elastic modulus corresponding to pathologically stiff fibrotic tissue. Cellular responses to changes in substrate stiffness are typically analyzed after hours or days, which does not enable the monitoring of myofibroblast persistence, a hallmark of fibrosis. To determine long-lasting effects on the fibrotic behavior of lung fibroblasts, we followed a novel approach of explanting and repeatedly passaging fibroblasts on silicone substrates with stiffness representing various states of lung health. Fibrotic activity was determined by assaying for myofibroblast proliferation, cell contractility, expression of α-smooth muscle actin, extracellular matrix and active TGFβ1. As predicted, myofibroblast activity was low on healthy soft substrates and increased with increasing substrate stiffness. However, explanting and mechanically priming lung fibroblasts for 3 weeks on pathologically stiff substrates resulted in sustained myofibroblast activity even after the cells were returned to healthy soft cultures for 2 weeks. Such primed cells retained higher fibrotic activity than cells that had been exclusively cultured on soft substrates, and were not statistically different from cells continuously passaged on stiff surfaces. Inversely, priming lung fibroblasts for 3 weeks on soft substrates partially protected from myofibroblast activation after the shift to stiff substrates. Hence, mechano-sensed information relating to physical conditions of the local cellular environment could permanently induce fibrotic behavior of lung fibroblasts. This priming effect has important implications for the progression and persistence of aggressive fibrotic diseases such as idiopathic pulmonary fibrosis. This journal is © The Royal Society of Chemistry 2012

  11. Extensive scarring induced by chronic intrathecal tubing augmented cord tissue damage and worsened functional recovery after rat spinal cord injury.

    Science.gov (United States)

    Zhang, Shu-xin; Huang, Fengfa; Gates, Mary; White, Jason; Holmberg, Eric G

    2010-08-30

    Intrathecal infusion has been widely used to directly deliver drugs or neurotrophins to a lesion site following spinal cord injury. Evidence shows that intrathecal infusion is efficient for 7 days but is markedly reduced after 14 days, due to time dependent occlusion. In addition, extensive fibrotic scarring is commonly observed with intrathecal infusion. These anomalies need to be clearly elucidated in histology. In the present study, all adult Long-Evans rats received a 25 mm contusion injury on spinal cord T10 produced using the NYU impactor device. Immediately after injury, catheter tubing with an outer diameter of 0.38 mm was inserted through a small dural opening at L3 into the subdural space with the tubing tip positioned near the injury site. The tubing was connected to an Alzet mini pump, which was filled with saline solution and was placed subcutaneously. Injured rats without tubing served as control. Rats were behaviorally tested for 6 weeks using the BBB locomotor rating scale and histologically assessed for tissue scarring. Six weeks later, we found that the intrathecal tubing caused extensive scarring and inflammation, related to neutrophils, macrophages and plasma cells. The tubing's tip was occluded by scar tissue and inflammatory cells. The scar tissue surrounding the tubing consists of 20-70 layers of fibroblasts and densely compacted collagen fibers, seriously compressing and damaging the cord tissue. BBB scores of rats with intrathecal tubing were significantly lower than control rats (p<0.01) from 2 weeks after injury, implying serious impairment of functional recovery caused by the scarring. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Right Ventricular Outflow Tract Tachycardia with Structural Abnormalities of the Right Ventricle and Left Ventricular Diverticulum

    Directory of Open Access Journals (Sweden)

    Bortolo Martini

    2015-01-01

    Full Text Available A 43-year-old woman presented to the emergency room with a sustained ventricular tachycardia (VT. ECG showed a QRS in left bundle branch block morphology with inferior axis. Echocardiography, ventricular angiography, and cardiac magnetic resonance imaging (CMRI revealed a normal right ventricle and a left ventricular diverticulum. Electrophysiology studies with epicardial voltage mapping identified a large fibrotic area in the inferolateral layer of the right ventricular wall and a small area of fibrotic tissue at the anterior right ventricular outflow tract. VT ablation was successfully performed with combined epicardial and endocardial approaches.

  13. Assessment of the Risks from Imbedded Fragments of Depleted Uranium

    Science.gov (United States)

    1993-03-01

    for chronic kidney toxicity; the impact of fibrotic encapsulation , if it occurs; and the chemical form of the imbedded fragment. The potential for...Effects of Depleted Uranium Imbedded in Tissue Reference: Brigadier General Ronald R. Blanck (SGPS-PSP) letter of 26 February 1992 In response to your...the muscle and fatty tissue will probably occur and will occur in all other tissue types that elicit similar cellular responses to foreign bodies. It

  14. Tissue banking and clinical research on radiation and ethylene oxide sterilization of tissue grafts

    International Nuclear Information System (INIS)

    Pe Khin

    1987-06-01

    The research works carried out in Rangoon, Burma under the Agency supported project RC4420/RB have dealt with an elucidation of the radiation interaction(s) with the species of biomolecules such as proteins, lipids, collagens, connective tissues present in the cleaned and freeze-dried non-viable tissue grafts. Radiation as a cool process furthermore effectively helps to destroy the microbial bioburden as the undesirable contaminants which may associate the tissue grafts. Radiation also concomitantly helps to suppress the tissue-specific immunogenicity. All these attributes of radiation induced effects have proved successful towards the development of a sterilization process. A series of non-viable tissue grafts, such as bone, nerve, fascia, dura, cartilage, chorion-amnion (as dressings in burn wounds) and tympanic membrane have been successfully attempted in Burma and many more possibilities seem to still remain unexplored. Radiation sterilization modality has proved as a blessing for the promotion of clinical surgical applications of tissue allografts in the corrective/reconstructive surgery on the disability cases due to diseases which accompany tissue losses. The investigator in Burma has reported on the case histories where freeze dried radiation sterilized tissue allografts have been successfully used in the osteogenic inductions (bone grafts); midear tympanoplasty; partial recovery of nerve sensation throught nerve allografts; rapid healing of high degree burn wounds through the use of amnion dressings. Besides, there have been a widespread surgical use of radiation sterilized dura and fascia as allografts. A national tissue banking facility has been established in Burma surrounding the processing and clinical utilization of tissue allografts which has involved over ten hospital centres throughout the country. Radiation induced effects on the biomolecules of clinical significance in the tissue grafts have been researched to help gain insight into a better

  15. Systemic sclerosis and localized scleroderma--current concepts and novel targets for therapy.

    Science.gov (United States)

    Distler, Oliver; Cozzio, Antonio

    2016-01-01

    Systemic sclerosis (SSc) is a chronic autoimmune disease with a high morbidity and mortality. Skin and organ fibrosis are key manifestations of SSc, for which no generally accepted therapy is available. Thus, there is a high unmet need for novel anti-fibrotic therapeutic strategies in SSc. At the same time, important progress has been made in the identification and characterization of potential molecular targets in fibrotic diseases over the recent years. In this review, we have selected four targeted therapies, which are tested in clinical trials in SSc, for in depths discussion of their preclinical characterization. Soluble guanylate cyclase (sGC) stimulators such as riociguat might target both vascular remodeling and tissue fibrosis. Blockade of interleukin-6 might be particularly promising for early inflammatory stages of SSc. Inhibition of serotonin receptor 2b signaling links platelet activation to tissue fibrosis. Targeting simultaneously multiple key molecules with the multityrosine kinase-inhibitor nintedanib might be a promising approach in complex fibrotic diseases such as SSc, in which many partially independent pathways are activated. Herein, we also give a state of the art overview of the current classification, clinical presentation, diagnostic approach, and treatment options of localized scleroderma. Finally, we discuss whether the novel targeted therapies currently tested in SSc could be used for localized scleroderma.

  16. P2Y6 Receptor Activation Promotes Inflammation and Tissue Remodeling in Pulmonary Fibrosis

    Science.gov (United States)

    Müller, Tobias; Fay, Susanne; Vieira, Rodolfo Paula; Karmouty-Quintana, Harry; Cicko, Sanja; Ayata, Cemil Korcan; Zissel, Gernot; Goldmann, Torsten; Lungarella, Giuseppe; Ferrari, Davide; Di Virgilio, Francesco; Robaye, Bernard; Boeynaems, Jean-Marie; Lazarowski, Eduardo R.; Blackburn, Michael R.; Idzko, Marco

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a disease with a poor prognosis and very few available treatment options. The involvement of the purinergic receptor subtypes P2Y2 and P2X7 in fibrotic lung disease has been demonstrated recently. In this study, we investigated the role of P2Y6 receptors in the pathogenesis of IPF in humans and in the animal model of bleomycin-induced lung injury. P2Y6R expression was upregulated in lung structural cells but not in bronchoalveolar lavage (BAL) cells derived from IPF patients as well as in animals following bleomycin administration. Furthermore, BAL fluid levels of the P2Y6R agonist uridine-5′-diphosphate were elevated in animals with bleomycin-induced pulmonary fibrosis. Inflammation and fibrosis following bleomycin administration were reduced in P2Y6R-deficient compared to wild-type animals confirming the pathophysiological relevance of P2Y6R subtypes for fibrotic lung diseases. Experiments with bone marrow chimeras revealed the importance of P2Y6R expression on lung structural cells for pulmonary inflammation and fibrosis. Similar effects were obtained when animals were treated with the P2Y6R antagonist MRS2578. In vitro studies demonstrated that proliferation and secretion of the pro-inflammatory/pro-fibrotic cytokine IL-6 by lung fibroblasts are P2Y6R-mediated processes. In summary, our results clearly demonstrate the involvement of P2Y6R subtypes in the pathogenesis of pulmonary fibrosis. Thus, blocking pulmonary P2Y6 receptors might be a new target for the treatment of IPF. PMID:28878780

  17. P2Y6 Receptor Activation Promotes Inflammation and Tissue Remodeling in Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Tobias Müller

    2017-08-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a disease with a poor prognosis and very few available treatment options. The involvement of the purinergic receptor subtypes P2Y2 and P2X7 in fibrotic lung disease has been demonstrated recently. In this study, we investigated the role of P2Y6 receptors in the pathogenesis of IPF in humans and in the animal model of bleomycin-induced lung injury. P2Y6R expression was upregulated in lung structural cells but not in bronchoalveolar lavage (BAL cells derived from IPF patients as well as in animals following bleomycin administration. Furthermore, BAL fluid levels of the P2Y6R agonist uridine-5′-diphosphate were elevated in animals with bleomycin-induced pulmonary fibrosis. Inflammation and fibrosis following bleomycin administration were reduced in P2Y6R-deficient compared to wild-type animals confirming the pathophysiological relevance of P2Y6R subtypes for fibrotic lung diseases. Experiments with bone marrow chimeras revealed the importance of P2Y6R expression on lung structural cells for pulmonary inflammation and fibrosis. Similar effects were obtained when animals were treated with the P2Y6R antagonist MRS2578. In vitro studies demonstrated that proliferation and secretion of the pro-inflammatory/pro-fibrotic cytokine IL-6 by lung fibroblasts are P2Y6R-mediated processes. In summary, our results clearly demonstrate the involvement of P2Y6R subtypes in the pathogenesis of pulmonary fibrosis. Thus, blocking pulmonary P2Y6 receptors might be a new target for the treatment of IPF.

  18. Glutathione turnover in 14 rat tissues

    International Nuclear Information System (INIS)

    Potter, D.W.; Tran, T.

    1990-01-01

    GSH is a tripeptide found in all tissues and is important in maintaining cellular redox status. First-order rate constants for GSH turnover were determined for various tissues of Fischer male rats. Animals were administered [ 35 S]Cys by tail vein injection and GSH turnover was estimated by the decrease in GSH specific activity following incorporation of Cys, 1-102 hr after administration. Tissue nonprotein sulfhydryls (NPSH) were detected by Ellman's assay and compared with GSH and Cys concentrations determined by HPLC with electrochemical detection. [ 35 S]GSH was analyzed by HPLC equipped with a flow-through radioactivity detector. Although total GSH and Cys were usually slightly lower than NPSH concentrations for the tissues examined, both assay systems gave comparable results. An exception was the glandular stomach which had approximately 2-fold higher NPSH. Liver and kidney had rapid turnover rates with GSH half-lives between 2-5 hr, while heart and skeletal muscle tissue had half-lives of 80-90 hr. Turnover in the blood was slowest, with a half-life of 170 hr. Gastrointestinal tract tissues were shown to have intermediate turnover rates of the following order: glandular stomach > duodenum = small intestine = caecum = large intestine = colon > forestomach. GSH half-life in lung and skin was approximately 45 hr. These studies indicate that tissues utilize GSH at markedly different rates

  19. Longitudinal assessment of bleomycin-induced lung fibrosis by Micro-CT correlates with histological evaluation in mice

    NARCIS (Netherlands)

    Ruscitti, F. (Francesca); Ravanetti, F. (Francesca); J. Essers (Jeroen); Y. Ridwan (Yanto); Belenkov, S. (Sasha); W.G. Vos (Wim G.); Ferreira, F. (Francisca); A. Kleinjan (Alex); P.M. van Heijningen (Paula ); C. Van Holsbeke (Cedric); Cacchioli, A. (Antonio); Villetti, G. (Gino); Stellari, F.F. (Franco Fabio)

    2017-01-01

    textabstractBackground: The intratracheal instillation of bleomycin in mice induces early damage to alveolar epithelial cells and development of inflammation followed by fibrotic tissue changes and represents the most widely used model of pulmonary fibrosis to investigate human IPF. Histopathology

  20. Predicting retroperitoneal histology in postchemotherapy testicular germ cell cancer : A model update and multicentre validation with more than 1000 patients

    NARCIS (Netherlands)

    Vergouwe, Yvonne; Steyerberg, Ewout W.; Foster, Richard S.; Sleijfer, Dirk T.; Fossa, Sophie D.; Gerl, Arthur; de Wit, Ronald; Roberts, J. Trevor; Habbema, J. Dik F.

    Objectives: Surgical resection of postchemotherapy retroperitoneal lymph nodes is often performed in patients with advanced nonseminomatous testicular germ cell cancer. We previously developed a model to predict the probability that the lymph nodes contain only necrotic or fibrotic (benign) tissue

  1. [Biofabrication: new approaches for tissue regeneration].

    Science.gov (United States)

    Horch, Raymund E; Weigand, Annika; Wajant, Harald; Groll, Jürgen; Boccaccini, Aldo R; Arkudas, Andreas

    2018-04-01

    The advent of Tissue Engineering (TE) in the early 1990ies was fostered by the increasing need for functional tissue and organ replacement. Classical TE was based on the combination of carrier matrices, cells and growth factors to reconstitute lost or damaged tissue and organs. Despite considerable results in vitro and in experimental settings the lack of early vascularization has hampered its translation into daily clinical practice so far. A new field of research, called "biofabrication" utilizing latest 3D printing technologies aims at hierarchically and spatially incorporating different cells, biomaterials and molecules into a matrix to alleviate a directed maturation of artificial tissue. A literature research of the relevant publications regarding biofabrication and bioprinting was performed using the PubMed data base. Relevant papers were selected and evaluated with secondary analysis of specific citations on the bioprinting techniques. 180 relevant papers containing the key words were identified and evaluated. Basic principles into the developing field of bioprinting technology could be discerned. Key elements comprise the high-throughput assembly of cells and the fabrication of complex and functional hierarchically organized tissue constructs. Five relevant technological principles for bioprinting were identified, such as stereolithography, extrusion-based printing, laser-assisted printing, inkjet-based printing and nano-bioprinting. The different technical methods of 3D printing were found to be associated with various positive but also negative effects on cells and proteins during the printing process. Research efforts in this field obviously aim towards the development of optimizing the so called bioinks and the printing technologies. This review details the evolution of the classical methods of TE in Regenerative Medicine into the evolving field of biofabrication by bioprinting. The advantages of 3D bioprinting over traditional tissue engineering

  2. Histological evaluation of lung cancer with T2-weighted magnetic resonance images

    International Nuclear Information System (INIS)

    Ohta, Takashi; Matsuura, Yoshifumi; Shioya, Sumie; Ohta, Yasuyo

    1995-01-01

    We investigated the differences in signal intensity of lung cancer tissue and non-cancerous lung tissues on T 2 -weighted magnetic resonance (MR) images. MR images were obtained from patients with squamous cell carcinoma (n=6), adenocarcinoma (n=5), small cell carcinoma (n=5), and large cell carcinoma (n=1). To compare the MR signal intensity between tissues, we calculated the signal intensity ratios for tumor/skeletal muscle and lung/skeletal muscle. The MR signal intensity for each tissue was measured with a densitometer and T 2 -weighted MR images with a similar window and a center. The value of the signal intensity ratio for squamous cell carcinoma (3.26±0.76) was greater than those for adenocarcinoma (1.99±0.50, p<0.05), small cell carcinoma (2.35±0.60), large cell carcinoma (2.46), and non-cancerous lung tissues (1.70±0.68, p<0.02). The values of the MR signal intensity ratio for non-cancerous lung tissues were 2.00 for a collapsed lung, 0.93 for a fibrotic lung, and 2.18 for a fibrotic lung with obstructive pneumonia. The results suggest that the MR signal intensity ratio for pathologic tissues/normal skeletal muscle can be a useful indicator for qualitative and quantitative MR imaging diagnosis. (author)

  3. Various Techniques to Increase Keratinized Tissue for Implant Supported Overdentures: Retrospective Case Series

    Directory of Open Access Journals (Sweden)

    Ahmed Elkhaweldi

    2015-01-01

    Full Text Available Purpose. The purpose of this retrospective case series is to describe and compare different surgical techniques that can be utilized to augment the keratinized soft tissue around implant-supported overdentures. Materials and Methods. The data set was extracted as deidentified information from the routine treatment of patients at the Ashman Department of Periodontology and Implant Dentistry at New York University College of Dentistry. Eight edentulous patients were selected to be included in this study. Patients were treated for lack of keratinized tissue prior to implant placement, during the second stage surgery, and after delivery of the final prosthesis. Results. All 8 patients in this study were wearing a complete maxillary and/or mandibular denture for at least a year before the time of the surgery. One of the following surgical techniques was utilized to increase the amount of keratinized tissue: apically positioned flap (APF, pedicle graft (PG, connective tissue graft (CTG, or free gingival graft (FGG. Conclusions. The amount of keratinized tissue should be taken into consideration when planning for implant-supported overdentures. The apical repositioning flap is an effective approach to increase the width of keratinized tissue prior to the implant placement.

  4. Gill tissue reactions in walleye Stizostedion vitreum vitreum and common carp Cyprinus carpio to glochidia of the freshwater mussel Lampsilis radiata siliquoidea

    Science.gov (United States)

    Waller, D.L.; Mitchell, L.G.

    1989-01-01

    The glochidia of many freshwater mussels, which are obligate parasites on the gills, fins, and other body parts of specific fishes, attach to a suitable host, become encapsulated, and develop to the free-living juvenile stage. Using light and electron microscopy we compared gill tissue reactions in a suitable host (walleye Stizostedion vitreum vitreum) and unsuitable host (common carp Cyprinus carpio) infected with Lampsilis radiata siliquoidea. Encapsulation of glochidia on walleye gills was completed by 6 h post-infection at 20 to 22°C. Capsular formation and compaction were accompanied by a general increase in epithelioid cells. Fibrotic material appeared in capsules at about 48 h and virtually filled capsular cells from about Day 5 to Day 11 post-infection. Liberation of juvenile mussels was accompanied by thinning of the capsule from about Day 11 to Day l7. Although glochidia attached to the gills of common carp, few became encapsulated. By 48 h post-infection, preliminary capsular growth was evident and necrotic cells and cellular debris appeared at the edges of the growth. However, all glochidia were sloughed from carp gills by 60 h. Host specificity of L. radiata siliquoidea apparently depended on a combination of the attachment response of glochidia, differences in the encapsulation process, and tissue reactions in the fish.

  5. Cell-extracellular matrix and cell-cell adhesion are linked by syndecan-4

    DEFF Research Database (Denmark)

    Pakideeri Karat, Sandeep Gopal; Multhaupt, Hinke A B; Pocock, Roger

    2017-01-01

    Cell-extracellular matrix (ECM) and cell-cell junctions that employ microfilaments are sites of tension. They are important for tissue repair, morphogenetic movements and can be emblematic of matrix contraction in fibrotic disease and the stroma of solid tumors. One cell surface receptor, syndecan...... calcium. While it is known that cell-ECM and cell-cell junctions may be linked, possible roles for syndecans in this process are not understood. Here we show that wild type primary fibroblasts and those lacking syndecan-4 utilize different cadherins in their adherens junctions and that tension is a major...... factor in this differential response. This corresponds to the reduced ability of fibroblasts lacking syndecan-4 to exert tension on the ECM and we now show that this may extend to reduced tension in cell-cell adhesion....

  6. Excitation-scanning hyperspectral imaging as a means to discriminate various tissues types

    Science.gov (United States)

    Deal, Joshua; Favreau, Peter F.; Lopez, Carmen; Lall, Malvika; Weber, David S.; Rich, Thomas C.; Leavesley, Silas J.

    2017-02-01

    Little is currently known about the fluorescence excitation spectra of disparate tissues and how these spectra change with pathological state. Current imaging diagnostic techniques have limited capacity to investigate fluorescence excitation spectral characteristics. This study utilized excitation-scanning hyperspectral imaging to perform a comprehensive assessment of fluorescence spectral signatures of various tissues. Immediately following tissue harvest, a custom inverted microscope (TE-2000, Nikon Instruments) with Xe arc lamp and thin film tunable filter array (VersaChrome, Semrock, Inc.) were used to acquire hyperspectral image data from each sample. Scans utilized excitation wavelengths from 340 nm to 550 nm in 5 nm increments. Hyperspectral images were analyzed with custom Matlab scripts including linear spectral unmixing (LSU), principal component analysis (PCA), and Gaussian mixture modeling (GMM). Spectra were examined for potential characteristic features such as consistent intensity peaks at specific wavelengths or intensity ratios among significant wavelengths. The resultant spectral features were conserved among tissues of similar molecular composition. Additionally, excitation spectra appear to be a mixture of pure endmembers with commonalities across tissues of varied molecular composition, potentially identifiable through GMM. These results suggest the presence of common autofluorescent molecules in most tissues and that excitationscanning hyperspectral imaging may serve as an approach for characterizing tissue composition as well as pathologic state. Future work will test the feasibility of excitation-scanning hyperspectral imaging as a contrast mode for discriminating normal and pathological tissues.

  7. The Canadian Registry for Pulmonary Fibrosis: Design and Rationale of a National Pulmonary Fibrosis Registry

    Directory of Open Access Journals (Sweden)

    Christopher J. Ryerson

    2016-01-01

    Full Text Available Background. The relative rarity and diversity of fibrotic interstitial lung disease (ILD have made it challenging to study these diseases in single-centre cohorts. Here we describe formation of a multicentre Canadian registry that is needed to describe the outcomes of fibrotic ILD and to enable detailed healthcare utilization analyses that will be the cornerstone for future healthcare planning. Methods. The Canadian Registry for Pulmonary Fibrosis (CARE-PF is a prospective cohort anticipated to consist of at least 2,800 patients with fibrotic ILD. CARE-PF will be used to (1 describe the natural history of fibrotic ILD, specifically determining the incidence and outcomes of acute exacerbations of ILD subtypes and (2 determine the impact of ILD and acute exacerbations of ILD on health services use and healthcare costs in the Canadian population. Consecutive patients with fibrotic ILD will be recruited from five Canadian ILD centres over a period of five years. Patients will be followed up as clinically indicated and will complete standardized questionnaires at each clinic visit. Prespecified outcomes and health services use will be measured based on self-report and linkage to provincial health administrative databases. Conclusion. CARE-PF will be among the largest prospective multicentre ILD registries in the world, providing detailed data on the natural history of fibrotic ILD and the healthcare resources used by these patients. As the largest and most comprehensive cohort of Canadian ILD patients, CARE-PF establishes a network for future clinical research and early phase clinical trials and provides a platform for translational and basic science research.

  8. Macrophages commit postnatal endothelium-derived progenitors to angiogenesis and restrict endothelial to mesenchymal transition during muscle regeneration.

    Science.gov (United States)

    Zordan, P; Rigamonti, E; Freudenberg, K; Conti, V; Azzoni, E; Rovere-Querini, P; Brunelli, S

    2014-01-30

    The damage of the skeletal muscle prompts a complex and coordinated response that involves the interactions of many different cell populations and promotes inflammation, vascular remodeling and finally muscle regeneration. Muscle disorders exist in which the irreversible loss of tissue integrity and function is linked to defective neo-angiogenesis with persistence of tissue necrosis and inflammation. Here we show that macrophages (MPs) are necessary for efficient vascular remodeling in the injured muscle. In particular, MPs sustain the differentiation of endothelial-derived progenitors to contribute to neo-capillary formation, by secreting pro-angiogenic growth factors. When phagocyte infiltration is compromised endothelial-derived progenitors undergo a significant endothelial to mesenchymal transition (EndoMT), possibly triggered by the activation of transforming growth factor-β/bone morphogenetic protein signaling, collagen accumulates and the muscle is replaced by fibrotic tissue. Our findings provide new insights in EndoMT in the adult skeletal muscle, and suggest that endothelial cells in the skeletal muscle may represent a new target for therapeutic intervention in fibrotic diseases.

  9. Reversible differentiation of myofibroblasts by MyoD

    International Nuclear Information System (INIS)

    Hecker, Louise; Jagirdar, Rajesh; Jin, Toni; Thannickal, Victor J.

    2011-01-01

    Myofibroblasts participate in tissue repair processes in diverse mammalian organ systems. The deactivation of myofibroblasts is critical for termination of the reparative response and restoration of tissue structure and function. The current paradigm on normal tissue repair is the apoptotic clearance of terminally differentiated myofibroblasts; while, the accumulation of activated myofibroblasts is associated with progressive human fibrotic disorders. The capacity of myofibroblasts to undergo de-differentiation as a potential mechanism for myofibroblast deactivation has not been examined. In this report, we have uncovered a role for MyoD in the induction of myofibroblast differentiation by transforming growth factor-β1 (TGF-β1). Myofibroblasts demonstrate the capacity for de-differentiation and proliferation by modulation of endogenous levels of MyoD. We propose a model of reciprocal signaling between TGF-β1/ALK5/MyoD and mitogen(s)/ERK-MAPK/CDKs that regulate myofibroblast differentiation and de-differentiation, respectively. Our studies provide the first evidence for MyoD in controlling myofibroblast activation and deactivation. Restricted capacity for de-differentiation of myofibroblasts may underlie the progressive nature of recalcitrant human fibrotic disorders.

  10. Utility of Normal Tissue-to-Tumor {alpha}/{beta} Ratio When Evaluating Isodoses of Isoeffective Radiation Therapy Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Gay, Hiram A., E-mail: hgay@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Jin Jianyue [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States); Chang, Albert J. [Department of Radiation Oncology, University of California, San Francisco, California (United States); Ten Haken, Randall K. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2013-01-01

    Purpose: To achieve a better understanding of the effect of the number of fractions on normal tissue sparing for equivalent tumor control in radiation therapy plans by using equivalent biologically effective dose (BED) isoeffect calculations. Methods and Materials: The simple linear quadratic (LQ) model was assumed to be valid up to 10 Gy per fraction. Using the model, we formulated a well-known mathematical equality for the tumor prescription dose and probed and solved a second mathematical problem for normal tissue isoeffect. That is, for a given arbitrary relative isodose distribution (treatment plan in percentages), 2 isoeffective tumor treatment regimens (N fractions of the dose D and n fractions of the dose d) were denoted, which resulted in the same BED (corresponding to 100% prescription isodose). Given these situations, the LQ model was further exploited to mathematically establish a unique relative isodose level, z (%), for the same arbitrary treatment plan, where the BED to normal tissues was also isoeffective for both fractionation regimens. Results: For the previously stated problem, the relative isodose level z (%), where the BEDs to the normal tissue were also equal, was defined by the normal tissue {alpha}/{beta} ratio divided by the tumor {alpha}/{beta} times 100%. Fewer fractions offers a therapeutic advantage for those portions of the normal tissue located outside the isodose surface, z, whereas more fractions offer a therapeutic advantage for those portions of the normal tissue within the isodose surface, z. Conclusions: Relative isodose-based treatment plan evaluations may be useful for comparing isoeffective tumor regimens in terms of normal tissue effects. Regions of tissues that would benefit from hypofractionation or standard fractionation can be identified.

  11. Innate Immunity and Biomaterials at the Nexus: Friends or Foes

    OpenAIRE

    Christo, Susan N.; Diener, Kerrilyn R.; Bachhuka, Akash; Vasilev, Krasimir; Hayball, John D.

    2015-01-01

    Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestati...

  12. Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges.

    Science.gov (United States)

    Kumar, Vivek A; Brewster, Luke P; Caves, Jeffrey M; Chaikof, Elliot L

    2011-09-01

    Vascular disease results in the decreased utility and decreased availability of autologus vascular tissue for small diameter (requires combined approaches from biomaterials science, cell biology, and translational medicine to develop feasible solutions with the requisite mechanical support, a non-fouling surface for blood flow, and tissue regeneration. Over the past two decades interest in blood vessel tissue engineering has soared on a global scale, resulting in the first clinical implants of multiple technologies, steady progress with several other systems, and critical lessons-learned. This review will highlight the current inadequacies of autologus and synthetic grafts, the engineering requirements for implantation of tissue-engineered grafts, and the current status of tissue-engineered blood vessel research.

  13. The role of cyclosporine A on the periodontal tissues

    Directory of Open Access Journals (Sweden)

    Mallappa Jayasheela

    2013-01-01

    Conclusion: CsA targets the periodontal tissues (gingiva, alveolar bone and cementum in different pattern. Its role in cementogenesis can be utilized for periodontal regeneration, if its local application is testified and verified in the future animal studies.

  14. Factors Affecting the Use of Human Tissues in Biomedical Research: Implications in the Design and Operation of a Biorepository.

    Science.gov (United States)

    Atherton, Daniel S; Sexton, Katherine C; Otali, Dennis; Bell, Walter C; Grizzle, William E

    2016-01-01

    The availability of high-quality human tissues is necessary to advance medical research. Although there are inherent and induced limitations on the use of human tissues in research, biorepositories play critical roles in minimizing the effects of such limitations. Specifically, the optimal utilization of tissues in research requires tissues to be diagnosed accurately, and the actual specimens provided to investigators must be carefully described (i.e., there must be quality control of each aliquot of the tissue provided for research, including a description of any damage to tissues). Tissues also should be collected, processed, stored, and distributed (i.e., handled) uniformly under a rigorous quality management system (QMS). Frequently, tissues are distributed to investigators by tissue banks which have collected, processed, and stored them by standard operating procedures (SOPs). Alternatively, tissues for research may be handled via SOPs that are modified to the specific requirements of investigators (i.e., using a prospective biorepository model). The primary goal of any type of biorepository should be to ensure its specimens are of high quality and are utilized appropriately in research; however, approaches may vary based on the tissues available and requested. For example, extraction of specific molecules (e.g., microRNA) to study molecular characteristics of a tissue may require less clinical annotation than tissues that are utilized to identify how the molecular expression might be used to clarify a clinical outcome of a disease or the response to a specific therapy. This review focuses on the limitations of the use of tissues in research and how the design and operations of a tissue biorepository can minimize some of these limitations.

  15. Mechanisms of alveolar fibrosis after acute lung injury.

    Science.gov (United States)

    Marinelli, W A; Henke, C A; Harmon, K R; Hertz, M I; Bitterman, P B

    1990-12-01

    In patients who die after severe acute lung injury, a dramatic fibroproliferative response occurs within the alveolar air space, interstitium, and microvessels. Profound shunt physiology, dead space ventilation, and pulmonary hypertension are the physiologic consequences of this fibroproliferative response. The anatomic pattern of the response is unique within each alveolar compartment. For example, the air space is obliterated by granulation tissue, with replicating mesenchymal cells, their connective tissue products, and an expanding network of intra-alveolar capillaries. In contrast, the vascular fibroproliferative response is dominated by mesenchymal cell replication and connective tissue deposition within the walls of microvessels. Despite the unique anatomic features of these fibroproliferative processes, the regulatory signals involved are likely to be similar. Although our current understanding of the signals regulating the fibroproliferative response to acute lung injury is limited, inferences can be made from in vitro studies of mesenchymal cell behavior and several better understood fibroproliferative processes, including wound healing and chronic fibrotic lung diseases. As clinicians, our future ability to enhance effective lung repair will likely utilize therapeutic strategies specifically targeted to the signals that regulate the fibroproliferative process within the alveolar microenvironment.

  16. Viscoelastic Properties of Human Tracheal Tissues.

    Science.gov (United States)

    Safshekan, Farzaneh; Tafazzoli-Shadpour, Mohammad; Abdouss, Majid; Shadmehr, Mohammad B

    2017-01-01

    The physiological performance of trachea is highly dependent on its mechanical behavior, and therefore, the mechanical properties of its components. Mechanical characterization of trachea is key to succeed in new treatments such as tissue engineering, which requires the utilization of scaffolds which are mechanically compatible with the native human trachea. In this study, after isolating human trachea samples from brain-dead cases and proper storage, we assessed the viscoelastic properties of tracheal cartilage, smooth muscle, and connective tissue based on stress relaxation tests (at 5% and 10% strains for cartilage and 20%, 30%, and 40% for smooth muscle and connective tissue). After investigation of viscoelastic linearity, constitutive models including Prony series for linear viscoelasticity and quasi-linear viscoelastic, modified superposition, and Schapery models for nonlinear viscoelasticity were fitted to the experimental data to find the best model for each tissue. We also investigated the effect of age on the viscoelastic behavior of tracheal tissues. Based on the results, all three tissues exhibited a (nonsignificant) decrease in relaxation rate with increasing the strain, indicating viscoelastic nonlinearity which was most evident for cartilage and with the least effect for connective tissue. The three-term Prony model was selected for describing the linear viscoelasticity. Among different models, the modified superposition model was best able to capture the relaxation behavior of the three tracheal components. We observed a general (but not significant) stiffening of tracheal cartilage and connective tissue with aging. No change in the stress relaxation percentage with aging was observed. The results of this study may be useful in the design and fabrication of tracheal tissue engineering scaffolds.

  17. Involvement of host stroma cells and tissue fibrosis in pancreatic tumor development in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Itai Spector

    Full Text Available INTRODUCTION: Stroma cells and extracellular matrix (ECM components provide the pivotal microenvironment for tumor development. The study aimed to evaluate the importance of the pancreatic stroma for tumor development. METHODS: Pancreatic tumor cells were implanted subcutaneously into green fluorescent protein transgenic mice, and stroma cells invading the tumors were identified through immunohistochemistry. Inhibition of tumor invasion by stroma cells was achieved with halofuginone, an inhibitor of TGFβ/Smad3 signaling, alone or in combination with chemotherapy. The origin of tumor ECM was evaluated with species-specific collagen I antibodies and in situ hybridization of collagen α1(I gene. Pancreatic fibrosis was induced by cerulean injection and tumors by spleen injection of pancreatic tumor cells. RESULTS: Inhibition of stroma cell infiltration and reduction of tumor ECM levels by halofuginone inhibited development of tumors derived from mouse and human pancreatic cancer cells. Halofuginone reduced the number only of stroma myofibroblasts expressing both contractile and collagen biosynthesis markers. Both stroma myofibroblasts and tumor cells generated ECM that contributes to tumor growth. Combination of treatments that inhibit stroma cell infiltration, cause apoptosis of myofibroblasts and inhibit Smad3 phosphorylation, with chemotherapy that increases tumor-cell apoptosis without affecting Smad3 phosphorylation was more efficacious than either treatment alone. More tumors developed in fibrotic than in normal pancreas, and prevention of tissue fibrosis greatly reduced tumor development. CONCLUSIONS: The utmost importance of tissue fibrosis and of stroma cells for tumor development presents potential new therapy targets, suggesting combination therapy against stroma and neoplastic cells as a treatment of choice.

  18. Glycoprotein YKL-40 Levels in Plasma Are Associated with Fibrotic Changes on HRCT in Asbestos-Exposed Subjects

    Directory of Open Access Journals (Sweden)

    Tuija Väänänen

    2017-01-01

    Full Text Available YKL-40 is a chitinase-like glycoprotein produced by alternatively activated macrophages that are associated with wound healing and fibrosis. Asbestosis is a chronic asbestos-induced lung disease, in which injury of epithelial cells and activation of alveolar macrophages lead to enhanced collagen production and fibrosis. We studied if YKL-40 is related to inflammation, fibrosis, and/or lung function in subjects exposed to asbestosis. Venous blood samples were collected from 85 men with moderate or heavy occupational asbestos exposure and from 28 healthy, age-matched controls. Levels of plasma YKL-40, CRP, IL-6, adipsin, and MMP-9 were measured with enzyme-linked immunosorbent assay (ELISA. Plasma YKL-40 levels were significantly higher in subjects with asbestosis (n=19 than in those with no fibrotic findings in HRCT following asbestos exposure (n=66 or in unexposed healthy controls. In asbestos-exposed subjects, plasma YKL-40 correlated negatively with lung function capacity parameters FVC (Pearson’s r −0.259, p=0.018 and FEV1 (Pearson’s r −0.240, p=0.028 and positively with CRP (Spearman’s rho 0.371, p<0.001, IL-6 (Spearman’s rho 0.314, p=0.003, adipsin (Spearman’s rho 0.459, p<0.001, and MMP-9 (Spearman’s rho 0.243, p=0.025. The present finding suggests YKL-40 as a biomarker associated with fibrosis and inflammation in asbestos-exposed subjects.

  19. Human precision-cut liver slices as a model to test antifibrotic drugs in the early onset of liver fibrosis

    NARCIS (Netherlands)

    Westra, Inge M.; Mutsaers, Henricus A. M.; Luangmonkong, Theerut; Hadi, Mackenzie; Oosterhuis, Dorenda; de Jong, Koert P.; Groothuis, Geny M. M.; Olinga, Peter

    Liver fibrosis is the progressive accumulation of connective tissue ultimately resulting in loss of organ function. Currently, no effective antifibrotics are available due to a lack of reliable human models. Here we investigated the fibrotic process in human precision-cut liver slices (PCLS) and

  20. Multiorgan gadolinium (Gd) deposition and fibrosis in a patient with nephrogenic systemic fibrosis--an autopsy-based review

    DEFF Research Database (Denmark)

    Sanyal, Soma; Marckmann, Peter; Scherer, Susanne

    2011-01-01

    tissues of NSF patients, predominantly at the bulk chemical level. The distribution of Gd at the histologic level of organs other than skin has not been reported previously. METHODS: We analysed tissues from an autopsy case with verified advanced NSF by light microscopy and scanning electron microscopy......), kidney, lymph node, skeletal muscle, dura mater and cerebellum of the NSF autopsy case, primarily in vascular walls. Some, but not all, Gd deposits were seen in fibrotic areas. Literature review highlighted that non-specific tissue fibrosis and calcification are frequent findings in tissues of patients...

  1. In vivo characterization of Hyalonect, a novel biodegradable surgical mesh.

    Science.gov (United States)

    Rhodes, Nicholas P; Hunt, John A; Longinotti, Cristina; Pavesio, Alessandra

    2011-06-01

    Musculoskeletal reconstructive surgery often requires removal of significant quantities of bone tissue, such as the periosteum, causing critical problems following surgery like friction between different tissues and adhesion of soft tissues to the underlying bone. We studied the long-term host response and closure of large bone defects for periosteal reconstruction using Hyalonect, a novel membrane comprising knitted fibers of esterified hyaluronan, (HYAFF11). For biological characterization, 162 rats were used in a defect model in which a section of the dorsal muscular fascia was removed, and the membrane behavior observed over 540 d using conventional histology, with sham operated rats as controls. In addition, Hyalonect was used to cover defects made in the humeri of 7 dogs, filled with a variety of conventional bone filling compounds, and the regeneration process observed after 6 wks using histology. Low levels of inflammation were observed in the dorsal muscle fascia defect model, with cellular colonization of the mesh by 30 d, vascularization by 120 days, matrix fiber organization by 270 d, and the appearance of connective tissue identical to the surrounding tissue between 365 and 540 d, without the formation of fibrotic tissue. In addition, Hyalonect was shown to allow the regeneration of bone within the humeral defects whilst preventing fibrotic tissue in-growth, and allowing regeneration of tissue which, by 6 wk, had begun to resemble natural periosteal tissue. Hyalonect is suitable for improving the outcome of the final phases of orthopedic and trauma reconstructive surgical procedures, especially in the reconstruction of periosteal tissue. Copyright © 2011. Published by Elsevier Inc.

  2. Traction force microscopy of engineered cardiac tissues.

    Science.gov (United States)

    Pasqualini, Francesco Silvio; Agarwal, Ashutosh; O'Connor, Blakely Bussie; Liu, Qihan; Sheehy, Sean P; Parker, Kevin Kit

    2018-01-01

    Cardiac tissue development and pathology have been shown to depend sensitively on microenvironmental mechanical factors, such as extracellular matrix stiffness, in both in vivo and in vitro systems. We present a novel quantitative approach to assess cardiac structure and function by extending the classical traction force microscopy technique to tissue-level preparations. Using this system, we investigated the relationship between contractile proficiency and metabolism in neonate rat ventricular myocytes (NRVM) cultured on gels with stiffness mimicking soft immature (1 kPa), normal healthy (13 kPa), and stiff diseased (90 kPa) cardiac microenvironments. We found that tissues engineered on the softest gels generated the least amount of stress and had the smallest work output. Conversely, cardiomyocytes in tissues engineered on healthy- and disease-mimicking gels generated significantly higher stresses, with the maximal contractile work measured in NRVM engineered on gels of normal stiffness. Interestingly, although tissues on soft gels exhibited poor stress generation and work production, their basal metabolic respiration rate was significantly more elevated than in other groups, suggesting a highly ineffective coupling between energy production and contractile work output. Our novel platform can thus be utilized to quantitatively assess the mechanotransduction pathways that initiate tissue-level structural and functional remodeling in response to substrate stiffness.

  3. Utility of imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) on an ion trap mass spectrometer in the analysis of drugs and metabolites in biological tissues.

    Science.gov (United States)

    Drexler, Dieter M; Garrett, Timothy J; Cantone, Joseph L; Diters, Richard W; Mitroka, James G; Prieto Conaway, Maria C; Adams, Stephen P; Yost, Richard A; Sanders, Mark

    2007-01-01

    The properties and potential liabilities of drug candidate are investigated in detailed ADME assays and in toxicity studies, where findings are placed in context of exposure to dosed drug and metabolites. The complex nature of biological samples may necessitate work-up procedures prior to high performance liquid chromatography-mass spectrometric (HPLC-MS) analysis of endogenous or xenobiotic compounds. This concept can readily be applied to biological fluids such as blood or urine, but in localized samples such as organs and tissues potentially important spatial, thus anatomical, information is lost during sample preparation as the result of homogenization and extraction procedures. However, the localization of test article or spatial identification of metabolites may be critical to the understanding of the mechanism of target-organ toxicity and its relevance to clinical safety. Tissue imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) and ion trap mass spectrometry (MS) with higher order mass spectrometric scanning functions was utilized for localization of dosed drug or metabolite in tissue. Laser capture microscopy (LCM) was used to obtain related samples from tissue for analyses by standard MALDI-MS and HPLC-MS. In a toxicology study, rats were administered with a high dosage of a prodrug for 2 weeks. Birefringent microcrystalline material (10-25 microm) was observed in histopathologic formalin-fixed tissue samples. Direct analysis by IMS provided the identity of material in the microcrystals as circulating active drug while maintaining spatial orientation. Complementary data from visual cross-polarized light microscopy as well as standard MALDI-MS and HPLC-MS experiments on LCM samples validated the qualitative results obtained by IMS. Furthermore, the HPLC-MS analysis on the LCM samples afforded a semi-quantitative assessment of the crystalline material in the tissue samples. IMS by MALDI ion trap MS proved sensitive

  4. THE ANTI-FIBROTIC ACTIONS OF RELAXIN ARE MEDIATED THROUGH A NO-sGC-cGMP-DEPENDENT PATHWAY IN RENAL MYOFIBROBLASTS IN VITRO AND ENHANCED BY THE NO DONOR, DIETHYLAMINE NONOATE

    Directory of Open Access Journals (Sweden)

    Chao eWang

    2016-03-01

    Full Text Available INTRODUCTION: The anti-fibrotic hormone, relaxin, has been inferred to disrupt TGF-beta1/Smad2 phosphorylation (pSmad2 signal transduction and promote collagen-degrading gelatinase activity via a nitric oxide (NO-dependent pathway. Here, we determined the extent to which NO, soluble guanylate cyclase (sGC and cyclic guanosine monophosphate (cGMP were directly involved in the anti-fibrotic actions of relaxin using a selective NO scavenger and sGC inhibitor, and comparing and combining relaxin’s effects with that of an NO donor. METHODS AND RESULTS: Primary renal cortical myofibroblasts isolated from injured rat kidneys were treated with human recombinant relaxin (RLX; 16.8nM, the NO donor, diethylamine NONOate (DEA/NO; 0.5-5uM or the combined effects of RLX (16.8nM and DEA/NO (5uM over 72 hours. The effects of RLX (16.8nM and DEA/NO (5uM were also evaluated in the presence of the NO scavenger, hydroxocobalamin (HXC; 100uM or sGC inhibitor, ODQ (5uM over 72 hours. Furthermore, the effects of RLX (30nM, DEA/NO (5uM and RLX (30nM+DEA/NO (5uM on cGMP levels were directly measured, in the presence or absence of ODQ (5uM. Changes in matrix metalloproteinase (MMP-2, MMP-9 (cell media, pSmad2 and α-smooth muscle actin (α-SMA; a measure myofibroblast differentiation (cell layer were assessed by gelatin zymography and Western blotting, respectively. At the highest concentration tested, both RLX and DEA/NO promoted MMP-2 and MMP-9 levels by 25-33%, while inhibiting pSmad2 and α-SMA expression by up to 50% (all p<0.05 vs untreated and vehicle-treated cells. However, 5uM of DEA/NO was required to produce the effects seen with 16.8nM of RLX over 72 hours. The anti-fibrotic effects of RLX or DEA/NO alone were completely abrogated by HXC and ODQ (both p<0.01 vs RLX alone or DEA/NO alone, but were significantly enhanced when added in combination (all p<0.05 vs RLX alone. Additionally, the direct cGMP-promoting effects of RLX, DEA/NO and RLX+DEA/NO (which all

  5. Resonance sensor measurements of stiffness variations in prostate tissue in vitro--a weighted tissue proportion model.

    Science.gov (United States)

    Jalkanen, Ville; Andersson, Britt M; Bergh, Anders; Ljungberg, Börje; Lindahl, Olof A

    2006-12-01

    Prostate cancer is the most common type of cancer in men in Europe and the US. The methods to detect prostate cancer are still precarious and new techniques are needed. A piezoelectric transducer element in a feedback system is set to vibrate with its resonance frequency. When the sensor element contacts an object a change in the resonance frequency is observed, and this feature has been utilized in sensor systems to describe physical properties of different objects. For medical applications it has been used to measure stiffness variations due to various patho-physiological conditions. In this study the sensor's ability to measure the stiffness of prostate tissue, from two excised prostatectomy specimens in vitro, was analysed. The specimens were also subjected to morphometric measurements, and the sensor parameter was compared with the morphology of the tissue with linear regression. In the probe impression interval 0.5-1.7 mm, the maximum R(2) > or = 0.60 (p sensor was pressed, the greater, i.e., deeper, volume it sensed. Tissue sections deeper in the tissue were assigned a lower mathematical weighting than sections closer to the sensor probe. It is concluded that cancer increases the measured stiffness as compared with healthy glandular tissue, but areas with predominantly stroma or many stones could be more difficult to differ from cancer.

  6. Computational methods for describing the laser-induced mechanical response of tissue

    Energy Technology Data Exchange (ETDEWEB)

    Trucano, T.; McGlaun, J.M.; Farnsworth, A.

    1994-02-01

    Detailed computational modeling of laser surgery requires treatment of the photoablation of human tissue by high intensity pulses of laser light and the subsequent thermomechanical response of the tissue. Three distinct physical regimes must be considered to accomplish this: (1) the immediate absorption of the laser pulse by the tissue and following tissue ablation, which is dependent upon tissue light absorption characteristics; (2) the near field thermal and mechanical response of the tissue to this laser pulse, and (3) the potential far field (and longer time) mechanical response of witness tissue. Both (2) and (3) are dependent upon accurate constitutive descriptions of the tissue. We will briefly review tissue absorptivity and mechanical behavior, with an emphasis on dynamic loads characteristic of the photoablation process. In this paper our focus will center on the requirements of numerical modeling and the uncertainties of mechanical tissue behavior under photoablation. We will also discuss potential contributions that computational simulations can make in the design of surgical protocols which utilize lasers, for example, in assessing the potential for collateral mechanical damage by laser pulses.

  7. Tissue preservation with mass spectroscopic analysis: Implications for cancer diagnostics.

    Science.gov (United States)

    Hall, O Morgan; Peer, Cody J; Figg, William D

    2018-05-17

    Surgical intervention is a common treatment modality for localized cancer. Post-operative analysis involves evaluation of surgical margins to assess whether all malignant tissue has been resected because positive surgical margins lead to a greater likelihood of recurrence. Secondary treatments are utilized to minimize the negative effects of positive surgical margins. Recently, in Science Translational Medicine, Zhang et al describe a new mass spectroscopic technique that could potentially decrease the likelihood of positive surgical margins. Their nondestructive in vivo tissue sampling leads to a highly accurate and rapid cancer diagnosis with great precision between healthy and malignant tissue. This new tool has the potential to improve surgical margins and accelerate cancer diagnostics by analyzing biomolecular signatures of various tissues and diseases.

  8. The grave necessity to make eye bank specular microscopy mandatory in all eye banks in the subcontinent to improve utilization of scarce donor corneas.

    Science.gov (United States)

    Jadeja, Jagruti N; Patel, Bharati D; Shanbhag, Swapna S

    2013-12-01

    Donor tissue scarcity, Eye Bank Specular Microscopy as yet not made mandatory and tissue utilization often based on clinical judgment only. Prospectively analyze alteration in clinical grading of donor corneas and hence utilization, based on Eye Bank Specular Microscopy (EBSM) and to infer if EBSM should be mandatory in all eye banks. 200 consecutive otherwise 'suitable for surgery' donor eyes were graded clinically. On quantitative and qualitative analysis of endothelial cells by EBSM, final grading was adjusted. Impact on subsequent utilization for various surgeries was analyzed with regard to Age of Donor, Death to Enucleation Time, Death to Preservation Time and Lens Status of Donor Eye. 76 eyes (38%) (P 60 years showed CD >= 2500. From donor >=81 years, 2/13 (15.3%) eyes showed CD between 2501-3000 and 1 (7.6%) eye showed CD > 3000. Owing to better grading after EBSM, 13/14 (92.85%) tissues with DTET >6 hours and 5/5 (100%) tissues with DTPT > 16 hours were transplanted. Out of 45 (22.5%) pseudo-phakic tissues, 21 (46.67%) tissues were used for Therapeutic/Tectonic Penetrating Keratoplasty (PKP) while 24 (53.33%) tissues were used for Optical PKP. EBSM significantly alters final grading of tissues and its subsequent utilization. Acquiring huge importance in areas where adequate supply of corneas is lacking, EBSM becomes an indispensable tool for optimizing availability of qualified tissues for surgery. EBSM should be made a mandatory analysis.

  9. The grave necessity to make eye bank specular microscopy mandatory in all eye banks in the subcontinent to improve utilization of scarce donor corneas

    Directory of Open Access Journals (Sweden)

    Jagruti N Jadeja

    2013-01-01

    Full Text Available Context: Donor tissue scarcity, Eye Bank Specular Microscopy as yet not made mandatory and tissue utilization often based on clinical judgment only. Aims: Prospectively analyze alteration in clinical grading of donor corneas and hence utilization, based on Eye Bank Specular Microscopy (EBSM and to infer if EBSM should be mandatory in all eye banks. Materials and Methods: 200 consecutive otherwise ′suitable for surgery′ donor eyes were graded clinically. On quantitative and qualitative analysis of endothelial cells by EBSM, final grading was adjusted. Impact on subsequent utilization for various surgeries was analyzed with regard to Age of Donor, Death to Enucleation Time, Death to Preservation Time and Lens Status of Donor Eye. Results: 76 eyes (38% (P 60 years showed CD >= 2500. From donor >=81 years, 2/13 (15.3% eyes showed CD between 2501-3000 and 1 (7.6% eye showed CD > 3000. Owing to better grading after EBSM, 13/14 (92.85% tissues with DTET >6 hours and 5/5 (100% tissues with DTPT > 16 hours were transplanted. Out of 45 (22.5% pseudo-phakic tissues, 21 (46.67% tissues were used for Therapeutic/Tectonic Penetrating Keratoplasty (PKP while 24 (53.33% tissues were used for Optical PKP. Conclusions: EBSM significantly alters final grading of tissues and its subsequent utilization. Acquiring huge importance in areas where adequate supply of corneas is lacking, EBSM becomes an indispensable tool for optimizing availability of qualified tissues for surgery. EBSM should be made a mandatory analysis.

  10. Device-based local delivery of siRNA against mammalian target of rapamycin (mTOR) in a murine subcutaneous implant model to inhibit fibrous encapsulation

    OpenAIRE

    Takahashi, Hironobu; Wang, Yuwei; Grainger, David W.

    2010-01-01

    Fibrous encapsulation of surgically implant devices is associated with elevated proliferation and activation of fibroblasts in tissues surrounding these implants, frequently causing foreign body complications. Here we test the hypothesis that inhibition of the expression of mammalian target of rapamycin (mTOR) in fibroblasts can mitigate the soft tissue implant foreign body response by suppressing fibrotic responses around implants. In this study, mTOR was knocked down using small interfering...

  11. Mechanized syringe homogenization of human and animal tissues.

    Science.gov (United States)

    Kurien, Biji T; Porter, Andrew C; Patel, Nisha C; Kurono, Sadamu; Matsumoto, Hiroyuki; Scofield, R Hal

    2004-06-01

    Tissue homogenization is a prerequisite to any fractionation schedule. A plethora of hands-on methods are available to homogenize tissues. Here we report a mechanized method for homogenizing animal and human tissues rapidly and easily. The Bio-Mixer 1200 (manufactured by Innovative Products, Inc., Oklahoma City, OK) utilizes the back-and-forth movement of two motor-driven disposable syringes, connected to each other through a three-way stopcock, to homogenize animal or human tissue. Using this method, we were able to homogenize human or mouse tissues (brain, liver, heart, and salivary glands) in 5 min. From sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and a matrix-assisted laser desorption/ionization time-of-flight mass spectrometric enzyme assay for prolidase, we have found that the homogenates obtained were as good or even better than that obtained used a manual glass-on-Teflon (DuPont, Wilmington, DE) homogenization protocol (all-glass tube and Teflon pestle). Use of the Bio-Mixer 1200 to homogenize animal or human tissue precludes the need to stay in the cold room as is the case with the other hands-on homogenization methods available, in addition to freeing up time for other experiments.

  12. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment - A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine.

    Directory of Open Access Journals (Sweden)

    Katri Koli

    Full Text Available Idiopathic pulmonary fibrosis (IPF is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung.

  13. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment - A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine.

    Science.gov (United States)

    Koli, Katri; Sutinen, Eva; Rönty, Mikko; Rantakari, Pia; Fortino, Vittorio; Pulkkinen, Ville; Greco, Dario; Sipilä, Petra; Myllärniemi, Marjukka

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung.

  14. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment – A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine

    Science.gov (United States)

    Koli, Katri; Sutinen, Eva; Rönty, Mikko; Rantakari, Pia; Fortino, Vittorio; Pulkkinen, Ville; Greco, Dario; Sipilä, Petra; Myllärniemi, Marjukka

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung. PMID:27428020

  15. The influence of topography on tissue engineering perspective

    International Nuclear Information System (INIS)

    Mansouri, Negar; SamiraBagheri

    2016-01-01

    The actual in vivo tissue scaffold offers a three-dimensional (3D) structural support along with a nano-textured surfaces consist of a fibrous network in order to deliver cell adhesion and signaling. A scaffold is required, until the tissue is entirely regenerated or restored, to act as a temporary ingrowth template for cell proliferation and extracellular matrix (ECM) deposition. This review depicts some of the most significant three dimensional structure materials used as scaffolds in various tissue engineering application fields currently being employed to mimic in vivo features. Accordingly, some of the researchers' attempts have envisioned utilizing graphene for the fabrication of porous and flexible 3D scaffolds. The main focus of this paper is to evaluate the topographical and topological optimization of scaffolds for tissue engineering applications in order to improve scaffolds' mechanical performances. - Highlights: • The in vivo tissue scaffold offers a three-dimensional structural support. • Graphene can be used for fabrication of porous and flexible 3D scaffold. • Topological optimization improves scaffolds' mechanical performances.

  16. The influence of topography on tissue engineering perspective

    Energy Technology Data Exchange (ETDEWEB)

    Mansouri, Negar [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); SamiraBagheri, E-mail: samira_bagheri@edu.um.my [Nanotechnology & Catalysis Research Centre (NANOCAT), IPS Building, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-04-01

    The actual in vivo tissue scaffold offers a three-dimensional (3D) structural support along with a nano-textured surfaces consist of a fibrous network in order to deliver cell adhesion and signaling. A scaffold is required, until the tissue is entirely regenerated or restored, to act as a temporary ingrowth template for cell proliferation and extracellular matrix (ECM) deposition. This review depicts some of the most significant three dimensional structure materials used as scaffolds in various tissue engineering application fields currently being employed to mimic in vivo features. Accordingly, some of the researchers' attempts have envisioned utilizing graphene for the fabrication of porous and flexible 3D scaffolds. The main focus of this paper is to evaluate the topographical and topological optimization of scaffolds for tissue engineering applications in order to improve scaffolds' mechanical performances. - Highlights: • The in vivo tissue scaffold offers a three-dimensional structural support. • Graphene can be used for fabrication of porous and flexible 3D scaffold. • Topological optimization improves scaffolds' mechanical performances.

  17. A biphasic model for bleeding in soft tissue

    Science.gov (United States)

    Chang, Yi-Jui; Chong, Kwitae; Eldredge, Jeff D.; Teran, Joseph; Benharash, Peyman; Dutson, Erik

    2017-11-01

    The modeling of blood passing through soft tissues in the body is important for medical applications. The current study aims to capture the effect of tissue swelling and the transport of blood under bleeding or hemorrhaging conditions. The soft tissue is considered as a non-static poro-hyperelastic material with liquid-filled voids. A biphasic formulation effectively, a generalization of Darcy's law-is utilized, treating the phases as occupying fractions of the same volume. The interaction between phases is captured through a Stokes-like friction force on their relative velocities and a pressure that penalizes deviations from volume fractions summing to unity. The soft tissue is modeled as a hyperelastic material with a typical J-shaped stress-strain curve, while blood is considered as a Newtonian fluid. The method of Smoothed Particle Hydrodynamics is used to discretize the conservation equations based on the ease of treating free surfaces in the liquid. Simulations of swelling under acute hemorrhage and of draining under gravity and compression will be demonstrated. Ongoing progress in modeling of organ tissues under injuries and surgical conditions will be discussed.

  18. Hyperspectral microscope for in vivo imaging of microstructures and cells in tissues

    Science.gov (United States)

    Demos,; Stavros, G [Livermore, CA

    2011-05-17

    An optical hyperspectral/multimodal imaging method and apparatus is utilized to provide high signal sensitivity for implementation of various optical imaging approaches. Such a system utilizes long working distance microscope objectives so as to enable off-axis illumination of predetermined tissue thereby allowing for excitation at any optical wavelength, simplifies design, reduces required optical elements, significantly reduces spectral noise from the optical elements and allows for fast image acquisition enabling high quality imaging in-vivo. Such a technology provides a means of detecting disease at the single cell level such as cancer, precancer, ischemic, traumatic or other type of injury, infection, or other diseases or conditions causing alterations in cells and tissue micro structures.

  19. Assessment of tissue viability by polarization spectroscopy

    Science.gov (United States)

    Nilsson, G.; Anderson, C.; Henricson, J.; Leahy, M.; O'Doherty, J.; Sjöberg, F.

    2008-09-01

    A new and versatile method for tissue viability imaging based on polarization spectroscopy of blood in superficial tissue structures such as the skin is presented in this paper. Linearly polarized light in the visible wavelength region is partly reflected directly by the skin surface and partly diffusely backscattered from the dermal tissue matrix. Most of the directly reflected light preserves its polarization state while the light returning from the deeper tissue layers is depolarized. By the use of a polarization filter positioned in front of a sensitive CCD-array, the light directly reflected from the tissue surface is blocked, while the depolarized light returning from the deeper tissue layers reaches the detector array. By separating the colour planes of the detected image, spectroscopic information about the amount of red blood cells (RBCs) in the microvascular network of the tissue under investigation can be derived. A theory that utilizes the differences in light absorption of RBCs and bloodless tissue in the red and green wavelength region forms the basis of an algorithm for displaying a colour coded map of the RBC distribution in a tissue. Using a fluid model, a linear relationship (cc. = 0.99) between RBC concentration and the output signal was demonstrated within the physiological range 0-4%. In-vivo evaluation using transepidermal application of acetylcholine by the way of iontophoresis displayed the heterogeneity pattern of the vasodilatation produced by the vasoactive agent. Applications of this novel technology are likely to be found in drug and skin care product development as well as in the assessment of skin irritation and tissue repair processes and even ultimately in a clinic case situation.

  20. A methodology for automated CPA extraction using liver biopsy image analysis and machine learning techniques.

    Science.gov (United States)

    Tsipouras, Markos G; Giannakeas, Nikolaos; Tzallas, Alexandros T; Tsianou, Zoe E; Manousou, Pinelopi; Hall, Andrew; Tsoulos, Ioannis; Tsianos, Epameinondas

    2017-03-01

    Collagen proportional area (CPA) extraction in liver biopsy images provides the degree of fibrosis expansion in liver tissue, which is the most characteristic histological alteration in hepatitis C virus (HCV). Assessment of the fibrotic tissue is currently based on semiquantitative staging scores such as Ishak and Metavir. Since its introduction as a fibrotic tissue assessment technique, CPA calculation based on image analysis techniques has proven to be more accurate than semiquantitative scores. However, CPA has yet to reach everyday clinical practice, since the lack of standardized and robust methods for computerized image analysis for CPA assessment have proven to be a major limitation. The current work introduces a three-stage fully automated methodology for CPA extraction based on machine learning techniques. Specifically, clustering algorithms have been employed for background-tissue separation, as well as for fibrosis detection in liver tissue regions, in the first and the third stage of the methodology, respectively. Due to the existence of several types of tissue regions in the image (such as blood clots, muscle tissue, structural collagen, etc.), classification algorithms have been employed to identify liver tissue regions and exclude all other non-liver tissue regions from CPA computation. For the evaluation of the methodology, 79 liver biopsy images have been employed, obtaining 1.31% mean absolute CPA error, with 0.923 concordance correlation coefficient. The proposed methodology is designed to (i) avoid manual threshold-based and region selection processes, widely used in similar approaches presented in the literature, and (ii) minimize CPA calculation time. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. An experimental study on the radiation-induced injury of the rabbit lung: Correlation of soft-tissue radiograph and high- resolution CT findings with pathologic findings

    International Nuclear Information System (INIS)

    Lee, Ki Nam; Nam, Kyung Jin; Park, Byeoung Ho; Jeong, Jin Sook; Lee, Hyung Sik

    1994-01-01

    To describe soft-tissue radiographic and high-resolution CT findings of radiation-induced lung injury of rabbit over time and to correlate them with pathologic findings. 15 rabbits were irradiated in the right lung with one fracture of 2000 cGy. After 4, 6, 12, 20, 24 weeks 3 rabbits in each group were sacrificed and soft-tissue radiographs and high-resolution CT of their lung tissue were obtained. Radiological findings were correlated with pathologic findings. On soft-tissue radiogram, radiation pneumonitis shown as consolidation with air- bronchogram occurred in 3 cases after 6 weeks , and in 1 case after 12 weeks of irradiation. In addition, pneumonic consolidation with adjacent pleural contraction was seen in 2 cases after 12 weeks of irradiation. Fibrotic changes indicated by decreased volume occurred after 20 weeks and combined bronchiectatic change and bronchial wall thickening appeared after 20 weeks(N=1), and 24 weeks(N=3). HRCT findings of radiation pneumonitis were homogeneous, increased attention after 4 weeks(N=3), 6 and 12 weeks(each N=1), patchy consolidation after 6 and 12 weeks(each N=2), discrete consolidation after 12, 20 and 24 weeks(each N=1) and solid consolidation after 20 and 24 weeks(each N=2). Pathologically radiation pneumonitis and pulmonary congestion were seen after 4 and 6 weeks. After 6 weeks, collagen and reticulin fibers were detected along alveolar wall. Mixed radiation pneumonitis and fibrosis were detected after 12 weeks. 20 weeks after irradiation, fibrosis was well defined in interstitium and in 24 weeks, decreased number of alveoli and thickening of bronchial wall were defined. Radiation pneumonitis was provoked 4 weeks after irradiation on rabbit lung and progressed into radiation fibrosis 20 weeks after irradiation on soft-tissue radiographs and high-resolution CT. High-resolution CT is more precise in detecting early radiation pneumonitis and detailed pathologic findings

  2. Review: Public perspectives on the utilization of human placentas in scientific research and medicine.

    Science.gov (United States)

    Yoshizawa, R S

    2013-01-01

    Placental tissues are frequently utilized by scientists studying pregnancy and reproduction and in diverse fields including immunology, stem cell research, genetics, cancer research, and tissue engineering, as well as by clinicians in many therapies. Though the utilization of the human placenta in science and medicine has benefitted many people, little is known about public perspectives of this phenomenon. This review addresses placental donation, collection, and utilization in science and medicine, focusing on public perspectives. Cultural values and traditions, ethical paradigms and concerns, public understandings of science and medicine, and political considerations may impact perceptions of the utilization of the placenta in science and medicine, but systematic study is lacking. It is argued that knowledge of public views gained from empirical investigation may underpin the development of collection protocols and research projects that are more responsive to public will, spur more extensive utilization in science and medicine of this unique organ, and/or aid in the realization of the mobilization of knowledge about the placenta for clinical and educational ends. New avenues for research on public perspectives of the placenta are proposed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Multifidus Muscle Changes After Back Injury Are Characterized by Structural Remodeling of Muscle, Adipose and Connective Tissue, but Not Muscle Atrophy: Molecular and Morphological Evidence.

    Science.gov (United States)

    Hodges, Paul W; James, Gregory; Blomster, Linda; Hall, Leanne; Schmid, Annina; Shu, Cindy; Little, Chris; Melrose, James

    2015-07-15

    Longitudinal case-controlled animal study. To investigate putative cellular mechanisms to explain structural changes in muscle and adipose and connective tissues of the back muscles after intervertebral disc (IVD) injury. Structural back muscle changes are ubiquitous with back pain/injury and considered relevant for outcome, but their exact nature, time course, and cellular mechanisms remain elusive. We used an animal model that produces phenotypic back muscle changes after IVD injury to study these issues at the cellular/molecular level. Multifidus muscle was harvested from both sides of the spine at L1-L2 and L3-L4 IVDs in 27 castrated male sheep at 3 (n = 10) or 6 (n = 17) months after a surgical anterolateral IVD injury at both levels. Ten control sheep underwent no surgery (3 mo, n = 4; 6 mo, n = 6). Tissue was harvested at L4 for histological analysis of cross-sectional area of muscle and adipose and connective tissue (whole muscle), plus immunohistochemistry to identify proportion and cross-sectional area of individual muscle fiber types in the deepest fascicle. Quantitative polymerase chain reaction measured gene expression of typical cytokines/signaling molecules at L2. Contrary to predictions, there was no multifidus muscle atrophy (whole muscle or individual fiber). There was increased adipose and connective tissue (fibrotic proliferation) cross-sectional area and slow-to-fast muscle fiber transition at 6 but not 3 months. Within the multifidus muscle, increases in the expression of several cytokines (tumor necrosis factor α and interleukin-1β) and molecules that signal trophic/atrophic processes for the 3 tissue types (e.g., growth factor pathway [IGF-1, PI3k, Akt1, mTOR], potent tissue modifiers [calcineurin, PCG-1α, and myostatin]) were present. This study provides cellular evidence that refutes the presence of multifidus muscle atrophy accompanying IVD degeneration at this intermediate time point. Instead, adipose/connective tissue increased in

  4. Dihydroartemisinin counteracts fibrotic portal hypertension via farnesoid X receptor-dependent inhibition of hepatic stellate cell contraction.

    Science.gov (United States)

    Xu, Wenxuan; Lu, Chunfeng; Zhang, Feng; Shao, Jiangjuan; Yao, Shunyu; Zheng, Shizhong

    2017-01-01

    Portal hypertension is a frequent pathological symptom occurring especially in hepatic fibrosis and cirrhosis. Current paradigms indicate that inhibition of hepatic stellate cell (HSC) activation and contraction is anticipated to be an attractive therapeutic strategy, because activated HSC dominantly facilitates an increase in intrahepatic vein pressure through secreting extracellular matrix and contracting. Our previous in vitro study indicated that dihydroartemisinin (DHA) inhibited contractility of cultured HSC by activating intracellular farnesoid X receptor (FXR). However, the effect of DHA on fibrosis-related portal hypertension still requires clarification. In this study, gain- and loss-of-function models of FXR in HSC were established to investigate the mechanisms underlying DHA protection against chronic CCl 4 -caused hepatic fibrosis and portal hypertension. Immunofluorescence staining visually showed a decrease in FXR expression in CCl 4 -administrated rat HSC but an increase in that in DHA-treated rat HSC. Serum diagnostics and morphological analyses consistently indicated that DHA exhibited hepatoprotective effects on CCl 4 -induced liver injury. DHA also reduced CCl 4 -caused inflammatory mediator expression and inflammatory cell infiltration. These improvements were further enhanced by INT-747 but weakened by Z-guggulsterone. Noteworthily, DHA, analogous to INT-747, significantly lowered portal vein pressure and suppressed fibrogenesis. Experiments on mice using FXR shRNA lentivirus consolidated the results above. Mechanistically, inhibition of HSC activation and contraction was found as a cellular basis for DHA to relieve portal hypertension. These findings demonstrated that DHA attenuated portal hypertension in fibrotic rodents possibly by targeting HSC contraction via a FXR activation-dependent mechanism. FXR could be a target molecule for reducing portal hypertension during hepatic fibrosis. © 2016 Federation of European Biochemical Societies.

  5. Optical spectroscopy for the detection of ischemic tissue injury

    Science.gov (United States)

    Demos, Stavros [Livermore, CA; Fitzgerald, Jason [Sacramento, CA; Troppmann, Christoph [Sacramento, CA; Michalopoulou, Andromachi [Athens, GR

    2009-09-08

    An optical method and apparatus is utilized to quantify ischemic tissue and/or organ injury. Such a method and apparatus is non-invasive, non-traumatic, portable, and can make measurements in a matter of seconds. Moreover, such a method and apparatus can be realized through optical fiber probes, making it possible to take measurements of target organs deep within a patient's body. Such a technology provides a means of detecting and quantifying tissue injury in its early stages, before it is clinically apparent and before irreversible damage has occurred.

  6. Discrete microstructural cues for the attenuation of fibrosis following myocardial infarction.

    Science.gov (United States)

    Pinney, James R; Du, Kim T; Ayala, Perla; Fang, Qizhi; Sievers, Richard E; Chew, Patrick; Delrosario, Lawrence; Lee, Randall J; Desai, Tejal A

    2014-10-01

    Chronic fibrosis caused by acute myocardial infarction (MI) leads to increased morbidity and mortality due to cardiac dysfunction. We have developed a therapeutic materials strategy that aims to mitigate myocardial fibrosis by utilizing injectable polymeric microstructures to mechanically alter the microenvironment. Polymeric microstructures were fabricated using photolithographic techniques and studied in a three-dimensional culture model of the fibrotic environment and by direct injection into the infarct zone of adult rats. Here, we show dose-dependent down-regulation of expression of genes associated with the mechanical fibrotic response in the presence of microstructures. Injection of this microstructured material into the infarct zone decreased levels of collagen and TGF-β, increased elastin deposition and vascularization in the infarcted region, and improved functional outcomes after six weeks. Our results demonstrate the efficacy of these discrete anti-fibrotic microstructures and suggest a potential therapeutic materials approach for combatting pathologic fibrosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Matricellular proteins in drug delivery: Therapeutic targets, active agents, and therapeutic localization.

    Science.gov (United States)

    Sawyer, Andrew J; Kyriakides, Themis R

    2016-02-01

    Extracellular matrix is composed of a complex array of molecules that together provide structural and functional support to cells. These properties are mainly mediated by the activity of collagenous and elastic fibers, proteoglycans, and proteins such as fibronectin and laminin. ECM composition is tissue-specific and could include matricellular proteins whose primary role is to modulate cell-matrix interactions. In adults, matricellular proteins are primarily expressed during injury, inflammation and disease. Particularly, they are closely associated with the progression and prognosis of cardiovascular and fibrotic diseases, and cancer. This review aims to provide an overview of the potential use of matricellular proteins in drug delivery including the generation of therapeutic agents based on the properties and structures of these proteins as well as their utility as biomarkers for specific diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Three-dimensional bioprinting in tissue engineering and regenerative medicine.

    Science.gov (United States)

    Gao, Guifang; Cui, Xiaofeng

    2016-02-01

    With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review, including vasculature, muscle, cartilage, and bone. In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology.

  9. Microwave-assisted fibrous decoration of mPE surface utilizing Aloe vera extract for tissue engineering applications.

    Science.gov (United States)

    Balaji, Arunpandian; Jaganathan, Saravana Kumar; Supriyanto, Eko; Muhamad, Ida Idayu; Khudzari, Ahmad Zahran Md

    2015-01-01

    Developing multifaceted, biocompatible, artificial implants for tissue engineering is a growing field of research. In recent times, several works have been reported about the utilization of biomolecules in combination with synthetic materials to achieve this process. Accordingly, in this study, the ability of an extract obtained from Aloe vera, a commonly used medicinal plant in influencing the biocompatibility of artificial material, is scrutinized using metallocene polyethylene (mPE). The process of coating dense fibrous Aloe vera extract on the surface of mPE was carried out using microwaves. Then, several physicochemical and blood compatibility characterization experiments were performed to disclose the effects of corresponding surface modification. The Fourier transform infrared spectrum showed characteristic vibrations of several active constituents available in Aloe vera and exhibited peak shifts at far infrared regions due to aloe-based mineral deposition. Meanwhile, the contact angle analysis demonstrated a drastic increase in wettability of coated samples, which confirmed the presence of active components on glazed mPE surface. Moreover, the bio-mimic structure of Aloe vera fibers and the influence of microwaves in enhancing the coating characteristics were also meticulously displayed through scanning electron microscopy micrographs and Hirox 3D images. The existence of nanoscale roughness was interpreted through high-resolution profiles obtained from atomic force microscopy. And the extent of variations in irregularities was delineated by measuring average roughness. Aloe vera-induced enrichment in the hemocompatible properties of mPE was established by carrying out in vitro tests such as activated partial thromboplastin time, prothrombin time, platelet adhesion, and hemolysis assay. In conclusion, the Aloe vera-glazed mPE substrate was inferred to attain desirable properties required for multifaceted biomedical implants.

  10. From the Cover: Adipose tissue mass can be regulated through the vasculature

    Science.gov (United States)

    Rupnick, Maria A.; Panigrahy, Dipak; Zhang, Chen-Yu; Dallabrida, Susan M.; Lowell, Bradford B.; Langer, Robert; Judah Folkman, M.

    2002-08-01

    Tumor growth is angiogenesis dependent. We hypothesized that nonneoplastic tissue growth also depends on neovascularization. We chose adipose tissue as an experimental system because of its remodeling capacity. Mice from different obesity models received anti-angiogenic agents. Treatment resulted in dose-dependent, reversible weight reduction and adipose tissue loss. Marked vascular remodeling was evident in adipose tissue sections, which revealed decreased endothelial proliferation and increased apoptosis in treated mice compared with controls. Continuous treatment maintained mice near normal body weights for age without adverse effects. Metabolic adaptations in food intake, metabolic rate, and energy substrate utilization were associated with anti-angiogenic weight loss. We conclude that adipose tissue mass is sensitive to angiogenesis inhibitors and can be regulated by its vasculature.

  11. Microwave Tissue Ablation: Biophysics, Technology and Applications

    Science.gov (United States)

    2010-01-01

    Microwave ablation is an emerging treatment option for many cancers, cardiac arrhythmias and other medical conditions. During treatment, microwaves are applied directly to tissues to produce rapid temperature elevations sufficient to produce immediate coagulative necrosis. The engineering design criteria for each application differ, with individual consideration for factors such as desired ablation zone size, treatment duration, and procedural invasiveness. Recent technological developments in applicator cooling, power control and system optimization for specific applications promise to increase the utilization of microwave ablation in the future. This article will review the basic biophysics of microwave tissue heating, provide an overview of the design and operation of current equipment, and outline areas for future research for microwave ablation. PMID:21175404

  12. Breast tissue classification using x-ray scattering measurements and multivariate data analysis

    Science.gov (United States)

    Ryan, Elaine A.; Farquharson, Michael J.

    2007-11-01

    This study utilized two radiation scatter interactions in order to differentiate malignant from non-malignant breast tissue. These two interactions were Compton scatter, used to measure the electron density of the tissues, and coherent scatter to obtain a measure of structure. Measurements of these parameters were made using a laboratory experimental set-up comprising an x-ray tube and HPGe detector. The breast tissue samples investigated comprise five different tissue classifications: adipose, malignancy, fibroadenoma, normal fibrous tissue and tissue that had undergone fibrocystic change. The coherent scatter spectra were analysed using a peak fitting routine, and a technique involving multivariate analysis was used to combine the peak fitted scatter profile spectra and the electron density values into a tissue classification model. The number of variables used in the model was refined by finding the sensitivity and specificity of each model and concentrating on differentiating between two tissues at a time. The best model that was formulated had a sensitivity of 54% and a specificity of 100%.

  13. Breast tissue classification using x-ray scattering measurements and multivariate data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Elaine A; Farquharson, Michael J [School of Allied Health Sciences, City University, Charterhouse Square, London EC1M 6PA (United Kingdom)

    2007-11-21

    This study utilized two radiation scatter interactions in order to differentiate malignant from non-malignant breast tissue. These two interactions were Compton scatter, used to measure the electron density of the tissues, and coherent scatter to obtain a measure of structure. Measurements of these parameters were made using a laboratory experimental set-up comprising an x-ray tube and HPGe detector. The breast tissue samples investigated comprise five different tissue classifications: adipose, malignancy, fibroadenoma, normal fibrous tissue and tissue that had undergone fibrocystic change. The coherent scatter spectra were analysed using a peak fitting routine, and a technique involving multivariate analysis was used to combine the peak fitted scatter profile spectra and the electron density values into a tissue classification model. The number of variables used in the model was refined by finding the sensitivity and specificity of each model and concentrating on differentiating between two tissues at a time. The best model that was formulated had a sensitivity of 54% and a specificity of 100%.

  14. Radiation-induced enteropathy: Molecular basis of pentoxifylline–vitamin E anti-fibrotic effect involved TGF-β1 cascade inhibition

    International Nuclear Information System (INIS)

    Hamama, Saad; Gilbert-Sirieix, Marie; Vozenin, Marie-Catherine; Delanian, Sylvie

    2012-01-01

    Background: Radiation-induced fibrosis is a serious late complication of radiotherapy. Pentoxifylline–vitamin E has proven effective and safe in clinical trials in the treatment of fibrosis, while the molecular mechanism of its activity is yet unexplored. Methods: Ten patients suffering from radiation-induced enteropathy were treated with pentoxifylline–vitamin E combination with SOMA score as the primary endpoint. In parallel, primary smooth muscle cells isolated from intestinal samples isolated from humans with radiation enteropathy were incubated with pentoxifylline, trolox (vit. E hydrophilic analogous) or their combination. Activation of the TGF-β1/Smad and Rho/ROCK pathways was subsequently investigated using Q-RT-PCR, gene reporter, Western-blot, ELISA and immunohistochemistry. Results: Pentoxifylline–vitamin E combination induces regression of symptoms (SOMA) by −41% and −80% at 6 and 18 months. In vitro, pentoxifylline and trolox synergize to inhibit TGF-β1 protein and mRNA expression. This inhibitory action is mediated at the transcriptional level and leads to subsequent inhibition of TGF-β1/Smad targets (Col Iα1, FN1, PAI-1, CTGF), while it has no effect on the Rho/ROCK pathway. Conclusions: The anti-fibrotic effect of combined pentoxifylline–vitamin E is at least in part mediated by inhibition of the TGF-β1 cascade. It strengthens previous clinical data showing pentoxifylline–vitamin E synergy and supports its use as a first-line treatment of radiation-induced fibrosis.

  15. Modeling of Nonlinear Propagation in Multi-layer Biological Tissues for Strong Focused Ultrasound

    International Nuclear Information System (INIS)

    Ting-Bo, Fan; Zhen-Bo, Liu; Zhe, Zhang; Dong, Zhang; Xiu-Fen, Gong

    2009-01-01

    A theoretical model of the nonlinear propagation in multi-layered tissues for strong focused ultrasound is proposed. In this model, the spheroidal beam equation (SBE) is utilized to describe the nonlinear sound propagation in each layer tissue, and generalized oblique incidence theory is used to deal with the sound transmission between two layer tissues. Computer simulation is performed on a fat-muscle-liver tissue model under the irradiation of a 1 MHz focused transducer with a large aperture angle of 35°. The results demonstrate that the tissue layer would change the amplitude of sound pressure at the focal region and cause the increase of side petals. (fundamental areas of phenomenology (including applications))

  16. Recent advances in hydrogels for cartilage tissue engineering

    Directory of Open Access Journals (Sweden)

    SL Vega

    2017-01-01

    Full Text Available Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks, new techniques to process hydrogels (e.g. 3D printing and better incorporation of biological signals (e.g. controlled release. This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation.

  17. Recent advances in hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Vega, S L; Kwon, M Y; Burdick, J A

    2017-01-30

    Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks), new techniques to process hydrogels (e.g. 3D printing) and better incorporation of biological signals (e.g. controlled release). This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation.

  18. Stimulation of Transforming Growth Factor-β1-Induced Endothelial-To-Mesenchymal Transition and Tissue Fibrosis by Endothelin-1 (ET-1): A Novel Profibrotic Effect of ET-1.

    Science.gov (United States)

    Wermuth, Peter J; Li, Zhaodong; Mendoza, Fabian A; Jimenez, Sergio A

    2016-01-01

    TGF-β-induced endothelial-to-mesenchymal transition (EndoMT) is a newly recognized source of profibrotic activated myofibroblasts and has been suggested to play a role in the pathogenesis of various fibrotic processes. Endothelin-1 (ET-1) has been implicated in the development of tissue fibrosis but its participation in TGF-β-induced EndoMT has not been studied. Here we evaluated the role of ET-1 on TGF-β1-induced EndoMT in immunopurified CD31+/CD102+ murine lung microvascular endothelial cells. The expression levels of α-smooth muscle actin (α-SMA), of relevant profibrotic genes, and of various transcription factors involved in the EndoMT process were assessed employing quantitative RT-PCR, immunofluorescence histology and Western blot analysis. TGF-β1 caused potent induction of EndoMT whereas ET-1 alone had a minimal effect. However, ET-1 potentiated TGF-β1-induced EndoMT and TGF-β1-stimulated expression of mesenchymal cell specific and profibrotic genes and proteins. ET-1 also induced expression of the TGF-β receptor 1 and 2 genes, suggesting a plausible autocrine mechanism to potentiate TGF-β-mediated EndoMT and fibrosis. Stimulation of TGF-β1-induced skin and lung fibrosis by ET-1 was confirmed in vivo in an animal model of TGF-β1-induced tissue fibrosis. These results suggest a novel role for ET-1 in the establishment and progression of tissue fibrosis.

  19. [Human brown adipose tissue].

    Science.gov (United States)

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  20. Low intensity 635 nm diode laser irradiation inhibits fibroblast-myofibroblast transition reducing TRPC1 channel expression/activity: New perspectives for tissue fibrosis treatment.

    Science.gov (United States)

    Sassoli, Chiara; Chellini, Flaminia; Squecco, Roberta; Tani, Alessia; Idrizaj, Eglantina; Nosi, Daniele; Giannelli, Marco; Zecchi-Orlandini, Sandra

    2016-03-01

    Low-level laser therapy (LLLT) or photobiomodulation therapy is emerging as a promising new therapeutic option for fibrosis in different damaged and/or diseased organs. However, the anti-fibrotic potential of this treatment needs to be elucidated and the cellular and molecular targets of the laser clarified. Here, we investigated the effects of a low intensity 635 ± 5 nm diode laser irradiation on fibroblast-myofibroblast transition, a key event in the onset of fibrosis, and elucidated some of the underlying molecular mechanisms. NIH/3T3 fibroblasts were cultured in a low serum medium in the presence of transforming growth factor (TGF)-β1 and irradiated with a 635 ± 5 nm diode laser (continuous wave, 89 mW, 0.3 J/cm(2) ). Fibroblast-myofibroblast differentiation was assayed by morphological, biochemical, and electrophysiological approaches. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 and of Tissue inhibitor of MMPs, namely TIMP-1 and TIMP-2, after laser exposure was also evaluated by confocal immunofluorescence analyses. Moreover, the effect of the diode laser on transient receptor potential canonical channel (TRPC) 1/stretch-activated channel (SAC) expression and activity and on TGF-β1/Smad3 signaling was investigated. Diode laser treatment inhibited TGF-β1-induced fibroblast-myofibroblast transition as judged by reduction of stress fibers formation, α-smooth muscle actin (sma) and type-1 collagen expression and by changes in electrophysiological properties such as resting membrane potential, cell capacitance and inwardly rectifying K(+) currents. In addition, the irradiation up-regulated the expression of MMP-2 and MMP-9 and downregulated that of TIMP-1 and TIMP-2 in TGF-β1-treated cells. This laser effect was shown to involve TRPC1/SAC channel functionality. Finally, diode laser stimulation and TRPC1 functionality negatively affected fibroblast-myofibroblast transition by interfering with TGF-β1 signaling, namely reducing the

  1. ALK1 heterozygosity delays development of late normal tissue damage in the irradiated mouse kidney

    International Nuclear Information System (INIS)

    Scharpfenecker, Marion; Floot, Ben; Korlaar, Regina; Russell, Nicola S.; Stewart, Fiona A.

    2011-01-01

    Background and Purpose: Activin receptor-like kinase 1 (ALK1) is a transforming growth factor β (TGF-β) receptor, which is mainly expressed in endothelial cells regulating proliferation and migration in vitro and angiogenesis in vivo. Endothelial cells also express the co-receptor endoglin, which modulates ALK1 effects on endothelial cells. Our previous studies showed that mice with reduced endoglin levels develop less irradiation-induced vascular damage and fibrosis, caused by an impaired inflammatory response. This study was aimed at investigating the role of ALK1 in late radiation toxicity. Material and Methods: Kidneys of ALK +/+ and ALK1 +/- mice were irradiated with 14 Gy. Mice were sacrificed at 10, 20, and 30 weeks after irradiation and gene expression and protein levels were analyzed. Results: Compared to wild type littermates, ALK1 +/- mice developed less inflammation and fibrosis at 20 weeks after irradiation, but displayed an increase in pro-inflammatory and pro-fibrotic gene expression at 30 weeks. In addition, ALK1 +/- mice showed superior vascular integrity at 10 and 20 weeks after irradiation which deteriorated at 30 weeks coinciding with changes in the VEGF pathway. Conclusions: ALK1 +/- mice develop a delayed normal tissue response by modulating the inflammatory response and growth factor expression after irradiation.

  2. Pulmonary MR imaging with ultra-short TEs: Utility for disease severity assessment of connective tissue disease patients

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Takenaka, Daisuke; Takahashi, Masaya; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Obara, Makoto; Cauteren, Marc van; Sugimura, Kazuro

    2013-01-01

    Purpose: To evaluate the utility of pulmonary magnetic resonance (MR) imaging with ultra-short echo times (UTEs) at a 3.0 T MR system for pulmonary functional loss and disease severity assessments of connective tissue disease (CTD) patients with interstitial lung disease (ILD). Materials and methods: This prospective study was approved by the institutional review board, and written informed consent was obtained from 18 CTD patients (eight men and ten women) and eight normal subjects with suspected chest disease (three men and five women). All subjects underwent thin-section MDCT, pulmonary MR imaging with UTEs, pulmonary function test and serum KL-6. Regional T2* maps were generated from each MR data set, and mean T2* values were determined from ROI measurements. From each thin-section MDCT data set, CT-based disease severity was evaluated with a visual scoring system. Mean T2* values for normal and CTD subjects were statistically compared by using Student's t-test. To assess capability for pulmonary functional loss and disease severity assessments, mean T2* values were statistically correlated with pulmonary functional parameters, serum KL-6 and CT-based disease severity. Results: Mean T2* values for normal and CTD subjects were significantly different (p = 0.0019) and showed significant correlations with %VC, %DL CO , serum KL-6 and CT-based disease severity of CTD patients (p < 0.05). Conclusion: Pulmonary MR imaging with UTEs is useful for pulmonary functional loss and disease severity assessments of CTD patients with ILD

  3. Pulmonary MR imaging with ultra-short TEs: Utility for disease severity assessment of connective tissue disease patients

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Nishio, Mizuho [Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Koyama, Hisanobu [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Takenaka, Daisuke [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Department of Radiology, Hyogo Cancer Center, Akashi, Hyogo (Japan); Takahashi, Masaya [Advanced Imaging Research Center, Department of Radiology, University of Texas Southwestern Medical Center, Houston, TX (United States); Yoshikawa, Takeshi; Matsumoto, Sumiaki [Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan); Obara, Makoto; Cauteren, Marc van [Philips Electronics Japan, Tokyo (Japan); Sugimura, Kazuro [Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo (Japan)

    2013-08-15

    Purpose: To evaluate the utility of pulmonary magnetic resonance (MR) imaging with ultra-short echo times (UTEs) at a 3.0 T MR system for pulmonary functional loss and disease severity assessments of connective tissue disease (CTD) patients with interstitial lung disease (ILD). Materials and methods: This prospective study was approved by the institutional review board, and written informed consent was obtained from 18 CTD patients (eight men and ten women) and eight normal subjects with suspected chest disease (three men and five women). All subjects underwent thin-section MDCT, pulmonary MR imaging with UTEs, pulmonary function test and serum KL-6. Regional T2* maps were generated from each MR data set, and mean T2* values were determined from ROI measurements. From each thin-section MDCT data set, CT-based disease severity was evaluated with a visual scoring system. Mean T2* values for normal and CTD subjects were statistically compared by using Student's t-test. To assess capability for pulmonary functional loss and disease severity assessments, mean T2* values were statistically correlated with pulmonary functional parameters, serum KL-6 and CT-based disease severity. Results: Mean T2* values for normal and CTD subjects were significantly different (p = 0.0019) and showed significant correlations with %VC, %DL{sub CO}, serum KL-6 and CT-based disease severity of CTD patients (p < 0.05). Conclusion: Pulmonary MR imaging with UTEs is useful for pulmonary functional loss and disease severity assessments of CTD patients with ILD.

  4. A network model of correlated growth of tissue stiffening in pulmonary fibrosis

    Science.gov (United States)

    Oliveira, Cláudio L. N.; Bates, Jason H. T.; Suki, Béla

    2014-06-01

    During the progression of pulmonary fibrosis, initially isolated regions of high stiffness form and grow in the lung tissue due to collagen deposition by fibroblast cells. We have previously shown that ongoing collagen deposition may not lead to significant increases in the bulk modulus of the lung until these local remodeled regions have become sufficiently numerous and extensive to percolate in a continuous path across the entire tissue (Bates et al 2007 Am. J. Respir. Crit. Care Med. 176 617). This model, however, did not include the possibility of spatially correlated deposition of collagen. In the present study, we investigate whether spatial correlations influence the bulk modulus in a two-dimensional elastic network model of lung tissue. Random collagen deposition at a single site is modeled by increasing the elastic constant of the spring at that site by a factor of 100. By contrast, correlated collagen deposition is represented by stiffening the springs encountered along a random walk starting from some initial spring, the rationale being that excess collagen deposition is more likely in the vicinity of an already stiff region. A combination of random and correlated deposition is modeled by performing random walks of length N from randomly selected initial sites, the balance between the two processes being determined by N. We found that the dependence of bulk modulus, B(N,c), on both N and the fraction of stiff springs, c, can be described by a strikingly simple set of empirical equations. For c0.8, B(N,c) is linear in c and independent of N, such that B(N,c)=100\\;{{B}_{0}}-100{{a}_{III}}(1-c){{B}_{0}}, where {{a}_{III}}=2.857. For small concentrations, the physiologically most relevant regime, the forces in the network springs are distributed according to a power law. When c = 0.3, the exponent of this power law increases from -4.5, when N = 1, and saturates to about -2, as N increases above 40. These results suggest that the spatial correlation of

  5. Observation of dehydration dynamics in biological tissues with terahertz digital holography [Invited].

    Science.gov (United States)

    Guo, Lihan; Wang, Xinke; Han, Peng; Sun, Wenfeng; Feng, Shengfei; Ye, Jiasheng; Zhang, Yan

    2017-05-01

    A terahertz (THz) digital holographic imaging system is utilized to investigate natural dehydration processes in three types of biological tissues, including cattle, mutton, and pork. An image reconstruction algorithm is applied to remove the diffraction influence of THz waves and further improve clarity of THz images. From THz images of different biological specimens, distinctive water content as well as dehydration features of adipose and muscle tissues are precisely distinguished. By analyzing THz absorption spectra of these samples, temporal evolution characteristics of the absorbances for adipose and muscle tissues are described and compared in detail. Discrepancies between water retention ability of different animal tissues are also discussed. The imaging technique provides a valuable measurement platform for biological sensing.

  6. Adult Tissue-Derived Stem Cells and Tolerance Induction in Nonhuman Primates for Vascularized Composite Allograft Transplantation

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-2-0042 TITLE: Adult Tissue-Derived Stem Cells and Tolerance Induction in Nonhuman Primates for Vascularized Composite...2017 2. REPORT TYPE Annual 3. DATES COVERED 30 Sep 2016 - 29 Sep 2017 4. TITLE AND SUBTITLE Adult Tissue-Derived Stem Cells and Tolerance Induction...Distribution Unlimited 13. SUPPLEMENTARY NOTES The utilization of adult derived adipose stem cells administration in composite tissue transplantation

  7. A review of rapid prototyping techniques for tissue engineering purposes

    NARCIS (Netherlands)

    Peltola, Sanna M.; Melchels, Ferry P. W.; Grijpma, Dirk W.; Kellomaki, Minna

    2008-01-01

    Rapid prototyping (RP) is a common name for several techniques, which read in data from computer-aided design (CAD) drawings and manufacture automatically three-dimensional objects layer-by-layer according to the virtual design. The utilization of RP in tissue engineering enables the production of

  8. A Tissue Retrieval and Postharvest Processing Regimen for Rodent Reproductive Tissues Compatible with Long-Term Storage on the International Space Station and Postflight Biospecimen Sharing Program

    Directory of Open Access Journals (Sweden)

    Vijayalaxmi Gupta

    2015-01-01

    Full Text Available Collection and processing of tissues to preserve space flight effects from animals after return to Earth is challenging. Specimens must be harvested with minimal time after landing to minimize postflight readaptation alterations in protein expression/translation, posttranslational modifications, and expression, as well as changes in gene expression and tissue histological degradation after euthanasia. We report the development of a widely applicable strategy for determining the window of optimal species-specific and tissue-specific posteuthanasia harvest that can be utilized to integrate into multi-investigator Biospecimen Sharing Programs. We also determined methods for ISS-compatible long-term tissue storage (10 months at −80°C that yield recovery of high quality mRNA and protein for western analysis after sample return. Our focus was reproductive tissues. The time following euthanasia where tissues could be collected and histological integrity was maintained varied with tissue and species ranging between 1 and 3 hours. RNA quality was preserved in key reproductive tissues fixed in RNAlater up to 40 min after euthanasia. Postfixation processing was also standardized for safe shipment back to our laboratory. Our strategy can be adapted for other tissues under NASA’s Biospecimen Sharing Program or similar multi-investigator tissue sharing opportunities.

  9. Cellular targeting of the apoptosis-inducing compound gliotoxin to fibrotic rat livers

    NARCIS (Netherlands)

    Hagens, W. I.; Beljaars, L.; Mann, D. A.; Wright, M. C.; Julien, B.; Lotersztajn, S.; Reker-Smit, C.; Poelstra, K.

    Liver fibrosis is associated with proliferation of hepatic stellate cells (HSCs) and their transformation into myofibroblastic cells that synthesize scar tissue. Several studies indicate that induction of apoptosis in myofibroblastic cells may prevent fibrogenesis. Gliotoxin (GTX) was found to

  10. Diagnostic utility of melanin production by fungi: Study on tissue sections and culture smears with Masson-Fontana stain

    Directory of Open Access Journals (Sweden)

    Challa Sundaram

    2014-01-01

    Full Text Available Background: Dematiaceous fungi appear brown in tissue section due to melanin in their cell walls. When the brown color is not seen on routine H and E and culture is not available, differentiation of dematiaceous fungi from other fungi is difficult on morphology alone. Aims and Objective: To study if melanin production by dematiaceous fungi can help differentiate them from other types of fungi. Materials and Methods: Fifty tissue sections of various fungal infections and 13 smears from cultures of different species of fungi were stained with Masson Fontana stain to assess melanin production. The tissue sections included biopsies from 26 culture-proven fungi and 24 biopsies of filamentous fungi diagnosed on morphology alone with no culture confirmation. Results: All culture-proven dematiaceous fungi and Zygomycetes showed strong positivity in sections and culture smears. Aspergillus sp showed variable positivity and intensity. Cryptococcus neoformans showed strong positivity in tissue sections and culture smears. Tissue sections of septate filamentous fungi (9/15, Zygomycetes (4/5, and fungi with both hyphal and yeast morphology (4/4 showed positivity for melanin. The septate filamentous fungi negative for melanin were from biopsy samples of fungal sinusitis including both allergic and invasive fungal sinusitis and colonizing fungal balls. Conclusion: Melanin is produced by both dematiaceous and non-dematiaceous fungi. Masson-Fontana stain cannot reliably differentiate dematiaceous fungi from other filamentous fungi like Aspergillus sp; however, absence of melanin in the hyphae may be used to rule out dematiaceous fungi from other filamentous fungi. In the differential diagnosis of yeast fungi, Cryptococcus sp can be differentiated from Candida sp by Masson-Fontana stain in tissue sections.

  11. Selective inhibitor of Wnt/β-catenin/CBP signaling ameliorates hepatitis C virus-induced liver fibrosis in mouse model.

    Science.gov (United States)

    Tokunaga, Yuko; Osawa, Yosuke; Ohtsuki, Takahiro; Hayashi, Yukiko; Yamaji, Kenzaburo; Yamane, Daisuke; Hara, Mitsuko; Munekata, Keisuke; Tsukiyama-Kohara, Kyoko; Hishima, Tsunekazu; Kojima, Soichi; Kimura, Kiminori; Kohara, Michinori

    2017-03-23

    Chronic hepatitis C virus (HCV) infection is one of the major causes of serious liver diseases, including liver cirrhosis. There are no anti-fibrotic drugs with efficacy against liver cirrhosis. Wnt/β-catenin signaling has been implicated in the pathogenesis of a variety of tissue fibrosis. In the present study, we investigated the effects of a β-catenin/CBP (cyclic AMP response element binding protein) inhibitor on liver fibrosis. The anti-fibrotic activity of PRI-724, a selective inhibitor of β-catenin/CBP, was assessed in HCV GT1b transgenic mice at 18 months after HCV genome expression. PRI-724 was injected intraperitoneally or subcutaneously in these mice for 6 weeks. PRI-724 reduced liver fibrosis, which was indicated by silver stain, Sirius Red staining, and hepatic hydroxyproline levels, in HCV mice while attenuating αSMA induction. PRI-724 led to increased levels of matrix metalloproteinase (MMP)-8 mRNA in the liver, along with elevated levels of intrahepatic neutrophils and macrophages/monocytes. The induced intrahepatic neutrophils and macrophages/monocytes were identified as the source of MMP-8. In conclusion, PRI-724 ameliorated HCV-induced liver fibrosis in mice. We hypothesize that inhibition of hepatic stellate cells activation and induction of fibrolytic cells expressing MMP-8 contribute to the anti-fibrotic effects of PRI-724. PRI-724 is a drug candidate which possesses anti-fibrotic effect.

  12. MicroRNA-143-3p inhibits hyperplastic scar formation by targeting connective tissue growth factor CTGF/CCN2 via the Akt/mTOR pathway.

    Science.gov (United States)

    Mu, Shengzhi; Kang, Bei; Zeng, Weihui; Sun, Yaowen; Yang, Fan

    2016-05-01

    Post-traumatic hypertrophic scar (HS) is a fibrotic disease with excessive extracellular matrix (ECM) production, which is a response to tissue injury by fibroblasts. Although emerging evidence has indicated that miRNA contributes to hypertrophic scarring, the role of miRNA in HS formation remains unclear. In this study, we found that miR-143-3p was markedly downregulated in HS tissues and fibroblasts (HSFs) using qRT-PCR. The expression of connective tissue growth factor (CTGF/CCN2) was upregulated both in HS tissues and HSFs, which is proposed to play a key role in ECM deposition in HS. The protein expression of collagen I (Col I), collagen III (Col III), and α-smooth muscle actin (α-SMA) was obviously inhibited after treatment with miR-143-3p in HSFs. The CCK-8 assay showed that miR-143-3p transfection reduced the proliferation ability of HSFs, and flow cytometry showed that either early or late apoptosis of HSFs was upregulated by miR-143-3p. In addition, the activity of caspase 3 and caspase 9 was increased after miR-143-3p transfection. On the contrary, the miR-143-3p inhibitor was demonstrated to increase cell proliferation and inhibit apoptosis of HSFs. Moreover, miR-143-3p targeted the 3'-UTR of CTGF and caused a significant decrease of CTGF. Western blot demonstrated that Akt/mTOR phosphorylation and the expression of CTGF, Col I, Col III, and α-SMA were inhibited by miR-143-3p, but increased by CTGF overexpression. In conclusion, we found that miR-143-3p inhibits hypertrophic scarring by regulating the proliferation and apoptosis of human HSFs, inhibiting ECM production-associated protein expression by targeting CTGF, and restraining the Akt/mTOR pathway.

  13. A case-control study of the effectiveness of tissue plasminogen activator on 6 month patients--reported outcomes and health care utilization.

    Science.gov (United States)

    Lang, Catherine E; Bland, Marghuretta D; Cheng, Nuo; Corbetta, Maurizio; Lee, Jin-Moo

    2014-01-01

    We examined the benefit of tissue plasminogen activator (tPA), delivered as part of usual stroke management, on patient-reported outcomes and health care utilization. Using a case control design, patients who received tPA as part of usual stroke management were compared with patients who would have received tPA had they arrived to the hospital within the therapeutic time window. Data were collected from surveys 6 months after stroke using standardized patient-reported outcome measures and questions about health care utilization. Demographic and medical data were acquired from hospital records. Patients were matched on stroke severity, age, race, and gender. Matching was done with 1:2 ratio of tPA to controls. Results were compared between groups with 1-tailed tests because of a directionally specific hypothesis in favor of the tPA group. The tPA (n = 78) and control (n = 156) groups were matched across variables, except for stroke severity, which was better in the control group; subsequent analyses controlled for this mismatch. The tPA group reported better physical function, communication, cognitive ability, depressive symptomatology, and quality of life/participation compared with the control group. Fewer people in the tPA group reported skilled nursing facility stays, emergency department visits, and rehospitalizations after their stroke compared with controls. Reports of other postacute services were not different between groups. Although it is known that tPA reduces disability, this is the first study to demonstrate the effectiveness of tPA in improving meaningful, patient-reported outcomes. Thus, use of tPA provides a large benefit to the daily lives of people with ischemic stroke. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  14. MR imaging of skeletal soft tissue infection: utility of diffusion-weighted imaging in detecting abscess formation

    International Nuclear Information System (INIS)

    Harish, Srinivasan; Rebello, Ryan; Chiavaras, Mary M.; Kotnis, Nikhil

    2011-01-01

    Our objectives were to assess if diffusion-weighted imaging (DWI) can help identify abscess formation in the setting of soft tissue infection and to assess whether abscess formation can be diagnosed confidently with a combination of DWI and other unenhanced sequences. Eight cases of soft tissue infection imaged with MRI including DWI were retrospectively reviewed. Two male and six female patients were studied (age range 23-50 years). Unenhanced MRI including DWI was performed in all patients. Post-contrast images were obtained in seven patients. All patients had clinically or surgically confirmed abscesses. Abscesses demonstrated restricted diffusion. DWI in conjunction with other unenhanced imaging showed similar confidence levels as post-contrast images in diagnosing abscess formation in four cases. In two cases, although the combined use of DWI and other unenhanced imaging yielded the same confidence levels as post-contrast imaging, DWI was more definitive for demonstrating abscess formation. In one case, post-contrast images had a better confidence for suggesting abscess. In one case, DWI helped detected the abscess, where gadolinium could not be administered because of a contraindication. This preliminary study suggests that DWI is a useful adjunct in the diagnosis of skeletal soft tissue abscesses. (orig.)

  15. Feasibility of full-field optical coherence microscopy in ultra-structural imaging of human colon tissues

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun Seo [Chosun University, Gwangju (Korea, Republic of); Choi, Woo June; Ryu, Seon Young; Lee, Byeong Ha [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Lee, Jae Hyuk; Bom, Hee Seung; Lee, Byeong Il [Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2010-06-15

    We demonstrated the imaging feasibility of full-field optical coherence microscopy (FF-OCM) in pathological diagnosis of human colon tissues. FF-OCM images with high transverse resolution were obtained at different depths of the samples without any dye staining or physical slicing, and detailed microstructures of human colon tissues were visualized. Morphological differences in normal tissues, cancer tissues, and tissues under transition were observed and matched with results seen in conventional optical microscope images. The optical biopsy based on FF-OCM could overcome the limitations on the number of physical cuttings of tissues and could perform high-throughput mass diagnosis of diseased tissues. The proved utility of FF-OCM as a comprehensive and efficient imaging modality of human tissues showed it to be a good alternative to conventional biopsy.

  16. Feasibility of full-field optical coherence microscopy in ultra-structural imaging of human colon tissues

    International Nuclear Information System (INIS)

    Choi, Eun Seo; Choi, Woo June; Ryu, Seon Young; Lee, Byeong Ha; Lee, Jae Hyuk; Bom, Hee Seung; Lee, Byeong Il

    2010-01-01

    We demonstrated the imaging feasibility of full-field optical coherence microscopy (FF-OCM) in pathological diagnosis of human colon tissues. FF-OCM images with high transverse resolution were obtained at different depths of the samples without any dye staining or physical slicing, and detailed microstructures of human colon tissues were visualized. Morphological differences in normal tissues, cancer tissues, and tissues under transition were observed and matched with results seen in conventional optical microscope images. The optical biopsy based on FF-OCM could overcome the limitations on the number of physical cuttings of tissues and could perform high-throughput mass diagnosis of diseased tissues. The proved utility of FF-OCM as a comprehensive and efficient imaging modality of human tissues showed it to be a good alternative to conventional biopsy.

  17. Day as a Pathologist: Utilization of Technology to Guide Students in Exploring Careers in Breast Cancer Pathology

    Science.gov (United States)

    Adler, Jacob J.; Judd, Mariah V.; Bringman, Lauren R.; Wells, Clark D.; Marrs, Kathleen A.

    2013-01-01

    We developed an interactive laboratory that allows students to identify and grade tissue samples from human breast biopsies, using techniques similar to those used by actual pathologists. This unique lab develops a practical and intellectual understanding of basic tissue structures that make up living systems, utilizing technology to bring…

  18. Therapeutic Targeting of Redox Signaling in Myofibroblast Differentiation and Age-Related Fibrotic Disease

    Directory of Open Access Journals (Sweden)

    Natalie Sampson

    2012-01-01

    Full Text Available Myofibroblast activation plays a central role during normal wound healing. Whereas insufficient myofibroblast activation impairs wound healing, excessive myofibroblast activation promotes fibrosis in diverse tissues (including benign prostatic hyperplasia, BPH leading to organ dysfunction and also promotes a stromal response that supports tumor progression. The incidence of impaired wound healing, tissue fibrosis, BPH, and certain cancers strongly increases with age. This paper summarizes findings from in vitro fibroblast-to-myofibroblast differentiation systems that serve as cellular models to study fibrogenesis of diverse tissues. Supported by substantial in vivo data, a large body of evidence indicates that myofibroblast differentiation induced by the profibrotic cytokine transforming growth factor beta is driven by a prooxidant shift in redox homeostasis due to elevated production of NADPH oxidase 4 (NOX4-derived hydrogen peroxide and supported by concomitant decreases in nitric oxide/cGMP signaling and reactive oxygen species (ROS scavenging enzymes. Fibroblast-to-myofibroblast differentiation can be inhibited and reversed by restoring redox homeostasis using antioxidants or NOX4 inactivation as well as enhancing nitric oxide/cGMP signaling via activation of soluble guanylyl cyclases or inhibition of phosphodiesterases. Current evidence indicates the therapeutic potential of targeting the prooxidant shift in redox homeostasis for the treatment of age-related diseases associated with myofibroblast dysregulation.

  19. Platelet-Rich Fibrin and Soft Tissue Wound Healing: A Systematic Review.

    Science.gov (United States)

    Miron, Richard J; Fujioka-Kobayashi, Masako; Bishara, Mark; Zhang, Yufeng; Hernandez, Maria; Choukroun, Joseph

    2017-02-01

    The growing multidisciplinary field of tissue engineering aims at predictably regenerating, enhancing, or replacing damaged or missing tissues for a variety of conditions caused by trauma, disease, and old age. One area of research that has gained tremendous awareness in recent years is that of platelet-rich fibrin (PRF), which has been utilized across a wide variety of medical fields for the regeneration of soft tissues. This systematic review gathered all the currently available in vitro, in vivo, and clinical literature utilizing PRF for soft tissue regeneration, augmentation, and/or wound healing. In total, 164 publications met the original search criteria, with a total of 48 publications meeting inclusion criteria (kappa score = 94%). These studies were divided into 7 in vitro, 11 in vivo, and 31 clinical studies. In summary, 6 out of 7 (85.7%) and 11 out of 11 (100%) of the in vitro and in vivo studies, respectively, demonstrated a statistically significant advantage for combining PRF to their regenerative therapies. Out of the remaining 31 clinical studies, a total of 8 reported the effects of PRF in a randomized clinical trial, with 5 additional studies (13 total) reporting appropriate controls. In those clinical studies, 9 out of the 13 studies (69.2%) demonstrated a statistically relevant positive outcome for the primary endpoints measured. In total, 18 studies (58% of clinical studies) reported positive wound-healing events associated with the use of PRF, despite using controls. Furthermore, 27 of the 31 clinical studies (87%) supported the use of PRF for soft tissue regeneration and wound healing for a variety of procedures in medicine and dentistry. In conclusion, the results from the present systematic review highlight the positive effects of PRF on wound healing after regenerative therapy for the management of various soft tissue defects found in medicine and dentistry.

  20. Insulin response in individual tissues of control and gold thioglucose-obese mice in vivo with [1-14C]2-deoxyglucose

    International Nuclear Information System (INIS)

    Cooney, G.J.; Astbury, L.D.; Williams, P.F.; Caterson, I.D.

    1987-01-01

    The dose-response characteristics of several glucose-utilizing tissues (brain, heart, white adipose tissue, brown adipose tissue, and quadriceps muscle) to a single injection of insulin have been compared in control mice and mice made obese with a single injection of gold thioglucose (GTG). Tissue content of [1- 14 C]2-deoxyglucose 6-phosphate and blood disappearance rate of [1- 14 C]2-deoxyglucose (2-DG) were measured at nine different insulin doses and used to calculate rates of 2-DG uptake and phosphorylation in tissues from control and obese mice. The insulin sensitivity of tissues reflected in the ED50 of insulin response varied widely, and brown adipose tissue was the most insulin-sensitive tissue studied. In GTG-obese mice, heart, quadriceps, and brown adipose tissue were insulin resistant (demonstrated by increased ED50), whereas in white adipose tissue, 2-DG phosphorylation was more sensitive to insulin. Brain 2-DG phosphorylation was insulin independent in control and obese animals. The largest decrease in insulin sensitivity in GTG-obese mice was observed in brown adipose tissue. The loss of diet-induced thermogenesis in brown adipose tissue as a result of the hypothalamic lesion in GTG-obese mice could be a major cause of insulin resistance in brown adipose tissue. Because brown adipose tissue can make a major contribution to whole-body glucose utilization, insulin resistance in this tissue may have a significant effect on whole-animal glucose homeostasis in GTG-obese mice

  1. Emerging Techniques in Stratified Designs and Continuous Gradients for Tissue Engineering of Interfaces

    Science.gov (United States)

    Dormer, Nathan H.; Berkland, Cory J.; Detamore, Michael S.

    2013-01-01

    Interfacial tissue engineering is an emerging branch of regenerative medicine, where engineers are faced with developing methods for the repair of one or many functional tissue systems simultaneously. Early and recent solutions for complex tissue formation have utilized stratified designs, where scaffold formulations are segregated into two or more layers, with discrete changes in physical or chemical properties, mimicking a corresponding number of interfacing tissue types. This method has brought forth promising results, along with a myriad of regenerative techniques. The latest designs, however, are employing “continuous gradients” in properties, where there is no discrete segregation between scaffold layers. This review compares the methods and applications of recent stratified approaches to emerging continuously graded methods. PMID:20411333

  2. Dobutamine Stress Echocardiography and Tissue Synchronization Imaging

    Science.gov (United States)

    Tas, Hakan; Gundogdu, Fuat; Gurlertop, Yekta; Karakelleoglu, Sule

    2008-01-01

    Dobutamine stress echocardiography has emerged as a reliable method for the diagnosis of coronary artery disease and the management of its treatment. Several studies have shown that that this technique works with 80–85% accuracy in comparison with other imaging methods. There are few studies aimed at developing the clinical utility of dobutamine stress echocardiography for the evaluation of normal and abnormal segments that result from dobutamine stress with Tissue Synchronization Imaging. PMID:25610034

  3. Macrophage and Innate Lymphoid Cell Interplay in the Genesis of Fibrosis

    Science.gov (United States)

    Hams, Emily; Bermingham, Rachel; Fallon, Padraic G.

    2015-01-01

    Fibrosis is a characteristic pathological feature of an array of chronic diseases, where development of fibrosis in tissue can lead to marked alterations in the architecture of the affected organs. As a result of this process of sustained attrition to organs, many diseases that involve fibrosis are often progressive conditions and have a poor long-term prognosis. Inflammation is often a prelude to fibrosis, with innate and adaptive immunity involved in both the initiation and regulation of the fibrotic process. In this review, we will focus on the emerging roles of the newly described innate lymphoid cells (ILCs) in the generation of fibrotic disease with an examination of the potential interplay between ILC and macrophages and the adaptive immune system. PMID:26635811

  4. Biobanking for cancer research: Preservation of tissue integrity - Some technical considerations

    Directory of Open Access Journals (Sweden)

    S K Shankar

    2012-01-01

    Full Text Available Biobanking and biomarker discovery have become an integral part of neuro-oncology research. Towards achieving this end, the essential requirement is optimizing methods of tissue preservation of human tissues removed at surgery for diagnostic purposes and banking them for subserving future research. Owing to recent advances in molecular diagnostic tools, this clinical material has become a precious source for proteomic and genomic studies. The advent of biotechnological tools such as microarray, proteomics, and genomics has made it essential to preserve not just morphology but also the quality of nucleic acids and proteins, changing the traditional workflow of a pathology laboratory. It is therefore essential to develop simple technologies for tissue fixation and storage ensure that receptor and molecular integrity is reasonably maintained. Knowledge of the basic chemistry of tissue fixatives, the biochemical changes that take place in biological material by utilizing different techniques of fixation is essential while undertaking molecular, genomic, and proteomic studies on fresh and archival tissues.

  5. Recombinant protein scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-01-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation. (topical review)

  6. PrPSc detection in formalin-fixed paraffin-embedded tissue by ELISA

    Directory of Open Access Journals (Sweden)

    Nicholson Eric M

    2011-10-01

    Full Text Available Abstract Background Formalin-fixed paraffin-embedded tissue is regularly employed in the diagnosis of transmissible spongiform encephalopathies (TSE by immunohistochemistry (IHC, the standard by which all other TSE diagnostic protocols are judged. While IHC affords advantages over diagnostic approaches that typically utilize fresh or frozen tissue, such as Western blot and ELISA, the process of fixing, staining, and analyzing individual sections by hand does not allow for rapid or high throughput screening. However, preservation of tissues in formalin is not dependent upon the availability of refrigeration. Findings Formalin-fixed paraffin-embedded tissues from TSE transmission studies of scrapie in sheep, chronic wasting disease in white-tailed deer or transmissible mink encephalopathy in cattle were cut at 5 μm thickness. Samples containing the tissue equivalent of as little as one 5 μm section can be used to readily discriminate positive from negative samples. Conclusions This approach cannot replace IHC but may be used along with IHC as both a more rapid and readily high throughput screen where fresh or frozen tissues are not available or impractical.

  7. Clonally expanded cytotoxic CD4+ T cells and the pathogenesis of IgG4-related disease.

    Science.gov (United States)

    Mattoo, Hamid; Stone, John H; Pillai, Shiv

    2017-02-01

    IgG4-related disease (IgG4-RD) is a systemic condition of unknown cause characterized by highly fibrotic lesions, with dense lymphoplasmacytic infiltrates containing a preponderance of IgG4-expressing plasma cells. CD4 + T cells and B cells constitute the major inflammatory cell populations in IgG4-RD lesions. IgG4-RD patients with active, untreated disease show a marked expansion of plasmablasts in the circulation. Although the therapeutic depletion of B cells suggests a role for these cells in the disease, a direct role for B cells or IgG4 in the pathogenesis of IgG4-RD is yet to be demonstrated. Among the CD4 + T-cell subsets, Th2 cells were initially thought to contribute to IgG4-RD pathogenesis, but many previous studies were confounded by the concomitant history of allergic diseases in the patients studied and the failure to use multi-color staining to definitively identify T-cell subsets in tissue samples. More recently, using an unbiased approach to characterize CD4 + T-cell subsets in patients with IgG4-RD - based on their clonal expansion and ability to infiltrate affected tissue sites - CD4 + CTLs have been identified as the major CD4 + T-cell subset in disease lesions as well as in the circulation. CD4 + CTLs in affected tissues secrete pro-fibrotic cytokines including IL-1β, TGF-β1, and IFN-γ as well as cytolytic molecules such as perforin and granzymes A and B. In this review, we examine possible mechanisms by which activated B cells and plasmablasts may collaborate with the expanded CD4 + CTLs in driving the fibrotic pathology of the disease and describe the lacunae in the field and in our understanding of IgG4-RD pathogenesis.

  8. GIANT FAT CONTAINING BREAST MASSES: REPORT OF SIX ...

    African Journals Online (AJOL)

    hi-tech

    2003-02-02

    Feb 2, 2003 ... and be mistaken for fibroadenoma(6). Oil cysts (traumatic lipid cyst) represent a focal form of fat necrosis(1). It is produced by saponification of fat by tissue lipase after local destruction of fat cells with release of lipids and associated haemorrhage and fibrotic proliferation. It may result from direct breast.

  9. Novel serological neo-epitope markers of extracellular matrix proteins for the detection of portal hypertension

    DEFF Research Database (Denmark)

    Leeming, Diana Julie; Karsdal, M A; Byrjalsen, I

    2013-01-01

    The hepatic venous pressure gradient (HVPG) is an invasive, but important diagnostic and prognostic marker in cirrhosis with portal hypertension (PHT). During cirrhosis, remodelling of fibrotic tissue by matrix metalloproteinases (MMPs) is a permanent process generating small fragments of degrade...... extracellular matrix (ECM) proteins known as neoepitopes, which are then released into the circulation....

  10. Radioligand assay for biotin in liver tissues

    International Nuclear Information System (INIS)

    Rettenmaier, R.

    1979-01-01

    A radioligand assay for biotin in liver tissue is described. 3 H-biotin is used as tracer and avidin as binder. The biotin-loaded avidin is separated from free biotin on dextran-coated charcoal, which leaves the avidin-biotin complex in the supernatant liquid. Thus, the avidin-biotin complex can easily be utilized for determination of the radioactivity. Calibration with known additions of biotin in the range 0.25-8.0 ng per assay sample yields a linear logit-log plot. The biotin is extracted from liver tissues by enzymatic proteolysis with papain. This treatment is optimized to liberate the bound forms of the vitamin. Microbiological parallel assays with Lactobacillus plantarum were in good agreement with the radioligand assay giving a regression coefficient of 0.974(n=44). The coefficient of variation was found to be 4.2% in the range 500-1200 ng of biotin per g of liver tissue (n=46). The method is simple and reliable and allows the simultaneous analysis of a considerable number of samples. (Auth.)

  11. Periodontics--tissue engineering and the future.

    Science.gov (United States)

    Douglass, Gordon L

    2005-03-01

    Periodontics has a long history of utilizing advances in science to expand and improve periodontal therapies. Recently the American Academy of Periodontology published the findings of the Contemporary Science Workshop, which conducted state-of-the-art evidence-based reviews of current and emerging areas in periodontics. The findings of this workshop provide the basis for an evidence-based approach to periodontal therapy. While the workshop evaluated all areas of periodontics, it is in the area of tissue engineering that the most exciting advances are becoming a reality.

  12. Fabrication of a cranium-facial simulator for oral radiology utilization

    International Nuclear Information System (INIS)

    Guilardi Neto, T.

    1987-01-01

    The fabrication of a cranium-facial simulator for oral radiology utilization is shown, giving a solution for the problems relationship with unnecessary expouse in X-ray radiography by odontologic students. The materials used in the simulator are described, evaluating the equivalence of this material to the human tissue. The X-ray radiographies were very satisfactory. (C.G.C.) [pt

  13. Alveolar ridge augmentation by connective tissue grafting using a pouch method and modified connective tissue technique: A prospective study

    Directory of Open Access Journals (Sweden)

    Ashish Agarwal

    2015-01-01

    Full Text Available Background: Localized alveolar ridge defect may create physiological and pathological problems. Developments in surgical techniques have made it simpler to change the configuration of a ridge to create a more aesthetic and more easily cleansable shape. The purpose of this study was to compare the efficacy of alveolar ridge augmentation using a subepithelial connective tissue graft in pouch and modified connective tissue graft technique. Materials and Methods: In this randomized, double blind, parallel and prospective study, 40 non-smoker individuals with 40 class III alveolar ridge defects in maxillary anterior were randomly divided in two groups. Group I received modified connective tissue graft, while group II were treated with subepithelial connective tissue graft in pouch technique. The defect size was measured in its horizontal and vertical dimension by utilizing a periodontal probe in a stone cast at base line, after 3 months, and 6 months post surgically. Analysis of variance and Bonferroni post-hoc test were used for statistical analysis. A two-tailed P < 0.05 was considered to be statistically significant. Results: Mean values in horizontal width after 6 months were 4.70 ± 0.87 mm, and 4.05 ± 0.89 mm for group I and II, respectively. Regarding vertical heights, obtained mean values were 4.75 ± 0.97 mm and 3.70 ± 0.92 mm for group I and group II, respectively. Conclusion: Within the limitations of this study, connective tissue graft proposed significantly more improvement as compare to connective tissue graft in pouch.

  14. Soft tissue augmentation - Use of hyaluronic acid as dermal filler

    Directory of Open Access Journals (Sweden)

    Vedamurthy Maya

    2004-11-01

    Full Text Available Soft tissue augmentation has revolutionized the treatment of the aging face. It is a technique in which a substance is injected under the skin. The concept of utilizing materials for soft tissue augmentation actually began around 1950 with the use of fluid silicone. Today we have a large armamentarium of implant materials to delay the tell tale signs of aging. Filling has replaced conventional surgery in facial rejuvenation. In this article, the emphasis will be on hyaluronic acid as this substance is easily available in India and ranks among the most widely used dermal fillers.

  15. Soft tissue augmentation - Use of hyaluronic acid as dermal filler

    Directory of Open Access Journals (Sweden)

    Vedamurthy Maya

    2004-01-01

    Full Text Available Soft tissue augmentation has revolutionized the treatment of the aging face. It is a technique in which a substance is injected under the skin. The concept of utilizing materials for soft tissue augmentation actually began around 1950 with the use of fluid silicone. Today we have a large armamentarium of implant materials to delay the tell tale signs of aging. Filling has replaced conventional surgery in facial rejuvenation. In this article, the emphasis will be on hyaluronic acid as this substance is easily available in India and ranks among the most widely used dermal fillers.

  16. Development of carbon-11 labeled acryl amides for selective PET imaging of active tissue transglutaminase.

    Science.gov (United States)

    van der Wildt, Berend; Wilhelmus, Micha M M; Bijkerk, Jonne; Haveman, Lizeth Y F; Kooijman, Esther J M; Schuit, Robert C; Bol, John G J M; Jongenelen, Cornelis A M; Lammertsma, Adriaan A; Drukarch, Benjamin; Windhorst, Albert D

    2016-04-01

    Tissue transglutaminase (TG2) is a ubiquitously expressed enzyme capable of forming metabolically and mechanically stable crosslinks between the γ-carboxamide of a glutamine acyl-acceptor substrate and the ε-amino functionality of a lysine acyl-donor substrate resulting in protein oligomers. High TG2 crosslinking activity has been implicated in the pathogenesis of various diseases including celiac disease, cancer and fibrotic and neurodegenerative diseases. Development of a PET tracer specific for active TG2 provides a novel tool to further investigate TG2 biology in vivo in disease states. Recently, potent irreversible active site TG2 inhibitors carrying an acrylamide warhead were synthesized and pharmacologically characterized. Three of these inhibitors, compound 1, 2 and 3, were successfully radiolabeled with carbon-11 on the acrylamide carbonyl position using a palladium mediated [(11)C]CO aminocarbonylation reaction. Ex vivo biodistribution and plasma stability were evaluated in healthy Wistar rats. Autoradiography was performed on MDA-MB-231 tumor sections. [(11)C]1, -2 and -3 were obtained in decay corrected radiochemical yields of 38-55%. Biodistribution showed low uptake in peripheral tissues, with the exception of liver and kidney. Low brain uptake of <0.05% ID/g was observed. Blood plasma analysis demonstrated that [(11)C]1 and [(11)C]2 were rapidly metabolized, whereas [(11)C]3 was metabolized at a more moderate rate (63.2 ± 6.8 and 28.7 ± 10.8% intact tracer after 15 and 45 min, respectively). Autoradiography with [(11)C]3 on MDA-MB-231 tumor sections showed selective and specific binding of the radiotracer to the active state of TG2. Taken together, these results identify [(11)C]3 as the most promising of the three compounds tested for development as PET radiotracer for the in vivo investigation of TG2 activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Extraction of low molecular weight RNA from Citrus trifolita tissues ...

    African Journals Online (AJOL)

    We employed a simple and quick method involving trizol for total RNA extraction from citrus tissues, then generation of LMW RNA using 4M LiCl, which have been successfully utilized in studies in our laboratory. Compared with traditional methods, this method is less expensive and produced high RNA yields while avoiding ...

  18. Effects of 2-deoxy-D-glucose, oligomycin and theophylline on in vitro glycerol metabolism in rat adipose tissue: response to insulin and epinephrine

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, M C; Herrera, E [Barcelona Univ. (Spain). Catedra de Fisiologia General

    1976-01-01

    The effects of 2-deoxy-D-glucose (2DG), oligomycin and theophylline on the in vitro production and metabolism of glycerol and its response to insulin and epinephrine were studied in epididymal fat pads from fed rats. 2-DG failed to affect basic or epinephrine-stimulated glycerol production but decreased the uptake of 1-/sup 14/C-glycerol by the tissue and its conversion to glyceride-glycerol. Oligomycin also failed to affect the basic production of glycerol, but it inhibited the affect of epinephrine on this parameter as well as the uptake and utilization of 1-/sup 14/C-glycerol. Theophylline enhanced the production of glycerol by the tissue, and this effect was not further augmented by epinephrine. Theophylline also inhibited the uptake and utilization of 1-/sup 14/C-glycerol; the most pronounced effect of theophylline was observed in the formation of /sup 14/C-fatty acids from 1-/sup 14/C-glycerol in the presence of glucose. Insulin, but not epinephrine, decreased the inhibitory effect of theophylline on glycerol utilization. It is concluded that these compounds affect the ability of adipose tissue to metabolize glycerol more intensely than the ability to release it through lipolysis. The pathway for glycerol utilization in adipose tissue appears to be more sensitive to changes in the availability of ATP than the mechanisms for the release of glycerol from the tissue.

  19. A Biodesigned Nanocomposite Biomaterial for Auricular Cartilage Reconstruction.

    Science.gov (United States)

    Nayyer, Leila; Jell, Gavin; Esmaeili, Ali; Birchall, Martin; Seifalian, Alexander M

    2016-05-01

    Current biomaterials for auricular replacement are associated with high rates of infection and extrusion. The development of new auricular biomaterials that mimic the mechanical properties of native tissue and promote desirable cellular interactions may prevent implant failure. A porous 3D nanocomposite scaffold (NS) based on POSS-PCU (polyhedral oligomeric silsesquioxane nanocage into polycarbonate based urea-urethane) is developed with an elastic modulus similar to native ear. In vitro biological interactions on this NS reveal greater protein adsorption, increased fibroblast adhesion, proliferation, and collagen production compared with Medpor (the current synthetic auricular implant). In vivo, the POSS-PCU with larger pores (NS2; 150-250 μm) have greater tissue ingrowth (≈5.8× and ≈1.4 × increase) than the POSS-PCU with smaller pores (NS1; 100-50 μm) and when compared to Medpor (>100 μm). The NS2 with the larger pores demonstrates a reduced fibrotic encapsulation compared with NS1 and Medpor (≈4.1× and ≈1.6×, respectively; P response for all materials may indicate that the elastic modulus and pore size of the implant scaffold could be important design considerations for influencing fibrotic responses to auricular and other soft tissue implants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Characterization of the Embryogenic Tissue of the Norway Spruce Including a Transition Layer between the Tissue and the Culture Medium by Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Kořínek R.

    2017-02-01

    Full Text Available The paper describes the visualization of the cells (ESEs and mucilage (ECMSN in an embryogenic tissue via magnetic resonance imaging (MRI relaxometry measurement combined with the subsequent multi-parametric segmentation. The computed relaxometry maps T1 and T2 show a thin layer (transition layer between the culture medium and the embryogenic tissue. The ESEs, mucilage, and transition layer differ in their relaxation times T1 and T2; thus, these times can be used to characterize the individual parts within the embryogenic tissue. The observed mean values of the relaxation times T1 and T2 of the ESEs, mucilage, and transition layer are as follows: 1469 ± 324 and 53 ± 10 ms, 1784 ± 124 and 74 ± 8 ms, 929 ± 164 and 32 ± 4.7 ms, respectively. The multi-parametric segmentation exploiting the T1 and T2 relaxation times as a classifier shows the distribution of the ESEs and mucilage within the embryogenic tissue. The discussed T1 and T2 indicators can be utilized to characterize both the growth-related changes in an embryogenic tissue and the effect of biotic/abiotic stresses, thus potentially becoming a distinctive indicator of the state of any examined embryogenic tissue.

  1. Measurement of cross-linked elastin synthesis in bleomycin-induced pulmonary fibrosis using a highly sensitive assay for desmosine and isodesmosine

    International Nuclear Information System (INIS)

    Cantor, J.O.; Osman, M.; Keller, S.; Cerreta, J.M.; Mandl, I.; Turino, G.M.

    1984-01-01

    Cross-linked elastin synthesis was measured in the intratracheal bleomycin model of interstitial pulmonary fibrosis by incorporation of 14C-lysine into the elastin-specific crosslinks, desmosine and isodesmosine. Detection of the labeled crosslinks was facilitated by development of a highly sensitive assay utilizing thin-layer electrophoresis. The results indicate that crosslinked elastin synthesis is significantly elevated from controls (p less than 0.05) at 1 to 3 weeks after exposure to bleomycin and returns to normal by 5 weeks. The increases in labeled elastin synthesis are not directly related to changes in either total lung protein synthesis or the pool size of the 14C-lysine. In comparison with collagen and glycosaminoglycan synthesis in this model of lung injury, maximal increases in cross-linked elastin formation occur later, but overlap with the elevated synthesis of these other connective tissue components. The marked increase from normal in cross-linked elastin synthesis in this model suggests that this tissue component is an important part of the fibrotic response of the pulmonary parenchyma and may play a role in the observed alterations in lung structure and function

  2. Evaluation of Topical Cyclosporine in Preventing the Development of Corneal Haze after Photorefractive Keratectomy

    Science.gov (United States)

    2014-05-13

    NAME OF RESPONSIBLE PERSON: a. REPORT UNCLASSIFIED b. ABSTRACT UNCLASSIFIED c. THIS PAGE UNCLASSIFIED 19b. TELEPHONE NUMBER...fibroblast proliferation and concomitant fibrotic scar deposition at the corneal wound site. Unfortunately, mitomycin C also inhibits epithelial...stromal, and endothelial replication and can lead to vascular endothelial injury and secondary tissue necrosis. 3 Due to these side effects, steroids are

  3. Microstructure alterations in beef intramuscular connective tissue caused by hydrodynamic pressure processing

    Science.gov (United States)

    Scanning electron microscopy (SEM) was utilized to evaluate microstructural changes in intramuscular connective tissue of beef semimembranosus muscle subjected to hydrodynamic pressure processing (HDP). Samples were HDP treated in a plastic container (HDP-PC) or a steel commercial unit (HDP-CU). C...

  4. Normal tissue complication probability (NTCP), the clinician,s perspective

    International Nuclear Information System (INIS)

    Yeoh, E.K.

    2011-01-01

    Full text: 3D radiation treatment planning has enabled dose distributions to be related to the volume of normal tissues irradiated. The dose volume histograms thus derived have been utilized to set NTCP dose constraints to facilitate optimization of treatment planning. However, it is not widely appreciated that a number of important variables other than DYH's which determine NTCP in the individual patient. These variables will be discussed under the headings of patient and treatment related as well as tumour related factors. Patient related factors include age, co-morbidities such as connective tissue disease and diabetes mellitus, previous tissue/organ damage, tissue architectural organization (parallel or serial), regional tissue/organ and individual tissue/organ radiosensitivities as well as the development of severe acute toxicity. Treatment related variables which need to be considered include dose per fraction (if not the conventional 1.8012.00 Gy/fraction, particularly for IMRT), number of fractions and total dose, dose rate (particularly if combined with brachytherapy) and concurrent chemotherapy or other biological dose modifiers. Tumour related factors which impact on NTCP include infiltration of normal tissue/organ usually at presentation leading to compromised function but also with recurrent disease after radiation therapy as well as variable tumour radiosensitivities between and within tumour types. Whilst evaluation of DYH data is a useful guide in the choice of treatment plan, the current state of knowledge requires the clinician to make an educated judgement based on a consideration of the other factors.

  5. Quantitative imaging of single upconversion nanoparticles in biological tissue.

    Directory of Open Access Journals (Sweden)

    Annemarie Nadort

    Full Text Available The unique luminescent properties of new-generation synthetic nanomaterials, upconversion nanoparticles (UCNPs, enabled high-contrast optical biomedical imaging by suppressing the crowded background of biological tissue autofluorescence and evading high tissue absorption. This raised high expectations on the UCNP utilities for intracellular and deep tissue imaging, such as whole animal imaging. At the same time, the critical nonlinear dependence of the UCNP luminescence on the excitation intensity results in dramatic signal reduction at (∼1 cm depth in biological tissue. Here, we report on the experimental and theoretical investigation of this trade-off aiming at the identification of optimal application niches of UCNPs e.g. biological liquids and subsurface tissue layers. As an example of such applications, we report on single UCNP imaging through a layer of hemolyzed blood. To extend this result towards in vivo applications, we quantified the optical properties of single UCNPs and theoretically analyzed the prospects of single-particle detectability in live scattering and absorbing bio-tissue using a human skin model. The model predicts that a single 70-nm UCNP would be detectable at skin depths up to 400 µm, unlike a hardly detectable single fluorescent (fluorescein dye molecule. UCNP-assisted imaging in the ballistic regime thus allows for excellent applications niches, where high sensitivity is the key requirement.

  6. Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Biraja C. Dash

    2016-07-01

    Full Text Available There is an urgent need for an efficient approach to obtain a large-scale and renewable source of functional human vascular smooth muscle cells (VSMCs to establish robust, patient-specific tissue model systems for studying the pathogenesis of vascular disease, and for developing novel therapeutic interventions. Here, we have derived a large quantity of highly enriched functional VSMCs from human induced pluripotent stem cells (hiPSC-VSMCs. Furthermore, we have engineered 3D tissue rings from hiPSC-VSMCs using a facile one-step cellular self-assembly approach. The tissue rings are mechanically robust and can be used for vascular tissue engineering and disease modeling of supravalvular aortic stenosis syndrome. Our method may serve as a model system, extendable to study other vascular proliferative diseases for drug screening. Thus, this report describes an exciting platform technology with broad utility for manufacturing cell-based tissues and materials for various biomedical applications.

  7. Towards artificial tissue models: past, present, and future of 3D bioprinting.

    Science.gov (United States)

    Arslan-Yildiz, Ahu; El Assal, Rami; Chen, Pu; Guven, Sinan; Inci, Fatih; Demirci, Utkan

    2016-03-01

    Regenerative medicine and tissue engineering have seen unprecedented growth in the past decade, driving the field of artificial tissue models towards a revolution in future medicine. Major progress has been achieved through the development of innovative biomanufacturing strategies to pattern and assemble cells and extracellular matrix (ECM) in three-dimensions (3D) to create functional tissue constructs. Bioprinting has emerged as a promising 3D biomanufacturing technology, enabling precise control over spatial and temporal distribution of cells and ECM. Bioprinting technology can be used to engineer artificial tissues and organs by producing scaffolds with controlled spatial heterogeneity of physical properties, cellular composition, and ECM organization. This innovative approach is increasingly utilized in biomedicine, and has potential to create artificial functional constructs for drug screening and toxicology research, as well as tissue and organ transplantation. Herein, we review the recent advances in bioprinting technologies and discuss current markets, approaches, and biomedical applications. We also present current challenges and provide future directions for bioprinting research.

  8. Tissue-Engineered Tendon for Enthesis Regeneration in a Rat Rotator Cuff Model

    Directory of Open Access Journals (Sweden)

    Michael J. Smietana

    2017-06-01

    Full Text Available Healing of rotator cuff (RC injuries with current suture or augmented scaffold techniques fails to regenerate the enthesis and instead forms a weaker fibrovascular scar that is prone to subsequent failure. Regeneration of the enthesis is the key to improving clinical outcomes for RC injuries. We hypothesized that the utilization of our tissue-engineered tendon to repair either an acute or a chronic full-thickness supraspinatus tear would regenerate a functional enthesis and return the biomechanics of the tendon back to that found in native tissue. Engineered tendons were fabricated from bone marrow-derived mesenchymal stem cells utilizing our well-described fabrication technology. Forty-three rats underwent unilateral detachment of the supraspinatus tendon followed by acute (immediate or chronic (4 weeks retracted repair by using either our engineered tendon or a trans-osseous suture technique. Animals were sacrificed at 8 weeks. Biomechanical and histological analyses of the regenerated enthesis and tendon were performed. Statistical analysis was performed by using a one-way analysis of variance with significance set at p < 0.05. Acute repairs using engineered tendon had improved enthesis structure and lower biomechanical failures compared with suture repairs. Chronic repairs with engineered tendon had a more native-like enthesis with increased fibrocartilage formation, reduced scar formation, and lower biomechanical failure compared with suture repair. Thus, the utilization of our tissue-engineered tendon showed improve enthesis regeneration and improved function in chronic RC repairs compared with suture repair. Clinical Significance: Our engineered tendon construct shows promise as a clinically relevant method for repair of RC injuries.

  9. The distribution of immunomodulatory cells in the lungs of patients with idiopathic pulmonary fibrosis

    Science.gov (United States)

    Nuovo, Gerard J.; Hagood, James S.; Magro, Cynthia M.; Chin, Nena; Kapil, Rubina; Davis, Luke; Marsh, Clay B.; Folcik, Virginia A.

    2011-01-01

    We have characterized the immune system involvement in the disease processes of idiopathic pulmonary fibrosis in novel ways. To do so, we analyzed lung tissue from 21 cases of idiopathic pulmonary fibrosis and 21 (non-fibrotic, non-cancerous) controls for immune cell and inflammation-related markers. The immunohistochemical analysis of the tissue was grouped by patterns of severity in disease pathology. There were significantly greater numbers of CD68+ and CD80+ cells, and significantly fewer CD3+, CD4+, and CD45RO+ cells in areas of relatively (histologically) normal lung in biopsies from idiopathic pulmonary fibrosis patients compared to controls. In zones of active disease, characterized by epithelial cell regeneration and fibrosis, there were significantly more cells expressing CD4, CD8, CD20, CD68, CD80, CCR6, S100, IL-17, tumor necrosis factor-α, and retinoic acid-related orphan receptors compared to histologically normal lung areas from idiopathic pulmonary fibrosis patients. Inflammation was implicated in these active regions by the cells that expressed retinoid orphan receptor-α, -β, and -γ, CCR6, and IL-17. The regenerating epithelial cells predominantly expressed these pro-inflammatory molecules, as evidenced by co-expression analyses with epithelial cytokeratins. Macrophages in pseudo-alveoli and CD3+ T cells in the fibrotic interstitium also expressed IL-17. Co-expression of IL-17 with retinoid orphan receptors, and epithelial cytoskeletal proteins, CD68, and CD3 in epithelial cells, macrophages, and T-cells, respectively, confirmed the production of IL-17 by these cell types. There was little staining for Foxp3, CD56, or CD34 in any idiopathic pulmonary fibrosis lung regions. The fibrotic regions had fewer immune cells overall. In summary, our study shows participation of innate and adaptive mononuclear cells in active-disease regions of idiopathic pulmonary fibrosis lung, where the regenerating epithelial cells appear to propagate inflammation

  10. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis.

    Science.gov (United States)

    Calabro, Sarah R; Maczurek, Annette E; Morgan, Alison J; Tu, Thomas; Wen, Victoria W; Yee, Christine; Mridha, Auvro; Lee, Maggie; d'Avigdor, William; Locarnini, Stephen A; McCaughan, Geoffrey W; Warner, Fiona J; McLennan, Susan V; Shackel, Nicholas A

    2014-01-01

    The classical paradigm of liver injury asserts that hepatic stellate cells (HSC) produce, remodel and turnover the abnormal extracellular matrix (ECM) of fibrosis via matrix metalloproteinases (MMPs). In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC. Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention. In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14) increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls. We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a novel pathway that could be targeted by

  11. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis.

    Directory of Open Access Journals (Sweden)

    Sarah R Calabro

    Full Text Available The classical paradigm of liver injury asserts that hepatic stellate cells (HSC produce, remodel and turnover the abnormal extracellular matrix (ECM of fibrosis via matrix metalloproteinases (MMPs. In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC.Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention.In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14 increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls.We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a novel pathway that could be

  12. Thermal distribution in biological tissue at laser induced fluorescence and photodynamic therapy

    Science.gov (United States)

    Krasnikov, I. V.; Seteikin, A. Yu.; Drakaki, E.; Makropoulou, M.

    2012-03-01

    Laser induced fluorescence spectroscopy and photodynamic therapy (PDT) are techniques currently introduced in clinical applications for visualization and local destruction of malignant tumours as well as premalignant lesions. During the laser irradiation of tissues for the diagnostic and therapeutic purposes, the absorbed optical energy generates heat, although the power density of the treatment light for surface illumination is normally low enough not to cause any significantly increased tissue temperature. In this work we tried to evaluate the utility of Monte Carlo modeling for simulating the temperature fields and the dynamics of heat conduction into the skin tissue under several laser irradiation conditions with both a pulsed UV laser and a continuous wave visible laser beam. The analysis of the results showed that heat is not localized on the surface, but it is collected inside the tissue. By varying the boundary conditions on the surface and the type of the laser radiation (continuous or pulsed) we can reach higher than normal temperature inside the tissue without simultaneous formation of thermally damaged tissue (e.g. coagulation or necrosis zone).

  13. A short review: Recent advances in electrospinning for bone tissue regeneration

    Directory of Open Access Journals (Sweden)

    Song-Hee Shin

    2012-12-01

    Full Text Available Nanofibrous structures developed by electrospinning technology provide attractive extracellular matrix conditions for the anchorage, migration, and differentiation of tissue cells, including those responsible for the regeneration of hard tissues. Together with the ease of set up and cost-effectiveness, the possibility to produce nanofibers with a wide range of compositions and morphologies is the merit of electrospinning. Significant efforts have exploited the development of bone regenerative nanofibers, which includes tailoring of composite/hybrid compositions that are bone mimicking and the surface functionalization such as mineralization. Moreover, by utilizing bioactive molecules such as adhesive proteins, growth factors, and chemical drugs, in concert with the nanofibrous matrices, it is possible to provide artificial materials with improved cellular responses and therapeutic efficacy. These studies have mainly focused on the regulation of stem cell behaviors for use in regenerative medicine and tissue engineering. While there are some challenges in achieving controllable delivery of bioactive molecules and complex-shaped three-dimensional scaffolds for tissue engineering, the electrospun nanofibrous matrices can still have a beneficial impact in the area of hard-tissue regeneration.

  14. Successful treatment of radiation-induced fibrosis using Cu/Zn-SOD and Mn-SOD: an experimental study.

    Science.gov (United States)

    Lefaix, J L; Delanian, S; Leplat, J J; Tricaud, Y; Martin, M; Nimrod, A; Baillet, F; Daburon, F

    1996-05-01

    To establish how far liposomal copper/zinc superoxide dismutase (Cu/Zn-SOD) and manganese superoxide dismutase (Mn-SOD), respectively, reduce radiation-induced fibrosis (RIF), using a well-characterized pig model of RIF permitting the design of a controlled laboratory experiment. In this model of acute localized gamma irradiation simulating accidental overexposure in humans, three groups of five large white pigs were irradiated using a collimated 192Ir source to deliver a single dose of 160 Gy onto the skin surface (100%) of the outer side of the thigh. A well-defined block of subcutaneous fibrosis involving skin and skeletal muscle developed 6 months after irradiation. One experimental group of five pigs was then injected i.m. with 10 mg/10 kg b.wt. of Cu/Zn-SOD, twice a week for 3 weeks, and another experimental group of five was injected with 10 mg/10 kg b.wt. of Mn-SOD, three times a week for 3 weeks. Five irradiated control pigs were injected with physiological serum. Animals were assessed for changes in the density of the palpated fibrotic block and in the dimensions of the projected cutaneous surface. Block depth was determined by ultrasound. Physical and sonographic findings were confirmed by autopsy 12-14 weeks after completing SOD injections. The density, length, width, and depth of the fibrotic block, and the areas and volume of its projected cutaneous surface were compared before treatment, 1, 3, and 6 weeks thereafter, and at autopsy, 12-14 weeks after treatment ended. The experimental animals exhibited no change in behavior and no abnormal clinical or anatomic signs. Whether they were given Cu/Zn- or Mn-SOD, significant and roughly equivalent softening and shrinking of the fibrotic block were noted in all treated animals between the first week after treatment ended and autopsy, when mean regression was 45% for length and width, 30% for depth, and 70% for area and volume. Histologic examination showed completely normal muscle and subcutaneous tissue

  15. Experimental study on active specific immunotherapy utilizing the immune reaction of low-dose irradiated tumor tissue

    International Nuclear Information System (INIS)

    Imanaka, Kazufumi; Tanaka, Koji; Sasai, Keisuke

    1984-01-01

    We have already reported the effectiveness of active specific immunotherapy based on the immune reaction of low-dose irradiated tumor tissue. In the present study, three kinds of immunotherapeutic methods subdivided by used cells were performed in order to compare each effectiveness. C3H/He mice bearing MM 46 tumor transplanted in the right hind paws received local irradiation with the dose of 3,000 rad on the 6th day, and the above-mentioned three methods, using tumor cells, lymphocytes, and tumor cells combining lymphocytes which were all separated from the topical tumor tissue exposed to 2,000 rad, were applied respectively on the 14 th day. The most effective data were obtained from two groups treated by the immunotherapy with tumor cells combining lymphocytes, which virtually caused the longest survival and best tumor growth control. (author)

  16. The hepatic stellate cell in sight : targeting antiproliferative drugs to the fibrotic liver

    NARCIS (Netherlands)

    Greupink, Albert Hendrikus

    2006-01-01

    Liver fibrosis is characterized by the accumulation of excessive amounts of scar tissue in response to chronic liver injury. Important causes of chronic liver injury are viral hepatitis, metabolic disorders such as Wilson’s disease, autoimmune diseases and chronic exposure to certain chemicals,

  17. The rapid manufacture of uniform composite multicellular-biomaterial micropellets, their assembly into macroscopic organized tissues, and potential applications in cartilage tissue engineering.

    Science.gov (United States)

    Babur, Betul Kul; Kabiri, Mahboubeh; Klein, Travis Jacob; Lott, William B; Doran, Michael Robert

    2015-01-01

    We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage tissues; the incorporation of CD enhanced tissue size and matrix content, but did not enhance chondrogenic gene expression.

  18. Tunable Collagen I Hydrogels for Engineered Physiological Tissue Micro-Environments

    Science.gov (United States)

    Antoine, Elizabeth E.; Vlachos, Pavlos P.; Rylander, Marissa N.

    2015-01-01

    Collagen I hydrogels are commonly used to mimic the extracellular matrix (ECM) for tissue engineering applications. However, the ability to design collagen I hydrogels similar to the properties of physiological tissues has been elusive. This is primarily due to the lack of quantitative correlations between multiple fabrication parameters and resulting material properties. This study aims to enable informed design and fabrication of collagen hydrogels in order to reliably and reproducibly mimic a variety of soft tissues. We developed empirical predictive models relating fabrication parameters with material and transport properties. These models were obtained through extensive experimental characterization of these properties, which include compression modulus, pore and fiber diameter, and diffusivity. Fabrication parameters were varied within biologically relevant ranges and included collagen concentration, polymerization pH, and polymerization temperature. The data obtained from this study elucidates previously unknown fabrication-property relationships, while the resulting equations facilitate informed a priori design of collagen hydrogels with prescribed properties. By enabling hydrogel fabrication by design, this study has the potential to greatly enhance the utility and relevance of collagen hydrogels in order to develop physiological tissue microenvironments for a wide range of tissue engineering applications. PMID:25822731

  19. Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering

    KAUST Repository

    Limongi, Tania; Tirinato, Luca; Pagliari, Francesca; Giugni, Andrea; Allione, Marco; Perozziello, Gerardo; Candeloro, Patrizio; Di Fabrizio, Enzo M.

    2016-01-01

    Nanotechnology allows the realization of new materials and devices with basic structural unit in the range of 1-100 nm and characterized by gaining control at the atomic, molecular, and supramolecular level. Reducing the dimensions of a material into the nanoscale range usually results in the change of its physiochemical properties such as reactivity, crystallinity, and solubility. This review treats the convergence of last research news at the interface of nanostructured biomaterials and tissue engineering for emerging biomedical technologies such as scaffolding and tissue regeneration. The present review is organized into three main sections. The introduction concerns an overview of the increasing utility of nanostructured materials in the field of tissue engineering. It elucidates how nanotechnology, by working in the submicron length scale, assures the realization of a biocompatible interface that is able to reproduce the physiological cell-matrix interaction. The second, more technical section, concerns the design and fabrication of biocompatible surface characterized by micro- and submicroscale features, using microfabrication, nanolithography, and miscellaneous nanolithographic techniques. In the last part, we review the ongoing tissue engineering application of nanostructured materials and scaffolds in different fields such as neurology, cardiology, orthopedics, and skin tissue regeneration.

  20. Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering

    KAUST Repository

    Limongi, Tania

    2016-09-02

    Nanotechnology allows the realization of new materials and devices with basic structural unit in the range of 1-100 nm and characterized by gaining control at the atomic, molecular, and supramolecular level. Reducing the dimensions of a material into the nanoscale range usually results in the change of its physiochemical properties such as reactivity, crystallinity, and solubility. This review treats the convergence of last research news at the interface of nanostructured biomaterials and tissue engineering for emerging biomedical technologies such as scaffolding and tissue regeneration. The present review is organized into three main sections. The introduction concerns an overview of the increasing utility of nanostructured materials in the field of tissue engineering. It elucidates how nanotechnology, by working in the submicron length scale, assures the realization of a biocompatible interface that is able to reproduce the physiological cell-matrix interaction. The second, more technical section, concerns the design and fabrication of biocompatible surface characterized by micro- and submicroscale features, using microfabrication, nanolithography, and miscellaneous nanolithographic techniques. In the last part, we review the ongoing tissue engineering application of nanostructured materials and scaffolds in different fields such as neurology, cardiology, orthopedics, and skin tissue regeneration.

  1. A historical perspective on the development of modern concepts of tissue perfusion: prehistory to the twentieth century.

    Science.gov (United States)

    Ashby, Nathan; Squiers, Joshua

    2014-09-01

    The historical development of the concept of perfusion is traced, with particular focus on the development of the modern clinical concepts of perfusion through the fields of anatomy, physiology, and biochemistry. This article reviews many of the significant contributors to the changing ideas of perfusion up through the twentieth century that have influenced the modern physiologic circulatory and metabolic models. The developments outlined have provided the modern model of perfusion, linking the cardiopulmonary circulation, tissue oxygen utilization and carbon dioxide production, food intake, tissue waste production and elimination, and ultimately the production and utilization of ATP in the body. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Advancing environmental toxicology through chemical dosimetry: External exposures versus tissue residues

    Science.gov (United States)

    McCarty, L.S.; Landrum, P.F.; Luoma, S.N.; Meador, J.P.; Merten, A.A.; Shephard, B.K.; van Wezelzz, A.P.

    2011-01-01

    The tissue residue dose concept has been used, although in a limited manner, in environmental toxicology for more than 100 y. This review outlines the history of this approach and the technical background for organic chemicals and metals. Although the toxicity of both can be explained in tissue residue terms, the relationship between external exposure concentration, body and/or tissues dose surrogates, and the effective internal dose at the sites of toxic action tends to be more complex for metals. Various issues and current limitations related to research and regulatory applications are also examined. It is clear that the tissue residue approach (TRA) should be an integral component in future efforts to enhance the generation, understanding, and utility of toxicity testing data, both in the laboratory and in the field. To accomplish these goals, several key areas need to be addressed: 1) development of a risk-based interpretive framework linking toxicology and ecology at multiple levels of biological organization and incorporating organism-based dose metrics; 2) a broadly applicable, generally accepted classification scheme for modes/mechanisms of toxic action with explicit consideration of residue information to improve both single chemical and mixture toxicity data interpretation and regulatory risk assessment; 3) toxicity testing protocols updated to ensure collection of adequate residue information, along with toxicokinetics and toxicodynamics information, based on explicitly defined toxicological models accompanied by toxicological model validation; 4) continued development of residueeffect databases is needed ensure their ongoing utility; and 5) regulatory guidance incorporating residue-based testing and interpretation approaches, essential in various jurisdictions. ??:2010 SETAC.

  3. Diagnostic utility of NCOA2 fluorescence in situ hybridization and Stat6 immunohistochemistry staining for soft tissue angiofibroma and morphologically similar fibrovascular tumors.

    Science.gov (United States)

    Sugita, Shintaro; Aoyama, Tomoyuki; Kondo, Kei; Keira, Yoshiko; Ogino, Jiro; Nakanishi, Katsuya; Kaya, Mitsunori; Emori, Makoto; Tsukahara, Tomohide; Nakajima, Hisaya; Takagi, Masayuki; Hasegawa, Tadashi

    2014-08-01

    Soft tissue angiofibroma (STA), a recently suggested new histologic entity, is a benign fibrovascular soft tissue tumor composed of bland spindle-shaped tumor cells with abundant collagenous to myxoid stroma and branching small vessels. The lesion has a characteristic AHRR-NCOA2 fusion gene derived from chromosomal translocation of t(5;8)(p15;q13). However, morphologically similar tumors containing abundant fibrovascular and myxoid stroma can complicate diagnosis. We designed an original DNA probe for detecting NCOA2 split signals on fluorescence in situ hybridization (FISH) and estimated its utility with 20 fibrovascular tumors: 4 each of STAs, solitary fibrous tumors (SFTs), and cellular angiofibromas and 3 each of low-grade myxofibrosarcomas, myxoid liposarcomas, and low-grade fibromyxoid sarcomas. We also performed FISH for 13q14 deletion and immunohistochemistry (IHC) staining for estrogen receptor, progesterone receptor, retinoblastoma protein, and MUC-4 expression. Furthermore, IHC for Stat6 was conducted in the 20 cases analyzed by FISH and in an additional 26 SFTs. We found moderate to strong nuclear Stat6 expression in all SFTs but no expression in the other tumors. Both estrogen receptor and progesterone receptor expressions were observed in STAs, SFTs, and cellular angiofibromas. Expression of retinoblastoma protein was found in less than 10% of cells in all tumor types except myxoid liposarcoma. The low-grade fibromyxoid sarcomas were strongly positive for MUC-4. All STAs showed NCOA2 split signals on FISH. All tumors, regardless of histologic type, had 13q14 deletion. The NCOA2 FISH technique is a practical method for confirming STA diagnosis. The combination of NCOA2 FISH and Stat6 IHC proved effective for the differential diagnosis of STA, even when using small biopsy specimens. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. [Medical use of fetal cells and tissue: ethical aspects].

    Science.gov (United States)

    Wolff, H P

    1992-04-01

    After considering the moral status of the living and of the dead human fetus, the article examines various ethical arguments connected with the use of fetal remains following elective abortion: financial or humanitarian incentives for the termination of pregnancy, conflicts of interest between mother and user, authority over fetal remains and modality of donation and utilization of the fetus. To prevent improper use of fetal remains it is recommended: to separate completely the decisions relating to abortion (first) and to the subsequent use of fetal tissues (second); to obtain explicit informed consent from the mother, making it impossible for her to direct any specific use of the fetal tissues; to base decisions on the method and timing of an abortion on the mother's health care needs alone; to exclude those involved in the process of abortion from any use of the fetus; to protect the anonymity of donor and recipient through an intermediary (tissue bank).

  5. Utility of RNA Sequencing for Analysis of Maize Reproductive Transcriptomes

    Directory of Open Access Journals (Sweden)

    Rebecca M. Davidson

    2011-11-01

    Full Text Available Transcriptome sequencing is a powerful method for studying global expression patterns in large, complex genomes. Evaluation of sequence-based expression profiles during reproductive development would provide functional annotation to genes underlying agronomic traits. We generated transcriptome profiles for 12 diverse maize ( L. reproductive tissues representing male, female, developing seed, and leaf tissues using high throughput transcriptome sequencing. Overall, ∼80% of annotated genes were expressed. Comparative analysis between sequence and hybridization-based methods demonstrated the utility of ribonucleic acid sequencing (RNA-seq for expression determination and differentiation of paralagous genes (∼85% of maize genes. Analysis of 4975 gene families across reproductive tissues revealed expression divergence is proportional to family size. In all pairwise comparisons between tissues, 7 (pre- vs. postemergence cobs to 48% (pollen vs. ovule of genes were differentially expressed. Genes with expression restricted to a single tissue within this study were identified with the highest numbers observed in leaves, endosperm, and pollen. Coexpression network analysis identified 17 gene modules with complex and shared expression patterns containing many previously described maize genes. The data and analyses in this study provide valuable tools through improved gene annotation, gene family characterization, and a core set of candidate genes to further characterize maize reproductive development and improve grain yield potential.

  6. Simultaneous inference of phenotype-associated genes and relevant tissues from GWAS data via Bayesian integration of multiple tissue-specific gene networks.

    Science.gov (United States)

    Wu, Mengmeng; Lin, Zhixiang; Ma, Shining; Chen, Ting; Jiang, Rui; Wong, Wing Hung

    2017-12-01

    Although genome-wide association studies (GWAS) have successfully identified thousands of genomic loci associated with hundreds of complex traits in the past decade, the debate about such problems as missing heritability and weak interpretability has been appealing for effective computational methods to facilitate the advanced analysis of the vast volume of existing and anticipated genetic data. Towards this goal, gene-level integrative GWAS analysis with the assumption that genes associated with a phenotype tend to be enriched in biological gene sets or gene networks has recently attracted much attention, due to such advantages as straightforward interpretation, less multiple testing burdens, and robustness across studies. However, existing methods in this category usually exploit non-tissue-specific gene networks and thus lack the ability to utilize informative tissue-specific characteristics. To overcome this limitation, we proposed a Bayesian approach called SIGNET (Simultaneously Inference of GeNEs and Tissues) to integrate GWAS data and multiple tissue-specific gene networks for the simultaneous inference of phenotype-associated genes and relevant tissues. Through extensive simulation studies, we showed the effectiveness of our method in finding both associated genes and relevant tissues for a phenotype. In applications to real GWAS data of 14 complex phenotypes, we demonstrated the power of our method in both deciphering genetic basis and discovering biological insights of a phenotype. With this understanding, we expect to see SIGNET as a valuable tool for integrative GWAS analysis, thereby boosting the prevention, diagnosis, and treatment of human inherited diseases and eventually facilitating precision medicine.

  7. Tracking Regional Tissue Volume and Function Change in Lung Using Image Registration

    Directory of Open Access Journals (Sweden)

    Kunlin Cao

    2012-01-01

    Full Text Available We have previously demonstrated the 24-hour redistribution and reabsorption of bronchoalveolar lavage (BAL fluid delivered to the lung during a bronchoscopic procedure in normal volunteers. In this work we utilize image-matching procedures to correlate fluid redistribution and reabsorption to changes in regional lung function. Lung CT datasets from six human subjects were used in this study. Each subject was scanned at four time points before and after BAL procedure. Image registration was performed to align images at different time points and different inflation levels. The resulting dense displacement fields were utilized to track tissue volume changes and reveal deformation patterns of local parenchymal tissue quantitatively. The registration accuracy was assessed by measuring landmark matching errors, which were on the order of 1 mm. The results show that quantitative-assessed fluid volume agreed well with bronchoscopist-reported unretrieved BAL volume in the whole lungs (squared linear correlation coefficient was 0.81. The average difference of lung tissue volume at baseline and after 24 hours was around 2%, which indicates that BAL fluid in the lungs was almost absorbed after 24 hours. Regional lung-function changes correlated with the presence of BAL fluid, and regional function returned to baseline as the fluid was reabsorbed.

  8. Seeing through Musculoskeletal Tissues: Improving In Situ Imaging of Bone and the Lacunar Canalicular System through Optical Clearing

    Science.gov (United States)

    Berke, Ian M.; Miola, Joseph P.; David, Michael A.; Smith, Melanie K.; Price, Christopher

    2016-01-01

    In situ, cells of the musculoskeletal system reside within complex and often interconnected 3-D environments. Key to better understanding how 3-D tissue and cellular environments regulate musculoskeletal physiology, homeostasis, and health is the use of robust methodologies for directly visualizing cell-cell and cell-matrix architecture in situ. However, the use of standard optical imaging techniques is often of limited utility in deep imaging of intact musculoskeletal tissues due to the highly scattering nature of biological tissues. Drawing inspiration from recent developments in the deep-tissue imaging field, we describe the application of immersion based optical clearing techniques, which utilize the principle of refractive index (RI) matching between the clearing/mounting media and tissue under observation, to improve the deep, in situ imaging of musculoskeletal tissues. To date, few optical clearing techniques have been applied specifically to musculoskeletal tissues, and a systematic comparison of the clearing ability of optical clearing agents in musculoskeletal tissues has yet to be fully demonstrated. In this study we tested the ability of eight different aqueous and non-aqueous clearing agents, with RIs ranging from 1.45 to 1.56, to optically clear murine knee joints and cortical bone. We demonstrated and quantified the ability of these optical clearing agents to clear musculoskeletal tissues and improve both macro- and micro-scale imaging of musculoskeletal tissue across several imaging modalities (stereomicroscopy, spectroscopy, and one-, and two-photon confocal microscopy) and investigational techniques (dynamic bone labeling and en bloc tissue staining). Based upon these findings we believe that optical clearing, in combination with advanced imaging techniques, has the potential to complement classical musculoskeletal analysis techniques; opening the door for improved in situ investigation and quantification of musculoskeletal tissues. PMID:26930293

  9. Seeing through Musculoskeletal Tissues: Improving In Situ Imaging of Bone and the Lacunar Canalicular System through Optical Clearing.

    Directory of Open Access Journals (Sweden)

    Ian M Berke

    Full Text Available In situ, cells of the musculoskeletal system reside within complex and often interconnected 3-D environments. Key to better understanding how 3-D tissue and cellular environments regulate musculoskeletal physiology, homeostasis, and health is the use of robust methodologies for directly visualizing cell-cell and cell-matrix architecture in situ. However, the use of standard optical imaging techniques is often of limited utility in deep imaging of intact musculoskeletal tissues due to the highly scattering nature of biological tissues. Drawing inspiration from recent developments in the deep-tissue imaging field, we describe the application of immersion based optical clearing techniques, which utilize the principle of refractive index (RI matching between the clearing/mounting media and tissue under observation, to improve the deep, in situ imaging of musculoskeletal tissues. To date, few optical clearing techniques have been applied specifically to musculoskeletal tissues, and a systematic comparison of the clearing ability of optical clearing agents in musculoskeletal tissues has yet to be fully demonstrated. In this study we tested the ability of eight different aqueous and non-aqueous clearing agents, with RIs ranging from 1.45 to 1.56, to optically clear murine knee joints and cortical bone. We demonstrated and quantified the ability of these optical clearing agents to clear musculoskeletal tissues and improve both macro- and micro-scale imaging of musculoskeletal tissue across several imaging modalities (stereomicroscopy, spectroscopy, and one-, and two-photon confocal microscopy and investigational techniques (dynamic bone labeling and en bloc tissue staining. Based upon these findings we believe that optical clearing, in combination with advanced imaging techniques, has the potential to complement classical musculoskeletal analysis techniques; opening the door for improved in situ investigation and quantification of musculoskeletal

  10. Multiattribute utility theory without expected utility foundations

    NARCIS (Netherlands)

    Wakker, P.P.; Miyamoto, J.

    1996-01-01

    Methods for determining the form of utilities are needed for the implementation of utility theory in specific decisions. An important step forward was achieved when utility theorists characterized useful parametric families of utilities, and simplifying decompositions of multiattribute utilities.

  11. Multiattribute Utility Theory without Expected Utility Foundations

    NARCIS (Netherlands)

    Stiggelbout, A.M.; Wakker, P.P.

    1995-01-01

    Methods for determining the form of utilities are needed for the implementation of utility theory in specific decisions. An important step forward was achieved when utility theorists characterized useful parametric families of utilities, and simplifying decompositions of multiattribute utilities.

  12. Assessing the clinical utility of measuring Insulin-like Growth Factor Binding Proteins in tissues and sera of melanoma patients

    Directory of Open Access Journals (Sweden)

    Buckley Michael T

    2008-11-01

    Full Text Available Abstract Background Different Insulin-like Growth Factor Binding Proteins (IGFBPs have been investigated as potential biomarkers in several types of tumors. In this study, we examined both IGFBP-3 and -4 levels in tissues and sera of melanoma patients representing different stages of melanoma progression. Methods The study cohort consisted of 132 melanoma patients (primary, n = 72; metastatic, n = 60; 64 Male, 68 Female; Median Age = 56 prospectively enrolled in the New York University School of Medicine Interdisciplinary Melanoma Cooperative Group (NYU IMCG between August 2002 and December 2006. We assessed tumor-expression and circulating sera levels of IGFBP-3 and -4 using immunohistochemistry and ELISA assays. Correlations with clinicopathologic parameters were examined using Wilcoxon rank-sum tests and Spearman-rank correlation coefficients. Results Median IGFBP-4 tumor expression was significantly greater in primary versus metastatic patients (70% versus 10%, p = 0.01 A trend for greater median IGFBP-3 sera concentration was observed in metastatic versus primary patients (4.9 μg/ml vs. 3.4 μg/ml, respectively, p = 0.09. However, sera levels fell within a normal range for IGFBP-3. Neither IGFBP-3 nor -4 correlated with survival in this subset of patients. Conclusion Decreased IGFBP-4 tumor expression might be a step in the progression from primary to metastatic melanoma. Our data lend support to a recently-described novel tumor suppressor role of secreting IGFBPs in melanoma. However, data do not support the clinical utility of measuring levels of IGFBP-3 and -4 in sera of melanoma patients.

  13. Vasoconstrictor effect of high FFA/albumin ratios in adipose tissue in vivo

    DEFF Research Database (Denmark)

    Bülow, J; Madsen, J; Astrup, A

    1985-01-01

    Subcutaneous or perirenal adipose tissue blood flow was measured with the 133Xe-washout technique before and after intravenous injection or infusion of Intralipid in six anesthetized, otherwise intact mongrel dogs. In four anesthetized mongrel puppies adipose tissue blood flow was measured...... as well as in young dogs after this treatment. The administration of Intralipid did not per se induce the vasoconstriction. The vasoconstriction took place simultaneously with increasing FFA/albumin molar ratios. The results support our previous findings in perfused fat pads that high molar FFA....../albumin ratios increase vascular resistance in adipose tissue and they give further support to our suggestion that this vasoconstriction may be a link in a negative-feedback mechanism regulating FFA-mobilization in relation to FFA utilization....

  14. Collagen matrix as a tool in studying fibroblastic cell behavior.

    Science.gov (United States)

    Kanta, Jiří

    2015-01-01

    Type I collagen is a fibrillar protein, a member of a large family of collagen proteins. It is present in most body tissues, usually in combination with other collagens and other components of extracellular matrix. Its synthesis is increased in various pathological situations, in healing wounds, in fibrotic tissues and in many tumors. After extraction from collagen-rich tissues it is widely used in studies of cell behavior, especially those of fibroblasts and myofibroblasts. Cells cultured in a classical way, on planar plastic dishes, lack the third dimension that is characteristic of body tissues. Collagen I forms gel at neutral pH and may become a basis of a 3D matrix that better mimics conditions in tissue than plastic dishes.

  15. Idiopathic pulmonary fibrosis: current understanding of the pathogenesis and the status of treatment

    OpenAIRE

    Khalil, Nasreen; O'Connor, Robert

    2004-01-01

    IDIOPATHIC PULMONARY FIBROSIS (IPF) is a progressive and lethal pulmonary fibrotic lung disease. The diagnostic histological changes are called usual interstitial pneumonia and are characterized by histological temporal heterogeneity, whereby normal lung tissue is interspersed with interstitial fibrosis, honeycomb cysts and fibroblast foci. Pulmonary functions show restricted volumes and capacities, preserved flows and evidence of decreased gas exchange. High-resolution computed axial tomogra...

  16. Expected utility without utility

    OpenAIRE

    Castagnoli, E.; Licalzi, M.

    1996-01-01

    This paper advances an interpretation of Von Neumann–Morgenstern’s expected utility model for preferences over lotteries which does not require the notion of a cardinal utility over prizes and can be phrased entirely in the language of probability. According to it, the expected utility of a lottery can be read as the probability that this lottery outperforms another given independent lottery. The implications of this interpretation for some topics and models in decision theory are considered....

  17. Transglutaminase reactivity with gelatine: perspective applications in tissue engineering.

    Science.gov (United States)

    Bertoni, F; Barbani, N; Giusti, P; Ciardelli, G

    2006-05-01

    Gelatine was crosslinked by means of an enzymatic treatment using tissue transglutaminase (tTGase) (Sigma) and microbial transglutaminase (mTGase) (Ajinomoto) which catalyses the formation of isopeptide bonds between the gamma-carbonyl group of a glutamine residue and the epsilon-amino group of a lysine residue. The reaction is an interesting alternative to the traditional glutaraldehyde crosslinking, which has several drawbacks (e.g., in medical application) due to the toxicity of the chemical reagent. To further investigate the possibility to utilize the modified protein for tissue engineering application, TGase crosslinked gelatine was incorporated in a gellan matrix, a polysaccharide, to enhance the stability in aqueous media. Films obtained by casting were characterized by thermal analysis, chemical imaging, swelling behaviour and cell adhesion.

  18. Assessing idiopathic pulmonary fibrosis (IPF) with bronchoscopic OCT (Conference Presentation)

    Science.gov (United States)

    Hariri, Lida P.; Adams, David C.; Colby, Thomas V.; Tager, Andrew M.; Suter, Melissa J.

    2016-03-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal form of fibrotic lung disease, with a 3 year survival rate of 50%. Diagnostic certainty of IPF is essential to determine the most effective therapy for patients, but often requires surgery to resect lung tissue and look for microscopic honeycombing not seen on chest computed tomography (CT). Unfortunately, surgical lung resection has high risks of associated morbidity and mortality in this patient population. We aim to determine whether bronchoscopic optical coherence tomography (OCT) can serve as a novel, low-risk paradigm for in vivo IPF diagnosis without surgery or tissue removal. OCT provides rapid 3D visualization of large tissue volumes with microscopic resolutions well beyond the capabilities of CT. We have designed bronchoscopic OCT catheters to effectively and safely access the peripheral lung, and conducted in vivo peripheral lung imaging in patients, including those with pulmonary fibrosis. We utilized these OCT catheters to perform bronchoscopic imaging in lung tissue from patients with pulmonary fibrosis to determine if bronchoscopic OCT could successfully visualize features of IPF through the peripheral airways. OCT was able to visualize characteristic features of IPF through the airway, including microscopic honeycombing (< 1 mm diameter) not visible by CT, dense peripheral fibrosis, and spatial disease heterogeneity. These findings support the potential of bronchoscopic OCT as a minimally-invasive method for in vivo IPF diagnosis. However, future clinical studies are needed to validate these findings.

  19. The effect of incorporation of SDF-1alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response.

    Science.gov (United States)

    Thevenot, Paul T; Nair, Ashwin M; Shen, Jinhui; Lotfi, Parisa; Ko, Cheng-Yu; Tang, Liping

    2010-05-01

    Despite significant advances in the understanding of tissue responses to biomaterials, most implants are still plagued by inflammatory responses which can lead to fibrotic encapsulation. This is of dire consequence in tissue engineering, where seeded cells and bioactive components are separated from the native tissue, limiting the regenerative potential of the design. Additionally, these interactions prevent desired tissue integration and angiogenesis, preventing functionality of the design. Recent evidence supports that mesenchymal stem cells (MSC) and hematopoietic stem cells (HSC) can have beneficial effects which alter the inflammatory responses and improve healing. The purpose of this study was to examine whether stem cells could be targeted to the site of biomaterial implantation and whether increasing local stem cell responses could improve the tissue response to PLGA scaffold implants. Through incorporation of SDF-1alpha through factor adsorption and mini-osmotic pump delivery, the host-derived stem cell response can be improved resulting in 3X increase in stem cell populations at the interface for up to 2 weeks. These interactions were found to significantly alter the acute mast cell responses, reducing the number of mast cells and degranulated mast cells near the scaffold implants. This led to subsequent downstream reduction in the inflammatory cell responses, and through altered mast cell activation and stem cell participation, increased angiogenesis and decreased fibrotic responses to the scaffold implants. These results support that enhanced recruitment of autologous stem cells can improve the tissue responses to biomaterial implants through modifying/bypassing inflammatory cell responses and jumpstarting stem cell participation in healing at the implant interface. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Tissue-type-specific transcriptome analysis identifies developing xylem-specific promoters in poplar.

    Science.gov (United States)

    Ko, Jae-Heung; Kim, Hyun-Tae; Hwang, Ildoo; Han, Kyung-Hwan

    2012-06-01

    Plant biotechnology offers a means to create novel phenotypes. However, commercial application of biotechnology in crop improvement programmes is severely hindered by the lack of utility promoters (or freedom to operate the existing ones) that can drive gene expression in a tissue-specific or temporally controlled manner. Woody biomass is gaining popularity as a source of fermentable sugars for liquid fuel production. To improve the quantity and quality of woody biomass, developing xylem (DX)-specific modification of the feedstock is highly desirable. To develop utility promoters that can drive transgene expression in a DX-specific manner, we used the Affymetrix Poplar Genome Arrays to obtain tissue-type-specific transcriptomes from poplar stems. Subsequent bioinformatics analysis identified 37 transcripts that are specifically or strongly expressed in DX cells of poplar. After further confirmation of their DX-specific expression using semi-quantitative PCR, we selected four genes (DX5, DX8, DX11 and DX15) for in vivo confirmation of their tissue-specific expression in transgenic poplars. The promoter regions of the selected DX genes were isolated and fused to a β-glucuronidase (GUS)-reported gene in a binary vector. This construct was used to produce transgenic poplars via Agrobacterium-mediated transformation. The GUS expression patterns of the resulting transgenic plants showed that these promoters were active in the xylem cells at early seedling growth and had strongest expression in the developing xylem cells at later growth stages of poplar. We conclude that these DX promoters can be used as a utility promoter for DX-specific biomass engineering. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  1. Netrin-1 regulates fibrocyte accumulation in the decellularized fibrotic scleroderma lung microenvironment and in bleomycin induced pulmonary fibrosis

    Science.gov (United States)

    Sun, Huanxing; Zhu, Yangyang; Pan, Hongyi; Chen, Xiaosong; Balestrini, Jenna L.; Lam, TuKiet T.; Kanyo, Jean E.; Eichmann, Anne; Gulati, Mridu; Fares, Wassim H.; Bai, Hanwen; Feghali-Bostwick, Carol A.; Gan, Ye; Peng, Xueyan; Moore, Meagan W.; White, Eric S.; Sava, Parid; Gonzalez, Anjelica L.; Cheng, Yuwei; Niklason, Laura E.; Herzog, Erica L.

    2017-01-01

    Objectives Fibrocytes are collagen-producing leukocytes that accumulate in Scleroderma-associated interstitial lung disease (SSc-ILD) via unknown mechanisms. The extracellular matrix (ECM) influences cellular phenotypes. However, a relationship between the lung ECM and fibrocytes in Scleroderma has not been explored. This study uses a novel translational platform based on decellularized human lungs to determine whether the scleroderma lung ECM controls fibrocyte development from peripheral blood mononuclear cells. Methods Decellularized scaffolds prepared from healthy and fibrotic Scleroderma lung explants underwent biomechanical evaluation using tensile testing and biochemical analysis using proteomics. Cells from healthy and SSc-ILD subjects were cultured on these scaffolds, and CD45+Pro-ColIα1+ cells meeting criteria for fibrocytes were quantified. The contribution of Netrin-1 to fibrosis was assessed using neutralizing antibodies in this system and via the inhalational administration of bleomycin to Netrin-1+/− mice. Results Compared to control lung scaffold, SSc-ILD lung scaffolds showed aberrant anatomy, enhanced stiffness, and abnormal extracellular matrix composition. Culture of control cells in Scleroderma scaffolds increased Pro-ColIα1+ production, which was stimulated by enhanced stiffness and abnormal ECM composition. SSc-ILD cells demonstrated increased Pro-ColIα1 responsiveness to Scleroderma lung scaffolds, but not enhanced stiffness. Enhanced Netrin-1 expression was seen on CD14lo SSc-ILD cells and antibody mediated Netrin-1 neutralization attenuated CD45+Pro-ColIα1+ detection in all settings. Netrin-1+/− mice were protected from bleomycin induced lung fibrosis and fibrocyte accumulation. Conclusion Factors present in Scleroderma lung matrices regulate fibrocyte accumulation via a Netrin-1-dependent pathway. Netrin-1 regulates bleomycin induced murine pulmonary fibrosis. Netrin-1 might be a novel therapeutic target in SSc-ILD. PMID:26749424

  2. 99mTc-3PRGD2 scintigraphy to stage liver fibrosis and evaluate reversal after fibrotic stimulus withdrawn

    International Nuclear Information System (INIS)

    Zhang, Xin; Guo, Qiyong; Shi, Yu; Xu, Weina; Yu, Shupeng; Yang, Zhiguang; Cao, Li; Liu, Changping; Zhao, Zhoushe; Xin, Jun

    2017-01-01

    Objective: Scintigraphy using 99mTc-3PRGD2 targeting integrin αvβ3 could assess activation of hepatic stellate cells (HSCs). Liver fibrogenesis is intimately associated with activation of HSCs, and the fibrolytic process is accompanied by the reduction of the activated HSCs. In this study, we aimed to evaluate the feasibility of this method to assess the severity of liver fibrosis and the reversal after the fibrotic stimulus withdrawal. Methods: Liver fibrosis of different stages was induced by thioacetamide (TAA) injection for 2, 4 and 6 weeks (n = 6 for each time point). Another 6 rats with 8-week TAA administration (the 8-week group) and 6 rats which were injected with TAA for 6 weeks, and then withdrawn of TAA for 2 weeks (spontaneous recovery rats, SRR) were designed. The ratios of radioactivity detected in the liver vs. the heart at 30 min post-injection of 99m Tc-3PRGD2 (L/H30 min ), the collagen proportionate area (CPA), the protein and mRNA levels of integrin α v , integrin β 3 were analyzed and compared among groups. Results: The Ishak stage scores of the livers in the control and 2, 4, 6-week groups increased when the TAA administration period was extended. L/H30 min increased with the upgrading of liver fibrosis and the differences between each pair of groups were statistically significant (p 30 min in the 8-week group was similar to that in the 6-week group (p > 0.05), but was significantly higher than that in the SRR group (p = 0.005). Conclusions: Scintigraphy using 99m Tc-3PRGD2 may provide a non-invasive method for grading liver fibrosis and assessing liver fibrosis reversal.

  3. Co-expression networks reveal the tissue-specific regulation of transcription and splicing.

    Science.gov (United States)

    Saha, Ashis; Kim, Yungil; Gewirtz, Ariel D H; Jo, Brian; Gao, Chuan; McDowell, Ian C; Engelhardt, Barbara E; Battle, Alexis

    2017-11-01

    Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues. © 2017 Saha et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Evaluation of thyroid tissue by Raman spectroscopy

    Science.gov (United States)

    Teixeira, C. S. B.; Bitar, R. A.; Santos, A. B. O.; Kulcsar, M. A. V.; Friguglietti, C. U. M.; Martinho, H. S.; da Costa, R. B.; Martin, A. A.

    2010-02-01

    Thyroid gland is a small gland in the neck consisting of two lobes connected by an isthmus. Thyroid's main function is to produce the hormones thyroxine (T4), triiodothyronine (T3) and calcitonin. Thyroid disorders can disturb the production of these hormones, which will affect numerous processes within the body such as: regulating metabolism and increasing utilization of cholesterol, fats, proteins, and carbohydrates. The gland itself can also be injured; for example, neoplasias, which have been considered the most important, causing damage of to the gland and are difficult to diagnose. There are several types of thyroid cancer: Papillary, Follicular, Medullary, and Anaplastic. The occurrence rate, in general is between 4 and 7%; which is on the increase (30%), probably due to new technology that is able to find small thyroid cancers that may not have been found previously. The most common method used for thyroid diagnoses are: anamnesis, ultrasonography, and laboratory exams (Fine Needle Aspiration Biopsy- FNAB). However, the sensitivity of those test are rather poor, with a high rate of false-negative results, therefore there is an urgent need to develop new diagnostic techniques. Raman spectroscopy has been presented as a valuable tool for cancer diagnosis in many different tissues. In this work, 27 fragments of the thyroid were collected from 18 patients, comprising the following histologic groups: goitre adjacent tissue, goitre nodular tissue, follicular adenoma, follicular carcinoma, and papillary carcinoma. Spectral collection was done with a commercial FTRaman Spectrometer (Bruker RFS100/S) using a 1064 nm laser excitation and Ge detector. Principal Component Analysis, Cluster Analysis, and Linear Discriminant Analysis with cross-validation were applied as spectral classification algorithm. Comparing the goitre adjacent tissue with the goitre nodular region, an index of 58.3% of correct classification was obtained. Between goitre (nodular region and

  5. Effect of MELT method on thoracolumbar connective tissue: The full study.

    Science.gov (United States)

    Sanjana, Faria; Chaudhry, Hans; Findley, Thomas

    2017-01-01

    Altered connective tissue structure has been identified in adults with chronic low back pain (LBP). A self-care treatment for managing LBP is the MELT method. The MELT method is a hands-off, self-treatment that is said to alleviate chronic pain, release tension and restore mobility, utilizing specialized soft treatments balls, soft body roller and techniques mimicking manual therapy. The objective of this study was to determine whether thickness of thoracolumbar connective tissue and biomechanical and viscoelastic properties of myofascial tissue in the low back region change in subjects with chronic LBP as a result of MELT. This study was designed using a quasi experimental pre-post- design that analyzed data from subjects who performed MELT. Using ultrasound imaging and an algorithm developed in MATLAB, thickness of thoracolumbar connective tissue was analyzed in 22 subjects. A hand-held digital palpation device, called the MyotonPRO, was used to assess biomechanical properties such as stiffness, elasticity, tone and mechanical stress relaxation time of the thoracolumbar myofascial tissue. A forward bending test assessing flexibility and pain scale was added to see if MELT affected subjects with chronic LBP. A significant decrease in connective tissue thickness and pain was observed in participants. Significant increase in flexibility was also recorded. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Tools for assessing mitochondrial dynamics in mouse tissues and neurodegenerative models

    Science.gov (United States)

    Pham, Anh H.

    Mitochondria are dynamic organelles that undergo membrane fusion and fission and transport. The dynamic properties of mitochondria are important for regulating mitochondrial function. Defects in mitochondrial dynamics are linked neurodegenerative diseases and affect the development of many tissues. To investigate the role of mitochondrial dynamics in diseases, versatile tools are needed to explore the physiology of these dynamic organelles in multiple tissues. Current tools for monitoring mitochondrial dynamics have been limited to studies in cell culture, which may be inadequate model systems for exploring the network of tissues. Here, we have generated mouse models for monitoring mitochondrial dynamics in a broad spectrum of tissues and cell types. The Photo-Activatable Mitochondrial (PhAM floxed) line enables Cre-inducible expression of a mitochondrial targeted photoconvertible protein, Dendra2 (mito-Dendra2). In the PhAMexcised line, mito-Dendra2 is ubiquitously expressed to facilitate broad analysis of mitochondria at various developmental processes. We have utilized these models to study mitochondrial dynamics in the nigrostriatal circuit of Parkinson's disease (PD) and in the development of skeletal muscles. Increasing evidences implicate aberrant regulation of mitochondrial fusion and fission in models of PD. To assess the function of mitochondrial dynamics in the nigrostriatal circuit, we utilized transgenic techniques to abrogate mitochondrial fusion. We show that deletion of the Mfn2 leads to the degeneration of dopaminergic neurons and Parkinson's-like features in mice. To elucidate the dynamic properties of mitochondria during muscle development, we established a platform for examining mitochondrial compartmentalization in skeletal muscles. This model system may yield clues to the role of mitochondrial dynamics in mitochondrial myopathies.

  7. Ultrastructural changes in osteocytes in microgravity conditions

    Science.gov (United States)

    Rodionova, N. V.; Oganov, V. S.; Zolotova, N. V.

    We examined the histology and morphometry of biosamples (biopsies) of the iliac crest of monkeys, flown 14 days aboard the "Bion-11", using electron microscopy. We found, that some young osteocytes take part in the activization of collagen protein biosynthesis in the adaptive remodeling process of the bone tissue to microgravity conditions. Osteocyte lacunae filled with collagen fibrils; this correlates with fibrotic osteoblast reorganization in such zones. The osteolytic activity in mature osteocytes is intensified. As a result of osteocyte destruction, the quantity of empty osteocytic lacunae in the bone tissue increases.

  8. Restenosis in coronary bare metal stents. Importance of time to follow-up: a comparison of coronary angiograms 6 months and 4 years after implantation

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Helqvist, Steffen; Kløvgaard, Lene

    2008-01-01

    Objectives. Angiographic late lumen loss measured 6 to 9 month after bare metal stent implantation in the coronary arteries is a validated restenosis parameter. Design. We performed a second angiographic follow-up after 4 years in event free survivors from the DANSTENT trial cohort. Results......-sectional vessel area and a 39% reduction of the binary restenosis rate over time. Conclusions. Instent late lumen loss in bare metal stents decreases spontaneously over time. Maturation of early hyperplastic tissue reaction after stent implantation with subsequent thinning of fibrotic tissue might explain...

  9. Production of immunoglobulins in gingival tissue explant cultures from juvenile periodontitis patients

    International Nuclear Information System (INIS)

    Hall, E.R.; Falkler, W.A. Jr.; Suzuki, J.B.

    1990-01-01

    B lymphocytes and plasma cells are histologically observed in granulomatous periodontal tissues of juvenile periodontitis (JP) patients. Local immune processes may participate in protective or immunopathologic roles in the pathogenesis of this disease. An in vitro explant culture system was utilized to demonstrate the production of immunoglobulins by diseased JP tissues. Immunodiffusion studies using goat anti-human gamma, alpha, or mu chain serum revealed IgG to be the major immunoglobulin present in 92% of the day 1 supernatant fluids (SF) of the 47 JP gingival tissue explant cultures. IgA was present in 15% of the SF; however, no IgM was detected. Staph Protein A isolated 14C-labeled IgG from the SF, when allowed to react with goat anti-human gamma chain serum, formed lines of precipitation. Positive autoradiographs confirmed the biosynthesis of IgG by the explant cultures. The in vitro gingival tissue explant culture system described provides a useful model for the study of localized immunoglobulins produced by diseased tissues of JP patients

  10. Production of immunoglobulins in gingival tissue explant cultures from juvenile periodontitis patients

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.R.; Falkler, W.A. Jr.; Suzuki, J.B. (Univ. of Maryland Dental School, Baltimore (USA))

    1990-10-01

    B lymphocytes and plasma cells are histologically observed in granulomatous periodontal tissues of juvenile periodontitis (JP) patients. Local immune processes may participate in protective or immunopathologic roles in the pathogenesis of this disease. An in vitro explant culture system was utilized to demonstrate the production of immunoglobulins by diseased JP tissues. Immunodiffusion studies using goat anti-human gamma, alpha, or mu chain serum revealed IgG to be the major immunoglobulin present in 92% of the day 1 supernatant fluids (SF) of the 47 JP gingival tissue explant cultures. IgA was present in 15% of the SF; however, no IgM was detected. Staph Protein A isolated 14C-labeled IgG from the SF, when allowed to react with goat anti-human gamma chain serum, formed lines of precipitation. Positive autoradiographs confirmed the biosynthesis of IgG by the explant cultures. The in vitro gingival tissue explant culture system described provides a useful model for the study of localized immunoglobulins produced by diseased tissues of JP patients.

  11. Imaging of Mitral Valve Prolapse: What Can We Learn from Imaging about the Mechanism of the Disease?

    Directory of Open Access Journals (Sweden)

    Ronen Durst

    2015-07-01

    Full Text Available Mitral valve prolapse (MVP is the most common mitral valve disorder affecting 2%–3% of the general population. Two histological forms for the disease exist: Myxomatous degeneration and fibroelastic disease. Pathological evidence suggests the disease is not confined solely to the valve tissue, and accumulation of proteoglycans and fibrotic tissue can be seen in the adjacent myocardium of MVP patients. MVP is diagnosed by demonstrating valve tissue passing the annular line into the left atrium during systole. In this review we will discuss the advantages and limitations of various imaging modalities in their MVP diagnosis ability as well as the potential for demonstrating extra associated valvular pathologies.

  12. ATLa, an aspirin-triggered lipoxin A4 synthetic analog, prevents the inflammatory and fibrotic effects of bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Martins, Vanessa; Valença, Samuel S; Farias-Filho, Francisco A; Molinaro, Raphael; Simões, Rafael L; Ferreira, Tatiana P T; e Silva, Patrícia M R; Hogaboam, Cory M; Kunkel, Steven L; Fierro, Iolanda M; Canetti, Claudio; Benjamim, Claudia F

    2009-05-01

    Despite an increase in the knowledge of mechanisms and mediators involved in pulmonary fibrosis, there are no successful therapeutics available. Lipoxins (LX) and their 15-epimers, aspirin-triggered LX (ATL), are endogenously produced eicosanoids with potent anti-inflammatory and proresolution effects. To date, few studies have been performed regarding their effect on pulmonary fibrosis. In the present study, using C57BL/6 mice, we report that bleomycin (BLM)-induced lung fibrosis was prevented by the concomitant treatment with an ATL synthetic analog, ATLa, which reduced inflammation and matrix deposition. ATLa inhibited BLM-induced leukocyte accumulation and alveolar collapse as evaluated by histology and morphometrical analysis. Moreover, Sirius red staining and lung hydroxyproline content showed an increased collagen deposition in mice receiving BLM alone that was decreased upon treatment with the analog. These effects resulted in benefits to pulmonary mechanics, as ATLa brought to normal levels both lung resistance and compliance. Furthermore, the analog improved mouse survival, suggesting an important role for the LX pathway in the control of disease establishment and progression. One possible mechanism by which ATLa restrained fibrosis was suggested by the finding that BLM-induced myofibroblast accumulation/differentiation in the lung parenchyma was also reduced by both simultaneous and posttreatment with the analog (alpha-actin immunohistochemistry). Interestingly, ATLa posttreatment (4 days after BLM) showed similar inhibitory effects on inflammation and matrix deposition, besides the TGF-beta level reduction in the lung, reinforcing an antifibrotic effect. In conclusion, our findings show that LX and ATL can be considered as promising therapeutic approaches to lung fibrotic diseases.

  13. The autoradiographic uptake and turnover of [1-3H] -galactose in mouse periodontal tissues

    International Nuclear Information System (INIS)

    Tonna, E.A.; Wysor, M.S.

    1980-01-01

    In 5-week-old Brookhaven National Laboratory short-lived mice, [ 3 H]-galactose was utilized in all the oral tissues studied. Uptake and turnover of the tracer assessed by autoradiography revealed three uptake peaks. Synchronous fluctuation of total grain counts was repeatedly observed in different periodontal tissues. Acid glycosaminoglycans were strongly labelled and the neutral glycosaminoglycan fraction of the tissues was labelled to a lesser degree. The radiotracer became incorporated during their symthesis. The complex plots derived may represent several metabolic events occurring simultaneously. The uptake of radiotracer in fibrogenic, osteogenic and cementogenic cells was low. Accumulation of matrical output, however, was significant. The matrical output of the cementogenic cells and the osteogenic layer mesial to the alveolar bone was the highest of all the oral tissues studied throughout the 30-day period. (author)

  14. Opening of the inward rectifier potassium channel alleviates maladaptive tissue repair following myocardial infarction.

    Science.gov (United States)

    Liu, Chengfang; Liu, Enli; Luo, Tiane; Zhang, Weifang; He, Rongli

    2016-08-01

    Activation of the inward rectifier potassium current (IK1) channel has been reported to be associated with suppression of ventricular arrhythmias. In this study, we tested the hypothesis that opening of the IK1 channel with zacopride (ZAC) was involved in the modulation of tissue repair after myocardial infarction. Sprague-Dawley rats were subject to coronary artery ligation and ZAC was administered intraperitoneally (15 µg/kg/day) for 28 days. Compared with the ischemia group, treatment with ZAC significantly reduced the ratio of heart/body weight and the cross-sectional area of cardiomyocytes, suggesting less cardiac hypertrophy. ZAC reduced the accumulation of collagen types I and III, accompanied with decrease of collagen area, which were associated with a reduction of collagen deposition in the fibrotic myocardium. Echocardiography showed improved cardiac function, evidenced by the reduced left ventricular end-diastolic dimension and left ventricular end-systolic dimension, and the increased ejection fraction and fractional shortening in ZAC-treated animals (all P < 0.05 vs. ischemia group). In coincidence with these changes, ZAC up-regulated the protein level of the IK1 channel and down-regulated the phosphorylation of mammalian target of rapamycin (mTOR) and 70-kDa ribosomal protein S6 (p70S6) kinase. Administration of chloroquine alone, an IK1 channel antagonist, had no effect on all the parameters measured, but significantly blocked the beneficial effects of ZAC on cardiac repair. In conclusion, opening of the IK1 channel with ZAC inhibits maladaptive tissue repair and improves cardiac function, potentially mediated by the inhibition of ischemia-activated mTOR-p70S6 signaling pathway via the IK1 channel. So the development of pharmacological agents specifically targeting the activation of the IK1 channel may protect the heart against myocardial ischemia-induced cardiac dysfunction. © The Author 2016. Published by Oxford University Press on behalf of

  15. Utilizing NaCl to increase the porosity of electrospun materials

    International Nuclear Information System (INIS)

    Wright, L.D.; Andric, T.; Freeman, J.W.

    2011-01-01

    Electrospinning has emerged as a popular method for creating scaffolding materials used in tissue engineering applications to repair or replace damaged tissues. To become a viable scaffold material, however, pore sizes in electrospun materials must be increased to improve cell infiltration. Deposition of NaCl crystals during electrospinning was utilized to help overcome this obstacle. The NaCl crystals are released above the rotating collection mandrel and become incorporated into the poly(L-lactide) electrospun material. The NaCl then leaches out of the electrospun material creating larger pores: average pore diameter of 48.7 μm for PLLA-NaCl electrospinning versus 5.5 μm for PLLA alone electrospinning. Electrospun PLLA scaffolds with NaCl pores have a lower elastic modulus (8.05 MPa) and yield stress (349 kPa) and a higher yield strain (0.04) compared to their traditional counterparts (40.36 MPa, 676 kPa, and 0.0188). Decreased elastic modulus and yield stress would be beneficial to tissue engineering of elastic tissues including skin. The presence of NaCl pores did not significantly affect the cellular proliferation of MC3T3 cells but did allow for cell infiltration into the electrospun material. Therefore, the creation of large pores through NaCl leaching can significantly improve the performance of electrospun materials for tissue engineering applications by improving cellular infiltration.

  16. Cytokine accumulation in osteitis fibrosa of renal osteodystrophy

    Directory of Open Access Journals (Sweden)

    Duarte M.E.L.

    2002-01-01

    Full Text Available Bone marrow fibrosis occurs in association with a number of pathological states. Despite the extensive fibrosis that sometimes characterizes renal osteodystrophy, little is known about the factors that contribute to marrow accumulation of fibrous tissue. Because circulating cytokines are elevated in uremia, possibly in response to elevated parathyroid hormone levels, we have examined bone biopsies from 21 patients with end-stage renal disease and secondary hyperparathyroidism. Bone sections were stained with antibodies to human interleukin-1alpha (IL-1alpha, IL-6, IL-11, tumor necrosis factor-alpha (TNF-alpha and transforming growth factor-ß (TGF-ß using an undecalcified plastic embedding method. Intense staining for IL-1alpha, IL-6, TNF-alpha and TGF-ß was evident within the fibrotic tissue of the bone marrow while minimal IL-11 was detected. The extent of cytokine deposition corresponded to the severity of fibrosis, suggesting their possible involvement in the local regulation of the fibrotic response. Because immunoreactive TGF-ß and IL-6 were also detected in osteoblasts and osteocytes, we conclude that selective cytokine accumulation may have a role in modulating bone and marrow cell function in parathyroid-mediated uremic bone disease.

  17. Multiattribute Utility Theory without Expected Utility Foundations

    NARCIS (Netherlands)

    J. Miyamoto (John); P.P. Wakker (Peter)

    1996-01-01

    textabstractMethods for determining the form of utilities are needed for the implementation of utility theory in specific decisions. An important step forward was achieved when utility theorists characterized useful parametric families of utilities and simplifying decompositions of multiattribute

  18. Fibrous composite material for textile heart valve design: in vitro assessment.

    Science.gov (United States)

    Amri, Amna; Laroche, Gaetan; Chakfe, Nabil; Heim, Frederic

    2018-04-17

    With over 150,000 implantations performed over the world, transcatheter aortic valve replacement (TAVR) has become a surgical technique, which largely competes with open surgery valve replacement for an increasing number of patients. The success of the procedure favors the research toward synthetic valve leaflet materials as an alternative to biological tissues, whose durability remains unknown. In particular, fibrous constructions have recently proven to be durable in vivo over a 6-month period of time in animal sheep models. Exaggerated fibrotic tissue formation remains, however, a critical issue to be addressed. This work investigates the design of a composite fibrous construction combining a woven polyethylene terephthalate (PET) layer and a non-woven PET mat, which are expected to provide, respectively, strength and appropriate topography toward limited fibrotic tissue ingrowth. For this purpose, a specific equipment has been developed to produce non-woven PET mats made from fibers with small diameter. These mats were assembled with woven PET substrates using various assembling techniques in order to obtain hybrid fibrous constructions. The physical and mechanical properties of the obtained materials were assessed and valve samples were manufactured to be tested in vitro for hydrodynamic performances. The results show that the composite fibrous construction is characterized by properties suitable for the valve leaflet function, but the durability of the assembling is however limited under accelerated cyclic loading.

  19. Fibroblasts in fibrosis: novel roles and mediators

    Directory of Open Access Journals (Sweden)

    Ryan Thomas Kendall

    2014-05-01

    Full Text Available Fibroblasts are the most common cell type of the connective tissues found throughout the body and the principal source of the extensive extracellular matrix (ECM characteristic of these tissues. They are also the central mediators of the pathological fibrotic accumulation of ECM and the cellular proliferation and differentiation that occurs in response to prolonged tissue injury and chronic inflammation. The transformation of the fibroblast cell lineage involves classical developmental signaling programs and includes a surprisingly diverse range of precursor cell types—most notably, myofibroblasts that are the apex of the fibrotic phenotype. Myofibroblasts display exaggerated ECM production; constitutively secrete and are hypersensitive to chemical signals such as cytokines, chemokines, and growth factors; and are endowed with a contractile apparatus allowing them to manipulate the ECM fibers physically to close open wounds. In addition to ECM production, fibroblasts have multiple concomitant biological roles, such as in wound healing, inflammation, and angiogenesis, which are each interwoven with the process of fibrosis. We now recognize many common fibroblast-related features across various physiological and pathological protracted processes. Indeed, a new appreciation has emerged for the role of noncancerous fibroblast interactions with tumors in cancer progression. Although the predominant current clinical treatments of fibrosis involve nonspecific immunosuppressive and anti-proliferative drugs, a variety of potential therapies under investigation specifically target fibroblast biology.

  20. The improving effects on hepatic fibrosis of interferon-γ liposomes targeted to hepatic stellate cells

    Science.gov (United States)

    Li, Qinghua; Yan, Zhiqiang; Li, Feng; Lu, Weiyue; Wang, Jiyao; Guo, Chuanyong

    2012-07-01

    No satisfactory anti-fibrotic therapies have yet been applied clinically. One of the main reasons is the inability to specifically target the responsible cells to produce an available drug concentration and the side-effects. Exploiting the key role of the activated hepatic stellate cells (HSCs) in both hepatic fibrogenesis and over-expression of platelet-derived growth factor receptor-β (PDGFR-β), we constructed targeted sterically stable liposomes (SSLs) modified by a cyclic peptide (pPB) with affinity for the PDGFR-β to deliver interferon (IFN)-γ to HSCs. The pPB-SSL-IFN-γ showed satisfactory size distribution. In vitro pPB-SSL could be taken up by activated HSCs. The study of tissue distribution via living-body animal imaging showed that the pPB-SSL-IFN-γ mostly accumulated in the liver until 24 h. Furthermore, the pPB-SSL-IFN-γ showed more significant remission of hepatic fibrosis. In vivo the histological Ishak stage, the semiquantitative score for collagen in fibrotic liver and the serum levels of collagen type IV-C in fibrotic rats treated with pPB-SSL-IFN-γ were less than those treated with SSL-IFN-γ, IFN-γ and the control group. In vitro pPB-SSL-IFN-γ was also more effective in suppressing activated HSC proliferation and inducing apoptosis of activated HSCs. Thus the data suggest that pPB-SSL-IFN-γ might be a more effective anti-fibrotic agent and a new opportunity for clinical therapy of hepatic fibrosis.

  1. Sphingosine kinase-1, S1P transporter spinster homolog 2 and S1P2 mRNA expressions are increased in liver with advanced fibrosis in human.

    Science.gov (United States)

    Sato, Masaya; Ikeda, Hitoshi; Uranbileg, Baasanjav; Kurano, Makoto; Saigusa, Daisuke; Aoki, Junken; Maki, Harufumi; Kudo, Hiroki; Hasegawa, Kiyoshi; Kokudo, Norihiro; Yatomi, Yutaka

    2016-08-26

    The role of sphingosine 1-phosphate (S1P) in liver fibrosis or inflammation was not fully examined in human. Controversy exists which S1P receptors, S1P1 and S1P3 vs S1P2, would be importantly involved in its mechanism. To clarify these matters, 80 patients who received liver resection for hepatocellular carcinoma and 9 patients for metastatic liver tumor were enrolled. S1P metabolism was analyzed in background, non-tumorous liver tissue. mRNA levels of sphingosine kinase 1 (SK1) but not SK2 were increased in livers with fibrosis stages 3-4 compared to those with 0-2 and to normal liver. However, S1P was not increased in advanced fibrotic liver, where mRNA levels of S1P transporter spinster homolog 2 (SPNS2) but not S1P-degrading enzymes were enhanced. Furthermore, mRNA levels of S1P2 but not S1P1 or S1P3 were increased in advanced fibrotic liver. These increased mRNA levels of SK1, SPNS2 and S1P2 in fibrotic liver were correlated with α-smooth muscle actin mRNA levels in liver, and with serum ALT levels. In conclusion, S1P may be actively generated, transported to outside the cells, and bind to its specific receptor in human liver to play a role in fibrosis or inflammation. Altered S1P metabolism in fibrotic liver may be their therapeutic target.

  2. The New Zealand National Eye Bank study: trends in the acquisition and storage of corneal tissue over the decade 2000 to 2009.

    Science.gov (United States)

    Cunningham, William J; Moffatt, S Louise; Brookes, Nigel H; Twohill, Helen C; Pendergrast, David G C; Stewart, Joanna M; McGhee, Charles N J

    2012-05-01

    To evaluate trends in the acquisition, storage, and utilization of donated corneal tissue in New Zealand, 2000 to 2009. The New Zealand National Eye Bank records were analyzed for the decade January 2000 to December 2009. Variables analyzed included donor demographics (age, sex, and ethnicity), donor source, donor cause of death, death-to-preservation interval (DPI), corneal storage time, tissue contamination, endothelial assessment, cornea suitability for transplantation, and corneal tissue utilization. A total of 1268 eye donors were identified during the 10-year period. Overall, 36% (n = 457) were female and 64% male (n = 813). Median donor age was 67 years, and 23% of donors were younger than 50 years (range, 5-90 years). There was a decrease in donor age over the decade (P = 0.006). The median DPI was 18.5 hours. No relationship was identified between cornea suitability for transplantation and DPI (P = 0.28) or donor gender (P = 0.54). There was a low microbial contamination rate (1%). Human immunodeficiency virus, hepatitis B, or hepatitis C serology was positive in 48 donors (4%). Overall, 90% of corneas were suitable for transplantation with a high utilization rate (88%). A novel association was identified between male sex and lower corneal endothelial cell density (P = 0.03). This New Zealand National Eye Bank analysis identified trends in the acquisition, storage, and utilization of donated corneal tissue throughout New Zealand over the past decade and provides valuable additional information to the international eye bank data.

  3. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte.

    Science.gov (United States)

    Kusminski, Christine M; Gallardo-Montejano, Violeta I; Wang, Zhao V; Hegde, Vijay; Bickel, Perry E; Dhurandhar, Nikhil V; Scherer, Philipp E

    2015-10-01

    Type 2 diabetes remains a worldwide epidemic with major pathophysiological changes as a result of chronic insulin resistance. Insulin regulates numerous biochemical pathways related to carbohydrate and lipid metabolism. We have generated a novel mouse model that allows us to constitutively activate, in an inducible fashion, the distal branch of the insulin signaling transduction pathway specifically in adipocytes. Using the adenoviral 36 E4orf1 protein, we chronically stimulate locally the Ras-ERK-MAPK signaling pathway. At the whole body level, this leads to reduced body-weight gain under a high fat diet challenge. Despite overlapping glucose tolerance curves, there is a reduced requirement for insulin action under these conditions. The mice further exhibit reduced circulating adiponectin levels that ultimately lead to impaired lipid clearance, and inflamed and fibrotic white adipose tissues. Nevertheless, they are protected from diet-induced hepatic steatosis. As we observe constitutively elevated p-Akt levels in the adipocytes, even under conditions of low insulin levels, this pinpoints enhanced Ras-ERK-MAPK signaling in transgenic adipocytes as a potential alternative route to bypass proximal insulin signaling events. We conclude that E4orf1 expression in the adipocyte leads to enhanced baseline activation of the distal insulin signaling node, yet impaired insulin receptor stimulation in the presence of insulin, with important implications for the regulation of adiponectin secretion. The resulting systemic phenotype is complex, yet highlights the powerful nature of manipulating selective branches of the insulin signaling network within the adipocyte.

  4. Free-floating epithelial micro-tissue arrays: a low cost and versatile technique.

    Science.gov (United States)

    Flood, P; Alvarez, L; Reynaud, E G

    2016-10-11

    Three-dimensional (3D) tissue models are invaluable tools that can closely reflect the in vivo physiological environment. However, they are usually difficult to develop, have a low throughput and are often costly; limiting their utility to most laboratories. The recent availability of inexpensive additive manufacturing printers and open source 3D design software offers us the possibility to easily create affordable 3D cell culture platforms. To demonstrate this, we established a simple, inexpensive and robust method for producing arrays of free-floating epithelial micro-tissues. Using a combination of 3D computer aided design and 3D printing, hydrogel micro-moulding and collagen cell encapsulation we engineered microenvironments that consistently direct the growth of micro-tissue arrays. We described the adaptability of this technique by testing several immortalised epithelial cell lines (MDCK, A549, Caco-2) and by generating branching morphology and micron to millimetre scaled micro-tissues. We established by fluorescence and electron microscopy that micro-tissues are polarised, have cell type specific differentiated phenotypes and regain native in vivo tissue qualities. Finally, using Salmonella typhimurium we show micro-tissues display a more physiologically relevant infection response compared to epithelial monolayers grown on permeable filter supports. In summary, we have developed a robust and adaptable technique for producing arrays of epithelial micro-tissues. This in vitro model has the potential to be a valuable tool for studying epithelial cell and tissue function/architecture in a physiologically relevant context.

  5. Spaceflight bioreactor studies of cells and tissues.

    Science.gov (United States)

    Freed, Lisa E; Vunjak-Novakovic, Gordana

    2002-01-01

    Studies of the fundamental role of gravity in the development and function of biological organisms are a central component of the human exploration of space. Microgravity affects numerous physical phenomena relevant to biological research, including the hydrostatic pressure in fluid filled vesicles, sedimentation of organelles, and buoyancy-driven convection of flow and heat. These physical phenomena can in turn directly and indirectly affect cellular morphology, metabolism, locomotion, secretion of extracellular matrix and soluble signals, and assembly into functional tissues. Studies aimed at distinguishing specific effects of gravity on biological systems require the ability to: (i) control and systematically vary gravity, e.g. by utilizing the microgravity environment of space in conjunction with an in-flight centrifuge; and (ii) maintain constant all other factors in the immediate environment, including in particular concentrations and exchange rates of biochemical species and hydrodynamic shear. The latter criteria imply the need for gravity-independent mechanisms to provide for mass transport between the cells and their environment. Available flight hardware has largely determined the experimental design and scientific objectives of spaceflight cell and tissue culture studies carried out to date. Simple culture vessels have yielded important quantitative data, and helped establish in vitro models of cell locomotion, growth and differentiation in various mammalian cell types including embryonic lung cells [6], lymphocytes [2,8], and renal cells [7,31]. Studies done using bacterial cells established the first correlations between gravity-dependent factors such as cell settling velocity and diffusional distance and the respective cell responses [12]. The development of advanced bioreactors for microgravity cell and tissue culture and for tissue engineering has benefited both research areas and provided relevant in vitro model systems for studies of astronaut

  6. Antioxidant enzymes activity in embryogenic and non-embryogenic tissues in Sugarcane

    International Nuclear Information System (INIS)

    Marina Medeiros de Araujo Silva; Ulisses, Claudia; Lacerda E Medeiros, Maria Jaislanny; Cavalcante Granja, Manuela Maria; Willadino, Lilia; Camara, Terezinha

    2014-01-01

    The objective of this work was to induce direct somatic embryogenesis from segments of immature leaves of the RB872552 variety of sugarcane and to correlate this morphogenic event with oxidative stress. Two previously described protocols were utilized for the induction of somatic embryogenesis in sugarcane with different supplementations of the culture medium and different incubation conditions. For the conversion of embryos into plants was used ms medium without phytoregulators. Histological analyses and activity of antioxidant enzymes were also conducted for the embryogenic and non-embryogenic tissues. The formation of somatic embryos was obtained in 81 % of the explants with the combination of regulators 2,4-D (2,4-dichlorophenoxyacetic acid)and BAP (6-benzylaminopurine) when incubated under 16 h photoperiod. With regards to the antioxidant enzymes, there was increased activity of peroxidase and an increase in the soluble protein content in embryogenic tissues, whereas lower activities of polyphenol oxidase and catalase appeared in these tissues compared to nonembryogenic tissues. It could be inferred that oxidative stress plays an important role in the induction of somatic embryogenesis in sugarcane.

  7. Electrophysiological and structural remodeling in heart failure modulate arrhythmogenesis. 2D simulation study.

    Directory of Open Access Journals (Sweden)

    Juan F Gomez

    Full Text Available Heart failure is operationally defined as the inability of the heart to maintain blood flow to meet the needs of the body and it is the final common pathway of various cardiac pathologies. Electrophysiological remodeling, intercellular uncoupling and a pro-fibrotic response have been identified as major arrhythmogenic factors in heart failure.In this study we investigate vulnerability to reentry under heart failure conditions by incorporating established electrophysiological and anatomical remodeling using computer simulations.The electrical activity of human transmural ventricular tissue (5 cm × 5 cm was simulated using the human ventricular action potential model Grandi et al. under control and heart failure conditions. The MacCannell et al. model was used to model fibroblast electrical activity, and their electrotonic interactions with myocytes. Selected degrees of diffuse fibrosis and variations in intercellular coupling were considered and the vulnerable window (VW for reentry was evaluated following cross-field stimulation.No reentry was observed in normal conditions or in the presence of HF ionic remodeling. However, defined amount of fibrosis and/or cellular uncoupling were sufficient to elicit reentrant activity. Under conditions where reentry was generated, HF electrophysiological remodeling did not alter the width of the VW. However, intermediate fibrosis and cellular uncoupling significantly widened the VW. In addition, biphasic behavior was observed, as very high fibrotic content or very low tissue conductivity hampered the development of reentry. Detailed phase analysis of reentry dynamics revealed an increase of phase singularities with progressive fibrotic components.Structural remodeling is a key factor in the genesis of vulnerability to reentry. A range of intermediate levels of fibrosis and intercellular uncoupling can combine to favor reentrant activity.

  8. The rapid manufacture of uniform composite multicellular-biomaterial micropellets, their assembly into macroscopic organized tissues, and potential applications in cartilage tissue engineering.

    Directory of Open Access Journals (Sweden)

    Betul Kul Babur

    Full Text Available We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions < 10 μm diameter; we termed this microscopic donor matrix "cartilage dust (CD". Using a microwell platform, we show that ~0.83 μg CD can be rapidly and efficiently incorporated into single multicellular aggregates formed from 180 bone marrow mesenchymal stem/stromal cells (MSC each. The microwell platform enabled the rapid manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage

  9. Assessment of Myocardial Fibrosis in Mice Using a T2*-Weighted 3D Radial Magnetic Resonance Imaging Sequence.

    Directory of Open Access Journals (Sweden)

    Bastiaan J van Nierop

    Full Text Available Myocardial fibrosis is a common hallmark of many diseases of the heart. Late gadolinium enhanced MRI is a powerful tool to image replacement fibrosis after myocardial infarction (MI. Interstitial fibrosis can be assessed indirectly from an extracellular volume fraction measurement using contrast-enhanced T1 mapping. Detection of short T2* species resulting from fibrotic tissue may provide an attractive non-contrast-enhanced alternative to directly visualize the presence of both replacement and interstitial fibrosis.To goal of this paper was to explore the use of a T2*-weighted radial sequence for the visualization of fibrosis in mouse heart.C57BL/6 mice were studied with MI (n = 20, replacement fibrosis, transverse aortic constriction (TAC (n = 18, diffuse fibrosis, and as control (n = 10. 3D center-out radial T2*-weighted images with varying TE were acquired in vivo and ex vivo (TE = 21 μs-4 ms. Ex vivo T2*-weighted signal decay with TE was analyzed using a 3-component model. Subtraction of short- and long-TE images was used to highlight fibrotic tissue with short T2*. The presence of fibrosis was validated using histology and correlated to MRI findings.Detailed ex vivo T2*-weighted signal analysis revealed a fast (T2*fast, slow (T2*slow and lipid (T2*lipid pool. T2*fast remained essentially constant. Infarct T2*slow decreased significantly, while a moderate decrease was observed in remote tissue in post-MI hearts and in TAC hearts. T2*slow correlated with the presence of diffuse fibrosis in TAC hearts (r = 0.82, P = 0.01. Ex vivo and in vivo subtraction images depicted a positive contrast in the infarct co-localizing with the scar. Infarct volumes from histology and subtraction images linearly correlated (r = 0.94, P<0.001. Region-of-interest analysis in the in vivo post-MI and TAC hearts revealed significant T2* shortening due to fibrosis, in agreement with the ex vivo results. However, in vivo contrast on subtraction images was rather poor

  10. Advancing biomaterials of human origin for tissue engineering

    Science.gov (United States)

    Chen, Fa-Ming; Liu, Xiaohua

    2015-01-01

    Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for

  11. Tissue types (image)

    Science.gov (United States)

    ... are 4 basic types of tissue: connective tissue, epithelial tissue, muscle tissue, and nervous tissue. Connective tissue supports ... binds them together (bone, blood, and lymph tissues). Epithelial tissue provides a covering (skin, the linings of the ...

  12. A novel, modernized Golgi-Cox stain optimized for CLARITY cleared tissue.

    Science.gov (United States)

    Kassem, Mustafa S; Fok, Sandra Y Y; Smith, Kristie L; Kuligowski, Michael; Balleine, Bernard W

    2018-01-15

    High resolution neuronal information is extraordinarily useful in understanding the brain's functionality. The development of the Golgi-Cox stain allowed observation of the neuron in its entirety with unrivalled detail. Tissue clearing techniques, e.g., CLARITY and CUBIC, provide the potential to observe entire neuronal circuits intact within tissue and without previous restrictions with regard to section thickness. Here we describe an improved Golgi-Cox stain method, optimised for use with CLARITY and CUBIC that can be used in both fresh and fixed tissue. Using this method, we were able to observe neurons in their entirety within a fraction of the time traditionally taken to clear tissue (48h). We were also able to show for the first-time that Golgi stained tissue is fluorescent when visualized using a multi-photon microscope, allowing us to image synaptic spines with a detail previously unachievable. These novel methods provide cheap and easy to use techniques to investigate the morphology of cellular processes in the brain at a new-found depth, speed, utility and detail, without previous restrictions of time, tissue type and section thickness. This is the first application of a Golgi-Cox stain to cleared brain tissue, it is investigated and discussed in detail, describing different methodologies that may be used, a comparison between the different clearing techniques and lastly the novel interaction of these techniques with this ultra-rapid stain. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.

    Science.gov (United States)

    Naahidi, Sheva; Jafari, Mousa; Logan, Megan; Wang, Yujie; Yuan, Yongfang; Bae, Hojae; Dixon, Brian; Chen, P

    2017-09-01

    Recently, understanding of the extracellular matrix (ECM) has expanded rapidly due to the accessibility of cellular and molecular techniques and the growing potential and value for hydrogels in tissue engineering. The fabrication of hydrogel-based cellular scaffolds for the generation of bioengineered tissues has been based on knowledge of the composition and structure of ECM. Attempts at recreating ECM have used either naturally-derived ECM components or synthetic polymers with structural integrity derived from hydrogels. Due to their increasing use, their biocompatibility has been questioned since the use of these biomaterials needs to be effective and safe. It is not surprising then that the evaluation of biocompatibility of these types of biomaterials for regenerative and tissue engineering applications has been expanded from being primarily investigated in a laboratory setting to being applied in the multi-billion dollar medicinal industry. This review will aid in the improvement of design of non-invasive, smart hydrogels that can be utilized for tissue engineering and other biomedical applications. In this review, the biocompatibility of hydrogels and design criteria for fabricating effective scaffolds are examined. Examples of natural and synthetic hydrogels, their biocompatibility and use in tissue engineering are discussed. The merits and clinical complications of hydrogel scaffold use are also reviewed. The article concludes with a future outlook of the field of biocompatibility within the context of hydrogel-based scaffolds. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Anomalous optical behavior of biological media: modifying the optical window of myocardial tissues

    Science.gov (United States)

    Splinter, Robert; Raja, M. Yasin A.; Svenson, Robert H.

    1996-05-01

    In medical experimental and clinical treatment modalities of light, laser photocoagulation of ventricular tachycardia amongst others, the success of the application relies on whether or not the procedure operates in the optical window of the light-tissue interaction. The optical window of biological tissues can be determined by spectral scans of the optical properties. Optical anomalies may result from the irradiance, the wavelength, or from the tissue composition itself. The transmission of cw Nd:YAG laser light on myocardial tissue showed a nonlinearity in the transmission curve at approximately 3 kW/mm2 irradiance. The total attenuation coefficient dropped sharp from 1.03 plus or minus 0.04 mm-1 to 0.73 plus or minus 0.05 mm-1 at this point in the curve. On the other hand, aneurysm tissue has a highly organized fiber structure, which serves as light-guides, since the transmission of light along the length of the collagen fibers is approximately 50% higher than the transmission perpendicular to the fiber orientation. In addition, changes in optical properties due to tissue phase changes also influence the penetration depth. These phenomena can be utilized to manipulate the optical penetration to an advantage.

  15. Intratracheal Bleomycin Aerosolization: The Best Route of Administration for a Scalable and Homogeneous Pulmonary Fibrosis Rat Model?

    Directory of Open Access Journals (Sweden)

    Alexandre Robbe

    2015-01-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a chronic disease with a poor prognosis and is characterized by the accumulation of fibrotic tissue in lungs resulting from a dysfunction in the healing process. In humans, the pathological process is patchy and temporally heterogeneous and the exact mechanisms remain poorly understood. Different animal models were thus developed. Among these, intratracheal administration of bleomycin (BML is one of the most frequently used methods to induce lung fibrosis in rodents. In the present study, we first characterized histologically the time-course of lung alteration in rats submitted to BLM instillation. Heterogeneous damages were observed among lungs, consisting in an inflammatory phase at early time-points. It was followed by a transition to a fibrotic state characterized by an increased myofibroblast number and collagen accumulation. We then compared instillation and aerosolization routes of BLM administration. The fibrotic process was studied in each pulmonary lobe using a modified Ashcroft scale. The two quantification methods were confronted and the interobserver variability evaluated. Both methods induced fibrosis development as demonstrated by a similar progression of the highest modified Ashcroft score. However, we highlighted that aerosolization allows a more homogeneous distribution of lesions among lungs, with a persistence of higher grade damages upon time.

  16. Quantitative Assessment of Ultrastructure and Light Scatter in Mouse Corneal Debridement Wounds

    Science.gov (United States)

    Boote, Craig; Du, Yiqin; Morgan, Sian; Harris, Jonathan; Kamma-Lorger, Christina S.; Hayes, Sally; Lathrop, Kira L.; Roh, Danny S.; Burrow, Michael K.; Hiller, Jennifer; Terrill, Nicholas J.; Funderburgh, James L.; Meek, Keith M.

    2012-01-01

    Purpose. The mouse has become an important wound healing model with which to study corneal fibrosis, a frequent complication of refractive surgery. The aim of the current study was to quantify changes in stromal ultrastructure and light scatter that characterize fibrosis in mouse corneal debridement wounds. Methods. Epithelial debridement wounds, with and without removal of basement membrane, were produced in C57BL/6 mice. Corneal opacity was measured using optical coherence tomography, and collagen diameter and matrix order were quantified by x-ray scattering. Electron microscopy was used to visualize proteoglycans. Quantitative PCR (Q-PCR) measured mRNA transcript levels for several quiescent and fibrotic markers. Results. Epithelial debridement without basement membrane disruption produced a significant increase in matrix disorder at 8 weeks, but minimal corneal opacity. In contrast, basement membrane penetration led to increases in light scatter, matrix disorder, and collagen diameter, accompanied by the appearance of abnormally large proteoglycans in the subepithelial stroma. This group also demonstrated upregulation of several quiescent and fibrotic markers 2 to 4 weeks after wounding. Conclusions. Fibrotic corneal wound healing in mice involves extensive changes to collagen and proteoglycan ultrastructure, consistent with deposition of opaque scar tissue. Epithelial basement membrane penetration is a deciding factor determining the degree of ultrastructural changes and resulting opacity. PMID:22467580

  17. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends.

    Science.gov (United States)

    Qazi, Taimoor H; Mooney, David J; Pumberger, Matthias; Geissler, Sven; Duda, Georg N

    2015-01-01

    Skeletal muscles have a robust capacity to regenerate, but under compromised conditions, such as severe trauma, the loss of muscle functionality is inevitable. Research carried out in the field of skeletal muscle tissue engineering has elucidated multiple intrinsic mechanisms of skeletal muscle repair, and has thus sought to identify various types of cells and bioactive factors which play an important role during regeneration. In order to maximize the potential therapeutic effects of cells and growth factors, several biomaterial based strategies have been developed and successfully implemented in animal muscle injury models. A suitable biomaterial can be utilized as a template to guide tissue reorganization, as a matrix that provides optimum micro-environmental conditions to cells, as a delivery vehicle to carry bioactive factors which can be released in a controlled manner, and as local niches to orchestrate in situ tissue regeneration. A myriad of biomaterials, varying in geometrical structure, physical form, chemical properties, and biofunctionality have been investigated for skeletal muscle tissue engineering applications. In the current review, we present a detailed summary of studies where the use of biomaterials favorably influenced muscle repair. Biomaterials in the form of porous three-dimensional scaffolds, hydrogels, fibrous meshes, and patterned substrates with defined topographies, have each displayed unique benefits, and are discussed herein. Additionally, several biomaterial based approaches aimed specifically at stimulating vascularization, innervation, and inducing contractility in regenerating muscle tissues are also discussed. Finally, we outline promising future trends in the field of muscle regeneration involving a deeper understanding of the endogenous healing cascades and utilization of this knowledge for the development of multifunctional, hybrid, biomaterials which support and enable muscle regeneration under compromised conditions

  18. Glioma Surgical Aspirate: A Viable Source of Tumor Tissue for Experimental Research

    International Nuclear Information System (INIS)

    Day, Bryan W.; Stringer, Brett W.; Wilson, John; Jeffree, Rosalind L.; Jamieson, Paul R.

    2013-01-01

    Brain cancer research has been hampered by a paucity of viable clinical tissue of sufficient quality and quantity for experimental research. This has driven researchers to rely heavily on long term cultured cells which no longer represent the cancers from which they were derived. Resection of brain tumors, particularly at the interface between normal and tumorigenic tissue, can be carried out using an ultrasonic surgical aspirator (CUSA) that deposits liquid (blood and irrigation fluid) and resected tissue into a sterile bottle for disposal. To determine the utility of CUSA-derived glioma tissue for experimental research, we collected 48 CUSA specimen bottles from glioma patients and analyzed both the solid tissue fragments and dissociated tumor cells suspended in the liquid waste fraction. We investigated if these fractions would be useful for analyzing tumor heterogeneity, using IHC and multi-parameter flow cytometry; we also assessed culture generation and orthotopic xenograft potential. Both cell sources proved to be an abundant, highly viable source of live tumor cells for cytometric analysis, animal studies and in-vitro studies. Our findings demonstrate that CUSA tissue represents an abundant viable source to conduct experimental research and to carry out diagnostic analyses by flow cytometry or other molecular diagnostic procedures

  19. Systematic analysis of gene expression patterns associated with postmortem interval in human tissues.

    Science.gov (United States)

    Zhu, Yizhang; Wang, Likun; Yin, Yuxin; Yang, Ence

    2017-07-14

    Postmortem mRNA degradation is considered to be the major concern in gene expression research utilizing human postmortem tissues. A key factor in this process is the postmortem interval (PMI), which is defined as the interval between death and sample collection. However, global patterns of postmortem mRNA degradation at individual gene levels across diverse human tissues remain largely unknown. In this study, we performed a systematic analysis of alteration of gene expression associated with PMI in human tissues. From the Genotype-Tissue Expression (GTEx) database, we evaluated gene expression levels of 2,016 high-quality postmortem samples from 316 donors of European descent, with PMI ranging from 1 to 27 hours. We found that PMI-related mRNA degradation is tissue-specific, gene-specific, and even genotype-dependent, thus drawing a more comprehensive picture of PMI-associated gene expression across diverse human tissues. Additionally, we also identified 266 differentially variable (DV) genes, such as DEFB4B and IFNG, whose expression is significantly dispersed between short PMI (S-PMI) and long PMI (L-PMI) groups. In summary, our analyses provide a comprehensive profile of PMI-associated gene expression, which will help interpret gene expression patterns in the evaluation of postmortem tissues.

  20. A novel semi-quantitative method for measuring tissue bleeding.

    Science.gov (United States)

    Vukcevic, G; Volarevic, V; Raicevic, S; Tanaskovic, I; Milicic, B; Vulovic, T; Arsenijevic, S

    2014-03-01

    In this study, we describe a new semi-quantitative method for measuring the extent of bleeding in pathohistological tissue samples. To test our novel method, we recruited 120 female patients in their first trimester of pregnancy and divided them into three groups of 40. Group I was the control group, in which no dilation was applied. Group II was an experimental group, in which dilation was performed using classical mechanical dilators. Group III was also an experimental group, in which dilation was performed using a hydraulic dilator. Tissue samples were taken from the patients' cervical canals using a Novak's probe via energetic single-step curettage prior to any dilation in Group I and after dilation in Groups II and III. After the tissue samples were prepared, light microscopy was used to obtain microphotographs at 100x magnification. The surfaces affected by bleeding were measured in the microphotographs using the Autodesk AutoCAD 2009 program and its "polylines" function. The lines were used to mark the area around the entire sample (marked A) and to create "polyline" areas around each bleeding area on the sample (marked B). The percentage of the total area affected by bleeding was calculated using the formula: N = Bt x 100 / At where N is the percentage (%) of the tissue sample surface affected by bleeding, At (A total) is the sum of the surfaces of all of the tissue samples and Bt (B total) is the sum of all the surfaces affected by bleeding in all of the tissue samples. This novel semi-quantitative method utilizes the Autodesk AutoCAD 2009 program, which is simple to use and widely available, thereby offering a new, objective and precise approach to estimate the extent of bleeding in tissue samples.

  1. Prospective utility of therapeutic ultrasound in dentistry-Review with recent comprehensive update

    Directory of Open Access Journals (Sweden)

    Shalu Rai

    2012-01-01

    Full Text Available Background: The utility of ultrasound (US for therapeutic purposes is still in its infancy. Therapeutic US (TUS has been used widely in medical field for urological application, surgical intervention, bone healing, and osteointegration in cancer and healing of full thickness excised skin lesions, and within dentistry as a prediagnostic, diagnostic and therapeutic purpose. The purpose of the paper is to review and determine the efficacy of US as one of the treatment modalities for its role in maxillofacial region to reduce pain and promote soft tissue healing. Materials and Methods: A Medline search included of the international literature published between 1976 and 2011 and was restricted to English language articles, published work of past researchers including in vitro and in vivo studies, recent additions of textbooks on surgical and therapeutic applications of US and, current articles in conference papers and reports accessed from the internet using Google search engine on therapeutic ultrasound. Results: Very few article regarding effect of therapeutic of US for its use of insonation for treatment of patient with pain and soft tissue injury are available. This review article mainly emphasizes the therapeutic utility of US in dentistry for its effectiveness to decrease joint stiffness, reduce pain and muscle spasms and improve muscle mobility. In vivo studies have shown very little clinical effects. Conclusions: Further research is warranted in this clinically important area to make the development of noninvasive, multifunctional ultrasound devices for repair, regeneration and other therapeutic utility a success.

  2. Red fluorescent protein responsible for pigmentation in trematode-infected Porites compressa tissues.

    Science.gov (United States)

    Palmer, Caroline V; Roth, Melissa S; Gates, Ruth D

    2009-02-01

    Reports of coral disease have increased dramatically over the last decade; however, the biological mechanisms that corals utilize to limit infection and resist disease remain poorly understood. Compromised coral tissues often display non-normal pigmentation that potentially represents an inflammation-like response, although these pigments remain uncharacterized. Using spectral emission analysis and cryo-histological and electrophoretic techniques, we investigated the pink pigmentation associated with trematodiasis, infection with Podocotyloides stenometre larval trematode, in Porites compressa. Spectral emission analysis reveals that macroscopic areas of pink pigmentation fluoresce under blue light excitation (450 nm) and produce a broad emission peak at 590 nm (+/-6) with a 60-nm full width at half maximum. Electrophoretic protein separation of pigmented tissue extract confirms the red fluorescence to be a protein rather than a low-molecular-weight compound. Histological sections demonstrate green fluorescence in healthy coral tissue and red fluorescence in the trematodiasis-compromised tissue. The red fluorescent protein (FP) is limited to the epidermis, is not associated with cells or granules, and appears unstructured. These data collectively suggest that the red FP is produced and localized in tissue infected by larval trematodes and plays a role in the immune response in corals.

  3. DNA methylation age is elevated in breast tissue of healthy women.

    Science.gov (United States)

    Sehl, Mary E; Henry, Jill E; Storniolo, Anna Maria; Ganz, Patricia A; Horvath, Steve

    2017-07-01

    Limited evidence suggests that female breast tissue ages faster than other parts of the body according to an epigenetic biomarker of aging known as the "epigenetic clock." However, it is unknown whether breast tissue samples from healthy women show a similar accelerated aging effect relative to other tissues, and what could drive this acceleration. The goal of this study is to validate our initial finding of advanced DNA methylation (DNAm) age in breast tissue, by directly comparing it to that of peripheral blood tissue from the same individuals, and to do a preliminary assessment of hormonal factors that could explain the difference. We utilized n = 80 breast and 80 matching blood tissue samples collected from 40 healthy female participants of the Susan G. Komen Tissue Bank at the Indiana University Simon Cancer Center who donated these samples at two time points spaced at least a year apart. DNA methylation levels (Illumina 450K platform) were used to estimate the DNAm age. DNAm age was highly correlated with chronological age in both peripheral blood (r = 0.94, p < 0.0001) and breast tissues (r = 0.86, p < 0.0001). A measure of epigenetic age acceleration (age-adjusted DNAm Age) was substantially increased in breast relative to peripheral blood tissue (p = 1.6 × 10 -11 ). The difference between DNAm age of breast and blood decreased with advancing chronologic age (r = -0.53, p = 4.4 × 10 -4 ). Our data clearly demonstrate that female breast tissue has a higher epigenetic age than blood collected from the same subject. We also observe that the degree of elevation in breast diminishes with advancing age. Future larger studies will be needed to examine associations between epigenetic age acceleration and cumulative hormone exposure.

  4. β-adrenergic relaxation of smooth muscle: differences between cells and tissues

    International Nuclear Information System (INIS)

    Scheid, C.R.

    1987-01-01

    The present studies were carried out in an attempt to resolve the controversy about the Na + dependence of β-adrenergic relaxation in smooth muscle. Previous studies on isolated smooth muscle cells from the toad stomach had suggested that at least some of the actions of β-adrenergic agents, including a stimulatory effect on 45 Ca efflux, were dependent on the presence of a normal transmembrane Na + gradient. Studies by other investigators using tissues derived from mammalian sources had suggested that the relaxing effect of β-adrenergic agents was Na + independent. Uncertainty remained as to whether these discrepancies reflected differences between cells and tissues or differences between species. Thus, in the present studies, the authors utilized both tissues and cells from the same source, the stomach muscle of the toad Bufo marinus, and assessed the Na + dependence of β-adrenergic relaxation. They found that elimination of a normal Na + gradient abolished β-adrenergic relaxation of isolated cells. In tissues, however, similar manipulations had no effect on relaxation. The reasons for this discrepancy are unclear but do not appear to be attributable to changes in smooth muscle function following enzymatic dispersion. Thus the controversy concerning the mechanisms of β-adrenergic relaxation may reflect inherent differences between tissues and cells

  5. Chemopreventive glucosinolate accumulation in various broccoli and collard tissues: Microfluidic-based targeted transcriptomics for by-product valorization.

    Science.gov (United States)

    Lee, Young-Sang; Ku, Kang-Mo; Becker, Talon M; Juvik, John A

    2017-01-01

    Floret, leaf, and root tissues were harvested from broccoli and collard cultivars and extracted to determine their glucosinolate and hydrolysis product profiles using high performance liquid chromatography and gas chromotography. Quinone reductase inducing bioactivity, an estimate of anti-cancer chemopreventive potential, of the extracts was measured using a hepa1c1c7 murine cell line. Extracts from root tissues were significantly different from other tissues and contained high levels of gluconasturtiin and glucoerucin. Targeted gene expression analysis on glucosinolate biosynthesis revealed that broccoli root tissue has elevated gene expression of AOP2 and low expression of FMOGS-OX homologs, essentially the opposite of what was observed in broccoli florets, which accumulated high levels of glucoraphanin. Broccoli floret tissue has significantly higher nitrile formation (%) and epithionitrile specifier protein gene expression than other tissues. This study provides basic information of the glucosinolate metabolome and transcriptome for various tissues of Brassica oleracea that maybe utilized as potential byproducts for the nutraceutical market.

  6. Liesegang rings in tissue. How to distinguish Liesegang rings from the giant kidney worm, Dioctophyma renale.

    Science.gov (United States)

    Tuur, S M; Nelson, A M; Gibson, D W; Neafie, R C; Johnson, F B; Mostofi, F K; Connor, D H

    1987-08-01

    Liesegang rings (LRs) are periodic precipitation zones from supersaturated solutions in colloidal systems. They are formed by a process that involves an interplay of diffusion, nucleation, flocculation or precipitation, and supersaturation. Examples include LRs of calcium carbonate in oölitic limestone (in nature), LRs of silver chromate in gelatin (in vitro), and LRs of glycoprotein in pulmonary corpora amylacea (in vivo). Here we describe LRs in lesions from 29 patients--mostly lesions of the kidney, synovium, conjunctiva, and eyelid. The LRs formed in cysts, or in fibrotic, inflamed, or necrotic tissue. The LRs in this study varied greatly in shape and size, measuring 7-800 microns. Special stains and energy-dispersive radiographic analysis or scanning electron microscopy revealed that some LRs contained calcium, iron (hemosiderin), silicon, and sulfur. Some pathologists have mistaken LRs for eggs, larvae, or adults of the giant kidney worm, Dioctophyma renale. D. renale is a large blood-red nematode that infects a variety of fish-eating mammals, especially mink. Fourteen documented infections of humans have been recorded, usually with adult worms expelled from the urethra. The adult worms are probably the largest helminth to parasitize humans. Eggs of D. renale are constant in size (60-80 microns X 39-47 microns), contain an embryo, and have characteristic sculpturing of the shell. Liesegang rings should not be mistaken for eggs, larvae, or adults of D. renale, or for any other helminth.

  7. Imaging of oxygenation in 3D tissue models with multi-modal phosphorescent probes

    Science.gov (United States)

    Papkovsky, Dmitri B.; Dmitriev, Ruslan I.; Borisov, Sergei

    2015-03-01

    Cell-penetrating phosphorescence based probes allow real-time, high-resolution imaging of O2 concentration in respiring cells and 3D tissue models. We have developed a panel of such probes, small molecule and nanoparticle structures, which have different spectral characteristics, cell penetrating and tissue staining behavior. The probes are compatible with conventional live cell imaging platforms and can be used in different detection modalities, including ratiometric intensity and PLIM (Phosphorescence Lifetime IMaging) under one- or two-photon excitation. Analytical performance of these probes and utility of the O2 imaging method have been demonstrated with different types of samples: 2D cell cultures, multi-cellular spheroids from cancer cell lines and primary neurons, excised slices from mouse brain, colon and bladder tissue, and live animals. They are particularly useful for hypoxia research, ex-vivo studies of tissue physiology, cell metabolism, cancer, inflammation, and multiplexing with many conventional fluorophors and markers of cellular function.

  8. Systematic profiling of spatiotemporal tissue and cellular stiffness in the developing brain.

    Science.gov (United States)

    Iwashita, Misato; Kataoka, Noriyuki; Toida, Kazunori; Kosodo, Yoichi

    2014-10-01

    Accumulating evidence implicates the significance of the physical properties of the niche in influencing the behavior, growth and differentiation of stem cells. Among the physical properties, extracellular stiffness has been shown to have direct effects on fate determination in several cell types in vitro. However, little evidence exists concerning whether shifts in stiffness occur in vivo during tissue development. To address this question, we present a systematic strategy to evaluate the shift in stiffness in a developing tissue using the mouse embryonic cerebral cortex as an experimental model. We combined atomic force microscopy measurements of tissue and cellular stiffness with immunostaining of specific markers of neural differentiation to correlate the value of stiffness with the characteristic features of tissues and cells in the developing brain. We found that the stiffness of the ventricular and subventricular zones increases gradually during development. Furthermore, a peak in tissue stiffness appeared in the intermediate zone at E16.5. The stiffness of the cortical plate showed an initial increase but decreased at E18.5, although the cellular stiffness of neurons monotonically increased in association with the maturation of the microtubule cytoskeleton. These results indicate that tissue stiffness cannot be solely determined by the stiffness of the cells that constitute the tissue. Taken together, our method profiles the stiffness of living tissue and cells with defined characteristics and can therefore be utilized to further understand the role of stiffness as a physical factor that determines cell fate during the formation of the cerebral cortex and other tissues. © 2014. Published by The Company of Biologists Ltd.

  9. Determination of vitamin B6 bioavailability in animal tissues using intrinsic and extrinsic labeling in the rat

    International Nuclear Information System (INIS)

    Ink, S.L.; Gregory, J.F. III; Sartain, D.B.

    1986-01-01

    The effect of thermal processing on the bioavailability of vitamin B 6 in liver and muscle was examined by radioisotopic enrichment of these tissues. Rats were fed a single gelled test meal containing rat liver or muscle intrinsically enriched by vascular perfusion with [ 3 H]vitamin B 6 or a gelled test meal containing [ 3 H]pyridoxine (PN). Diets were extrinsically enriched with [ 14 C]PN to permit a direct comparison of enrichment methods. Absorption and metabolism were examined by analysis of tissues and excreta 24 h after the test meal had been consumed. The bioavailability of [ 3 H]B 6 vitamers in the raw tissues was equivalent to that of [ 3 H]PN in controls. Thermal processing of the tissues (121 0 C, 45 min) induced destruction of 25-30% of the [ 3 H]B 6 vitamers and weakly reduced (≤10%) the utilization of the remaining[ 3 H]B 6 vitamers. The presence of monosodium glutamate (MSG) during thermal processing did not alter the results. The utilization of [ 14 C]PN was unaffected by diet composition. These data demonstrate the high bioavailability of vitamin B 6 in animal-derived foods and support the use of isotopic enrichment methods as an alternative to conventional bioassay procedures

  10. Dietary fish oil replacement by linseed oil: Effect on growth, nutrient utilization, tissue fatty acid composition and desaturase gene expression in silver barb (Puntius gonionotus) fingerlings.

    Science.gov (United States)

    Nayak, Madhusmita; Saha, Ashis; Pradhan, Avinash; Samanta, Mrinal; Giri, Shiba Shankar

    2017-03-01

    Silver barb (Puntius gonionotus) is considered a promising medium carp species for freshwater aquaculture in Asia. This study in silver barb was carried out to evaluate the effects of total or partial substitution of dietary fish oil (FO) with linseed oil (LO) on growth, nutrient utilization, whole-body composition, muscle and liver fatty acid composition. Fish (12.1±0.4g of initial body weight) were fed for 60days with five experimental iso-proteinous, iso-lipidic and iso-caloric diets in which FO (control diet) was replaced by 33.3%, 50%, 66.7% and 100% LO. Final weight, weight gain, percent weight gain, SGR decreased linearly (p0.05) affect the feed conversion ratio (FCR), protein efficiency ratio (PER) and whole body proximate composition. Furthermore, enhanced level of LO increased α-linolenic acid (ALA; 18:3n3) and linoleic acid (LA; 18:2n6) and decreased eicosapentaenoic acid (EPA; 20:5n3) and docosahexaenoic acid (DHA; 22:6n3) in muscle and liver. To understand the molecular mechanism of long chain-polyunsaturated fatty acid (LC-PUFA) biosynthesis, we cloned and characterized the fatty acyl Δ6 desaturase (Δ6 fad) cDNA and investigated its expression in various organs/tissues following replacement of FO with LO in the diet. The full-length Δ6 fad cDNA was 2056bp encoding 444 amino acids and was widely expressed in various organs/tissues. Replacement of FO with LO increased the expression of Δ6 fad mRNA in liver, muscle and intestine but no significant difference was found in the brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Lead extraction by selective operation of a nanosecond-pulsed 355nm laser

    Science.gov (United States)

    Herzog, Amir; Bogdan, Stefan; Glikson, Michael; Ishaaya, Amiel A.; Love, Charles

    2016-03-01

    Lead extraction (LE) is necessary for patients who are suffering from a related infection, or in opening venous occlusions that prevent the insertion of additional lead. In severe cases of fibrous encapsulation of the lead within a vein, laser-based cardiac LE has become one of the foremost methods of removal. In cases where the laser radiation (typically at 308 nm wavelength) interacts with the vein wall rather than with the fibrotic lesion, severe injury and subsequent bleeding may occur. Selective tissue ablation was previously demonstrated by a laser operating in the UV regime; however, it requires the use of sensitizers (e.g.: tetracycline). In this study, we present a preliminary examination of efficacy and safety aspects in the use of a nanosecond-pulsed solid-state laser radiation, at 355 nm wavelength, guided in a catheter consisting of optical fibers, in LE. Specifically, we demonstrate a correlation between the tissue elasticity and the catheter advancement rate, in ex-vivo experiments. Our results indicate a selectivity property for specific parameters of the laser radiation and catheter design. The selectivity is attributed to differences in the mechanical properties of the fibrotic tissue and a normal vein wall, leading to a different photomechanical response of the tissue's extracellular matrix. Furthermore, we performed successful in-vivo animal trials, providing a basic proof of concept for using the suggested scheme in LE. Selective operation using a 355 nm laser may reduce the risk of blood vessel perforation as well as the incidence of major adverse events.

  12. Utility of bone scintigraphy in the study of hereditary disorders of the connective tissues (HDCT)

    International Nuclear Information System (INIS)

    Bravo, J.F; Arteaga M P; Coelho, L

    2003-01-01

    Introduction: Collagen fiber genetic alterations predispose to pain and instability of joints, with a tendency to osteoarthritis, and may also cause fragility of other tissues. Objective: To demonstrate that Bone Scintigraphy is useful in the diagnosis of Heritable Disorders of Connective Tissues (HDCT). Material and methods: We studied the scintigraphic changes of wrists, carpal bones and hands of 22 adult patients with HDCT who were diagnosed clinically using both the Brighton Criteria(1), as well as own criteria**. We compared them to 22 controls with similar age and sex, who had a bone scintigram done for other purposes. Results: Statistically significant scintigraphic positivity was found in the areas studied in the patients as compared to controls (p ≤ 0.05), with a sensitivity of 95% and specificity of 73%. There was no correlation of the degree of positivity with age, sex or type of HDCT studied. A scintigraphic positivity was seen both in patients with lax joints, as well as in those with a lesser degree of joint mobility. Conclusions: We concluded that bone scintigraphic studies are useful in the diagnosis of adult HDCT patients (including Benign Joint Hyper mobility Syndrome (BJHS) and other forms of Ehlers-Danlos). We suggest that not only hypermobility of joints, but also cartilage fragility are important pathogenic factors in the genesis of these alterations. We formulate a new hypothesis of the importance of low folic acid intake during pregnancy, as a cause for mutations that would give rise to HDCT (Au)

  13. Utility of bone scintigraphy in the study of hereditary disorders of the connective tissues (HDCT)

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, J F; P, Arteaga M; Coelho, L [Departments of Rheumatology and Nuclear Medicine. Clinica Arauco. Santiago (Chile)

    2003-10-01

    Introduction: Collagen fiber genetic alterations predispose to pain and instability of joints, with a tendency to osteoarthritis, and may also cause fragility of other tissues. Objective: To demonstrate that Bone Scintigraphy is useful in the diagnosis of Heritable Disorders of Connective Tissues (HDCT). Material and methods: We studied the scintigraphic changes of wrists, carpal bones and hands of 22 adult patients with HDCT who were diagnosed clinically using both the Brighton Criteria(1), as well as own criteria**. We compared them to 22 controls with similar age and sex, who had a bone scintigram done for other purposes. Results: Statistically significant scintigraphic positivity was found in the areas studied in the patients as compared to controls (p {<=} 0.05), with a sensitivity of 95% and specificity of 73%. There was no correlation of the degree of positivity with age, sex or type of HDCT studied. A scintigraphic positivity was seen both in patients with lax joints, as well as in those with a lesser degree of joint mobility. Conclusions: We concluded that bone scintigraphic studies are useful in the diagnosis of adult HDCT patients (including Benign Joint Hyper mobility Syndrome (BJHS) and other forms of Ehlers-Danlos). We suggest that not only hypermobility of joints, but also cartilage fragility are important pathogenic factors in the genesis of these alterations. We formulate a new hypothesis of the importance of low folic acid intake during pregnancy, as a cause for mutations that would give rise to HDCT (Au)

  14. Opto-ultrasound imaging in vivo in deep tissue

    International Nuclear Information System (INIS)

    Si, Ke; YanXu; Zheng, Yao; Zhu, Xinpei; Gong, Wei

    2016-01-01

    It is of keen importance of deep tissue imaging with high resolution in vivo. Here we present an opto-ultrasound imaging method which utilizes an ultrasound to confine the laser pulse in a very tiny spot as a guide star. The results show that the imaging depth is 2mm with a resolution of 10um. Meanwhile, the excitation power we used is less than 2mW, which indicates that our methods can be applied in vivo without optical toxicity and optical bleaching due to the excitation power. (paper)

  15. Theoretical-experimental study of the non-thermal effects of the polarized laser radiation in living tissues

    International Nuclear Information System (INIS)

    Ribeiro, M.S.

    1991-01-01

    In the present research we had as a fundamental objective to analyse the non-thermal effects of the laser polarized light in biological tissues. These effects were performed with low power laser output. The theoretical procedure consisted in looking for a simple model which connects the effect of light polarized with microscopically rough tissues using well established physical concepts. Experimentally, we created artificial wounds on the back of animals using liquid nitrogen (this method was chosen because it does not interfere in the biochemistry of the animal tissue). For the wound irradiation we have utilized a He-Ne attached to an optical system. (author)

  16. Soft tissue metastases from differentiated thyroid cancer diagnosed by {sup 18}F FDG PET-CT

    Energy Technology Data Exchange (ETDEWEB)

    Califano, Ines; Quildrian, Sergio; Otero, Jose; Coduti, Martin; Califano, Leonardo; Rojas Bilbao, Erica, E-mail: ines.m.califano@gmail.com [Instituto de Oncologia Angel H. Roffo, Universidad de Buenos Aires (Argentina)

    2013-06-15

    Distant metastases of differentiated thyroid cancer are unusual; lung and bones are the most frequently affected sites. Soft tissue metastases (STM) are extremely rare. We describe two cases of patients with differentiated thyroid cancer metastasizing to soft tissues. Both patients had widespread metastatic disease; clinically asymptomatic soft tissue metastases were found by 18-Fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F FDG PET-CT), and confirmed by cytological and/or histopathological studies. These findings underscore the ability of {sup 18}F FDG PET-CT in accurately assessing the extent of the disease, as well as the utility of the method to evaluate regions of the body that are not routinely explored. (author)

  17. miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1.

    Directory of Open Access Journals (Sweden)

    Christian Lacks Lino Cardenas

    dysregulation of miR-199a-5p represents a general mechanism contributing to the fibrotic process. MiR-199a-5p thus behaves as a major regulator of tissue fibrosis with therapeutic potency to treat fibroproliferative diseases.

  18. PET-CT in the evaluation of sarcomas of soft tissues

    International Nuclear Information System (INIS)

    Serna M, J.A.; Quiroz C, O.; Sanchez C, N.; Diaz V, G.

    2007-01-01

    18 F-FDG PET-CT is an image modality of great utility in the evaluation of primary or recurrent lesions of soft tissues. It is necessary to determine the cost-benefit of the different image modalities, although one waits that by means of a better diagnostic, statification and the determination of the grade of malignancy, the PET-CT nowadays can reduce the cost and the complications of the invasive diagnostic methods. (Author)

  19. Macro-and micro-autoradiographic study in comparison with the incorporation of 35S-methionine by various tissue protein in organism

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Mei Shengping; Le Shangcheng

    1990-12-01

    The purpose of the study was to observe the incorporation level of 35 S-methionine by various tissue protein in organism. By the use of the macro-and micro-autoradiographic technique, the incorporation of 35 S-methionine by the tissues has been utilized as an index of various tissue protein synthesis. On this basis, the further experiments showed that tracer agent 35 S-methionine was dominantly incorporated in the immature cells of bone marrow and the tissue of liver, kidney and spleen. Its incorporation increased gradually with time. From the experimental results it can be concluded that a strong protein biosynthesis metabolism was produced in these tissues. While the tissues have important physiological function in organism, such as heart, lung and skeletal muscle, but the protein biosynthesis in those tissues was at a low level

  20. Pareto utility

    NARCIS (Netherlands)

    Ikefuji, M.; Laeven, R.J.A.; Magnus, J.R.; Muris, C.H.M.

    2013-01-01

    In searching for an appropriate utility function in the expected utility framework, we formulate four properties that we want the utility function to satisfy. We conduct a search for such a function, and we identify Pareto utility as a function satisfying all four desired properties. Pareto utility

  1. Histological changes of the thyroid gland after /sup 131/I treatment for hyperthyroidism. I. Analysis by the frequency of administration and dosage of /sup 131/I

    Energy Technology Data Exchange (ETDEWEB)

    Takeichi, N; Inoue, S; Niimoto, M; Nagata, N [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology; Yasuda, K

    1976-01-01

    The histological changes of the thyroid tissues due to /sup 131/I treatment were classified by the frequency of administration and dosage of /sup 131/I, and the chronological changes were examined. The histopathological findings including nuclear alteration, tissue infiltration, vascular alteration and regeneration of the follicular epithelium were examined. In the cases which received 2-3 doses, there were many atypical regeneration of the follicular epithelium, and in the cases with long observation duration, Askanazy cells and fibrotic proliferation were observed. These histological changes indicated the possibility of the occurrence of tumor due to the administration of /sup 131/I.

  2. Design of a tissue oxygenation monitor and verification on human skin

    Science.gov (United States)

    Liu, Hongyuan; Kohl-Bareis, Matthias; Huang, Xiabing

    2011-07-01

    We report the design of a tissue oxygen and temperature monitor. The non-invasive, fibre based device monitors tissue haemoglobin (Hb) and oxygen saturation (SO2) and is based on white-light reflectance spectroscopy.Visible light with wavelengths in the 500 - 650nm range is utilized. The spectroscopic algorithm takes into account the tissue scattering and melanin absorption for the calculation of tissue haemoglobin concentration and oxygen saturation. The monitor can probe superficial layers of tissue with a high spatial resolution (mm3) and a high temporal resolution (40 Hz). It provides an accurate measurement with the accuracy of SO2 at 2 % and high reliability with less than 2 % variation of continuous SO2 measurement over 12 hours. It can also form a modular system when used in conjunction with a laser Doppler monitor, enabling simultaneous measurements of Hb, SO2 and blood flow. We found experimentally that the influence of the source-detector separation on the haemoglobin parameters is small. This finding is discussed by Monte Carlo simulations for the depth sensitivity profile. The influence of probe pressure and the skin pigmentation on the measurement parameters are assessed before in vivo experimental data is presented. The combination with laser Doppler flowmetry demonstrates the importance of a measurement of both the haemoglobin and the blood flow parameters for a full description of blood tissue perfusion. This is discussed in experimental data on human skin during cuff occlusion and after hyperemisation by a pharmacological cream. Strong correlation is observed between tissue oxygen (Hb and SO2) and blood flow measurements.

  3. Adhesion-governed buckling of thin-film electronics on soft tissues

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2016-01-01

    Full Text Available Stretchable/flexible electronics has attracted great interest and attention due to its potentially broad applications in bio-compatible systems. One class of these ultra-thin electronic systems has found promising and important utilities in bio-integrated monitoring and therapeutic devices. These devices can conform to the surfaces of soft bio-tissues such as the epidermis, the epicardium, and the brain to provide portable healthcare functionalities. Upon contractions of the soft tissues, the electronics undergoes compression and buckles into various modes, depending on the stiffness of the tissue and the strength of the interfacial adhesion. These buckling modes result in different kinds of interfacial delamination and shapes of the deformed electronics, which are very important to the proper functioning of the bio-electronic devices. In this paper, detailed buckling mechanics of these thin-film electronics on elastomeric substrates is studied. The analytical results, validated by experiments, provide a very convenient tool for predicting peak strain in the electronics and the intactness of the interface under various conditions.

  4. Radiodiagnosis of pulmonary alterations in systemic lupus erythematosus patients

    International Nuclear Information System (INIS)

    Kamenetskij, M.S.; Lezova, T.F.; Kajzerman, I.A.; Sinyachenko, O.V.; Dyadyk, A.I.; Nikolenko, Yu.I.

    1982-01-01

    X-ray examination was carried out in 170 patients with systemic lupus erythematosus. Certain parameters of specific immunity were studied in 60 of them, while X-ray data were compared with morphological findings on autopsy in 20 cases. A tendency toward escalation of specific cell and humoral parameters was discovered in pulmonary lesion, predetermined by vasculitis and perivasculitis, as well as inflammatory and fibrotic alterations in the interstitial tissue

  5. Strategies to improve macroencapsulated islet graft survival

    OpenAIRE

    Sörenby, Anne

    2007-01-01

    Chronic immunosuppressive therapy may have severe side-effects. In cell transplantation, the graft can be encapsulated within a membrane chamber, providing a physical barrier against the immune system. The cell graft then becomes dependent on the diffusion of nutrients and oxygen from the surrounding microcirculation. A major drawback has been the formation of avascular fibrotic tissue around the chamber. The immunoprotective device studied (TheraCyte ) has an outer membrane...

  6. The national DBS brain tissue network pilot study: need for more tissue and more standardization.

    Science.gov (United States)

    Vedam-Mai, V; Krock, N; Ullman, M; Foote, K D; Shain, W; Smith, K; Yachnis, A T; Steindler, D; Reynolds, B; Merritt, S; Pagan, F; Marjama-Lyons, J; Hogarth, P; Resnick, A S; Zeilman, P; Okun, M S

    2011-08-01

    Over 70,000 DBS devices have been implanted worldwide; however, there remains a paucity of well-characterized post-mortem DBS brains available to researchers. We propose that the overall understanding of DBS can be improved through the establishment of a Deep Brain Stimulation-Brain Tissue Network (DBS-BTN), which will further our understanding of DBS and brain function. The objectives of the tissue bank are twofold: (a) to provide a complete (clinical, imaging and pathological) database for DBS brain tissue samples, and (b) to make available DBS tissue samples to researchers, which will help our understanding of disease and underlying brain circuitry. Standard operating procedures for processing DBS brains were developed as part of the pilot project. Complete data files were created for individual patients and included demographic information, clinical information, imaging data, pathology, and DBS lead locations/settings. 19 DBS brains were collected from 11 geographically dispersed centers from across the U.S. The average age at the time of death was 69.3 years (51-92, with a standard deviation or SD of 10.13). The male:female ratio was almost 3:1. Average post-mortem interval from death to brain collection was 10.6 h (SD of 7.17). The DBS targets included: subthalamic nucleus, globus pallidus interna, and ventralis intermedius nucleus of the thalamus. In 16.7% of cases the clinical diagnosis failed to match the pathological diagnosis. We provide neuropathological findings from the cohort, and perilead responses to DBS. One of the most important observations made in this pilot study was the missing data, which was approximately 25% of all available data fields. Preliminary results demonstrated the feasibility and utility of creating a National DBS-BTN resource for the scientific community. We plan to improve our techniques to remedy omitted clinical/research data, and expand the Network to include a larger donor pool. We will enhance sample preparation to

  7. Optimization of Single- and Dual-Color Immunofluorescence Protocols for Formalin-Fixed, Paraffin-Embedded Archival Tissues.

    Science.gov (United States)

    Kajimura, Junko; Ito, Reiko; Manley, Nancy R; Hale, Laura P

    2016-02-01

    Performance of immunofluorescence staining on archival formalin-fixed paraffin-embedded human tissues is generally not considered to be feasible, primarily due to problems with tissue quality and autofluorescence. We report the development and application of procedures that allowed for the study of a unique archive of thymus tissues derived from autopsies of individuals exposed to atomic bomb radiation in Hiroshima, Japan in 1945. Multiple independent treatments were used to minimize autofluorescence and maximize fluorescent antibody signals. Treatments with NH3/EtOH and Sudan Black B were particularly useful in decreasing autofluorescent moieties present in the tissue. Deconvolution microscopy was used to further enhance the signal-to-noise ratios. Together, these techniques provide high-quality single- and dual-color fluorescent images with low background and high contrast from paraffin blocks of thymus tissue that were prepared up to 60 years ago. The resulting high-quality images allow the application of a variety of image analyses to thymus tissues that previously were not accessible. Whereas the procedures presented remain to be tested for other tissue types and archival conditions, the approach described may facilitate greater utilization of older paraffin block archives for modern immunofluorescence studies. © 2016 The Histochemical Society.

  8. Detection and Interpretation of Fluorescence Signals Generated by Excitable Cells and Tissues

    Science.gov (United States)

    Costantino, Anthony J.

    Part 1: High-Sensitivity Amplifiers for Detecting Fluorescence . Monitoring electrical activity and Cai 2+ transients in biological tissues and individual cells increasingly utilizes optical sensors based on voltage-dependent and Cai 2+-dependent fluorescent dyes. However, achieving satisfactory signal-to-noise ratios (SNR) often requires increased illumination intensities and/or dye concentrations, which results in photo-toxicity, photo-bleaching and other adverse effects limiting the utility of optical recordings. The most challenging are the recordings from individual cardiac myocytes and neurons. Here we demonstrate that by optimizing a conventional transimpedance topology one can achieve a 10-20 fold increase of sensitivity with photodiode-based recording systems (dependent on application). We provide a detailed comparative analysis of the dynamic and noise characteristics of different transimpedance amplifier topologies as well as the example(s) of their practical implementation. Part 2: Light-Scattering Models for Interpretation of Fluorescence Data. Current interest in understanding light transport in cardiac tissue has been motivated in part by increased use of voltage-sensitive and Ca i2+-sensitive fluorescent probes to map electrical impulse propagation and Cai2+-transients in the heart. The fluorescent signals are recorded using such probes represent contributions from different layers of myocardial tissue and are greatly affected by light scattering. The interpretation of these signals thus requires deconvolution which would not be possible without detailed models of light transport in the respective tissue. Which involves the experimental measurements of the absorption, scattering, and anisotropy coefficients, mua, mu s, and g respectively. The aim of the second part of our thesis was to derive a new method for deriving these parameters from high spatial resolution measurements of forward-directed flux (FDF). To this end, we carried out high spatial

  9. Effect of Use of Platelet-Rich Plasma (PRP) in Skin with Intrinsic Aging Process.

    Science.gov (United States)

    Charles-de-Sá, Luiz; Gontijo-de-Amorim, Natale Ferreira; Takiya, Christina Maeda; Borojevic, Radovan; Benati, Donatella; Bernardi, Paolo; Sbarbati, Andrea; Rigotti, Gino

    2018-02-15

    In previous papers, we demonstrated that the treatment of human photoaged skin with stromal-vascular fraction-enriched fat or expanded adipose-derived stem cells showed a decrease of elastosis and the appearance of new oxytalan elastic fibers in dermis and an increase in the vascular network. The utilization of fat plus platelet-rich plasma (PRP) led to an increase in the vascular permeability and reactivity of the nervous component. The purpose of this study was to analyze the histologic and ultrastructural changes of human skin after the injection of only PRP in the retroauricular area that was not exposed to sun and did not present the photoaging process, in comparison with our previous results. This study was performed in 13 patients who were candidates for facelift and whose ages ranged between 45 and 65 years. The PRP injection was performed in the mastoidea area. Fragments of skin were removed before and 3 months after treatment and analyzed by optical and electron microscopy. After the injection of PRP, we observed an increase of reticular dermis thickness because of the deposition of elastic fibers and collagen, with a fibrotic aspect. A modified pattern of adipose tissue was also found at the dermohypodermal junction. Significative regenerative aspects were not found at histologic and ultrastructural analysis. The presence of foci of moderate inflammation and microangiopathy were observed. Treatment with PRP increased reticular dermis thickness with a fibrotic aspect. In the long term, the presence of inflammation and microangiopathy caused by PRP injection could lead to trophic alteration of the skin and the precocious aging process. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  10. 3D Printing of Scaffolds for Tissue Regeneration Applications

    Science.gov (United States)

    Do, Anh-Vu; Khorsand, Behnoush; Geary, Sean M.; Salem, Aliasger K.

    2015-01-01

    The current need for organ and tissue replacement, repair and regeneration for patients is continually growing such that supply is not meeting the high demand primarily due to a paucity of donors as well as biocompatibility issues that lead to immune rejection of the transplant. In an effort to overcome these drawbacks, scientists working in the field of tissue engineering and regenerative medicine have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired a growing interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity and precision, where fine details can be included at a micron level. In this review, we discuss the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering. A hybrid approach, employing both natural and synthetic materials, as well as multiple printing processes may be the key to yielding an ECM-like scaffold with high mechanical strength, porosity, interconnectivity, biocompatibility, biodegradability, and high processability. Creating such biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation. PMID:26097108

  11. Regenerative medicine in dental and oral tissues: Dental pulp mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    Janti Sudiono

    2017-08-01

    Full Text Available Background. Regenerative medicine is a new therapeutic modality using cell, stem cell and tissue engineering technologies. Purpose. To describe the regenerative capacity of dental pulp mesenchymal stem cell. Review. In dentistry, stem cell and tissue engineering technologies develop incredibly and attract great interest, due to the capacity to facilitate innovation in dental material and regeneration of dental and oral tissues. Mesenchymal stem cells derived from dental pulp, periodontal ligament and dental follicle, can be isolated, cultured and differentiated into various cells, so that can be useful for regeneration of dental, nerves, periodontal and bone tissues. Tissue engineering is a technology in reconstructive biology, which utilizes mechanical, cellular, or biological mediators to facilitate regeneration or reconstruction of a particular tissue. The multipotency, high proliferation rates and accessibility, make dental pulp as an attractive source of mesenchymal stem cells for tissue regeneration. Revitalized dental pulp and continued root development is the focus of regenerative endodontic while biological techniques that can restore lost alveolar bone, periodontal ligament, and root cementum is the focus of regenerative periodontic. Conclucion. Dentin-derived morphogens such as BMP are known to be involved in the regulation of odontogenesis. The multipotency and angiogenic capacity of DPSCs as the regenerative capacity of human dentin / pulp complex indicated that dental pulp may contain progenitors that are responsible for dentin repair. The human periodontal ligament is a viable alternative source for possible primitive precursors to be used in stem cell therapy.

  12. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances.

    Science.gov (United States)

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.

  13. Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances

    Directory of Open Access Journals (Sweden)

    Julien Barthes

    2014-01-01

    Full Text Available In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells’ behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.

  14. In vivo tissue engineering: Part I. Concept genesis and guidelines for its realization.

    Science.gov (United States)

    Zdrahala, R J; Zdrahala, I J

    1999-10-01

    A loss of function of an organ often represents a life-threatening situation. Transplantations are successful, but "replacement" availability, its compatibility with the host, and subsequent healing often pose serious questions. Tissue engineering, where a carefully prepared scaffold is populated, in vitro, by cells to form an artificial organ, addresses some of the problems mentioned above. Trauma associated with the implant introduction to the host often complicates the process. The novel concept of in vivo tissue engineering which is designed to mediate the healing and tissue regeneration process by providing an in vitro formed porous, microcellular scaffold is proposed. The scaffold (part or entire organ) is then populated by cells either spontaneously (the surrounding cells will spread and populate to inhabit the scaffold) or by cellular augmentation (encapsulated cells are delivered to this in statu nascendi scaffold). Minimally traumatic arthroscopic surgery combined with a unique polymer delivery system is envisioned for the introduction of this implant to a site to be repaired. Such an approach will require the formation of polymer in-situ, in a reasonable time. The scaffold-forming polymers will be, in principle, biodegradable. We propose to utilize biodegradable polyurethane systems for in vivo tissue engineering. Diversity of their structure/property relationships, relative "ease" of their preparation, and excellent biocompatibility predetermine polyurethanes to be the materials of choice. This paper describes the genesis of this concept and potentials for its realization. It is intended to initiate and stimulate discussion among the related scientific disciplines to form a basis for this field. The synthesis, application, and biodegradation of selected polyurethanes and variety of its medical utilization will be discussed in upcoming papers.

  15. Imaging lymphoid tissues in nonhuman primates to understand SIV pathogenesis and persistence.

    Science.gov (United States)

    Deleage, Claire; Turkbey, Baris; Estes, Jacob D

    2016-08-01

    CD4+ T cells are the primary HIV-1 target cell, with the vast majority of these cells residing within lymphoid tissue compartments throughout the body. Predictably, HIV-1 infection, replication, localization, reservoir establishment and persistence, as well as associated host immune and inflammatory responses and disease pathology principally take place within the tissues of the immune system. By virture of the fact that the virus-host struggle is played out within lymphoid and additional tissues compartments in HIV-1 infected individuals it is critical to understand HIV-1 infection and disease within these relevant tissue sites; however, there are obvious limitations to studying these dynamic processes in humans. Nonhuman primate (NHP) research has provided a vital bridge between basic and preclinical research and clinical studies, with experimental SIV infection of NHP models offering unique opportunities to understand key processes of HIV-1 infection and disease that are either not practically feasible or ethical in HIV-1 infected humans. In this review we will discuss current approaches to studying the tissue based immunopathogenesis of AIDS virus infection in NHPs, including both analyses of tissues obtained at biopsy or necropsy and complementary non-invasive imaging approaches that may have practical utility in monitoring HIV-1 disease in the clinical setting. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Transient inhibition of connective tissue infiltration and collagen deposition into porous poly(lactic-co-glycolic acid) discs.

    Science.gov (United States)

    Love, Ryan J; Jones, Kim S

    2013-12-01

    Connective tissue rapidly proliferates on and around biomaterials implanted in vivo, which impairs the function of the engineered tissues, biosensors, and devices. Glucocorticoids can be utilized to suppress tissue ingrowth, but can only be used for a limited time because they nonselectively arrest cell proliferation in the local environment. The present study examined use of a prolyl-4-hydroxylase inhibitor, 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA), to suppress connective tissue ingrowth in porous PLGA discs implanted in the peritoneal cavity for 28 days. The prolyl-4-hydroxylase inhibitor was found to be effective at inhibiting collagen deposition within and on the outer surface of the disc, and also limited connective tissue ingrowth, but not to the extent of glucocorticoid inhibition. Finally, it was discovered that 1,4-DPCA suppressed Scavenger Receptor A expression on a macrophage-like cell culture, which may account for the drug's ability to limit connective tissue ingrowth in vivo. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  17. Decomposing the Hounsfield unit: probabilistic segmentation of brain tissue in computed tomography.

    Science.gov (United States)

    Kemmling, A; Wersching, H; Berger, K; Knecht, S; Groden, C; Nölte, I

    2012-03-01

    The aim of this study was to present and evaluate a standardized technique for brain segmentation of cranial computed tomography (CT) using probabilistic partial volume tissue maps based on a database of high resolution T1 magnetic resonance images (MRI). Probabilistic tissue maps of white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) were derived from 600 normal brain MRIs (3.0 Tesla, T1-3D-turbo-field-echo) of 2 large community-based population studies (BiDirect and SEARCH Health studies). After partial tissue segmentation (FAST 4.0), MR images were linearly registered to MNI-152 standard space (FLIRT 5.5) with non-linear refinement (FNIRT 1.0) to obtain non-binary probabilistic volume images for each tissue class which were subsequently used for CT segmentation. From 150 normal cerebral CT scans a customized reference image in standard space was constructed with iterative non-linear registration to MNI-152 space. The inverse warp of tissue-specific probability maps to CT space (MNI-152 to individual CT) was used to decompose a CT image into tissue specific components (GM, WM, CSF). Potential benefits and utility of this novel approach with regard to unsupervised quantification of CT images and possible visual enhancement are addressed. Illustrative examples of tissue segmentation in different pathological cases including perfusion CT are presented. Automated tissue segmentation of cranial CT images using highly refined tissue probability maps derived from high resolution MR images is feasible. Potential applications include automated quantification of WM in leukoaraiosis, CSF in hydrocephalic patients, GM in neurodegeneration and ischemia and perfusion maps with separate assessment of GM and WM.

  18. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells

    International Nuclear Information System (INIS)

    Sassoli, Chiara; Nosi, Daniele; Tani, Alessia; Chellini, Flaminia; Mazzanti, Benedetta; Quercioli, Franco; Zecchi-Orlandini, Sandra; Formigli, Lucia

    2014-01-01

    Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7 + satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration

  19. Glechoma hederacea extracts attenuate cholestatic liver injury in a bile duct-ligated rat model.

    Science.gov (United States)

    Wang, Ya-Yu; Lin, Shih-Yi; Chen, Wen-Ying; Liao, Su-Lan; Wu, Chih-Cheng; Pan, Pin-Ho; Chou, Su-Tze; Chen, Chun-Jung

    2017-05-23

    In traditional Chinese medicine, Glechoma hederacea is frequently prescribed to patients with cholelithiasis, dropsy, abscess, diabetes, inflammation, and jaundice. Polyphenolic compounds are main bioactive components of Glechoma hederacea. This study was aimed to investigate the hepatoprotective potential of hot water extract of Glechoma hederacea against cholestatic liver injury in rats. Cholestatic liver injury was produced by ligating common bile ducts in Sprague-Dawley rats. Saline and hot water extract of Glechoma hederacea were orally administrated using gastric gavages. Liver tissues and bloods were collected and subjected to evaluation using histological, molecular, and biochemical approaches. Using a rat model of cholestasis caused by bile duct ligation (BDL), daily oral administration of Glechoma hederacea hot water extracts showed protective effects against cholestatic liver injury, as evidenced by the improvement of serum biochemicals, ductular reaction, oxidative stress, inflammation, and fibrosis. Glechoma hederacea extracts alleviated BDL-induced transforming growth factor beta-1 (TGF-β1), connective tissue growth factor, and collagen expression, and the anti-fibrotic effects were accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad2/3 activity. Glechoma hederacea extracts attenuated BDL-induced inflammatory cell infiltration/accumulation, NF-κB and AP-1 activation, and inflammatory cytokine production. Further studies demonstrated an inhibitory effect of Glechoma hederacea extracts on the axis of high mobility group box-1 (HMGB1)/toll-like receptor-4 (TLR4) intracellular signaling pathways. The hepatoprotective, anti-oxidative, anti-inflammatory, and anti-fibrotic effects of Glechoma hederacea extracts seem to be multifactorial. The beneficial effects of daily Glechoma hederacea extracts supplementation were associated with anti-oxidative, anti-inflammatory, and anti-fibrotic potential, as well as down

  20. Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Sassoli, Chiara; Nosi, Daniele; Tani, Alessia; Chellini, Flaminia [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Mazzanti, Benedetta [Dept. of Experimental and Clinical Medicine—Section of Haematology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Quercioli, Franco [CNR-National Institute of Optics (INO), Largo Enrico Fermi 6, 50125 Arcetri-Florence (Italy); Zecchi-Orlandini, Sandra [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy); Formigli, Lucia, E-mail: formigli@unifi.it [Dept. of Experimental and Clinical Medicine—Section of Anatomy and Histology, University of Florence, Largo Brambilla, 3, 50134, Florence (Italy)

    2014-05-01

    Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7{sup +} satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration.